
Exploiting Multiples of the Connection
Polynomial in Word-Oriented Stream Ciphers

Philip Hawkes1 and Gregory G. Rose1

Qualcomm Australia, Suite 410 Birkenhead Point, Drummoyne NSW 2047 Australia,
{phawkes, ggr}@qualcomm.com

Abstract. This paper describes some attacks on word-oriented stream
ciphers that use a linear feedback shift register (LFSR) and a non-linear
filter. These attacks rely on exploiting linear relationships corresponding
to multiples of the connection polynomial that define the LFSR.
Keywords: stream ciphers, cryptanalysis, SOBER, t-class, SSC-II.

1 Introduction

This paper presents new attacks on word-oriented stream ciphers constructed
from a linear feedback shift register (LFSR) and a non-linear filter (NLF). These
ciphers are constructed from operations on blocks of bits called words, where
the length of a word is denoted by w. In particular this paper analyses what we
call SOBER-like ciphers (based on the SOBER family of ciphers [8, 12–14]) and
SSC-like ciphers (as used in SSC [15], and SSC-II [16]).

The LFSR of a SOBER-like cipher produces a stream {st} of w-bit words
using operations over the Galois field of order 2w, which is denoted GF (2w). The
words st are called L-words and the stream is called the L-stream. The L-words
(s0, . . . , sr−1) are initialised from the secret key (some ciphers also initialise using
a resynchronisation value). The remaining words are produced by iterating a
linear recurrence st+r =

∑r−1
i=0 αist+i, where αi ∈ GF (2w) are constant, and

multiplication and addition are performed over GF (2w). Addition over GF (2w)
is equivalent to bit-wise exclusive-OR (XOR). The LFSR is represented by the
connection polynomial: p(x) = xr +

∑r−1
i=0 αix

i, where, once more, multiplication
and addition are performed over GF (2w). The set of exponents of p(x) with
nonzero coefficients is called the LFSR tapset, denoted T . The LFSR of an SSC-
like cipher differs in that it uses bit rotations rather than field multiplications
and is based on a bit-wise LFSR (more details are given in Sect. 2). The vector
σt = (st, . . . , st+r−1) in either cipher is known as the state of the LFSR at time
t.

The L-stream is fed through an NLF to produce the N-stream {vt = F (σt)}.
The words vt are called N-words. SOBER-like ciphers use an LFSR with a large
state σt, and the NLF relies on a small, fixed subset of the words in σt. That is,
we can write vt = F (st+γ1 , . . . , st+γa

), where Γ = {γ1, . . . , γa} ⊂ {0, . . . , r − 1},
is the NLF tapset. SSC-like ciphers, on the other hand, use an LFSR with a
small state, and the NLF relies on the entire state.

SOBER-like ciphers use an LFSR, an NLF and a form of decimation called
stuttering (described in Sect. 3). The resulting stream, denoted {zn}, is the key
stream. The stuttering chooses which N-words will be output to the key stream.
The stuttering is intended to, and appears to, defeat attacks requiring large
amounts of output, such as correlation attacks [4, 10]. However, the stuttering
merely adds an almost constant factor to the complexity of the attacks described
below.

In the analysis of stream ciphers based on bit-wise LFSRs, cryptanalysts
found that attacks could be improved by exploiting linear relationships in the
L-stream other than that expressed by the linear recurrence (see for example [4,
6, 10]). Such linear relationships correspond to multiples of the connection poly-
nomial: the polynomial r(x) = p(x) · q(x) =

∑a
i=0 εix

i, corresponds to a linear
relationship of the form

∑a
i=0 εist+i = 0. For the remainder of the paper, a

multiple refers to either a multiple of the connection polynomial or the linear
relationship corresponding to that multiple. The main purpose of this paper is
to provide examples of word-oriented stream ciphers for which the multiples can
lead to low complexity attacks.

The first example is a component of the word-oriented stream cipher SSC-
II [16]. SSC-II consists of two half-ciphers producing streams that are XORed
to form the output. One of these half-ciphers is based on a 4-word LFSR (each
word consists of 32 bits), with an NLF and no stuttering. The LFSR is based
on a simple 127-bit, bit-wise linear recurrence that appears difficult to exploit
due to the word-oriented structure of the NLF. However, a power of the bit-wise
connection polynomial results in a linear relationship between corresponding
bits of st, st+63 and st+127. This paper describes how this relationship can be
exploited in an attack of complexity c(241.7) against the LFSR-half cipher, where
c(N) indicates that the complexity is expected to be a small multiple of N . The
authors would like to emphasise that this attack on the half-cipher does not
defeat the entire SSC-II cipher.

The attack on the SSC-II half-cipher is due to the bit-wise connection polyno-
mial of the LFSR having extremely low weight (that is, a low number of terms).
If the LFSR was based on a higher-weight connection polynomial, but there was
some low-weight, low-degree multiple r(x), then a similar attack could be applied
using this multiple. The linear recursion over GF (2w) in a SOBER-like cipher
can be shown to be equivalent to implementing w parallel bit-wise LFSRs of
length wr over GF (2), see [9]. The constants αi are chosen so that the bit-wise
LFSR has many terms (high weight). This property defeats attacks similar to
the above attack, as well as defeating other attacks designed for stream ciphers
employing bit-wise LFSRs. The most successful attacks against SOBER-like ci-
phers have been what we call guess-and-determine (GD) attacks [1–3, 7, 8, 12,
13]. These GD attacks are based on exploiting two relationships: the linear rela-
tionship between L-words described by the LFSR; and the relationship between
L-words and the key stream defined by the NLF. However, previous attacks have
not exploited any further linear relationships.

The latest edition SOBER ciphers, the t-class [8], contains three ciphers: t8,
t16 and t32. The cipher t16 is currently being assessed for use in “third genera-
tion” mobile communication systems, while t32 is being implemented for encryp-
tion in mail transfer sessions between e-mail servers. Thus far, our research into
the t-class has not found any GD attacks exploiting further linear relationships
that can decrease the complexity below that of previously known GD attacks.
However, we have observed that multiples can lead to low-complexity GD attacks
on other SOBER-like ciphers. This is demonstrated by a dummy SOBER-like
cipher, TIPSY, for which the best GD attacks exploiting only the LFSR and
NLF have complexity c(2150). Our search method found a GD attack exploiting
further linear relationships for which the complexity is reduced to c(2117).

The paper is arranged as follows. Section 1.1 introduces some definitions.
Section 2 describes the analysis of the LFSR half-cipher in SSC-II. Section 3
introduces GD attacks and the cipher TIPSY is analysed. Section 4 describes
our method for finding GD attacks. Conclusions and areas for further research
are discussed in Sect. 5.

1.1 Definitions

For any t ≥ 0, we define a candidate L-word ut to be a guess for the value of
the L-word st, and define a candidate state µt = (ut, . . . , ut+r−1) to be a guess
for the value of σt. We consider that an LFSR-based stream cipher is broken
once the initial state of the LFSR has been determined. One method by which a
stream cipher can be attacked is to search through every candidate µt until the
value of σt is found (this process is commonly known as guessing). A candidate
state µt is tested (to see if it is correct) by constructing a key stream using this
value µt, and comparing the resulting key stream with the observed key stream.
If the two streams match then the candidate is correct. In general, the large size
of the register and the corresponding large number of possible candidate states
make any such attack prohibitive.

2 Analysis of SSC-II

SSC-II [16] was proposed by Zhan, Carroll and Chan, and is based on w = 32-bit
operations and w-bit words. The cipher consists of two half-ciphers: each half
cipher produces a stream of 32-bit words and these streams are XORed to form
the output. One half-cipher uses a lagged Fibonacci Generator which is based on
addition modulo 232 and is not considered here. The other half-cipher is based
on a four-word LFSR. This LFSR produces an L-stream of 32-bit L-words {st}
by iterating the linear recurrence: st+4 = st+2 ⊕ (st+1 << 31) ⊕ (st >> 1),
where a << b (a >> b) denotes left (right) shifting of a by b bits. The bit-
shifts are not cyclic: the remaining values are filled with zero bits. We denote
the corresponding bit-stream by {bi} where b32t+j = st[j], the j-th bit of st,
0 ≤ j ≤ 31, t ≥ 0. The bit stream {bi} can be produced by a bit-wise LFSR with
linear recurrence bi+127 = bi+63 + bi (mod 2). The LFSR in SSC-II calculates

32 bits of the L-stream simultaneously. SSC [15] employs an LFSR based on a
similar principle.

The LFSR half-cipher has an NLF containing: addition modulo 232, denoted
by + ; 32-bit XOR; swapping the higher and lower order halves of the 32-bit
word, denoted by SWAP; and including the carry resulting from adding words
where → denotes outputting this carry. Let s∗t denote the word st with the least
significant bit (LSB) set to one. The N-word vt is determined from the state
σt = (st, . . . , st+3) as follows:

A = s∗t + st+3 → c1, B = SWAP(A),
C = B + (st+2 ⊕ (c1 · s∗t)) → c2, vt = c2 + (st+1 ⊕ st+2) + C,

where c1 · s∗t = 0 if c1 = 0 and c1 · s∗t = s∗t if c1 = 1.

Note 1. Let p̂(x) = x127 + x63 + 1 denote the connection polynomial for the bit
stream {bi}. Due to cancellation of terms, p̂2(x) = x127·2 + x63·2 + 1, p̂4(x) =
x127·4 + x63·4 + 1 and so forth. Thus, p̂32(x) = x127·32 + x63·32 + 1, indicating
that bi+127·32 = bi+63·32 + bi. This implies that st+127[m] = st+63[m] + st[m], for
each m, 0 ≤ m ≤ 31, and thus st+127 = st+63 ⊕ st.

This linear relationship is likely to lend the LFSR half-cipher to a fast cor-
relation attack. The authors are currently analysing SSC-II to assess the com-
plexity of such an attack. The following attack illustrates an alternative method
of exploiting this linear relationship. The 32-bit words are first divided into two
16-bit half-words: for example, st+i = sHt+i‖sLt+i and vt+j = vHt+j‖vLt+j .
Note that the half-word N-words vHt and vLt are functions of the half-words
sHt+i and sLt+i, 0 ≤ i ≤ 3, using addition modulo 216 (denoted by +), 16-bit
XOR and carries di from the addition of the lower half-words:

AL = sL∗
t + sLt+3 → d1 , AH = sHt + sHt+3 + d1 → c1 ,

CL = AH + (sLt+2 ⊕ (c1 · sL∗
t)) → d2 ,

CH = AL + (sHt+2 ⊕ (c1 · sHt)) + d2 → c2 ,

vLt = c2 + (sLt+1 ⊕ sLt+2) + CL → d3 ,

vHt = (sHt+1 ⊕ sHt+2) + CH + d3 .

(The SWAP step is integrated into the evaluation of CL and CH). If the values
of c1 ∈ {0, 1}, (c2 + d1) ∈ {0, 1, 2} and (d2 + d3) ∈ {0, 1, 2} are known, then
the NLF half-word outputs can be written as:

vLt = sHt + sHt+3 + (sLt+2 ⊕ (c1 · sL∗
t)) + (sLt+1 ⊕ sLt+2) + (c2 + d1) ,

vHt = sL∗
t + sLt+3 + (sHt+2 ⊕ (c1 · sHt)) + (sHt+1 ⊕ sHt+2) + (d2 + d3) .

For fixed values of c1, (c2 + d1) and (d2 + d3), the expression for the LSB of
vLt provides a linear relationship between the LSBs of sL∗

t , sHt, sLt+1 and
sHt+3. Similarly, the expression for the LSB of vHt provides a linear relationship
between the LSBs of sL∗

t , sHt, sHt+1 and sLt+3. The LSB of sL∗
t is one, so this

can be ignored.

Consider the sets X = {0, 1, 2, 3, 63, 64, 65, 66, 126, 189},

Y = {0, 63, 126, 127, 189, 190, 253, 254, 317, 381}, and
Z = {0, 1, 2, 3, 63, 64, 65, 66, 126, 127, 128, 129, 130, 189, 190, 191, 192, 193,

253, 254, 255, 256, 257, 317, 318, 319, 320, 381, 382, 383, 384} .

The values of L-words st+j , j ∈ Z, can be derived from values of the L-words
st+i, i ∈ X, by applying the equation in Note 1. For example, st+127 = st+63⊕st,
and st+191 = st+127 ⊕ st+64. Thus, each L-word st+j , j ∈ Z, can be expressed
as st+j =

⊕
i∈X βj,ist+i, where βj,i ∈ {0, 1} for i ∈ X. Furthermore, these

equations relate bits of the L-words st+j , j ∈ Z, to corresponding bits of the
L-words st+i, i ∈ X: st+j [m] =

⊕
i∈X βj,ist+i[m], for each m, 0 ≤ m ≤ 31.

Note that the values of the 10 N-words vt+j , j ∈ Y rely on the set L-words st+j ,
j ∈ Z. Each bit of these L-words st+j , j ∈ Z is, in turn, a linear function of the
corresponding bits in 10 L-words st+i, i ∈ X. Candidates ut+i, i ∈ X, for the
L-words st+i, i ∈ X, are determined as follows.

From the expressions for the 20 half-word outputs vLt+j and vHt+j , j ∈ Y ,
we get 20 linear equations in the LSBs of uHt+j , uLt+j+1, uHt+j+1, uLt+j+3

and uHt+j+3, j ∈ Y . The attacker guesses the values of of c1, (c2 + d1) and
(d2 + d3) in the expression for each N-word vt+j , j ∈ Y . For each of the 10 N-
words there are 2 possible values for c1, and 3 possible values each for (c2 + d1)
and (d2 + d3). Therefore, the total number of guesses is (2 · 32)10 = 241.7. These
values are subtracted from the expressions for the 20 half-word outputs vLt+j

and vHt+j , j ∈ Y , to get 20 linear equations in the LSBs of uHt+j , uLt+j+1,
uHt+j+1, uLt+j+3 and uHt+j+3, j ∈ Y . As noted above, each of these LSBs is,
in turn, a linear equation in the LSBs of uLt+i and uHt+i, i ∈ X. Thus the
attacker obtains 20 linear equations in the LSBs of uLt+i and uHt+i, i ∈ X
(these LSBs represent a total of 20 bits). These equations are solved to obtain
the LSBs of uLt+i and uHt+i, i ∈ X. From these LSBs, the attacker determines
uLt+j and uHt+j , j ∈ Z, which enables the attacker to determine the carries up
to the second LSBs of vLt+j and vHt+j , j ∈ Y . After subtracting these carries,
the attacker now has 20 linear equations in the second LSBs of uHt+j , uLt+j+1,
uHt+j+1, uLt+j+3 and uHt+j+3, j ∈ Y . Once again, each of these bits is a linear
equation in the second LSBs of uLt+i and uHt+i, i ∈ X. The attacker obtains the
system of 20 linear equations in the second LSBs of uLt+i and uHt+i, i ∈ X (20
in total), and solves this system to obtain these values. This process is repeated
to obtain all of the bits in uLt+i and uHt+i, i ∈ X. These candidates (uLt+j

and uHt+j , j ∈ X) combine to form several full states, any of which may be
tested (by producing some of the N-stream and comparing it with the observed
key stream).

As mentioned above, the total number of guesses is 241.7, so the process com-
plexity of the attack is c(241.7). The data complexity of the attack is small: the
attacker requires vt+j , j ∈ Y , for a single t, which will require observing 382
consecutive key-stream words. This attack is feasible for one primary reason:
the bit-wise connection polynomial has a small number of terms. The attack
would also have been feasible if there was a low-weight, low-degree multiples of

the bit-wise connection polynomial. However, the attack cannot be applied if the
weight of the multiple is sufficiently high, or the degree is sufficiently large, for
the following reasons. A high-weight multiple of the bit-wise connection polyno-
mial would require more equations in the N-words before system of bit-wise lin-
ear equations was solvable. Consequently, more values of c1, (c2 + d1), (d2 + d3)
would be guessed, increasing the complexity and rendering the attack infeasible.
On the other hand, if the degree of the multiple exceeds the maximum number
of key-stream words produced from a single initial state, then this relationship
cannot be exploited, regardless of weight.

3 Guess-and-determine Attacks

The LFSRs of SOBER-like ciphers correspond to bit-wise connection polynomi-
als with extremely large numbers of terms. For example, the LFSR of t16 has
a corresponding bit-wise connection polynomial with approximately 136 terms.
This property helps SOBER-like ciphers resist the kind of attack described in the
previous section. The most successful attacks [1–3, 7, 14, 13, 12] against SOBER-
like ciphers have been GD attacks (there is no common name for these attacks).
The following example describes a dummy SOBER-like cipher which is used to
demonstrate how GD attacks are performed, and how GD attacks can, in some
cases, be improved by exploiting multiples.

Example 1. TIPSY is a SOBER-like cipher designed for w = 16-bit processors,
so the words are 16-bits long and all operations are 16-bit operations. TIPSY
uses the LFSR tapset T = {0, 1, 4, 13} and the NLF tapset Γ = {0, 5, 10, 11}.
The linear recursion is of the form st+13 = st+4+st+1+αst, where α = 0xEDED,
and addition and multiplication are performed over GF (216). The corresponding
connection polynomial is p(x) = x13 + x4 + x + α. The NLF is of the form:
vt = F (st, st+5, st+10, st+11) = f(st + st+11) + st+5 + st+10, where + denotes
addition modulo 216 and f is a fixed, nonlinear, one-to-one 16-bit S-box. TIPSY
decimates the N-stream to form the key stream using the same stuttering as t16
(the stuttering is described in Sect. 3.1).

As mentioned in Sect. 1.1, a stream cipher can be broken by guessing the
value of any state σt, but the large size of the register and the corresponding
large number of possible candidate states make any such attack prohibitive. GD
attacks guess only a small set of candidate L-words, rather than an entire state.
These attacks then use some observed N-stream words, and the relationships
resulting from the LFSR and the NLF, to determine an entire state from this
smaller set of L-words.

Example 2. In attacking TIPSY, if ut, ut+1 and ut+13 are guessed, then ut+4

can be determined as ut+4 = ut+13+ut+1+αut. Alternatively, if ut+5, ut+10 and
ut+11 are guessed then ut can be determined from vt; if − denotes subtraction
modulo 216, then ut = f−1(vt − (ut+5 + ut+10)) − ut+11.

These two processes of determining L-words are called D-exploiting the LFSR
and NLF respectively (the ‘D’ is for ‘determine’). Note that, for TIPSY, D-
exploiting the LFSR and NLF is computationally equivalent to c(1) encryption.
The same applies to the t-class ciphers. D-exploiting the NLF is not a new
concept: inversion attacks [6] and the generalised inversion attacks [5] are based
on a similar approach.

Given a suitable portion of the N -stream,1 previous GD attacks were based
on guessing candidates for a small set of L-words, D-exploiting the LFSR and
NLF to determine a full candidate state, and then testing this candidate
state. These analyses of SOBER-like ciphers examined only those GD attacks
that exploit the relationships explicitly defined by the LFSR and NLF. This
paper extends the range of GD attacks by D-exploiting further multiples. There
are simply too many multiples to begin searching for all attacks exploiting all
possible multiples. Consequently, a method has been developed for reducing the
amount of work by considering multiples that are more likely to lead to improved
attacks: the rationale behind the authors’ approach is described in Sect. 4. Using
this method, the authors conducted a search for attacks exploiting polynomials of
degree 2r (twice the degree of p(x)) or less and with 10 or less terms. This method
cannot be guaranteed to find the best attack, as there may be some other high-
weight or high-degree polynomial which can be exploited in a low complexity
attack. However, the existence of such an attack becomes more unlikely as the
weight and degree of the polynomials increases.

When applied to the t-class ciphers, the analysis described in Sect. 4 re-
vealed that the additional linear relationships did not provide an attack of lower
complexity than was already known. However, the analysis of TIPSY did find
improvements by exploiting further multiples. The lowest complexity GD-attack
D-exploiting only the LFSR and NLF of TIPSY has complexity c(2128), given
a suitable portion of the N-stream. Using the method described in Sect. 4, the
authors found the following attack of complexity c(296), given a suitable portion
of N-stream, a significant improvement.

Example 3. Table 1 describes an GD attack on TIPSY that D-exploits the LFSR,
the NLF and the following multiples:

p2(x) = x26 + x8 + x2 + α2 ,

r1(x) = (x9 + x6 + x3 + 1) · p(x)
= x22 + x19 + x16 + αx9 + αx6 + αx3 + x + α ,

r2(x) = (x12 + αx11 + α2x10 + x6 + x3 + αx2 + α2x + 1) · p(x)
= x25 + αx24 + α2x23 + x19 + (α3 + 1)x10 + α2x5 + (α3 + 1)x + α .

To perform the attack, a portion of the N-stream must be observed, including
vt+i, i ∈ {4, 7, 11, 12, 17, 18, 22, 23} for some value of t. Let φt denote the six-
word candidate vector φt = (ut+12, ut+14, ut+15, ut+17, ut+22, ut+27). For a given

1 The problem of obtaining a suitable portion of N-stream from the key stream is
addressed in Sect. 3.1.

value of φt, Steps 2 to 18 in Table 1 determine candidates for the 17 L-words:

st+i, i ∈ {4, 5, 6, 7, 8, 9, 18, 21, 23, 25, 28, 29, 30, 32, 33, 34, 41} .

For example, in Step 2, the value of ut+23 is determined from the values of vt+12,
ut+12 ut+17, and ut+22 by D-exploiting the NLF:

ut+23 = f−1(vt+12 − (ut+17 + ut+22)) − ut+12.

Table 1. A GD attack on TIPSY exploiting the LFSR, the NLF, p2(x), r1(x) and r2(x),
given vt+i, i ∈ {4, 7, 11, 12, 17, 18, 22, 23}. “Action” indicates the following actions: C,
perform an NLF check; G, guess values; L, D-exploit the LFSR; N, D-exploit the NLF;
r1, D-exploit the multiple r1(x); r2, D-exploit the multiple r2(x); S, D-exploit the
square of the connection polynomial (p2(x)); T, test the given candidate state. In the
next two columns a candidate L-word ut+i is indicated using the value of i. “Used”
indicates those values used to determine or check the value indicated in the “Det.”
column.

Step Act. Values Value Step Act. Values Value
Used Det. Used Det.

1 G 12,14,15, 13 L 4,5,17 8
17,22,27 14 L 8,9,12 21

2 N vt+12, 12, 17, 22 23 15 L 17,18,21 30
3 N vt+17, 17, 22, 27 28 16 S 4,12,30 6
4 S 15,17,23 41 17 r1 6,7,9,12,15,22,28 25
5 L 14,15,27 18 18 L 21,22,25 34
6 N vt+7, 12, 17, 18 7 19 C 23,28,33,34 vt+23

7 N vt+18, 18, 23, 28 29 20 G 11
8 L 28,29,41 32 21 N vt+11, 11, 21, 22 16
9 N vt+22, 22, 27, 32 33 22 L 12,16,25 13
10 S 7,15,33 9 23 S 8,16,34 10
11 N vt+4, 9, 14, 15 4 24 T µt+4

12 r2 4,9,14,23,27,28,29 5

Note that the L-words st+i, i ∈ {23, 28, 33, 34}, are the inputs to the NLF pro-
ducing vt+23, and candidates for all these inputs are known after Step 18 is per-
formed. However, vt+23 has not been used to determine any of these values when
exploiting the NLF, so these candidates are independent of the value of vt+23.
Clearly, if the candidates in φt are correct, then F (ut+23, ut+28, ut+33, ut+34) =
vt+23. If F (ut+23, ut+28, ut+33, ut+34) 6= vt+23, then at least one of the candidates
in φt is incorrect, and there is no use in completing any further steps. This infor-
mation can be used to eliminate incorrect values of φt using a process called an
NLF check. If F (ut+23, ut+23, ut+33, ut+34) = vt+23, then the vector φt, is said
to pass the NLF check, otherwise it fails. If φt fails the NLF check in Step 19,

then the attack returns to Step 1 and tries another guess for φt, otherwise the
attack proceeds to Step 20.

At Step 20, a candidate ut+11 for st+11 is guessed. Steps 21, 22 and 23
determine candidates ut+16, ut+13 and ut+10. Thus after Step 23, a candidate
state µt+4 = (ut+4, . . . , ut+16) for the state σt+4 has been determined. This
candidate state µt+4 is then tested in Step 24. If µt+4 is incorrect, then the
attack returns to Step 20 and guesses another value for ut+11, unless all values
for ut+11 have been tested for a given value of φt, in which case the attack returns
to Step 1 and guesses another value for φt.

There are 26w = 296 possible values for φt, so performing Steps 1 to 19 is
computationally equivalent to c(296) encryptions. As the NLF is balanced, only
one in 2w = 216 values of φt will pass the NLF check. Thus, only 280 values
of φt will proceed to Step 20. There are 216 values for ut+11, so Steps 20 to 24
are performed 280 · 216 = 296 times: equivalent to c(296) encryptions. Therefore,
the total complexity of the attack is equivalent to only c(296) + c(296) = c(296)
encryptions.

Note 2. This attack clearly exploits the property that TIPSY has two pairs of
NLF taps which are 5 words apart, contravening criteria suggested by Golic [6]
and Löhlien [11].

3.1 Accounting for the Stuttering

The stuttering decimates the N-stream {vt} as follows. The first output of the
NLF (v1) is the first stutter control word (SCW). Each SCW is partitioned into
eight pairs of bits (each pair is called a dibit). Beginning with the least significant
dibit, the stuttering reads the value of the dibit and performs one of four actions
according to the value of the dibit. The actions corresponding to the dibits are
shown in Table 2. When all the dibits have been read, the LFSR is cycled, and
the output of the NLF becomes the next SCW. The resulting stream, denoted
{zn}, is the key stream.

The stuttering decimates the N-stream in a random manner, so that consec-
utive key-stream words may or may not be consecutive N-stream words. This
results in some uncertainty in relating the position of N-words to position of
key-stream words. Furthermore, this uncertainty increases with the distance (in
words) between key-stream words. This helps defeat attacks which require large
amounts of key stream, such as correlation attacks. However, the stuttering does
not add much resistance against GD attacks.

Example 4. Consider the attack in Example 3. This attack requires the attacker
to know the values of vt+i, i ∈ {4, 7, 11, 12, 17, 18, 22, 23}. To perform this attack,
the attacker must assume that at a certain point in the key stream, one or more
SCWs have a particular value or values which allow the appropriate N-words to
be obtained from the key stream. Given a suitably large amount of key stream, an
attacker can assume that for some values of t, vt+3 = (01, 10, ab, 01, 10, cd, 10, 01)

Table 2. The actions of the stuttering corresponding to the four possible values of the
dibits.

00: Cycle the LFSR, but do not output anything.
01: Cycle the LFSR, output the NLF output XOREd with 0x6996,

then cycle the LFSR again (without producing another output).
10: Cycle the LFSR once (without producing any output),

then cycle the LFSR again and output the NLF output.
11: Cycle the LFSR and output the NLF output XORed

with the bit-wise complement of 0x9669.

where ab, cd ∈ {01, 10}, and vt+3 is an SCW. The key stream output by this
SCWs will be:

zn = vt+4 ⊕ 0x6996, zn+1 = vt+7,

zn+2 = vt+8 ⊕ 0x6996 OR zn+2 = vt+9,

zn+3 = vt+11, zn+4 = vt+12 ⊕ 0x6996,

zn+5 = vt+14 ⊕ 0x6996 OR zn+5 = vt+15,

zn+6 = vt+17, zn+7 = vt+18 ⊕ 0x6996,

The next SCW will vt+20. The attacker can assume that for some value of t, not
only is vt+3 of the above form, but vt+20 is also of the form vt+20 = (. . . , 01, 10),
If this is the case, then the next key-stream words are zn+8 = vt+22 and zn+9 =
vt+23 ⊕ 0x6996.

Thus, assuming that the values of the SCWs are correct, the attacker is
able to determine the N-words from the key stream, and perform the attack in
Example 3. There are two obstacles. First, the attacker does not know when the
SCWs have these values, and second, the attacker does not even know where
in the key stream the SCWs occur. As a result, the attacker proceeds through
the key stream assuming that each sequence of 10 key-stream words was derived
from the N-stream using the SCWs in Example 4, and performs the steps in
Example 3 until the correct state is found. Let N denote the data complexity,
equal to the number of times that the process in Example 3 is repeated. The
expected value of N is the inverse of the probability that a random portion of
key stream was obtained from the N-stream using the SCWs in Example 4. This
probability is determined as follows. Firstly, consider the probability that the
first key-stream word is the first word output by an SCW. There are an average
of 6 key-stream words output for every SCW, so this is 1/6. Secondly, ignoring
the requirement that vt+4 be an SCW, the values of vt+4 and vt+20 are of the
correct form (in this example) with probability 2−18. The combined probability
is 1

6 ·2
−18 ≈ 2−20.6. Consequently, N = 220.6 is the expected data complexity and

the expected process complexity of the attack is c(220.6 · 296) = c(2116.6). The
GD attack on TIPSY exploiting only the LFSR and NLF (of process complexity

c(2128), given the N-stream) would correspond to an attack of process complexity
c(2150), when considering the stuttering.

4 Searching for GD Attacks

This section provides a brief description of the authors’ method of searching for
GD attacks. In this section, the tapset of any polynomial r(x) =

∑r+k
i=0 εix

i, is
defined to be T [r(x)] = {i : εi 6= 0}, and the number of non-zero coefficients of
r(x) (equal to |T [r(x)]|) is called the weight of r(x).2 A GD attack is defined
by a set of steps where the LFSR, the NLF and other multiples are D-exploited
to determine a candidate state from a small set of candidate L-words. It is
the tapsets (of the LFSR, NLF and multiples) that determine which candidate
L-words can be determined from a given set of candidate L-words. Thus, the
existence of a GD attack is determined by the tapsets of the LFSR, NLF and
multiples, and not other details of the relationship such as the coefficients. In the
case of a bit-wise LFSR, finding the tapsets for the multiples is simple because the
tapsets of the the factors p(x) and q(x) define the polynomials and hence define
the tapset of the product r(x) = p(x) · q(x). However, in a word-oriented LFSR,
there can be many factors q(x) with the same tapsets (but different coefficients)
for which the products p(x) · q(x) have different tapsets. This adds significant
complication to the search for GD attacks. In addition to this complication,
there is a very large set of multiples (and their tapsets). Consequently, the task
of searching for the optimal GD attack (the GD attack of lowest complexity) is
still an open problem.

The search for GD attacks can be approached from two directions. One ap-
proach is to have a growing set of multiples to exploit, where the search program
constantly tests for all multiples that can be D-exploited given the set of L-words
that are currently known. This approach has not yet been implemented, although
the authors are in the process of developing such a program.

The second approach divides the search into two parts: a polynomial search,
that determines a set of multiples B to exploit; and a B-attack search, that
examines the GD attacks exploiting the NLF and the polynomials in B. The set
B is called an GD basis and is always assumed to contain p(x).

4.1 The B-attack search.

The B-attack search finds a GD attack which minimises the complexity of the
GD attacks exploiting the NLF and the polynomials in B. The B-attack search
chooses a subset of L-words to guess, and finds the position of all L-words that
could be determined by exploiting the NLF and the polynomials in B. If these
L-words do not comprise a full state, then an additional L-word is guessed, and
the process repeated. This continues until all L-words in an entire state are

2 Note that D-exploiting r(x) is computationally equivalent to at most c(|T [r(x)]|)
encryptions.

determined. Alternatively, if guessing an additional word will result in an attack
with complexity larger than that of the best known attack, then the B-attack
search tries another subset of L-words. To ensure that the B-attack search does
not proceed indefinitely, the authors bounded the distance between the first
L-word guessed and any determined L-words to a maximum of four register
lengths.

4.2 The Polynomial Search.

The speed of the B-attack search decreases as the size of B increases, so the
aim of the polynomial search is to find a small set of multiples that are likely
to find the best attack. Intuition suggests that a multiple r(x) is more likely to
be D-exploited if the corresponding linear relationship is between a small num-
ber of L-words. That is, r(x) is more likely to be exploited if it has low weight.
Consequently, the first criterion used for selecting multiples for the set B is that
they have low weight. Now, suppose that the polynomial search is considering
adding a multiple r(x) to B. Suppose that whenever r(x) is D-exploited, some
combination of multiples can be D-exploited to determine the same L-word. Such
multiples are redundant and should not be added to B. Hence, the polynomial
search looks for a set of low-weight, non-redundant multiples of p(x). The poly-
nomial search takes a polynomial p(x), and two bounds D and W on the degree
and weight of the polynomials to be added to the GD basis. The polynomial
search looks through the multiples of degree ≤ D and with weight ≤ W : any
non-redundant multiples are added to the GD basis. The polynomial search fixes
a tapset T ′ and considers the tapsets of r(x) = p(x) · q(x) when T [q(x)] = T ′.
Note that for a given T ′, all these multiples r(x) will share some similar charac-
teristics. There will be some coefficients of r(x) which will be certain to be zero
(in the zero positions), there will be some coefficients which will be certain to
be nonzero (in the nonzero positions), and the remaining coefficients could be
either zero or nonzero, depending on the cancellation of terms in the expansion
of p(x) · q(x), (the zero-or-nonzero positions). From these sets of coefficients we
can determine a superset of the possible tapsets for multiples p(x) · q(x) with
T [q(x)] = T ′, by considering all possible combinations of the nonzero positions
and the zero-or-nonzero positions. The polynomial search only considers those
tapsets with weight less than the bound W . For each resulting tapset, the poly-
nomial search conducts tests for redundancy, and then confirm that the tapset
corresponds to a multiple p(x)·q(x) with T [q(x)] = T ′. This requires less process-
ing than determining if the tapset corresponds to a multiple and then conducting
the tests for redundancy.

The greatest restriction on the authors’ polynomial search is the weight of
the tested multiples. Our fastest algorithm employed fixed arrays containing the
subsets of b elements from a set of a elements. This method worked best for us.
As a and b increases, the necessary storage requirements increase significantly,
placing constraints on a and b. The authors restricted the polynomial search to
finding multiples of degree less than 2r (twice the degree of p(x)) and weight 10
or less. The tests for redundancy then reduced this set of multiples. Given these

restrictions, the polynomial search and B-attack search require less than a day
of processing each.

4.3 Results

The polynomial search on the LFSR of TIPSY found 123 multiples within
the above constraints (maximum degree D = 26 = 2r and maximum weight
W = 10). Using this basis, the B-attack search found an attack on TIPSY of
complexity c(296) (ignoring stuttering): this is the attack described in Exam-
ple 3. Given the improved attack on TIPSY, the authors considered that t-class
might also weaker than first claimed. A polynomial search on the LFSR of t16
was conducted to find the GD basis B within the aforementioned constraints
(maximum degree D = 34 = 2r and maximum weight W = 10). This search
revealed a GD basis of 63 multiples. The B-attack search using this basis found
only GD-attacks of complexity c(2160) (ignoring stuttering). Such attacks offer
no improvement over previous GD attacks (such attacks are simple variants of
the attacks in [2, 7], discussed in [8]). A similar analysis of t8 and t32 revealed
that the additional linear relationships did not provide an attack of lower com-
plexity than was already known.

5 Conclusion

This paper provides two examples of how multiples can be exploited in attacks
against various word-oriented ciphers. In the first example, powers of the bit-
wise connection polynomial reveal a weakness in SSC-II. This supports the well-
known criteria that stream ciphers (even word-oriented stream ciphers) should
avoid using connection polynomials for which there exists low-degree, low-weight
multiples. In the second example, multiples of the connection polynomial over
GF (2w) are used in a low complexity GD attack against a dummy SOBER-like
cipher, TIPSY. However, the t-class ciphers appear to resist attacks exploit-
ing multiples. The authors continue to examine how multiples can be exploited
against SOBER-like ciphers, and consider how SOBER-like ciphers resist such
attacks. It is hoped that this will lead to a method of determining the best
possible GD attack on a given SOBER-like cipher.

References

1. S. Blackburn, S. Murphy, F. Piper, and P. Wild. A SOBERing remark. Technical
report, Information Security Group, Royal Holloway University of London, Egham,
Surrey TW20 0EX, U.K., 1998.

2. D. Bleichenbacher, W. Meier, and S Patel. Analysis of the SOBER stream cipher.
Technical Report TR45.AHAG.08.30.12, TR45 Ad Hoc Authentication Group,
1999.

3. D. Bleichenbacher and S Patel. SOBER cryptanalysis. Fast Software Encryption,
FSE’99 Lecture Notes in Computer Science, vol. 1636, L. Knudsen ed., Springer-
Verlag, pages 305–316, 1999.

4. V. Chepyzhov and B. Smeets. On a fast correlation attack on certain stream
ciphers. Advances in Cryptology, EUROCRYPT’91, Lecture Notes in Computer
Science, vol. 547, D. W. Davies ed., Springer-Verlag, pages 176–185, 1991.

5. J. Golić, A. Clark, and E. Dawson. Inversion attack and branching. Informa-
tion Security and Privacy, Fourth Australasian Conference, ACISP’99, Lecture
Notes in Computer Science, vol. 1587, J. Pieprzyk, R Safavi-Naini, J. Seberry
eds., Springer-Verlag, pages 88–102, 1999.

6. J. Dj. Golić. On the security of nonlinear filter generators. Fast Software Encryp-
tion, Lecture Notes in Computer Science, vol. 1039, D. Gollmann ed., Springer,
pages 173–188, 1995.

7. P. Hawkes. An attack on SOBER-II. Technical report, QUALCOMM Australia,
Suite 410, Birkenhead Point, Drummoyne NSW 2137, Australia, 1999.

8. P. Hawkes and G. Rose. The t-class of SOBER stream ciphers. Technical report,
QUALCOMM Australia, Suite 410, Birkenhead Point, Drummoyne NSW 2137,
Australia, 1999. See http://www.home.aone.net.au/qualcomm.

9. T. Herlestam. On functions of Linear Shift Register Sequences. Advances in Cryp-
tology, EUROCRYPT’85, Lecture Notes in Computer Science, vol. 219, F. Pichler
ed., Springer-Verlag, 1986.

10. T. Johansson and F Jönsson. Improved fast correlation attacks on stream ciphers
via convolutional codes. Advances in Cryptology, EUROCRYPT’99, Lecture Notes
in Computer Science, vol. 1592, J. Stern ed., Springer-Verlag, pages 347–362, 1999.

11. B. Löhlein. Analysis and modifications of the conditional correlation attack. 1999.
Accepted at 3rd IEEE/ITG Conference on Source and Channel Coding, 17-19 Jan.
2000, Munich.

12. G. Rose. S32: A fast stream cipher based on linear feedback over GF (232). Tech-
nical report, QUALCOMM Australia, Suite 410, Birkenhead Point, Drummoyne
NSW 2137, Australia, 1998.

13. G. Rose. SOBER: A stream cipher based on linear feedback over GF (28). Technical
report, QUALCOMM Australia, Suite 410, Birkenhead Point, Drummoyne NSW
2137, Australia, 1998. See http://www.home.aone.net.au/qualcomm.

14. G. Rose. A stream cipher based on linear feedback over GF (28). Information
Security and Privacy, Third Australasian Conference, ACISP’98, Lecture Notes in
Computer Science, vol. 1438, C. Boyd, E. Dawson eds., Springer-Verlag, pages
135–146, 1998.

15. M. Zhang, C. Carroll, and A. Chan. SSC. Technical Report
TR45.AHAG.99.02.09.15, TR45 Ad Hoc Authentication Group, 1999.

16. M. Zhang, C. Carroll, and A. Chan. The software-oriented stream cipher SSC-II.
In Proceedings of Fast Software Encryption Workshop 2000, pages 39–56, 2000.

