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Abstract

Writing secure, trusted software for UNIX platforms is difficult.  There are a number of approaches to enabling
more secure development, but it is apparent that the current set of solutions are neither achieving acceptance nor
having sufficient impact.  In this paper, we introduce a library to address a particularly difficult problem in secure
code development: partitioning processes to isolate privileges in trusted code.

Privilege separation is a technique that isolates trusted code, therefore reducing the amount of code that needs to
be carefully audited.  While the technique is not new, it is not widely used due to difficulties of implementation.
We present Privman, a library that makes privilege separation easy.  The primary benefit of the Privman library is
a systematic, reusable framework and library for developing partitioned applications. We demonstrate the feasi-
bility of the approach by applying it to two real systems, thttpd and WU-FTPD.

1. Introduction

According to the SANS list of critical security vulner-
abilities [SAN02], simple programming errors such as
buffer overflows cause approximately 40% of the top
vulnerabilities.  Despite a large collection of knowl-
edge on writing secure software, programmers still
make the same mistakes today as 10 years ago, and the
same types of services cause most of the problems.

Standard UNIX systems do not handily support the
concept of least-privilege, instead granting all privi-
leges to superuser (root), and none otherwise.  While
specific systems may have some least-privilege fea-
tures [IEE97], the relevant APIs have not achieved
sufficiently widespread usage, and therefore cross-
platform applications are not able to take advantage of
them. Although the widespread use of techniques like
those in StackGuard [COW98a] would protect against
these common buffer overflows, even the strongest
compiler techniques are useless against application
design errors.

There are a number of reasons for the lack of progress
in developing secure software.  The methodologies for
developing secure software are not used, as general
application developers with little security awareness
write most software.  Additionally, the existing body
of knowledge commonly available to developers con-
sists of a list of missteps, not positive guidelines
[KIE02a].  Even when the developers know of the is-
sues, they often drop security concerns in the rush to
add functionality.

Finally, the secure operating system features that
would allow secure software to be written more easily
have not achieved widespread deployment for a num-
ber of different reasons [COW98], including deploy-
ment costs and more general network-
ing/interoperability issues.

Secure programming practices have significant value,
but most developers are not security experts and there-
fore cannot take full advantage of those practices. This
trend will not change.   Therefore, we seek to lower
the barriers of entry for writing secure system soft-
ware.

Our contribution towards this goal involves facilitating
a specific technique for writing secure software: parti-
tioning applications between security-specific (trusted)
code and non-security-specific (untrusted) code.  By
validating requests in the privileged code, an applica-
tion can be limited to the required set of privileges.

2. Problem: Partitioning Applications

Software is, by its very nature, extremely sensitive to
mistakes [BRO75].  Privileged software is no different.
In all common operating systems, software with the
ability to perform any privileged operation also has the
ability to perform all privileged operations.  Therefore,
this software must be trusted to not misbehave, even
when under attack from untrusted sources.  When
writing trusted software, a single mistake can com-
promise the entire system.



An important defensive programming technique is
encapsulating the security-sensitive components within
small, simple components. These components can then
be more easily verified.  This pattern [KIE02b] of
separation provides additional assurance when requests
for privileged operation have to be validated by the
secure component.  By separating the security sensi-
tive components of the application in a different proc-
ess from the bug-prone components, mistakes in the
majority of the application will not and cannot result
in total compromise of the entire application.  Hence,
attackers would be unable to compromise the system.

The most common example of this pattern of enforced
separation is the kernel/user-space split of the major
operating systems, but this is also the pattern of any
trusted computing base (TCB).  This split can be ap-
plied to user-space software by splitting the software
among processes [VIE98].

On UNIX systems, many exercises of privilege fun-
damentally exist as file accesses.  For example, vali-
dating a user’s authentication normally requires read
access to the /etc/passwd and /etc/shadow files.  UNIX
systems validate file-access privilege upon open(2)
only, and therefore consider file descriptors to be ef-
fectively access tokens.

The standard POSIX APIs allows file descriptors to be
passed between processes via UNIX domain sockets
(pipes)i[POS00].  This API therefore allows software
to pass privilege tokens between processes. Programs
can proxy many useful operations by passing file de-
scriptors between processes.

Several projects have used this POSIX capability to
split their process in a one-off and ad-hoc way, in-
cluding recent versions of the ubiquitous OpenSSH
daemon [PRO02].  Several other projects have used
other forms of process compartmentalization, includ-
ing qmail [NEL02] and postfix [BLU01].

Traditionally, it has been very difficult to retrofit this
design to existing applications.  Instead, almost all
such applications have been written from the ground
up around this design.

The Privman library seeks to overcome this limitation
by allowing developers to easily adapt existing appli-
cations.  The Privman library provides a systematic
and reusable approach to enabling development of a
partitioned application.

2.1. Constraints

For developers to adopt our approach, it must fit into
the “real world” of application development.  This
places several constraints upon any solution.

• The framework must exist in a form convenient
for development.  We believe this requires the
system to be available as a library.

• The framework must be portable between most
UNIX systems.

• The framework cannot rely upon custom kernel
changes or custom system libraries.

• The library API should be in terms of existing,
well-understood APIs, simplifying any porting ef-
forts.

The barriers to changing a piece of the core infra-
structure of a distribution (like the compiler or the
fundamental nature of the security policy of the ker-
nel) are high.  In contrast, the barriers to small changes
in a specific daemon are low.  (A minimal install of
Red Hat Linux version 7.2 includes approximately 70
packages of libraries, most of which are only used for
one or two different pieces of software.)  We expect,
therefore, that a well-designed library may lure devel-
opers of system software.

2.2. Related Work

Many systems have approached the problem of least
privilege, even under the constraints listed above;
OpenSSH, for example, currently uses a framework
very similar to Privman to protect systems from possi-
ble bugs in the ssh daemon.  However, the privilege-
separation framework in OpenSSH is application-
specific in many ways.  The majority of the privileged
operations in privilege separated OpenSSH are SSH-
specific operations, and the framework assumes that
application-specific operations are the norm.  Privman
does not make that assumption, and is more useful for
general applications.

Other projects have modified the kernel on systems to
enforce application-specific security policies. Sys-
trace[PRO03], GSWTK[FRA99], and Tron[BER95],
mediate at the system call layer to enforce their policy.
We avoided this approach to improve portability
across systems.  SubOS[IOA02] uses a modified kernel
to associate permissions with files, and restrict the
permissions of programs that open those files.  While
using a modified kernel is faster and offers higher lev-
els of granularity, prior approaches have not achieved



widespread adoption, although Systrace may break
through.

Similar to the kernel-based sandbox systems are the
systems that enforce a policy on running applications
by using system-specific debugging interfaces.  Janus
[GOL98] and MAPbox [ACH00] are two examples of
this approach.  These systems are less portable across
platforms.  They can also suffer performance issues, as
each system call requires the intervention of a user-
space application.  Privman may be slightly quicker, as
only those calls that require privilege need to be
passed to the Privman server.

None of these sandbox systems require modification of
the running applications.  On the other hand, applica-
tion-specific systems do not require custom kernel
builds or non-standard debugging APIs.  In all cases,
developing a correct and strict policy is the primary
difficulty.  Systrace, unlike GSTWK, can automati-
cally build policies for applications running under the
system, but the policy-building process for Privman
and most of sandboxing systems is still fairly difficult
and manual.

Various projects such as qmail and vsftp have devel-
oped application-specific methods of privilege separa-
tion, normally involving process separation and clean
interfaces between processes.  These approaches are
used only in the creation of new software, as it is im-
practical to adapt existing software to this design.

Several projects restrict the privileges given to dae-
mons by placing the daemons in some form of “sand-
box”.  FreeBSD has its jail(2) system call, Linux
has User-Mode-Linux[UML03], and many systems
have some form of total-system virtualization. The
Java VM’s security manager may be the most famous
sandbox.  Privman is more portable across common
systems than most of these sandboxing techniques, and
unlike the Java VM, supports C and C++.

3. Solution: The Privman Library

We present a library, called Privman, which simplifies
the task of partitioning applications for a particular
class of applications, privileged UNIX daemons.

Programs that use Privman split themselves into two
processes: a privilege server, and the main application.
The main application gives up all privilege, and asks
the privilege server to perform any privileged opera-
tions on its behalf.

Privman uses an application-specific configuration file
to limit the available privileges.  The policy can limit
a program to opening specific files, binding to specific
ports, or otherwise limit access to the privileged op-
erations.

The Privman library makes implementing privilege
separation much easier, by providing standard C li-
brary equivalent functions for many operations that

int main(int argc, char *argv[])

{

char buf[4096];

int i;

priv_init("mycat");

for (i=1; i < argc; ++i) {

/* Privileged use of "fopen" */

FILE *f=priv_fopen(argv[1],"r");

while(n=fread(buf,1,1024,f) >0)

fwrite(buf, n, 1, stdout);

fclose(f);

}

exit(0);

}

Listing 1
struct pam_conv conv = {

misc_conv,

NULL

};

int main(int argc, char *argv[])

{

pam_handle_t   *pamh = NULL;

const char     *user = argv[1]

priv_init("check_user");

if (priv_pam_start("login", user,

&conv, &pamh) != PAM_SUCCESS)

goto failed;

if ( priv_pam_authenticate(pamh, 0)

!= PAM_SUCCESS)

goto failed;

if ( priv_pam_acct_mgmt(pamh, 0)

!= PAM_SUCCESS)

goto failed;

fprintf("user %s authenticated “

”%s\n",user);

return EXIT_SUCCESS:

failed:

fprintf("could not authenticate %s\n",

user);

return EXIT_FAILURE:

}

Listing 2



traditionally need privilege.  The library supports sev-
eral file-access methods, PAM authentication,
bind(), and daemon().  The library supports sev-
eral “<foo>_as()” methods to enable changes in the
effective unprivileged user.

By limiting the amount of active code that runs with
privilege, the amount of code requiring serious audit
also shrinks.  This should improve overall system se-
curity by increasing the assurance of the system.

3.1. Usage of the Library

The library has a very straightforward API at its core.
The process starts by calling "priv_init()", and
then calls various "priv_*()" methods when it
wants to perform privileged operations.  For example,
a variant of cat that uses the library to read otherwise
unreadable files might look like listing 1 (Privman
specific parts in bold).  Similarly, a stripped down
program that authenticated a user is shown in listing 2.

As shown here, not all requests handled by the library
are file-related.  The Privman libraries can manage any
request that can be proxied (in the case of PAM, by
invoking input functions in the context of the unprivi-
leged process).

The Privman library handles two types of extensions.
Info functions return a string, and capability functions
return a file descriptor.  Both types take an array of
char *.  To register an extension function, the pro-
gram calls priv_register_{cap,info}_fn()
before it calls priv_init(). (Allowing the process to
add extension methods after priv_init() is essentially
allowing the process to run arbitrary code as root at
any time.)  The register functions return a handle
which is used as an argument to later calls to the in-
voke functions. If a program needs to transition to a
different user, it uses any of the “_as()” methods.
All the “as” methods take a user name and a chroot
jail, then spawn a second process to continue execu-
tion as the specified user.

The complete list of supported APIs is presented in
Appendix 1.

3.2. Policy

Every Privman managed application has a config file,
which in the case of a logfile review program might
look like:

open_ro {
# Anything under /var/log
/var/log/*

}

or in the "check_user" case might look like:

# simple app.  Only needs PAM.
auth true

The proper configuration file is critical to successfully
partitioning a process.  Obviously, if the privilege
manager automatically responds to any request, then
Privman would only provide an illusion of security.
The attacker would simply rewrite shell code to invoke
the privilege manager instead of directly attacking the
system.  Instead, Privman relies on the configuration
file to specify tight constraints on the allowable ac-
tions of a client.

This has the extra benefit of expressing the security
policy openly, instead of leaving it buried in the code.

The configuration file should be written tightly enough
to allow the process its privileged operations but
nothing else, i.e., the policy should follow the least
privilege principle.  For example, the following is the
configuration for a simple network daemon.

# echo daemon.  The app is allowed
# to bind to a low port: 7
# and to write to a log file
bind echo
open_ao {

/var/log/myecho.log
}
fork true

The grammar for the policy file is presented in Appen-
dix 2.

3.3. Implementation

The Privman server performs all the privileged opera-
tions.  When the application invokes a privileged op-
eration, the library marshals the arguments, sends them
over a UNIX pipe to the Privman server, and the op-
eration is invoked there.  Consequently, operations that
do not actually need privilege may need to be executed
by the Privman server.  As an example, only
pam_authenticate() really needs privilege to
execute, but the Privman library proxies all of the
PAM methods so that the state in the libpam library is
consistent.



The Privman server is created from the main process
during the call to priv_init().  The process, when it
returns from priv_init(), is actually a child process
forked off from the Privman server.

This design causes the library to export more methods
than might be expected.  For example, the daemon()
call, which detaches a program from the controlling
terminal, does not need privilege.  However, any shell
waiting on the daemon to exit will be waiting on the
Privman server.  The Privman server, then, needs to
call daemon()  to fully detach from the controlling
terminal.

Figure 1 represents the program in listing 1 after it
opens the file and starts to read.  The Privman server
passes the file descriptor to the Privman client, and the
client is now reading freely, without involving the
server for read calls.

The Privman server constitutes of very little code, only
approximately 1400 lines (including comments) in the
Privman 0.9.1 release.  The equivalent code from the
application-specific OpenSSH privilege separation
framework is approximately 1500 linesii.  By limiting
the amount of code running with privilege, we also
limit the amount of code that requires serious auditing.

4. Security Properties

Assuming we code the Privman libraries correctly,
programs that use Privman are incapable of perform-
ing privileged operations not allowed by the policy,
even if the program’s logic is compromised by an at-
tacker.   However, if the policy for an application is

sufficiently permissive, attackers may be able to
achieve their goals inside the constraints of the policy.

Generating a correct and minimal policy is difficult.
Automatically generated policies, like in Systrace, can
provide a quick first estimate of least privilege, but do
not attempt to determine if an application is using
privilege it does not actually need.

We have made no attempt to formally prove the cor-
rectness of Privman.  The small size of the Privman
server allows for careful auditing of the privileged
code.  Additionally, Privman is fail-closed.  Whenever
Privman detects error conditions, it makes no attempt
to recover.  Instead, the privilege server exits after
logging the error message to the system’s logs.  With-
out a privilege server, the application is unable to per-
form any further privileged operations.iii

The largest area of vulnerability involves the protocol
for communication between the privilege server and
the client.  This code runs with privilege and also pro-
cesses incoming requests; the code is therefore vulner-
able to malicious input.  Fortunately, the amount of
code required to process the incoming request is ex-
tremely small.

Additionally, the policy language itself should be care-
fully analyzed to make sure that policies can express
least privilege.

5. Open Issues

The majority of issues stem from the decision to run
the unprivileged portions of the program in a child
process.  By changing around the processes, we break
reasonable assumptions of state inheritance in fork().
Some assumptions about the process identifier (pid) of
the active process are also broken.

5.1. API Design Issues

The work, as originally proposed, involved a single
Privman server per systemiv.  The single server would
be contacted by all managed clients, and it would per-
form privileged operations on behalf of the entire sys-
tem.

This design would allow programs to start execution
without having any real pre-existing privilege outside
of an ability to authenticate themselves with the privi-
lege manager.  Unfortunately, on stock UNIX systems,

Privman

Client

File

Server

(uid 99)

Restricted

Authorization
check done here

Privman

Client

File

Server

(uid 99)

Restricted

Figure 1



there is no practical way to verify the identity of a
processv.

Without that verification, this design would invite
identity attacks, where an attacker would attempt to
spoof the identity of a permitted privileged process.
Rather than try to solve this authentication problem,
we decided to leverage the pre-existing source of
privilege: the fact that a process is already running in a
privileged state.

The Privman managed process starts main() with
heightened traditional (root) permissions.  The
priv_init() call then divides the process into two
separate processes: an unprivileged child that runs the
original program, and a parent that becomes the
Privman server.

From the perspective of the original process, after the
priv_init() call the process is no longer running
as a privileged process and is instead running as the
“nobody” uservi.  Any privileged operations must be
proxied and validated by the Privman server.

By splitting a process in this manner, we simplified the
design of the Privman server, decreasing the probabil-
ity of serious coding flaws.

Our approach has significant drawbacks when com-
pared to traditional Mandatory Access Control-style
secure systems.  For example, we are unable to handle
any concept of revocation.  We are unable to handle
permissions at granularity smaller than file access (or
other mediated call).  In addition, not all security deci-
sions on a UNIX system are in terms of files or file
descriptors.

In particular, there are a small number of calls that
change the security context of the current process.
One obvious example is chroot(), but the list also
includes limit() and the very important setuid()
family.  Much of the software in question may need to
make these changes to its security context, but our
design makes accommodating this software difficult.

Obviously, other projects that use this type of process
split have run into similar issues.  We chose to model
our approach on the OpenSSH solution [PRO02].

In the OpenSSH solution, the client process packages
up state and sends it back to the parent.  The parent
then creates a second child process with the desired
security context and state, and allows that child to
continue execution in that context.

The problems of packaging up and managing state are
considerable when attempting to retrofit the Privman
library to preexisting applications.  One approach
might be to define a new malloc() in terms of a
shared memory segment to help automate the process.
This approach makes sharing large quantities of state
easy, but at the expense of a large amount of trusted
code.   Defining a new memory allocation function
opens a significant category of security problems and
at the same time fails to handle global memory. We
chose a different mechanism, one which makes sharing
large amounts of state more difficult and requires more
thought, but minimizes the trusted code.

Most applications needing to change their user id or
other security state tend to follow a similar pattern:
they authenticate as a user, and then they execute the
bulk of the program as that user.  Most of the state
built up during the authentication stage is incidental,
and can be safely ignored.  Therefore, the amount of
state that needs to be moved between processes is
minimized.

Our library provides a “rerunas()” method.  This
method causes the Privman server process to re-
execute “priv_init()”  The Privman server proc-
ess forks a second child, and the second child becomes
the specified user.  It then returns from
priv_init() with the program’s state being basi-
cally the same as when priv_init() was originally
called.  To distinguish between the original case, and
the rerunas case, the calling process can supply a
function pointer and an arguments string vector.  The
function will be invoked in the context of the new
child, allowing the child to set up global state so that
the proper code paths will be followed.  The calling
process will exit, transferring control of the application
logic to the new child process.

This method allowed the port of wu-ftpd to support
non-anonymous users easily.  Tracking all the state
that changed during execution is equivalent to process
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migration.  Instead, we simply changed wu-ftpd so that
it could run as if the user had already been authenti-
cated.  The structural changes to wu-ftpd were mini-
mal.

5.2. Security weaknesses

One of the advantages to performing process parti-
tioning manually is a heightened ability to match the
policy to the application’s specific needs.  For exam-
ple, the OpenSSH daemon knows that certain privi-
leged requests can only happen once and so only al-
lows them once.

The Privman library is unable to know the security
requirements of an application to the same degree.
The configuration, while more detailed than traditional
Unix system privilege, may allow an overly broad
amount of privilege to an attacker.  As an example, the
policy of the _as() methods has changed several times
as we developed the library.

Programs that require more finely-tuned security poli-
cies than are provided by the library’s policy are en-
couraged to write their privileged methods using the
extension framework.  Applications that use the exten-
sion framework have the ability to perform arbitrary
permission checks before performing any privileged
operations.

6. Feasibility

For a best-case example of conversion, we converted
the thttpd server to use the Privman libraries.  thttpd is
a simple, small, portable, fast and secure HTTP server.
The version we used, 2.20c, consists of approximately
2800 lines of C code.  The conversion process changed
26 of them, or less than 1% of the code base.  The
patch is available for download from the Privman web
site, http://opensource.nailabs.com/privman/.

thttpd is essentially a best-case scenario.  The server
does no complex credentials management, and the
preexisting user id management mapped well into the
Privman usage pattern.  Only four library calls needed
to be supported: open(), fopen(), bind(), and
daemon().  The Privman version actually gets sim-
pler in some respects, as the user id management can
be handled by Privman and moved out of the daemon.

In contrast, converting a standard BSD ftp server is
closer to a worst-case scenario.  The standard FTP
server does significant work before it changes the user

id of the server.  Consequently, the process has built
up large state that must be managed.  To use
priv_rerunas(), some reworking of the base code
is required.

Wu-ftpd, a derivative of the standard BSD ftp server,
totals approximately 32,000 lines of C code, ignoring
the build system.  The patch only changes 75 lines of
C code, most of which are simple replacements of
privileged calls with priv_<foo> calls.  The re-
mainder of the patch merely changes the build system
to detect and build against the Privman library.

We believe these examples demonstrate that porting
server processes to the Privman library is simple and
non-invasive.  While there are applications Privman
does not handle well in its current state, most server
applications should be easily handled.

Privilege separation has shown itself a valuable tool in
hardening software against coding errors.  OpenSSH
has already had one vulnerability stopped by turning
on privilege separation, and constructing a demonstra-
tion of the technique is as easy as it is useless.  Only
active deployment by commonly used servers will
show the long-term value of the technique.

7. Performance

Privilege separation techniques have performance im-
plications, given the two-process model and the IPC
involved.  To evaluate these costs, we conducted both
micro- and macro-benchmarks.  The micro-
benchmarks measure the performance costs of specific
operations, the macro-benchmark measures the effect
on a larger system.

For a macro benchmark, we used the dkftpbench-0.45
ftp benchmark.  This benchmark measures the maxi-
mum number of concurrent low-bandwidth users an ftp
server can support while maintaining a minimum level
of responsiveness.  We tested the system with both
stock wu-ftpd and the Privman-enabled wu-ftpd.  The
two versions of the ftp server were compiled from the
exact same code, differing only in options presented to
the configure script.  The system was not optimized
for FTP, as the goal was to isolate changes from the
introduction of Privman, not maximizing FTP server
speed.

The server system was a P3-866 Dell Optiplex GX110.
The client loads were produced by a P3-1G Dell Lati-
tude, connected to the server by an otherwise empty



100Mb Ethernet link.  The benchmark repeatedly
downloaded a ten-kilobyte file.  The non-Privman-
enabled server supported an average of 229 ± 20 cli-
ents over 5 runs, while the Privman-enabled server
supported an average of 217 ± 4 users. The difference
in performance is approximately 5%.  Prior work ret-
rofitting mandatory access controls to common Unix
systems have shown similar minimal performance
penalties[FRA99].

For a micro-benchmark, we compared the priv_* op-
eration to the libc equivalent. The benchmark is dis-
tributed with Privman as the “microb” test.  Slower
operations like “rerunas” or “pam_authenticate”
run 10,000 times per execution of the benchmark, and
faster operations like “open” run 100,000 times per
execution of the benchmark.

We ran the benchmark on the server system from the
macro benchmark.  We ran the benchmark five times,
as a memory leak in pam_authenticate prevented
us from increasing the iterations-per-run.  We col-
lected ∑(x) and ∑(x2) from the runs, and determined
the collective average and standard deviations.

When an application invokes any privileged operation,
there is a constant overhead of approximately 30 mi-
croseconds from the two context switches.  Since this
overhead is a constant, the simplest operations show
the largest performance penalty.

The time to marshal and un-marshal the arguments is
also significant.  The arguments to priv_open and
priv_fopen are passed as strings, and so take longer
to marshal than the arguments to priv_bind.  In our
benchmarks, priv_open showed the largest penalty,
running 19.6 times slower on average than an equiva-
lent open(2).

The PAM operations took almost exactly the same
amount of time whether they were proxied or ran di-
rectly.   Loading and linking the shared libraries that
make up the PAM framework is an expensive opera-
tion.  This cost may have hidden the costs of marshal-
ing the arguments.

Our experience leads us to believe that the perform-
ance penalties for additional access control are gener-
ally acceptable in comparison to the security benefits.
As a general statement, the operations that require the
most careful analysis are also the operations that tend
to be slow initially.  The performance penalty to an
application is therefore minimized, although any par-
ticular operation may be a tenth as fast.

8. Conclusion

We have presented an overview of the Privman li-
brary.  The Privman library enables applications to
easily take advantage of process partitioning, which
will help them become robust against certain types of
programming errors.

Applications that use the Privman library can express
the required security policy at a fine level of granular-
ity.  Consequently, Privman managed applications can
approximate least-privilege in a way not common on
UNIX systems.

Certain types of applications, primarily simple UNIX
servers, are trivial to convert to using the Privman li-
brary.  Other classes of applications, mainly those that
need to change their security policy during normal
execution, are less easily handled, but code changes
are minimal.

For most cases, applications that use the Privman li-
brary will continue to perform adequately.  The im-
provements to security justify any measurable per-
formance degradation, although applications should be
careful not to invoke Privman methods in the middle
of tight time-sensitive loops.

The current release of the Privman libraries can be
found at http://opensource.nailabs.com.
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i As an object of type SCM_RIGHTS passed as part of
a msg_control structure via the sendmsg() API.
ii This count includes more code from OpenSSH for
very application-specific policy, but excludes the ac-
tual server implementations of the OpenSSH specific
methods.
iii The client program may still have access to privi-
leged resources, e.g. if the application opened a pro-
tected file, but has not yet closed it.
iv Here “system” refers to an actual  physical machine.
v That is, verify that a given process was actually
spawned by a specific binary whose identity can be
verified.
vi This is, of course, configurable by the program's con-
figuration file.



Appendix 1: libprivman API

Priv_init initializes the Privman server.  Call this method first.  When this method returns, the application will no
longer have root privilege.

void    priv_init(const char *appname)

These calls act just like the methods they are named after, except that they use the Privman Server.  Please see the
system man pages for more details about the format of the arguments.  The priv_fork() method causes both
processes to fork, so the child process will still have access to a Privman server.

int     priv_open(const char *pathname, int flags, ...);
FILE*   priv_fopen(const char *pathname, const char *mode);
int     priv_unlink(const char *pathname);
int     priv_bind(int sockfd, struct sockaddr *addr, socklen_t addrlen);
pid_t   priv_fork(void);

These methods use the Privman Server.  If the application uses PAM at all, you need to use the priv_pam_ meth-
ods for all PAM methods.  Please see the PAM man pages for more details about the format of the arguments.

int     priv_pam_start(const char *service, const char *user,
                    const struct pam_conv *conv,
                    pam_handle_t **pamh_p);
int     priv_pam_authenticate(pam_handle_t *pamh, int flags);
int     priv_pam_acct_mgmt(pam_handle_t *pamh, int flags);
int     priv_pam_end(pam_handle_t *pamh, int flags);
int     priv_pam_setcred(pam_handle_t *pamh, int flags);
int     priv_pam_open_session(pam_handle_t *pamh, int flags);
int     priv_pam_close_session(pam_handle_t *pamh, int flags);
int     priv_pam_chauthtok(pam_handle_t *pamh, int flags);
int     priv_pam_set_item(pam_handle_t *pamh, int item_type, const void *item);
int     priv_pam_get_item(pam_handle_t *pamh, int item_type,

const void **item);
int     priv_pam_putenv(pam_handle_t *pamh, const char *name_value);
int     priv_pam_getenv(pam_handle_t *pamh, const char *name);
int     priv_pam_fail_delay(pam_handle_t *pamh, unsigned int usec);

These methods allow the application to control the process behavior of the Privman server.  priv_exit() causes
the Privman server to exit (and thus prevents you from performing future privileged operations),
priv_daemon() causes the Privman server to detach from the controlling terminal.

void    priv_exit(int status); /* Causes the Privman monitor to exit */
pid_t   priv_wait4(pid_t pid, int *status, int options, struct rusage *rusage);
int     priv_daemon(int nochdir, int noclose);



These methods allow the application to change its execution.  priv_execve() executes the specified program as
the user specified and chrooted into the path specified.  priv_popen_as() works like popen, except that the
program will run as the user specified.   Use priv_pclose() to close the stream from priv_popen_as().

int     priv_execve(const char *program, char * const argv[],
                    char * const envp[], const char * user,

const char* chroot);
FILE   *priv_popen_as(const char *command, const char *type, const char *user);
int     priv_pclose(FILE *stream);

This method allows a program to restart, running in a different context. The Privman server will start a new proc-
ess, running as the user specified and chrooted into the path specified.  The new process will execute the function
fnptr with the supplied arguments, and then will return from priv_init().  Both processes will be able to talk
to a Privman server.

int     priv_respawn_as(void (*fnptr)(char * const *), char * const arg[],
                    const char *user, const char *chroot);

This method is like priv_respawn_as(), except that the Privman server does not duplicate itself.  Pass in
PRIV_RR_OLD_SLAVE_MONITORED as a flag if the application wants the original process to be able to talk to the
Privman server, or 0 if it wants the new process to be able to.

int     priv_rerunas(void (*fnptr)(char * const *), char * const arg[],
                    const char *user, const char *chroot, int flags);

These methods interface with the extension framework.  The application must call the register methods before it
calls priv_init(), and must call the invoke methods after.  The register methods return a handle, which is then
passed into the invoke methods to specify which registered method is being invoked.

int     priv_register_info_fn(char *(*fnptr)(char * const *));
int     priv_register_cap_fn (int   (*fnptr)(char * const *));
char   *priv_invoke_info_fn(int handle, char * const args[]);
int     priv_invoke_cap_fn (int handle, char * const args[]);



Appendix 2: Configuration file grammar

config ⇒ config_stmt_list

config_stmt ⇒ bind_stmt | open_ro_stmt | open_rw_stmt
| open_ao_stmt | unlink_stmt
| auth_stmt | fork_stmt | rerunas_stmt
| auth_allow_rerunas_stmt | runas_stmt
| unpriv_user_stmt | chroot_jail_stmt

config_stmt_list ⇒ config_stmt_list config_stmt
| config_stmt

% The list of ports the client is allowed to bind to
bind_stmt ⇒ bind { portlist }

% The lists of files the client is allowed to manipulate
open_ro_stmt ⇒ open_ro { pathlist }
open_rw_stmt ⇒ open_rw { pathlist }
open_ao_stmt ⇒ open_ao { pathlist }
unlink_stmt ⇒ unlink { pathlist }

% Is the client allowed to use the authentication functions?
auth_stmt ⇒ auth bool

% Is the client allowed to cause the Privman server to fork?
fork_stmt ⇒ fork bool

% Is the client allowed to re-execute as a different user?
rerunas_stmt ⇒ allow_rerun boolean

% If true, any successfully authenticated user is a valid rerunas user.
auth_allow_rerunas_stmt ⇒ auth_allow_rerun boolean

% The client can re execute as any of these users
runas_stmt ⇒ runas { userlist }

% The default unprivileged user, and starting chroot path.
unpriv_user_stmt ⇒ unpriv_user userid
chroot_jail_stmt ⇒ chroot path

pathlist ⇒ path pathlist
| ∈

portlist ⇒ port portlist
| ∈

userlist ⇒ user userlist
| ∈

user ⇒ userid
| ’*’


