
Property-Based Testing; A New Approach to Testing for Assurance

George Fink

Department of Computer Science

University of California, Davis

e-mail: g�nk@cs.ucdavis.edu

Matt Bishop

Department of Computer Science

University of California, Davis

e-mail: bishop@cs.ucdavis.edu

Abstract

The goal of software testing analysis is to validate that an

implementation satis�es its speci�cations. Many errors in

software are caused by generalizable aws in the source code.

Property-based testing assures that a given program is free of

the speci�ed generic aws. Property-based testing uses prop-

erty speci�cations and a data-ow analysis of the program to

guide evaluation of test executions for correctness and com-

pleteness.

Introduction

Analysts test computer programs to determine if they meet
reliability and assurance goals. In other words, testing vali-
dates semantic properties of a program's behavior. In order
to do this, the actual program must be tested at the source
code level, not some higher-level description of the program.
However, to validate high-level properties, the properties
must be formalized, and the results of the testing related
formally to the properties.
Property-based testing [FL94, FKAL94, FHBL95, Fin95]

is a testing methodology that addresses this need. The spec-
i�cation of one or more properties drives the testing process,
which assures that the given program meets the stated prop-
erty. For example, if an analyst wants to validate that a
speci�c program correctly authenticates a user, a property-
basted testing procedure tests the implementation of the au-
thentication mechanisms in the source code to determine if
the code meets the speci�cation of \correctly authenticating
the user."
This paper introduces an approach to property-based test-

ing and an implementation of that approach. First, the ana-
lyst speci�es the target property in a low-level speci�cation
language called TASPEC (Tester's Assistant SPECi�cation
language). The program is sliced [Wei84] and code irrele-
vant to the property disregarded. The Tester's Assistant au-
tomatically translates the TASPEC speci�cation into a test
oracle that will check the correctness of program executions
with respect to the desired property. A new path-based code
coverage metric called \iterative contexts" [Fin95, Fin96] ef-
�ciently captures the slice-based computations in the pro-
gram.
Property-based testing speaks to the following questions:

1. What is to be accomplished or established via testing?

2. What test data should be used?

3. When has enough testing been carried out?

4. How is it determined if a test is a success or a failure?

This paper presents an overview of property-based test-
ing, its goals, and techniques used to accomplish these goals.
The next section de�nes the problem, and discusses previous
work. We then describe property-based testing in general
and its components in particular, illustrating property-based
testing through an example. Finally, we conclude with future
directions for work on this methodology.

Problem Statement

Trust that software programs work correctly and precisely
is based upon the belief that authors of the programs have
detected and �xed aws in the design and implementation.
Many potential aws can be detected and avoided; however,
systematic and formal analysis (both static and dynamic) of
the �nished program increases the assurance that the soft-
ware is without critical aws.
Most errors in programs result from programming and de-

sign mistakes. Many well-known mistakes are still common.
For example, errors in bounds checking, race conditions, and
authentication, continue to be the bane of privileged Unix
programs.
Specifying well-known mistakes formally presents a clear

picture of testing goals. Then, techniques are needed to map
these formal descriptions to tests of actual code. The tests
need to provide formalizable results that relate to the aw
descriptions. The whole process should be as automatic as
possible, with reusable generic speci�cations.

Related Work

Property-based testing is complementary to software engi-
neering life cycle methodologies. Analysis and inspection of
design, requirements, and code help to prevent aws from
being introduced into source code. Property-based testing
validates that the �nal product is free of speci�c aws. Be-
cause property-based testing concentrates on generic aws,
it is ideal for focusing analysis late in the development cycle
after program functionality has been established.
Speci�cations state what a system should or should not

do. Many speci�cation languages support precise expression
of requirements; examples are Z [Dil90] and VDM [AI91].
Treating spec�ciations as bounds of program behavior sug-
gests that test oracles can be derived from speci�ca-
tions; some speci�cation languages like Larch [GH93] and
TAOS [Ric94] allow this to be done automatically. Fur-
ther, speci�cations can guide the generation of test data;

1

ADL [CRS96], TAOS [Ric94], and VDM [DF93] allow this
as does the TASPEC language presented here. The advan-
tage of using speci�cations is the formalism they establish
for verifying proper (or improper) program behavior.

Speci�cations are the basis of formal analytical tehcniques.
Determining which assumptions (axioms) are correct is sub-
stantial, and failing to do so correctly would invalidate the
analysis. For example, if an operation has an unanticipated
side-e�ect during execution in some situations, formal anal-
ysis cannot determine the impact of the side-e�ect upon cor-
rectness. While testing has similar problems, it does test
the actual execution of the program, and can determine the
precise output corresponding to a given input. For example,
thorough testing can determine unanticipated side e�ects.

Coverage metrics measure testing completeness; how much
of the program has been tested? For property-based test-
ing, a coverage metric must be strong enough to provide
formal assurance, but also be feasible to implement and uti-
lize. Property-based testing uses a new metric called It-
erative Contexts, which strikes a balance between simple
de�nition-use (def-use) pair metrics [Las90, Nta84, CPRZ89]
and stronger but impractical path coverage metrics [RW85].

Testing to Validate Programs

A test consists of a set of executions of a given program
using di�erent input data for each execution; its purpose is
to determine if the program functions correctly. A test has
a negative result if an error is detected during the test (i.e.,
the program crashes or a property is violated). A test has a
positive result if a series of tests produces no error, and the
series of tests is \complete" under some coverage metric. A
test has an \incomplete" result if a series of tests produces
no errors but the series is not complete under the coverage
metric.
It is impossible to execute a program on all possible data.

So, testing must approximate this, which may lead to an in-
correct validation. However, for a testing process to be valu-
able, it must validate a program with respect to a property
with a high degree of certainty. Property-based testing ad-
dresses this conict with iterative contexts, a new data-ow
coverage metric.

It is important to understand the relationship between
testing and formal veri�cation so that the two can be com-
pared. The purpose of property-based testing is to estab-
lish formal validation results through testing. To validate
that a program satis�es a property, the property must hold
whenever the program is executed. Property-based testing
assumes that the speci�ed property captures everything of
interest in the program, because the testing only validates
that property. Additionally, property-based testing assumes
that the completeness of testing can be measured structurally
in terms of source code.

The property speci�cation guides dynamic testing of the
program. Information derived from the speci�cation deter-
mines what points in the program need to be tested and if

System Call

Specifications

Measure

of

Completeness

Test

Data

Potential

and Actual

Flaws

UNIX security
Specifications

Known

Flaw

Libraries

Code

Source Program-specific

Specifications

Tester’s Assistant

Slicer
Program Test Data

GeneratorAnalyst
Coverage

behavedness
Checker

Well-Execution
Monitor

Figure 1: Property-based testing and the Tester's Assistant.

a test execution is correct. The iterative contexts coverage
metric, based upon these points, determines when testing is
complete.
Therefore, in property-based testing, checking the correct-

ness of each execution together with a description of all the
relevant executions of the program validates a program with
respect to a given property.

Tester's Assistant

Figure 1 shows an overview of the implementation of
property-based testing by the Tester's Assistant. To test
the source code of a program, TASPEC speci�cations from
a variety of sources are used. Program-independent speci�-
cations include system call, security, and generic aw spec-
i�cations. If necessary, program-speci�c speci�cations can
also be used. The Tester's Assistant analyzes and tests the
code with respect to the speci�cations. Three results of the
property-based testing process are: the test suite, the cover-
age results, and/or aws discovered during the test.
Many properties are de�ned independently of speci�c pro-

grams (for example, array bounds, race conditions, authenti-
cation), and so can be grouped together in libraries of proper-
ties. These libraries form models of system behavior, which
are signi�cant analytical objects in their own right. They
can be reused and also analyzed by independent means to
assess their completeness1.

Iterative Contexts

The iterative contexts coverage metric is an ideal met-
ric for satisfying property validation requirements. Itera-
tive contexts are more powerful than other data-ow met-
rics [Las90, Nta84, CPRZ89], but are small enough so they
can be satis�ed by a reasonable test suite. Given a set of

1Through a previous iteration of property-based testing, perhaps.

2

variables at a point in the program that are of interest, the
optimal metric requires all possible results for that set of vari-
ables; for most sets this requires an in�nite number of data
values. Metrics based upon sequences of assignments within
the slice approximate this optimum for given programs.
An iterative context is a sequence of assignments de�ning a

sub-path of a possible program execution. The assignments
are taken from the program slice and represent a possible
computation of a value important to the target property.
Taken together, all of the contexts represent many of the
possible computations of values relevant to the property. It
is not possible to represent with a �nite set of input data
the in�nite number of possible computations for some loops,
so in those cases iterative contexts will not completely cover
all behavior relevant to a property. In a complete test suite,
every context must be represented by at least one test exe-
cution in the suite.

Static Analysis and Slicing

Program slicing, the extraction of all code a�ecting confor-
mance to a property, reduces the amount of code that a
human tester must inspect manually. Applying automatic
analysis tools to the slice rather than to the whole program
also aids the analyst. Calculating a slice requires detailed
global dependencies; this information is also used to gener-
ate iterative contexts.

TASPEC

TASPEC, the speci�cation language used in the Tester's As-
sistant and developed speci�cally for property-based testing,
has primitive constructs which enables it to be translated
automatically into slicing criteria and test oracles. TASPEC
includes basic logical and temporal operators as well as lo-
cation speci�ers, which associate events with code features.
These events provide the primitive data for analyzing higher-
level semantic features of the program. TASPEC is a exible
low-level speci�cation language well suited for specifying a
wide range of properties and deriving tests from the prop-
erty speci�cations.
Using location speci�ers, generic program-independent

properties in TASPEC map automatically to source code.
Therefore, test oracles can be generated independently of
descriptions of speci�c modules or functions. With the em-
phasis on properties and not on full speci�cations, test ora-
cles can handle a wider class of behavior than that rigidly
de�ned by functional speci�cations. Translations between
other speci�cation languages and TASPEC can provide ad-
ditional exibility to the speci�cation and testing phases
of development. Helmke shows how translations from Z to
TASPEC can assist in requirements traceability [Hel95].

Execution Monitors

Automatic high-level execution monitors derived automati-
cally from property speci�cations in TASPEC become test
oracles that assess the correctness of executions. Location

speci�ers produce primitive events for the speci�cation state
and the execution monitor processes these elements to raise
higher-level events. The execution monitor checks for consis-
tency between events and the property speci�cation. There-
fore, checking the adherence of a program execution to a
complex property speci�cation is automatic.

Example

This section describes testing a version the Unix ftpd
(�le transfer protocol [CER](FTP) daemon) program with
property-based testing. Property-based testing has eight
steps:

1. Selecting a property; the property is speci�ed in
TASPEC (currently implemented)

2. Static analysis and slicing (currently implemented)

3. Program instrumentation (currently implemented)

4. Initial test case selection and execution

5. Coverage evaluation (partially implemented)

6. Additional test case selection and execution

7. Correctness evaluation (partially implemented)

8. Repeat the last three steps as necessary

Testing ftpd with respect to an authentication property re-
veals a aw in ftpd's authentication code.

Description of ftpd and its aw

Ftp is a Unix program implementing the FTP protocol for
transmitting �les across a network. Ftpd, the program de-
scribed here, is a server program that accepts �le requests
and processes authentication and other utility commands
from remote client programs.
In the version of ftpd released with SunOS 3.2, a security

aw allows any user to gain permissions to read or write �les
owned by any user on the system (including root) [CER].
To do so, the user logs on with his or her normal user name
and password. As a part of the correct authentication, a
ag in the program is set. The ag records whether the user
name has been authenticated. When a second user name
is entered, the ag is never reset, so even if an incorrect
password is entered for the second user name, the program
thinks that the second user name has been authenticated.
Therefore, the user has the access privilege of the second
user name. Figure 2 is a simpli�ed ow-chart that illustrates
the aw.

Selecting/identifying a property

The �rst step in property-based testing is to choose a prop-
erty or properties from a selection of generic properties,
and to write any speci�c program-speci�c properties to test.

3

comloop

match?

logged_in=0

uid match?

logged_in=1

logged_in?

 password
input

File Access

input
 username

N

Y

Y

N

N

Y
...

Figure 2: Ftpd aw owchart.

location func setuid(uid) result 1
fassert permissions granted(uid); g

location func crypt(password; salt) result encryptpwdf
assert password entered(encryptpwd); g

location func getpwnam(name) result pwentf
assert user password(name;

pwent! pw passwd; pwent ! pw uid);
g

location func strcmp(s1; s2) result 0f
assert equal(s1; s2); g

password entered(pwd1) ^
user password(name; pwd2; uid) ^
equal(pwd1; pwd2)fassert authenticated(uid); g

Figure 3: Property speci�cation for authentication.

Property speci�cations are written in TASPEC. In the case
of ftpd, a generic property is used.
A portion of the property library is a set of properties

which describe a security model. One high-level property
speci�cation requires that authentication occur before any
permissions are granted:

authenticated(uid) before permissions granted(uid):

The library also contains low-level de�nitions of the predi-
cates authenticated and permissions granted, shown in Fig-
ure 3. In TASPEC actions within curly braces occur when
the condition (either a program location or a logical pred-
icate about the speci�cation state) before the curly braces
occurs. For example, the setuid(uid) location, when exe-
cuted, causes the permissions granted predicate to be true
in the speci�cation state.
The authentication property can be selected by hand. Op-

tionally, an automatic tool could compare location speci-
�ers (code templates) in the property speci�cations with the
source code of ftpd to evaluate the relevance of properties in
the library. The de�nition of permissions granted involves
the setuid system call2. The property, then, forms a pre-

2
Setuid is used here as an amalgam of the many di�erent

permissions-setting system calls (seteuid is actually used by ftpd).

condition for the setuid system call. Since ftpd contains
setuid, the authentication property can be automatically
chosen as an important property for which to test.

Static analysis and slicing

The Tester's Assistant statically analyzes the source code for
ftpd. Ftpd contains about 3000 lines of C code, 1700 lines
of which are machine-generated by lex and yacc. The static
analysis produces a data-ow graph for ftpd. The ftpd data-
ow graph has 6148 nodes and 31912 edges. The data-ow
graph is used in other steps of the process: program instru-
mentation, coverage evaluation, additional test case genera-
tion, and correctness evaluation.

Next, slices of ftpd are derived from the data-ow graph.
First the slicer generates a slice of ftpd with respect to the
selected authentication property. The human tester inspects
the slice manually, but even in the sliced code (represented
in Figure 2) the aw is subtle enough that it goes unnoticed.
At this point the human tester can request additional slices
based upon any other criteria that can aid in the tester's
understanding of ftpd.

Program instrumentation

The Tester's Assistant produces an alternate version of ftpd
to execute during testing. The alternate version has the same
functionality as ftpd, but has additional data-gathering mod-
ules, so that coverage and correctness can be evaluated from
test results. Every section of source code corresponding to a
location speci�er in the property has code added to record if
and when the section of code is executed. The added code is
used later in correctness evaluation. The assignments in the
source code that are signi�cant for coverage evaluation are
also tagged to record when the assignments are executed.
The Tester's Assistant instruments only the slice relative
to the selected authentication property. The instrumented
source is then compiled, at which point ftpd is ready to be
executed.

Initial test executions

The instrumented ftpd is executed several times with various
test data. There are three ways to generate test data for ftpd:
First, use any available test data that was used in initial test-
ing and debugging. Second, have the analyst generate simple
test data from a description of ftpd's functionality. Finally,
if there are any speci�cations of ftpd, the speci�cations can
be used to generate test data. Generating test data from
speci�cations is not speci�cally part of property-based test-
ing, but other testing methodologies contain the necessary
algorithms [CRS96, DF93].

The �rst method is simplest, because no extra work is re-
quired and the test suite is likely to be fairly complete. How-
ever, if these test cases aren't available, the analyst creates
some test cases by reading the ftpd manual page. Figure 4
shows some sample test cases.

4

Test Case 1
user <user name>

pass <incorrect password>

retr filename

Test Case 2

user <user name>

pass <correct password>

retr filename (no access permissions)

Test Case 3

user <user name>

pass <correct password>

cwd directory

retr filename1 filename2

Test Case 4

user <user name>

pass <correct password>

list

\User" enters a user name, \pass" enters a password, \retr"
retrieves a �le, \cwd" changes directory, and \list" lists a
directory.

Figure 4: Four initial test cases for ftpd.

The test executions are then evaluated for coverage and
correctness. None of the four executions result in a violation
of the authentication property. However, coverage evaluation
reveals that ftpd has not been completely tested, so more test
cases must be found and executed.

Coverage evaluation

While ftpd executes with each given test data, the coverage
instrumentation writes a �le recording the execution history
of the slice. The execution history indicates which path in
ftpd was executed. The initial test executions yield several
execution histories. The execution histories are compared
with the coverage metric. Property-based testing uses it-
erative contexts. Each context is an ordered sequence of
assignments, which de�nes a sub-path of the program. For
a history to match a context, the assignments must be ex-
ecuted in order with no intervening and interfering assign-
ments. The contexts are generated using static analysis and
the data-ow graph,

For the (abstracted) fragment of ftpd source

(1) logged_in = 0;

(2) while(1)

(3) switch(cmd) {

(4) user: name = read();

(5) pass = read();

(6) if(match(name,pass))

(7) logged_in = 1;

(8) break;

(9) get: if (logged_in)

(10) setuid(name);

(11) }

the contexts required include

ff4; 5; 6; 10g; f4; 5; 6; 4; 10g; f4; 10; 4; 5; 6gg

.
The execution histories are compared with the set of con-

texts to see which histories match which contexts. The un-
matched contexts are coverage gaps.
The execution histories from the four initial test cases are

ff4; 10; 4; 5; 6g; f4; 5; 6; 10g; f4; 5; 6; 10g; f4; 5; 6g:

The second and third execution histories are identical be-
cause their behavior relative to the property speci�cation is
identical. The context f4; 5; 6; 4; 10g is a coverage gap in the
initial test data, and corresponds to the aw in ftpd.

Additional test cases

In order to complete the coverage metric, additional exe-
cutions of ftpd are necessary, with di�erent test data that
addresses the coverage gaps. This paper does not present a
method to produce this additional test data automatically,
and the problem is not trivial.
A human tester produces additional test data by exam-

ining the contexts not covered and the code corresponding
to the contexts. For the contexts and code in ftpd, there is
a close correspondence between input statements and state-
ment numbers in the uncovered context (Statements 4 and
5). The uncovered context f4; 5; 6; 4; 10g is executed by the
the following test script:

user <user 1's name>

pass <user 1's password>

user <user 2>

pass <random string>

retr filename

Correctness evaluation of this execution detects that the aw
exists in ftpd.
Future versions of the Tester's Assistant may be able to

automate some of the steps in generating test data for gaps
in coverage using techniques based upon symbolic execu-
tion [DO91].

Correctness evaluation

During each test execution, a �le records the activated
TASPEC primitives. The TASPEC evaluation engine pro-
cesses this data and compares it with the property speci�-
cation. If the data violates the property speci�cation, then
the human tester is informed that the test caused an error
condition.

5

During processing of the correctness records for the ad-
ditional test case given above, the correctness monitor reg-
isters that there is a correct authentication of user 1. No
authentication of user 2 is registered, because the pass-
word match fails. When the �le retrieve action occurs, the
permissions granted property is registered. However, the
retrieve occurs with the permissions of user 2, for whom
there is no authentication. Therefore, the additional test
case causes an error condition, so ftpd fails the property-
based testing with respect to the authentication property.

Applications to Computer Security

Assuring that computer programs and systems are secure is
an important and di�cult problem. Security aws are still
being discovered in computer programs that have been in
use for many years. Many of the aws are caused by the
same basic recurring faults [Spa92]. For example, the Inter-
net worm [Spa89] exploited errors in Unix network programs.
Examination of the aws which caused the errors revealed
them to be of an elementary nature.
It is time for a concerted e�ort to try to prevent such

aws from occurring. Therefore, an appropriate initial ap-
plication of property-based testing and the Tester's Assis-
tant is Unix security, speci�cally for network programs. Se-
curity is a good application of property-based testing be-
cause the parts of programs that relate to security are small,
and generic security properties can be precisely expressed
program-independentally with TASPEC.

Security Issues

Networked systems cause special security problems because
any communication or authentication between networked
systems must be performed entirely through an exchange
of information. The exchange of information is limited by
the network structure as well; many networks in use today
are asynchronous, and make no strict delivery guarantees for
information packets. Problems with asynchrony are com-
plicated by di�erent implementations for the same service
protocol, which may have di�erent performance. Therefore,
network services must be exible in their implementation of
communication and authentication services. This exibility
can sometimes be exploited and become a source of secu-
rity problems, adding to security problems arising from bad
design or implementation.
Network services with Unix involve the client/server

model. The server runs on a host machine, and regulates ac-
cess to information on the host by communication with client
processes on other machines on the network. The server can
do its task in one of two ways: by forking o� a server-end
client process to handle commands, or by doing all the work
internally. In either case, the server will be interacting with
the host system in a number of ways { reading/writing �les,
etc.
Most network servers are privileged programs; they are run

with root privileges on the host machine. Unix has a coarse-

grained tri-level �le protection scheme. If the access level
for a process cannot �t into this scheme, the process must
be given root level permissions, which override the scheme.
Network services typically do not �t into the tri-level scheme
and are given root permissions, even though root permis-
sions are used in only one particular function of the program.
Therefore, the server is given excess privileges, which become
fertile ground for exploitable vulnerabilities.

Using property-based testing for security

Formal testing with property-based testing can validate se-
curity properties of software and thus produce secure sys-
tems. Security-related code is often only a small part of a
program's functionality. Property-based testing focuses on
code relevant to security functionality in great detail, and so
e�ciently validates the security-related part of the program
without testing the whole program.
Property-based testing provides a methodology for testing

narrow properties of source code. It produces a speci�c and
absolute metric for successful testing with respect to those
properties. A successful test validates that properties are not
violated; if these properties form the security policy for the
system, then the system is secure.
Property-based testing uses a security model of the sys-

tem, as well as a library of generic aws (such as [LBMC93,
Spa92]) speci�ed in TASPEC, to produce a test process,
whereby the target program can be certi�ed to be free of
certain types of aws.

Concluding remarks and future work

Property-based testing de�nes a formalized framework for
testing. With property-based testing tools, a tester can pro-
duce a validation that a program satis�es given properties.
Other aspects of the process have not yet been well de�ned.
How are properties selected? How is it determined that the
properties represent a complete model of a program's possi-
ble failures?
Ongoing research into property-based testing at University

of California-Davis includes:

� Tool development: automating more property-based
testing techniques and incorporating them into the
Tester's Assistant, and distributing the tools to gain a
wider evaluation base.

� Property speci�cation: specifying generic aws and fea-
tures of protocol implementions of TCP and NFS, for
example.

� Evaluation of iterative contexts: performing empirical
comparisons between iterative contexts and other simi-
lar metrics such as L-contexts [Las90].

� Case studies: gaining more experience using the
methodology of property-based testing and understand-
ing how it can be applied to di�erent problems.

6

Acknowledgments Part of this work has been supported
by DARPA, under contract USNN00014-94-1-0065.

References

[AI91] Derek Andrews and Darrel Ince. Practical For-

mal Methods with VDM. McGraw-Hill, 1991.

[CER] CERT advisory CA-88:01.ftpd.hole.

[CPRZ89] Lori A. Clarke, Andy Podgurski, Debra J.
Richardson, and Steven J. Zeil. A formal
evaluation of data ow path selection crite-
ria. IEEE Transactions on Software Engineering,
15(11):1318{1331, November 1989.

[CRS96] Juei Chang, Debra J. Richardson, and Sriram
Sankar. Structural speci�cation-based testing
with ADL. Submitted to ISSTA 1996 as a Regu-
lar Paper, 1996.

[DF93] Jeremy Dick and Alain Faivre. Automating the

Generation and Sequencing of Test Cases from

Model-Based Speci�cations, chapter 4, pages
268{284. First International Symposium of
Formal Methods Europe Proceedings. Springer-
Verlag, 1993.

[Dil90] Antoni Diller. Z: An Introduction to Formal

Methods. John Wiley & Sons, 1990.

[DO91] Richard A. DeMillo and A. Je�erson O�utt.
Constraint-based automatic test data genera-
tion. IEEE Transactions on Software Engineer-

ing, 17(9):900{910, September 1991.

[FHBL95] George Fink, Michael Helmke, Matt Bishop, and
Karl Levitt. An interface language between spec-
i�cations and testing. Technical Report CSE-95-
15, University of California, Davis, 1995.

[Fin95] George Fink. Discovering security and safety

aws using property-based testing. PhD thesis,
UC Davis, 1995.

[Fin96] George Fink. Iterative contexts, a complete and
practical data-ow coverage metric. In prepara-
tion, 1996.

[FKAL94] George Fink, Calvin Ko, Myla Archer, and Karl
Levitt. Towards a property-based testing en-
vironment with applications to security-critical
software. In Proceedings of the 4th Irvine Soft-

ware Symposium, April 1994.

[FL94] George Fink and Karl Levitt. Property-based
testing of privileged programs. In Tenth An-

nual Computer Security Applications Confer-

ence, pages 154{163. IEEE Computer Society
Press, December 1994.

[GH93] John V. Guttag and James J. Horning. Larch:

Langauges and Tools for Formal Speci�cation.
Texts and Monographs in Computer Science.
Springer-Verlag, 1993.

[Hel95] Michael Helmke. A semi-formal approach to the
validation of requirements traceability from Z to
C. Master's thesis, UC Davis, September 1995.

[Las90] Janusz Laski. Data ow testing in STAD. Journal
of Systems Software, 12:3{14, 1990.

[LBMC93] Carl E. Landwehr, Alan R. Bull, John P. Mc-
Dermott, and William S. Choi. A taxonomy of
computer program security aws, with examples.
Technical Report NRL/FR/5542-93-9591, Naval
Research Laboratory, November 1993.

[Nta84] Simeon C. Ntafos. On required element testing.
IEEE Transactions on Software Engineering, SE-
10(6):795{803, November 1984.

[Ric94] Debra Richardson. TAOS: Testing with analysis
and oracle support. In Proceedings of the 1994 In-
ternational Symposium on Software Testing and

Analysis, August 1994.

[RW85] Sandra Rapps and Elaine J. Weyuker. Select-
ing software test data using data ow informa-
tion. IEEE Transactions on Software Engineer-

ing, 11(4):367{375, April 1985.

[Spa89] Eugene. H. Spa�ord. The internet worm: Crisis
and aftermath. Communications of the ACM,
pages 678{687, June 1989.

[Spa92] Eugene H. Spa�ord. Common system vulnerabil-
ities. Workshop on Future Directions in Intrusion
and Misuses Detection, 1992.

[Wei84] Mark Weiser. Program slicing. IEEE Trans-

actions on Software Engineering, SE-10(4):352{
375, July 1984.

7

