
THE STATE OF INFOSEC EDUCATION IN ACADEMIA: PRESENT AND FUTURE
DIRECTIONS

Matt Bishop
Department of Computer Science

University of California at Davis
Davis, CA 95616-8562

bishop@cs.ucdavis.edu

We are in the midst of a crisis in the deployment and use of
computers, and it is getting worse every day. Our systems are not
secure. They are considerably less secure than the paper systems
we still use, and that are rapidly being replaced. Worse, we are
not taking steps to shore up the infrastructure or systems, and we
are neglecting the education necessary to base such improvements
upon. Unless we devote the resources necessary to improve computer
and network systems, and to educate computer scientists,
operators, and users in INFOSEC, the edifice we have so
painstakingly constructed will collapse, precipitating a crisis of
confidence, trust, and reliance. The threat to our security as a
nation is considerable; the threat to our individual privacy and
identity even greater.

In this talk, I will explore the role of INFOSEC education in this
crisis. I will discuss why we should care, where we are now, where
we should be heading, and offer concrete suggestions about how to
get there.

First, a comment about the topic. In what follows, I consider the
computer security aspects of INFOSEC. INFOSEC, a portmanteau for
“information security,” is actually much broader; but my main
interest is protecting the information on computers, and the
computers themselves. The greatest threats arise in that arena,
due to the marriage of technology to the information management
systems and techniques.

The Importance of Computer Security

First we must ask what, exactly, is computer security? The stock
definition is that “a system is secure if it conforms to a stated
policy that defines what is allowed and what is disallowed” (the
security policy). But this statement does not adequately convey
the complexity of the problems of providing INFOSEC.

The World Wide Web provides numerous examples of how complex this
issue is. Recently, the Social Security Administration made its
database of earnings available over the Web. By giving a name, an
address, a social security number, and the mother’s maiden name, a
user could access his or her past earnings as recorded by the
Social Security Administration, and obtain information about their

account. Was this secure? According to the Social Security
Administration, it was; the data was protected by passwords
(mother’s maiden name). According to many others, it was not,
because the passwords were easily determined. In the end, the
Social Security Administration took the database off line.

Electronic mail is another example where different definitions of
“security” affect the analysis. If the mail contains passwords,
financial data, or expressions of love or hate, “security” means
keeping the contents of the message confidential. If the mail
contains information the accuracy of which is critical, such as
medical data or contract information, “security” requires that the
contents be unalterable while the letter is in transit; it may
also require that the sender of the letter can be established to a
high degree of accuracy. The flip side occurs when a sender
wishes to remain anonymous, such as the student who sent a
threatening letter to President Clinton. I’m sure he thought
electronic mail had a serious security problem when the Secret
Service showed up at his door and informed him they had traced the
“anonymous” letter.

Determining how to secure a given system, in a given environment,
requires analyzing the situation to determine what “security”
means. From that, one can design and implement procedures,
programs, and technologies to provide a level of security
conforming to the needs of the system.

Some more examples will make this point clearer. A vendor designs
and implements a new computer system. What role does security
play? Clearly the vendor wants to provide some minimal level of
security, but what is that level and how does it impact the use of
the system? One school of thought is to provide mechanisms, but
initially disable the mechanisms, and the managers and users can
enable on those they want. Old versions of the UNIX system were
distributed with this philosophy (by default, anyone could write
anything). A second approach is to pick some particular policy and
configure the mechanisms to enforce that policy. As an example,
one vendor sells two different types of computer systems. The
newer version is set to distrust other hosts on its network
initially. The older version is set to trust all hosts on its
network. In both cases, “the network” may well be the Internet.
Now, the company at one point reconfigured the older version to
distrust all hosts by default, but the outcry from small
businesses was so great that the decision was reversed. The
problem, it turned out, was that small businesses used local
networks not connected to the Internet, and when they installed
the systems, no other system on the network could talk to it. The
businesses did not have the expertise to fix the problem, and so
complained. This is a classic example where one sense of security
(“integrity”) is hampered by the need for another sense of
security (“availability”). Which decision was better from the
point of view of security?

Go further down to the nature of the environment in which a system
was developed. One often hears that “the UNIX operating system was
not designed with security in mind.” That’s actually not true.
The UNIX system was designed in a research lab, where the only
“security” necessary was to prevent one user from accidentally
deleting another user’s files. Given that (loosely stated) policy,
the UNIX system is quite secure. But then the UNIX system moved
out into less friendly environments, in which attackers could (and
did, and still do) exploit flaws in programs or configuration
errors to acquire privileges. In such an environment, the comment
about UNIX not being designed with security in mind is quite
correct.

My point is that computer security is more than mechanisms and
mathematics. It includes being able to analyze a situation to
figure out what constitutes security, being able to specify those
requirements, being able to design a system or program to meet
those requirements, being able to implement the system or program
correctly, and being able to make configuration and maintenance
simple.

Now, how well do we do this, in practice? As the above examples
showed, rather poorly. I’ll not elaborate on the Social Security
fiasco, other than to say at least the designers tried to follow
the above steps; their security model of the Internet, or of
American citizens, was flawed. At least with paper mail, responses
could be sent to a particular address (that of the person about
whom the information is requested); on the Internet, this
protection is impossible. With respect to electronic mail, the
student who threatened President Clinton clearly could not figure
out that the implementation of electronic mail failed to provide
what he expected in the way of security. And the vendor who
configured systems to trust all hosts on the network did not
adequately analyze the assumptions made in assessing the trust
between system components and the humans who would use and
administer them, thereby violating the principle of psychological
acceptability [4].

Nowhere do we see our failures better than in the implementation
of computer systems. As I’ll discuss later on, writing high-
quality code is an art that all too few students ever see, and
even fewer ever master. This lack shows in the systems we deploy.
How many of you have ever been on a system where the screen
display is replaced by a huge list of numbers, letters,
and tables of dots? How many knew your gooses were cooked at that
time? You’re not alone. A study of utility programs on UNIX
systems [3] showed that, given random input, about one-fourth to
one-third of the programs dumped core. In 1 case, the kernel
panicked, crashing the system! That’s inexcusable, sloppy
programming, and has serious consequences. In cases involving
security, program crashes or incorrect behavior are not bugs; they
are security holes. And most breaches of security are caused
either by poor programming or by improper configuration.

Poor programming is a generic problem, because it causes security
flaws under most definitions of “security.” If you look at the
USENET newsgroups and traffic on the security-related mailing
lists, most security holes reported recently arise from buffer
overflows; the attackers alter data, or change the contents of the
program stack causing the program to execute machine-language
routines stored on that stack (or elsewhere in memory). Checking
buffer bounds is simple. True, it costs a bit more, but the cost
is negligible compared to the effects of the failure to check the
bounds. Also, I’ve never seen a study showing exactly how much
overhead was added by the checking; I suspect it is considerably
less than most people think. Before this, race conditions were the
rage. What will be next? I wish I knew!

Improper configuration is arguably the user’s, or system
administrator’s, fault. But why do such configuration problems
arise? Configuration is often a very complex matter, and affects
not only the part of the system being configured but also its
interaction with the rest of the system. Most users and system
administrators simply do not have the time, the experience, or the
knowledge to consider all the ramifications of their
configurations. So they do not configure, and trust the vendor’s
configuration. Or they do what seems reasonable to them. But often
the vendor’s configuration is for a different environment (as in
the trust example above) or is counter-intuitive and without
sanity checks. A perfect example of the latter is a program that
manages cached DNS data. This data is critical to the correct
functioning of the Internet, as it stores host name and IP address
associations. Data remains in the cache for a period of time set
in a configuration file; this length of time is stored as an
integer number of seconds. Most folks, for whatever reason, seem
to think it is a number of minutes or hours, so they put a
floating-point number in the field. Say they want to purge the
data after 30 minutes. If expressed as 0.5, the program reads the
“0”: as the integer, ignores the “.5”, and sets the time-out to 0.
This means that the data is never removed from the cache, which is
not what the administrator intended -- and constitutes a security
hazard. Now, how hard would doing a sanity check on the
configuration number, and checking for a floating point number,
have been? It’s the “weakest link” phenomenon -- even if you
configure 99.5% of your system components correctly, the remaining
0.5% usually leaves you vulnerable to attack. That these links are
so weak is in part due to a failure to understand how critical
simplicity and verification of configuration data is.

All this relates to INFOSEC education because it suggests a
failure somewhere. Not enough computer scientists, system
administrators, and programmers are learning about computer
security. More knowledge and understanding of the basics of
computer security, and an ability to apply these principles and
techniques, would ameliorate the sorry state of security greatly.
So, what can we do? How can we improve this situation? A good
place to begin is with the current state of INFOSEC education.

Where We Are in INFOSEC Education

In academia, research and teaching go hand-in-hand, and it is not
surprising that the four largest academic groups in INFOSEC
security also have the largest concentration of students and
faculty in this area. While their research overlaps somewhat,
each group has carved out a general, unique niche.

The Computer Security Laboratory at the University of California
at Davis has research projects in network security (including the
security of the network infrastructure), testing and verification
methodologies, intrusion detection, vulnerabilities analysis,
policy, and auditing. The COAST Laboratory at Purdue University
focuses on host security, intrusion detection, audit technologies,
and computer forensics. The Center for Secure Information Systems
at George Mason University conducts research in formal models,
database security, and authentication technologies. The Center for
Cryptography, Computer, and Network Security at the University of
Wisconsin in Milwaukee focuses on the application of cryptography
and cryptographic methods and their extensions. While there are
other groups working on computer security in academia (at the
University of Idaho, CMU, MIT, the University of Texas, the
University of Maryland, Idaho State University, and Portland State
University), the research programs of these four groups are the
largest.

Gene Spafford presented some statistics worth repeating in his
February 1997 Congressional testimony [6]. Over the last five
years, these four academic institutions granted 16 Ph.D.s for
security-related research. (Incidentally, 7 came from UC Davis.)
Of these graduates, three went into academia. In the same time
period, about 50 masters’ students graduated. But these numbers,
while revealing, convey only a very small part of the current
state of computer security education.

Some aspects of computer security education are handled very
well, some moderately well, and still others poorly. To understand
the nature of the weaknesses and strengths, let’s consider two
different levels of INFOSEC education: graduate and undergraduate.

At the undergraduate level, teachers tend to focus more on
applications of principles and operational concerns rather than
the derivation and deep analysis of those principles themselves.
Those are discussed, but teachers show the students how to apply
the principles in very different and important situations. At this
level, computer security is typically added to existing courses.
For example, most books on operating systems devote a chapter or
two to issues of information protection, and networking classes
emphasize the need for good cryptographic protocols.
Unfortunately, most of this information is presented as an adjunct
to the main topic of the course and driven by that topic, so there
is little unity in the material among classes. That is, the
operating system class will use principles of operating systems to

drive the security mechanisms and techniques discussed, and the
discussion of INFOSEC security in a networking class draws upon
principles of networking far more than principles of security.

This is unfortunate because students who take those classes come
out with a distorted view of computer security. They do not
realize that general principles guide the design of security
mechanisms; that in both operating systems and networks, policy is
central to the definition and implementation of computer security;
and that the classes are exploring two different views of the same
fundamental subject. As a result, INFOSEC security is seen as much
more ad hoc than it is. When these students graduate and begin
working in the field of computer science, they will not be able to
apply the principles of security to their tasks unless the issues
of security arise in the contexts of operating systems or
networks. Even then, if the context is very different from that in
which the issues arose in class, the students may have trouble
with the security aspects of their task!

A classic example arises from network security. Network security
is in large part based upon cryptography, mainly because the
communications media cannot be secured; you can only protect the
cryptographic keys at endpoints. One major corporation, which
supplies World Wide Web browsers, understood this very well, and
used the powerful RSA cipher to protect data that needed to be
secured. So far, so good. But they overlooked the issue of key
generation. The “unbreakable” cipher was broken in minutes by a
couple of graduate students who figured out how the keys were
generated, and simply began regenerating the cryptographic keys
until they found ones that deciphered the messages correctly! This
type of attack is rarely discussed in networking classes, yet it
is a greater threat than failures in the cryptographic protocols.
Are we contributing to the existing state of security by the way
in which we teach it?

Superficiality seems to be common in supporting disciplines such
as computer security. As another, related example, consider the
discipline of programming. Everyone knows that undergraduates are
taught a programming language in their first programming class.
But when do they learn how to program? Programming is not simply
writing code in response to an assignment, or even to a
specification. Programming is crafting a program that meets the
specifications, and does more -- it handles errors properly, it
checks for potential problems, and basically embodies the four
basic principles of robust code [2]:

1. Be paranoid about code you did not write, including library
routines; expect them to fail.

2. Assume maximum stupidity; if you’re writing a function, assume
the caller will pass invalid parameters or bogus data.

3. Don’t hand out dangerous implements; don’t let the caller see
what your internal data structures are, and take pains to
protect them from a malicious caller.

4. Worry about cases that “can’t happen;” they will, and when you
least expect it.

A second course in programming should hammer these rules into the
students. But my experience is that most students do not get
taught these rules in such a way that they routinely apply them.
This opinion is reflected in Weinberg’s Second Law: “if builders
built buildings the way programmers wrote programs, then the first
woodpecker to come along would destroy civilization.”

Undergraduates who wish to study computer security are generally
relegated to graduate courses or independent study courses. Very
few undergraduate computer security courses are taught now. UC
Davis introduced one this year, and it was wildly successful in
part because it stressed applications more than theory. (The
availability of security-related jobs didn’t hurt, either.) The
most popular part seemed to be the lectures and assignments on
writing secure code; the course evaluations showed that the
brevity of this part was the major complaint!

The purpose of a graduate education is to stretch the current
state of the art and the current state of knowledge. So at the
graduate level, classes focus on deriving, arguing, proving, and
extrapolating from fundamental principles and results and
extending the underlying theory than applying it. Application is
discussed when it shows interesting ramifications of the theory,
or leads to interesting and novel extensions. Many of the above
comments apply to these classes, the major difference being that a
number of academic institutions have graduate-level classes
concerned with various aspects of computer security: introductory
classes, classes focusing on public policy and business, on formal
methods, on databases, on cryptography, on intrusion detection,
and on any particular subfield of interest to a faculty member.
Classes at this level are far more flexible than undergraduate
classes, and far more numerous.

Graduate education typically focuses on the design and
specification of secure systems, and their development. The study
of multi-level security still constitutes a major part of graduate
classwork, because so much research has been done in that area;
information flow, covert channels, formal models of security and
integrity, and trusted computing bases all embody fundamental
principles of security. However, students do not learn much about
how to analyze existing systems; they may study the theory behind
penetration testing, or the basic models of vulnerability
analysis, but they rarely put these ideas into practice by testing
an existing system, or modeling one.

Graduate education beyond the Master’s level (and sometimes at the
Master’s level) involves more than classes, of course. It also
requires research. For a master’s degree, the research must
contribute to the state of the art in some way, and for a
doctorate, the research must extend our understanding of some
aspect of security, or deepen our understanding. In other words,

it must be original and contribute to the body of knowledge
constituting the field of INFOSEC.

Academic computer security research is excellent in its
exploration of principles. However, performing the implementations
and testing, or experiments, to support the research is often a
problem. Institutions suffer from inadequate or outdated
equipment. Two examples should suffice. At UC Davis, we are
conducting research in the network infrastructure, specifically
attacks on routers, but so far all our router-related experiments
have been through simulation. One router company has generously
offered to let us come and use their labs, but as the company is
over 2 hours away, and considerable set-up is required, this is an
option we can use only occasionally. Having a router in the lab
would allow us to experiment much more quickly, thereby speeding
the course of the research. As another example, our
vulnerabilities analysis project requires experimenting on a wide
variety of computers, so we can determine how to build system-
independent tools to detect potential problems. Thus far, we have
only two types of systems on our network, so we cannot test or
port our tools to other systems. This limits the range of our
tools, and our ability to test them thoroughly enough to validate
some aspects of the underlying theory.

Laboratories do not run on research alone; an infrastructure
(administrative support, system administration, and so forth) is
necessary. To some extent, departments try to subsidize this, but
my experience is that departments do not have funding adequate for
their own needs, let alone those of a growing, or mature, research
laboratory. To make this personal, we recently cobbled together
funds from 9 different government grants to hire an administrator
(actually, a technical assistant). This amazing and dynamic
individual has taken over a lot of the administrative work Karl
Levitt, our postdocs, our graduate students, and I used to do.
Now, I only spend 8 hours a week doing administration (report
writing, not working on papers or my book; sending information to
potential sponsors and current sponsors; preparing the non-
technical parts of grant proposals; photocopying; scheduling
meetings; updating sand installing system software; some web page
designing; and so forth); the administrator has taken over the
rest. With more administrative support, I could cut this time in
at least half, and lift much of the burdens of system maintenance
from the graduate students (we don’t have a system administrator).
I do begrudge the use of that time; I understand the work is
necessary, but others could do it, and probably much better than
the graduate students and I could. We’d rather be teaching or
researching!

Academic institutions excel at teaching principles in computer
security courses. They do not teach computer security adequately
as a supporting discipline in other courses, because the teachers
who teach the lessons, and the authors who write the books, focus
on those aspects of computer security that affect their subject.

Further, the gap between design and implementation is not covered
well, even in most computer security courses.

In terms of research, the work that is done is high quality, but
because of lack of necessary equipment and lack of adequate
infrastructural support, the research proceeds more slowly than
necessary, and is performed on equipment that is not state of the
art. To emphasize this: the problem is not the theory or
modeling, or the experimentation to support them; it is that the
experimentation is often done via simulation rather than directly
on hardware or systems with the characteristics under study. The
work is good, but doing it is frustrating, and implicitly it
assumes that the simulations are correct.

This very brief survey outlines the current state of INFOSEC
education and research in the academic setting. To see how to
improve this situation, or if improvement beyond the obvious is
needed, consider what the current practice should be.

Where INFOSEC Development Should Be

The conventional wisdom is that we need to advance our
understanding of modeling, security theory, and policy in order to
improve the state of computer security drastically. While I agree,
I think this misses one obvious point. We don’t use what we know
already, in either the procedural or technical arenas.

Think about it. A buffer overflow occurs when you write beyond the
end of an array; this can cause the program to stop, or it may
simply alter data unrelated to the buffer. We have known how to
handle buffer overflows since at least the early 1960s. Compilers
can generate code to check bounds. If that’s too inefficient,
segmented architectures provide a system-oriented mechanism for
preventing overflow: make the buffer occupy a single segment. If
you overflow, a segmentation trap occurs. The Burroughs systems of
that time strictly delineated instructions and data; building that
into the system would also prevent many of these types of attacks.
This is not new technology; it’s old technology. The same holds
for other flaws.

In fact, we recycle flaws as if we forgot about them! In the UNIX
arena, a flaw that occurred in 1993 (and would compromise a
system) was the same as one found in 1983; the only difference was
the name of the program involved, and how the fault was triggered.
Another flaw, in an implementation of the Network File System
protocol, was exactly the same as a flaw found in the 1970s in the
paging of a Burroughs system. As Yogi Berra said, “it’s déjà vu
all over again!” The moral? We don’t learn from our errors. We
must do so!

We also do not use what we have learned. Clear statements of
policies and specifications aid immeasurably in the design cycle,
because they highlight the assumptions about the environment in

which the programs will function. They also present the goals of
the program or system clearly, and the constraints under which it
must function. Even if these stated informally, the designers will
know what is expected, and can design towards that goal. The goals
and constraints can include security matters; for example, if the
program will be writing sensitive data, confidentiality and
integrity constraints should be stated explicitly. This serves two
functions: to quantify the security desired somewhat, and to
provide a metric for subsequent testing. But how often do
specifications include this information?

Such improvements in the practice of design methodology would
reduce the most pernicious, and embarrassing, part of computer
security for vendors: the cycle of catch-and-patch. In this cycle,
someone catches a security flaw. After considerable work, the
vendor distributes a security patch. The patch typically addresses
the specific flaw reported. Then the vendor learns of another
security flaw. Out goes another patch. Parts of the system are
becoming incrementally more secure in that single flaws are being
fixed, but never is the design checked, or the flaws looked at as
a whole, so other similar flaws go undiscovered. This is not cost
effective -- the payment for security is incremental, and at the
end, rather than up front. Worse, the patches may introduce new
security holes, or aggravate the security problem (as at least one
vendor discovered, to its embarrassment!)

Learning from the past, and planning designs thoroughly, will
substantially improve out INFOSEC capability. There is more we can
do, though.

We need to learn how to build more precise models. Currently our
security-related models are crude, to say the least. We can model
some aspects of systems designed for security fairly well, because
the hierarchical design methods require a model from which the
design is drawn. But modeling the security aspects of existing
systems is a nightmare. Worse, modeling is always done at an
abstract level. Details deemed irrelevant to the purpose of the
model are elided or ignored. Unfortunately, in computer security,
the flaws often lie in those details. The Trusted Computer System
Evaluation Criteria of the Department of Defense captures this
quite well; the class A1, while requiring formal proofs at the
specification and design level, requires only that the “[trusted
computing base] implementation must be informally shown to be
consistent with the [formal top-level specification]” [1]. The
next section, discussing what lies beyond A1, includes formal
verification of the implementation at the software and hardware
levels. Currently such verification is not practical. It needs to
become practical, if not directly then through techniques such as
property-based testing.

Jeremy Frank made an interesting and perceptive observation about
this. The models we build often hide the problems, rather than
reveal them. For example, we did some work that showed how to
derive criteria for auditing from a system model, and then

instantiated it using the Network File System as an example. This
work skipped over the deeper question of how to create the model
from which the derivation could be done. It’s not intuitive,
because part of the analysis is to determine what constitutes a
transfer of information. Our work assumed this was known. But
given a complex enough system, building a model that correctly
captured all such flows could be difficult and the modelers would
be likely to miss something. Perhaps techniques akin to software
slicing could help here.

We need to study the formulation and implementation of policy.
This includes the areas of audit analysis, configuration
management, distribution of code and configuration data, and the
development of modular techniques for enforcing and defining
policy.

But the most important aspect of INFOSEC security is people.
Programmers make mistakes. Operators make mistakes. Users make
mistakes. We need to build systems that reduce the probability of
human errors, and to minimize the effects of those errors. In
essence, we must combine the fields of cognitive modeling, human
factors, and organizational dynamics with the disciplines of
software engineering and formal methods. We must understand how
these errors occur, and why. Little to no work has been done in
this area.

To summarize:
• We need to integrate security into all aspects of computer

science education.
• We need to learn from our mistakes, and not repeat the errors

from the past.
• We need to improve how we design systems and programs to account

for security constraints, and we need to reduce the number of
security patches necessary.

• We need to learn how to abstract models that more precisely
reflect the characteristics of the system.

• We need to grasp the subtleties of policy more completely, and
provide mechanisms for enforcing it with greater precision and
completeness.

• We need to understand how humans interact with systems, how
security problems arise from this interaction, and use this
knowledge to build systems that minimize the possibility and
effects of errors.

So we know where we want to go. How do we get there?

How to Improve INFOSEC Education: Meeting the Challenge

To meet these challenges, we must improve both the quality and
delivery of computer security education. We need to see computer
security not simply as a separate discipline, but as a multi-
disciplinary science which includes elements of operating systems,

networking, databases, the theory of computation, programming
languages, architecture, and human/computer interaction. The body
of knowledge must be incorporated as appropriate into these
disciplines.

As an example, consider a second course in programming; this is
typically a course in software development. We can begin to
educate students in computer security at this stage, without even
referring to that discipline! For example, a policy provides
design constraints, so in the introductory class, we simply state
the requirements of the program and the constraints under which it
will function. We let the students figure out the informal
specification, and require them to argue that their design meets
the specification. By teaching robust programming, implementation
problems such as argument checking, buffer overflows, and
validation of input data become part of writing good code and are
not separate aspects of writing secure programs. By spending time
on the role of testing, we imbue students with the idea that
systems must be validated. My point is that with a little
creativity, we can ameliorate the problem of poor code in
security-sensitive software.

The problems at the advanced undergraduate and graduate level are
more complex. Universities and colleges provide grounding in
principles, theory, the ability to analyze problems and potential
solutions, and finding or predicting future problems. While
industry and government are interested in these, their needs are
more immediate. They want students to be educated in the systems
they use. They want students who can apply technology to problems,
and either solve them or figure out what new technology will solve
the problems. At first glance, these roles seem contradictory. On
reflection, they are complementary.

The most effective way to teach principles is to help the students
discover those principles. Rather than simply stating the idea,
enable the students to use systems embodying the idea they are to
learn. For example, the concepts of multi-level security are
simple in principle, but their use raises a host of other
questions involving psychological acceptability, usability,
implementation, and so forth. What better way to answer these
questions than to give the students exercises on such a computer
system?

This is where the marriage of industry, government, and academia
can drastically improve INFOSEC education. Students learn that
security cannot be provided -- indeed, defined -- in a vacuum.
Real problems set parameters for applying existing theory and
models, testing them, and determining their usefulness. The
environment in which the problem arises sets constraints for
solutions. Working with these problems teaches students to analyze
not just technical issues but also non-technical issues and
influences. They bring together multiple types of problems in a
single situation, and show how they affect one another. They show

how money, how risk management, and how risk mitigation all
influence the design and implementation of computer systems.

Consider the World Wide Web. The simplest solution to the threat
of malicious downloadable executable code, such as computer
viruses, is to disallow such downloads. That is not practical --
non-technical considerations suggest that, regardless of what is
done, people will always down load Java applets or ActiveX
programs. So, let’s modify that solution -- force the browser to
ask the user whether the download should proceed. In theory,
great; in practice, most people will always say “yes” or call the
vendor and ask how to disable that darned warning. Okay, since
that won’t work, how about a “sandbox”, where the downloaded
program is executed in a contained environment? Great idea in
theory, but in practice, the construction of a universal sandbox,
designed to meet all local policies is impossible. Then let’s
change ... but you get the idea.

Academia is changing -- slowly, but changing nonetheless. Academic
institutions encourage work on problems that are presented as ill-
defined or ambiguous problems; part of the challenge of the
research is to make the problems well defined. And institutions
are changing the standards by which they evaluate faculty;
although the aphorism “publish or perish” is still true,
experimental disciplines in computer science are becoming accepted
as bona fide disciplines, even though they lead to fewer papers
than more theoretical research.

Academia has a duty to educate people so that they can contribute
via industry, government, or academia. Most academics, and
academic institutions, take this duty very seriously -- it’s an
integral part of why we’re in academia, and resisting the lures of
more money elsewhere. We love to teach; we want our research to be
useful. But we need help.

• We need more industry and government participation in selecting
research topics. Nothing is more frustrating than solving a
problem, only to find it is not really a problem, or the “real
world” version of the problem has additional constraints that
change the approach drastically. Ways to do this are through
partnerships with industry in which we discuss problems and
possible approaches, and work together to solve them; through
internships, where members of industry come to academic
institutions for a period of time to teach and work on projects
with students, and where faculty and students go to industry for
periods of time to work on problems of interest to the industry.
One of the most common complaints of students is the lack of
“real world” experience, and of industry and government is that
the students lack “real world” experience. These measures would
provide them.

• We need long-term funding to provide a stable base for our
research. Short-term resources for tackling particular problems

are helpful, but the distraction of attempting to find funds to
continue our work, and to build a long-term research program, is
a drain on our resources. The lack of any infrastructure support
aggravates this situation; in order to hire an administrative
assistant, we had to get approval from the sponsors of the 9
grants from which we drew funds. We’re still short-handed. This
is a complaint common to the four major labs, and trying to make
up for the lack of support drains energy and time from our
research.

 More importantly, a stable funding base would give industry,

government, and the nation a set of resources upon which they
could draw without having to start from scratch. The importance
of this cannot be underestimated. This base of research and
knowledge can provide help and research results to deal with the
crisis, and to solve the problems causing the crisis.

• We need state-of-the-art equipment. Our students learn computer
science by experimentation and using systems as well as from
lectures and books. The better the equipment, the better they
will learn, and the less industry and government will need to
train them. And the more directly applicable our research will
be.

• Industry and government should fund “blue sky” research and long
term, directed research. Blue sky research is speculative; it
may succeed, it may fail, but the body of knowledge that comes
out of it will advance the field in some manner. Remember,
failure can be just as strong a result as success. Long-term
research would allow us to turn our academic resources to
problems that we could study thoroughly and attempt to solve in
a number of different ways. Both these suggestions would produce
an immeasurable amount of research and scholarship, upon which
short-term projects could be built.

• Finally, industry and government should realize that demanding
short-term deliverables such as software takes academia into an
arena it was never meant to be in. Prototypes are built to test
theories; they are in no sense production quality code, and
often use designs unacceptable to production environments.
Remember the software engineering adage “build the first one to
throw away, and the second one to test and analyze?” A prototype
is the first or second implementation. Once the theory is
validated, industry should take the results and re-engineer the
system to meet its specific needs, for its specific environment.
Focus on the research and the results gleaned from it; we’re
very good at doing that. That’s what we can contribute to
INFOSEC research.

We have to adapt. We no longer have the luxury of fielding systems
without thinking about security issues. Working together,
academia, industry, and government can improve the state of
INFOSEC security education and research. But the meltdown point,

the point at which the computer infrastructure is about to fall
apart, to become Balkanized through attacks, is almost here. We
need to act, and act now.

Everyone bemoans the sorry state of computer security; so far,
fewer seem willing to provide the resources to deal with the
fundamental research necessary to improve the state. We should
take a lesson from the Good Doctor, Dr. Seuss, who wrote a
wonderful book about a youngster running away from his troubles to
Solla Sollew, the land where there were no more troubles. But
after a long journey, he realizes he will never get there. So he
returns home [5]:

But I’ve bought a big bat
I’m all ready, you see;
Now my troubles are going
To have troubles with me!

May we have the wisdom to deal with our INFOSEC troubles in the
same way.

Acknowledgments. Thanks to Rebecca Bace, Jeremy Frank, Karl
Levitt, Vic Maconachy, and Alan Paller for helpful ideas and
feedback. The contents of this note represent the opinions of the
author, and not necessarily anyone else.

References

[1] Department of Defense Trusted Computer System Evaluation
Criteria , DOD 5200.28-STD , sec. 4.1, p. 44 (Dec. 1985).

[2]Elliott, C., “How to Write Bomb-Proof Code,” handout for COSC
23, Software Design and Implementation , Department of
Mathematics and Computer Science, Dartmouth College (Jan.
1992).

[3]Miller, B., Fredriksen, L. and So, B., “An Empirical Study of
the Reliability of UNIX Utilities,” Communications of the ACM
33(12) pp. 33–43 (Dec. 1990).

[4]Saltzer, J. and Schroeder, M., “The Protection of Information
in Computer Systems,” Proceedings of the IEEE 63(9) pp.
1278–1308 (Sep. 1975).

[5]Dr. Seuss, I Had Trouble in Getting to Solla Sollew , Random
House (1965).

[6]Spafford, E., Written statement submitted to the Subcommittee
on Technology of the U. S. House of Representatives Committee
on Science (Feb. 1997).

