
The Design and Operation of "mon"

Jim Trocki
Unisys

jim.trocki@unisys.com, trockij@arctic.org

http://www.kernel.org/software/mon/

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 1

Overview

• What is ‘mon’?

• Historical Perspective

• Server responsibilities

• Monitor responsibilites

• Alerts

• Alert management

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 2

Overview (contd...)

• Clients and their function

• Configuration details and examples

• Example extensions

• Interesting applications

• Experience

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 3

What is "mon"?

"mon" is a tool for monitoring the availability of
services and applications.

• Used by NOCs and IT staff for fault detection and
alert management. For example:

Send an alphanumeric page to NOC staff when
peering link is down
Submit trouble ticket when an application
becomes inoperable
Record the routing history between HQ and a
branch office, send notification when path
changes
Monitor an application and trigger a resource
fail-over in a high-availability configuration

• Distributed under GNU General Public License v2

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 4

Historical Perspective (from the laboratory)

• Envrionmental monitoring system in lab, network
of thermistors and a monitoring system

• Proprietary software was not sufficient for our
purposes (phone)

• Adapted this to perform alerting we wanted
(pagers, emails)

• Used data collected by proprietary system used as
input to custom monitoring and alerting system

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 5

The Lab System Leads To...

• Adaptation of this to monitoring other systems
infrastructure

• Monitoring began with small custom programs to
test for failures

• Each script would collect some intelligence and
decide what to do

• If a condition was met, script would alert via email
or alpha pages

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 6

Features of mon

• Portable (written in Perl)
Linux, Solaris, BSD, Cygwin (Windows), ...

• Simple yet very adaptable design

• Can monitor anything, no clients or agents
required

• Configurable, extensible, integrates with other
systems

• Supportive community, mailing list
mon@linux.kernel.org

• Active "contrib" archives full of custom monitors,
alerts, and other tools (on sourceforge.net)

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 7

Design Goals of "mon"

• Simple to add alerts and monitors

• Simple way of cross-connecting tests and alerts

• Simple way of gathering data for report generation

• General-purpose, platform-agnostic, if you can test
it with software, you can monitor it

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 8

Components
• Server

Schedules and executes monitors (tests),
handles traps, alerts, clients, logs.

• Clients
Query and control the server, show reports

• Monitors
Communicate with monitored systems via
HTTP, SNMP, etc.

• Traps
Send notifications to other systems ("mon"
systems or otherwise)

• Alerts
Perform actions on failures, page, email,

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 9

trouble ticket, corrective action (HA fail-over),
etc.

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 10

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 11

Server Responsibilities

• Schedule tests
Run monitors when necessary
Gather output and exit status

• Accept remote traps

• Serve clients
Deliver operational status
Accept control commands

• Manage Alerts
Suppress repetitive alerts
Alert only during specified time periods
Evaluate dependencies

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 12

Configuration File

• "Cross-connects" monitors to alerts
Think of telephone switchboard or patch panel
Any monitor can be wired to any alert

• Defines what is to be monitored and how
What monitors are to be used
What hosts are to be monitored
What services are to be monitored

• Defines when alerts happen
On which failure
On which failure->success transition
Frequency
Time of day

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 13

Monitors

• Test the condition of a service
Usually one service test per monitor
Tests are user-definable
SNMP, HTTP, SMTP, ICMP echo, etc.
Application-level tests possible

• Report summary and detailed results

• Exit reporting success/failure

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 14

Monitors cont’d

• Written in an arbitrary language
Most are in Perl, /bin/sh
May call third-party software
No binary linkage with mon itself
Independent from the mon server

• Invoked as separate processes
Many may be run in parallel
Hundreds may run in a minute

• Short-lived
Start, test, report, exit
Helps minimize impact of memory leaks

• Simple to write

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 15

Many Available Monitors

Numerous server tests
• http, lpd, smtp, ldap, imap, pop3, telnet, dns, disk

quotas, netware

• msql, mysql, oracle, postgres, informix, sybase

• reboot, processes, rpc, clock, disk space, RAID

• Brocade fcal switches, traceroutes, router
interfaces, ipsec tunnels, Foundry router chassis,
bgp, RADIUS

• Compaq chassis, NT services, samba, printers

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 16

Traps

• Traps are notifications sent to a mon server from an
external entity

another mon server
a stand-alone probe

• Contain the same information as passed by
monitor scripts

summary
detail
exit status

• Allows distributed mon agents to send their status
to a centralized mon server

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 17

Alerts

• Report the failure status detected by a monitor

• Independent from the mon server

• Accept input from the mon server

• Invoked as separate processes

• Written in any language

• Simple to write

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 18

Available Alerts

• E-Mail
• SNPP (alphanumeric paging via TCP/IP)
• Qpage (alphanumeric paging via modem and

TAP/IXO)
• Trap to other mon server
• AIM/IRC
• Bugzilla
• GNATS
• HP Openview
• SMS
• WinPopup
• NetApp snap delete

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 19

Alert Management

• Alert decision logic in the server

• Squelch repetitive alerts
time period
alertafter num
alertafter num timeval
alertafter timeval
alertevery
numalerts

• Dependencies
If router is down, don’t alert for unreachable
things beyond it
A simple first-pass at root-cause analysis
Dependencies are Perl expressions

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 20

Time::Period Specifications

Time::Period by Patrick Ryan

• True or false if a time(2) is within a specific period

• scale {range [range ...]}
scales: yr, mo, wk, yd, md, wd, hr, min, sec
ranges: Mon-Fri, 1-365, 9am-5pm, ...

• Examples
wd {Sun-Sat}
wd {Mon-Fri} hr {9am-4pm}
wd {Mon Wed Fri} hr {9am-4pm}, wd{Tue Thu}
hr {9am-2pm}
sec {0-4 10-14 20-24 30-34 40-44 50-54}

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 21

Clients

• "mon" protocol, registered port 2583 with IANA

• Easy Perl interface, Mon::Client

• Get operational status of things monitored

• Disable/enable monitoring and alerting

• Acknowledge alerts sent

• Allows for many reports

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 22

Example clients

• Multiple WWW interfaces
mon.cgi
monshow
minotaur.cgi
Big Brother facade

• Command-line

• WAP

• 2-Way pager

• "dtquery" query tool and report generator

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 23

Simple Configuration Example

Send email when any web servers become
unpingable:

hostgroup webservers www1 www2 www3 www4

watch webservers
service fping

monitor fping.monitor
interval 1m
period wd {Sun-Sat}

alert mail.alert trockij
alertevery 24h
upalert mail.alert trockij

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 24

Complex Example

watch webserver.corp.com
service fping

monitor fping.monitor
interval 1m
period P1: wd {Sun-Sat}

alert mail.alert trockij
alertevery 12h
upalert mail.alert trockij

period P2: wd {Sun-Sat}
alert mail.alert trockij-pager
alertevery 24h
alertafter 3 10m

period P3: wd {Mon-Fri} hr {7am-10pm}
alert mail.alert daytime-staff
alertevery 4h

service http
monitor http.monitor
interval 2m
depend SELF::fping
period wd {Sun-Sat}

alert mail.alert
alertafter 10m
numalerts 1

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 25

Escalation using Multiple Periods

watch webserver.corp.com
service fping

monitor fping.monitor
interval 1m
period P1: wd {Sun-Sat}

alert mail.alert trockij
alertafter 3
numalerts 1

period P2: wd {Sun-Sat}
alert qpage.alert trockij
alertafter 6
numalerts 1

period P3: wd {Sun-Sat}
alert call911.alert
alertafter 12h
alertevery 24h

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 26

Making Monitors

• Monitors are simple
expect a list of items to poll from @ARGV

some standard env variables are set
MON_LOGDIR, etc.

perform tests on items

first line of output is the summary line

remaining lines are the detail (not interpreted)

exit status of zero / nonzero

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 27

Example Monitor

Detect non-operational mountd on NFS servers:

#!/usr/bin/perl

my @failed;
my $detail;

foreach my $item (@ARGV) {
my $output = ‘showmount -e $item 2>&1‘;
if ($?) {

push @failed, $item;
$detail .= "$item failed:\n$output\n";

}

else {
$detail .= "$item ok:\n$output\n";

}
}

print join (" ", @failed), "\n";
print $detail;

@failed == 0 ? exit 0 : exit 1;

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 28

Making Alerts

• Alerts are even simpler than monitors

@ARGV has some options supplied by server

rest of @ARGV is from the config file

first line of stdin is summary

rest is detail

perform whatever action desired

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 29

Example Alert

Send email:

#!/usr/bin/perl

chomp (my $summary = <STDIN>);

my $to = join (",", @ARGV);

open (MAIL, "| /usr/lib/sendmail -oi -t") || die;

print MAIL <<EOF;
From: mon server
To: $to
Subject: ALERT $summary

Something wicked this way comes.
EOF

close (MAIL);

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 30

Making Clients

Connect to mon server, download operational status,
and display all variables associated with group
"server" and service "service":

#!/usr/bin/perl

use Mon::Client;

my $cl = new Mon::Client ("host" => "mon-bd2");

$cl->connect;

my %s = $cl->list_opstatus;

$cl->disconnect;

foreach my $var (keys %{$s{"server"}->{"service"}})
{

print "$var=$s{server}->{service}->{$var}\n";
}

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 31

Parallelization

Parallelization is handled using two methods:

• Monitors are parallel processes
Each "service" process runs independently
Leverages multiprocessing architectures

• Monitors should parallelize their own checks
Minimize serialization delay when checking
numbers of entries
fping.monitor operates asynchronously
phttp.monitor operates asynchronously

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 32

IRC, the sysadmin’s backchannel hangout

(mon/#mis) ALERT 2-Sep 12:18:00 (marvin/smtp): marvin
03:20PM #mis <ericb> *sigh* now what
03:20PM #mis> high load avg on marvin
03:20PM #mis> load average: 22.60, 21.56, 18.20
03:21PM #mis> there’s one imapd hogging the cpu

(mon/#mis) ALERT 6-Jan 07:26:41 (deepthought/smtp): deepthought
(mon/#mis) UPALERT 6-Jan 07:27:17 (deepthought/smtp): deepthought
10:27AM #mis> doh
10:27AM #mis> : deepthought ˜$; uptime
10:27AM #mis> bash: fork: Not enough space
10:27AM #mis> game over, man

(mon/#mis) ALERT 8-Dec 13:15:24 (mail-servers/pop3): deepthought
04:19PM #mis <adeelk> Dec 8 13:16:39 deepthought unix: NOTICE: vxvm:vxio: read error on object
rootdisk01-05 of mirror rootvol-01 in volume rootvol (start 565696 length 256) corrected

(mon/#mis) ALERT 30-Jun 18:45:37 (mail-servers/pop3): marvin
09:47PM #mis <ericb> yay! load of 20 on marvin
09:48PM #mis <adeelk> yeah damn backups
09:48PM #mis <ericb> we hates them

10:24PM #mis <ericb> [expl. deleted]... i still gotta reboot leon to clear all the hung nfs jobs
on the spool area
(mon/#mis) ALERT 18-Feb 19:25:13 (mail-servers/smtp): leon
(mon/#mis) UPALERT 18-Feb 19:28:10 (mail-servers/smtp): UNKNOWN
10:31PM #mis <ericb> ’kay... everything appears copacetic

(mon/#mis) ALERT 29-Jan 08:04:38 (mail-servers/imap): leon
11:47AM #mis <eric> oh thats troubling, there was an iscsi timeout on leon that caused that alert

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 33

Interesting Applications 1

Simple home-brew failover

• Several web servers

• Each with eth0 admin and eth0:0 virtual addr

• eth0:0 addresses are published as DNS A records

• mon server polls http servers

• On failure, ’failover.alert’ sshs to a 2ndary server
and ifups the dead virtual ip on eth0:1

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 34

Interesting Applications 2

Adding on-call schedule support

• Alert uses Schedule::Oncall module

• No changes to the server are needed

• Sends mail to the person on call

• Optionally sends alphanumeric page, also

• Now mon supports on-call schedules!

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 35

Interesting Applications 3

Debugging WAN

• Traceroute monitor

• Show when path changes

• Record history of traces

• Call ISP with evidence rather than speculation

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 36

Interesting Applications 4

Print queues jamming

• Clumsy unreliable printers, need to tune lprng

• Catch them when they jam so can collect data

• Shows when a queue is making no progress
because of paper or toner deficit

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 37

Interesting Applications 5
Hierarchical Monitoring System

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 38

Interesting Applications 6

mon-syslog

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 39

Interesting Applications 7

dtquery

• CGI-based tool, mon client

• query mon downtime logs for specific downtime
events

• on specific hosts/groups/services

• during specified date ranges

• supply with graphs summarizing the results

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 40

Interesting Applications 8

Mail loop monitoring

• Compose a mail with a sender/timestamp
identification in the body

• Periodically send out the test mail to one or more
remote "reflectors" via Mail::Sendmail

• Poll a local POP3 server using Mail::POP3Client,
looking for the return mails and matching up the
sender/timestamp identifiers

• If the replies are not received within a given time
period, signal a failure

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 41

Experience

• Useful as a debugging tool
Whip-up custom monitors for debugging
Logs help investigation of past events
Identify that a disaster has been resolved

• If it failed twice before, write a monitor

• Helps keep admins in tune with systems problems

• Admin team knows problems before users report
them

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 42

Hints

• Take time to tune alerts to maintain your sanity

• Monitor only what you care about, not everything

• That is, keep it simple and digestable

• Use alphanumeric paging via a modem if
monitoring networks

• Post your monitors and alerts to the mailing list!

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 43

The Design and Operation of "mon"

Jim Trocki
Transmeta Corporation

trockij@transmeta.com, trockij@linux.kernel.org

http://www.kernel.org/software/mon/

http://www.kernel.org/software/mon/, $ Revision: 1.5 $ Jun 21, 2007

Page 44

