
An Introduction to OpenSSL Programming (Par t II)

Eric Rescorla
RTFM, Inc.

ekr@rtfm.com
Version 1.0: January 9, 2002

1 Introduction

The quickest and easiest way to secure a TCP-based network application is with SSL. If you’re
working in C, your best choice is probably to use OpenSSL, (the web site is at
http://www.openssl.org/). OpenSSL is a free (BSD-style license) implementation of
SSL/TLS based on Eric Young’s SSLeay package. Unfortunately, the documentation and sample
code distributed with OpenSSL leaves something to be desired. Where they exist, the manual
pages are pretty good, but they often miss the big picture, as manual pages are intended as a ref-
erence, not a tutorial.

We provide an introduction to OpenSSL programming. The OpenSSL API is vast and com-
plicated so we don’t attempt to provide complete coverage. Rather, the idea is to teach you
enough to work effectively from the manual pages. In the first part, published in the September
issue of Linux Journal, we introduced the basic features of OpenSSL. In this article we show
how to use a number of advanced features such as session resumption and client authentication.

2 Source Code

For space reasons, this article only includes excerpts from the source code. The complete source
code is available in machine-readable format from the author’s web site at
http://www.rtfm.com/openssl-examples/.

2.1 Our Programs

For most of this article we’ll be extending the simple client/server pair (wclient and wserver) we
presented in Part 1 to create two new programs: wclient2 and wserver2. Like wclient, wclient2
is a simple HTTPS (see RFC 2818) client. It initiates an SSL connection to the server and then
transmits an HTTP request over that connection. It then waits for the response from the server
and prints it to the screen. This is a vastly simplified version of the functionality found in pro-
grams like fetch and cURL.

wserver2 is a simple HTTPS server: it waits for TCP connections from clients and when it
accepts one it negotiates an SSL connection. Once the connection is negotiated, it reads the
client’s HTTP request. It then transmits the HTTP response to the client. Once the response is
transmitted it closes the connection.

To wards the end we’ll also show a more interactive client (sclient) that is usable for debug-
ging or simple remote login.

3 Session Resumption

When a client and server establish an SSL connection for the first time they need to establish a
shared key called the master_secret. The master_secret is then used to create all the bulk

This article is Copyright © 2001 Eric Rescorla. It may be redistributed for any purpose and without fee provided
that this notice is retained. An earlier version of this article first appeared in the September 2001 issue of Linux
Journal.

encryption keys used to protect the traffic. The master_secret is almost invariably established
using one of two public key algorithms: RSA or Diffie-Hellman (DH). Unfortunately, both of
these algorithms are quite slow—on my Pentium II/400 a single RSA operation takes 19 ms. DH
can be even slower.

An operation that takes 19 ms may not sound that expensive but if it has to be done for every
connection then it limits the server’s throughput to less than 50 connections/second. Without
SSL, most web servers can handle hundreds of connections a second. Thus, having to do a key
exchange for every client seriously degrades the performance of a web server. In order to
improve performance, SSL contains a "session resumption" feature that allows a client/server
pair to skip this time consuming step if they hav e already established a master_secret in a previ-
ous connection.

The performance of RSA is highly asymmetric. Operations performed with the private
key (such as when the server decrypts the shared key) are much slower than operations
performed with the public key. Thus, in most situations most of the computational load is
on the server.

What’s a session?

SSL makes a distinction between a connection and a session. A connection represents one spe-
cific communications channel (typically mapped to a TCP connection), along with its keys,
cipher choices, sequence number state, etc. A session is a virtual construct representing the
negotiated algorithms and the master_secret . A new session is created every time a given client
and server go through a full key exchange and establish a new master_secret.

Multiple connections can be associated with a given session. Although all connections in a
given session share the same master_secret, each has its own encryption keys. This is absolutely
necessary for security reasons because reuse of bulk keying material can be extremely danger-
ous. Resumption allows the generation of a new set of bulk keys and IVs from a common
master_secret because the keys depend on the random values which are fresh for each connec-
tion. The new random values are combined with the old master_secret to produce new keys.

How It Works
The first time a client and server interact, they create both a new connection and a new session.
If the server is prepared to resume the session, it assigns the session a session_id and transmits
the session_id to the client during the handshake. The server caches the master_secret for later
reference. When the client initiates a new connection with the server, it provides the session_id
to the server. The server can either choose to resume the session or force a full handshake. If the
server chooses to resume the session the rest of the handshake is skipped and the stored
master_secret is used to generate all the cryptographic keys.

Session Resumption on the Client
Figure 1 shows the minimal OpenSSL code required for a client to do session resumption.
OpenSSL uses a SESSION object to store the session information and SSL_get1_ses-
sion() allows us to get the SESSION for a given SSL object. Once we have obtained the
SESSION object we shut down the original connection (using SSL_shutdown()) and create
a new SSL object. We use SSL_set_session() to attach the SESSION to the new SSL
object before calling SSL_connect(). This causes OpenSSL to attempt to resume the session
when it connects to the server. This code is activated by using the ’-r’ flag to wclient2.

In OpenSSL SESSION objects are reference counted so that they can be freed whenever
the last reference is destroyed. SSL_get1_session() increments the SESSION ref-
erence count and thus allows SESSION objects to be used after the SSL is freed.

144 /* Now hang up and reconnect, if requested */

145 if(reconnect) {

146 sess=SSL_get1_session(ssl); /*Collect the session*/

147 SSL_shutdown(ssl);

148 SSL_free(ssl);

149 close(sock);

150

151 sock=tcp_connect(host,port);

152 ssl=SSL_new(ctx);

153 sbio=BIO_new_socket(sock,BIO_NOCLOSE);

154 SSL_set_bio(ssl,sbio,sbio);

155 SSL_set_session(ssl,sess); /*And resume it*/

156 if(SSL_connect(ssl)<=0)

157 berr_exit("SSL connect error (second connect)");

158 check_cert(ssl,host);

159 }

Figure 1 Reconnect to the server with resumed session

Of course, this code isn’t suitable for a production application because it will only work with a
single server. A client can only resume sessions with the same server that it created them with
and this code makes no attempt to discriminate between various servers because the server name
is constant for any program invocation. In a real application, you would want to have some sort
of lookup table that maps hostname/port pairs to SESSION objects.

Session Resumption on the Server
OpenSSL provides a mechanism for automatic session resumption on the server. Each
SSL_CTX has a session cache. Whenever a client requests resumption of a given session the
server looks in the cache. As long as two SSL objects share a cache, session resumption will
work automatically with no additional intervention from the programmer. In order for the ses-
sion cache to function correctly, the programmer must associate each SSL object or the
SSL_CTX with a session ID context. This context is simply an opaque identifier that gets
attached to each session stored in the cache. We’ll see how the session ID context works when
we discuss client authentication and rehandshake. Figure 2 shows the appropriate code to set the
session ID context.

149 SSL_CTX_set_session_id_context(ctx,

150 (void*)&s_server_session_id_context,

151 sizeof s_server_session_id_context);

Figure 2 Activating the server session cache

Unfortunately, OpenSSL’s built-in session caching is inadequate for most production applica-
tions, including the ordinary version of wserver. OpenSSL’s default session cache implementa-
tion stores the sessions in memory. Howev er, we’re using a separate process to service each
client so the session data won’t be shared and resumption won’t work. The ’-n’ flag to wserver2
will stop it from forking a new process for each connection. This serves to demonstrate session
caching but without the fork() the server can handle only one client at a time which makes it
much less useful for real world applications.

We also have to slightly modify the server read loop so that SSL_ERROR_ZERO_RETURN
causes the connection to be shut down rather than an error and an exit. wserver assumes that the
client will always send a request and so exits with an error when the client shuts down the first
connection. This change makes wserver2 handle the close properly where wserver does not.

There are a number of different techniques that can be used to share session data between
processes. OpenSSL does not provide any support for this sort of session caching at all, but it
does provide hooks for programmers to use their own session caching code. One approach is to
have a single session server. The session server stores all of its session data in memory. The SSL
servers access the session server via interprocess communication mechanisms, typically some
flavor of sockets. The major drawback to this approach is that it requires the creation of some
entirely different server program to do this job, as well as the design of the communications pro-
tocol used between the SSL server and the session server. It can also be difficult to ensure access
control so that only authorized server processes can obtain access.

Another approach is to use shared memory. Many operating systems provide some method
of allowing processes to share memory. Once the shared memory segment is allocated, data can
be accessed as if it were ordinary memory. Unfortunately, this technique isn’t as useful as it
sounds because there’s no good way to allocate out of the shared memory pool, so the processes
need to allocate a single large segment and then statically address inside of it. Worse yet, shared
memory access is not easily portable.

The most commonly used approach is to simply store the data on a file on the disk. Then,
each server process can open that file and read and write out of it. Standard file locking routines
such as flock() can be used to provide synchronization and concurrency control. One might
think that storing the data to disk would be dramatically slower than shared memory, but remem-
ber that most operating systems have disk caches and this data would likely be placed in such a
cache.

A variant of this approach is to use one of the simple UNIX key-value databases (DBM and
friends) rather than a flat file. This allows the programmer to simply create new session records
and delete them without worrying about placing them in the file. If such a library is used, care
must be taken to flush the library buffers after each write, because data stored in the buffers has
not been written to disk.

Because OpenSSL has no support for cross-process session caches, each OpenSSL-based
application needs to solve this problem on its own. ApacheSSL (based on OpenSSL) uses the
session server approach. mod_ssl (also based on OpenSSL) can support either the disk-based
database approach or a shared memory approach. The code for all of these approaches is too
complicated to discuss here, but see Appendix A of "SSL and TLS: Designing and Building
Secure Systems" for a walkthrough of mod_ssl’s session caching code. In any case, you proba-
bly don’t need to solve this problem yourself. Rather, you should be able to borrow the code
from mod_ssl or ApacheSSL.

4 Client Authentication
Most modes of SSL only authenticate the server (and some infrequently used anonymous modes
authenticate neither the client nor the server). However, the server can request that the client
authenticate using a certificate. OpenSSL provides the SSL_CTX_set_verify() and
SSL_set_verify() API calls, which allow you to configure OpenSSL to require client
authentication. The only difference between the calls is that SSL_CTX_set_verify() sets
the verification mode for all SSL objects derived from a given SSL_CTX —as long as they are
created after SSL_CTX_set_verify() is called—whereas SSL_set_verify() only
affects the SSL object that it is called on.

SSL_CTX_set_verify() takes three arguments: the SSL_CTX to change, the
certificate verification mode and a verification callback. The verification callback is called by
OpenSSL for each certificate that is verified. This allows fine control over the verification pro-
cess but is too complicated to discuss here. Check the OpenSSL man pages for more detail.

We’re primarily concerned with the verification mode. The mode is an integer consisting of
a series of logically or’ed flags. On the server, these flags have the following effect (on the client
the effect is somewhat different):

SSL_VERIFY_NONE—don’t do certificate-based client authentication

SSL_VERIFY_PEER—attempt to do certificate-based client but don’t require it. Note that you
must not set SSL_VERIFY_PEER and SSL_VERIFY_NONE together.

SSL_VERIFY_FAIL_IF_NO_PEER_CERT—fail if the client doesn’t provide a valid
certificate. This flag can only be used with SSL_VERIFY_PEER.

SSL_VERIFY_CLIENT_ONCE—if you renegotiate a connection where the
client has authenticated, don’t requires client authentication
(we won’t use this flag but it’s mentioned for completeness).

wserver2 offers three client authentication options which are
set in the switch statement shown in Figure 3. The ’-c’ switch
requests client auth but doesn’t require it, using SSL_VERIFY-
_PEER only. The ’-C’ switch requires client auth using SSL_VERIFY_PEER |
SSL_VERIFY_FAIL_IF_NO_PEER_CERT. The third option is more complicated. If the ’-x’
switch is specified we allow the client to connect without requesting client authentication. Once
the client has sent its request we then force renegotiation with client authentication. Thus, this
branch of the switch does nothing.

158 switch(client_auth){

159 case CLIENT_AUTH_REQUEST:

160 SSL_CTX_set_verify(ctx,SSL_VERIFY_PEER,0);

161 break;

162 case CLIENT_AUTH_REQUIRE:

163 SSL_CTX_set_verify(ctx,SSL_VERIFY_PEER |

164 SSL_VERIFY_FAIL_IF_NO_PEER_CERT,0);

165 break;

166 case CLIENT_AUTH_REHANDSHAKE:

167 /* Do nothing */

168 break;

169 }

Figure 3 Setting client authentication mode

At this point you might ask "why not just require client authentication from the beginning?". For
some applications this would be just as good but for a real web server it might not be. Imagine
that you have a web server which requires SSL for all requests but has a super-secure section for
which you want to require certificate-based authentication. Because the SSL handshake occurs
before the HTTP request is transmitted there’s no way to tell in advance which part of the web
site the client wants to access and therefore whether client authentication is required.

The workaround is to allow the client to connect without client authentication. The server
then reads the client’s request and determines whether or not client authentication is required. If
it is, it requests a new SSL handshake and requires client authentication. However, since this
code is just demonstration code we don’t bother to actually examine the client request. We just
force a rehandshake if the ’-x’ flag is specified.

Rehandshaking on the Server
The OpenSSL rehandshake API is unfortunately pretty complicated. In order to understand it
you first need to understand a little bit about how SSL rehandshake works. Ordinarily the client
initiates the SSL handshake by sending a ClientHello message to the server. The client can initi-
ate a rehandshake simply by sending a new ClientHello. If the server wishes to initiate a rehand-
shake, it sends a HelloRequest message. When it receives a HelloRequest the client may—or
may not—initiate a new handshake. Moreover, handshake messages are part of a different

stream from data so data can be flowing while the handshake is happening.
Figure 4 shows the code necessary to implement the rehandshake. The first thing we do is

use SSL_set_verify() to tell the server to require the client to perform client authentica-
tion. Unfortunately, this setting only controls what OpenSSL does on new handshakes. If a client
were to attempt a resumed handshake this setting would be ignored. To prevent this problem we
use SSL_set_session_id_context() to set the resumption context to
s_server_auth_session_id_context instead of s_server_session_id_con-
text.

It’s worth taking a minute to understand why changing the session ID context works. When-
ev er an SSL object stores a session in the session cache it tags it with the current ID context.
Before resuming a session, OpenSSL checks that the current ID context matches the one stored
with the cache— but only if SSL_VERIFY_PEER is set. Therefore, changing our ID context
ensures that the client can’t simply resume the session it just created because it was created
under a different ID context. However, if the client had previously communicated with the server
and established a client authenticated session under s_server_auth_session_id_con-
text then it could resume that session.

Only checking the session ID context if SSL_VERIFY_PEER is set is somewhat coun-
terintuitive; the intent is to ensure that you don’t resume sessions in one context which
were client authenticated in another context, perhaps with different certificate checking
rules. Presumably the idea is that aside from client authentication, one session is rather
like another. This assumption is somewhat questionable; one might similarly wish to pre-
vent a session established with one set of cipher preferences from being resumed in an
SSL object with a different set of cipher preferences. The only way to accomplish this
separation with OpenSSL is to use a totally different SSL_CTX for each cipher suite pol-
icy.

Next, we call SSL_negotiate() to move the connection into renegotiate state. Note that this
does not cause the connection to be renegotiated, it merely sets the renegotiate flag in the object
so that when we call SSL_do_handshake() the server sends a HelloRequest. Note that the
server doesn’t do the entire handshake at this point. That requires a separate call to
SSL_do_handshake().

50 /* Now perform renegotiation if requested */

51 if(client_auth==CLIENT_AUTH_REHANDSHAKE){

52 SSL_set_verify(ssl,SSL_VERIFY_PEER |

53 SSL_VERIFY_FAIL_IF_NO_PEER_CERT,0);

54

55 /* Stop the client from just resuming the

56 un-authenticated session */

57 SSL_set_session_id_context(ssl,

58 (void *)&s_server_auth_session_id_context,

59 sizeof(s_server_auth_session_id_context));

60

61 if(SSL_renegotiate(ssl)<=0)

62 berr_exit("SSL renegotiation error");

63 if(SSL_do_handshake(ssl)<=0)

64 berr_exit("SSL renegotiation error");

65 ssl->state=SSL_ST_ACCEPT;

66 if(SSL_do_handshake(ssl)<=0)

67 berr_exit("SSL renegotiation error");

68 }

Figure 4 Rehandshake with client authentication

The only remaining piece to explain is explicitly setting the state to SSL_ST_ACCEPT in line
65. Recall that we said that the client isn’t required to start a rehandshake when it gets the Hel-
loRequest. Moreover, OpenSSL allows the server to keep sending data while the handshake is
happening. However, in this case the whole point of the rehandshake is to get the client to
authenticate so we want to finish the handshake before proceeding. Explicitly setting the state
forces the server to wait for the client rehandshake. If we don’t set the state, the second call to
SSL_do_handshake() will return immediately and the server will send its data before doing
the rehandshake. Having to set internal variables of the SSL object is rather ugly but it’s the
standard practice in HTTPS servers such as mod_ssl and ApacheSSL and it has the virtue that it
causes the server to send an unexpected_message alert if the client does not renegotiate as
requested.

OpenSSL does offer a SSL_set_accept_state() call but it isn’t useful here
because it clears the current crypto state. Since we’re already encrypting data, clearing
the crypto state causes MAC errors.

For simplicity’s sake we’ve decided to always force a rehandshake when wserver2 is
invoked with the -x flag. However, this can create an unnecessary performance load on the
server. What if the client has already authenticated? In that case there’s no point in authenticat-
ing it again. This situation can occur if the client is resuming a previous session in which client
authentication occurred. (It cannot happen if this is the first time the client is connecting because
client authentication only happens when the server requests it and we only request it on the
rehandshake).

An enhanced version of wserver2 could check to see if the client already provided a
certificate and skip the rehandshake if it had. However, great care must be taken when doing this
because of the way that OpenSSL resumes sessions. Consider the case of a server which has two
different sets of certificate verification rules, each associated with a separate ID context. Because
OpenSSL only checks the ID context when SSL_VERIFY_PEER is set—which it is not for our
initial handshake—the client could resume a session associated with either context. Thus, in
addition to getting the certificate we would need to check that the session being resumed came
from the right session ID context. If it didn’t, we’d still have to rehandshake to be sure that we
get the right kind of client authentication.

Rehandshaking on the Client
Automatic rehandshake support is built into SSL_read(), so the client doesn’t hav e to do any-
thing explicit to enable rehandshake. However, this doesn’t necessarily mean that arbitrary
clients will work. In particular, the client must be prepared to handle the
SSL_ERROR_WANT_READ return value from SSL_read(). Ordinarily, if the client is using
blocking I/O—as we are in wclient2— SSL_read() would never return this error. Howev er,
it’s required if rehandshaking occurs.

To see why this is, imagine that your client uses select() to determine when there is data
available from the server. When select() returns you call SSL_read(). Howev er, if the
server is requesting rehandshake the data will be a HelloRequest message. SSL_read() con-
sumes the message and performs the handshake. There’s no guarantee that there will be any
more data available on the socket so SSL_read() needs to return without any data—hence the
SSL_ERROR_WANT_READ return value.

Our original wclient program, despite functioning properly in every other respect, broke
utterly when dealing with rehandshake, thereby proving once again that if you haven’t tested
some feature it almost certainly doesn’t work. The fix in wclient2 is to change the read loop that
is shown in Figure 5.

48 /* Now read the server’s response, assuming

49 that it’s terminated by a close */

50 while(1){

51 r=SSL_read(ssl,buf,BUFSIZZ);

52 switch(SSL_get_error(ssl,r)){

53 case SSL_ERROR_NONE:

54 len=r;

55 break;

56 case SSL_ERROR_WANT_READ:

57 continue;

58 case SSL_ERROR_ZERO_RETURN:

59 goto shutdown;

60 case SSL_ERROR_SYSCALL:

61 fprintf(stderr,

62 "SSL Error: Premature close0);

63 goto done;

64 default:

65 berr_exit("SSL read problem");

66 }

67

68 fwrite(buf,1,len,stdout);

69 }

Figure 5 New client read loop with rehandshake support

Since this is an HTTP client and it’s already written the request, there’s no need to wonder if
there is data coming from the server. The next traffic on the wire will always be the server’s
response. Thus, we don’t need to select() on the socket. If we get
SSL_ERROR_WANT_READ we just go back to the top of the loop and call SSL_read()
again.

Using Client Authentication Information
When using client authentication it’s important to understand what it does and doesn’t provide.
So far, all the server knows is that the client possessed the private key corresponding to some
valid certificate. In some cases, this might be enough but in most cases the server wants to know
who the client is in order to make authorization decisions.

Checking the client’s certificate is roughly similar to the check_cert() function we used
to check the server’s identity. The server would extract the client’s name from the certificate and
check it against some access control list. If the name is on the list the client will be accorded the
appropriate privileges. Otherwise, access will be denied.

5 Controlling Cipher Suites

SSL offers a multiplicity of cryptographic algorithms. Since they are not equally strong and fast,
users often want to choose one algorithm over another. By default, OpenSSL supports a broad
variety of ciphers, however, it provides an API for restricting the cipher that it will negotiate. We
expose this functionality in wclient2 and wserver2 with the ’-a’ flag.

To use the -a flag, the user provides a colon separated list of ciphers, as in ’-a
RC4-SHA:DEC-CBC3-SHA:DES-CBC-SHA’. This string is then passed to OpenSSL via the
SSL_CTX_set_cipher_list() function, as shown in Figure 6.

You can get a list of all the algorithms that OpenSSL supports using the ’openssl’ command.
Try ’openssl ciphers’. Also, you might want to try using the ’-a’ flag with both client and server

and verify for yourself that if you use the same cipher (or have the same one on both lists) things
work and otherwise the connection fails.

126 /* Set our cipher list */

127 if(ciphers){

128 SSL_CTX_set_cipher_list(ctx,ciphers);

129 }

Figure 6 Setting the cipher list

6 Multiplexed I/O

Our wclient program is just about the most trivial client program possible because the I/O
semantics are so simple. The client always writes everything it has to write and then reads every-
thing that the server has to read. Reads and writes are never interlaced and the client just stops
and waits for data from the server. This works fine for simple applications but there are many
situations in which it’s unacceptable. One such application is a remote login client.

A remote login client such as telnet or ssh needs to process at least two sources of input: the
keyboard and the network. Input from the keyboard and the server can appear asynchronously.
That is to say that they can appear in any order. This means that the read/write type I/O disci-
pline that we had in wclient is fundamentally inadequate.

It’s easy to see this. Consider an I/O discipline analogous to the one we used in wclient, rep-
resented by the pseudo-code in Figure 7.

1 while(1){

2 read(keyboard,buffer);

3 write(server,buffer);

4 read(server,buffer);

5 write(screen,buffer);

6 }

Figure 7 A broken client I/O discipline

Consider the case in which you’re remotely logged into some machine and you request a direc-
tory listing. Your request is a single line (ls on UNIX boxes) but the response is a large number
of lines. In general, these lines will be written in more than one write. Thus, it may very well
take more than one read in order to read them from the server. Howev er, if we use the I/O disci-
pline in Figure 7, we’ll run into a problem.

We read the command from the user and the first chunk of the server’s response, but after
that we get deadlocked. The client is waiting in line 2 for the user to type something but the user
is waiting for the rest of the directory listing. We’re deadlocked. In order to break the deadlock
we need some way to know when either the keyboard or the network is ready to read. We can
then service that source of input and keep from deadlocking. Conveniently, there is a UNIX sys-
tem call that does exactly that— select(2). select() is the standard tool for doing multi-
plexed I/O. It lets you determine whether any of a set of sockets is ready to read or write. If
you’re not familiar with it already, read the man page or consult Richard Stevens’s fine book
"Advanced Programming in the UNIX environment" (Addison-Wesley 1992).

Unfortunately, although select() is a common UNIX idiom, its use with OpenSSL is far
from clean and requires understanding of some subtleties of SSL. In order to demonstrate them,
we present a new program, sclient. sclient is a simple model of an SSLized remote access

client. It connects to the server and then transfers anything typed at the keyboard to the server
and anything sent from the server to the screen.

Read
The basic problem we’re facing is that SSL is a record-oriented protocol. Thus, even if we want
to read only one byte from the SSL connection, we still need to read the entire record containing
that byte into memory. Without the entire record in hand, OpenSSL can’t check the record MAC
and so we can’t safely deliver the data to the programmer. Unfortunately, this behavior interacts
poorly with select(), as shown in Figure 8.

Network
buffer

SSL
buffer

SSL_read(1)

Figure 8 Read interaction with SSL

The left-hand side of Figure 8 shows the situation when the machine has received a record
but it’s still waiting in the network buffers. The arrow represents the read pointer which is set at
the beginning of the buffer. The bottom row represents data decoded by OpenSSL but not yet
read by the program (the SSL buffer). This buffer is currently empty so we haven’t shown a box.
If the program calls select() at this point, it will return immediately indicating that a call to
read() will succeed. Now, imagine that the programmer calls SSL_read() requesting one
byte. This takes us to the situation at the right side of the figure.

As we said earlier, the OpenSSL has to read the entire record in order to deliver even a sin-
gle byte to the program. In general, the application does not know the size of records and so its
reads will not match the records. Thus, the box in the upper right-hand corner shows that the
read pointer has moved to the end of the record. We’ve read all the data in the network buffer.
When the implementation decrypts and verifies the record, it places the data in the SSL buffer.
Then it delivers the one byte that the program asked for in SSL_read(). We show the SSL
buffer in the lower right-hand corner. The read pointer points somewhere in the buffer, indicat-
ing that some of the data is available for reading but some has already been read.

Consider what happens if the programmer calls select() at this point. select() is
concerned solely with the contents of the network buffer, and that’s empty. Thus, as far as
select() is concerned there’s no data to read. Depending on the exact arguments it’s passed,
it will either return saying that there’s nothing to read or wait for some more network data to
become available. In either case we wouldn’t read the data in the SSL buffer. Note that if
another record arrived then select() would indicate that the socket was ready to read and
we’d hav e an opportunity to read more data.

Thus, select() is an unreliable guide to whether there is SSL data ready to read. We
need some way to determine the status of the SSL buffer. This can’t be provided by the operat-
ing system because it has no access to the SSL buffers. It must be provided OpenSSL. OpenSSL
provides exactly such a function. The function SSL_pending() tells us whether there is data
in the SSL buffer for a given socket. Figure 9 shows SSL_pending() in action.

The logic of this code is fairly straightforward. select() has been called earlier, setting
the variable readfds with the sockets that are ready to read. If the SSL socket is ready to read,
we go ahead and try to fill our buffer unless the variable write_blocked_on_read is set
(this variable is used when we’re rehandshaking and we’ll discuss it later). Once we’ve read

some data, we write it to the console. Then we check with SSL_pending() to see if the
record was longer than our buffer. If it was, we loop back and read some more data.

49 /* Now check if there’s data to read */

50 if((FD_ISSET(sock,&readfds) && !write_blocked_on_read) ||

51 (read_blocked_on_write && FD_ISSET(sock,&writefds))){

52 do {

53 read_blocked_on_write=0;

54 read_blocked=0;

55

56 r=SSL_read(ssl,s2c,BUFSIZZ);

57

58 switch(SSL_get_error(ssl,r)){

59 case SSL_ERROR_NONE:

60 /* Note: this call could block, which blocks the

61 entire application. It’s arguable this is the

62 right behavior since this is essentially a terminal

63 client. However, in some other applications you

64 would have to prevent this condition */

65 fwrite(s2c,1,r,stdout);

66 break;

67 case SSL_ERROR_ZERO_RETURN:

68 /* End of data */

69 if(!shutdown_wait)

70 SSL_shutdown(ssl);

71 goto end;

72 break;

73 case SSL_ERROR_WANT_READ:

74 read_blocked=1;

75 break;

76

77 /* We get a WANT_WRITE if we’re

78 trying to rehandshake and we block on

79 a write during that rehandshake.

80

81 We need to wait on the socket to be

82 writeable but reinitiate the read

83 when it is */

84 case SSL_ERROR_WANT_WRITE:

85 read_blocked_on_write=1;

86 break;

87 default:

88 berr_exit("SSL read problem");

89 }

90

91 /* We need a check for read_blocked here because

92 SSL_pending() doesn’t work properly during the

93 handshake. This check prevents a busy-wait

94 loop around SSL_read() */

95 } while (SSL_pending(ssl) && !read_blocked);

96 }

Figure 9 Reading data using SSL_pending()

Note that we’ve added a new branch to our switch statement: a check for
SSL_ERROR_WANT_READ. What’s going on here is that we’ve set the socket for nonblocking
operation. Recall that we said in Section 8.7 that if you called read() when the network
buffers were empty, it would simply block (wait) until they weren’t. Setting the socket to non-
blocking causes it to return immediately saying that it would have blocked.

To understand why we’ve done this, consider what happens if an SSL record arrives in two
pieces. When the first piece arrives, select() will signal that we’re ready to read. However,
we need to read the entire record in order to return any data so this is a false positive. Attempt-
ing to read all that data will block, leading to exactly the deadlock we were trying to avoid.
Instead, we set the socket to nonblocking and catch the error, which OpenSSL translates to
SSL_ERROR_WANT_READ.

It’s worth noting that the call to fwrite() that we use to write to the console can block.
This will cause the entire application to stall. This is reasonable behavior in a terminal client—if
the user isn’t looking at the screen we want the server to wait for him—but in other applications
we might have to make this file descriptor non-blocking and select() on it as well. This is left as
an exercise for the reader.

Write
When we’re writing to the network we have to face the same sort of inconsistency that we had
when reading. Again, the problem is the all-or-nothing nature of SSL record transmission. For
simplicity’s sake, let’s consider the case where the network buffers are mostly full and the pro-
gram attempts to perform a modest-sized write, say 1K. This is illustrated in Figure 10.

Program
buffer

SSL
buffer

Network
buffer

SSL_write(1024)

Figure 10 Write interaction with SSL

Again, the left-hand side of the figure represents our initial situation. The program has 1K to
write in some buffer. The write pointer is set at the beginning of that buffer. The SSL buffers are
empty. The network buffer is half-full (the shading indicates the full region). The write pointer is
set at the beginning. We’ve deliberately obscured the distinction between the TCP buffers and
the size of the TCP window because it’s not relevant here. Suffice it to say that the program can
safely write 512 bytes without blocking.

Now, the program calls SSL_write() with a 1024-byte block. OpenSSL has no way of
knowing how much data it can write safely, so it simply formats the buffer as a single record,
thus moving the write pointer in the program buffer to the end of the buffer. We can ignore the
slight data expansion from the SSL header and MAC and simply act as if the data to be written
to the network was 1024 bytes.

Now, what happens when OpenSSL calls write()? It successfully writes 512 bytes but
gets a would block error when it attempts to write to the end of the record. As a consequence,

the write pointer in the SSL buffer is moved halfway across—indicating that half of the data has
been written to the network. The network buffer is shaded to indicate that it’s completely full.
The network write pointer hasn’t moved.

We now need to concern ourselves with two questions: first, how does the toolkit indicate
this situation to the application and, second, how does the programmer arrange that the SSL
buffer gets flushed when space is available in the network buffer? The kernel will automatically
flush the network buffer when possible so we don’t need to worry about arranging for that. We
can use select() to see when there is more space available in the network buffer and we
should therefore flush the SSL buffer.

Once OpenSSL has received a would block error from the network, it aborts and propagates
that error all the way up to the application. Note that this does not mean that it throws away the
data in the SSL buffer. This is impossible because part of the record might already have been
sent.

In order to flush this buffer, we must call SSL_write() again with the same buffer that it
called the first time (it’s permissible to extend the buffer but the start must be the same.)
OpenSSL automatically remembers where the buffer write pointer was and only writes the data
after the write pointer. Figure 11 shows this process in action.

The first thing we need to do is have some data to write. Thus, we check to see if the console
is ready to read, and if so read whatever’s there (up to BUFSIZZ bytes) into the buffer c2s,
placing the length in the variable c2sl.

If c2sl is nonzero and the network buffers are (at least partially) empty, then we have data
to write to the network. As usual, we call SSL_write() with the buffer c2s. As before, if we
manage to write some but not all of the data, we simply increment c2s_offset and decre-
ment c2sl.

The new behavior here is that we check for the error SSL_ERROR_WANT_WRITE. This
error indicates that we’ve got unflushed data in the SSL buffer. As we described above, we need
to call SSL_write() again with the same buffer, so we simply leave c2sl and c2s_off-
set unchanged. Thus, the next time SSL_write() is called it will automatically be with the
same data.

OpenSSL actually provides a flag called SSL_MODE_ACCEPT_MOVING_
WRITE_BUFFER which allows you to call SSL_write() with a different buffer after a
would block error. Howev er, this merely allows you to allocate a new buffer with the
same contents. SSL_write() still seeks to the same write pointer before looking for
new data.

The interaction of multiplexed I/O with rehandshake
We saw earlier that rehandshaking could cause SSL_write() to return with
SSL_ERROR_WANT_READ. Similarly, SSL_read() can return with
SSL_ERROR_WANT_WRITE if rehandshake occurs and the write buffers fill up (this is rela-
tively unusual on modern platforms since the write buffers are generally large enough to accom-
modate typical SSL handshake records). In either case, the correct procedure is to select for
read/write-ability and then reissue the offending call. This leads to some confusing logic since it
means that under certain circumstances you respond to a socket being ready to read by calling
SSL_write()!

Let’s take the case of SSL_write() first. If SSL_write() returns
SSL_ERROR_WANT_READ we set the state variable write_blocked_on_read. Ordi-
narily, this would cause us to call SSL_read() but because write_blocked_on_read is
set we skip the read loop and fall through to the write loop where the call to SSL_write() is
reissued. Note that since the SSL handshake requires a number of reads and writes it’s quite pos-
sible that this call won’t complete either and we’ll have to reenter the select() loop.

98 /* Check for input on the console*/

99 if(FD_ISSET(fileno(stdin),&readfds)){

100 c2sl=read(fileno(stdin),c2s,BUFSIZZ);

101 if(c2sl==0){

102 shutdown_wait=1;

103 if(SSL_shutdown(ssl))

104 return;

105 }

106 c2s_offset=0;

107 }

108

109 /* If the socket is writeable... */

110 if((FD_ISSET(sock,&writefds) && c2sl) ||

111 (write_blocked_on_read && FD_ISSET(sock,&readfds))) {

112 write_blocked_on_read=0;

113

114 /* Try to write */

115 r=SSL_write(ssl,c2s+c2s_offset,c2sl);

116

117 switch(SSL_get_error(ssl,r)){

118 /* We wrote something*/

119 case SSL_ERROR_NONE:

120 c2sl-=r;

121 c2s_offset+=r;

122 break;

123

124 /* We would have blocked */

125 case SSL_ERROR_WANT_WRITE:

126 break;

127

128 /* We get a WANT_READ if we’re

129 trying to rehandshake and we block on

130 write during the current connection.

131

132 We need to wait on the socket to be readable

133 but reinitiate our write when it is */

134 case SSL_ERROR_WANT_READ:

135 write_blocked_on_read=1;

136 break;

137

138 /* Some other error */

139 default:

140 berr_exit("SSL write problem");

141 }

142 }

Figure 11 Client to server writes using OpenSSL

Now consider the case of SSL_read(). If SSL_read() returns SSL_ERROR_WANT_WRITE
we set the state variable read_blocked_on_write and reenter the select() loop wait-
ing for the socket to be writable. When it is we arrange to call SSL_read() again (see the sec-
ond line of the test right after the call to select(). Note that after we call SSL_read() we fall
through the the write section of the loop. However, even though the socket is writeable and so
the FD_ISSET test passes, SSL_write() will only be called if c2sl is nonzero and there’s really
data to write.

6.1 What’s still missing?

Taken together, these articles demonstrate most of the essentials of writing SSL clients and
servers with OpenSSL. However, OpenSSL offers a number of other powerful features that we
don’t cover, including:

Cr yptographic Toolkit
Underlying OpenSSL’s SSL implementation is a crypto toolkit implementing all the major cryp-
tographic primitives, including RSA, DH, DES, 3DES, RC4, AES, SHA and MD5, as well as an
ASN.1 encoder. Thus, OpenSSL is useful for people writing other kinds of cryptographic appli-
cations, even if they don’t inv olve SSL.

Cer tificate Authority
OpenSSL contains the basic software required to write a certificate authority (CA). A number of
CAs have been written on top of OpenSSL, including the free OpenCA project (see the refer-
ences section).

S/MIME
OpenSSL now includes an S/MIME implementation, allowing it to be used to write secure mail
clients. This is still somewhat of a hard hat area—the S/MIME support isn’t quite complete yet
and neither is the documentation.

6.2 External Resources

Parts of this article were adapted from my book "SSL and TLS: Designing and Building Secure
Systems", Addison-Wesley 2000. "SSL and TLS" offers a comprehensive guide to the SSL pro-
tocol and its applications. See http://www.rtfm.com/sslbook for more information.

Machine readable source code for the programs presented here can be downloaded from the
author’s web site at: http://www.rtfm.com/openssl-examples/. The source code is
available under a BSD-style license.

You can get OpenSSL from http://www.openssl.org/. The docs are online here as well.

The relevant specifications are at:
SSLv2: http://www.netscape.com/eng/security/SSL_2.html
SSLv3: http://home.netscape.com/eng/ssl3/index.html
TLS (RFC 2246): http://www.ietf.org/rfc/rfc2246.txt
HTTPS (RFC 2818): http://www.ietf.org/rfc/rfc2818.txt

The mod_ssl project lives at http://www.modssl.org/.
The ApacheSSL project lives at http://www.apachessl.org/.
The OpenCA project lives at http://www.openca.org/.

6.3 Acknowledg ements

Many thanks to Lutz Jaenicke and Bodo Moeller for help with OpenSSL and catching a number
of problems with the example programs. Thanks to Lisa Dusseault for review of this article.

