GHC User’s Guide Documentation
Release 9.2.8

GHC Team

Feb 25, 2024






CONTENTS

1 Introduction 3
1.1 Obtaining GHC . . . . . . . . e e e e e e e e e e e e e e e e 3
1.2 Meta-information: Web sites, mailing lists, etc. . ... ... ... ... .. ...... 4
1.3 Reporting bugsin GHC . . . . . . . . . . .. . . . e e 4
1.4 GHC version numbering policy . . . . . . . . . i i i i i e e e 4
1.5 The Glasgow Haskell Compiler License . . . . ... ... ... .. ... . ....... 5

2 Release notes 7
2.1 Version 9.2.1 . . . e e e e e e e e e e e e e e e 7

2. 1.1 Language . . . v i e e e e e e e e e e e e e e e e e e e e e e e e 7
2.1.2 Compiler . . . . . . e e e e e e e 10
213 GHCGCI. . .o e e e e e 10
2.1.4 Runtime system . . . . . . . . i i e e e e e e e e e e e e e e 11
2.1.5 Template Haskell . . . . .. .. . . . . . . . i 12
2.1.6 ghc-primlibrary. . . . . . . . . . e e e e 12
2.1.7 Eventlog . . . . . e e e e e e e e e e e e 12
2.1.8 ghclibrary . . . . . . . . e e e e e 12
2.1.9baselibrary. . . . . . . .. e e e e 13
2.1.9.1 Included libraries . . .. .. . . . . . . e 14
2.2Version 9.2.2 . .. e e e e e e e e e e e e e e e e 17
2.2.1 Compiler . . . . . . e e e e e e e e e 17
222 GHGCi. . .o e e e e e e e 18
2.2.3 Core libraries . . . . . . . . . . . e e e e e 18
2.2.4 Build system and packaging . . . . . . . . ... ... e 18
2.2.5 Runtime system . . . . . . . . ... e e e e 19
2.2.6 Included libraries . . . . . . . . .. e e e e 19
2.3Version 9.2.3 . . . L L e e e e e e e e e e e e 22
2.3.1 Compiler . . . . . . . e e e e e e 22
2.3.2 Runtime system . . . . . . . . i e e e e e e e e e e e 22
2.3.3GHCi. . . . . e e e e e e e 22
2.3.4 Core libraries . . . . . . . . i i i e e e e e e 23
2.3.5 Build system and packaging . . . . . . . . ... ... . e 23
2.3.6 Included libraries . . . . . . . . . . . .. e e 23
2.4Version 9.2.4 . . L e e e e e e e e e e e e e e e 26
2.4.1 Compiler . . . . . . . e e e e e e e e 26
2.4.2 Runtime system . . . . . . . . .. e e e e e e e 26
243 GHCi. . . o e e e e e e e 27
2.4.4 Core libraries . . . . . . . . . e e e e e e 27
2.4.5 Build system and packaging . . . . . . ... ... e 27
2.4.6 Included libraries . . . . . . . . . . . .. e e e e e 27




2.5 Version 9.2.5 . . . e e e e e e e e 30

2.5.1 Compiler . . . . . . . e e e e e e e e e 30
2.5.2 Runtime system . . . . . . . . .. e e e e e 30
2.5.3 Core libraries . . . . . . . . . . . e e e 30
2.5.4 Included libraries . . . . . . . . . . . .. e e e e 30

2.6 Version 9.2.6 . . . ... e e e e e e e e e e e e e e e e e e e 33
2.6.1 Compiler . . . . . . . e e e e e e e 33
2.6.2 Runtime system . . . . . . . . ... e e e e e 34
2.6.3 Build system and packaging . . . . . . . . . .. ... . e 34
2.6.4 Core libraries . . . . . . . . . . . e e e 34
2.6.5 Included libraries . . . . . . . . . . . .. e e e 34
2.7Version 9.2.7 . .. e e e e e e e e e e e e e 37
2.7.1 Compiler . . . . . . e e e e e e e e e e 37
2.7.2 Runtime system . . . . . . . . .. e e e e e e e e e 37
2.7.3 Build system and packaging . . . . . . ... ... e 37
2.7.4 Included libraries . . . . . . . . . . . .. e e e 38
2.8Version 9.2.8 . . .. L e e e e e e e e e e e e e 40
2.8.1 Runtime system . . . . . . . . . .. e e e e 40
2.8.2 Included libraries . . . . . . . . .. e e e 40

3 Using GHCi 43
3.1 Introduction to GHCi . . . . . . . . . e e e e e e 43
3.2 Loading source files . . . . . . . . .. e e e e e e e e 44
3.2.1 Modules vs. filenames . . . . ... . . . . ... 45
3.2.2 Making changes and recompilation . .. ... .................. 45

3.3 Loading compiled code . . . . . . . . ... e e e e e 45
3.4 Interactive evaluation atthe prompt . . . . . . . . . ... ... ... ... .. ... 48
3.4.11/O actionsattheprompt . .. ... ... ... .. ... .. .. ... ... ... 48
3.4.2 Using do notation at the prompt . . ... ... ... ... ... ... ...... 48
3.4.3 Multiline input . . . . . . ... e 50
3.4.4 Type, class and other declarations . . . . ... ... ............... 51
3.4.5 What’s really in scope at the prompt? . . . . . .. ... ... .. ... ..... 53
3.4.5.1 The effect of :load on whatisinscope ... .............. 53

3.4.5.2 Controlling what is in scope with import . .. ... ... ... .... 54

3.4.5.3 Controlling what is in scope with the :module command . ... .. 54

3.4.5.4 Qualified names . . . . . . . . . e e e e e e 55

3.4.5.5 :moduleand :load . .. ... ... .. ... 55

3.4.6 The :mainand :runcommandsS. . . . . . v v v v v vt v v bt e e e 55
3.4.7Theitvariable . ... .. .. . . . . . e 56
3.4.8 Type defaulting in GHCi . . . . . . . . .. ... it ittt 57
3.4.8.1 Interactive classes . . . . . . . . . .. . 58

3.4.8.2 Extended rules around default declarations. . . ... ... ... .. 58

3.4.9 Using a custom interactive printing function ... ... ... ... ... ... 59
3.4.10 Stack Traces in GHCi . . . . . . . . . . i i it i et 60
3.5The GHCi Debugger . . . . . . . . . . i e e e e e e e e e e e e 60
3.5.1 Breakpoints and inspecting variables . . . ... ... ... ... ........ 61
3.5.1.1 Setting breakpoints . . . . .. ... .. ... . 63

3.5.1.2 Managing breakpoints . ... ... ... ... ... .. . . ... 65

3.5.2 Single-stepping . . . . . . .. e e e e e 65
3.5.3 Nested breakpoints . . . . . . . . . . .. .. . e 66
3.5.4The resultvariable . .. ... ... ... ... ... ... ... ... ... ... 66
3.5.5 Tracing and history . . . . . . . . . . . . . . . e 67
3.5.6 Debugging exceptions . . . . . . . . . ... e e e 68
3.5.7 Example: inspecting functions . . .. ... ... ... ... .. ... ... ... 69




3.5.8 Limitations . . . . . . . . .. e e e e e e 71

3.6 Invoking GHCi . . . . . . . . . . . e e e e e e e e e 71
3.6.1 Packages . . . . . . i i i e e e e e e e e e e e e e 71
3.6.2 Extra libraries . . . . . . . . . .. e e 72

3.7 GHCicommands . . . . . . . . it i it e e e e e e e e e e e e e e e 72

3.8 The :setand :seticommands . .. ... ... ... .. ... ineeiin.. 85
3.8.1 GHCioptions . . . . . . . . . e e e e e e e 85
3.8.2 Setting GHC command-line optionsin GHCi . . . ... ... .......... 86
3.8.3 Setting options for interactive evaluationonly ... ... ........... 86

3.9 The .ghci and .haskelinefiles. . . . . . . . .. . . .. . .. 87
3.9.1The .ghcifiles . . . . . . . . . . . e e e 87
3.9.2 The .haskelinefile. . . . . . . . . . . . . i e e e 89

3.10 Compiling to object code inside GHCi . .. ... ... ... ... ... ........ 89

3.11 Running the interpreter in a separate process . . ... ... .. ... ... ..... 89

3.12 Running the interpreter on a differenthost . . . . . .. ... ... ... ....... 90

3.13 FAQ and Things To Watch Out For . .. ... ... ... ... ... . ... ...... 90

4 Using runghc 93

AT USAGE . . v o o e e e e e e e e e e e e e e e e e e e e e e 93

4.2runghc flags . . . . . . o o e e e e e e e e e e 93

4.3 GHC Flags . . . . o v i it e i e e e e e e e e e e e e e e e 94

5 Using GHC 95

5.1 Using GHC . . . . . . . e e e e e e e 95
5.1.1 Getting started: compiling programs . . . . . .. .. ... ... ... 95
5.1.2 Options overview . . . . . . . . . e e e e e e e e e e e e e e e 96

5.1.2.1 Command-line arguments . . . ... ... ... ... ... ..., 96
5.1.2.2 Command line options in source files . .. ... ... ......... 96
5.1.2.3 Setting options in GHCi. . . . . . .. ... ... .. ... 97
5.1.3 Dynamic and Mode options . . . . . . . . . . . . . .. 97
5.1.4 Meaningful file suffixes . ... ... .. ... .. .. .. .. . . o oL 97
5.1.5 Modes of operation . . . . . . . . . . . . ... ... 98
5.1.5.1 Using ghc --make . . . .. .. . . .. .. . e 101
5.1.5.2 Expression evaluationmode . . . . .. ... ... ... ........ 102
5.1.5.3 Batch compilermode . . .. ... .. ... ... .. .. .. .. .. ... 103
5.1.6 Verbosity options . . . . . . . . . .. e e e 104
5.1.7 Platform-specific Flags . . . . . . . . . . . . . . . e 109
5.1.8 Haddock . . . . . . . e e e e e 111
5.1.9 Miscellaneous flags . . . . . . . . . . . . e 111
5.1.9.1 Other environment variables . ... ... ... ............. 111

5.2 Warnings and sanity-checking . . . . . . . . . . ... .. . . 111

5.3 Optimisation (code improvement) . .. .. ... ... ... .. .. ... ... ... 135
5.3.1 -0*: convenient “packages” of optimisation flags. . .. ... ... ...... 136
5.3.2 -f*: platform-independent flags . . .. ... ... ... ... .. ... .... 137

5.4 Using Concurrent Haskell . . . . .. ... . ... . . .. . . . . . . ... 153

5.5 Using SMP parallelism . . . . . . . . .. . . . e e 154
5.5.1 Compile-time options for SMP parallelism . ... ................ 154
5.5.2 RTS options for SMP parallelism . . . ... ... ... ... ........... 155
5.5.3 Hints for using SMP parallelism . ... ... ... .. .............. 156

5.6 Flagreference . . . . . . . . . . . e e e 156
5.6.1 Verbosity options . . . . . . . . . ... e e 156
5.6.2 Alternative modes of operation . . . . . . . . ... ... ... . . L. 160
5.6.3 Which phasestorun . .. ... ... ... .. ... ..., 162
5.6.4 Redirecting output . . . . . . . . .. . ... e 163




5.6.5 Keeping intermediate files . . . . . . . . . ... .. .. ... .. . .o 165

5.6.6 Temporary files . . . . . . . . . . . e e e e e e 165
5.6.7 Finding imports . . . . . . . . . .. e e e e e e e e e 166
5.6.8 Interface file options . . . . . . . ... e 166
5.6.9 Extended interface fileoptions . . . . . .. ... ... ... . .. ... 166
5.6.10 Recompilation checking . ... .. ... ... .. .. ... .. ... ... ... 167
5.6.11 Interactive-mode options . . . . . . . . . . ... ... e 167
5.6.12 Packages . . . . . . . . e e e e e e e e e e e e 169
5.6.13 Language options . . . . . . . . . . i e e e e e e e e e e e e e e 170
5.6.14 Warnings . . . . . . . . i e e e e e e e e e e e e e 170
5.6.15 Optimisation levels . . . . . . . .. .. . . . .. .. . e 181
5.6.16 Individual optimisations . . .. .. ... ... ... .. .. .. .. . ..., 182
5.6.17 Profiling options . . . . . . . . . . . . e e e e e 189
5.6.18 Program coverage options . . . . . . . . . . . .. e 190
5.6.19 C pre-processor options . . . . . . . . . . . . . i i it 191
5.6.20 Code generation options . . . . . . . . .. . . ... ... .. e 191
5.6.21 Linking options . . . . . . . . . . . e e e e e 192
5.6.22 Plugin options . . . . . . . . . . .. e e e e e 196
5.6.23 Replacing phases . . . . . . . . . . . e e e e 196
5.6.24 Forcing options to particularphases . . . . ... ... ... .. ... .. .. 198
5.6.25 Platform-specificoptions . . . . . . . . . ... ... .. 199
5.6.26 Compiler debuggingoptions . . . . . . . . .. . ... .. ... . . .. 200
5.6.27 Miscellaneous compileroptions . . . . . . .. ... ... ... .. .. ..., 210
5.7 Running a compiled program . . . . . . . . . . . . . e e e e e 211
5.7.1 Setting RTS options . . . . . . . . . . . . i e et e et e e e 211
5.7.1.1 Setting RTS options on the command line . .............. 212
5.7.1.2 Setting RTS options at compile time . . . . ... ... ......... 213
5.7.1.3 Setting RTS options with the GHCRTS environment variable . . . . . 213
5.7.1.4 “"Hooks” to change RTS behaviour . ... ................ 213

5.7.2 Miscellaneous RTS options . . . .. .. .. ... ... ..., 215
5.7.3 RTS options to control the garbage collector . .. ... ... ......... 216
5.7.4 RTS options to produce runtime statistics . . ... ... ... ... ...... 225
5.7.5 RTS options for concurrency and parallelism ... ............... 228
5.7.6 RTS options for profiling . . . . . . . . . . . . . . i 228
5.7.7Tracing . . . . . . o e e e e e e e e e e e e e e 228
5.7.8 RTS options for hackers, debuggers, and over-interested souls . ... ... 230
5.7.9 Getting information aboutthe RTS . . .. ... ... ... ... ........ 232
5.8 Filenames and separate compilation . . . . .. .. .. ... ... ... .. .. ..., 233
5.8.1 Haskell source files . . . . . . . . . . . e e 233
5.8.20utputfiles . . . . . . L e e e e e e e e 234
5.8.3Thesearchpath . .. ... .. .. .. . .. .. . . . . . ... 235
5.8.4 Redirecting the compilation output(s) . . . . .. ... ... ... ... ..... 235
5.8.5 Keeping Intermediate Files . . . . ... ... ... ... ... . ... ... ... 238
5.8.6 Redirecting temporary files . . . . . . . . .. ... e 238
5.8.7 Other options related to interfacefiles . . ... ... ... ... ........ 239
5.8.8 Options related to extended interfacefiles . . . . .. .. ... ... ...... 239
5.8.9 The recompilation checker . ... ... ... ... ... ... ... ....... 240
5.8.10 How to compile mutually recursive modules . . . .. ... ... ....... 240
5.8.11 Module signatures . . . . . . . . . . . . e e e e e e 243
5.8.12 Using make . . . . . . . e e e e e e e e e e 248
5.8.13 Dependency generation . . .. .. .. . . .. ... 249
5.8.14 Orphan modules and instance declarations . . . .. ... ........... 251
5.9Packages. . . . .. e e e 252

5.9.1 Using Packages . . . . . . . . . i i i i i e e e e e e e 252




5.9.2Themainpackage . . . . . . . . . . . i i i i e e e 256

5.9.3 Consequences of packages for the Haskell language . . . . .. .. ... ... 256
5.9.4 Thinning and renaming modules . . . . . ... ... ... ... ... ...... 256
5.9.5 Package Databases . . . . . . . . ... e 257
5.9.5.1 The GHC PACKAGE PATH environment variable . ... ... ...... 258

5.9.5.2 Package environments . . ... .. ... ... .. oo 259

5.9.6 Installed package IDs, dependencies, and broken packages . ... ... .. 260
5.9.7 Package management (the ghc-pkg command) ... ... ... ........ 262
5.9.8 Building a package from Haskell source ... ... ............... 265
5.9.9 InstalledPackageInfo: a package specification . . . . ... ... ...... 266

5.10 GHC Backends . . . . . . . . . . . @ i e e e e 270
5.10.1 Native Code Generator (-fasm) . . . . . . . . . . o o i v v v i it i i i 270
5.10.2 LLVM Code Generator (-fllvm). . . . . ... .. .. .. . .. 271
5.10.3 C Code Generator (-fvia-C) . ... .. .. . . .. 271
5.10.4 Unregisterised compilation . .. ... .. ... ... ... ... ... ... 271

5.11 Options related to a particularphase . . . . . .. .. ... ... ... ......... 272
5.11.1 Replacing the program for one or more phases . . .. ... ... ...... 272
5.11.2 Forcing options to a particularphase . . ... ... ... ... ........ 273
5.11.3 Options affecting the C pre-processor . . . . .. ... ... ... ....... 274
5.11.3.1 Standard CPP macros . . . . . . . . . . . i i i i it 275

5.11.3.2 CPP and string gaps . . . . .« « « v v v v it e e e 277

5.11.4 Options affecting a Haskell pre-processor . .. ... ... .......... 277
5.11.5 Options affecting code generation .. ... ... ... ... ... ....... 278
5.11.6 Options affecting linking . . . . .. .. .. ... ... . .. .. .. .. ..... 279

5.12 Using shared libraries . . . . . . . . . . . . . e e e e e 285
5.12.1 Building programs that use shared libraries . . . ... ... ... ... ... 286
5.12.2 Shared libraries for Haskell packages . . . . . . ... ... ... ....... 286
5.12.3 Shared libraries that exporta CAPI . . . . . . . .. .. ... ... ...... 287
5.12.4 Finding shared libraries at runtime . . . ... ... ... ... ... ..... 288
51241 UNiX . . . o v e e e e e e e e e e e e 288

5.12.4.2 Mac OS X . . . i e e e e e e 289

5.13 Debugging the compiler. . . . . . . . . . . . ... . . 289
5.13.1 Dumping out compiler intermediate structures . .. ... .. ... ... .. 290
5.13.1.1 Front-end . .. ... . . . . . e e e 291

5.13.1.2 Type-checking and renaming . . . . . . . .. ... ... ... ... 291

5.13.1.3 Core representation and simplification. . . . . ... ... ... ... 292

5.13.1.4 STG representation . ... .. ... .. ... ..., 294

5.13.1.5 C-\-representation . . . . . ... ... ... ... . . . 294

5.13.1.6 LLVM code generator . . . . . . . . . v v v v i vt 295
5.13.1.7Ccodegenerator . . . . . . . . . i . i e e e e e e e 295

5.13.1.8 Native code generator. . . . . . . . . . . . i i i ... 295

5.13.1.9 Miscellaneous backend dumps . .. ... ... ... ......... 296

5.13.2 Formattingdumps . . . . . . . . . . ... e e 297
5.13.3 Suppressing unwanted information . .. ... ... ... ... ... . ... 297
5.13.4 Checking forconsistency . . . . . . . . . . .. . . ... e 298
5.13.5 Checking for determinism . . . .. ... .. ... ... ... .. .. ..., 299
5.13.6 Other . . . . . . . o e e e e e 299

6 Language extensions 301
6.1 Introduction . . . . . . . . .. e e e e e e e e e e 301
6.1.1 Controlling extensions . . . . . . . . . . o i it i e 301
6.1.2 Overview of all language extensions . . . . ... ... ... ... ........ 303
6.1.3 Summary of stolen syntax . . . .. . .. ... ... 306

6.2 Syntax . . . . .. e e e e e e e e e e 307




6.2.1 Unicode syntax . . . . . . . . . @ i i it e e e e 307

6.2.2Themagichash . .. .. .. ... . . . . . . . . . . . e 307
6.2.3 The recursive do-notation . .. ... ... ... ... ... ... .. .. ..., 308
6.2.3.1 Recursive binding groups . . . . ... ... ... . o 0oL, 309
6.2.3.2Themdonotation . . . ... ... ... ... ... .. .. ... ... ... 310

6.2.4 Applicative do-notation . . . . . . . .. ... ... 311
6.2.4.1 Strictpatterns . . . . . . ... 313
6.2.4.2 Things towatchoutfor . . . ... ... ... ... .. .......... 313

6.2.5 Qualified do-notation . . . . . . . . . . ... e 314
6.2.5.1 Examples . . . . . . . . e e e e e e e e 316
6.2.6 Parallel List Comprehensions . . . . ... ... ... ... ... .. .. ..... 317
6.2.7 Generalised (SQL-like) List Comprehensions . ... ... ... .. ...... 318
6.2.8 Monad comprehensions . . .. ... ... ... ... .. 320
6.2.9 Overloaded lists . . . . . . . . . . . . e 322
6.2.9.1 The IsListclass . . . . . . . . . . . i i i it 323
6.2.9.2 Rebindable syntax . . . . . .. .. ... ... ... .. e 324
6.2.9.3 Defaulting . . . . . . . .. e e 325
6.2.9.4 Speculation about the future . ... ... .. ... ... ........ 325
6.2.10 Rebindable syntax and the implicit Prelude import . . . ... ... ... .. 325
6.2.10.1 Things unaffected by RebindableSyntax ... ... ......... 326
6.2.11 Postfix operators . . . . . . . . . . ... e e e 327
6.2.12 Tuple sections . . . . . . . . . . i i i e e e e e e 327
6.2.13 Lambda-case . . . . . . . . . e e e e e 328
6.2.14 Empty case alternatives . . . ... . ... .. ... ... e 329
6.2.15 Multi-way if-expressions . . . . . . . . . . . . e 329
6.2.16 Local Fixity Declarations . . . . . . . ... ... . .. .. ... 330
6.2.17 More liberal syntax for function arguments . ... ... ... ........ 331
6.2.17.1 Changes tothe grammar . . . ... ... ... ... ... ...... 331
6.2.18 Typed Holes . . . . . . . . . . . e e e 332
6.2.18.1 Valid Hole Fits . . . . . . . . . . . . i i e 337
6.2.19 Arrow notation . . . . . . . . .. e e e e e 340
6.2.19.1 do-notation forcommands . . ... ... ... ... ... ....... 342
6.2.19.2 Conditional commands . ... ... ... ... ... ... 343
6.2.19.3 Defining your own control structures. . . . ... ... ... ... .. 344
6.2.19.4 Primitive constructs . . . . . .. ... . ... e 345
6.2.19.5 Differences with thepaper . . . .. ... .. ... .. ... .. .... 346
6.2.19.6 Portability . . . .. ... . . 347
6.2.20 Lexical negation . . . . . . . . . . . . .. . 347
6.3 Import and export . . . . . .. e e e e e e e e e 348
6.3.1 Hiding things the imported module doesn’texport . . . .. ... ... .... 348
6.3.2 Package-qualified imports . . . . . . . . . ... .. ... .. e 348
6.3.3 Safeimports . . . . . . ... e e e 349
6.3.4 Explicit namespaces in import/export . . . . . ... ... ... .. .. ... 349
6.3.5 Writing qualified in postpositive position . . . . .. ... ... ... .. .... 350
0.4 TYPES . o v vt i e e e e e e e e e e e e e e e e e e e e e e e e e 350
6.4.1 Data types with no constructors . . ... ... ... ... .. .. ........ 350
6.4.2 Data type contexts . . .. .. . ... .. e 351
6.4.3 Infix type constructors, classes, and type variables. . . . .. ... ... ... 351
6.4.4Type operators . . . . . . . o . i e e e e e e e e e e e 352
6.4.5 Liberalised type synonyms . . . . . . . o v v i it i i e e e e e e 353
6.4.6 Existentially quantified data constructors . .. ... ... ... ........ 354
6.4.6.1 Why existential? . . ... ... ... .. .. . .. .. .. . . .. 355
6.4.6.2 Existentials and type classes . . ... ... ... ... .. ... 355

6.4.6.3 Record Constructors . . . . . . . . . @ @ i v i i i i i e 356




6.4.6.4 Restrictions . . . . . . . . . e e 357

6.4.7 Declaring data types with explicit constructor signatures. . . . .. ... .. 358
6.4.7.1 Formal syntax for GADTs . . . . . . . . . . . i i i it e e 360
6.4.7.2 GADT syntaxoddsandends . . ... ... ................ 362

6.4.8 Generalised Algebraic Data Types (GADTs) . . ... .. ... ... ...... 364

6.4.9 Type families . . . . . . . . . . . e e e e 368
6.4.9.1 Data families . . . . . . . . . . . e e e e 369
6.4.9.2 Synonym families . ... ... .. ... ... . ... . . . 371
6.4.9.3 Wildcards on the LHS of data and type family instances . . . .. .. 377
6.4.9.4 Associated data and type families. . . . . . ... ... ... 0., 378
6.4.9.5 Importand export . . . . . . . ... ... 382
6.4.9.6 Type families and instance declarations . . . . ... ... ....... 384
6.4.9.7 Injective type families . . . . . . . ... L Lo L o s 385

6.4.10 Datatype promotion . . . . . . . . . . . . e e e e e e 387
6.4.10.1 Motivation . . . . . . . . . . e e e e e e 387
6.4.10.2 OVEIVIEW . . . . v i v i e e e e e e e e e e e e e e e e e 388
6.4.10.3 Distinguishing between types and constructors .. ... .. .. .. 389
6.4.10.4 Type-level literals . . . . . . . . .. . . . . e 389
6.4.10.5 Promoted list and tuple types . . . . ... ... ... ... ...... 389
6.4.10.6 Promoting existential data constructors . . .. ... ... ... ... 390
6.4.10.7 Constraintsin kinds . . . ... ... .. ... ... . ... 390

6.4.11 Kind polymorphism . . . .. .. . .. .. ... e 391
6.4.11.1 Overview of kind polymorphism . . . . ... ... ... ........ 391
6.4.11.2 Overview of Type-in-Type . . . . . . . . . . . . . . .. 392
6.4.11.3 Principles of kind inference . ... ... .... ... ..., . .... 392
6.4.11.4 Kind inference in type signatures . . . . . ... ... .. ... .... 393
6.4.11.5 Explicit kind quantification . . . . . ... ... ... ... .. ... .. 393
6.4.11.6 Inferring the order of variables in a type/class declaration . ... 393
6.4.11.7 Complete user-supplied kind signatures and polymorphic recursion394
6.4.11.8 Standalone kind signatures and polymorphic recursion . ... .. 397
6.4.11.9 Standalone kind signatures and declaration headers ... ... .. 398
6.4.11.10 Kind inference in data type declarations . . . ... ... ... ... 400
6.4.11.11 Kind inference for data/newtype instance declarations . . . . .. 401
6.4.11.12 Kind inference in class instance declarations . ... ... ... .. 401
6.4.11.13 Kind inference in type synonyms and type family instances . .. 402
6.4.11.14 Kind inference in closed type families ... ... ... ....... 404
6.4.11.15 Higher-rank kinds . . . ... ... .. ... ... . ... . . .... 404
6.4.11.16 The kind Type . . . . . . . . o i i e 405
6.4.11.17 Inferring dependency in datatype declarations . . . ... ... .. 405
6.4.11.18 Inferring dependency in user-written foralls ... ...... .. 406
6.4.11.19 Kind defaulting without PolyKinds . . . ... ... .. ... .... 406
6.4.11.20 Pretty-printing in the presence of kind polymorphism . . . .. .. 407
6.4.11.21 Datatypereturnkinds . . . . ... ... ... .. ... ... .. ... 407

6.4.12 Levity polymorphism . . .. ... ... . ... .. e 408
6.4.12.1 No levity-polymorphic variables or arguments . ... ... ... .. 409
6.4.12.2 Levity-polymorphic bottoms . . . ... ... ... ... ... ... 409
6.4.12.3 Printing levity-polymorphic types . . . . . ... . ... ... ... 410

6.4.13 Type-Level Literals . . . . . . . . . . . . . . it 410
6.4.13.1 Runtime Values for Type-Level Literals ... ............. 411
6.4.13.2 Computing With Type-Level Naturals . ... ... .......... 412

6.4.14 Visible type application . . . . . . . . ... ... . 412
6.4.14.1 Inferred vs. specified type variables . . ... ... .......... 413
6.4.14.2 Ordering of specified variables . ... ... ... ........... 414
6.4.14.3 Manually defining inferred variables . . . . ... ... ... ... .. 415

vii



6.4.14.4 Type Applications in Patterns . . . ... ... ... ... ....... 416

6.4.15 Arbitrary-rank polymorphism . .. ... ... ... ... ... .. ... 418
6.4.15.1 Examples. . . . . . . . . e e e e 419
6.4.15.2 Subsumption . .. .. ... .. e e 420
6.4.15.3 Typeinference . . .. ... . . . .. . e 421
6.4.15.4 Implicit quantification . . . . . . .. ... ... ... ... .. ... 422

6.4.16 Impredicative polymorphism . ... ... ... ... ... ... . ... ..., 423

6.4.17 Linear types . . . . . o i i e e e e e e e e e e e e e e e e 424
6.4.17.1 Datatypes . . . . . . o i e e e e e e e e 424
6.4.17.2 Printing multiplicity-polymorphic types . . ... .. ... ... ... 426
6.4.17.3 Limitations . . . . . . . . . i i i i e e e e e e 426
6.4.17.4 Design and furtherreading. . . . . .. ... ... ... ... ..., 427

6.4.18 Custom compile-time errors . . . . . . . . . .. ... ... .. ... 427

6.4.19 Deferring type errors toruntime . . ... ... ... ... ... ... . ..., 428
6.4.19.1 Enabling deferring of type errors . . . . . ... ... ... .. .... 428
6.4.19.2 Deferred type errors in GHCi . . . .. ... ... ... ........ 429
6.4.19.3 Limitations of deferred type errors . . . ... ... ... ....... 429

6.4.20 Roles . . . . . . L e e e e e e e e 430
6.4.20.1 Nominal, Representational, and Phantom . ... ... ... ... .. 431
6.4.20.2 Roleinference . .. ... ... ... .. e 431
6.4.20.3 Role annotations . . ... ... ... . ... ... e 432

6.5 Records . . . . . . . . . e e e e e e 433

6.5.1 Traditional record syntax . . ... ... .. . . .. . .. 433

6.5.2 Field selectors and TypeApplications ... ... ... ... ... ....... 434
6.5.2.1 Field selectors for Haskell98-style data constructors . . . .. .. .. 434
6.5.2.2 Field selectors for GADT constructors . . . .. ... ... ....... 435
6.5.2.3 Field selectors for pattern synonyms . . . . .. ... ... ....... 435

6.5.3 Record field disambiguation . ... .. ... ... ... .. ... ... . ..., 436

6.5.4 Duplicaterecord fields . . . . . . . . . . . . .. ... 437
6.5.4.1 Selector functions . . . . . .. ... ... e 438
6.5.4.2 Recordupdates. . . . . . . . . . ... e 439
6.5.4.3 Import and export of record fields . .. ... ... ... ........ 440

6.5.5 Field selectors . . . . . . . . . . . . . e e 440
6.5.5.1 Import and export of selector functions . . . . ... ... ....... 441

6.5.6 Record puns . . . . . . . . . i i i i e e e e e e e e e e 441

6.5.7 Record wildcards . . . . . . . . . . . . e e 442

6.5.8 Record field selector polymorphism . . . ... ... ... ............ 444
6.5.8.1 Solving HasField constraints . . . ... ... ... ........... 445
6.5.8.2 Virtualrecord fields . . . . . . . . .. .. ... ... e 446

6.5.9 Overloaded record dot . . . ... .. .. . . . .. 447

6.5.10 Overloaded recordupdate . . . ... ... ... ... ... ... .. ... ... 448

6.6 Deriving mechanism . . . . . . . . . . .. e e e 449

6.6.1 Deriving instances for empty datatypes . ... ... ... ... ... ..... 449

6.6.2 Inferred context for deriving clauses . . ... ... ... ... . ........ 450

6.6.3 Stand-alone deriving declarations . . . ... ... ... ... .......... 451

6.6.4 Deriving instances of extra classes (Data, etc.) . ... ... ... ....... 452
6.6.4.1 Deriving Functorinstances . . ... ... ... ... ... ....... 453
6.6.4.2 Deriving Foldable instances . ... .. ... ... ... ........ 456
6.6.4.3 Deriving Traversableinstances .. ... ... .. ... ........ 458
6.6.4.4 Deriving Datainstances . .. .. .. ... ... .. ... .. 460
6.6.4.5 Deriving Typeable instances . ... ... ... ... ... ....... 460
6.6.4.6 Deriving Liftinstances ... ... ... ... ... ... ... ..., 460

6.6.5 Generalised derived instances fornewtypes . . . . . ... .. ... ...... 462
6.6.5.1 Generalising the derivingclause . ... ... ... ... ........ 462

viii



6.6.5.2 A more precise specification . . . . ... ... ... . L L. 464

6.6.5.3 Associated type families . ... ... ... .. ... .. .. .. .. ... 465

6.6.6 Deriving any otherclass . . . . ... ... ... .. . . . .. . . .. .. ... 467
6.6.7 Deriving strategies . . . . . . . . . i e e e e e 470
6.6.7.1 Default deriving strategy . . . . . . . . ... ... o oL, 471

6.6.8 Deriving via . . . . . v i v i e e e e e e e e e e e e e e e e e 471
0.7 Patterns . . . . . . . . e e e e e e e e e e e e 473
6.7.1 Pattern guards . . . . . . . . .. e e e e e e e e 473
6.7.2 View patterns . . . . . . . . . e e e e e 474
6.7.3n+kpatterns . . . . . .. e e e e e 476
6.7.4 Pattern Synonyms . . . . . . . .t it i e e e e e e e e e e e e e e e e 476
6.7.4.1 Record Pattern Synonyms . . .. ... ... ... ... ... ... 479
6.7.4.2 Syntax and scoping of pattern synonyms . ... ............ 479
6.7.4.3 Import and export of pattern synonyms . . . . ... ... ... .... 480
6.7.4.4 Typing of pattern synonyms . . . ... ... ... ... ... ...... 481
6.7.4.5 Matching of pattern synonyms . . . ... ... ... ... ....... 483
6.7.4.6 Pragmas for pattern synonyms . . . ... .. .. ... ... ... .. 484

6.8 Class and instances declarations . . .. ... ... ... ... ... ... .. ... 485
6.8.1 Multi-parameter typeclasses . . . . . . . .. ... .. .. ... . e 485
6.8.2 Undecidable (or recursive) superclasses . . ... ... ... ... ....... 485
6.8.3 Constrained class method types . . . ... ... ... ... ... ... . ... 486
6.8.4 Default method signatures . . ... ... ... ... ... .. .. ... ..., 487
6.8.5 Detailed requirements for default type signatures . ... ... ........ 488
6.8.6 Nullary type classes . . . . . . . . . i i i i i e e e e 490
6.8.7 Functional dependencies . .. ... .. .. ... .. .. ... e 491
6.8.7.1 Rules for functional dependencies . ... ... ... .......... 491
6.8.7.2 Background on functional dependencies . .. ... .......... 492

6.8.8 Instance declarations and resolution . ... ................... 495
6.8.8.1 Relaxed rules for the instance head . .. ... ... .......... 496
6.8.8.2 Formal syntax for instance declarationtypes. . . ... ... ... .. 497
6.8.8.3 Instance terminationrules . . . . ... ... ... L 0oL, 498
6.8.8.4 Overlapping instances . . .. ... ... ... ... ... ..., 500
6.8.8.5 Instance signatures: type signatures in instance declarations ... 504

6.9 Literals . . . . . . . . e e e e e e e e e 505
6.9.1 Negative literals . . . . . . . . . . . . . e 505
6.9.2 Binary integer literals . . . . . .. . . . .. ... e 505
6.9.3 Hexadecimal floating point literals. . . . . ... ... ... ... .. ... ... 506
6.9.4 Fractional looking integerliterals . . ... ... ... ... ... ........ 506
6.9.5 Numeric UundersCoresS . . . . . v v v v v v i i e e e e e e e e e e e e e 507
6.9.6 Overloaded string literals . . . .. .. ... ... ... ... ... ... ..... 508
6.9.7 Overloaded labels . . . . . .. ... . . . e 509
6.10 Constraints . . . . . . . . . L e e e e e e 511
6.10.1 Loosening restrictions on classcontexts . .. ... ... ........... 511
6.10.2 Equality constraints and Coercible constraint . . . . ... ... ... .... 511
6.10.2.1 Equality constraints . . . ... ... ... ... ... ... ... ..., 511
6.10.2.2 Heterogeneous equality . . . . ... ... ... ... ... ....... 512
6.10.2.3 Unlifted heterogeneous equality . ... ................ 512
6.10.2.4 The Coercibleconstraint . . ... .. ... ... ... ........ 512
6.10.3 The Constraintkind . .. .. ... ... .. ... ... . . .. . ... 512
6.10.4 Quantified constraints . . . . . . . . ... e 513
6.10.4.1 Motivation . . . . . . . . . e e e e e e e e e 514
6.10.4.2 Syntax changes . . . . . . . . . . . e e e 515
6.10.4.3 Typingchanges . . . . . . . . . . . . i e 516
6.10.4.4 Superclasses . . . . . ... e e e e e e 516

ix



6.10.4.50verlap . . . . . . .. e e e e e e 516

6.10.4.6 Instance lookup . . . . . . . . . ... 517

6.10.4.7 Termination . . . . . . . . . . . e e e 518

6.10.4.8 Coherence . . . . . . . . o i i i i e e e e e e e 518

6.11 Type signatures . . . . . . . . . . e e e e e e e e e 518
6.11.1 Explicit universal quantification (forall) . . . . ... ... ... ... ... .. 518
6.11.1.1 The forall-or-nothingrule. . . .. ... ... ... ... ....... 519

6.11.2 Ambiguous types and the ambiguitycheck . . .. ... ... ... ...... 520
6.11.3 Explicitly-kinded quantification . . . . . ... ... ... ... . ... ... .. 523
6.11.4 Lexically scoped type variables . . . . . ... ... ... ... . .. .. . ... 524
6.11.4.1 OVeIVIEW . . . . . i i it e e e e e e e e e e e e e e e 525

6.11.4.2 Declaration type signatures . ... ... ... ... ... ..., 525

6.11.4.3 Expression type signatures . . . . . .. ... .. ... ... ..., 526

6.11.4.4 Pattern type signatures . . . ... .. ... ... ... .. .. .. ... 526

6.11.4.5 Class and instance declarations . . . . ... ... ........... 528

6.11.5 Implicit parameters . . . . . . . . . . . e e e e e e 529
6.11.5.1 Implicit-parameter type constraints .. ... ... ... ....... 529

6.11.5.2 Implicit-parameter bindings . . .. ... ... ... ... ....... 530

6.11.5.3 Implicit parameters and polymorphic recursion ... .. ... ... 531

6.11.5.4 Implicit parameters and monomorphism . .............. 531

6.11.6 Partial Type Signatures . . . . . . . . . . . ... e 532
6.11.6.1 Syntax . . . . . . o e e e e e e e e e e e e e 532

6.11.6.2 Where can they occur? . ... ... ... ... .. ... ... 536

6.12 Bindings and generalisation . ... .. .. ... . ... ... . e 537
6.12.1 Switching off the Monomorphism Restriction ... .............. 537
6.12.2 Let-generalisation . . . . . . . . . . . L. e 538

6.13 Template Haskell . . . . . . . . . . . e 539
6.13.1 Syntax . . . . . . e e e e e e e e e e 539
6.13.2 Using Template Haskell . .. ... ... ... .. .. .. .. . ... .. .... 545
6.13.3 Viewing Template Haskell generatedcode . . ... ... .. ... ...... 546
6.13.4 A Template Haskell Worked Example . . ... ... ... ........... 546
6.13.5 Template Haskell quotes and Rebindable Syntax . ... ... ........ 547
6.13.6 Using Template Haskell with Profiling . . . . ... ... ... ... ...... 548
6.13.7 Template Haskell Quasi-quotation . ... ... ... ... ........... 548

6.14 Bang patterns and Strict Haskell . . . . ... ... ... ... ... . ... .. ..., 551
6.14.1 Bang patterns . . . . . . . . . . e e e e e 551
6.14.2 Strict-by-default datatypes . . ... .. ... .. ... ... . 553
6.14.3 Strict-by-default pattern bindings . . ... .. ... ... ... ... ..... 553
6.14.4 Modularity . . . . . . . . e e e e e e 555
6.14.5 Dynamic semantics of bangpatterns. . . . .. ... ... ... ... ..... 556

6.15 Parallel and Concurrent . . . . . . . . . . . . e e e e 558
6.15.1 Concurrent and Parallel Haskell . ... ... ... ... ............ 559
6.15.1.1 Concurrent Haskell . .. ... ... ... ... ... ... ........ 559

6.15.1.2 Parallel Haskell . . . . . .. ... ... . .. . . . . . . 559

6.15.1.3 Annotating pure code for parallelism . . . . .. .. ... ... .... 559

6.15.2 Software Transactional Memory . . . ... ... .. .. ... .. ....... 560
6.15.3 Static pointers . . . . . . . . . e e e e 561
6.15.3.1 Using staticpointers.. . . . . . . . . . . . .. . .. .. o 561

6.15.3.2 Static semantics of static pointers . . ... ... ... ........ 562

6.16 Unboxed types and primitive operations . . . . . ... ... ... . ... ....... 563
6.16.1 Unboxed types . . . . . . . . i i i i i e e e e e e e e 563
6.16.2 Unboxed type kinds . . . . . . . . . . . .. . ... e 564
6.16.3 Unboxed tuples . . . . . . . . . . . . . . e e 565

6.16.4 Unboxed SUMS . . . . . . v v i i i e e e e e e e e e e e e e 566




6.16.5 Unlifted Newtypes . . . . . . . . . . i i e s e e e e e 567

6.16.6 Unlifted Datatypes. . . . . . . . . . o . i i e e e 568
6.17 Foreign function interface (FFI) . . . . . . . . . . ... . . . . . ... 570
6.17.1 GHC differences to the FFI Chapter . . . . ... ... ... ... ....... 570
6.17.1.1 Guaranteed callsafety . ... ... ... ... .. ... ... . ..., 570
6.17.1.2 Interactions between safe calls and bound threads . . . . ... .. 571
6.17.1.3 Varargs not supported by ccall calling convention . ... ... .. 571
6.17.2 GHC extensions tothe FFI Chapter . ... ... ... ... ... ....... 571
6.17.2.1 Unlifted FFITypes . . . . . . . . o i i i e e e e e e e 571
6.17.2.2 Newtype wrapping of the IOmonad . .. ............... 573
6.17.2.3 Explicit “forall”s in foreign types . . .. ... ... ... ... .... 574
6.17.2.4 Primitive imports . . . . . . . . . . ... 574
6.17.2.5 Interruptible foreigncalls ... ... ... ... ... ... ..., 574
6.17.2.6 The CAPI calling convention . . .. ... ... ............. 575
6.17.2.7 hs_thread done() . . . ... . .. .. . 576
6.17.2.8 Freeing many stable pointers efficiently . . . . ... ... ... ... 576
6.17.3 Using the FFIwith GHC . . . .. .. . . . . ... . . . ... .. 577
6.17.3.1 Using foreign export and foreign import ccall "wrapper"
with GHC . . . . e e e 577
6.17.3.2 Using headerfiles . ... ... ... .. .. ... . .. ... ..., 581
6.17.3.3 Memory Allocation . . . . . .. ... . ... .. 581
6.17.3.4 Multi-threadingandthe FFI . .. ... ... ... ... ........ 582
6.17.3.5 Floating pointand the FFI . . . ... ... ... ... ... ...... 585
6.17.3.6 Pinned Byte Arrays. . . . . . . . . . . . e 586
6.18 Safe Haskell . . . . . . . . . 0 e e e e e e e 586
6.18.1 Uses of Safe Haskell . . ... ... .. ... .. .. ... ... 587
6.18.1.1 Strict type-safety (good style) . .. ... ... ... ... ....... 587
6.18.1.2 Building secure systems (restricted IO Monads) . . . ... ... .. 587
6.18.2 Safe Language . . . . . . . . . e e e e e e 589
6.18.2.1 Safe Overlapping Instances . . ... ... ... ... ......... 590
6.18.3 Safe Imports . . . . . . . . . . e e e e 592
6.18.4 Trust and Safe Haskell Modes . . . . . . ... .. ... ... ... ... .... 592
6.18.4.1 Trust check (-fpackage-trust disabled) ... ............ 592
6.18.4.2 Trust check (-fpackage-trustenabled). ... .. ... ... .. .. 593
6.18. 4.3 Example . . . . . . . e 594
6.18.4.4 Trustworthy Requirements . . . . .. ... ... ... ......... 594
6.18.4.5Package Trust . . . . . . . . . . .. e 594
6.18.5 Safe Haskell Inference . . ... ... ... ... . ... . ... ..., 595
6.18.6 Safe Haskell Flag Summary . . ... ... .. ... ... ... ..., 595
6.18.7 Safe Compilation. . . . . . . . ... .. .. 597
6.19 Miscellaneous . . . . . . . . . .. e e e e e e e e e e e 598
6.19.1 Rewriterules . . . . . . . . L e e 598
6.19.1.1 Syntax . . . . o . e e e e e e e e e e e e 598
6.19.1.2 SemantiCs . . . . . . . . e e e e e e e 600
6.19.1.3 How rules interact with INLINE/NOINLINE pragmas . .. .. .. .. 602
6.19.1.4 How rules interact with CONLIKE pragmas . ... .......... 602
6.19.1.5 How rules interact with class methods . . . . . ... ... ... ... 603
6.19.1.6 Listfusion . . . . . . . . . . . . . . e 604
6.19.1.7 Specialisation . . . . . . . .. ... ... 605
6.19.1.8 Controlling what’s going on in rewriterules . . ... ... ... .. 605
6.19.2 Special built-infunctions . . . . . .. .. ... .. . . L Lo 606
6.19.3 Generic programming . . . . . . v v v v v e e e e e e e e e e e e e e e e 606
6.19.3.1 Deriving representations . . . . .. .. .. ... ... 606
6.19.3.2 Writing generic functions . . . . .. ... .. ... ... ... . ..., 608

Xi



6.19.3.3 Unlifted representationtypes ... ... ... ... ... ....... 609

6.19.3.4 Genericdefaults . ... ... ... .. . ... . . 610
6.19.3.5 More information. . . . . . . .. ... L L e 610
6.19.4 ASSertions . . . . . . . i e e e e e e e e e e e e 610
6.19.5 HasCallStack . . . . . . . . . . . . e e e 611
6.19.5.1 Compared with other sources of stacktraces. . ... ... ... .. 613

0.20 Pragmas . . . . . . . i e e e e e e e e e e e e e e 613
6.20.1 LANGUAGE pragma . . . . . . v v v i i e e e e e e e e e e e e e e e 614
6.20.2 OPTIONS GHC pragma . . . . . . v v v v it e e e e e e e e e e e e e e e e a 614
6.20.3 INCLUDE pragma . . . . . v v v v v o e e e e e e e e e e e e e e e e e 614
6.20.4 WARNING and DEPRECATED pragmas . . . . . . v v v v v v v v e e e e e e e n 615
6.20.5 MINIMAL Pragma . . . « ¢ v v v v e e e e e e e e e e e e e e e e e e e e 616
6.20.6 INLINE and NOINLINE pragmas . . . . . . . . . v v v v v v v it et e e 616
6.20.6.1 INLINE pragma . . . . . . v v v v i e e e e e e e e e e e e e e e e e 616
6.20.6.2 INLINABLE pragma . . . . . . . v v v v vt e e e e e e e e e e e e e e 618
6.20.6.3 NOINLINE pragma . . . . . .« . i v v v i i it et et et et et e e e 619
6.20.6.4 CONLIKE modifier . . . . . . . . . . . . i it i e e e e 619
6.20.6.5 Phase control . . . .. ... . ... ... e 619
6.20.7 LINE pragma . . . . . .t o v i i e e e e e e e e e e e e e e e e e e e 620
6.20.8 COLUMN Pragma . . . . ¢ v v v v v e e e e e e e e e e e e e e e e e e 620
6.20.9 RULES pragma . . . . . . . . o o i e e e e e e e e e e e 621
6.20.10 SPECIALIZE Pragma . . . . ¢ v v v v v e e e e e e e e e e e e e e e e 621
6.20.10.1 SPECIALIZE INLINE . ... . .. . . . it i .. 622
6.20.10.2 SPECIALIZE for imported functions . ... ... ... ........ 623
6.20.11 SPECIALIZE instance pragma . . . . . v ¢ v v v v v v v vt e e e e e e e e 624
6.20.12 UNPACK Pragma . . . . . . . o v v it e e e e e e e e e e e e e e e e 624
6.20.13 NOUNPACK Pragma . . . . . v v v v e e e e e e e e e e e e e e e e e e e e 625
6.20.14 SOURCE pragma . . . . . . . v v v it e e e e e e e e e e e e e e 625
6.20.15 COMPLETE Pragmas . . . . . ¢ v v v v v e e e e e e e e e e e e e e e e e 625
6.20.16 OVERLAPPING, OVERLAPPABLE, OVERLAPS, and INCOHERENT pragmas . .. 627
7 Extending and using GHC as a Library 629
7.1 Source annotations . . . . . . . .. e e e e e e e e e e e e e e e 629
7.1.1 Annotating values . . . . . . . . ... e e e e 629
7.1.2 Annotating types . . . . . . . .o e e e e e e e 630
7.1.3 Annotating modules . . . . . . . .. ... e 630
7.2 Using GHC asa Library. . . . . . . . . . . e e e e 630
7.3 Compiler Plugins . . . . . . . . . . . e e e e e e e e e e 631
7.3.1 Using compiler plugins . . . . . . . . . . . . . . e 631
7.3.2 Writing compiler plugins . . . . . . . . . ... .. L e 633
7.3.3 Core pluginsinmoredetail . ... ... ... ... ... ... . ... ... ... 634
7.3.3.1 Manipulating bindings . . . ... ... ... .. .o o oL 634
7.3.3.2 Using Annotations . . . . . . . . . . ... e 635

7.3.4 Typechecker plugins . . . . . . . . . . . . i i ittt it 636
7.3.4.1 Constraint solving with plugins . . . .. ... ... ... ........ 637
7.3.5Source plugins . . . . . .. e e e e e e e 637
7.3.5.1 Parsed representation. . . . . . . ... ... . 0oL, 638
7.3.5.2 Type checked representation . ... ................... 638
7.3.5.3 Evaluatedcode . . . . .. ... .. e 638
7.3.5.4 Interfacefiles . . . . . . . .. 639
7.3.5.5 Source plugin example . . ... ... ... .. ... ... . . ... 639

7.3.6 Hole fit plugins . . . . . . . . . . . . e 641
7.3.6.1 Stateful hole fitplugins . . . . . ... ... ... ... .. ... ... .. 642
7.3.6.2 Hole fit pluginexample . . . . . . . .. .. ... .. .. .. .. .. ... 643

xii



7.3.7 Controlling Recompilation . . . . ... ... ... ... ... .. .. ... ...,
7.3.8 Frontend plugins . . . . . . . . . . . e
7.3.9 DynFlags plugins . . . . . . . . . . . . e e e e e e e

8 Profiling

8.1 Cost centres and cost-centre stacks . . . ... ... ... ... .. ... .. ..
8.1.1 Inserting cost centresby hand . . . ... ... ... ... ............
8.1.2 Rules for attributingcosts . . . . ... .. .. .. . oo

8.2 Compiler options for profiling . . . . . . . . . . ... . ... ... .
8.2.1 Automatically placing cost-centres . . . . . ... ... ... ... ... ...,

8.3 Time and allocation profiling . . . ... ... ... .. .. .. . . . . . . . ... ...,
8.3.1 JSON profile format . . . . . . . .. .. . .. .. . .

8.4 Profiling Mmemory USage . . . . . . v v v v i e e e e e e e e e e e e e e e e
8.4.1 RTS options for heap profiling . ... ... ... ... ... .. .........
8.4.2 Retainer Profiling . . . . . . . . . . . . . . ..
8.4.2.1 Hints for using retainer profiling . . . . .. ... ... ... .. ....

8.4.3 Biographical Profiling . .. .. ... . ... ... .. .. ..
8.4.4 Actual memory residency . .. ... ... ... e

8.5 hp2ps - Rendering heap profiles to PostScript . . . ... ... ... ... .......
8.5.1 Manipulatingthe hpfile . . .. ... .. .. ... . ... ... ... ... ...,
8.5.2 Zooming in on regions of your profile . . . . . ... ... ... .. ...
8.5.3 Viewing the heap profile of a running program . .. ..............
8.5.4 Viewing a heap profileinrealtime . . . . . . ... ... ... ... .......

8.6 Profiling Parallel and Concurrent Programs . . .. ... ... ... ... .......
8.7 Observing Code COVETage . . . . . v v v v v e i e e e e e e e e e e e e e e e e e
8.7.1 A small example: Reciprocation ... .. ... ..................
8.7.2 Options for instrumenting code for coverage . . ... .............
8.7.3The hpctoolkit . . . . . . . . . . . . . e
8.7.3.1 hpcreport . . . . . . . . e e e e e e e
8.7.3.2hpcmarkup . . . .. . . ... e e e
8.7.3.3hpcsum . .. .. ... e e e e e e

8.7.3. 4 hpccombine . ... ... .. . ... ...
8.7.3.5hpcmap . . . . . . . e e e e e

8.7.3.6 hpc overlay and hpcdraft . ... ... ..................

8.7.4 Caveats and Shortcomings of Haskell Program Coverage . . . . .. ... ..

8.8 Using “ticky-ticky” profiling (for implementors) . . ... ... ... ... .......

9 Debugging compiled programs

9.1 Tutorial . . . . . . e e e e e e e
9.2 Requesting a stack trace from Haskellcode . ... ... ... ... ... .......
9.3 Requesting a stack trace with SIGQUIT . . ... ... ... .. .. ...,
9.4 Implementor’s notes: DWARF annotations . . ... ... ................
9.4.1 Debugging information entities. . . . . . .. ... ... .. . oL,

9.4.1.1 DW TAG ghc src_ note . ... ... .. .. ..

9.5 Further Reading . . . . . . . . . . . . . e e e e e
9.6 Direct Mapping . . . . . o v i v i e e e e e e e e e e e e e e e e e e e
9.7 Querying the Info Table Map . . . . . . . . . . . i i i i i e e

10 What to do when something goes wrong
10.1 When the compiler “does the wrong thing” . ... ... .. ... ... ... .....
10.2 When your program “does the wrong thing” .. ... ... ... ... ... .....

11 Hints
11.1 Sooner: producing a program more quickly . . . . . ... ... ... ... . ...,
11.2 Faster: producing a program that runs quicker . .. .. ... ... .........




11.3 Smaller: producing a program thatissmaller .. ................... 693

11.4 Thriftier: producing a program that gobbles less heap space . ... .. ... ... 693
11.5 Controlling inlining via optimisation flags. . .. ... .. ... ... ... ...... 694
11.5.1 Unfolding creation . . . . . . . . . . . . . e 694
11.5.2 Inlining decisions . . . . . . . . . . . . e e e e 694
11.5.3 Inlining generics . . . . . . . . . . . e e e e e e e e 695
11.6 Understanding how OS memory usage corresponds to livedata ... ... .. .. 695
12 Other Haskell utility programs 697
12.1 “Yacc for Haskell”: happy . . . . . . o i i i e e e e e e e e e 697
12.2 Writing Haskell interfaces to C code: hsc2hs . . . . . ... ... ... .. ...... 697
12.2.1 command line syntax . . . . . . . . . . i i e e e e e e 698
12.2.2 Input syntax . . . . . . . L e e e e e e e 699
12.2.3 Custom constructs . . . . . . . . . . e 700
12.2.4 Cross-compilation . . . . . . . . .. . . . e 700
13 Running GHC on Win32 systems 703
13.1 Starting GHC on Windows platforms . . . ... ... ... ... ............ 703
13.2 Running GHCion Windows . . . . . . . . . . . i i i i e e e e e e e e 703
13.3 Interacting with the terminal . .. ... ... ... . ... ... .. ... ... ..., 704
13.4 Differences in library behaviour . . . . . . .. .. ... .. .. .. . . o oL, 704
13.5 File paths under Windows . . . . . . . . . . . . i i i ittt it e 704
13.6 Using GHC (and other GHC-compiled executables) with Cygwin . . . ... .. .. 705
13.6.1 Background . . . . . . . . ... e e e e 705
13.6.2 The problem . . . . . . . . . . . e e e e e 705
13.6.3Thingstodo. . . . . . . . . . . e e e e e e e 705
13.7 Building and using Win32 DLLs . . . . . . . . . . . i i it e e e 706
13.7.1 Creatinga DLL . . . . . . . . . e e e e e 706
13.7.2 Making DLLs to be called from other languages. . . . ... ... ... ... 707
13.7.2.1 Using from VBA . . . . . . . . . e e e 708
13.7.2.2 Using from C++ . . . . . . . . . . . e 709
14 Known bugs and infelicities 711
14.1 Haskell standards vs. Glasgow Haskell: language non-compliance . . . . ... .. 711
14.1.1 Divergence from Haskell 98 and Haskell 2010 . . . . . ... ... ... ... 711
14.1.1.1 Lexical syntax . . . . . . . . . . . e e e 711
14.1.1.2 Context-free syntax . . ... ... ... . .. .. ... 712
14.1.1.3 Expressions and patterns . . . . . . .. .. ... .. .. ..o, 713
14.1.1.4 Failable patterns . . . . . . . .. .. ... .. .. 713
14.1.1.5 Typechecking of recursive binding groups . ... ... ... .. .. 714
14.1.1.6 Default Module headers with -main-is . .. .............. 714
14.1.1.7 Module system and interfacefiles. . . . . . ... ... ... ... .. 715
14.1.1.8 Numbers, basic types, and built-inclasses . ... ... ... .... 715
14.1.1.9In Prelude support. . . . . . . . . . i i i it e 716
14.1.1.10 The Foreign Function Interface ... ... ... ... .. ...... 717

14.1.2 GHC’s interpretation of undefined behaviour in Haskell 98 and
Haskell 2010 . . . . . . . . 717
14.2 Known bugs or infelicities . . . ... . .. . .. . . 718
14.2.1 Bugsin GHC . . . . . . . .. e e 718
14.2.2 Bugs in GHCIi (the interactive GHC) . . .. ... ... ... ... .. ..... 720
15 Eventlog encodings 721
15.1 Eventlog format . . . . . . . . . . . . .. e e 721
15.2 Runtime system diagnostics . . . ... .. ... ... ... .. . . e 722
15.2.1 Capability sets . . . . . . . . . e e e 722

xiv



15.2.2 Environment information. . . . . . . ... ... o .o .o
15.2.3 Thread and schedulingevents. . . . . ... ... ... ... ..........
15.2.4 Garbage collectorevents . . . . . . . . . . . .. ... e
15.2.5 Heap events and statistics . . . . . . ... ... ... ... .. . ...
15.2.6 Spark events . . . . . . . . .. e e e e e
15.2.7 Capability events . . . . . . . . .. e e e
15.2.8Task events . . . . . . . . o i e e e e e e e e
15.2.9Tracing events . . . . . . . . i i i i it e e e e e e e e e e e e e

15.3 Heap profiler event logoutput . . . . . ... ... ... .. .. .. .. . . .. ...,
15.3.1 Metadata event types . . . . . . . . .. e
15.3.1.1 Beginning of sample stream . ... ...................

15.3.1.2 Cost centre definitions . . . ... ... ... ... ... ... .....

15.3.1.3 Info Table Provenance definitions . . . . . ... ... ... ......

15.3.1.4 Sample event types . . . . . . . . . . e

15.3.1.5 Cost-centre break-down . . . . . ... ... ... ... .........

15.3.1.6 String break-down . . . . . ... ... ... e

15.4 Time profiler event logoutput . . . . . .. ... ... ... .. . . . . .. . ...
15.4.1 Profile begin event . . . . . . . . . .. e
15.4.2 Profile sample event. . . . . . . . . . ... e

15.5 Biographical profile sampleevent . . . . . . ... ... ... ... . ...
15.6 Non-moving GC eventoutput . . ... ... ... .. ... ... ...
15.6.1 Non-moving heap census . . . . . . . . . . . . i i i i ittt
15.6.2 Ticky counters . . . . . . . . . i i e e e e e e

16 Care and feeding of your GHC User’s Guide

16.1 BASICS . . v v v ot i e e e e e e e e e e e e e e e e e e e e e e e e e
16.1.1 Headings . . . . . . o v v i i i e e e e e e e e e e e e e e e e e
16.1.2 Formattingcode . . . . . . . . . . e e e e e e
16.1.2.1 Haskell . . . . . . . . e

16.1.2.2 Otherlanguages . . . . . . . . . i i i ittt e it
16.1.3LInKks . . . . . . e e e e e e
16.1.3.1 Withinthe User'sGuide . . . . .. ... ... ... ... ........

16.1.3.2 To GHC T€SOUTCES . . . v v v v v v e e e e e e e e e e e e e e e e

16.1.3.3 To external resources . ... ... ... ... ...,

16.1.3.4 To core library Haddock documentation . . . . . ... .. ... ...
16.1.3.5Math . . . . .. . . e e e

16.1.4 Index entries . . . . . . . . o i e e e e e e e e e e

16.2 Citations . . . . . . . o e e e e e e e e e e e e e e e e
16.3 Admonitions . . . . . . . L e e e e e e e e e e
16.4 Documenting command-line options and GHCi commands . . . . ... .......
16.4.1 Command-line options . . . . . . . . . . . . .. ... e
16.4.2 GHCicommands . . . . . . . . i v i it e e e e e e e e e e e e e e e

16.5 Style Conventions . . . . . . . . . . . e e e
16.6 ReST reference materials . . . . . . . . . ... .. . e

17 Indices and tables

Bibliography

Xv






GHC User’s Guide Documentation, Release 9.2.8

Contents:

CONTENTS 1l



GHC User’s Guide Documentation, Release 9.2.8

2 CONTENTS



CHAPTER
ONE

INTRODUCTION

This is a guide to using the Glasgow Haskell Compiler (GHC): an interactive and batch com-
pilation system for the Haskell 2010 language.

GHC has two main components: an interactive Haskell interpreter (also known as GHCIi),
described in Using GHCi (page 43), and a batch compiler, described throughout Using GHC
(page 95). In fact, GHC consists of a single program which is just run with different options
to provide either the interactive or the batch system.

The batch compiler can be used alongside GHCi: compiled modules can be loaded into an
interactive session and used in the same way as interpreted code, and in fact when using
GHCi most of the library code will be pre-compiled. This means you get the best of both
worlds: fast pre-compiled library code, and fast compile turnaround for the parts of your
program being actively developed.

GHC supports numerous language extensions, including concurrency, a foreign function inter-
face, exceptions, type system extensions such as multi-parameter type classes, local universal
and existential quantification, functional dependencies, scoped type variables and explicit un-
boxed types. These are all described in Language extensions (page 301).

GHC has a comprehensive optimiser, so when you want to Really Go For It (and you’ve got time
to spare) GHC can produce pretty fast code. Alternatively, the default option is to compile as
fast as possible while not making too much effort to optimise the generated code (although
GHC probably isn’t what you’d describe as a fast compiler :-).

GHC'’s profiling system supports “cost centre stacks”: a way of seeing the profile of a Haskell
program in a call-graph like structure. See Profiling (page 651) for more details.

GHC comes with a number of libraries. These are described in separate documentation.

1.1 Obtaining GHC

Go to the GHC home page and follow the “download” link to download GHC for your platform.

Alternatively, if you want to build GHC yourself, head on over to the GHC Building Guide to
find out how to get the sources, and build it on your system. Note that GHC itself is written
in Haskell, so you will still need to install GHC in order to build it.



http://www.haskell.org/
http://www.haskell.org/ghc/
https://gitlab.haskell.org/ghc/ghc/wikis/building

GHC User’s Guide Documentation, Release 9.2.8

1.2 Meta-information: Web sites, mailing lists, etc.

On the World-Wide Web, there are several URLs of likely interest:
* GHC home page
* GHC Developers Home (developer documentation, wiki, and bug tracker)

We run the following mailing lists about GHC. We encourage you to join, as you feel is appro-
priate.

glasgow-haskell-users
This list is for GHC users to chat among themselves. If you have a specific question about
GHC, please check the FAQ first.

Subscribers can post to the list by sending their message to glasgow-haskell-
users@haskell.org. Further information can be found on the Mailman page.

ghc-devs
The GHC developers hang out here. If you are working with the GHC API or have a
question about GHC’s implementation, feel free to chime in.

Subscribers can post to the list by sending their message to ghc-devs@haskell.org. Fur-
ther information can be found on the Mailman page.

There are several other Haskell and GHC-related mailing lists served by www.haskell.org.
Go to http://www.haskell.org/mailman/listinfo/ for the full list.

1.3 Reporting bugs in GHC

Glasgow Haskell is a changing system so there are sure to be bugs in it. If you find one, please
see this wiki page for information on how to report it.

1.4 GHC version numbering policy

As of GHC version 6.8, we have adopted the following policy for numbering GHC versions:

Stable branches are numbered x.y, where (y) is even. Releases on the stable branch
x.y are numbered x.y.z, where (z) (>= 1) is the patchlevel number. Patchlevels
are bug-fix releases only, and never change the programmer interface to any system-
supplied code. However, if you install a new patchlevel over an old one you will need
to recompile any code that was compiled against the old libraries.

The value of = GLASGOW HASKELL (see Options affecting the C pre-processor
(page 274)) for a major release x.y.z is the integer (xyy) (if (y) is a single digit,
then a leading zero is added, so for example in version 6.8.2 of GHC we would have
_ GLASGOW_HASKELL ==608).

We may make snapshot releases of the current stable branch available for download,
and the latest sources are available from the git repositories.

Stable snapshot releases are named x.y.z.YYYYMMDD. where YYYYMMDD is the date
of the sources from which the snapshot was built, and x.y.z+1 is the next release
to be made on that branch. For example, 6.8.1.20040225 would be a snapshot of
the 6.8 branch during the development of 6.8.2.

4 Chapter 1. Introduction


http://www.haskell.org/ghc/
https://gitlab.haskell.org/ghc/ghc
http://www.haskell.org/haskellwiki/GHC/FAQ
mailto:glasgow-haskell-users@haskell.org
mailto:glasgow-haskell-users@haskell.org
http://www.haskell.org/mailman/listinfo/glasgow-haskell-users
mailto:ghc-devs@haskell.org
http://www.haskell.org/mailman/listinfo/ghc-devs
http://www.haskell.org/mailman/listinfo/
https://gitlab.haskell.org/ghc/ghc/wikis/report-a-bug
http://www.haskell.org/ghc/dist/latest/
https://gitlab.haskell.org/ghc/ghc/wikis/repositories

GHC User’s Guide Documentation, Release 9.2.8

Unstable snapshot releases are named x.y.YYYYMMDD. where YYYYMMDD is the date of
the sources from which the snapshot was built. For example, 6.7.20040225 would
be a snapshot of the HEAD before the creation of the 6.8 branch.

The value of  GLASGOW HASKELL for a snapshot release is the integer (xyy). You
should never write any conditional code which tests for this value, however: since
interfaces change on a day-to-day basis, and we don’t have finer granularity in the
values of  GLASGOW HASKELL , you should only conditionally compile using pred-
icates which test whether = GLASGOW HASKELL is equal to, later than, or earlier
than a given major release.

The version number of your copy of GHC can be found by invoking ghc with the --version
flag (see Verbosity options (page 104)).

The compiler version can be tested within compiled code with the
MIN VERSION GLASGOW HASKELL CPP macro (defined only when CPP (page 274) is used).
See Standard CPP macros (page 275) for details.

1.5 The Glasgow Haskell Compiler License

Copyright 2002 - 2007, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of condi-
tions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

* Neither name of the University nor the names of its contributors may be used to endorse
or promote products derived from this software without specific prior written permis-
sion.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY OF
GLASGOW AND THE CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WAR-
RANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW OR THE
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.5. The Glasgow Haskell Compiler License 5



GHC User’s Guide Documentation, Release 9.2.8

6 Chapter 1. Introduction



CHAPTER
TWO

RELEASE NOTES

2.1 Version 9.2.1

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 278) of this release is to be used with LLVM 10 or 11.

2.1.1 Language

* ImpredicativeTypes (page 423): Finally, polymorphic types have become first class!
GHC 9.2 includes a full implementation of the Quick Look approach to type inference for
impredicative types, as described in in the paper A quick look at impredicativity (Serrano
et al, ICFP 2020). More information here: Impredicative polymorphism (page 423). This
replaces the old (undefined, flaky) behaviour of the ImpredicativeTypes (page 423)
extension.

» The first stage of the Pointer Rep Proposal has been implemented. All boxed types, both
lifted and unlifted, now have representation kinds of the shape BoxedRep r. Code that
references LiftedRep and UnliftedRep will need to be updated.

* UnliftedDatatypes (page 568): The Unlifted Datatypes Proposal has been implemented.
That means GHC Haskell now offers a way to define algebraic data types with strict
semantics like in OCaml or Idris! The distinction to ordinary lifted data types is
made in the kind system: Unlifted data types live in kind TYPE (BoxedRep Unlifted).
UnliftedDatatypes (page 568) allows giving data declarations such result kinds, such
as in the following example with the help of StandaloneKindSignatures (page 397):

type IntSet :: UnliftedType -- type UnliftedType = TYPE (BoxedRep,,
~Unlifted)
data IntSet = Branch IntSet !Int IntSet | Leaf

See UnliftedDatatypes (page 568) for what other declarations are possible. Slight
caveat: Most functions in base (including $) are not levity-polymorphic (yet) and hence
won’t work with unlifted data types.

* GHC now supports visible type applications in patterns when TypeApplications
(page 412) is enabled . This allows you to use the @variable syntax to bind types in
patterns. For instance, instead of

[foo (Just (x :: ty)) = [

You can now use



https://www.microsoft.com/en-us/research/publication/a-quick-look-at-impredicativity/
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0203-pointer-rep.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0265-unlifted-datatypes.rst

GHC User’s Guide Documentation, Release 9.2.8

foo (Just @ty x) = ...
See the Type Applications in Patterns Proposal for more details

» Kind inference for data/newtype instance declarations is slightly more restrictive than
before. In particular, GHC now requires that the kind of a data family instance be fully
determined by the header of the instance, without looking at the definition of the con-
structor.

This means that data families that dispatched on an invisible parameter might now re-
quire this parameter to be made explicit, as in the following example:

data family DF :: forall (r :: RuntimeRep). TYPE r
newtype instance DF @IntRep MkDF2 Int#
newtype instance DF @FloatRep = MkDF1l Float#

See the user manual Kind inference for data/newtype instance declarations (page 401).

* GHC is stricter about checking for out-of-scope type variables on the right-hand sides of
associated type family instances that are not bound on the left-hand side. As a result,
some programs that were accidentally accepted in previous versions of GHC will now be
rejected, such as this example:

class Funct f where
type Codomain f
instance Funct ('KProxy :: KProxy o) where
type Codomain 'KProxy = NatTr (Proxy :: o -> Type)

L

Where:

(data Proxy (a :: k) = Proxy
data KProxy (t :: Type) = KProxy
data NatTr (c :: o -> Type)

GHC will now reject the o on the right-hand side of the Codomain instance as being
out of scope, as it does not meet the requirements for being explicitly bound (as it is
not mentioned on the left-hand side) nor implicitly bound (as it is not mentioned in an
outermost kind signature, as required by Scoping of class parameters (page 381)). This
program can be repaired in a backwards-compatible way by mentioning o on the left-

hand side:

instance Funct ('KProxy :: KProxy o) where
type Codomain ('KProxy @o) = NatTr (Proxy :: o -> Type)
-- Alternatively,

-- type Codomain ('KProxy :: KProxy o) = NatTr (Proxy :: o -> Type)

* Previously, -XUndecidableInstances accidentally implied -XFlexibleContexts. This is
now fixed, but it means that some programs will newly require -XFlexibleContexts.

* The GHC2021 (page 301) language is supported now. It builds on top of Haskell2010,
adding several stable and conservative extensions, and removing deprecated ones. It is
now also the “default” language set that is active when no other language set, such as
Haskell98 (page 302) or Haskell2010 (page 302), is explicitly loaded (e.g via Cabal’s
default-language).

Because GHC2021 (page 301) includes GeneralizedNewtypeDeriving (page 462), which
is not safe for Safe Haskell, users of Safe Haskell are advised to use Haskell2010
(page 302) explicitly.

8 Chapter 2. Release notes



https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0126-type-applications-in-patterns.rst

GHC User’s Guide Documentation, Release 9.2.8

The default mode of GHC until 9.0 included NondecreasingIndentation (page 712), but
GHC2021 (page 301) does not. This may break code implicitly using this extension.

* The Record Dot Syntax Proposal has been implemented:

- A new extension OverloadedRecordDot (page 447) provides record . syntax e.g. X.
foo

- A new extension OverloadedRecordUpdate (page 448) provides record . syntax in
record updates e.g. x{foo.bar = 1}. The design of this extension may well change
in the future.

* Various records-related extensions have been improved:

- Anew extension NoFieldSelectors (page 440) hides record field selector functions,
so it is possible to define top-level bindings with the same names.

- The DisambiguateRecordFields (page 436) extension now works for updates. An
update expr { field = value } will be accepted if there is a single field called
field in scope, regardless of whether there are non-fields in scope with the same
name.

- The DuplicateRecordFields (page 437) extension now applies to fields in record
pattern synonyms. In particular, it is possible for a single module to define multiple
pattern synonyms using the same field names.

* Because of simplifications to the way that GHC typechecks operator sections, operators
with nested foralls or contexts in their type signatures might not typecheck when used
in a section. For instance, the g function below, which was accepted in previous GHC
releases, will no longer typecheck:

f :: a -> forall b. b -> a
fx_=x

g::a->a
g= (f "hello")

g can be made to typecheck once more by eta expanding itto\x -> x “f° "hello". For
more information, see simple-subsumption.

* LinearTypes (page 424) can now infer multiplicity for case expressions. Previously,
the scrutinee of a case (the bit between case and of) was always assumed to have a
multiplicity of Many. Now, GHC will allow the scrutinee to have a multiplicity of One,
using its best-effort inference algorithm.

* Support for matching on GADT constructors in arrow notation has been removed, as the
current implementation of Arrows (page 340) doesn’t handle GADT evidence correctly.

One possible workaround, for the time being, is to perform GADT matches inside let
bindings:

rdata G a where
MkG :: Show a => a -> G a

foo :: G a -> String

foo = proc x -> do
let res = case x of { MkG a -> show a }
returnA -< res

2.1. Version 9.2.1 9


https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0282-record-dot-syntax.rst

GHC User’s Guide Documentation, Release 9.2.8

2.1.2 Compiler

GHC now has an ARMv8 native code generator, significantly improving compilation per-
formance for ARM targets and eliminating a dependency on LLVM.

Performance of the compiler in - -make (page 98) mode with -j[(n)] (page 102) is sig-
nificantly improved by improvements to the parallel garbage collector noted below.

Benchmarks show a 20% decrease in wall clock time, and a 40% decrease in cpu time,
when compiling Cabal with -j4 on linux. Improvements are more dramatic with higher
parallelism, and we no longer see significant degradation in wall clock time as parallelism
increases above 4.

New -Wredundant-bang-patterns (page 131) flag that enables checks for “dead” bangs.
For instance, given this program:

f :: Bool -> Bool
f True False
f Ix X

GHC would report that the bang on x is redundant and can be removed since
the argument was already forced in the first equation. For more details see
-Wredundant-bang-patterns (page 131).

New -Wimplicit-1ift (page 121) flag which warns when a Template Haskell quote
implicitly uses 1ift.

New -finline-generics (page 147) and - finline-generics-aggressively (page 147)
flags for improving performance of generics-based algorithms.

For more details see -finline-generics (page 147) and
-finline-generics-aggressively (page 147).

GHC now supports a flag, - fprof-callers=(name) (page 657), for requesting that the
compiler automatically insert cost-centres on all call-sites of the named function.

The heap profiler can now be controlled from within a Haskell program using functions
in GHC.Profiling. Profiling can be started and stopped or a heap census requested at a
specific point in the program. There is a new RTS flag - -no-automatic-heap-samples
(page 665) which can be used to stop heap profiling starting when a program starts.

A new debugging facility, - finfo-table-map (page 685), which embeds a mapping from
the address of an info table to information about that info table, including an approximate
source position. -fdistinct-constructor-tables (page 685) is also useful with this
flag to give each usage of a data constructor its own unique info table so they can be
distinguished in gdb and heap profiles.

2.1.3 GHCi

GHCi’s :kind! command now expands through type synonyms in addition to type fami-
lies. See :kind (page 78).

GHCi’s :edit (page 76) command now looks for an editor in the VISUAL (page 76) envi-
ronment variable before EDITOR, following UNIX convention. (19030)

GHC now follows by default the XDG Base Directory Specification. If $HOME/.ghc is
found it will fallback to the old paths to give you time to migrate. This fallback will be
removed in three releases.

10

Chapter 2. Release notes


https://gitlab.haskell.org/ghc/ghc/issues/19030

GHC User’s Guide Documentation, Release 9.2.8

* New debugger command : ignore (page 78) to set an ignore count for a specified break-
point. The next ignore count times the program hits this breakpoint, the breakpoint is
ignored, and the program doesn’t stop.

* New optional parameter added to the command : continue (page 75) to set the ignore
count for the current breakpoint.

2.1.4 Runtime system

* The parallel garbage collector is now significantly more performant. Heavily contended
spinlocks have been replaced with mutexes and condition variables. For most programs
compiled with the threaded runtime, and run with more than four capabilities, we expect
minor GC pauses and GC cpu time both to be reduced.

For very short running programs (in the order of 10s of milliseconds), we have seen some
performance regressions. We recommend programs affected by this to either compile
with the single threaded runtime, or otherwise to disable the parallel garbage collector
with -qg (gen) (page 220).

We don’t expect any other performance regressions, however only limited benchmarking
has been done. We have only benchmarked GHC and nofib and only on linux.

Users are advised to reconsider the rts flags that programs are run with. If you have
been mitigating poor parallel GC performance by: using large nurseries (-A (page 217)),
disabling load balancing (-gb (gen) (page 220)), or limiting parallel GC to older gener-
ations (-qg (gen) (page 220)); then you may find these mitigations are no longer neces-
sary.

* The heap profiler now has proper treatment of pinned ByteArray#s. Such heap objects
will now be correctly attributed to their appropriate cost centre instead of merely being
lumped into the PINNED category. Moreover, we now correctly account for the size of the
array, meaning that space lost to fragmentation is no longer counted as live data.

* The -xt RTS flag has been removed. Now STACK and TSO closures are always included
in heap profiles. Tooling can choose to filter out these closure types if necessary.

* A new heap profiling mode, -hi (page 664), profile by info table allows for fine-grain
banding by the info table address of a closure. The profiling mode is intended to be used
with - finfo-table-map (page 685) and can best be consumed with eventlog2html. This
profiling mode does not require a profiling build.

The RTS will now gradually return unused memory back to the OS rather than retaining
a large amount (up to 4 * live) indefinitely. The rate at which memory is returned is
controlled by the -Fd (factor) (page 219). Memory return is triggered by consecutive
idle collections.

The default nursery size, -A (page 217), has been increased from 1mb to 4mb.

2.1. Version 9.2.1 11



GHC User’s Guide Documentation, Release 9.2.8

2.1.5 Template Haskell

* There are two new functions putDoc and getDoc, which allow Haddock documentation
to be attached and read from module headers, declarations, function arguments, class
instances and family instances. These functions are quite low level, so the withDecDoc
function provides a more ergonomic interface for this. Similarly funD doc, dataD doc
and friends provide an easy way to document functions and constructors alongside their
arguments simultaneously.

[$(withDecsDoc "This does good things" [d| foo x = 42 |]) ]

2.1.6 ghc-prim library

Void# is now a type synonym for the unboxed tuple (# #). Code using Void# now has to
enable UnboxedTuples (page 565).

2.1.7 Eventlog

» Two new events, BLOCKS SIZE (page 729) tells you about the total size of all allocated
blocks and MEM RETURN (page 728) gives statistics about why the OS is returning and
retaining megablocks.

2.1.8 ghc library

» There is a significant refactoring in the solver; any type-checker plugins will have to be
updated, as GHC no longer uses flattening skolems or flattening metavariables.

» Type checker plugins which work with the natural numbers now should use naturalTy
kind instead of typeNatKind, which has been removed.

* The con _args field of ConDeclGADT has been renamed to con g args. This is because the
type of con g args is now different from the type of the con _args field in ConDeclH98:

(data ConDecl pass
= ConDeclGADT
{ coc
, con_g args :: HsConDeclGADTDetails pass -- ~ Arguments; never,
~Iinfix

:

| ConDeclH98
{ ...
, con_args :: HsConDeclH98Details pass -- ~ Arguments; can be infix

’

:

L

Where:

(-~ Introduced in GHC 9.2; was called ‘HsConDeclDetails' in previous,,
—versions of GHC
type HsConDeclH98Details pass

(continues on next page)

12 Chapter 2. Release notes



GHC User’s Guide Documentation, Release 9.2.8

(continued from previous page)

= HsConDetails (HsScaled pass (LBangType pass)) (XRec pass,,
—[LConDeclField pass])

-- Introduced in GHC 9.2

data HsConDeclGADTDetails pass
= PrefixConGADT [HsScaled pass (LBangType pass)]
| RecConGADT (XRec pass [LConDeclField pass])

Unlike Haskell98-style constructors, GADT constructors cannot be declared using infix
syntax, which is why HsConDec1GADTDetails lacks an InfixConGADT constructor.

As a result of all this, the con_args field is now partial, so using con_args as a top-level
field selector is discouraged.

2.1.9 base library

* The lifted fixed-width integer and word types (e.g. Data.Int.Int8, Data.Word.Word32)
are now represented by their associated fixed-width unlifted types. For instance, while
in previous GHC versions Int8 was defined as:

[data Int8 = I8# Int# ]

As of GHC 9.2 it is rather defined as,

[data Int8 = I8# Int8# ]

* Character set metadata bumped to Unicode 13.0.0.

* It’s possible now to promote the Natural type:

data Coordinate = Mk2D Natural Natural
type MyCoordinate = Mk2D 1 10

The separate kind Nat is removed and now it is just a type synonym for Natural. As a
consequence, one must enable TypeSynonymInstances in order to define instances for
Nat.

The Numeric module receives showBin and readBin to show and read integer numbers
in binary.

* Char gets type-level support by analogy with strings and natural numbers. We extend
the GHC.TypelLits module with these built-in type-families:

type family CmpChar (a :: Char) (b :: Char) :: Ordering

type family ConsSymbol (a :: Char) (b :: Symbol) :: Symbol
type family UnconsSymbol (a :: Symbol) :: Maybe (Char, Symbol)
type family CharToNat (c :: Char) :: Natural

type family NatToChar (n :: Natural) :: Char

and with the type class KnownChar (and such additional functions as charVal and
charval'):

class KnownChar (n :: Char)

(continues on next page)

2.1. Version 9.2.1 13



GHC User’s Guide Documentation, Release 9.2.8

(continued from previous page)

charVal :: forall n proxy. KnownChar n => proxy n -> Char
charvVal' :: forall n. KnownChar n => Proxy# n -> Char

* A new kind-polymorphic Compare type family was added in Data.Type.Ord and has type
instances for Nat, Symbol, and Char. Furthermore, the (<=?) type (and (<=)) from GHC.
TypeNats is now governed by this type family (as well as new comparison type operators
that are exported by Data.Type.0rd). This has two important repercussions. First, GHC
can no longer deduce that all natural numbers are greater than or equal to zero. For
instance,

testl :: Proxy (0 <=? x) -> Proxy True
testl = id

which previously type checked will now result in a type error. Second, when these com-
parison type operators are used very generically, a kind may need to be provided. For

example,
test2 :: Proxy (x <=? x) -> Proxy True
test2 = id

will now generate a type error because GHC does not know the kind of x. To fix this, one
must provide an explicit kind, perhaps by changing the type to:

[testZ :: forall (x :: Nat). Proxy (x <=? x) -> Proxy True ]

* On POSIX, System.I0.openFile can no longer leak a file descriptor if it is interrupted
by an asynchronous exception (19114, 19115).

* There’s a new binding GHC.Exts.considerAccessible. It’s equivalent to True and al-
lows the programmer to turn off pattern-match redundancy warnings for particular
clauses, like the third one here

g :: Bool -> Int
g x = case (x, x) of
(True, True) ->1
(False, False) -> 2
(True, False) | considerAccessible -> 3 -- No warning!

2.1.9.1 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion
ghc 9.2.8

The compiler itself

continues on next page

14 Chapter 2. Release notes


https://gitlab.haskell.org/ghc/ghc/issues/19114
https://gitlab.haskell.org/ghc/ghc/issues/19115

GHC User’s Guide Documentation, Release 9.2.8

Table 1 - continued from previous page

Package Version Reason for inclusion
Cabal 3.6.3.0

Dependency of ghc-pkg util-

ity
Win32 2.12.0.1

Dependency of ghc library
array 0.5.4.0

Dependency of ghc library
base 4.16.4.0

Core library
binary 0.8.9.0

Dependency of ghc library
bytestring 0.11.4.0

Dependency of ghc library
containers 0.6.5.1

Dependency of ghc library
deepseq 1.4.6.1

Dependency of ghc library
directory 1.3.6.2

Dependency of ghc library
exceptions 0.10.4

Dependency of ghc and

haskeline library
filepath 1.4.2.2

Dependency of ghc library
ghc-boot-th 9.2.8

Internal compiler library
ghc-boot 9.2.8

Internal compiler library
ghc-compact 0.1.0.0

Core library
ghc-heap 9.2.8

GHC heap-walking library
ghc-prim 0.8.0

Core library

continues on next page

2.1. Version 9.2.1

15



GHC User’s Guide Documentation, Release 9.2.8

Table 1 - continued from previous page

Package Version Reason for inclusion
ghci 9.2.8
The REPL interface
haskeline 0.8.2
Dependency of ghci exe-
cutable
hpc 0.6.1.0
Dependency of hpc exe-
cutable
integer-gmp 1.1
Core library
libiserv 9.2.8
Internal compiler library
mtl 2.2.2
Dependency of Cabal library
parsec 3.1.15.0
Dependency of Cabal library
pretty 1.1.3.6
Dependency of ghc library
process 1.6.16.0
Dependency of ghc library
stm 2.5.0.2
Dependency of haskeline li-
brary
template-haskell 2.18.0.0
Core library
terminfo 0.4.1.5
Dependency of haskeline li-
brary
text 1.2.5.0
Dependency of Cabal library
time 1.11.1.1
Dependency of ghc library
transformers 0.5.6.2
Dependency of ghc library
continues on next page
16 Chapter 2. Release notes



GHC User’s Guide Documentation, Release 9.2.8

Table 1 - continued from previous page
Package Version Reason for inclusion
unix 2.7.2.2

Dependency of ghc library

xhtml 3000.2.2.1
Dependency of haddock exe-
cutable

2.2 Version 9.2.2

The significant changes to the various parts of the compiler are listed in the following sections.

The LLVM backend (page 278) of this release is to be used with LLVM 9, 10, 11, or 12.

2.2.1 Compiler

* Numerous improvements in compiler performance.

» A fix for GHC’s handling of the XDG Base Directory Specification (6077, 20684, 20669,
20660):

- For the package database previously in ~/.ghc/<arch-ver>, we will continue to use
the old path if it exists. For example, if the ~/.ghc/x86 64-linux-9.4.1 directory exists,
GHC will use that for its user package database. If this directory does not exist, we
will use $XDG DATA HOME/ghc/x86 64-linux-9.4.1. This is in order to give tooling
like cabal time to migrate

- For GHCi configuration files previously located in ~/.ghc/ like ghci.conf and
ghci_history, we will first check if they exist in ~/.ghc and use those if they do. How-
ever, we will create new files like ghci history only in $XDG DATA HOME/ghc. So
if you don’t have a previous GHC installation which created ~/.ghc/ghci_history, the
history file will be written to $XDG DATA HOME/ghc. If you already have an older
GHC installation which wrote ~/.ghc/ghci_history, then GHC will continue to write
the history to that file.

* Fix bug in CPR analysis’s treatment of join points which may result in runtime crashes
(18824).

* Link against libatomic for atomic operations on platforms where this is necessary
(19119).

* Fix bootstrapping of compiler with GHC 9.2 and later (19631)

» Silence non-actionable warnings regarding missed specialisations of class methods
(19592).

» Fix a race condition in the registration of ticky-ticky profiling counters, potentially re-
sulting in hangs when ticky-ticky is used in a threaded application (20451).

* Introduce a flag, -Wunicode-bidirectional-format-characters (page 135), to warn if
Unicode bidirectional formatting are found in Haskell source files.

* Improve the pattern match checker’s handling of unlifted data types, eliminating spuri-
ous warnings from impossible branches (20631).

2.2. Version 9.2.2 17


https://gitlab.haskell.org/ghc/ghc/issues/6077
https://gitlab.haskell.org/ghc/ghc/issues/20684
https://gitlab.haskell.org/ghc/ghc/issues/20669
https://gitlab.haskell.org/ghc/ghc/issues/20660
https://gitlab.haskell.org/ghc/ghc/issues/18824
https://gitlab.haskell.org/ghc/ghc/issues/19119
https://gitlab.haskell.org/ghc/ghc/issues/19631
https://gitlab.haskell.org/ghc/ghc/issues/19592
https://gitlab.haskell.org/ghc/ghc/issues/20451
https://gitlab.haskell.org/ghc/ghc/issues/20631

GHC User’s Guide Documentation, Release 9.2.8

* Fix a compiler crash due to incorrect in-scope set (20639)
* Don’t use implicit lifting when deriving a Lift instances, fixing 20688.
* Unbox unlifted datatypes fields (20663).

* Introduce a flag, - fcheck-prim-bounds (page 299), which adds dynamic bounds checks
in the code generated for array primops (20769).

* Ensure that the indexWord8ArrayAs<Type># family of array primops are lowered cor-
rectly on platforms which do not support unaligned memory access (21015, 20987).

* Fix a potential bug where common-block elimination may common-up incompatible load
operations (21016)

* Eliminate the ghc library’s dependence on parsec (21033).

* Introduced - fcompact-unwind (page 285) , enabling the generation of compact unwind-
ing information on Apple Darwin targets (11829).

* Fix a bug where some exception closures could be inappropriately garbage collected,
resulting in crashes (21141)

» Fix a variety of bugs in the AArch64 code generator’s handling of sub-word-size values
(19993, 20637, 20638).

2.2.2 GHCi

* Fix bug in handling of GHC environment files which lead to unintentional resetting of
GHCi’s package state (19650)

2.2.3 Core libraries

* Fix a few bugs in WinlIO which might result in heap corruption (21048).

* Fix an interaction between WinlIO and deadlock detection, resulting in programs poten-
tially hanging in IO (18382)

* Add CTYPE pragmas to all foreign type wrappers (e.g. Foreign.C.Types), ensuring that
correct signatures are generated for capi foreign imports (15531).

e Fix incorrect implementation of Data.Type.Ord.<: (TODO)
* Bump stmto release 2.5.0.2 (20575)

* Avoid using Apple Darwin’s broken one-shot kqueue implementation (20662)

2.2.4 Build system and packaging

» Fix generation of binary distribution for cross-compilers with Hadrian (20267)

* Don’t rely on non-POSIX realpath utility in Hadrian’s binary distribution installation
Makefile (19963)

18 Chapter 2. Release notes


https://gitlab.haskell.org/ghc/ghc/issues/20639
https://gitlab.haskell.org/ghc/ghc/issues/20688
https://gitlab.haskell.org/ghc/ghc/issues/20663
https://gitlab.haskell.org/ghc/ghc/issues/20769
https://gitlab.haskell.org/ghc/ghc/issues/21015
https://gitlab.haskell.org/ghc/ghc/issues/20987
https://gitlab.haskell.org/ghc/ghc/issues/21016
https://gitlab.haskell.org/ghc/ghc/issues/21033
https://gitlab.haskell.org/ghc/ghc/issues/11829
https://gitlab.haskell.org/ghc/ghc/issues/21141
https://gitlab.haskell.org/ghc/ghc/issues/19993
https://gitlab.haskell.org/ghc/ghc/issues/20637
https://gitlab.haskell.org/ghc/ghc/issues/20638
https://gitlab.haskell.org/ghc/ghc/issues/19650
https://gitlab.haskell.org/ghc/ghc/issues/21048
https://gitlab.haskell.org/ghc/ghc/issues/18382
https://gitlab.haskell.org/ghc/ghc/issues/15531
https://gitlab.haskell.org/ghc/ghc/issues/20575
https://gitlab.haskell.org/ghc/ghc/issues/20662
https://gitlab.haskell.org/ghc/ghc/issues/20267
https://gitlab.haskell.org/ghc/ghc/issues/19963

GHC User’s Guide Documentation, Release 9.2.8

2.2.5 Runtime system

20577
Teach runtime linker to resolve special iconv_ symbols on FreeBSD (20354)
Fix garbage collector statistics produced when run -gn 1 (page 220) (19685).

Fix the reporting of elapsed GC time when using the non-moving garbage collector
(page 216). (20751)

Fix a bug where the memory-mapping base address was not updated after creating a
mapping, resulting in linking failures (20734)

Eliminate a case in the linker which would result in memory mappings that were simul-
taneously writable and executable (20814).

Seed environ in the runtime system’s symbol table, ensuring that environment is cor-
rectly propagated to loaded objects (20861 and related tickets)

Introduce a new flag, --null-eventlog-writer (page 665), allowing the eventlog to be
enabled while suppressing the usual .eventlog file output. This can be useful when

running programs with a custom eventlog writer (page 214).

2.2.6 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change

information.
Package Version Reason for inclusion
ghc 9.2.8
The compiler itself
Cabal 3.6.3.0
Dependency of ghc-pkg util-
ity
Win32 2.12.0.1
Dependency of ghc library
array 0.5.4.0
Dependency of ghc library
base 4.16.4.0
Core library
binary 0.8.9.0
Dependency of ghc library
bytestring 0.11.4.0

Dependency of ghc library

continues on next page

2.2. Version 9.2.2

19


https://gitlab.haskell.org/ghc/ghc/issues/20577
https://gitlab.haskell.org/ghc/ghc/issues/20354
https://gitlab.haskell.org/ghc/ghc/issues/19685
https://gitlab.haskell.org/ghc/ghc/issues/20751
https://gitlab.haskell.org/ghc/ghc/issues/20734
https://gitlab.haskell.org/ghc/ghc/issues/20814
https://gitlab.haskell.org/ghc/ghc/issues/20861

GHC User’s Guide Documentation, Release 9.2.8

Table 2 - continued from previous page

Package Version Reason for inclusion
containers 0.6.5.1

Dependency of ghc library
deepseq 1.4.6.1

Dependency of ghc library
directory 1.3.6.2

Dependency of ghc library
exceptions 0.10.4

Dependency of ghc and

haskeline library
filepath 1.4.2.2

Dependency of ghc library
ghc-boot-th 9.2.8

Internal compiler library
ghc-boot 9.2.8

Internal compiler library
ghc-compact 0.1.0.0

Core library
ghc-heap 9.2.8

GHC heap-walking library
ghc-prim 0.8.0

Core library
ghci 9.2.8

The REPL interface
haskeline 0.8.2

Dependency of ghci exe-

cutable
hpc 0.6.1.0

Dependency of hpc exe-

cutable
integer-gmp 1.1

Core library
libiserv 9.2.8

Internal compiler library

continues on next page
20 Chapter 2. Release notes



GHC User’s Guide Documentation, Release 9.2.8

Table 2 - continued from previous page

Package Version Reason for inclusion
mtl 2.2.2

Dependency of Cabal library
parsec 3.1.15.0

Dependency of Cabal library
pretty 1.1.3.6

Dependency of ghc library
process 1.6.16.0

Dependency of ghc library
stm 2.5.0.2

Dependency of haskeline li-

brary
template-haskell 2.18.0.0

Core library
terminfo 0.4.1.5

Dependency of haskeline li-

brary
text 1.2.5.0

Dependency of Cabal library
time 1.11.1.1

Dependency of ghc library
transformers 0.5.6.2

Dependency of ghc library
unix 2.7.2.2

Dependency of ghc library
xhtml 3000.2.2.1

Dependency of haddock exe-
cutable

2.2. Version 9.2.2

21



GHC User’s Guide Documentation, Release 9.2.8

2.3 Version 9.2.3

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 278) of this release is to be used with LLVM 9, 10, 11, or 12.

2.3.1 Compiler

Fix a bug causing compiler panics on certain RULE declarations (20820).

Fix a typechecker regression on certain programs involving type families and type equal-
ity constraints (21473, 21515).

Fix a typechecker regression affecting programs involving quantified constraints and
superclasses (20582)

Fix a typechecker bug causing compiler panics on certain programs involing GADTs and
Type Families (20820).

Fix a typechecker panic on certain programs involving typed holes (21130).

Fix a typechecker panic arising from uninferrable variables in a pattern synonym
(21479).

Various other typechecker bug fixes (21531, 21516, 21519).

Ensure that XMM registers are preserved according to the calling convention on Win64
(21465).

Fix a bug in the STG pipeline leading to segfaults in certain situations (21396).
Fix a code generator bug causing CAFs to be incorrectly GC’d (20959).

Improve error messages for OverloadedRecordFields in the case of ambiguous fields
(17420).

Improve warnings for redundant constraints (20602).

2.3.2 Runtime system

Fix a bug with RTS accounting resulting in computing incorrect and negative productivity
stats (21082).

2.3.3 GHCi

Fix a bug causing certain type signatures to be pretty printed in a unpleasant way
(20974).

22

Chapter 2. Release notes


https://gitlab.haskell.org/ghc/ghc/issues/20820
https://gitlab.haskell.org/ghc/ghc/issues/21473
https://gitlab.haskell.org/ghc/ghc/issues/21515
https://gitlab.haskell.org/ghc/ghc/issues/20582
https://gitlab.haskell.org/ghc/ghc/issues/20820
https://gitlab.haskell.org/ghc/ghc/issues/21130
https://gitlab.haskell.org/ghc/ghc/issues/21479
https://gitlab.haskell.org/ghc/ghc/issues/21531
https://gitlab.haskell.org/ghc/ghc/issues/21516
https://gitlab.haskell.org/ghc/ghc/issues/21519
https://gitlab.haskell.org/ghc/ghc/issues/21465
https://gitlab.haskell.org/ghc/ghc/issues/21396
https://gitlab.haskell.org/ghc/ghc/issues/20959
https://gitlab.haskell.org/ghc/ghc/issues/17420
https://gitlab.haskell.org/ghc/ghc/issues/20602
https://gitlab.haskell.org/ghc/ghc/issues/21082
https://gitlab.haskell.org/ghc/ghc/issues/20974

GHC User’s Guide Documentation, Release 9.2.8

2.3.4 Core libraries

* Bump bytestring to 0.11.3.1 fixing a critical linking bug causing GHC 9.2.2 to be unus-

able on Windows (21196).
* base: Export GHC.Event.Internal on Windows (21245).

2.3.5 Build system and packaging

Use POSIX compatible shell syntax for redirecting output during configure (20760).

* Only copy and install libffi headers when using in-tree libffi (21485, 21487).
* Add support for bootstrapping hadrian without needing cabal-install.

» Allow installing hadrian generated binary distributions to paths including the string “xxx”

(21402)

» Allow bootstrapping from GHC 9.2.

* Allow running the testsuite using Python 3.10.

2.3.6 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change

information.
Package Version Reason for inclusion
ghc 9.2.8
The compiler itself
Cabal 3.6.3.0
Dependency of ghc-pkg util-
ity
Win32 2.12.0.1
Dependency of ghc library
array 0.5.4.0
Dependency of ghc library
base 4.16.4.0
Core library
binary 0.8.9.0
Dependency of ghc library
bytestring 0.11.4.0

Dependency of ghc library

continues on next page

2.3. Version 9.2.3

23


https://gitlab.haskell.org/ghc/ghc/issues/21196
https://gitlab.haskell.org/ghc/ghc/issues/21245
https://gitlab.haskell.org/ghc/ghc/issues/20760
https://gitlab.haskell.org/ghc/ghc/issues/21485
https://gitlab.haskell.org/ghc/ghc/issues/21487
https://gitlab.haskell.org/ghc/ghc/issues/21402

GHC User’s Guide Documentation, Release 9.2.8

Table 3 - continued from previous page

Package Version Reason for inclusion
containers 0.6.5.1

Dependency of ghc library
deepseq 1.4.6.1

Dependency of ghc library
directory 1.3.6.2

Dependency of ghc library
exceptions 0.10.4

Dependency of ghc and

haskeline library
filepath 1.4.2.2

Dependency of ghc library
ghc-boot-th 9.2.8

Internal compiler library
ghc-boot 9.2.8

Internal compiler library
ghc-compact 0.1.0.0

Core library
ghc-heap 9.2.8

GHC heap-walking library
ghc-prim 0.8.0

Core library
ghci 9.2.8

The REPL interface
haskeline 0.8.2

Dependency of ghci exe-

cutable
hpc 0.6.1.0

Dependency of hpc exe-

cutable
integer-gmp 1.1

Core library
libiserv 9.2.8

Internal compiler library

continues on next page
24 Chapter 2. Release notes



GHC User’s Guide Documentation, Release 9.2.8

Table 3 - continued from previous page

Package Version Reason for inclusion
mtl 2.2.2

Dependency of Cabal library
parsec 3.1.15.0

Dependency of Cabal library
pretty 1.1.3.6

Dependency of ghc library
process 1.6.16.0

Dependency of ghc library
stm 2.5.0.2

Dependency of haskeline li-

brary
template-haskell 2.18.0.0

Core library
terminfo 0.4.1.5

Dependency of haskeline li-

brary
text 1.2.5.0

Dependency of Cabal library
time 1.11.1.1

Dependency of ghc library
transformers 0.5.6.2

Dependency of ghc library
unix 2.7.2.2

Dependency of ghc library
xhtml 3000.2.2.1

Dependency of haddock exe-
cutable

2.3. Version 9.2.3

25



GHC User’s Guide Documentation, Release 9.2.8

2.4 Version 9.2.4

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 278) of this release is to be used with LLVM 9, 10, 11, or 12.

2.4.1 Compiler

Add the DeepSubsumption (page 421) language extension which reverses the effects of
the Simplified Subsumption Proposal introduced in GHC 9.0. This is an attempt to make
GHC 9.2.4 more backwards compatible with GHC 8.10 and eases migration for users
who depended on this feature.

This extension is enabled by default with the Haskell12010 (page 302) and Haskell98
(page 302) languages but disabled with the GHC2021 (page 301) language originally in-
troduced in GHC 9.2.1.

See the Deep Subsumption Proposal for more details.
The flag -ddump-11vm doesn’t imply - fllvm any more (21776).
Fix a compiler panic due to a bug in the simplifier (21694).

Fix a bug where the flag Werror=unrecognised-warning-flags did not behave as ex-
pected (21682).

Fix miscompilations on AArch64 (21624, 21773, 20735).

Fix a miscompilation bug that manifests due to improper handling of name shadowing
during common subexpression elimination (21685).

Fix a space leak that may manifest using the extendMG function (21818).
Ensure types from record dot syntax are stored in the HIE file AST (21797).
Fix a compiler panic when importing “wrapper” with -XCApiFFI (20272).

Enable -Wunicode-bidirectional-format-characters by default. This was meant to
be enabled previously but was not due to a botched backport (21865).

2.4.2 Runtime system

Fix segfaults that may arise due to a bug in the implementation of the keepAlive# primop.
This may regress performance for certain programs which use this primop or functions
which use the primop, such as withForeignPtr. These regressions are mostly small, but
can be larger in certain edge cases. Judicious use of unsafeWithForeignPtr when its
argument is known not to statically diverge can mitigate these in many cases. It is our
judgement that the critical correctness issues justify the regression in performance and
that it is important to get a release out with the fix while we work on a better approach
which will improve performance for future releases (21708).

Fix a segfault that may arise using LDV profiling (21880).

Fix a bug in the nonmoving GC which resulted in segfaults due to early GC (21885).
Fix accounting for copied bytes during sequential garbage collections (21745).
Allow passing” "-po” " flag to set output during non-profiled builds (21445).

Respect the -po flag to set output while heap profiling (21446).

26

Chapter 2. Release notes


https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0511-deep-subsumption.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0511-deep-subsumption.rst
https://gitlab.haskell.org/ghc/ghc/issues/21776
https://gitlab.haskell.org/ghc/ghc/issues/21694
https://gitlab.haskell.org/ghc/ghc/issues/21682
https://gitlab.haskell.org/ghc/ghc/issues/21624
https://gitlab.haskell.org/ghc/ghc/issues/21773
https://gitlab.haskell.org/ghc/ghc/issues/20735
https://gitlab.haskell.org/ghc/ghc/issues/21685
https://gitlab.haskell.org/ghc/ghc/issues/21818
https://gitlab.haskell.org/ghc/ghc/issues/21797
https://gitlab.haskell.org/ghc/ghc/issues/20272
https://gitlab.haskell.org/ghc/ghc/issues/21865
https://gitlab.haskell.org/ghc/ghc/issues/21708
https://gitlab.haskell.org/ghc/ghc/issues/21880
https://gitlab.haskell.org/ghc/ghc/issues/21885
https://gitlab.haskell.org/ghc/ghc/issues/21745
https://gitlab.haskell.org/ghc/ghc/issues/21445
https://gitlab.haskell.org/ghc/ghc/issues/21446

GHC User’s Guide Documentation, Release 9.2.8

2.4.3 GHCi

2.4.4 Core libraries

* Bump base to 4.16.3.0.

Allow CApi FFI calls in GHCi (7388).
¢ Fix behaviour of Ctrl-C on Windows in GHCi (21889).

* Ensure hGetBufNonBlocking doesn’t block on Windows (21665).

2.4.5 Build system and packaging

* Don’t override linker on Darwin during configure (21712).

* Fix a hadrian bug to do with building profiled executables without corresponding li-

braries (19624).

» Fix a panic on FreeBSD when building with hadrian due to incorrect arch triple (15718).

2.4.6 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change

information.
Package Version Reason for inclusion
ghc 9.2.8
The compiler itself
Cabal 3.6.3.0
Dependency of ghc-pkg util-
ity
Win32 2.12.0.1
Dependency of ghc library
array 0.5.4.0
Dependency of ghc library
base 4.16.4.0
Core library
binary 0.8.9.0
Dependency of ghc library
bytestring 0.11.4.0

Dependency of ghc library

continues on next page

2.4. Version 9.2.4

27


https://gitlab.haskell.org/ghc/ghc/issues/7388
https://gitlab.haskell.org/ghc/ghc/issues/21889
https://gitlab.haskell.org/ghc/ghc/issues/21665
https://gitlab.haskell.org/ghc/ghc/issues/21712
https://gitlab.haskell.org/ghc/ghc/issues/19624
https://gitlab.haskell.org/ghc/ghc/issues/15718

GHC User’s Guide Documentation, Release 9.2.8

Table 4 - continued from previous page

Package Version Reason for inclusion
containers 0.6.5.1

Dependency of ghc library
deepseq 1.4.6.1

Dependency of ghc library
directory 1.3.6.2

Dependency of ghc library
exceptions 0.10.4

Dependency of ghc and

haskeline library
filepath 1.4.2.2

Dependency of ghc library
ghc-boot-th 9.2.8

Internal compiler library
ghc-boot 9.2.8

Internal compiler library
ghc-compact 0.1.0.0

Core library
ghc-heap 9.2.8

GHC heap-walking library
ghc-prim 0.8.0

Core library
ghci 9.2.8

The REPL interface
haskeline 0.8.2

Dependency of ghci exe-

cutable
hpc 0.6.1.0

Dependency of hpc exe-

cutable
integer-gmp 1.1

Core library
libiserv 9.2.8

Internal compiler library

continues on next page
28 Chapter 2. Release notes



GHC User’s Guide Documentation, Release 9.2.8

Table 4 - continued from previous page

Package Version Reason for inclusion
mtl 2.2.2

Dependency of Cabal library
parsec 3.1.15.0

Dependency of Cabal library
pretty 1.1.3.6

Dependency of ghc library
process 1.6.16.0

Dependency of ghc library
stm 2.5.0.2

Dependency of haskeline li-

brary
template-haskell 2.18.0.0

Core library
terminfo 0.4.1.5

Dependency of haskeline li-

brary
text 1.2.5.0

Dependency of Cabal library
time 1.11.1.1

Dependency of ghc library
transformers 0.5.6.2

Dependency of ghc library
unix 2.7.2.2

Dependency of ghc library
xhtml 3000.2.2.1

Dependency of haddock exe-
cutable

2.4. Version 9.2.4

29



GHC User’s Guide Documentation, Release 9.2.8

2.5 Version 9.2.5

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 278) of this release is to be used with LLVM 9, 10, 11, or 12.

2.5.1 Compiler

Fix a number of issues with the simplifier leading to core lint errors and suboptimal
performance (21694, 21755, 22114).

Fix a sign extension bug resulting in incorrent runtime results on the native aarch64
backend (22282).

Improve determinism by not inclusing build directories in interface files (22162).
Fix a code generation panic when using SIMD types with unboxed sums (22187).

Fix a code generation bug with the native code generator on aarch64 darwin leading to
runtime segmentation faults due to an incorrect ABI (21964)

2.5.2 Runtime system

Fix a bug where attempting to clear the card table of a zero-length array resulted in an
integer underflow (21962).

2.5.3 Core libraries

Bump base to 4.16.3.0.
Bump process to 1.6.16.0

base: Fix races in the IOManager to do with the setNumCapabilities and closeFdWith
functions (21651)

2.5.4 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change

information.
Package Version Reason for inclusion
ghc 9.2.8
The compiler itself
Cabal 3.6.3.0
Dependency of ghc-pkg util-
ity
continues on next page
30 Chapter 2. Release notes


https://gitlab.haskell.org/ghc/ghc/issues/21694
https://gitlab.haskell.org/ghc/ghc/issues/21755
https://gitlab.haskell.org/ghc/ghc/issues/22114
https://gitlab.haskell.org/ghc/ghc/issues/22282
https://gitlab.haskell.org/ghc/ghc/issues/22162
https://gitlab.haskell.org/ghc/ghc/issues/22187
https://gitlab.haskell.org/ghc/ghc/issues/21964
https://gitlab.haskell.org/ghc/ghc/issues/21962
https://gitlab.haskell.org/ghc/ghc/issues/21651

GHC User’s Guide Documentation, Release 9.2.8

Table 5 - continued from previous page

Package Version Reason for inclusion
Win32 2.12.0.1

Dependency of ghc library
array 0.5.4.0

Dependency of ghc library
base 4.16.4.0

Core library
binary 0.8.9.0

Dependency of ghc library
bytestring 0.11.4.0

Dependency of ghc library
containers 0.6.5.1

Dependency of ghc library
deepseq 1.4.6.1

Dependency of ghc library
directory 1.3.6.2

Dependency of ghc library
exceptions 0.10.4

Dependency of ghc and

haskeline library
filepath 1.4.2.2

Dependency of ghc library
ghc-boot-th 9.2.8

Internal compiler library
ghc-boot 9.2.8

Internal compiler library
ghc-compact 0.1.0.0

Core library
ghc-heap 9.2.8

GHC heap-walking library
ghc-prim 0.8.0

Core library
ghci 9.2.8

The REPL interface

continues on next page

2.5. Version 9.2.5

31



GHC User’s Guide Documentation, Release 9.2.8

Table 5 - continued from previous page

Package Version Reason for inclusion
haskeline 0.8.2
Dependency of ghci exe-
cutable
hpc 0.6.1.0
Dependency of hpc exe-
cutable
integer-gmp 1.1
Core library
libiserv 9.2.8
Internal compiler library
mtl 2.2.2
Dependency of Cabal library
parsec 3.1.15.0
Dependency of Cabal library
pretty 1.1.3.6
Dependency of ghc library
process 1.6.16.0
Dependency of ghc library
stm 2.5.0.2
Dependency of haskeline li-
brary
template-haskell 2.18.0.0
Core library
terminfo 0.4.1.5
Dependency of haskeline li-
brary
text 1.2.5.0
Dependency of Cabal library
time 1.11.1.1
Dependency of ghc library
transformers 0.5.6.2
Dependency of ghc library
unix 2.7.2.2
Dependency of ghc library
continues on next page
32 Chapter 2. Release notes



GHC User’s Guide Documentation, Release 9.2.8

Table 5 - continued from previous page

Package Version Reason for inclusion

xhtml 3000.2.2.1

Dependency of haddock exe-
cutable

2.6 Version 9.2.6

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 278) of this release is to be used with LLVM 9, 10, 11, or 12.

2.6.1 Compiler

Fix a regression in the simplifier due to a bad backport in GHC 9.2.5 that could seriously
impact runtime performance when compiling with optimisations due to duplication of
expensive work (22425).

Fix a compiler panic in the simplifier due to a bad backport in GHC 9.2.5 (22491).

Fix a compiler panic in the simplifier that manifests when compiling with optimisations
(19824, 22482).

Fix a compiler panic in the demand analyser due to a bug involving shadowing (22718).

Fix a compiler panic during the “Float In” optimsation pass due to improper handling of
shadowing (22662).

Fix a compiler panic in the demand analyser (22039).
Fix a shadowing related bug in the occurence analysis phase of the simplifier (22623).

Fix a compiler bug where programs using Template Haskell involving Constant Applica-
tive forms could be garbage collected too early (22417).

Fix a regression in the typechecker where certain typeclass instances involving type and
data familes would fail to resolve (22647).

Fix the linker warning about chained fixups on Darwin platforms for programs compiled
with GHC (22429).

Fix a bug with the graph-colouring register allocater leading to compiler panics when
compiling with - fregs-graph (22798).

Fix a parser bug where certain keywords which could be used as variables were not
allowed to be used with OverloadedRecordDot (page 447) (20723).

Fix the location of some Typeable definitions from GHC.Types which resulted in poor
error messages (22510).

Improve error messages involving non-exhaustive patterns when using ApplicativeDo
(page 311) (22483).

Fix a driver bug where certain non-fatal Safe Haskell related warnings were being
marked as fatal (22728).

2.6.

Version 9.2.6 33


https://gitlab.haskell.org/ghc/ghc/issues/22425
https://gitlab.haskell.org/ghc/ghc/issues/22491
https://gitlab.haskell.org/ghc/ghc/issues/19824
https://gitlab.haskell.org/ghc/ghc/issues/22482
https://gitlab.haskell.org/ghc/ghc/issues/22718
https://gitlab.haskell.org/ghc/ghc/issues/22662
https://gitlab.haskell.org/ghc/ghc/issues/22039
https://gitlab.haskell.org/ghc/ghc/issues/22623
https://gitlab.haskell.org/ghc/ghc/issues/22417
https://gitlab.haskell.org/ghc/ghc/issues/22647
https://gitlab.haskell.org/ghc/ghc/issues/22429
https://gitlab.haskell.org/ghc/ghc/issues/22798
https://gitlab.haskell.org/ghc/ghc/issues/20723
https://gitlab.haskell.org/ghc/ghc/issues/22510
https://gitlab.haskell.org/ghc/ghc/issues/22483
https://gitlab.haskell.org/ghc/ghc/issues/22728

GHC User’s Guide Documentation, Release 9.2.8

Fix a core lint error arises from incorrect scoping of type variables in specialise pragmas
inside class instances (22913).

Improve typchecker performance for modules with holes in type signatures (14766).

2.6.2 Runtime system

Fix a GC bug where a race condition in the parallel GC could cause it to garbage collect
live sparks (22528).

Truncate eventlog events with a large payload (20221).

A bug in the nonmoving garbage collector regarding the treatment of zero-length
SmallArray#s has been fixed (22264)

A number of bugs regarding the non-moving garbage collector’s treatment of Weak#
pointers have been fixed (22327)

A few race conditions between the non-moving collector and setNumCapabilities which
could result in undefined behavior have been fixed (22926, 22927)

The non-moving collector is now able to better schedule marking work during the post-
mark synchronization phase of collection, significantly reducing pause times in some
workloads (22929).

Various bugs in the non-moving collector’s implementation of the selector optimisation
have been fixed (22930)

2.6.3 Build system and packaging

Bump gmp-tarballs to a version which doesn’t use the reserved x18 register on
AArch64/Darwin systems, and also has fixes for CVE-2021-43618 (22497, 22789).

Include haddock documentation in interface files for hadrian generated bindists, includ-
ing darwin platforms (22734).

2.6.4 Core libraries

Bump bytestring to 0.11.4.0.

2.6.5 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change

information.
Package Version Reason for inclusion
ghc 9.2.8
The compiler itself
continues on next page
34 Chapter 2. Release notes


https://gitlab.haskell.org/ghc/ghc/issues/22913
https://gitlab.haskell.org/ghc/ghc/issues/14766
https://gitlab.haskell.org/ghc/ghc/issues/22528
https://gitlab.haskell.org/ghc/ghc/issues/20221
https://gitlab.haskell.org/ghc/ghc/issues/22264
https://gitlab.haskell.org/ghc/ghc/issues/22327
https://gitlab.haskell.org/ghc/ghc/issues/22926
https://gitlab.haskell.org/ghc/ghc/issues/22927
https://gitlab.haskell.org/ghc/ghc/issues/22929
https://gitlab.haskell.org/ghc/ghc/issues/22930
https://gitlab.haskell.org/ghc/ghc/issues/22497
https://gitlab.haskell.org/ghc/ghc/issues/22789
https://gitlab.haskell.org/ghc/ghc/issues/22734

GHC User’s Guide Documentation, Release 9.2.8

Table 6 - continued from previous page

Package Version Reason for inclusion
Cabal 3.6.3.0

Dependency of ghc-pkg util-

ity
Win32 2.12.0.1

Dependency of ghc library
array 0.5.4.0

Dependency of ghc library
base 4.16.4.0

Core library
binary 0.8.9.0

Dependency of ghc library
bytestring 0.11.4.0

Dependency of ghc library
containers 0.6.5.1

Dependency of ghc library
deepseq 1.4.6.1

Dependency of ghc library
directory 1.3.6.2

Dependency of ghc library
exceptions 0.10.4

Dependency of ghc and

haskeline library
filepath 1.4.2.2

Dependency of ghc library
ghc-boot-th 9.2.8

Internal compiler library
ghc-boot 9.2.8

Internal compiler library
ghc-compact 0.1.0.0

Core library
ghc-heap 9.2.8

GHC heap-walking library
ghc-prim 0.8.0

Core library

continues on next page

2.6. Version 9.2.6

35



GHC User’s Guide Documentation, Release 9.2.8

Table 6 - continued from previous page

Package Version Reason for inclusion
ghci 9.2.8
The REPL interface
haskeline 0.8.2
Dependency of ghci exe-
cutable
hpc 0.6.1.0
Dependency of hpc exe-
cutable
integer-gmp 1.1
Core library
libiserv 9.2.8
Internal compiler library
mtl 2.2.2
Dependency of Cabal library
parsec 3.1.15.0
Dependency of Cabal library
pretty 1.1.3.6
Dependency of ghc library
process 1.6.16.0
Dependency of ghc library
stm 2.5.0.2
Dependency of haskeline li-
brary
template-haskell 2.18.0.0
Core library
terminfo 0.4.1.5
Dependency of haskeline li-
brary
text 1.2.5.0
Dependency of Cabal library
time 1.11.1.1
Dependency of ghc library
transformers 0.5.6.2
Dependency of ghc library
continues on next page
36 Chapter 2. Release notes



GHC User’s Guide Documentation, Release 9.2.8

Table 6 - continued from previous page
Package Version Reason for inclusion

unix 2.7.2.2

Dependency of ghc library

xhtml 3000.2.2.1
Dependency of haddock exe-
cutable

2.7 Version 9.2.7

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 278) of this release is to be used with LLVM 9, 10, 11, or 12.

2.7.1 Compiler

» Fix a bug related to placeholder values (rubbish literals) emitted by the worker/wrapper
optimisation leading to -dcore-1lint errors and compiler panics in certain cases (19882,
22914, 23000).

* Fix a bug with the graph-colouring register allocater leading to compiler panics when
compiling with -fregs-graph on AArch64 platforms with the native code generator. A
fix was also attempted in GHC 9.2.6 but was incomplete (22798, 23002).

2.7.2 Runtime system

* Fix a bug with the RTS linker being unable to resolve the setKeepCAFs symbol which
started being used by the GHC library in 9.2.6, resulting in code depending on this sym-
bol failing to load in GHCIi or via a compile time splice when using a statically linked
GHC, such as on Windows (22961).

» Fix a bug with the alignment of RTS data structures that could result in segfaults when
compiled with high optimisation settings on certain platforms (22975, 22965).

* Fix a RTS bug resulting in segfaults while using cost center profiling on code that uses
the newArrayArray# primop (22129).

* Use C11 compatible static assertion syntax (22777).

2.7.3 Build system and packaging

* Remove quarantine attribute when installing binary distribution on MacOS (21506,
23009).

Enable SMP on powerp64{le} (19825).

2.7. Version 9.2.7 37


https://gitlab.haskell.org/ghc/ghc/issues/19882
https://gitlab.haskell.org/ghc/ghc/issues/22914
https://gitlab.haskell.org/ghc/ghc/issues/23000
https://gitlab.haskell.org/ghc/ghc/issues/22798
https://gitlab.haskell.org/ghc/ghc/issues/23002
https://gitlab.haskell.org/ghc/ghc/issues/22961
https://gitlab.haskell.org/ghc/ghc/issues/22975
https://gitlab.haskell.org/ghc/ghc/issues/22965
https://gitlab.haskell.org/ghc/ghc/issues/22129
https://gitlab.haskell.org/ghc/ghc/issues/22777
https://gitlab.haskell.org/ghc/ghc/issues/21506
https://gitlab.haskell.org/ghc/ghc/issues/23009
https://gitlab.haskell.org/ghc/ghc/issues/19825

GHC User’s Guide Documentation, Release 9.2.8

2.7.4 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion
ghc 9.2.8

The compiler itself
Cabal 3.6.3.0

Dependency of ghc-pkg util-

ity
Win32 2.12.0.1

Dependency of ghc library
array 0.5.4.0

Dependency of ghc library
base 4.16.4.0

Core library
binary 0.8.9.0

Dependency of ghc library
bytestring 0.11.4.0

Dependency of ghc library
containers 0.6.5.1

Dependency of ghc library
deepseq 1.4.6.1

Dependency of ghc library
directory 1.3.6.2

Dependency of ghc library
exceptions 0.10.4

Dependency of ghc and

haskeline library
filepath 1.4.2.2

Dependency of ghc library
ghc-boot-th 9.2.8

Internal compiler library
ghc-boot 9.2.8

Internal compiler library

continues on next page

38 Chapter 2. Release notes



GHC User’s Guide Documentation, Release 9.2.8

Table 7 - continued from previous page

Package Version Reason for inclusion
ghc-compact 0.1.0.0

Core library
ghc-heap 9.2.8

GHC heap-walking library
ghc-prim 0.8.0

Core library
ghci 9.2.8

The REPL interface
haskeline 0.8.2

Dependency of ghci exe-

cutable
hpc 0.6.1.0

Dependency of hpc exe-

cutable
integer-gmp 1.1

Core library
libiserv 9.2.8

Internal compiler library
mtl 2.2.2

Dependency of Cabal library
parsec 3.1.15.0

Dependency of Cabal library
pretty 1.1.3.6

Dependency of ghc library
process 1.6.16.0

Dependency of ghc library
stm 2.5.0.2

Dependency of haskeline li-

brary
template-haskell 2.18.0.0

Core library
terminfo 0.4.1.5

Dependency of haskeline li-
brary

continues on next page

2.7. Version 9.2.7

39



GHC User’s Guide Documentation, Release 9.2.8

Table 7 - continued from previous page

Package Version Reason for inclusion
text 1.2.5.0

Dependency of Cabal library
time 1.11.1.1

Dependency of ghc library
transformers 0.5.6.2

Dependency of ghc library
unix 2.7.2.2

Dependency of ghc library
xhtml 3000.2.2.1

Dependency of haddock exe-
cutable

2.8 Version 9.2.8

The significant changes to the various parts of the compiler are listed in the following sections.
The LLVM backend (page 278) of this release is to be used with LLIVM 9, 10, 11, or 12.

2.8.1 Runtime system

* Fix a bug with RTS linker failing with ‘internal error: m32 allocator init: Failed to map’
on newer Linux kernels (19421).

2.8.2 Included libraries

The package database provided with this distribution also contains a number of packages
other than GHC itself. See the changelogs provided with these packages for further change
information.

Package Version Reason for inclusion

ghc 9.2.8
The compiler itself

Cabal 3.6.3.0
Dependency of ghc-pkg util-
ity

Win32 2.12.0.1

Dependency of ghc library

continues on next page

40 Chapter 2. Release notes


https://gitlab.haskell.org/ghc/ghc/issues/19421

GHC User’s Guide Documentation, Release 9.2.8

Table 8 - continued from previous page

Package Version Reason for inclusion
array 0.5.4.0

Dependency of ghc library
base 4.16.4.0

Core library
binary 0.8.9.0

Dependency of ghc library
bytestring 0.11.4.0

Dependency of ghc library
containers 0.6.5.1

Dependency of ghc library
deepseq 1.4.6.1

Dependency of ghc library
directory 1.3.6.2

Dependency of ghc library
exceptions 0.104

Dependency of ghc and

haskeline library
filepath 1.4.2.2

Dependency of ghc library
ghc-boot-th 9.2.8

Internal compiler library
ghc-boot 9.2.8

Internal compiler library
ghc-compact 0.1.0.0

Core library
ghc-heap 9.2.8

GHC heap-walking library
ghc-prim 0.8.0

Core library
ghci 9.2.8

The REPL interface
haskeline 0.8.2

Dependency of ghci exe-
cutable

continues on next page

2.8. Version 9.2.8

41



GHC User’s Guide Documentation, Release 9.2.8

Table 8 - continued from previous page

Package Version Reason for inclusion
hpc 0.6.1.0

Dependency of hpc exe-

cutable
integer-gmp 1.1

Core library
libiserv 9.2.8

Internal compiler library
mtl 2.2.2

Dependency of Cabal library
parsec 3.1.15.0

Dependency of Cabal library
pretty 1.1.3.6

Dependency of ghc library
process 1.6.16.0

Dependency of ghc library
stm 2.5.0.2

Dependency of haskeline li-

brary
template-haskell 2.18.0.0

Core library
terminfo 0.4.1.5

Dependency of haskeline li-

brary
text 1.2.5.0

Dependency of Cabal library
time 1.11.1.1

Dependency of ghc library
transformers 0.5.6.2

Dependency of ghc library
unix 2.7.2.2

Dependency of ghc library
xhtml 3000.2.2.1

Dependency of haddock exe-
cutable

42 Chapter 2. Release notes



CHAPTER
THREE

USING GHCI

GHCi' is GHC'’s interactive environment that includes an interactive debugger (see The GHCi
Debugger (page 60)).

GHCIi can
* interactively evaluate Haskell expressions
* interpret Haskell programs
* load GHC-compiled modules.

At the moment GHCi supports most of GHC’s language extensions.

3.1 Introduction to GHCi

Let’s start with an example GHCi session. You can fire up GHCi with the command ghci:

$ ghci
GHCi, version 8.y.z: https://www.haskell.org/ghc/ :? for help
ghci>

There may be a short pause while GHCi loads the prelude and standard libraries, after which
the prompt is shown. As the banner says, you can type : 7 (page 77) to see the list of commands
available, and a halfline description of each of them. We’ll explain most of these commands as
we go along, and there is complete documentation for all the commands in GHCi commands
(page 72).

Haskell expressions can be typed at the prompt:

ghci> 1+2

3

ghci> let x = 42 in x / 9
4.666666666666667

ghci>

GHC i interprets the whole line as an expression to evaluate. The expression may not span
several lines - as soon as you press enter, GHCi will attempt to evaluate it.

In Haskell, a let expression is followed by in. However, in GHC], since the expression can
also be interpreted in the I0 monad, a let binding with no accompanying in statement can
be signalled by an empty line, as in the above example.

1 The “i” stands for “Interactive”

43



GHC User’s Guide Documentation, Release 9.2.8

Since GHC 8.0.1, you can bind values and functions to names without let statement:

ghci> x = 42
ghci> x

42

ghci>

3.2 Loading source files

Suppose we have the following Haskell source code, which we place in a file Main.hs:

main = print (fac 20)

fac 0
fac n

1
n * fac (n-1)

You can save Main.hs anywhere you like, but if you save it somewhere other than the current
directory® then we will need to change to the right directory in GHCi:

[ghci> :cd dir ]

where (dir) is the directory (or folder) in which you saved Main.hs.

To load a Haskell source file into GHCi, use the : load (page 79) command:

ghci> :load Main

Compiling Main ( Main.hs, interpreted )
Ok, modules loaded: Main.

*ghci>

GHCi has loaded the Main module, and the prompt has changed to *ghci> to indicate that the
current context for expressions typed at the prompt is the Main module we just loaded (we’ll
explain what the * means later in What’s really in scope at the prompt? (page 53)). So we
can now type expressions involving the functions from Main.hs:

*ghci> fac 17
355687428096000

Loading a multi-module program is just as straightforward; just give the name of the “topmost”
module to the :load (page 79) command (hint: :load (page 79) can be abbreviated to :1).
The topmost module will normally be Main, but it doesn’t have to be. GHCi will discover
which modules are required, directly or indirectly, by the topmost module, and load them all
in dependency order.

-fshow-loaded-modules
Default
off

Since
8.2.2

3 If you started up GHCi from the command line then GHCi’s current directory is the same as the current directory
of the shell from which it was started. If you started GHCi from the “Start” menu in Windows, then the current
directory is probably something like C:\Documents and Settings\user name.

a4 Chapter 3. Using GHCi



GHC User’s Guide Documentation, Release 9.2.8

Typically GHCi will show only the number of modules that it loaded after a :load
(page 79) command. With this flag, GHC will also list the loaded modules’ names. This
was the default behavior prior to GHC 8.2.1 and can be useful for some tooling users.

3.2.1 Modules vs. filenames

Question: How does GHC find the filename which contains module (M)? Answer: it looks for
the file M. hs, or M. lhs. This means that for most modules, the module name must match the
filename. If it doesn’t, GHCi won't be able to find it.

There is one exception to this general rule: when you load a program with : load (page 79),
or specify it when you invoke ghci, you can give a filename rather than a module name. This
filename is loaded if it exists, and it may contain any module you like. This is particularly
convenient if you have several Main modules in the same directory and you can’t call them all
Main.hs.

The search path for finding source files is specified with the - i (page 235) option on the GHCi
command line, like so:

[ghci -idirl:...:dirn J

or it can be set using the :set (page 81) command from within GHCi (see Setting GHC
command-line options in GHCi (page 86))*

One consequence of the way that GHCi follows dependencies to find modules to load is that
every module must have a source file. The only exception to the rule is modules that come
from a package, including the Prelude and standard libraries such as I0 and Complex. If you
attempt to load a module for which GHCi can’t find a source file, even if there are object and
interface files for the module, you’ll get an error message.

3.2.2 Making changes and recompilation

If you make some changes to the source code and want GHCi to recompile the program, give
the :reload (page 80) command. The program will be recompiled as necessary, with GHCi
doing its best to avoid actually recompiling modules if their external dependencies haven’t
changed. This is the same mechanism we use to avoid re-compiling modules in the batch
compilation setting (see The recompilation checker (page 240)).

3.3 Loading compiled code

When you load a Haskell source module into GHCi, it is normally converted to byte-code and
run using the interpreter. However, interpreted code can also run alongside compiled code
in GHCi; indeed, normally when GHCIi starts, it loads up a compiled copy of the base package,
which contains the Prelude.

Why should we want to run compiled code? Well, compiled code is roughly 10x faster than
interpreted code, but takes about 2x longer to produce (perhaps longer if optimisation is on).
So it pays to compile the parts of a program that aren’t changing very often, and use the
interpreter for the code being actively developed.

4 Note that in GHCi, and - -make (page 98) mode, the -i (page 235) option is used to specify the search path for
source files, whereas in standard batch-compilation mode the -1 (page 235) option is used to specify the search path
for interface files, see The search path (page 235).

3.3. Loading compiled code 45



GHC User’s Guide Documentation, Release 9.2.8

When loading up source modules with : load (page 79), GHCi normally looks for any corre-
sponding compiled object files, and will use one in preference to interpreting the source if
possible. For example, suppose we have a 4-module program consisting of modules A, B, C,
and D. Modules B and C both import D only, and A imports both B and C:

A
/ \
B C
\ /
D

We can compile D, then load the whole program, like this:

ghci> :! ghc -c -dynamic D.hs
ghci> :load A

Compiling B ( B.hs, interpreted )
Compiling C ( C.hs, interpreted )
Compiling A ( A.hs, interpreted )
Ok, modules loaded: A, B, C, D (D.o).

*ghci>

In the messages from the compiler, we see that there is no line for D. This is because it isn't
necessary to compile D, because the source and everything it depends on is unchanged since
the last compilation.

Note the -dynamic (page 280) flag to GHC: GHCi uses dynamically-linked object code (if you
are on a platform that supports it), and so in order to use compiled code with GHCi it must
be compiled for dynamic linking.

At any time you can use the command :show modules (page 83) to get a list of the modules
currently loaded into GHCi:

*ghci> :show modules

D ( D.hs, D.o )

C ( C.hs, interpreted )
B ( B.hs, interpreted )
A ( A.hs, interpreted )
*ghci>

If we now modify the source of D (or pretend to: using the Unix command touch on the source
file is handy for this), the compiler will no longer be able to use the object file, because it might
be out of date:

*ghci> :! touch D.hs
*ghci> :reload

Compiling D ( D.hs, interpreted )
0Ok, modules loaded: A, B, C, D.
*ghci>

Note that module D was compiled, but in this instance because its source hadn’t really
changed, its interface remained the same, and the recompilation checker determined that
A, B and C didn’t need to be recompiled.

So let’s try compiling one of the other modules:

46 Chapter 3. Using GHCi




GHC User’s Guide Documentation, Release 9.2.8

*ghci> :! ghc -c C.hs
*ghci> :load A

Compiling D ( D.hs, interpreted )
Compiling B ( B.hs, interpreted )
Compiling C ( C.hs, interpreted )
Compiling A ( A.hs, interpreted )
0Ok, modules loaded: A, B, C, D.

We didn’t get the compiled version of C! What happened? Well, in GHCi a compiled module
may only depend on other compiled modules, and in this case C depends on D, which doesn’t
have an object file, so GHCi also rejected C's object file. Ok, so let’s also compile D:

*ghci> :! ghc -c D.hs
*ghci> :reload
Ok, modules loaded: A, B, C, D.

Nothing happened! Here’s another lesson: newly compiled modules aren’t picked up by
:reload (page 80), only : load (page 79):

*ghci> :load A

Compiling B ( B.hs, interpreted )
Compiling A ( A.hs, interpreted )
0k, modules loaded: A, B, C (C.o), D (D.o).

The automatic loading of object files can sometimes lead to confusion, because non-exported
top-level definitions of a module are only available for use in expressions at the prompt when
the module is interpreted (see What’s really in scope at the prompt? (page 53)). For this
reason, you might sometimes want to force GHCIi to load a module using the interpreter. This
can be done by prefixing a * to the module name or filename when using : load (page 79), for
example

ghci> :load *A
Compiling A ( A.hs, interpreted )
*ghci>

When the * is used, GHCi ignores any pre-compiled object code and interprets the module. If
you have already loaded a number of modules as object code and decide that you wanted to
interpret one of them, instead of re-loading the whole set you can use :add *M to specify that
you want M to be interpreted (note that this might cause other modules to be interpreted too,
because compiled modules cannot depend on interpreted ones).

To always compile everything to object code and never use the interpreter, use the
-fobject-code (page 278) option (see Compiling to object code inside GHCi (page 89)).

Hint: Since GHCi will only use a compiled object file if it can be sure that the compiled
version is up-to-date, a good technique when working on a large program is to occasionally
run ghc --make to compile the whole project (say before you go for lunch :-), then continue
working in the interpreter. As you modify code, the changed modules will be interpreted, but
the rest of the project will remain compiled.

3.3. Loading compiled code a7




GHC User’s Guide Documentation, Release 9.2.8

3.4 Interactive evaluation at the prompt

When you type an expression at the prompt, GHCi immediately evaluates and prints the result:

ghci> reverse "hello"
"olleh"

ghci> 545

10

3.4.1 1/0 actions at the prompt

GHCi does more than simple expression evaluation at the prompt. If you enter an expression
of type I0 a for some a, then GHCi executes it as an I0-computation.

ghci> "hello"

"hello"

ghci> putStrLn "hello"
hello

This works even if the type of the expression is more general, provided it can be instantiated
to I0 a. For example

ghci> return True
True

Furthermore, GHCi will print the result of the I/O action if (and only if):
* The result type is an instance of Show.

* The result type is not ().

For example, remembering that putStrLn :: String -> I0 ():
ghci> putStrLn "hello"

hello

ghci> do { putStrLn "hello"; return "yes" }

hello

Ilyesll

3.4.2 Using do notation at the prompt

GHCi actually accepts statements rather than just expressions at the prompt. This means you
can bind values and functions to names, and use them in future expressions or statements.

The syntax of a statement accepted at the GHCi prompt is exactly the same as the syntax
of a statement in a Haskell do expression. However, there’s no monad overloading here:
statements typed at the prompt must be in the I0 monad.

ghci> x <- return 42
ghci> print x

42

ghci>

48 Chapter 3. Using GHCi



GHC User’s Guide Documentation, Release 9.2.8

The statement x <- return 42 means “execute return 42 in the I0 monad, and bind the
result to x”. We can then use x in future statements, for example to print it as we did above.

-fprint-bind-result

If -fprint-bind-result (page 49) is set then GHCi will print the result of a statement
if and only if:

* The statement is not a binding, or it is a monadic binding (p <- e) that binds exactly
one variable.

» The variable’s type is not polymorphic, is not (), and is an instance of Show.

Of course, you can also bind normal non-IO expressions using the let-statement:

ghci> let x = 42
ghci> x

42

ghci>

Another important difference between the two types of binding is that the monadic bind (p
<- e) is strict (it evaluates e), whereas with the let form, the expression isn’t evaluated
immediately:

ghci> let x = error "help!"
ghci> print x

*** Exception: help!

ghci>

Note that let bindings do not automatically print the value bound, unlike monadic bindings.

You can also define functions at the prompt:

ghci> add a b =a + b
ghci> add 1 2

3

ghci>

However, this quickly gets tedious when defining functions with multiple clauses, or groups
of mutually recursive functions, because the complete definition has to be given on a single
line, using explicit semicolons instead of layout:

ghci> f opn [] =n; fopn (h:it) =h "op” fopnt
ghci> f (+) 0 [1..3]

6

ghci>

{
:}
Begin or end a multi-line GHCi command block.

To alleviate this issue, GHCi commands can be split over multiple lines, by wrapping them in
:{ and :} (each on a single line of its own):

ghci> :{
ghci| gop n [] =n
ghci| g op n (h:t) =h "op" gopnt

(continues on next page)

3.4. Interactive evaluation at the prompt 49



GHC User’s Guide Documentation, Release 9.2.8

(continued from previous page)
ghci| :}
ghci> g (*) 1 [1..3]
6

Such multiline commands can be used with any GHCi command, and note that the layout rule
is in effect. The main purpose of multiline commands is not to replace module loading but
to make definitions in .ghci-files (see The .ghci and .haskeline files (page 87)) more readable
and maintainable.

Any exceptions raised during the evaluation or execution of the statement are caught and
printed by the GHCi command line interface (for more information on exceptions, see the
module Control.Exception in the libraries documentation.

Every new binding shadows any existing bindings of the same name, including entities that
are in scope in the current module context.

Warning: Temporary bindings introduced at the prompt only last until the next : load
(page 79) or : reload (page 80) command, at which time they will be simply lost. However,
they do survive a change of context with :module (page 80): the temporary bindings just
move to the new location.

Hint: To get a list of the bindings currently in scope, use the :show bindings (page 83)
command:

ghci> :show bindings
x :: Int
ghci>

Hint: If you turn on the +t option, GHCi will show the type of each variable bound by a
statement. For example:

ghci> :set +t

ghci> let (x:xs) = [1..]
X :: Integer

xs :: [Integer]

3.4.3 Multiline input

Apart from the :{ ... :} syntax for multi-line input mentioned above, GHCi also has a mul-
tiline mode, enabled by :set +m, :set +m in which GHCi detects automatically when the
current statement is unfinished and allows further lines to be added. A multi-line input is
terminated with an empty line. For example:

ghci> :set +m
ghci> let x = 42
ghci|

50 Chapter 3. Using GHCi


./../libraries/base-4.16.4.0/Control-Exception.html

GHC User’s Guide Documentation, Release 9.2.8

Further bindings can be added to this let statement, so GHCi indicates that the next line
continues the previous one by changing the prompt. Note that layout is in effect, so to add
more bindings to this let we have to line them up:

ghci> :set +m
ghci> let x = 42
ghci| y =3
ghci|

ghci>

Explicit braces and semicolons can be used instead of layout:

ghci> do {

ghci| putStrLn "hello"
ghci| ;putStrLn "world"
ghci| }

hello

world

ghci>

Note that after the closing brace, GHCi knows that the current statement is finished, so no
empty line is required.

Multiline mode is useful when entering monadic do statements:

ghci> flip evalStateT 0 $ do
ghci| i <- get

ghci| lift $ do

ghci| putStrLn "Hello World!"

ghci| print i
ghci|

"Hello World!"
0

ghci>

During a multiline interaction, the user can interrupt and return to the top-level prompt.

ghci> do

ghci| putStrLn "Hello, World!"
ghci| ~C

ghci>

3.4.4 Type, class and other declarations

At the GHCi prompt you can also enter any top-level Haskell declaration, including data, type,
newtype, class, instance, deriving, and foreign declarations. For example:

ghci> data T = A | B | C deriving (Eq, Ord, Show, Enum)

ghci> [A ..]

[A,B,C]

ghci> :1i T

data T=A | B | C -- Defined at <interactive>:2:6
instance Enum T -- Defined at <interactive>:2:45

(continues on next page)

3.4. Interactive evaluation at the prompt 51




GHC User’s Guide Documentation, Release 9.2.8

(continued from previous page)

instance Eq T -- Defined at <interactive>:2:30
instance Ord T -- Defined at <interactive>:2:34
instance Show T -- Defined at <interactive>:2:39

As with ordinary variable bindings, later definitions shadow earlier ones, so you can re-enter
a declaration to fix a problem with it or extend it. But there’s a gotcha: when a new type
declaration shadows an older one, there might be other declarations that refer to the old
type. The thing to remember is that the old type still exists, and these other declarations still
refer to the old type. However, while the old and the new type have the same name, GHCi
will treat them as distinct. For example:

ghci> data T=A | B

ghci> let f A = True; f B = False
ghci> data T=A | B | C

ghci> f A

<interactive>:2:3:
Couldn't match expected type "main::Interactive.T'
with actual type 'T'
In the first argument of “f', namely "A'
In the expression: f A
In an equation for “it': it = f A
ghci>

The old, shadowed, version of T is displayed as main: :Interactive.T by GHCi in an attempt
to distinguish it from the new T, which is displayed as simply T.

Class and type-family instance declarations are simply added to the list of available instances,
with one exception. Since you might want to re-define one, a class instance replaces any
earlier instance with an identical head. You aren’t allowed to re-define a type family instance,
since it might not be type safe to do so. Instead, re-define the whole type-family. (See Type
families (page 368).) For example:

ghci> type family T a b
ghci> type instance T a b = a
ghci> let uc :: a -> T a b; uc = id

ghci> type instance Ta b = b

<interactive>:3:15: error:
Conflicting family instance declarations:
Tab=a -- Defined at <interactive>:3:15
Tab=Db -- Defined at <interactive>:5:15

-- Darn! We have to re-declare T.

ghci> type family T a b

-- This is a brand-new T, unrelated to the old one
ghci> type instance Ta b = b

ghci> uc 'a' :: Int

<interactive>:8:1: error:
e Couldn't match type ‘Char’ with ‘Int’

(continues on next page)

52 Chapter 3. Using GHCi




GHC User’s Guide Documentation, Release 9.2.8

(continued from previous page)

Expected type: Int
Actual type: Ghcil.T Char b0
e In the expression: uc 'a' :: Int
In an equation for ‘it’: it = uc 'a' :: Int

3.4.5 What's really in scope at the prompt?
When you type an expression at the prompt, what identifiers and types are in scope? GHCi
provides a flexible way to control exactly how the context for an expression is constructed:

* The :load (page 79), :add (page 72), and : reload (page 80) commands (The effect of
:load on what is in scope (page 53)).

* The import declaration (Controlling what is in scope with import (page 54)).

* The :module (page 80) command (Controlling what is in scope with the :module com-
mand (page 54)).

The command :show imports (page 83) will show a summary of which modules contribute
to the top-level scope.

Hint: GHCi will tab-complete names that are in scope; for example, if you run GHCi and
type J<tab> then GHCi will expand it to Just.

3.4.5.1 The effect of :load on what is in scope

The : load (page 79), :add (page 72), and : reload (page 80) commands (Loading source files
(page 44) and Loading compiled code (page 45)) affect the top-level scope. Let’s start with
the simple cases; when you start GHCi the prompt looks like this:

[ghci> ]

By default, this means that everything from the module Prelude is currently in scope. Should
the prompt be set to %s> in the .ghci configuration file, we would be seeing Prelude> dis-
played. However, it is not the default mechanism due to the large space the prompt can take
if more imports are done.

The syntax in the prompt *module indicates that it is the full top-level scope of {(module) that is
contributing to the scope for expressions typed at the prompt. Without the *, just the exports
of the module are visible.

Note: For technical reasons, GHCi can only support the *-form for modules that are in-
terpreted. Compiled modules and package modules can only contribute their exports to the
current scope. To ensure that GHCi loads the interpreted version of a module, add the * when
loading the module, e.g. : load *M.

In general, after a : load (page 79) command, an automatic import is added to the scope for
the most recently loaded “target” module, in a *-form if possible. For example, if you say
:load foo.hs bar.hs and bar.hs contains module Bar, then the scope will be set to *Bar if
Bar is interpreted, or if Bar is compiled it will be set to Prelude and Bar (GHCi automatically

3.4. Interactive evaluation at the prompt 53



GHC User’s Guide Documentation, Release 9.2.8

adds Prelude if it isn’t present and there aren’t any *-form modules). These automatically-
added imports can be seen with : show imports (page 83):

ghci> :load hello.hs

[1 of 1] Compiling Main ( hello.hs, interpreted )
Ok, modules loaded: Main.

*ghci> :show imports

:module +*Main -- added automatically

*ghci>

and the automatically-added import is replaced the next time you use : load (page 79), :add
(page 72), or : reload (page 80). It can also be removed by :module (page 80) as with normal
imports.

3.4.5.2 Controlling what is in scope with import

We are not limited to a single module: GHCi can combine scopes from multiple modules, in
any mixture of * and non-* forms. GHCi combines the scopes from all of these modules to
form the scope that is in effect at the prompt.

To add modules to the scope, use ordinary Haskell import syntax:

ghci> import System.IO
ghci> hPutStrLn stdout "hello\n"
hello

The full Haskell import syntax is supported, including hiding and as clauses. The prompt
shows the modules that are currently imported, but it omits details about hiding, as, and so
on. To see the full story, use :show imports (page 83):

ghci> import System.IO

ghci> import Data.Map as Map
ghci Map> :show imports
import Prelude -- implicit
import System.IO

import Data.Map as Map

Note that the Prelude import is marked as implicit. It can be overridden with an explicit
Prelude import, just like in a Haskell module.

With multiple modules in scope, especially multiple *-form modules, it is likely that name
clashes will occur. Haskell specifies that name clashes are only reported when an ambiguous
identifier is used, and GHCi behaves in the same way for expressions typed at the prompt.

3.4.5.3 Controlling what is in scope with the :module command

Another way to manipulate the scope is to use the :module (page 80) command, whose syntax
is this:

[:module +|- *modl ... *modn ]

Using the + form of the module commands adds modules to the current scope, and - removes
them. Without either + or -, the current scope is replaced by the set of modules specified.

54 Chapter 3. Using GHCi



GHC User’s Guide Documentation, Release 9.2.8

Note that if you use this form and leave out Prelude, an implicit Prelude import will be added
automatically.

The :module (page 80) command provides a way to do two things that cannot be done with
ordinary import declarations:

* :module (page 80) supports the * modifier on modules, which opens the full top-level
scope of a module, rather than just its exports.

* Imports can be removed from the context, using the syntax :module -M. The import
syntax is cumulative (as in a Haskell module), so this is the only way to subtract from
the scope.

3.4.5.4 Qualified names

To make life slightly easier, the GHCi prompt also behaves as if there is an implicit import
qualified declaration for every module in every package, and every module currently loaded
into GHCi. This behaviour can be disabled with the -fno-implicit-import-qualified flag.

3.4.5.5 :module and :load

It might seem that :module (page 80)/import and : load (page 79)/:add (page 72)/: reload
(page 80) do similar things: you can use both to bring a module into scope. However, there
is a very important difference. GHCIi is concerned with two sets of modules:

* The set of modules that are currently loaded. This set is modified by : load (page 79),
radd (page 72) and : reload (page 80), and can be shown with : show modules (page 83).

* The set of modules that are currently in scope at the prompt. This set is modified by
import and :module (page 80), and it is also modified automatically after : Load (page 79),
:add (page 72), and : reload (page 80), as described above. The set of modules in scope
can be shown with :show imports (page 83).

You can add a module to the scope (via :module (page 80) or import) only if either (a) it is
loaded, or (b) it is a module from a package that GHCi knows about. Using :module (page 80)
or import to try bring into scope a non-loaded module may result in the message module M
is not loaded.

3.4.6 The :main and :run commands

When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main func-
tion while we are testing in ghci, as the main function doesn’t take its directly.

Instead, we can use the :main (page 79) command. This runs whatever main is in scope, with
any arguments being treated the same as command-line arguments, e.g.:

ghci> main = System.Environment.getArgs >>= print
ghci> :main foo bar
[IIfOOII’IIbarII]

We can also quote arguments which contains characters like spaces, and they are treated like
Haskell strings, or we can just use Haskell list syntax:

3.4. Interactive evaluation at the prompt 55



GHC User’s Guide Documentation, Release 9.2.8

ghci> :main foo "bar baz"
["foo","bar baz"]

ghci> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the :run (page 81)
command:

ghci> foo = putStrLn "foo" >> System.Environment.getArgs >>= print
ghci> bar = putStrLn "bar" >> System.Environment.getArgs >>= print
ghci> :set -main-is foo

ghci> :main foo "bar baz"

foo

["foo","bar baz"]

ghci> :run bar ["foo", "bar baz"]
bar

["foo","bar baz"]

3.4.7 The it variable

Whenever an expression (or a non-binding statement, to be precise) is typed at the prompt,
GHCi implicitly binds its value to the variable it. For example:

ghci> 142

3

ghci> it * 2
6

What actually happens is that GHCi typechecks the expression, and if it doesn’t have an I0
type, then it transforms it as follows: an expression e turns into

let it = e;
print it

which is then run as an IO-action.

Hence, the original expression must have a type which is an instance of the Show class, or
GHCi will complain:

ghci> id

<interactive>:1:0:
No instance for (Show (a -> a))
arising from use of “print' at <interactive>:1:0-1
Possible fix: add an instance declaration for (Show (a -> a))
In the expression: print it
In a 'do' expression: print it

The error message contains some clues as to the transformation happening internally.

If the expression was instead of type I0 a for some a, then it will be bound to the result of
the I0 computation, which is of type a. eg.:

56 Chapter 3. Using GHCi




GHC User’s Guide Documentation, Release 9.2.8

ghci> Data.Time.getZonedTime
2017-04-10 12:34:56.93213581 UTC
ghci> print it

2017-04-10 12:34:56.93213581 UTC

The corresponding translation for an I0-typed e is

[it <- e ]

Note that it is shadowed by the new value each time you evaluate a new expression, and the
old value of it is lost.

In order to stop the value it being bound on each command, the flag - fno-it (page 57) can
be set. The it variable can be the source of space leaks due to how shadowed declarations
are handled by GHCi (see Type, class and other declarations (page 51)).

-fno-it

When this flag is set, the variable it will no longer be set to the result of the previously
evaluated expression.

3.4.8 Type defaulting in GHCi

ExtendedDefaultRules

Since
6.8.1

Allow defaulting to take place for more than just numeric classes.

Consider this GHCi session:

[ghci> reverse [] ]

What should GHCi do? Strictly speaking, the program is ambiguous. show (reverse [])
(which is what GHCi computes here) has type Show a => String and how that displays de-
pends on the type a. For example:

ghci> reverse ([] :: String)

ghci> reverse ([] :: [Int])

[

However, it is tiresome for the user to have to specify the type, so GHCi extends Haskell’s
type-defaulting rules (Section 4.3.4 of the Haskell 2010 Report) as follows. The standard
rules take each group of constraints (C1 a, C2 a, ..., Cn a) for each type variable a, and
defaults the type variable if

1. The type variable a appears in no other constraints
2. All the classes Ci are standard.
3. At least one of the classes Ci is numeric.

At the GHCi prompt, or with GHC if the ExtendedDefaultRules (page 57) flag is given, the
types are instead resolved with the following method:

Find all the unsolved constraints. Then:

3.4. Interactive evaluation at the prompt 57



GHC User’s Guide Documentation, Release 9.2.8

* Find those that are of form (C a) where a is a type variable, and partition those con-
straints into groups that share a common type variable a.

» Keep only the groups in which at least one of the classes is an interactive class (defined
below).

* Now, for each remaining group G, try each type ty from the default-type list in turn; if
setting a = ty would allow the constraints in G to be completely solved. If so, default a
to ty.

* The unit type () and the list type [] are added to the start of the standard list of types
which are tried when doing type defaulting.

Note that any multi-parameter constraints (D a b) or (D [a] Int) do not participate in the
process (either to help or to hinder); but they must of course be soluble once the defaulting
process is complete.

The last point means that, for example, this program:

main :: I0 ()
main = print def

instance Num ()

def :: (Num a, Enum a) => a
def = toEnum 0

prints () rather than 0 as the type is defaulted to () rather than Integer.

The motivation for the change is that it means I0 a actions default to I0 (), which in turn
means that ghci won’t try to print a result when running them. This is particularly impor-
tant for printf, which has an instance that returns I0 a. However, it is only able to return
undefined (the reason for the instance having this type is so that printf doesn’t require ex-
tensions to the class system), so if the type defaults to Integer then ghci gives an error when
running a printf.

See also I/O actions at the prompt (page 48) for how the monad of a computational expression
defaults to I0 if possible.

3.4.8.1 Interactive classes

The interactive classes (only relevant when ExtendedDefaultRules (page 57) is in effect) are:
any numeric class, Show, Eq, Ord, Foldable or Traversable.

As long as a type variable is constrained by one of these classes, defaulting will occur, as
outlined above.

3.4.8.2 Extended rules around default declarations

Since the rules for defaulting are relaxed under ExtendedDefaultRules (page 57), the rules
for default declarations are also relaxed. According to Section 4.3.4 of the Haskell 2010
Report, a default declaration looks like default (tl, ..., tn) where, for each ti, Num ti
must hold. This is relaxed to say that for each ti, there must exist an interactive class C such
that C ti holds. This means that type constructors can be allowed in these lists. For example,
the following works if you wish your Foldable constraints to default to Maybe but your Num
constraints to still default to Integer or Double:

58 Chapter 3. Using GHCi




GHC User’s Guide Documentation, Release 9.2.8

[default (Maybe, Integer, Double) ]

3.4.9 Using a custom interactive printing function

Since GHC 7.6.1, GHCIi prints the result of expressions typed at the prompt using the function
System.IO.print. Its type signature is Show a => a -> I0 (), and it works by converting
the value to String using show.

This is not ideal in certain cases, like when the output is long, or contains strings with non-
ascii characters.

The -interactive-print (name) (page 59) flag allows to specify any function of type C a =>
a -> I0 (), for some constraint C, as the function for printing evaluated expressions. The
function can reside in any loaded module or any registered package, but only when it resides
in a registered package will it survive a :cd (page 74), :add (page 72), :load (page 79),
:reload (page 80) or, :set (page 81).

-interactive-print (name)
Set the function used by GHCIi to print evaluation results. Given name must be of type C
a=>a -> 10 ().

As an example, suppose we have following special printing module:

module SpecPrinter where
import System.IO

sprint a = putStrLn $ show a ++ "!"

The sprint function adds an exclamation mark at the end of any printed value. Running GHCi
with the command:

[ghci -interactive-print=SpecPrinter.sprint SpecPrinter ]

will start an interactive session where values with be printed using sprint:

*SpecPrinter> [1,2,3]
[1,2,3]!
*SpecPrinter> 42

42!

A custom pretty printing function can be used, for example, to format tree-like and nested
structures in a more readable way.

The -interactive-print (name) (page 59) flag can also be used when running GHC in -e
mode:

3.4. Interactive evaluation at the prompt 59



GHC User’s Guide Documentation, Release 9.2.8

3.4.10 Stack Traces in GHCi

[ This is an experimental feature enabled by the new -fexternal-interpreter flag that was
introduced in GHC 8.0.1. It is currently not supported on Windows.]

GHCi can use the profiling system to collect stack trace information when running interpreted
code. To gain access to stack traces, start GHCIi like this:

[ghci -fexternal-interpreter -prof ]

This runs the interpreted code in a separate process (see Running the interpreter in a sepa-
rate process (page 89)) and runs it in profiling mode to collect call stack information. Note
that because we’re running the interpreted code in profiling mode, all packages that you
use must be compiled for profiling. The -prof flag to GHCi only works in conjunction with
-fexternal-interpreter.

There are three ways to get access to the current call stack.

* error and undefined automatically attach the current stack to the error message. This
often complements the HasCallStack stack (see HasCallStack (page 611)), so both call
stacks are shown.

* Debug.Trace.traceStackis aversion of Debug.Trace.trace that also prints the current
call stack.

* Functions in the module GHC.Stack can be used to get the current stack and render it.

You don’t need to use -fprof-auto for interpreted modules, annotations are automatically
added at a granularity fine enough to distinguish individual call sites. However, you won’t
see any call stack information for compiled code unless it was compiled with -fprof-auto or
has explicit SCC annotations (see Inserting cost centres by hand (page 654)).

3.5 The GHCi Debugger

GHCIi contains a simple imperative-style debugger in which you can stop a running computa-
tion in order to examine the values of variables. The debugger is integrated into GHCi, and
is turned on by default: no flags are required to enable the debugging facilities. There is one
major restriction: breakpoints and single-stepping are only available in interpreted modules;
compiled code is invisible to the debugger®.

The debugger provides the following:

* The ability to set a breakpoint on a function definition or expression in the program.
When the function is called, or the expression evaluated, GHCi suspends execution and
returns to the prompt, where you can inspect the values of local variables before contin-
uing with the execution.

* Execution can be single-stepped: the evaluator will suspend execution approximately
after every reduction, allowing local variables to be inspected. This is equivalent to
setting a breakpoint at every point in the program.

* Execution can take place in tracing mode, in which the evaluator remembers each eval-
uation step as it happens, but doesn’t suspend execution until an actual breakpoint is
reached. When this happens, the history of evaluation steps can be inspected.

5 Note that packages only contain compiled code, so debugging a package requires finding its source and loading
that directly.

60 Chapter 3. Using GHCi



GHC User’s Guide Documentation, Release 9.2.8

* Exceptions (e.g. pattern matching failure and error) can be treated as breakpoints, to
help locate the source of an exception in the program.

There is currently no support for obtaining a “stack trace”, but the tracing and history features
provide a useful second-best, which will often be enough to establish the context of an error.
For instance, it is possible to break automatically when an exception is thrown, even if it is
thrown from within compiled code (see Debugging exceptions (page 68)).

3.5.1 Breakpoints and inspecting variables

Let’s use quicksort as a running example. Here’s the code:

gsort [1 = []
gsort (a:as) = gsort left ++ [a] ++ gsort right
where (left,right) = (filter (<=a) as, filter (=a) as)

main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])

First, load the module into GHCi:

ghci> :1 gsort.hs

[1 of 1] Compiling Main ( gsort.hs, interpreted )
Ok, modules loaded: Main.
*ghci>

Now, let’s set a breakpoint on the right-hand-side of the second equation of gsort:

*ghci> :break 2
Breakpoint 0 activated at qgsort.hs:2:15-46
*ghci>

The command :break 2 sets a breakpoint on line 2 of the most recently-loaded module, in
this case gsort.hs. Specifically, it picks the leftmost complete subexpression on that line
on which to set the breakpoint, which in this case is the expression (qsort left ++ [a] ++
gsort right).

Now, we run the program:

*ghci> main
Stopped at gsort.hs:2:15-46

_result :: [a]
a:: a

left :: [a]
right :: [a]

[qsort.hs:2:15-46] *ghci>

Execution has stopped at the breakpoint. The prompt has changed to indicate that we are
currently stopped at a breakpoint, and the location: [gsort.hs:2:15-46]. To further clarify
the location, we can use the : list (page 79) command:

[gsort.hs:2:15-46] *ghci> :list

1 qgsort [] =[]

2 qgsort (a:as) = gsort left ++ [a] ++ qsort right

3 where (left,right) = (filter (<=a) as, filter (=a) as)

3.5. The GHCi Debugger 61




GHC User’s Guide Documentation, Release 9.2.8

The :list (page 79) command lists the source code around the current breakpoint. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

GHCi has provided bindings for the free variables® of the expression on which the break-
point was placed (a, left, right), and additionally a binding for the result of the expression
(_result). These variables are just like other variables that you might define in GHCi; you
can use them in expressions that you type at the prompt, you can ask for their types with
:type (page 84), and so on. There is one important difference though: these variables may
only have partial types. For example, if we try to display the value of left:

[gsort.hs:2:15-46] *ghci> left

<interactive>:1:0:
Ambiguous type variable "a' in the constraint:
“Show a' arising from a use of “print' at <interactive>:1:0-3
Cannot resolve unknown runtime types: a
Use :print or :force to determine these types

This is because qsort is a polymorphic function, and because GHCi does not carry type infor-
mation at runtime, it cannot determine the runtime types of free variables that involve type
variables. Hence, when you ask to display left at the prompt, GHCi can’t figure out which
instance of Show to use, so it emits the type error above.

Fortunately, the debugger includes a generic printing command, : print (page 80), which can
inspect the actual runtime value of a variable and attempt to reconstruct its type. If we try it
on left:

[gsort.hs:2:15-46] *ghci> :set -fprint-evld-with-show
[gsort.hs:2:15-46] *ghci> :print left
left = (_tl::[a])

This isn’t particularly enlightening. What happened is that left is bound to an unevaluated
computation (a suspension, or thunk), and :print (page 80) does not force any evaluation.
The idea is that :print (page 80) can be used to inspect values at a breakpoint without
any unfortunate side effects. It won’t force any evaluation, which could cause the program
to give a different answer than it would normally, and hence it won’t cause any exceptions
to be raised, infinite loops, or further breakpoints to be triggered (see Nested breakpoints
(page 66)). Rather than forcing thunks, :print (page 80) binds each thunk to a fresh variable
beginning with an underscore, in this case t1.

-fprint-evld-with-show

The flag - fprint-evld-with-show (page 62) instructs :print (page 80) to reuse avail-
able Show instances when possible. This happens only when the contents of the variable
being inspected are completely evaluated.

If we aren’t concerned about preserving the evaluatedness of a variable, we can use : force
(page 76) instead of :print (page 80). The : force (page 76) command behaves exactly like
:print (page 80), except that it forces the evaluation of any thunks it encounters:

[qsort.hs:2:15-46] *ghci> :force left
-l.ef't = [4,0'3' 1]

Now, since : force (page 76) has inspected the runtime value of left, it has reconstructed
its type. We can see the results of this type reconstruction:

6 We originally provided bindings for all variables in scope, rather than just the free variables of the expression,
but found that this affected performance considerably, hence the current restriction to just the free variables.

62 Chapter 3. Using GHCi




GHC User’s Guide Documentation, Release 9.2.8

[qsort.hs:2:15-46] *ghci> :show bindings
_result :: [Integer]

a :: Integer

left :: [Integer]

right :: [Integer]

_t1 :: [Integer]

Not only do we now know the type of left, but all the other partial types have also been
resolved. So we can ask for the value of a, for example:

[qsort.hs:2:15-46] *ghci> a
8

You might find it useful to use Haskell’s seq function to evaluate individual thunks rather than
evaluating the whole expression with : force (page 76). For example:

[gsort.hs:2:15-46] *ghci> :print right
right = (_tl::[Integer])
[gsort.hs:2:15-46] *ghci> seq t1 ()
()

[qsort.hs:2:15-46] *ghci> :print right
right = 23 : (_t2::[Integerl])

We evaluated only the t1 thunk, revealing the head of the list, and the tail is another thunk
now bound to t2. The seq function is a little inconvenient to use here, so you might want to
use :def (page 75) to make a nicer interface (left as an exercise for the reader!).

Finally, we can continue the current execution:

[gsort.hs:2:15-46] *ghci> :continue
Stopped at gsort.hs:2:15-46

_result :: [a]
a :: a

left :: [a]
right :: [a]

[qsort.hs:2:15-46] *ghci>

The execution continued at the point it previously stopped, and has now stopped at the break-
point for a second time.

3.5.1.1 Setting breakpoints

Breakpoints can be set in various ways. Perhaps the easiest way to set a breakpoint is to
name a top-level function:

[:break identifier J

Where (identifier) names any top-level function in an interpreted module currently loaded into
GHCIi (qualified names may be used). The breakpoint will be set on the body of the function,
when it is fully applied. If the function has several patterns, then a breakpoint will be set on
each of them.

By using qualified names, one can set breakpoints on all functions (top-level and nested) in
every loaded and interpreted module:

3.5. The GHCi Debugger 63



GHC User’s Guide Documentation, Release 9.2.8

[:break [ModQual.]topLevellIdent[.nestedIdent]...[.nestedIdent] ]

(ModQual) is optional and is either the effective name of a module or the local alias of a
qualified import statement.

(topLevelldent) is the name of a top level function in the module referenced by (ModQual).

(nestedldent) is optional and the name of a function nested in a let or where clause inside the
previously mentioned function (nestedldent) or (topLevelldent).

If (ModQual) is a module name, then (topLevelldent) can be any top level identifier in this
module. If (ModQual) is missing or a local alias of a qualified import, then (topLevelldent)
must be in scope.

Breakpoints can be set on arbitrarily deeply nested functions, but the whole chain of nested
function names must be specified.

Consider the function foo in a module Main:

foo s = 'a' : add s
where add = (++"z")

The breakpoint on the function add can be set with one of the following commands:

:break Main.foo.add
:break foo.add

Breakpoints can also be set by line (and optionally column) number:

:break line

:break line column

:break module 1line

:break module line column

When a breakpoint is set on a particular line, GHCi sets the breakpoint on the leftmost subex-
pression that begins and ends on that line. If two complete subexpressions start at the same
column, the longest one is picked. If there is no complete subexpression on the line, then the
leftmost expression starting on the line is picked, and failing that the rightmost expression
that partially or completely covers the line.

When a breakpoint is set on a particular line and column, GHCi picks the smallest subexpres-
sion that encloses that location on which to set the breakpoint. Note: GHC considers the TAB
character to have a width of 1, wherever it occurs; in other words it counts characters, rather
than columns. This matches what some editors do, and doesn’t match others. The best advice
is to avoid tab characters in your source code altogether (see -Wtabs (page 128) in Warnings
and sanity-checking (page 111)).

If the module is omitted, then the most recently-loaded module is used.

Not all subexpressions are potential breakpoint locations. Single variables are typically not
considered to be breakpoint locations (unless the variable is the right-hand-side of a function
definition, lambda, or case alternative). The rule of thumb is that all redexes are breakpoint
locations, together with the bodies of functions, lambdas, case alternatives and binding state-
ments. There is normally no breakpoint on a let expression, but there will always be a break-
point on its body, because we are usually interested in inspecting the values of the variables
bound by the let.

64 Chapter 3. Using GHCi



GHC User’s Guide Documentation, Release 9.2.8

3.5.1.2 Managing breakpoints

The list of breakpoints currently defined can be displayed using : show breaks (page 83):

*ghci> :show breaks
[0] Main qsort.hs:1:11-12 enabled
[1] Main qsort.hs:2:15-46 enabled

To disable one or several defined breakpoint, use the :disable (page 76) command with one
or several blank separated numbers given in the output from :show breaks (page 83):. To
disable all breakpoints at once, use :disable *.

*ghci> :disable 0

*ghci> :show breaks

[0] Main qsort.hs:1:11-12 disabled
[1] Main qsort.hs:2:15-46 enabled

Disabled breakpoints can be (re-)enabled with the :enable (page 76) command. The param-
eters of the :disable (page 76) and :enable (page 76) commands are identical.

To delete a breakpoint, use the :delete (page 76) command with the number given in the
output from :show breaks (page 83):

*ghci> :delete 0
*ghci> :show breaks
[1] Main qsort.hs:2:15-46 disabled

To delete all breakpoints at once, use :delete *.

3.5.2 Single-stepping

Single-stepping is a great way to visualise the execution of your program, and it is also a
useful tool for identifying the source of a bug. GHCi offers two variants of stepping. Use
:step (page 83) to enable all the breakpoints in the program, and execute until the next
breakpoint is reached. Use :steplocal (page 83) to limit the set of enabled breakpoints to
those in the current top level function. Similarly, use :stepmodule (page 83) to single step
only on breakpoints contained in the current module. For example:

*ghci> :step main
Stopped at gsort.hs:5:7-47
_result :: IO ()

The command :step expr (page 83) begins the evaluation of (expr) in single-stepping mode.
If (expr) is omitted, then it single-steps from the current breakpoint. :steplocal (page 83)
and :stepmodule (page 83) commands work similarly.

The :list (page 79) command is particularly useful when single-stepping, to see where you
currently are:

[gsort.hs:5:7-47] *ghci> :list

4

5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6

[qsort.hs:5:7-47] *ghci>

3.5. The GHCi Debugger 65



GHC User’s Guide Documentation, Release 9.2.8

In fact, GHCi provides a way to run a command when a breakpoint is hit, so we can make it
automatically do : list (page 79):

[qsort.hs:5:7-47] *ghci> :set stop :list
[gsort.hs:5:7-47] *ghci> :step
Stopped at gsort.hs:5:14-46

result :: [Integer]

4
5 main = print (gsort [8, 4, 0, 3, 1, 23, 11, 18])
6
[

gsort.hs:5:14-46] *ghci>

3.5.3 Nested breakpoints

When GHCIi is stopped at a breakpoint, and an expression entered at the prompt triggers a
second breakpoint, the new breakpoint becomes the “current” one, and the old one is saved
on a stack. An arbitrary number of breakpoint contexts can be built up in this way. For
example:

[qsort.hs:2:15-46] *ghci> :st gsort [1,3]
Stopped at gsort.hs:(1,0)-(3,55)
_result :: [a]

[gsort.hs:(1,0)-(3,55)] *ghci>

While stopped at the breakpoint on line 2 that we set earlier, we started a new evaluation with

:step gsort [1,3]. This new evaluation stopped after one step (at the definition of qsort).
The prompt has changed, now prefixed with . .., to indicate that there are saved breakpoints
beyond the current one. To see the stack of contexts, use :show context (page 83):

[gsort.hs:(1,0)-(3,55)] *ghci> :show context
--> main
Stopped at gsort.hs:2:15-46
--> gsort [1,3]
Stopped at gsort.hs:(1,0)-
[qsort.hs:(1,0)-(3,55)]

(3,55)
*ghci>

To abandon the current evaluation, use :abandon (page 72):

[qsort.hs:(1,0)-(3,55)] *ghci> :abandon
[gsort.hs:2:15-46] *ghci> :abandon
*ghci>

3.5.4 The _result variable

When stopped at a breakpoint or single-step, GHCi binds the variable result to the value of
the currently active expression. The value of result is presumably not available yet, because
we stopped its evaluation, but it can be forced: if the type is known and showable, then
just entering result at the prompt will show it. However, there’s one caveat to doing this:
evaluating result will be likely to trigger further breakpoints, starting with the breakpoint
we are currently stopped at (if we stopped at a real breakpoint, rather than due to :step
(page 83)). So it will probably be necessary to issue a : continue (page 75) immediately when
evaluating result. Alternatively, you can use : force (page 76) which ignores breakpoints.

66 Chapter 3. Using GHCi



GHC User’s Guide Documentation, Release 9.2.8

3.5.5 Tracing and history

A question that we often want to ask when debugging a program is “how did I get here?”.
Traditional imperative debuggers usually provide some kind of stack-tracing feature that lets
you see the stack of active function calls (sometimes called the “lexical call stack”), describ-
ing a path through the code to the current location. Unfortunately this is hard to provide
in Haskell, because execution proceeds on a demand-driven basis, rather than a depth-first
basis as in strict languages. The “stack” in GHC’s execution engine bears little resemblance
to the lexical call stack. Ideally GHCi would maintain a separate lexical call stack in addition
to the dynamic call stack, and in fact this is exactly what our profiling system does (Profiling
(page 651)), and what some other Haskell debuggers do. For the time being, however, GHCi
doesn’t maintain a lexical call stack (there are some technical challenges to be overcome).
Instead, we provide a way to backtrack from a breakpoint to previous evaluation steps: es-
sentially this is like single-stepping backwards, and should in many cases provide enough
information to answer the “how did I get here?” question.

To use tracing, evaluate an expression with the :trace (page 83) command. For example, if
we set a breakpoint on the base case of gsort:

*ghci> :list qgsort

1 gsort [] =[]

2 qgsort (a:as) = gsort left ++ [a] ++ qsort right

3 where (left,right) = (filter (<=a) as, filter (>a) as)

4
*ghci> :b 1

Breakpoint 1 activated at qsort.hs:1:11-12
*ghci>

and then run a small qsort with tracing:

*ghci> :trace qsort [3,2,1]
Stopped at gsort.hs:1:11-12
_result :: [a]
[gsort.hs:1:11-12] *ghci>

We can now inspect the history of evaluation steps:

[gqsort.hs:1:11-12] *ghci> :hist
- : gsort.hs:3:24-38

-2 : qgsort.hs:3:23-55

-3 : qsort.hs:(1,0)-(3,55)
-4 : qsort.hs:2:15-24

-5 : gsort.hs:2:15-46

-6 : gsort.hs:3:24-38

-7 : qgsort.hs:3:23-55

-8 : qsort.hs:(1,0)-(3,55)
-9 : qsort.hs:2:15-24

-10 : gsort.hs:2:15-46

-11 : gsort.hs:3:24-38

-12 : gsort.hs:3:23-55

-13 : qgsort.hs:(1,0)-(3,55)
-14 : qsort.hs:2:15-24

-15 : gsort.hs:2:15-46

-16 : qgsort.hs:(1,0)-(3,55)
<end of history>

3.5. The GHCi Debugger 67




GHC User’s Guide Documentation, Release 9.2.8

To examine one of the steps in the history, use :back (page 73):

[gqsort.hs:1:11-12] *ghci> :back
Logged breakpoint at gsort.hs:3:24-38
_result :: [a]

as :: [a]

a::a

[-1: gsort.hs:3:24-38] *ghci>

Note that the local variables at each step in the history have been preserved, and can be
examined as usual. Also note that the prompt has changed to indicate that we’re currently
examining the first step in the history: -1. The command : forward (page 77) can be used to
traverse forward in the history.

The :trace (page 83) command can be used with or without an expression. When used with-
out an expression, tracing begins from the current breakpoint, just like : step (page 83).

The history is only available when using : trace (page 83); the reason for this is we found that
logging each breakpoint in the history cuts performance by a factor of 2 or more.

-fghci-hist-size=(n)

Default
50

Modify the depth of the evaluation history tracked by GHCi.

3.5.6 Debugging exceptions

Another common question that comes up when debugging is “where did this exception come
from?”. Exceptions such as those raised by error or head [] have no context information
attached to them. Finding which particular call to head in your program resulted in the
error can be a painstaking process, usually involving Debug.Trace.trace, or compiling with
profiling and using Debug.Trace.traceStack or +RTS -xc (see -xc (page 231)).

The GHCi debugger offers a way to hopefully shed some light on these errors quickly and
without modifying or recompiling the source code. One way would be to set a break-
point on the location in the source code that throws the exception, and then use :trace
(page 83) and :history (page 77) to establish the context. However, head is in a library
and we can’t set a breakpoint on it directly. For this reason, GHCi provides the flags
-fbreak-on-exception (page 69) which causes the evaluator to stop when an exception is
thrown, and - fbreak-on-error (page 69), which works similarly but stops only on uncaught
exceptions. When stopping at an exception, GHCi will act just as it does when a breakpoint
is hit, with the deviation that it will not show you any source code location. Due to this, these
commands are only really useful in conjunction with :trace (page 83), in order to log the
steps leading up to the exception. For example:

*ghci> :set -fbreak-on-exception

*ghci> :trace gsort ("abc" ++ undefined)
“Stopped at <exception thrown>
_exception :: e

[<exception thrown>] *ghci> :hist

-1 : gsort.hs:3:24-38

-2 : qsort.hs:3:23-55

-3 : qsort.hs:(1,0)-(3,55)

(continues on next page)

68 Chapter 3. Using GHCi




GHC User’s Guide Documentation, Release 9.2.8

(continued from previous page)

-4 : qsort.hs:2:15-24

-5 : qsort.hs:2:15-46

-6 : qsort.hs:(1,0)-(3,55)

<end of history>

[<exception thrown>] *ghci> :back
Logged breakpoint at gsort.hs:3:24-38
_result :: [a]

as :: [a]

a :: a

[-1: gsort.hs:3:24-38] *ghci> :force as
*** Exception: Prelude.undefined

[-1: gsort.hs:3:24-38] *ghci> :print as
as = 'b' : 'c' : (_tl::[Char])

The exception itself is bound to a new variable, exception.

Breaking on exceptions is particularly useful for finding out what your program was doing
when it was in an infinite loop. Just hit Control-C, and examine the history to find out what

was going on.

-fbreak-on-exception
Causes GHCIi to halt evaluation and return to the interactive prompt in the event of an
exception. - fbreak-on-exception (page 69) breaks on all exceptions.

-fbreak-on-error
Causes GHCi to halt evaluation and return to the interactive prompt in the event of an
exception. -fbreak-on-error (page 69) breaks on only those exceptions which would
otherwise be uncaught.

3.5.7 Example: inspecting functions

It is possible to use the debugger to examine function values. When we are at a breakpoint
and a function is in scope, the debugger cannot show you the source code for it; however, it is
possible to get some information by applying it to some arguments and observing the result.

The process is slightly complicated when the binding is polymorphic. We show the process
by means of an example. To keep things simple, we will use the well known map function:

import Prelude hiding (map)

map :: (a->b) -> [a]l -> [b]
map f [1 = []
map f (x:xs) = f x : map f xs

We set a breakpoint on map, and call it.

*ghci> :break 5

Breakpoint 0 activated at map.hs:5:15-28
*ghci> map Just [1..5]

Stopped at map.hs:(4,0)-(5,12)

_result :: [b]

X :: a

(continues on next page)

3.5. The GHCi Debugger 69




GHC User’s Guide Documentation, Release 9.2.8

(continued from previous page)
f:ra->b
xs :: [al

GHCi tells us that, among other bindings, f is in scope. However, its type is not fully known

yet, and thus it is not possible to apply it to any arguments. Nevertheless, observe that the

type of its first argument is the same as the type of x, and its result type is shared with
result.

As we demonstrated earlier (Breakpoints and inspecting variables (page 61)), the debugger
has some intelligence built-in to update the type of f whenever the types of x or result are
discovered. So what we do in this scenario is force x a bit, in order to recover both its type
and the argument part of f.

*ghci> seq x ()
*ghci> :print x
x =1

We can check now that as expected, the type of x has been reconstructed, and with it the type
of f has been too:

*ghci> :t x

X :: Integer
*ghci> :t f

f :: Integer -> b

From here, we can apply f to any argument of type Integer and observe the results.

*ghci> let b = f 10
*ghci> :t b
b::b
*ghci> b
<interactive>:1:0:
Ambiguous type variable "b' in the constraint:
“Show b' arising from a use of “print' at <interactive>:1:0
*ghci> :p b
b= (t2::a)
*ghci> seq b ()
()
*ghci> :t b
b :: a
*ghci> :p b
b = Just 10
*ghci> :t b
b :: Maybe Integer
*ghci> :t f
f :: Integer -> Maybe Integer
*ghci> f 20
Just 20
*ghci> map f [1..5]
[Just 1, Just 2, Just 3, Just 4, Just 5]

In the first application of f, we had to do some more type reconstruction in order to recover
the result type of f. But after that, we are free to use f normally.

70 Chapter 3. Using GHCi




GHC User’s Guide Documentation, Release 9.2.8

3.5.8 Limitations

* When stopped at a breakpoint, if you try to evaluate a variable that is already under
evaluation, the second evaluation will hang. The reason is that GHC knows the variable
is under evaluation, so the new evaluation just waits for the result before continuing, but
of course this isn’t going to happen because the first evaluation is stopped at a breakpoint.
Control-C can interrupt the hung evaluation and return to the prompt.

The most common way this can happen is when you’re evaluating a CAF (e.g. main),
stop at a breakpoint, and ask for the value of the CAF at the prompt again.

» Implicit parameters (see Implicit parameters (page 529)) are only available at the scope
of a breakpoint if there is an explicit type signature.

3.6 Invoking GHCi

GHC i is invoked with the command ghci or ghc --interactive. One or more modules or
filenames can also be specified on the command line; this instructs GHCi to load the specified
modules or filenames (and all the modules they depend on), just as if you had said :1load
modules at the GHCi prompt (see GHCi commands (page 72)). For example, to start GHCi
and load the program whose topmost module is in the file Main.hs, we could say:

[$ ghci Main.hs J

Most of the command-line options accepted by GHC (see Using GHC (page 95)) also make
sense in interactive mode. The ones that don’t make sense are mostly obvious.
-flocal-ghci-history

By default, GHCi keeps global history in $XDG DATA HOME/ghc/ghci history or
%APPDATA%/<app>/ghci history, but you can use current directory, e.g.:

$ ghci -flocal-ghci-history ]

It will create .ghci-history in current folder where GHCIi is launched.

-fghci-leak-check

(Debugging only) When loading new modules with :load, check that any previously
loaded modules have been correctly garbage collected. Emits messages if a leak is de-
tected.

3.6.1 Packages
Most packages (see Using Packages (page 252)) are available without needing to specify any
extra flags at all: they will be automatically loaded the first time they are needed.

For hidden packages, however, you need to request the package be loaded by using the
-package (pkg) (page 254) flag:

$ ghci -package readline
GHCi, version 8.y.z: https://www.haskell.org/ghc/ :? for help

Loading package base ... linking ... done.
Loading package readline-1.0 ... linking ... done.
ghci>

3.6. Invoking GHCi 71



GHC User’s Guide Documentation, Release 9.2.8

The following command works to load new packages into a running GHCi:

[ghci> :set -package name J

But note that doing this will cause all currently loaded modules to be unloaded, and you’ll be
dumped back into the Prelude.

3.6.2 Extra libraries

Extra libraries may be specified on the command line using the normal -11ib option. (The
term library here refers to libraries of foreign object code; for using libraries of Haskell source
code, see Modules vs. filenames (page 45).) For example, to load the “m” library:

[$ ghci -m ]

On systems with . so-style shared libraries, the actual library loaded will the 1iblib.so. GHCi
searches the following places for libraries, in this order:

» Paths specified using the -L (dir) (page 280) command-line option,

* The standard library search path for your system loader, which on some systems may be
overridden by setting the LD_LIBRARY_ PATH environment variable.

* The linker standard library search can also be overridden on some systems using the
LIBRARY PATH environment variable. Because of some implementation detail on Win-
dows, setting LIBRARY PATH will also extend the system loader path for any library it
finds. So often setting LIBRARY PATH is enough.

On systems with .d11-style shared libraries, the actual library loaded will be 1ib.dl1, liblib.
d1l1l. GHCIi also has full support for import libraries, either Microsoft style . lib, or GNU GCC
style .a and .dl1l.a libraries. If you have an import library it is advisable to always specify
the import library instead of the .d1l1l. e.g. use -lgcc’ instead of " -1libgcc s seh-1.
Again, GHCi will signal an error if it can’t find the library.

GHCi can also load plain object files (.0 or .obj depending on your platform) or static archives
(.a) from the command-line. Just add the name the object file or library to the command line.
On Windows GHCi also supports the big-obj format.

Ordering of -1 options matters: a library should be mentioned before the libraries it depends
on (see Options affecting linking (page 279)).

3.7 GHCi commands

GHCi commands all begin with “:” and consist of a single command name followed by zero or
more parameters. The command name may be abbreviated, with ambiguities being resolved
in favour of the more commonly used commands.
:abandon

Abandons the current evaluation (only available when stopped at a breakpoint).

radd[*] (module)

Add {(module)(s) to the current target set, and perform a reload. Normally pre-compiled
code for the module will be loaded if available, or otherwise the module will be compiled
to byte-code. Using the * prefix forces the module to be loaded as byte-code.

72 Chapter 3. Using GHCi



GHC User’s Guide Documentation, Release 9.2.8

{(module) may be a file path. A “~” symbol at the beginning of (module) will be replaced
by the contents of the environment variable HOME.

:all-types
List all types collected for expressions and (local) bindings currently loaded (while :set
+c (page 85) was active) with their respective source-code span, e.g.

GhciTypes> :all-types

GhciTypes.hs:(38,13)-(38,24): Maybe Id
GhciTypes.hs:(45,10)-(45,29): Outputable SpanInfo
GhciTypes.hs:(45,10)-(45,29): (Rational -> SpanInfo -> SDoc) ->,
—Outputable SpanInfo

tback (n)
Travel back (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 67) for more about GHCi’s debugging facilities. See also: :trace (page 83),
:history (page 77), : forward (page 77).

tbreak [(identifier) | [{(module)] (line) [{(column)]]

Set a breakpoint on the specified function or line and column. See Setting breakpoints
(page 63).

tbrowse[!] [[*] (module)]

Displays the identifiers exported by the module {module), which must be either loaded
into GHCi or be a member of a package. If {(module) is omitted, the most recently-loaded
module is used.

Like all other GHCi commands, the output is always displayed in the current GHCi scope
(What'’s really in scope at the prompt? (page 53)).

There are two variants of the browse command:

» If the * symbol is placed before the module name, then all the identifiers in scope in
(module) (rather that just its exports) are shown.

The *-form is only available for modules which are interpreted; for compiled mod-
ules (including modules from packages) only the non-* form of : browse (page 73) is
available.

* Data constructors and class methods are usually displayed in the context of their
data type or class declaration. However, if the ! symbol is appended to the command,
thus :browse!, they are listed individually. The !-form also annotates the listing with
comments giving possible imports for each group of entries. Here is an example:

ghci> :browse! Data.Maybe

-- not currently imported
Data.Maybe.catMaybes :: [Maybe a] -> [a]
Data.Maybe.fromJust :: Maybe a -> a
Data.Maybe.fromMaybe :: a -> Maybe a -> a
Data.Maybe.isJust :: Maybe a -> Bool
Data.Maybe.isNothing :: Maybe a -> Bool
Data.Maybe.listToMaybe :: [a] -> Maybe a
Data.Maybe.mapMaybe :: (a -> Maybe b) -> [a] -> [b]
Data.Maybe.maybeTolList :: Maybe a -> [a]
-- Imported via Prelude

Just :: a -> Maybe a

data Maybe a = Nothing | Just a

(continues on next page)

3.7. GHCi commands 73




GHC User’s Guide Documentation, Release 9.2.8

(continued from previous page)
Nothing :: Maybe a
maybe :: b -> (a -> b) -> Maybe a -> b

This output shows that, in the context of the current session (ie in the scope of
Prelude), the first group of items from Data.Maybe are not in scope (although they
are available in fully qualified form in the GHCi session - see What’s really in scope
at the prompt? (page 53)), whereas the second group of items are in scope (via
Prelude) and are therefore available either unqualified, or with a Prelude. qualifier.

tcd (dir)

Changes the current working directory to (dir). A “~” symbol at the beginning of (dir)
will be replaced by the contents of the environment variable HOME. See also the :show
paths (page 83) command for showing the current working directory.

Note: changing directories causes all currently loaded modules to be unloaded. This is
because the search path is usually expressed using relative directories, and changing
the search path in the middle of a session is not supported.

:cmd (expr)

Executes (expr) as a computation of type I0 String, and then executes the resulting
string as a list of GHCi commands. Multiple commands are separated by newlines. The
:cmd (page 74) command is useful with :def (page 75) and :set stop (page 82).

:complete (type) [(n)-1[{(m)] (string-literal)

This command allows to request command completions from GHCi even when interacting
over a pipe instead of a proper terminal and is designed for integrating GHCi’s comple-
tion with text editors and IDEs.

When called, :complete (page 74) prints the (n) to (m)"™ completion candidates for
the partial input (string-literal) for the completion domain denoted by (type). Currently,
only the repl domain is supported which denotes the kind of completion that would be
provided interactively by GHCi at the input prompt.

If omitted, (n) and (m) default to the first or last available completion candidate respec-
tively. If there are less candidates than requested via the range argument, (n) and (m)
are implicitly capped to the number of available completion candidates.

The output of :complete (page 74) begins with a header line containing three space-
delimited fields:

* An integer denoting the number 1 of printed completions,
* an integer denoting the total number of completions available, and finally

* a string literal denoting a common prefix to be added to the returned completion
candidates.

The headerline is followed by (1) lines each containing one completion candidate encoded
as (quoted) string literal. Here are some example invocations showing the various cases:

ghci> :complete repl 0 ""

0 470 ""

ghci> :complete repl 5 "import For"
5 21 "import "

"Foreign"

"Foreign.C"

"Foreign.C.Error"

(continues on next page)

74

Chapter 3. Using GHCi



GHC User’s Guide Documentation, Release 9.2.8

(continued from previous page)

"Foreign.C.String"
"Foreign.C.Types"

ghci> :complete repl 5-10 "import For"
6 21 "import "
"Foreign.C.Types"
"Foreign.Concurrent"
"Foreign.ForeignPtr"
"Foreign.ForeignPtr.Safe"
"Foreign.ForeignPtr.Unsafe"
"Foreign.Marshal"

ghci> :complete repl 20- "import For"
2 21 "import "
"Foreign.StablePtr"
"Foreign.Storable"

ghci> :complete repl "map"

33 ""

Ilmapll

“mapM"

“mapM_"

ghci> :complete repl 5-10 "map"
03 ""

:continue [{ignoreCount)]
Continue the current evaluation, when stopped at a breakpoint.

If an (ignoreCount) is specified, the program will ignore the current breakpoint for the
next (ignoreCount) iterations. See command :ignore (page 78).

:ctags [(filename)]

Generates a “tags” file for Vi-style editors (:ctags (page 75)) or Emacs-style editors
(:etags (page 76)). If no filename is specified, the default tags or TAGS is used, respec-
tively. Tags for all the functions, constructors and types in the currently loaded modules
are created. All modules must be interpreted for these commands to work.

rdef[!] (name) (expr)

:def (page 75) is used to define new commands, or macros, in GHCi. The command :def
(name) (expr) defines anew GHCicommand :name, implemented by the Haskell expres-
sion (expr), which must have type String -> I0 String. When :name args is typed at
the prompt, GHCi will run the expression (name args), take the resulting String, and
feed it back into GHCi as a new sequence of commands. Separate commands in the
result must be separated by “\n”.

That’s all a little confusing, so here’s a few examples. To start with, here’s a new GHCi
command which doesn’t take any arguments or produce any results, it just outputs the
current date and time:

ghci> let date = Data.Time.getZonedTime >>= print >> return ""
ghci> :def date date
ghci> :date

2017-04-10 12:34:56.93213581 UTC

Here’s an example of a command that takes an argument. It’s a re-implementation of
:cd (page 74):

3.7. GHCi commands 75




GHC User’s Guide Documentation, Release 9.2.8

ghci> let mycd d = System.Directory.setCurrentDirectory d >> return ""
ghci> :def mycd mycd
ghci> :mycd ..

Or I could define a simple way to invoke “ghc --make Main” in the current directory:

[ghci> :def make (\_ -> return ":! ghc --make Main") ]

We can define a command that reads GHCi input from a file. This might be useful for
creating a set of bindings that we want to repeatedly load into the GHCi session:

ghci> :def . readFile
ghci> :. cmds.ghci

M

Notice that we named the command :., by analogy with the “.” Unix shell command
that does the same thing.

Typing :def on its own lists the currently-defined macros. Attempting to redefine an
existing command name results in an error unless the :def! form is used, in which case
the old command with that name is silently overwritten. However for builtin commands
the old command can still be used by preceding the command name with a double colon
(eg ::load). It’s not possible to redefine the commands : {, :} and :!.

:delete * | (num)

Delete one or more breakpoints by number (use : show breaks (page 83) to see the num-
ber of each breakpoint). The * form deletes all the breakpoints.

:disable * | (num)

Disable one or more breakpoints by number (use :show breaks (page 83) to see the
number and state of each breakpoint). The * form disables all the breakpoints.

:doc (name)
(Experimental: This command will likely change significantly in GHC 8.8.)
Displays the documentation for the given name. Currently the command is restricted to

displaying the documentation directly on the declaration in question, ignoring documen-
tation for arguments, constructors etc.

redit (file)

Opens an editor to edit the file (file), or the most recently loaded module if (file) is omitted.
If there were errors during the last loading, the cursor will be positioned at the line
of the first error. The editor to invoke is taken from the VISUAL (page 76) or EDITOR
environment variables, or a default editor on your system if neither is not set. You can
change the editor using :set editor (page 81).

VISUAL
Hidden

:enable * | (num)

Enable one or more disabled breakpoints by number (use :show breaks (page 83) to

see the number and state of each breakpoint). The * form enables all the disabled break-

points. Enabling a break point will reset its ignore count to 0. (See :ignore (page 78))
:etags

See :ctags (page 75).

76 Chapter 3. Using GHCi



GHC User’s Guide Documentation, Release 9.2.8

:force (identifier)

Prints the value of (identifier) in the same way as :print (page 80). Unlike :print
(page 80), : force (page 76) evaluates each thunk that it encounters while traversing
the value. This may cause exceptions or infinite loops, or further breakpoints (which are
ignored, but displayed).

:forward (n)

Move forward (n) steps in the history. (n) is one if omitted. See Tracing and history
(page 67) for more about GHCi’s debugging facilities. See also: :trace (page 83),
:history (page 77), :back (page 73).

thelp
:?
Displays a list of the available commands.

Repeat the previous command.

thistory [num]

Display the history of evaluation steps. With a number, displays that many steps (default:
20). For use with : trace (page 83); see Tracing and history (page 67). To set the number
of history entries stored by GHCIi, use the - fghci-hist-size=(n) (page 68) flag.

tinfo[!] (name)
Displays information about the given name(s). For example, if (name) is a class, then
the class methods and their types will be printed; if (name) is a type constructor, then
its definition will be printed; if (name) is a function, then its type will be printed. If
(name) has been loaded from a source file, then GHCi will also display the location of its
definition in the source.

For types and classes, GHCi also summarises instances that mention them. To avoid
showing irrelevant information, an instance is shown only if (a) its head mentions (name),
and (b) all the other things mentioned in the instance are in scope (either qualified or
otherwise) as a result of a : load (page 79) or :module (page 80) commands.

The command :info! works in a similar fashion but it removes restriction (b), showing
all instances that are in scope and mention (name) in their head.

:instances (type)

Displays all the class instances available to the argument (type). The command will
match (type) with the first parameter of every instance and then check that all constraints
are satisfiable.

When combined with PartialTypeSignatures (page 532), a user can insert wildcards
into a query and learn the constraints required of each wildcard for (type) match with
an instance.

The output is a listing of all matching instances, simplified and instantiated as much as
possible.

For example:

> :instances Maybe (Maybe Int)

instance Eq (Maybe (Maybe Int)) -- Defined in ‘GHC.Maybe’
instance Ord (Maybe (Maybe Int)) -- Defined in ‘GHC.Maybe’
instance Show (Maybe (Maybe Int)) -- Defined in ‘GHC.Show’
instance Read (Maybe (Maybe Int)) -- Defined in ‘GHC.Read’

(continues on next page)

3.7. GHCi commands 77



GHC User’s Guide Documentation, Release 9.2.8

(continued from previous page)

> :set -XPartialTypeSignatures -fno-warn-partial-type-signatures

> :instances Maybe

instance Eq => Eq (Maybe ) -- Defined in ‘GHC.Maybe’

instance Semigroup _ => Monoid (Maybe ) -- Defined in ‘GHC.Base’
instance Ord => 0Ord (Maybe ) -- Defined in ‘GHC.Maybe’

instance Semigroup  => Semigroup (Maybe ) -- Defined in ‘GHC.Base’
instance Show _ => Show (Maybe ) -- Defined in ‘GHC.Show’

instance Read @ => Read (Maybe ) -- Defined in ‘GHC.Read’

Only instances which could potentially be used will be displayed in the results. Instances
which require unsatisfiable constraints such as TypeError will not be included. In the
following example, the instance for A is not shown because it cannot be used.

rghci>:set -XDataKinds -XUndecidableInstances

ghci>import GHC.TypeLits

ghci>class A a

ghci>instance (TypeError (Text "Not possible")) => A Bool
ghci>:instances Bool

instance Eq Bool -- Defined in ‘GHC.Classes’
instance Ord Bool -- Defined in ‘GHC.Classes’
instance Enum Bool -- Defined in ‘GHC.Enum’
instance Show Bool -- Defined in ‘GHC.Show’
instance Read Bool -- Defined in ‘GHC.Read’
instance Bounded Bool -- Defined in ‘GHC.Enum’

:issafe [(module)]

Displays Safe Haskell information about the given module (or the current module if omit-
ted). This includes the trust type of the module and its containing package.

:ignore (break) (ignoreCount)

Set the ignore count of the breakpoint with number (break) to {(ignoreCount).

The next (ignoreCount) times the program hits the breakpoint {(break), this breakpoint
is ignored and the program doesn’t stop. Every time the breakpoint is ignored, the
ignore count is decremented by 1. When the ignore count is zero, the program again
stops at the break point.

You can also specify an (ignoreCount) on a :continue (page 75) command when you
resume execution of your program.

:kind[!] (type)

Infers and prints the kind of (type). The latter can be an arbitrary type expression, in-
cluding a partial application of a type constructor, such as Either Int. In fact, :kind
(page 78) even allows you to write a partial application of a type synonym (usually disal-
lowed), so that this works:

ghci> type T a b = (a,b,a)
ghci> :k T Int Bool

T Int Bool :: *

ghci> :k T

T :: ¥ ->* > %

(continues on next page)

78

Chapter 3. Using GHCi




GHC User’s Guide Documentation, Release 9.2.8

(continued from previous page)

ghci> :k T Int
T Int :: * -> *

“wy|

If you specify the optional “!”, GHC will in addition normalise the type by expanding out
type synonyms and evaluating type-function applications, and display the normalised
result.

:list (identifier)

Lists the source code around the definition of (identifier) or the current breakpoint if
not given. This requires that the identifier be defined in an interpreted module. If your
output device supports it, then GHCi will highlight the active subexpression in bold.

:list [{(module)] (line)

Lists the source code around the given line number of (module). This requires that the
module be interpreted. If your output device supports it, then GHCi will highlight the
active subexpression in bold.

:load[!'] [*]{(module)

Recursively loads the specified (module)s, and all the modules they depend on. Here,
each (module) must be a module name or filename, but may not be the name of a module
in a package.

All previously loaded modules, except package modules, are forgotten. The new set of
modules is known as the target set. Note that : load (page 79) can be used without any
arguments to unload all the currently loaded modules and bindings.

Normally pre-compiled code for a module will be loaded if available, or otherwise the
module will be compiled to byte-code. Using the * prefix forces a module to be loaded
as byte-code.

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 428) for further motivation and details.

After a : load (page 79) command, the current context is set to:
* (module), if it was loaded successfully, or

* the most recently successfully loaded module, if any other modules were loaded as
a result of the current : load (page 79), or

¢ Prelude otherwise.

:loc-at (module) (line) (col) (end-line) (end-col) [(name)]
Tries to find the definition site of the name at the given source-code span, e.g.:

X> :loc-at X.hs 6 14 6 16 mu
X.hs:(8,7)-(8,9)

This command is useful when integrating GHCi with text editors and IDEs for providing
a goto-definition facility.

The :loc-at command requires :set +c (page 85) to be set.

3.7. GHCi commands 79



GHC User’s Guide Documentation, Release 9.2.8

:main (argl) ... (argn)

When a program is compiled and executed, it can use the getArgs function to access the
command-line arguments. However, we cannot simply pass the arguments to the main
function while we are testing in ghci, as the main function doesn’t take its arguments
directly.

Instead, we can use the :main (page 79) command. This runs whatever main is in scope,
with any arguments being treated the same as command-line arguments, e.g.:

ghci> main = System.Environment.getArgs >>= print
ghci> :main foo bar
[Ilfooll’llbar.ll]

We can also quote arguments which contains characters like spaces, and they are treated
like Haskell strings, or we can just use Haskell list syntax:

ghci> :main foo "bar baz"
["foo","bar baz"]

ghci> :main ["foo", "bar baz"]
["foo","bar baz"]

Finally, other functions can be called, either with the -main-is flag or the : run (page 81)

command:
ghci> foo = putStrLn "foo" >> System.Environment.getArgs >>= print
ghci> bar = putStrLn "bar" >> System.Environment.getArgs >>= print

ghci> :set -main-is foo
ghci> :main foo "bar baz"

foo

["foo","bar baz"]

ghci> :run bar ["foo", "bar baz"]
bar

["foo","bar baz"]

:module +|- [*](modl)

import (mod)

Sets or modifies the current context for statements typed at the prompt. The form import
mod is equivalent to :module +mod. See What’s really in scope at the prompt? (page 53)
for more details.

:print (names)

Prints a value without forcing its evaluation. :print (page 80) may be used on values
whose types are unknown or partially known, which might be the case for local variables
with polymorphic types at a breakpoint. While inspecting the runtime value, :print
(page 80) attempts to reconstruct the type of the value, and will elaborate the type in
GHCi’s environment if possible. If any unevaluated components (thunks) are encoun-
tered, then :print (page 80) binds a fresh variable with a name beginning with t to
each thunk. See Breakpoints and inspecting variables (page 61) for more information.
See also the :sprint (page 83) command, which works like :print (page 80) but does
not bind new variables.

rquit
Quits GHCIi. You can also quit by typing Control-D at the prompt.

80 Chapter 3. Using GHCi




GHC User’s Guide Documentation, Release 9.2.8

:reload[!]

Attempts to reload the current target set (see : load (page 79)) if any of the modules in
the set, or any dependent module, has changed. Note that this may entail loading new
modules, or dropping modules which are no longer indirectly required by the target.

Adding the optional “!” turns type errors into warnings while loading. This allows to
use the portions of the module that are correct, even if there are type errors in some
definitions. Effectively, the “-fdefer-type-errors” flag is set before loading and unset after
loading if the flag has not already been set before. See Deferring type errors to runtime
(page 428) for further motivation and details.

irun
See :main (page 79).

iscript [(n)] (filename)
Executes the lines of a file as a series of GHCi commands. The syntax for file-name ar-
guments respects shell quoting rules, i.e., file names containing spaces can be enclosed
in double quotes or with spaces escaped with a backslash. This command is compatible
with multiline statements as set by :set +m (page 85)

:set [(option) ...]

Sets various options. See The :set and :seti commands (page 85) for a list of available
options and Interactive-mode options (page 167) for a list of GHCi-specific flags. The
:set (page 81) command by itself shows which options are currently set. It also lists the
current dynamic flag settings, with GHCi-specific flags listed separately.

:set args (arg)
Sets the list of arguments which are returned when the program calls System.getArgs.

:set editor (cmd)
Sets the command used by :edit (page 76) to (cmd).

:set local-config (source|ignore)

If ignore, ./.ghci files will be ignored (sourcing untrusted local scripts is a security
risk). The default is source. Set this directive in your user .ghci script, i.e. before the
local script would be sourced.

Even when set to ignore, a local script will still be processed if given by -ghci-script
(page 88) on the command line, or sourced via :script (page 81).

:set prog (prog)
Sets the string to be returned when the program calls System.getProgName.

:set prompt (prompt)

Sets the string to be used as the prompt in GHCi. Inside {(prompt), the next sequences
are replaced:

* %S by the names of the modules currently in scope.

* %1 by the line number (as referenced in compiler messages) of the current prompt.
* %d by the date in “Weekday Month Date” format (e.g., “Tue May 26”) .

* %t by the current time in 24-hour HH:MM:SS format.

* %T by the current time in 12-hour HH:MM:SS format.

* %@ by the current time in 12-hour am/pm format.

* %A by the current time in 24-hour HH:MM format.

3.7. GHCi commands 81



GHC User’s Guide Documentation, Release 9.2.8

* %U by the username of the current user.

* %w by the current working directory.

* %0 by the operating system.

* %a by the machine architecture.

* %N by the compiler name.

* %V by the compiler version.

* %call(cmd [args]) by the result of calling cmd args.
* %% by %.

If (prompt) starts with " then it is parsed as a Haskell String; otherwise it is treated as
a literal string.

:set prompt-cont (prompt)

Sets the string to be used as the continuation prompt (used when using the : { (page 49)
command) in GHCi.

:set prompt-function (prompt-function)

Sets the function to be used for the prompt displaying in GHCi. The function should
be of the type [String] -> Int -> IO String. This function is called each time the
prompt is being made. The first argument stands for the names of the modules currently
in scope(the name of the “topmost” module will begin with a *; see What’s really in
scope at the prompt? (page 53) for more information). The second arguments is the line
number (as referenced in compiler messages) of the current prompt.

:set prompt-cont-function (prompt-function)

Sets the function to be used for the continuation prompt (used when using the :{
(page 49) command) displaying in GHCi.

:set stop (num) (cmd)

Set a command to be executed when a breakpoint is hit, or a new item in the history is
selected. The most common use of :set stop (page 82) is to display the source code at
the current location, e.g. :set stop :list.

If a number is given before the command, then the commands are run when the specified
breakpoint (only) is hit. This can be quite useful: for example, :set stop 1 :continue
effectively disables breakpoint 1, by running :continue (page 75) whenever it is hit
In this case GHCi will still emit a message to say the breakpoint was hit. If you don’t
want such a message, you can use the :disable (page 76) command. What’s more, with
cunning use of :def (page 75) and :cmd (page 74) you can use :set stop (page 82) to
implement conditional breakpoints:

*ghci> :def cond \expr -> return (":cmd if (" ++ expr ++ ") then return \
~"\" else return \":continue\"")
*ghci> :set stop 0 :cond (x < 3)

To ignore breakpoints for a specified number of iterations use the :ignore (page 78) or
the (ignoreCount) parameter of the : continue (page 75) command.

:seti [(option) ...]

Like : set (page 81), but options set with : seti (page 82) affect only expressions and com-
mands typed at the prompt, and not modules loaded with : load (page 79) (in contrast,
options set with :set (page 81) apply everywhere). See Setting options for interactive
evaluation only (page 86).

82

Chapter 3. Using GHCi



GHC User’s Guide Documentation, Release 9.2.8

Without any arguments, displays the current set of options that are applied to expres-
sions and commands typed at the prompt.
:show bindings
Show the bindings made at the prompt and their types.
:show breaks
List the active breakpoints.

:show context
List the active evaluations that are stopped at breakpoints.

:show imports
Show the imports that are currently in force, as created by import and :module (page 80)
commands.

:show modules
Show the list of modules currently loaded.

:show packages
Show the currently active package flags, as well as the list of packages currently loaded.

:show paths
Show the current working directory (as set via : cd (page 74) command), as well as the
list of directories searched for source files (as set by the -i option).

:show language
Show the currently active language flags for source files.

:showi language
Show the currently active language flags for expressions typed at the prompt (see also
:seti (page 82)).

:show [args|prog|prompt|editor|stop]
Displays the specified setting (see :set (page 81)).

isprint (expr)

Prints a value without forcing its evaluation. :sprint (page 83) is similar to :print
(page 80), with the difference that unevaluated subterms are not bound to new variables,
they are simply denoted by .

:step [(expr)]
Enable all breakpoints and begin evaluating an expression in single-stepping mode. In
this mode evaluation will be stopped after every reduction, allowing local variables to
be inspected. If (expr) is not given, evaluation will resume at the last breakpoint. See
Single-stepping (page 65).

:steplocal

Enable only breakpoints in the current top-level binding and resume evaluation at
the last breakpoint. Continuation with :steplocal (page 83) is not possible if this
last breakpoint was hit by an error (-fbreak-on-error (page 69)) or an exception
(-fbreak-on-exception (page 69)).

:stepmodule

Enable only breakpoints in the current module and resume evaluation at the last break-
point.

3.7. GHCi commands 83



GHC User’s Guide Documentation, Release 9.2.8

:trace (expr)

Evaluates the given expression (or from the last breakpoint if no expression is given),
and additionally logs the evaluation steps for later inspection using : history (page 77).
See Tracing and history (page 67).

:type (expression)

Infers and prints the type of (expression). For polymorphic types it instantiates the ‘in-
ferred’ forall quantifiers (but not the ‘specified’ ones; see Inferred vs. specified type
variables (page 413)), solves constraints, re-generalises, and then reduces type families
as much as possible.

*X> :type length
length :: Foldable t => t a -> Int

Type family reduction is skipped if the function is not fully instantiated, as this has been
observed to give more intuitive results. You may want to use : info (page 77) if you are
not applying any arguments, as that will return the original type of the function without
instantiating.

:type +v (expression)

Infers and prints the type of (expression), binding inferred type variables with *specified*
visibility (page 413).

:type +d (expression)

Infers and prints the type of (expression), instantiating all the forall quantifiers, solv-
ing constraints, defaulting, and generalising. In this mode, if the inferred type is
constrained by any interactive class (Num, Show, Eq, Ord, Foldable, or Traversable),
the constrained type variable(s) are defaulted according to the rules described under
ExtendedDefaultRules (page 57). This mode is quite useful when the inferred type is
quite general (such as for foldr) and it may be helpful to see a more concrete instantia-
tion.

*X> :type +d length
length :: [a] -> Int

:type-at (path) (line) (col) (end-line) (end-col) [{(name)]

Reports the inferred type at the given span/position in the module, e.g.:

*X> :type-at X.hs 6 6 6 7 f
Int -> Int

This command is useful when integrating GHCi with text editors and IDEs for providing
a show-type-under-point facility.

The first parameter (path) must be a file path and not a module name. The type of this
path is dependent on how the module was loaded into GHCi: If the module was loaded
by name, then the path name calculated by GHCi as described in Modules vs. filenames
(page 45) must be used. If the module was loaded with an absolute or a relative path,
then the same path must be specified.

The last string parameter is useful for when the span is out of date, i.e. the file changed
and the code has moved. In which case : type-at (page 84) falls back to a general : type
(page 84) like lookup.

The :type-at (page 84) command requires :set +c (page 85) to be set.

84

Chapter 3. Using GHCi



GHC User’s Guide Documentation, Release 9.2.8

:undef (name)
Undefines the user-defined command (name) (see :def (page 75) above).
:unset (option)
Unsets certain options. See The :set and :seti commands (page 85) for a list of available
options.
:uses (module) (line) (col) (end-line) (end-col) [{(name)]
Reports all module-local uses of the thing at the given position in the module, e.g.:

:uses GhciFind.hs 53 66 53 70 name
GhciFind.hs: (46,25)-(46,29)
GhciFind.hs: (47,37)-(47,41)
GhciFind.hs: (53,66)-(53,70)
GhciFind.hs: (57,62)-(57,66)

This command is useful for highlighting and navigating all uses of an identifier in editors
and IDEs.

The :uses (page 85) command requires :set +c (page 85) to be set.

(builtin-command)

Executes the GHCi built-in command (e.g. ::type 3). That is, look up on the list of
builtin commands, excluding defined macros. See also: :def (page 75).

:! (command)
Executes the shell command (command).

3.8 The :set and :seti commands

The :set (page 81) command sets two types of options: GHCi options, which begin with “+”,
and “command-line” options, which begin with “-“.

Note: At the moment, the :set (page 81) command doesn’t support any kind of quoting in
its arguments: quotes will not be removed and cannot be used to group words together. For
example, :set -DF00='BAR BAZ' will not do what you expect.

3.8.1 GHCi options

GHCi options may be set using :set (page 81) and unset using :unset (page 85).
The available GHCi options are:

:set +c

Collect type and location information after loading modules. The commands :all-types
(page 73), : loc-at (page 79), :type-at (page 84), and :uses (page 85) require +c to be
active.

:1set +m

Enable parsing of multiline commands. A multiline command is prompted for when the
current input line contains open layout contexts (see Multiline input (page 50)).

3.8. The :set and :seti commands 85



GHC User’s Guide Documentation, Release 9.2.8

:set +r

Normally, any evaluation of top-level expressions (otherwise known as CAFs or Constant
Applicative Forms) in loaded modules is retained between evaluations. Turning on +r
causes all evaluation of top-level expressions to be discarded after each evaluation (they
are still retained during a single evaluation).

This option may help if the evaluated top-level expressions are consuming large amounts
of space, or if you need repeatable performance measurements.

:set +s

Display some stats after evaluating each expression, including the elapsed time and num-
ber of bytes allocated. NOTE: the allocation figure is only accurate to the size of the stor-
age manager’s allocation area, because it is calculated at every GC. Hence, you might
see values of zero if no GC has occurred.

:set +t

Display the type of each variable bound after a statement is entered at the prompt. If the
statement is a single expression, then the only variable binding will be for the variable
it.

3.8.2 Setting GHC command-line options in GHCi

Normal GHC command-line options may also be set using :set (page 81). For example, to
turn on -Wmissing-signatures (page 124), you would say:

[ghci> :set -Wmissing-signatures ]

Any GHC command-line option that is designated as dynamic (see the table in Flag reference
(page 156)), may be set using :set (page 81). To unset an option, you can set the reverse
option:

[ghci> :set -Wno-incomplete-patterns -XNoMultiParamTypeClasses ]

Flag reference (page 156) lists the reverse for each option where applicable.

Certain static options (-package (pkg) (page 254), -I(dir) (page 275), -i(dir)[:(dir)]*
(page 235), and -1 (lib) (page 279) in particular) will also work, but some may not take
effect until the next reload.

3.8.3 Setting options for interactive evaluation only

GHCi actually maintains two sets of options:
* The loading options apply when loading modules

» The interactive options apply when evaluating expressions and commands typed at the
GHCi prompt.

The :set (page 81) command modifies both, but there is also a : seti (page 82) command (for
“set interactive”) that affects only the interactive options set.

It is often useful to change the interactive options, without having that option apply to loaded
modules too. For example

[:seti -XMonoLocalBinds ]

86 Chapter 3. Using GHCi



GHC User’s Guide Documentation, Release 9.2.8

It would be undesirable if MonoLocalBinds (page 538) were to apply to loaded modules too:
that might cause a compilation error, but more commonly it will cause extra recompilation,
because GHC will think that it needs to recompile the module because the flags have changed.

If you are setting language options in your . ghci file, it is good practice to use : seti (page 82)
rather than :set (page 81), unless you really do want them to apply to all modules you load
in GHCi.

The two sets of options can be inspected using the :set (page 81) and :seti (page 82) com-
mands respectively, with no arguments. For example, in a clean GHCi session we might see
something like this:

ghci> :seti

base language is: GH(C2021

with the following modifiers:
-XExtendedDefaultRules
-XNoMonomorphismRestriction

GHCi-specific dynamic flag settings:

other dynamic, non-language, flag settings:
-fexternal-dynamic-refs
-fignore-optim-changes
-fignore-hpc-changes
-fimplicit-import-qualified

warning settings:

The two sets of options are initialised as follows. First, both sets of options are initialised
as described in The .ghci and .haskeline files (page 87). Then the interactive options are
modified as follows:

* The option -XExtendedDefaultRules is enabled, in order to apply special defaulting
rules to expressions typed at the prompt (see Type defaulting in GHCi (page 57)).

* The Monomorphism Restriction is disabled (see Switching off the Monomorphism Re-
striction (page 537)).

3.9 The .ghci and .haskeline files

3.9.1 The .ghci files
When it starts, unless the -ignore-dot-ghci (page 88) flag is given, GHCi reads and executes
commands from the following files, in this order, if they exist:

1. ghcappdata/ghci.conf, where (ghcappdata) depends on your system, but is usually
something like $HOME/ . ghc on Unix or C: /Documents and Settings/user/Application
Data/ghc on Windows.

2. $XDG_CONFIG_HOME/.ghci
3. ./.ghci

The ghci. conf file is most useful for turning on favourite options (e.g. :set +s), and defining
useful macros.

Note: When setting language options in this file it is usually desirable to use : seti (page 82)
rather than :set (page 81) (see Setting options for interactive evaluation only (page 86)).

3.9. The .ghci and .haskeline files 87




GHC User’s Guide Documentation, Release 9.2.8

Placing a .ghci file in a directory with a Haskell project is a useful way to set certain project-
wide options so you don’t have to type them every time you start GHCi: eg. if your project
uses multi-parameter type classes, scoped type variables, and CPP, and has source files in
three subdirectories A, B and C, you might put the following lines in .ghci:

:set -XMultiParamTypeClasses -XScopedTypeVariables -cpp
:set -iA:B:C

(Note that strictly speaking the -1 (page 235) flag is a static one, but in fact it works to set it
using :set (page 81) like this. The changes won’t take effect until the next : load (page 79),
though.)

Warning: Sourcing untrusted ./.ghci files is a security risk. They can contain arbitrary
commands that will be executed as the user. Use :set local-config (page 81) to inhibit
the processing of ./.ghci files.

Once you have a library of GHCi macros, you may want to source them from separate files, or
you may want to source your .ghci file into your running GHCi session while debugging it

[:def source readFile J

With this macro defined in your . ghci file, you can use : source filetoread GHCicommands
from file. You can find (and contribute!-) other suggestions for .ghci files on this Haskell
wiki page: GHC/GHCi

Additionally, any files specified with -ghci-script (page 88) flags will be read after the stan-
dard files, allowing the use of custom .ghci files.

Two command-line options control whether the startup files files are read:
-ignore-dot-ghci

Don’t read either ./.ghci or the other startup files when starting up.
-ghci-script

Read a specific file after the usual startup files. May be specified repeatedly for multiple
inputs. -ignore-dot-ghci (page 88) does not apply to these files.

When defining GHCi macros, there is some important behavior you should be aware of when
names may conflict with built-in commands, especially regarding tab completion.

For example, consider if you had a macro named :time and in the shell, typed :t 3 — what
should happen? The current algorithm we use for completing commands is:

1. First, look up an exact match on the name from the defined macros.
2. Look for the exact match on the name in the built-in command list.

3. Do a prefix lookup on the list of built-in commands - if a built-in command matches, but
a macro is defined with the same name as the built-in defined, pick the macro.

4. Do a prefix lookup on the list of built-in commands.

5. Do a prefix lookup on the list of defined macros.
Here are some examples:

1. You have a macro :time and enter :t 3

You get :type 3

88 Chapter 3. Using GHCi


http://haskell.org/haskellwiki/GHC/GHCi

GHC User’s Guide Documentation, Release 9.2.8

2. You have a macro :type and enter :t 3
You get :type 3 with your defined macro, not the builtin.

3. You have a macro :time and a macro :type, and enter :t 3
You get :type 3 with your defined macro.

When giving priority to built-in commands, you can use :: (builtin-command) (page 85),
like : :type 3.

3.9.2 The .haskeline file

GHCi uses Haskeline under the hood. You can configure it to, among other things, prune
duplicates from GHCIi history. See: Haskeline user preferences.

3.10 Compiling to object code inside GHCi

By default, GHCi compiles Haskell source code into byte-code that is interpreted by the run-
time system. GHCIi can also compile Haskell code to object code: to turn on this feature, use
the -fobject-code (page 278) flag either on the command line or with :set (page 81) (the
option - fbyte-code (page 278) restores byte-code compilation again). Compiling to object
code takes longer, but typically the code will execute 10-20 times faster than byte-code.

Compiling to object code inside GHCi is particularly useful if you are developing a compiled
application, because the : reload (page 80) command typically runs much faster than restart-
ing GHC with - -make (page 98) from the command-line, because all the interface files are
already cached in memory.

There are disadvantages to compiling to object-code: you can’t set breakpoints in object-
code modules, for example. Only the exports of an object-code module will be visible in GHC;],
rather than all top-level bindings as in interpreted modules.

3.11 Running the interpreter in a separate process

Normally GHCi runs the interpreted code in the same process as GHC itself, on top of the same
RTS and sharing the same heap. However, if the flag - fexternal-interpreter (page 89) is
given, then GHC will spawn a separate process for running interpreted code, and communi-
cate with it using messages over a pipe.

-fexternal-interpreter

Since
8.0.1

Run interpreted code (for GHCi, Template Haskell, Quasi-quoting, or Annotations) in a
separate process. The interpreter will run in profiling mode if -prof (page 656) is in
effect, and in dynamically-linked mode if -dynamic (page 280) is in effect.

There are a couple of caveats that will hopefully be removed in the future: this option
is currently not implemented on Windows (it is a no-op), and the external interpreter
does not support the GHCi debugger, so breakpoints and single-stepping don’t work
with - fexternal-interpreter (page 89).

3.10. Compiling to object code inside GHCi 89


https://hackage.haskell.org/package/haskeline
https://github.com/judah/haskeline/wiki/UserPreferences

GHC User’s Guide Documentation, Release 9.2.8

See also the -pgmi (cmd) (page 273) (Replacing the program for one or more phases
(page 272)) and -opti (option) (page 274) (Forcing options to a particular phase
(page 273)) flags.

Why might we want to do this? The main reason is that the RTS running the interpreted code
can be a different flavour (profiling or dynamically-linked) from GHC itself. So for example:

* We can use the profiler to collect stack traces when using GHCi (see Stack Traces in
GHCi (page 60)).

* When compiling Template Haskell code with -prof (page 656) we don’t need to compile
the modules without -prof (page 656) first (see Using Template Haskell with Profiling
(page 548)) because we can run the profiled object code in the interpreter.

This feature is experimental in GHC 8.0.x, but it may become the default in future releases.

3.12 Running the interpreter on a different host

When using the flag - fexternal-interpreter (page 89) GHC will spawn and communicate
with the separate process using pipes. There are scenarios (e.g. when cross compiling) where
it is favourable to have the communication happen over the network. GHC provides two
utilities for this, which can be found in the utils directory.

* remote-iserv needs to be built with the cross compiler to be executed on the remote
host. Or in the case of using it on the same host the stage2 compiler will do as well.

* iserv-proxy needs to be built on the build machine by the build compiler.

After starting remote-iserv (tmp dir) (port) on the target and providing it with a tempo-
rary folder (where it will copy the necessary libraries to load to) and port it will listen for the
proxy to connect.

Providing -pgmi (/path/to/iserv-proxy) (page 273) and -opti (slave-ip) -opti
(slave-port) [-opti -v] (page 274)in addition to - fexternal-interpreter (page 89) will
then make ghc go through the proxy instead.

There are some limitations when using this. File and process IO will be executed on the target.
As such packages like git-embed, file-embed and others might not behave as expected if the
target and host do not share the same filesystem.

3.13 FAQ and Things To Watch Out For

The interpreter can’t load modules with foreign export declarations!
Unfortunately not. We haven’t implemented it yet. Please compile any offending modules
by hand before loading them into GHCi.

-0 (page 136) doesn’t work with GHCi!

For technical reasons, the bytecode compiler doesn’t interact well with one of the
optimisation passes, so we have disabled optimisation when using the interpreter.
This isn’t a great loss: you’ll get a much bigger win by compiling the bits of your
code that need to go fast, rather than interpreting them with optimisation turned
on.

Modules using unboxed tuples or sums will automatically enable - fobject-code (page 278)

90 Chapter 3. Using GHCi



GHC User’s Guide Documentation, Release 9.2.8

The bytecode interpreter doesn’t support most uses of unboxed tuples or sums, so
GHCi will automatically compile these modules, and all modules they depend on, to
object code instead of bytecode.

GHCi checks for the presence of unboxed tuples and sums in a somewhat con-
servative fashion: it simply checks to see if a module enables the UnboxedTuples
(page 565) or UnboxedSums (page 566) language extensions. It is not always the case
that code which enables UnboxedTuples (page 565) or UnboxedSums (page 566) re-
quires -fobject-code (page 278), so if you really want to compile UnboxedTuples
(page 565)/UnboxedSums (page 566)-using code to bytecode, you can do so explicitly
by enabling the - fbyte-code (page 278) flag. If you do this, do note that bytecode
interpreter will throw an error if it encounters unboxed tuple/sum-related code that
it cannot handle.

Incidentally, the previous point, that -0 (page 136) is incompatible with GHCi, is
because the bytecode compiler can’t deal with unboxed tuples or sums.

Concurrent threads don’t carry on running when GHCIi is waiting for input.
This should work, as long as your GHCi was built with the - threaded (page 282) switch,
which is the default. Consult whoever supplied your GHCi installation.

After using getContents, I can’t use stdin, until I do :load or :reload
This is the defined behaviour of getContents: it puts the stdin Handle in a state known as
semi-closed, wherein any further I/O operations on it are forbidden. Because I/O state
is retained between computations, the semi-closed state persists until the next : load
(page 79) or :reload (page 80) command.

You can make stdin reset itself after every evaluation by giving GHCi the command : set
+r. This works because stdin is just a top-level expression that can be reverted to its
unevaluated state in the same way as any other top-level expression (CAF).

I can’t use Control-C to interrupt computations in GHCi on Windows.
See Running GHCi on Windows (page 703).

The default buffering mode is different in GHCi to GHC.
In GHC, the stdout handle is line-buffered by default. However, in GHCi we turn off the
buffering on stdout, because this is normally what you want in an interpreter: output
appears as it is generated.

If you want line-buffered behaviour, as in GHC, you can start your program thus:

[main = do { hSetBuffering stdout LineBuffering; ... }

3.13. FAQ and Things To Watch Out For 91



GHC User’s Guide Documentation, Release 9.2.8

92 Chapter 3. Using GHCi



CHAPTER
FOUR

USING RUNGHC

runghc allows you to run Haskell programs without first having to compile them.

4.1 Usage

The runghc command-line looks like:

[runghc [runghc flags] [GHC flags] module [program args] ]

Any flags not recognized by runghc are automatically passed to GHC. If a flag is recognized by
both runghc and GHC but you want to pass it to GHC then you can place it after a - - separator.
Flags after the separator are treated as GHC only flags. Alternatively you can use the runghc
option - -ghc-arg=<arg> to pass any flag or argument directly to GHC.

module could be a Haskell source filename with or without the extension. If for some reason
the filename starts with a - you can use a second - - to indicate the end of flags. Anything
following a second - - will be considered a program file or module name followed by its argu-
ments. For example:

* runghc -- -- -hello.hs

4.2 runghc flags

runghc accepts the following flags:

 -f /path/to/ghc: tell runghc the path of GHC executable to use to run the program.
By default runghc will search for GHC in the directories in the system search path.

* --ghc-arg=<arg>: Pass an option or argument to GHC
* --help: print usage information.

e --version: print version information.

93



GHC User’s Guide Documentation, Release 9.2.8

4.3 GHC Flags

As discussed earlier, use -- or --ghc-arg=<arg> to disambiguate GHC flags when needed.
For example, - f is recognized by runghc, therefore to pass -fliberate-case to GHC use any
of the following:

* runghc -- -fliberate-case
* runghc --ghc-arg=-fliberate-case

Note that any non-flag arguments are never passed to GHC. An unused non-flag argument
will be considered as the name of the program to run. If a GHC flag takes an argument use
--ghc-arg=<arg> to pass the argument to GHC. For example, if you want to pass -package
foo to GHC use any of the following:

* runghc -package --ghc-arg=foo Main.hs

* runghc --ghc-arg=-package --ghc-arg=foo Main.hs

94 Chapter 4. Using runghc



CHAPTER
FIVE

USING GHC

5.1 Using GHC

5.1.1 Getting started: compiling programs

In this chapter you’ll find a complete reference to the GHC command-line syntax, including
all 400+ flags. It’s a large and complex system, and there are lots of details, so it can be quite
hard to figure out how to get started. With that in mind, this introductory section provides
a quick introduction to the basic usage of GHC for compiling a Haskell program, before the
following sections dive into the full syntax.

Let’s create a Hello World program, and compile and run it. First, create a file hello.hs
containing the Haskell code:

[main = putStrLn "Hello, World!" ]

To compile the program, use GHC like this:
[$ ghc hello.hs ]

(where $ represents the prompt: don’t type it). GHC will compile the source file hello.hs,
producing an object file hello.o and an interface file hello.hi, and then it will link the
object file to the libraries that come with GHC to produce an executable called hello on
Unix/Linux/Mac, or hello.exe on Windows.

By default GHC will be very quiet about what it is doing, only printing error messages. If
you want to see in more detail what’s going on behind the scenes, add -v (page 104) to the
command line.

Then we can run the program like this:

$ ./hello
Hello World!

If your program contains multiple modules, then you only need to tell GHC the name of the
source file containing the Main module, and GHC will examine the import declarations to
find the other modules that make up the program and find their source files. This means that,
with the exception of the Main module, every source file should be named after the module
name that it contains (with dots replaced by directory separators). For example, the module
Data.Person would be in the file Data/Person. hs on Unix/Linux/Mac, or Data\Person.hs on
Windows.

95



GHC User’s Guide Documentation, Release 9.2.8

5.1.2 Options overview

GHC'’s behaviour is controlled by options, which for historical reasons are also sometimes
referred to as command-line flags or arguments. Options can be specified in three ways:

5.1.2.1 Command-line arguments

An invocation of GHC takes the following form:

[ghc [argument...] ]

Command-line arguments are either options or file names.

Command-line options begin with -. They may not be grouped: -vO0 is different from -v -0.
Options need not precede filenames: e.g., ghc *.0 -o foo. All options are processed and
then applied to all files; you cannot, for example, invoke ghc -c -01 Foo.hs -02 Bar.hs to
apply different optimisation levels to the files Foo.hs and Bar.hs.

Note: Note that command-line options are order-dependent, with arguments being evalu-
ated from left-to-right. This can have seemingly strange effects in the presence of flag implica-
tion. For instance, consider - fno-specialise (page 146) and -01 (page 136) (which implies
-fspecialise (page 146)). These two command lines mean very different things:

-fno-specialise -01
-fspecialise will be enabled as the -fno-specialise is overridden by the -01.
-01 -fno-specialise

-fspecialise will not be enabled, since the -fno-specialise overrides the
-fspecialise implied by -01.

5.1.2.2 Command line options in source files

Sometimes it is useful to make the connection between a source file and the command-line
options it requires quite tight. For instance, if a Haskell source file deliberately uses name
shadowing, it should be compiled with the -Wno-name-shadowing option. Rather than main-
taining the list of per-file options in a Makefile, it is possible to do this directly in the source
file using the OPTIONS GHC pragma (page 614)

{-# OPTIONS GHC -Wno-name-shadowing #-}
module X where

OPTIONS GHC is a file-header pragma (see OPTIONS GHC pragma (page 614)).
Only dynamic flags can be used in an OPTIONS GHC pragma (see Dynamic and Mode options
(page 97)).

Note that your command shell does not get to the source file options, they are just included
literally in the array of command-line arguments the compiler maintains internally, so you’ll
be desperately disappointed if you try to glob etc. inside OPTIONS GHC.

96 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

Note: The contents of OPTIONS GHC are appended to the command-line options, so options
given in the source file override those given on the command-line.

It is not recommended to move all the contents of your Makefiles into your source files, but in
some circumstances, the OPTIONS GHC pragma is the Right Thing. (If you use -keep-hc-file
(page 238) and have OPTION flags in your module, the OPTIONS GHC will get put into the gen-
erated . hc file).

5.1.2.3 Setting options in GHCi

Options may also be modified from within GHCi, using the :set (page 81) command.

5.1.3 Dynamic and Mode options

Each of GHC’s command line options is classified as dynamic or mode:

Mode: A mode may be used on the command line only. You can pass only one mode
flag. For example, - -make (page 98) or -E (page 98). The available modes are listed
in Modes of operation (page 98).

Dynamic: A dynamic flag may be used on the command line, in a OPTIONS GHC
pragma in a source file, or set using : set (page 81) in GHCi.

The flag reference tables (Flag reference (page 156)) lists the status of each flag.

5.1.4 Meaningful file suffixes

File names with “meaningful” suffixes (e.g., . Lhs or .0) cause the “right thing” to happen to
those files.

.hs
A Haskell module.

. Lhs
A “literate Haskell” module.

.hspp
A file created by the preprocessor.

.hi
A Haskell interface file, probably compiler-generated.

.hie
An extended Haskell interface file, produced by the Haskell compiler.

.hc
Intermediate C file produced by the Haskell compiler.

A C file not produced by the Haskell compiler.

11
An llvm-intermediate-language source file, usually produced by the compiler.

.bc
An llvm-intermediate-language bitcode file, usually produced by the compiler.

5.1. Using GHC 97



GHC User’s Guide Documentation, Release 9.2.8

An assembly-language source file, usually produced by the compiler.

An object file, produced by an assembler.

Files with other suffixes (or without suffixes) are passed straight to the linker.

5.1.5 Modes of operation

GHC'’s behaviour is firstly controlled by a mode flag. Only one of these flags may be given,
but it does not necessarily need to be the first option on the command-line. For instance,

[$ ghc Main.hs --make -o my-application ]

If no mode flag is present, then GHC will enter - -make (page 98) mode (Using ghc --make
(page 101)) if there are any Haskell source files given on the command line, or else it will link
the objects named on the command line to produce an executable.

The available mode flags are:

--interactive

Interactive mode, which is also available as ghci. Interactive mode is described in more
detail in Using GHCi (page 43).

--run (file)
Run a script’s main entry-point. Similar to runghc this will by default use the bytecode
interpreter. If the command-line contains a - - argument then all arguments that follow
will be passed to the script. All arguments that precede -- are interpreted as GHC
arguments.

- -make

In this mode, GHC will build a multi-module Haskell program automatically, figuring out
dependencies for itself. If you have a straightforward Haskell program, this is likely to be
much easier, and faster, than using make. Make mode is described in Using ghc --make
(page 101).

This mode is the default if there are any Haskell source files mentioned on the command
line, and in this case the - -make (page 98) option can be omitted.

-e (expr)
Expression-evaluation mode. This is very similar to interactive mode, except that there
is a single expression to evaluate ({expr)) which is given on the command line. This flag
may be given multiple times, in which case each expression is evaluated sequentially.
See Expression evaluation mode (page 102) for more details.

-E

Stop after preprocessing (. hspp file)
-C

Stop after generating C (. hc file)
-S

Stop after generating assembly (.s file)

98 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

-C
Stop after generating object (.o0) file
This is the traditional batch-compiler mode, in which GHC can compile source files one at
a time, or link objects together into an executable. See Batch compiler mode (page 103).
-M

Dependency-generation mode. In this mode, GHC can be used to generate dependency

information suitable for use in a Makefile. See Dependency generation (page 249).
--frontend (module)

Run GHC using the given frontend plugin. See Frontend plugins (page 648) for details.

--mk-dll
DLL-creation mode (Windows only). See Creating a DLL (page 706).
--help
-?
Cause GHC to spew a long usage message to standard output and then exit.
--show-iface (file)
Read the interface in (file) and dump it as text to stdout. For example ghc --show-iface
M.hi.
--supported-extensions
--supported-languages
Print the supported language extensions.
--show-options
Print the supported command line options. This flag can be used for autocompletion in
a shell.
--info
Print information about the compiler.
--version
-V
Print a one-line string including GHC’s version number.
--numeric-version
Print GHC’s numeric version number only.

--print-booter-version
Print the numeric version of the GHC binary used to bootstrap the build of this compiler.

--print-build-platform
Print the target string of the build platform, on which GHC was built, as generated by
GNU Autotools. The format is cpu-manufacturer-operating system-(kernel), e.qg.,
x86 64-unknown-1linux.
--print-c-compiler-flags
List the flags passed to the C compiler during GHC build.
--print-c-compiler-link-flags
List the flags passed to the C compiler for the linking step during GHC build.

5.1. Using GHC 99



GHC User’s Guide Documentation, Release 9.2.8

--print-debug-on
Print True if GHC was built with -DDebug flag. This enables assertions and extra debug
code. The flag can be set in GhcStagelHcOpts and/or GhcStage2HcOpts and is automat-
ically set for devell and devel?2 build flavors.

--print-global-package-db
Print the path to GHC’s global package database directory. A package database stores
details about installed packages as a directory containing a file for each package. This
flag prints the path to the global database shipped with GHC, and looks something like
/usr/1lib/ghc/package.conf.d on Unix. There may be other package databases, e.g.,
the user package databse. For more details see Package Databases (page 257).

--print-have-interpreter
Print YES if GHC was compiled to include the interpreter, NO otherwise. If this GHC does
not have the interpreter included, running it in interactive mode (see --interactive
(page 98)) will throw an error. This only pertains the use of GHC interactively, not any
separate GHCIi binaries (see Using GHCi (page 43)).
--print-have-native-code-generator
Print YES if native code generator supports the target platform, NO otherwise. (See Na-
tive Code Generator (-fasm) (page 270))
--print-host-platform
Print the target string of the host platform, i.e., the one on which GHC
is supposed to run, as generated by GNU Autotools. The format is
cpu-manufacturer-operating system- (kernel), e.g., x86_64-unknown-linux.
--print-leading-underscore

Print YES if GHC was compiled to use symbols with leading underscores in object files,
NO otherwise. This is usually atarget platform dependent.

--print-libdir
Print the path to GHC'’s library directory. This is the top of the directory tree containing
GHC'’s libraries, interfaces, and include files (usually something like /usr/local/lib/
ghc-5.04 on Unix). This is the value of $libdir in the package configuration file (see
Packages (page 252)).

--print-ld-flags
Print linke flags used to compile GHC.

--print-object-splitting-supported
Print YES if GHC was compiled with support for splitting generated object files into
smaller objects, NO otherwise. This feature uses platform specific techniques and may
not be available on all platforms. See -split-objs (page 279) for details.

--print-project-git-commit-id
Print the Git commit id from which this GHC was built. This can be used to trace the
current binary back to a specific revision, which is especially useful during development
on GHC itself. It is set by the configure script.

--print-project-version
Print the version set in the configure script during build. This is simply the GHC version.

--print-rts-ways
Packages, like the Runtime System, can be built in a number of ways: - profiling - with
profiling support - dynamic - with dynamic linking - logging - RTS event logging - threaded
- mulithreaded RTS - debug - RTS with debug information

100 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

Various combinations of these flavours are possible.
--print-stage
GHC is built using GHC itself and this build happens in stages, which are numbered.

* Stage 0 is the GHC you have installed. The “GHC you have installed” is also called
“the bootstrap compiler”.

* Stage 1 is the first GHC we build, using stage 0. Stage 1 is then used to build the
packages.

¢ Stage 2 is the second GHC we build, using stage 1. This is the one we normally
install when you say make install.

» Stage 3 is optional, but is sometimes built to test stage 2.

Stage 1 does not support interactive execution (GHCi) and Template Haskell.
--print-support-smp

Print YES if GHC was built with multiporcessor support, NO otherwise.
--print-tables-next-to-code

Print YES if GHC was built with the flag - -enable-tables-next-to-code, NO otherwise.

This option is on by default, as it generates a more efficient code layout.
--print-target-platform

Print the target string of the target platform, i.e., the one on which gen-
erated binaries will run, as generated by GNU Autotools. The format is
cpu-manufacturer-operating system-(kernel), e.g., x86 64-unknown-linux.

--print-unregisterised

Print YES if this GHC was built in unregisterised mode, NO otherwise. “Unregisterised”
means that GHC will disable most platform-specific tricks and optimisations. Only
the LLVM and C code generators will be available. See Unregisterised compilation
(page 271) for more details.

5.1.5.1 Using ghc --make

In this mode, GHC will build a multi-module Haskell program by following dependencies from
one or more root modules (usually just Main). For example, if your Main module is in a file
called Main.hs, you could compile and link the program like this:

[ghc --make Main.hs J

In fact, GHC enters make mode automatically if there are any Haskell source files on the
command line and no other mode is specified, so in this case we could just type

[ghc Main.hs ]

Any number of source file names or module names may be specified; GHC will figure out all
the modules in the program by following the imports from these initial modules. It will then
attempt to compile each module which is out of date, and finally, if there is a Main module,
the program will also be linked into an executable.

The main advantages to using ghc --make over traditional Makefiles are:

* GHC doesn’t have to be restarted for each compilation, which means it can cache infor-
mation between compilations. Compiling a multi-module program with ghc --make can
be up to twice as fast as running ghc individually on each source file.

5.1. Using GHC 101



GHC User’s Guide Documentation, Release 9.2.8

* You don’t have to write a Makefile.

* GHC re-calculates the dependencies each time it is invoked, so the dependencies never
get out of sync with the source.

» Using the -j[(n)] (page 102) flag, you can compile modules in parallel. Specify -j
(n) to compile (n) jobs in parallel. If (n) is omitted, then it defaults to the number of
processors.

Any of the command-line options described in the rest of this chapter can be used with - -make,
but note that any options you give on the command line will apply to all the source files
compiled, so if you want any options to apply to a single source file only, you’ll need to use an
OPTIONS GHC pragma (see Command line options in source files (page 96)).

If the program needs to be linked with additional objects (say, some auxiliary C code), then
the object files can be given on the command line and GHC will include them when linking
the executable.

For backward compatibility with existing make scripts, when used in combination with -c¢
(page 98), the linking phase is omitted (same as - -make -no-1ink).

Note that GHC can only follow dependencies if it has the source file available, so if your
program includes a module for which there is no source file, even if you have an object and
an interface file for the module, then GHC will complain. The exception to this rule is for
package modules, which may or may not have source files.

The source files for the program don’t all need to be in the same directory; the -1 (page 235)
option can be used to add directories to the search path (see The search path (page 235)).
-3[(n)]

Perform compilation in parallel when possible. GHC will use up to (N) threads during

compilation. If N is omitted, then it defaults to the number of processors. Note that
compilation of a module may not begin until its dependencies have been built.

5.1.5.2 Expression evaluation mode

This mode is very similar to interactive mode, except that there is a single expression to
evaluate which is specified on the command line as an argument to the -e option:

[ghc -e expr J

Haskell source files may be named on the command line, and they will be loaded exactly as
in interactive mode. The expression is evaluated in the context of the loaded modules.

For example, to load and run a Haskell program containing a module Main, we might say:

[ghc -e Main.main Main.hs J

or we can just use this mode to evaluate expressions in the context of the Prelude:

$ ghc -e "interact (unlines.map reverse.lines)"
hello
olleh

102 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

5.1.5.3 Batch compiler mode

In batch mode, GHC will compile one or more source files given on the command line.

The first phase to run is determined by each input-file suffix, and the last phase is determined
by a flag. If no relevant flag is present, then go all the way through to linking. This table
summarises:

Phase of the compilation Suffix saying “start Flagsaying “stop af- (suffix of) output

system here” ter” file
literate pre-processor . lhs .hs

C pre-processor (opt.) .hs (with -cpp) -E .hspp
Haskell compiler .hs -C, -S .hc, .s
C compiler (opt.) .hcor .c -S .S
assembler .S -C .0
linker (other) a.out

Thus, a common invocation would be:

[ghc -c Foo.hs J

to compile the Haskell source file Foo.hs to an object file Foo.o.

Note: What the Haskell compiler proper produces depends on what backend code generator
is used. See GHC Backends (page 270) for more details.

Note: Pre-processing is optional, the -cpp (page 274) flag turns it on. See Options affecting
the C pre-processor (page 274) for more details.

Note: The option -E (page 98) runs just the pre-processing passes of the compiler, dumping
the result in a file.

Note: The option -C (page 98) is only available when GHC is built in unregisterised mode.
See Unregisterised compilation (page 271) for more details.

Overriding the default behaviour for a file

As described above, the way in which a file is processed by GHC depends on its suffix. This
behaviour can be overridden using the -x (suffix) (page 103) option:

=X (suffix)
Causes all files following this option on the command line to be processed as if they had
the suffix (suffix). For example, to compile a Haskell module in the file M.my-hs, use ghc
-C -x hs M.my-hs.

5.1. Using GHC 103



GHC User’s Guide Documentation, Release 9.2.8

5.1.6 Verbosity options

See also the --help, --version, --numeric-version, and --print-libdir modes in Modes
of operation (page 98).
-V

The -v (page 104) option makes GHC verbose: it reports its version number and shows
(on stderr) exactly how it invokes each phase of the compilation system. Moreover, it
passes the -v flag to most phases; each reports its version number (and possibly some
other information).

Please, oh please, use the -v option when reporting bugs! Knowing that you ran the
right bits in the right order is always the first thing we want to verify.
-v{n)
To provide more control over the compiler’s verbosity, the -v flag takes an optional nu-
meric argument. Specifying -v on its own is equivalent to -v3, and the other levels have
the following meanings:
-vO
Disable all non-essential messages (this is the default).
-vl
Minimal verbosity: print one line per compilation (this is the default when - -make
(page 98) or - -interactive (page 98) is on).
-v2
Print the name of each compilation phase as it is executed. (equivalent to
-dshow-passes (page 290)).
-v3
The same as -v2, except that in addition the full command line (if appropriate) for
each compilation phase is also printed.
-v4
The same as -v3 except that the intermediate program representation after each
compilation phase is also printed (excluding preprocessed and C/assembly files).
-fprint-potential-instances
When GHC can’t find an instance for a class, it displays a short list of some in the in-
stances it knows about. With this flag it prints all the instances it knows about.
-fhide-source-paths

Starting with minimal verbosity (-v1, see -v (page 104)), GHC displays the name, the
source path and the target path of each compiled module. This flag can be used to reduce
GHC'’s output by hiding source paths and target paths.

The following flags control the way in which GHC displays types in error messages and in
GHCi:
-fprint-unicode-syntax

When enabled GHC prints type signatures using the unicode symbols from the
UnicodeSyntax (page 307) extension. For instance,

ghci> :set -fprint-unicode-syntax
ghci> :t +v (>>)
(>>) * Monad m=Vab. ma—-mb-—-mb

104 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

-fprint-explicit-foralls
Using - fprint-explicit-foralls (page 104) makes GHC print explicit forall quantifi-
cation at the top level of a type; normally this is suppressed. For example, in GHCi:

ghci> let f x = x

ghci> :t f

f:ra->a

ghci> :set -fprint-explicit-foralls
ghci> :t f

f :: forall a. a -> a

However, regardless of the flag setting, the quantifiers are printed under these circum-
stances:

* For nested foralls, e.g.

ghci> :t GHC.ST.runST
GHC.ST.runST :: (forall s. GHC.ST.ST s a) -> a

» If any of the quantified type variables has a kind that mentions a kind variable, e.g.

ghci> :i Data.Type.Equality.sym
Data.Type.Equality.sym ::
forall k (a :: k) (b :: k).
(a Data.Type.Equality.:~: b) -> b Data.Type.Equality.:~: a
-- Defined in Data.Type.Equality

-fprint-explicit-kinds
Using -fprint-explicit-kinds (page 105) makes GHC print kind arguments in types,
which are normally suppressed. This can be important when you are using kind polymor-
phism. For example:

ghci> :set -XPolyKinds

ghci> data T a (b :: 1) = MKT

ghci> :t MKT

MKT :: forall k 1 (a :: k) (b :: 1). Tab

ghci> :set -fprint-explicit-kinds

ghci> :t MKT

MKT :: forall k 1 (a :: k) (b :: 1). T @{k} @l a b
ghci> :set -XNoPolyKinds

ghci> :t MKT

MKT :: T @{*} @* a b

In the output above, observe that T has two kind variables (k and 1) and two type vari-
ables (a and b). Note that k is an inferred variable and 1 is a specified variable (see
Inferred vs. specified type variables (page 413)), so as a result, they are displayed using
slightly different syntax in the type T @{k} @l a b. The application of 1 (with @l) is the
standard syntax for visible type application (see Visible type application (page 412)). The
application of k (with @{k}), however, uses a hypothetical syntax for visible type applica-
tion of inferred type variables. This syntax is not currently exposed to the programmer,
but it is nevertheless displayed when - fprint-explicit-kinds (page 105) is enabled.

-fprint-explicit-coercions
Using -fprint-explicit-coercions (page 105) makes GHC print coercions in types.

5.1. Using GHC 105




GHC User’s Guide Documentation, Release 9.2.8

When trying to prove the equality between types of different kinds, GHC uses type-level
coercions. Users will rarely need to see these, as they are meant to be internal.

-fprint-axiom-incomps

Using -fprint-axiom-incomps (page 106) tells GHC to display incompatibilities be-
tween closed type families’ equations, whenever they are printed by :info (page 77)
or --show-iface (file) (page 99).

(ghci> :i Data.Type.Equality.==
type family (==) (a :: k) (b :: k) :: Bool
where

—

fa) (g b) =(f ==g) & (a ==b)
a = 'True
) 1 2 = 'False
ghci> :set -fprint-axiom-incomps
ghci> :1i Data.Type.Equality.==
type family (==) (a :: k) (b :: k) :: Bool
where
{- #0 -} (==) (f a) (g b) = (f == g) & (a == b)
{- #1 -} (==) a a = 'True
-- incompatible with: #0
{- #2 -} (==) 1 2 = 'False
-- incompatible with: #1, #0

—
mnnu
i n
- —
Q —~

—_

The equations are numbered starting from 0, and the comment after each equation refers
to all preceding equations it is incompatible with.

-fprint-equality-relations

Using -fprint-equality-relations (page 106) tells GHC to distinguish between its
equality relations when printing. For example, ~ is homogeneous lifted equality (the
kinds of its arguments are the same) while ~~ is heterogeneous lifted equality (the
kinds of its arguments might be different) and ~# is heterogeneous unlifted equal-
ity, the internal equality relation used in GHC’s solver. Generally, users should not
need to worry about the subtleties here; ~ is probably what you want. Without
-fprint-equality-relations (page 106), GHC prints all of these as ~. See also Equality
constraints (page 511).

-fprint-expanded-synonyms

When enabled, GHC also prints type-synonym-expanded types in type errors. For exam-
ple, with this type synonyms:

(type Foo Int
type Bar = Bool
type MyBarST s = ST s Bar

This error message:

‘Couldn't match type 'Int' with 'Bool’
Expected type: ST s Foo

Actual type: MyBarST s

Becomes this:

Couldn't match type 'Int' with 'Bool’
Expected type: ST s Foo

(continues on next page)

106

Chapter 5. Using GHC




GHC User’s Guide Documentation, Release 9.2.8

(continued from previous page)

Actual type: MyBarST s
Type synonyms expanded:
Expected type: ST s Int

Actual type: ST s Bool

-fprint-typechecker-elaboration

When enabled, GHC also prints extra information from the typechecker in warnings. For
example:

(main i I0 ()

main = do
return $ let a = "hello" in a
return ()

This warning message:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying

‘ <- ($) return let a = "hello" in a’
or by using the flag -fno-warn-unused-do-bind

Becomes this:

A do-notation statement discarded a result of type ‘[Char]’
Suppress this warning by saying
< (%)
return
let
AbsBinds [] T[]
{Exports: [a <= a
<>]
Exported types: a :: [Char]
[LclId, Str=DmdTypel]
Binds: a = "hello"}
in a’
or by using the flag -fno-warn-unused-do-bind

-fdefer-diagnostics

Causes GHC to group diagnostic messages by severity and output them after other mes-
sages when building a multi-module Haskell program. This flag can make diagnostic
messages more visible when used in conjunction with - -make (page 98) and -j[(n)]
(page 102). Otherwise, it can be hard to find the relevant errors or likely to ignore the
warnings when they are mixed with many other messages.

-fdiagnostics-color=(always|auto|never)

Causes GHC to display error messages with colors. To do this, the terminal must have
support for ANSI color codes, or else garbled text will appear. The default value is auto,
which means GHC will make an attempt to detect whether terminal supports colors and
choose accordingly.

The precise color scheme is controlled by the environment variable GHC COLORS (or
GHC_COLOURS). This can be set to colon-separated list of key=value pairs. These are
the default settings:

5.1. Using GHC 107



GHC User’s Guide Documentation, Release 9.2.8

[heade r=:message=1:warning=1;35:error=1;31:fatal=1;31:margin=1;34 ]

Each value is expected to be a Select Graphic Rendition (SGR) substring. The formatting
of each element can inherit from parent elements. For example, if header is left empty,
it will inherit the formatting of message. Alternatively if header is set to 1 (bold), it will
be bolded but still inherits the color of message.

Currently, in the primary message, the following inheritance tree is in place:
* message
- header
* warning
* error
* fatal

In the caret diagnostics, there is currently no inheritance at all between margin, warning,
error, and fatal.

The environment variable can also be set to the magical values never or always, which
is equivalent to setting the corresponding -fdiagnostics-color flag but with lower
precedence.

-fdiagnostics-show-caret

Controls whether GHC displays a line of the original source code where the error was
detected. This also affects the associated caret symbol that points at the region of code
at fault. The flag is on by default.

-ferror-spans

Causes GHC to emit the full source span of the syntactic entity relating to an error
message. Normally, GHC emits the source location of the start of the syntactic entity

only.

For example:

[test.hs:3:6: parse error on input ‘where' J
becomes:

[test296.hs:3:6-10: parse error on input ‘where' ]

And multi-line spans are possible too:

test.hs:(5,4)-(6,7):
Conflicting definitions for “a'
Bound at: test.hs:5:4
test.hs:6:7
In the binding group for: a, b, a

Note that line numbers start counting at one, but column numbers start at zero. This
choice was made to follow existing convention (i.e. this is how Emacs does it).

-fkeep-going

Since
8.10.1

108 Chapter 5. Using GHC


https://en.wikipedia.org/wiki/ANSI_escape_code#graphics

GHC User’s Guide Documentation, Release 9.2.8

Causes GHC to continue the compilation if a module has an error. Any reverse depen-
dencies are pruned immediately and the whole compilation is still flagged as an error.
This option has no effect if parallel compilation (-j/[(n)] (page 102)) is in use.

-freverse-errors

Causes GHC to output errors in reverse line-number order, so that the errors and warn-
ings that originate later in the file are displayed first.

-Rghc-timing

Prints a one-line summary of timing statistics for the GHC run. This option is equivalent
to +RTS -tstderr, see RTS options to control the garbage collector (page 216).

5.1.7 Platform-specific Flags

Some flags only make sense for particular target platforms.

-mavx
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 270). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 271) may use AVX if your processor supports it, but detects
this automatically, so no flag is required.

-mavx2
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 270). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 271) may use AVX2 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512cd

(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 270). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 271) may use AVX51?2 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx5l12er
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 270). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 271) may use AVX51?2 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512f
(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 270). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 271) may use AVX512 if your processor supports it, but detects
this automatically, so no flag is required.

-mavx512pf

(x86 only) These SIMD instructions are currently not supported by the native code gener-
ator (page 270). Enabling this flag has no effect and is only present for future extensions.

The LLVM backend (page 271) may use AVX51?2 if your processor supports it, but detects
this automatically, so no flag is required.

5.1. Using GHC 109



GHC User’s Guide Documentation, Release 9.2.8

-msse
(x86 only) Use the SSE registers and instruction set to implement floating point opera-
tions when using the native code generator (page 270). This gives a substantial perfor-
mance improvement for floating point, but the resulting compiled code will only run on
processors that support SSE (Intel Pentium 3 and later, or AMD Athlon XP and later).
The LLVM backend (page 271) will also use SSE if your processor supports it but detects
this automatically so no flag is required.

Since GHC 8.10, SSE2 is assumed to be present on both x86 and x86-64 platforms and
will be used by default. Even when setting this flag, SSE2 will be used instead.

-msse2
(x86 only, added in GHC 7.0.1) Use the SSE2 registers and instruction set to implement
floating point operations when using the native code generator (page 270). This gives
a substantial performance improvement for floating point, but the resulting compiled
code will only run on processors that support SSE2 (Intel Pentium 4 and later, or AMD
Athlon 64 and later). The LLVM backend (page 271) will also use SSE2 if your processor
supports it but detects this automatically so no flag is required.

Since GHC 8.10, SSE2 is assumed to be present on both x86 and x86-64 platforms and
will be used by default.

-msse3
(x86 only) Use the SSE3 instruction set to implement some floating point and bit opera-
tions when using the native code generator (page 270).

Note that the current version does not use SSE3 specific instructions and only requires
SSE2 processor support.

The LLVM backend (page 271) will also use SSE3 if your processor supports it but detects
this automatically so no flag is required.

-msse4
(x86 only) Use the SSE4 instruction set to implement some floating point and bit opera-
tions when using the native code generator (page 270).

Note that the current version does not use SSE4 specific instructions and only requires
SSE2 processor support.

The LLVM backend (page 271) will also use SSE4 if your processor supports it but detects
this automatically so no flag is required.

-msse4.2

(x86 only, added in GHC 7.4.1) Use the SSE4.2 instruction set to implement some floating
point and bit operations when using the native code generator (page 270). The resulting
compiled code will only run on processors that support SSE4.2 (Intel Core i7 and later).
The LLVM backend (page 271) will also use SSE4.2 if your processor supports it but
detects this automatically so no flag is required.

-mbmi
(x86 only) Use the BMI1 instruction set to implement some bit operations when using
the native code generator (page 270).

Note that the current version does not use BMI specific instructions, so using this flag
has no effect.

-mbmi2

(x86 only, added in GHC 7.4.1) Use the BMI2 instruction set to implement some bit op-
erations when using the native code generator (page 270). The resulting compiled code

110 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

will only run on processors that support BMI2 (Intel Haswell and newer, AMD Excavator,
Zen and newer).

5.1.8 Haddock

-haddock
By default, GHC ignores Haddock comments (-- | ... and -- ~ ...) and does not
check that they’re associated with a valid term, such as a top-level type-signature. With
this flag GHC will parse Haddock comments and include them in the interface file it
produces.

Note that this flag makes GHC’s parser more strict so programs which are accepted
without Haddock may be rejected with - haddock (page 111).

5.1.9 Miscellaneous flags

Some flags only make sense for a particular use case.

-ghcversion-file (path to ghcversion.h)

When GHC is used to compile C files, GHC adds package include paths and includes
ghcversion.h directly. The compiler will lookup the path for the ghcversion.h file
from the rts package in the package database. In some cases, the compiler’s pack-
age database does not contain the rts package, or one wants to specify a specific
ghcversions.h to be included. This option can be used to specify the path to the
ghcversions.h file to be included. This is primarily intended to be used by GHC'’s build
system.

-H (size)
Set the minimum size of the heap to (size). This option is equivalent to +RTS -Hsize, see
RTS options to control the garbage collector (page 216).

5.1.9.1 Other environment variables

GHC can also be configured using environment variables. Currently the only variable it sup-
ports is GHC_NO UNICODE, which, when set, disables Unicode output regardless of locale set-
tings. GHC_NO UNICODE can be set to anything +(event an empty string) to trigger this be-
haviour.

5.2 Warnings and sanity-checking

GHC has a number of options that select which types of non-fatal error messages, other-
wise known as warnings, can be generated during compilation. Some options control indi-
vidual warnings and others control collections of warnings. To turn off an individual warning
-W<wflag>, use -Wno-<wflag>. To reverse -Werror, which makes all warnings into errors, use
-Wwarn.

Note: In GHC < 8 the syntax for -W<wflag> was -fwarn-<wflag> (e.g.
-fwarn-incomplete-patterns). This spelling is deprecated, but still accepted for

5.2. Warnings and sanity-checking 111



GHC User’s Guide Documentation, Release 9.2.8

backwards compatibility.

-fno-warn-incomplete-patterns).

Likewise,

-Wno-<wflag> used to be fno-warn-<wflag> (e.g.

-Wdefault

Since
8.0

By default, you get a standard set of warnings which are generally likely to indicate bugs
in your program. These are:

-Woverlapping-patterns
(page 125)

-Wwarnings-deprecations
(page 117)
-Wdeprecations

(page 117)
-Wdeprecated-flags
(page 118)

-Wunrecognised-pragmas
(page 116)
-Wduplicate-exports
(page 120)
-Wderiving-defaults
(page 119)

-Woverflowed-literals
(page 119)

-Wempty-enumerations
(page 119)
-Wmissing-fields

(page 123) (page 132)
-Wmissing-methods .

(page 124) -Wunsupported-1lvm-version
-Wwrong-do-bind (page 128)

(page 132) .

-Wmissed-extra-shared-lib
-Wsimplifiable-class-constpagei8)

(page 127) * -Wtabs (page 128)

-Wtyped-holes .

(page 115) -Wunrecognised-warning-flags
(page 114)

-Wdeferred-type-errors e« -Winaccessible-code

(page 115) (page 126)

e -Wstar-binder
-Wpartial-type-signatures(page 127)
(page 116) .
-Woperator-whitespace-ext-confli
-Wunsupported-calling-conypade dridt)

(page 118) * -Wambiguous-fields
(page 135)
-Wdodgy-foreign-imports e
(page 118) -Wunicode-bidirectional-format-c
(page 135)

-Winline-rule-shadowing

The following flags are simple ways to select standard “packages” of warnings:

-W
Provides the standard warnings plus
* -Wunused-binds e -Wunused-imports (page 119)
(page 129) (page 130) * -Wdodgy-imports
* -Wunused-matches (page 119)
(page 130) -Wincomplete-patterns o
e -Wunused-foralls (page 121) -Wunbanged-strict-patterns
(page 131) e -Wdodgy-exports (page 133)
-Wextra
Alias for -W (page 112)
-Wall
Turns on all warning options that indicate potentially suspicious code. The warnings
that are not enabled by -Wall (page 112) are
112 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

. -Wmissing-home-modules -Wduplicate-constraints
-Wmonomorphism-restrictiofpage 133) (page 119)
(page 128) e -Widentities .

o -Wimplicit-prelude (page 121) -Wmissing-deriving-strategies
(page 121) . (page 123)

. -Wredundant-constraints * -Wunused-packages
-Wmissing-local-signaturegpage 120) (page 133)
(page 124) e -Wpartial-fields .

. (page 133) -Wunused-type-patterns
-Wmissing-exported-signatures (page 130)
(page 124) -Wmissed-specialisation® -Wsafe (page 596)

. (page 116) o -Wimplicit-lift
-Wmissing-export-lists e (page 121)
(page 123) -Wall-missed-specialisations

. (page 116) -Wmissing-kind-signatures
-Wmissing-import-lists < -Wcpp-undef (page 125)
(page 123) (page 133)

-Weverything
Since
8.0
Turns on every single warning supported by the compiler.
-Wcompat

Since

8.0

Turns on warnings that will be enabled by default in the future, but remain off in normal
compilations for the time being. This allows library authors eager to make their code
future compatible to adapt to new features before they even generate warnings.

This currently enables

* -Wsemigroup (page 117) -Wcompat-unqualified-imports
(page 118) * -Wstar-is-type (page 114)
. (page 127)

-Wnoncanonical-monoid-imstances

-Wno-compat
Disables all warnings enabled by -Wcompat (page ??).

Turns off all warnings, including the standard ones and those that -Wall (page 112)
doesn’t enable.

-Wnot
Deprecated alias for -w (page 113)

These options control which warnings are considered fatal and cause compilation to abort.

-Werror

Since
6.8 (-Wwarn)

5.2. Warnings and sanity-checking 113



GHC User’s Guide Documentation, Release 9.2.8

Makes any warning into a fatal error. Useful so that you don’t miss warnings when
doing batch compilation. To reverse -Werror and stop treating any warnings as errors
use -Wwarn, or use -Wwarn=<wflag> to stop treating specific warnings as errors.

-Werror=(wflag)
Implies
-W<wflag>

Makes a specific warning into a fatal error. The warning will be enabled if it hasn’t been
enabled yet. Can be reversed with -Wwarn=<wflag>.

-Werror=compat has the same effect as -Werror=... for each warning flag in the
-Wcompat (page ??) option group.

-Wwarn

Warnings are treated only as warnings, not as errors. This is the default, but can be
useful to negate a -Werror (page ??) flag.

-Wwarn=(wflag)
Causes a specific warning to be treated as normal warning, not fatal error.

Note that it doesn’t fully negate the effects of -Werror=<wflag> - the warning will still
be enabled.

-Wwarn=compat has the same effect as -Wwarn=. .. for each warning flag in the -Wcompat
(page ??) option group.

When a warning is emitted, the specific warning flag which controls it is shown.
-fshow-warning-groups

When showing which flag controls a warning, also show the respective warning group
flag(s) that warning is contained in.

This option is off by default.

The full set of warning options is described below. To turn off any warning, simply give the
corresponding -Wno- ... option on the command line. For backwards compatibility with GHC
versions prior to 8.0, all these warnings can still be controlled with -f(no-)warn-* instead
of -W(no-)*.

-Wunrecognised-warning-flags

Since
8.0

Default
on

Enables warnings when the compiler encounters a -W. .. flag that is not recognised.
-Wcompat-unqualified-imports

Since
8.10

Warns on qualified imports of core library modules which are subject to change in future
GHC releases. Currently the following modules are covered by this warning:

e Data.List due to the future addition of Data.List.singleton and specialisation of
exports to the [] type. See the mailing list for details.

114 Chapter 5. Using GHC


https://groups.google.com/forum/#!topic/haskell-core-libraries/q3zHLmzBa5E

GHC User’s Guide Documentation, Release 9.2.8

This warning can be addressed by either adding an explicit import list or using a
qualified import.

-Wprepositive-qualified-module
Normally, imports are qualified prepositively: import qualified M. By using
ImportQualifiedPost (page 350), the qualified keyword can be used after the module

name. Like so: import M qualified. This will warn when the first, prepositive syntax
is used.

-Wtyped-holes

Since
7.8

Default
on

Determines whether the compiler reports typed holes warnings. Has no effect unless
typed holes errors are deferred until runtime. See Typed Holes (page 332) and Deferring
type errors to runtime (page 428)

-Wdeferred-type-errors

Since
8.4

Causes a warning to be reported when a type error is deferred until runtime. See Defer-
ring type errors to runtime (page 428)

This warning is on by default.

-fdefer-type-errors

Implies
-fdefer-typed-holes (page 115), -fdefer-out-of-scope-variables
(page 115)

Defer as many type errors as possible until runtime. At compile time you get a warning
(instead of an error). At runtime, if you use a value that depends on a type error, you
get a runtime error; but you can run any type-correct parts of your code just fine. See
Deferring type errors to runtime (page 428)

-fdefer-typed-holes

Defer typed holes errors (errors about names with a leading underscore (e.g., “ ”, “ foo”,
“ bar”)) until runtime. This will turn the errors produced by typed holes (page 332) into
warnings. Using a value that depends on a typed hole produces a runtime error, the
same as - fdefer-type-errors (page 115) (which implies this option). See Typed Holes
(page 332) and Deferring type errors to runtime (page 428).

Implied by - fdefer-type-errors (page 115). See also -Wtyped-holes (page 115).

-fdefer-out-of-scope-variables

Since
8.0

Defer variable out-of-scope errors (errors about names without a leading underscore)
until runtime. This will turn variable-out-of-scope errors into warnings. Using a
value that depends on an out-of-scope variable produces a runtime error, the same
as -fdefer-type-errors (page 115) (which implies this option). See Typed Holes
(page 332) and Deferring type errors to runtime (page 428).

5.2. Warnings and sanity-checking 115



GHC User’s Guide Documentation, Release 9.2.8

Implied by -fdefer-type-errors (page 115). See also
-Wdeferred-out-of-scope-variables (page 116).

-Wdeferred-out-of-scope-variables

Warn when a deferred out-of-scope variable is encountered.

-Wpartial-type-signatures

Since
7.10

Determines whether the compiler reports holes in partial type signatures as warnings.
Has no effect unless PartialTypeSignatures (page 532) is enabled, which controls
whether errors should be generated for holes in types or not. See Partial Type Signatures
(page 532).

This warning is on by default.

-fhelpful-errors

When a name or package is not found in scope, make suggestions for the name or package
you might have meant instead.

This option is on by default.

-Wunrecognised-pragmas

Since
6.10

Causes a warning to be emitted when a pragma that GHC doesn’t recognise is used. As
well as pragmas that GHC itself uses, GHC also recognises pragmas known to be used
by other tools, e.g. OPTIONS HUGS and DERIVE.

This option is on by default.

-Wmissed-specialisations

Since
8.0

Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports when the situation arises during special-
isation of an imported function.

This form is intended to catch cases where an imported function that is marked as
INLINABLE (presumably to enable specialisation) cannot be specialised as it calls other
functions that are themselves not specialised.

Note that this warning will not throw errors if used with -Werror (page ??).

This option is off by default.

-Wmissed-specializations

Alias for -Wmissed-specialisations (page 116)

-Wall-missed-specialisations

Since
8.0

Emits a warning if GHC cannot specialise an overloaded function, usually because the
function needs an INLINABLE pragma. Reports all such situations.

116

Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

Note that this warning will not throw errors if used with -Werror (page ??).
This option is off by default.

-Wall-missed-specializations
Alias for -Wall-missed-specialisations (page 116)

-Wwarnings-deprecations

Since
6.10

Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 615) for
more details on the pragmas.

This option is on by default.

-Wdeprecations

Causes a warning to be emitted when a module, function or type with a WARNING or
DEPRECATED pragma is used. See WARNING and DEPRECATED pragmas (page 615) for
more details on the pragmas. An alias for -Wwarnings-deprecations (page 117).

This option is on by default.

-Wnoncanonical-monad-instances

Since
8.0

Warn if noncanonical Applicative or Monad instances declarations are detected.
When this warning is enabled, the following conditions are verified:
In Monad instances declarations warn if any of the following conditions does not hold:
e If return is defined it must be canonical (i.e. return = pure).
e If (>>) is defined it must be canonical (i.e. (>>) = (*>)).

Moreover, in Applicative instance declarations:

return).

(>>)).

* Warn if pure is defined backwards (i.e. pure
e Warn if (*>) is defined backwards (i.e. (*>)

This option is off by default.

-Wnoncanonical-monadfail-instances

Since
8.0, deprecated in 9.2

This warning is deprecated. It no longer has any effect since GHC 8.8. It was used
during the transition period of the MonadFail proposal, to detect when an instance of the
Monad class was not defined via MonadFail, or when a MonadFail instance was defined
backwards, using the method in Monad.

-Wnoncanonical-monoid-instances

Since
8.0

5.2. Warnings and sanity-checking 117



GHC User’s Guide Documentation, Release 9.2.8

Warn if noncanonical Semigroup or Monoid instances declarations are detected.
When this warning is enabled, the following conditions are verified:
In Monoid instances declarations warn if any of the following conditions does not hold:
* If mappend is defined it must be canonical (i.e. mappend = (Data.Semigroup.<>)).
Moreover, in Semigroup instance declarations:
* Warn if (<>) is defined backwards (i.e. (<>) = mappend).
This warning is off by default. However, it is part of the -Wcompat (page ??) option group.

-Wmissing-monadfail-instances

Since
8.0

This warning is deprecated. It no longer has any effect since GHC 8.8. It was used during
the transition period of the MonadFail proposal, to warn when a failable pattern is used
in a do-block that does not have a MonadFail instance.

-Wsemigroup

Since
8.0

Warn when definitions are in conflict with the future inclusion of Semigroup into the
standard typeclasses.

1. Instances of Monoid should also be instances of Semigroup

2. The Semigroup operator (<>) will be in Prelude, which clashes with custom local
definitions of such an operator

Being part of the -Wcompat (page ??) option group, this warning is off by default, but will
be switched on in a future GHC release.

-Wdeprecated-flags

Since
6.10

Causes a warning to be emitted when a deprecated command-line flag is used.
This option is on by default.
-Wunsupported-calling-conventions

Since
7.6

Causes a warning to be emitted for foreign declarations that use unsupported calling
conventions. In particular, if the stdcall calling convention is used on an architecture
other than i386 then it will be treated as ccall.

-Wdodgy-foreign-imports

Since
6.10

Causes a warning to be emitted for foreign imports of the following form:

118 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

[foreign import "f" f :: FunPtr t ]

on the grounds that it probably should be

[foreign import "&f" f :: FunPtr t ]

The first form declares that f is a (pure) C function that takes no arguments and returns
a pointer to a C function with type t, whereas the second form declares that f itself is a
C function with type t. The first declaration is usually a mistake, and one that is hard to
debug because it results in a crash, hence this warning.

-Wdodgy-exports

Since
6.12

Causes a warning to be emitted when a datatype T is exported with all constructors, i.e.
T(..), butis it just a type synonym.

Also causes a warning to be emitted when a module is re-exported, but that module
exports nothing.

-Wdodgy-imports

Since
6.8

Causes a warning to be emitted in the following cases:

* When a datatype T is imported with all constructors, i.e. T(..), but has been ex-
ported abstractly, i.e. T.

* When an import statement hides an entity that is not exported.

-Woverflowed-literals

Since
7.8

Causes a warning to be emitted if a literal will overflow, e.g. 300 :: Word8.

-Wempty-enumerations

Since
7.8

Causes a warning to be emitted if an enumeration is empty, e.g. [5 .. 3].

-Wderiving-defaults

Since
8.10

Causes a warning when both DeriveAnyClass (page 467) and
GeneralizedNewtypeDeriving (page 462) are enabled and no explicit deriving strategy
is in use. For example, this would result a warning:

class C a
newtype T a = MKT a deriving C

5.2. Warnings and sanity-checking 119



GHC User’s Guide Documentation, Release 9.2.8

-Wduplicate-constraints

Since
7.8

Have the compiler warn about duplicate constraints in a type signature. For example

[f :: (Eq a, Show a, Eq a) => a -> a ]

The warning will indicate the duplicated Eq a constraint.
This option is now deprecated in favour of -Wredundant-constraints (page 120).

-Wredundant-constraints

Since
8.0

Have the compiler warn about redundant constraints in a type signature. In particular:

* A redundant constraint within the type signature itself:

[f :: (Eq a, Ord a) => a -> a }

The warning will indicate the redundant Eq a constraint: it is subsumed by the 0rd
a constraint.

* A constraint in the type signature is not used in the code it covers:

f :: Ega=>a->a ->Bool
f xy = True

The warning will indicate the redundant Eq a constraint: : it is not used by the
definition of f.)

Similar warnings are given for a redundant constraint in an instance declaration.

When turning on, you can suppress it on a per-module basis with
-Wno-redundant-constraints (page 120). Occasionally you may specifically want
a function to have a more constrained signature than necessary, perhaps to leave
yourself wiggle-room for changing the implementation without changing the API. In
that case, you can suppress the warning on a per-function basis, using a call in a dead
binding. For example:

f :: Ega=>a ->a -> Bool
f Xy = True
where
_ = X == X -- Suppress the redundant-constraint warning for (Eq a)

Here the call to (==) makes GHC think that the (Eq a) constraint is needed, so no
warning is issued.

-Wduplicate-exports

Have the compiler warn about duplicate entries in export lists. This is useful information
if you maintain large export lists, and want to avoid the continued export of a definition
after you’ve deleted (one) mention of it in the export list.

This option is on by default.

120 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

-Whi-shadowing

Causes the compiler to emit a warning when a module or interface file in the current
directory is shadowing one with the same module name in a library or other directory.

This flag was not implemented correctly and is now deprecated. It will be removed in a
later version of GHC.

-Widentities

Since
7.2

Causes the compiler to emit a warning when a Prelude numeric conversion converts
a type T to the same type T; such calls are probably no-ops and can be omitted. The
functions checked for are: toInteger, toRational, fromIntegral, and realToFrac.

-Wimplicit-kind-vars

Since
8.6

This warning is deprecated. It no longer has any effect since GHC 8.10. It was used
to detect if a kind variable is not explicitly quantified over. For instance, the following
would produce a warning:

[f :: forall (a :: k). Proxy a ]

This can be fixed by explicitly quantifying over k:
[f :: forall k (a :: k). Proxy a ]

-Wimplicit-lift

Since

9.2
Template Haskell quotes referring to local variables bound outside of the quote are im-
plicitly converted to use 1ift . For example, "~“f x = [| reverse x |] becomes f

x = [| reverse $(lift x) |]1). This flag issues a warning for every such implicit addi-
tion of 1ift. This can be useful when debugging more complex staged programs, where
an implicit lift* can accidentally conceal a variable used at a wrong stage.

-Wimplicit-prelude

Since

6.8
Have the compiler warn if the Prelude is implicitly imported. This happens unless ei-
ther the Prelude module is explicitly imported with an import ... Prelude ... line, or

this implicit import is disabled (either by NoImplicitPrelude (page 325) or a LANGUAGE
NoImplicitPrelude pragma).

Note that no warning is given for syntax that implicitly refers to the Prelude, even if
NoImplicitPrelude (page 325) would change whether it refers to the Prelude. For
example, no warning is given when 368 means Prelude.fromInteger (368::Prelude.
Integer) (where Prelude refers to the actual Prelude module, regardless of the imports
of the module being compiled).

This warning is off by default.

5.2. Warnings and sanity-checking 121



GHC User’s Guide Documentation, Release 9.2.8

-Wincomplete-patterns

Since
5.04

The option -Wincomplete-patterns (page 121) warns about places where a pattern-
match might fail at runtime. The function g below will fail when applied to non-empty
lists, so the compiler will emit a warning about this when -Wincomplete-patterns
(page 121) is enabled.

(911 =2 ]

This option isn’t enabled by default because it can be a bit noisy, and it doesn’t always
indicate a bug in the program. However, it’s generally considered good practice to cover
all the cases in your functions, and it is switched on by -W (page 112).

-Wincomplete-uni-patterns

Since
7.2

The flag -Wincomplete-uni-patterns (page 122) is similar to -Wincomplete-patterns
(page 121), except that it applies only to lambda-expressions and pattern bindings, con-
structs that only allow a single pattern:

h =\[] -> 2
Just k = fy

Furthermore, this flag also applies to lazy patterns, since they are syntactic sugar for
pattern bindings. For example, f ~(Just x) = (x,X) is equivalentto f y = let Just
X =y in (x,Xx).

-fmax-pmcheck-models=(n)

Default
30

The pattern match checker works by assigning symbolic values to each pattern. We call
each such assignment a ‘model’. Now, each pattern match clause leads to potentially
multiple splits of that model, encoding different ways for the pattern match to fail. For
example, when matching x against Just 4, we split each incoming matching model into
two uncovered sub-models: One where x is Nothing and one where x is Just y but y is
not 4.

This can be exponential in the arity of the pattern and in the number of guards in some
cases. The - fmax-pmcheck-models=(n) (page 122) limit makes sure we scale polynomi-
ally in the number of patterns, by forgetting refined information gained from a partially
successful match. For the above example, if we had a limit of 1, we would continue
checking the next clause with the original, unrefined model.

-Wincomplete-record-updates

Since
6.4

The function f below will fail when applied to Bar, so the compiler will emit a warning
about this when -Wincomplete-record-updates (page 122) is enabled.

122 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

data Foo = Foo { x :: Int }
| Bar

f :: Foo -> Foo
f foo = foo { x =6 }

This option isn’t enabled by default because it can be very noisy, and it often doesn’t
indicate a bug in the program.

-Wmissing-deriving-strategies

Since
8.8

The datatype below derives the Eq typeclass, but doesn’t specify a strategy. When

-Wmissing-deriving-strategies (page 123) is enabled, the compiler will emit a warn-
ing about this.

data Foo a = Foo a
deriving (Eq)

The compiler will warn here that the deriving clause doesn’t specify a strategy. If the
warning is enabled, but DerivingStrategies (page 470) is not enabled, the compiler
will suggest turning on the DerivingStrategies (page 470) extension. This option is
not on by default, having to be turned on manually or with -Weverything (page 113).

-Wmissing-fields

This option is on by default, and warns you whenever the construction of a labelled field
constructor isn’t complete, missing initialisers for one or more fields. While not an error

(the missing fields are initialised with bottoms), it is often an indication of a programmer
error.

-Wmissing-export-lists

Since
8.4

This flag warns if you declare a module without declaring an explicit export list. For
example

module M where

p X = X

The -Wmissing-export-lists (page 123) flag will warn that M does not declare an export
list. Declaring an explicit export list for M enables GHC dead code analysis, prevents
accidental export of names and can ease optimizations like inlining.

-Wmissing-import-lists

Since
7.0

This flag warns if you use an unqualified import declaration that does not explicitly list
the entities brought into scope. For example

5.2. Warnings and sanity-checking 123



GHC User’s Guide Documentation, Release 9.2.8

module M where
import X( f )
import Y
import qualified Z
px=T°fxx

The -Wmissing-import-1lists (page 123) flag will warn about the import of Y but not X
If module Y is later changed to export (say) f, then the reference to f in M will become
ambiguous. No warning is produced for the import of Z because extending Z's exports
would be unlikely to produce ambiguity in M.

-Wmissing-methods

This option is on by default, and warns you whenever an instance declaration is missing
one or more methods, and the corresponding class declaration has no default declaration
for them.

The MINIMAL pragma can be used to change which combination of methods will be re-
quired for instances of a particular class. See MINIMAL pragma (page 616).

-Wmissing-signatures

If you would like GHC to check that every top-level function/value has a type signature,
use the -Wmissing-signatures (page 124) option. As part of the warning GHC also
reports the inferred type. The option is off by default.

-Wmissing-exported-sigs
Since
7.10
This option is now deprecated in favour of -Wmissing-exported-signatures (page 124).

-Wmissing-exported-signatures

Since
8.0

If you would like GHC to check that every exported top-level function/value has a type
signature, but not check unexported values, use the -Wmissing-exported-signatures
(page 124) option. If this option is used in conjunction with -Wmissing-signatures
(page 124) then every top-level function/value must have a type signature. As part of the
warning GHC also reports the inferred type. The option is off by default.

-Wmissing-local-sigs

Since
7.0
This option is now deprecated in favour of -Wmissing-local-signatures (page 124).

-Wmissing-local-signatures

Since
8.0

If you use the -Wmissing-local-signatures (page 124) flag GHC will warn you about
any polymorphic local bindings. As part of the warning GHC also reports the inferred
type. The option is off by default.

124 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

-Wmissing-pattern-synonym-signatures

Since
8.0

If you would like GHC to check that every pattern synonym has a type signature, use the
-Wmissing-pattern-synonym-signatures (page 124) option. If this option is used in
conjunction with -Wmissing-exported-signatures (page 124) then only exported pat-
tern synonyms must have a type signature. GHC also reports the inferred type. This
option is off by default.

-Wmissing-kind-signatures

Since
9.2

If you would like GHC to check that every data, type family, type-class defi-
nition has a standalone kind signature (page 397) or a CUSK (page 394), use
the -Wmissing-kind-signatures (page 125) option. You can specify the kind via
StandaloneKindSignatures (page 397) or CUSKs (page 394).

Note that -Wmissing-kind-signatures (page 125) does not warn about associated type
families, as GHC considers an associated type family declaration to have a CUSK if its en-
closing class has a CUSK. (See Complete user-supplied kind signatures and polymorphic
recursion (page 394) for more on this point.) Therefore, giving the parent class a stan-
dalone kind signature or CUSK is sufficient to fix the warning for the class’s associated
type families as well.

This option is off by default.

-Wname-shadowing

This option causes a warning to be emitted whenever an inner-scope value has the same
name as an outer-scope value, i.e. the inner value shadows the outer one. This can catch
typographical errors that turn into hard-to-find bugs, e.g., in the inadvertent capture of
what would be a recursive callin f = ... let f = id in ... f ....

The warning is suppressed for names beginning with an underscore. For example

[f x = do { ignore <- this; ignore <- that; return (the other) } ]

-Worphans

Since
6.4

These flags cause a warning to be emitted whenever the module contains an “orphan”
instance declaration or rewrite rule. An instance declaration is an orphan if it appears
in a module in which neither the class nor the type being instanced are declared in the
same module. A rule is an orphan if it is a rule for a function declared in another module.
A module containing any orphans is called an orphan module.

The trouble with orphans is that GHC must pro-actively read the interface files for all
orphan modules, just in case their instances or rules play a role, whether or not the
module’s interface would otherwise be of any use. See Orphan modules and instance
declarations (page 251) for details.

The flag -Worphans (page 125) warns about user-written orphan rules or instances.

-Woverlapping-patterns
By default, the compiler will warn you if a set of patterns are overlapping, e.g.,

5.2. Warnings and sanity-checking 125



GHC User’s Guide Documentation, Release 9.2.8

f :: String -> Int
f [1 =

f (_:xs)
f

0
_ 1
||2|| 2

where the last pattern match in f won’t ever be reached, as the second pattern overlaps
it. More often than not, redundant patterns is a programmer mistake/error, so this option
is enabled by default.

If the programmer is dead set on keeping a redundant clause, for example to prevent
bitrot, they can make use of a guard scrutinising GHC.Exts.considerAccessible to pre-
vent the checker from flagging the parent clause as redundant:

g :: String -> Int
g [l

g (_:xs)

g

0
_ 1
"2" | considerAccessible = 2

-- No warning!

Note that considerAccessible should come as the last statement of the guard in order
not to impact the results of the checker. E.g., if you write

h :: Bool -> Int
h x = case (x, x) of
(True, True) ->1
(False, False) -> 2
(True, False) | considerAccessible, False <- x -> 3

The pattern-match checker takes you by your word, will conclude that False <- x might
fail and warn that the pattern-match is inexhaustive. Put considerAccessible last to
avoid such confusions.

Note that due to technical limitations, considerAccessible will not suppress
-Winaccessible-code (page 126) warnings.

-Winaccessible-code

Since
8.6

By default, the compiler will warn you if types make a branch inaccessible. This generally
requires GADTs or similar extensions.

Take, for example, the following program

{-# LANGUAGE GADTs #-}
data Foo a where

Fool :: Foo Char

Foo2 :: Foo Int

data TyEquality a b where
Refl :: TyEquality a a

checkTEQ :: Foo t -> Foo u -> Maybe (TyEquality t u)
checkTEQ x y = error "unimportant"

(continues on next page)

126

Chapter 5. Using GHC




GHC User’s Guide Documentation, Release 9.2.8

(continued from previous page)
step2 :: Bool
step2 = case checkTEQ Fool Foo2 of
Just Refl -> True -- Inaccessible code
Nothing -> False

The Just Refl case in step?2 is inaccessible, because in order for checkTEQ to be able to
produce a Just, t ~ umust hold, but since we’re passing Fool and Foo2 here, it follows
that t ~ Char, and u ~ Int, and thus t ~ u cannot hold.

-Wstar-is-type

Since
8.6

The use of * to denote the kind of inhabited types relies on the StarIsType (page 405) ex-
tension, which in a future release will be turned off by default and then possibly removed.
The reasons for this and the deprecation schedule are described in GHC proposal #30.

This warning allows to detect such uses of * before the actual breaking change takes
place. The recommended fix is to replace * with Type imported from Data.Kind.

Being part of the -Wcompat (page ??) option group, this warning is off by default, but will
be switched on in a future GHC release.

-Wstar-binder

Since
8.6

Under StarIsType (page 405), a * in types is not an operator nor even a name, it is special
syntax that stands for Data.Kind.Type. This means that an expression like Either *
Char is parsed as Either (*) Char and not (*) Either Char.

In binding positions, we have similar parsing rules. Consider the following example

{-# LANGUAGE TypeOperators, TypeFamilies, StarIsType #-}

type family a + b
type family a * b

While a + b is parsed as (+) a b and becomes a binding position for the (+) type oper-
ator, a * bisparsed asa (*) b and is rejected.

As a workaround, we allow to bind (*) in prefix form:

[type family (*) a b J

This is a rather fragile arrangement, as generally a programmer expects (*) a b to
be equivalent to a * b. With -Wstar-binder (page 127) we warn when this special
treatment of (*) takes place.

-Wsimplifiable-class-constraints

Since
8.2

Warn about class constraints in a type signature that can be simplified using a top-level
instance declaration. For example:

5.2. Warnings and sanity-checking 127


https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0030-remove-star-kind.rst

GHC User’s Guide Documentation, Release 9.2.8

[f::Eq[a]=>a->a ]

Here the Eq [a] in the signature overlaps with the top-level instance for Eq [a]. GHC
goes to some efforts to use the former, but if it should use the latter, it would then have
an insoluble Eq a constraint. Best avoided by instead writing:

Ef::Eqa=>a->a J

This option is on by default. As usual you can suppress it on a per-module basis with
-Wno-simplifiable-class-constraints (page 127).

-Wtabs

Since
6.8

Have the compiler warn if there are tabs in your source file.

-Wtype-defaults
Have the compiler warn/inform you where in your source the Haskell defaulting mecha-
nism for numeric types kicks in. This is useful information when converting code from
a context that assumed one default into one with another, e.g., the ‘default default’ for
Haskell 1.4 caused the otherwise unconstrained value 1 to be given the type Int, whereas
Haskell 98 and later defaults it to Integer. This may lead to differences in performance
and behaviour, hence the usefulness of being non-silent about this.

This warning is off by default.

-Wmonomorphism-restriction

Since
6.8

Have the compiler warn/inform you where in your source the Haskell Monomorphism
Restriction is applied. If applied silently the MR can give rise to unexpected behaviour,
so it can be helpful to have an explicit warning that it is being applied.

This warning is off by default.
-Wunsupported-1lvm-version

Since
7.8

Warn when using - fllvm (page 278) with an unsupported version of LLVM.

-Wmissed-extra-shared-1lib

Since
8.8

Warn when GHCi can’t load a shared lib it deduced it should load when loading a package
and analyzing the extra-libraries stanza of the target package description.

-Wunticked-promoted-constructors

Since
7.10

Warn if a promoted data constructor is used without a tick preceding its name.

For example:

128 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

data Nat = Succ Nat | Zero

data Vec n s where
Nil :: Vec Zero a
Cons :: a -> Vec n a -> Vec (Succ n) a

Will raise two warnings because Zero and Succ are not written as 'Zero and 'Succ.
This warning is enabled by default in -Wall (page 112) mode.

-Wunused-binds
Report any function definitions (and local bindings) which are unused. An alias for

* -Wunused-top-binds (page 129)
e -Wunused-local-binds (page 129)
* -Wunused-pattern-binds (page 129)

-Wunused-top-binds

Since
8.0

Report any function definitions which are unused.

More precisely, warn if a binding brings into scope a variable that is not used, except if
the variable’s name starts with an underscore. The “starts-with-underscore” condition
provides a way to selectively disable the warning.

A variable is regarded as “used” if
¢ It is exported, or

» It appears in the right hand side of a binding that binds at least one used variable
that is used

For example:

(module A (f) where
f = let (p,q) = rhsl in t p -- No warning: q is unused, but is locally,,
—bound
t = rhs3 -- No warning: f is used, and hence so is t
g =h x -- Warning: g unused
h = rhs2 -- Warning: h is only used in the

-- right-hand side of another unused binding
~w = True -- No warning: w starts with an underscore

-Wunused-local-binds

Since
8.0

Report any local definitions which are unused. For example:

module A (f) where

f = let (p,q) = rhsl in t p -- Warning: g is unused

g =h x -- No warning: g is unused, but is a top-
—~level binding

5.2. Warnings and sanity-checking 129



GHC User’s Guide Documentation, Release 9.2.8

-Wunused-pattern-binds

Since
8.0

Warn if a pattern binding binds no variables at all, unless it is a lone wild-card pattern,
or a banged pattern. For example:

Just _ = rhs3 -- Warning: unused pattern binding

(_, _) =rhs4 -- Warning: unused pattern binding

_ = rhs3 -- No warning: lone wild-card pattern

1() = rhs4 -- No warning: banged pattern; behaves like seq

In general a lazy pattern binding p = e is a no-op if p does not bind any variables. The
motivation for allowing lone wild-card patterns is they are not very different from v =
rhs3, which elicits no warning; and they can be useful to add a type constraint, e.g.
= x::Int. A banged pattern (see Bang patterns and Strict Haskell (page 551)) is not a
no-op, because it forces evaluation, and is useful as an alternative to seq.

-Wunused-imports

Report any modules that are explicitly imported but never used. However, the form
import M() is never reported as an unused import, because it is a useful idiom for im-
porting instance declarations, which are anonymous in Haskell.

-Wunused-matches

Report all unused variables which arise from term-level pattern matches, including pat-
terns consisting of a single variable. For instance f x y = [] would report x and y as
unused. The warning is suppressed if the variable name begins with an underscore, thus:

[f X = True ]

Note that -Wunused-matches (page 130) does not warn about variables which arise from
type-level patterns, as found in type family and data family instances. This must be
enabled separately through the -Wunused-type-patterns (page 130) flag.

-Wunused-do-bind

Since
6.12

Report expressions occurring in do and mdo blocks that appear to silently throw informa-
tion away. For instance do { mapM popInt xs ; return 10 } would report the first
statement in the do block as suspicious, as it has the type StackM [Int] and not StackM
(), but that [Int] value is not bound to anything. The warning is suppressed by explicitly
mentioning in the source code that your program is throwing something away:

[do { _ <- mapM popInt xs ; return 10 } J

Of course, in this particular situation you can do even better:

[do { mapM_popInt xs ; return 10 } ]

-Wunused-type-patterns

Since
8.0

130 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

Report all unused implicitly bound type variables which arise from patterns in type family
and data family instances. For instance:

[type instance F x y = [] ]

would report x and y as unused on the right hand side. The warning is suppressed if the
type variable name begins with an underscore, like so:

[type instance F _x y = [] ]

When ExplicitForAll (page 518) is enabled, explicitly quantified type variables may
also be identified as unused. For instance:

[type instance forall x y. F x y = [] ]

would still report x and y as unused on the right hand side

Unlike -Wunused-matches (page 130), -Wunused-type-patterns (page 130) is not im-
plied by -Wall (page 112). The rationale for this decision is that unlike term-level pat-
tern names, type names are often chosen expressly for documentation purposes, so using
underscores in type names can make the documentation harder to read.

-Wunused-foralls

Since
8.0

Report all unused type variables which arise from explicit, user-written forall state-
ments. For instance:

[g :: forall a b c. (b -> b) ]

would report a and ¢ as unused.

-Wunused-record-wildcards

Since
8.10

Report all record wildcards where none of the variables bound implicitly are used. For
instance:

data P =P { x :: Int, y :: Int }

fl :: P -> Int
fl1 P{..} =1+ 3

would report that the P{. .} match is unused.

-Wredundant-bang-patterns

Since
9.2

Report dead bang patterns, where dead bangs are bang patterns that under no circum-
stances can force a thunk that wasn’t already forced. Dead bangs are a form of redundant
bangs. The new check is performed in pattern-match coverage checker along with other
checks (namely, redundant and inaccessible RHSs). Given

5.2. Warnings and sanity-checking 131



GHC User’s Guide Documentation, Release 9.2.8

f :: Bool -> Int
f True = 1
f Ix = 2

The bang pattern on !x is dead. By the time the x in the second equation is reached, x
will already have been forced due to the first equation (f True = 1). Moreover, there is
no way to reach the second equation without going through the first one.

Note that -Wredundant-bang-patterns will not warn about dead bangs that appear on
a redundant clause. That is because in that case, it is recommended to delete the clause
wholly, including its leading pattern match.

Dead bang patterns are redundant. But there are bang patterns which are redundant
that aren’t dead, for example:

[f!():@ ]

the bang still forces the argument, before we attempt to match on (). But it is redun-
dant with the forcing done by the () match. Currently such redundant bangs are not
considered dead, and -Wredundant-bang-patterns will not warn about them.

-Wredundant-record-wildcards

Since
8.10

Report all record wildcards where the wild card match binds no patterns. For instance:

data P =P { x :: Int, y :: Int }

fl :: P -> Int
fl P{x,y,-.} =X +y

would report that the P{x, y, ..} match has a redundant use of ...

-Wwrong-do-bind

Since
6.12

Report expressions occurring in do and mdo blocks that appear to lack a binding. For
instance do { return (popInt 10) ; return 10 } would report the first statement in
the do block as suspicious, as it has the type StackM (StackM Int) (which consists of two
nested applications of the same monad constructor), but which is not then “unpacked”
by binding the result. The warning is suppressed by explicitly mentioning in the source
code that your program is throwing something away:

{do { _ <- return (popInt 10) ; return 10 } ]
For almost all sensible programs this will indicate a bug, and you probably intended to
write:

[do { popInt 10 ; return 10 } ]

-Winline-rule-shadowing

Since
7.8

132 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

Warn if a rewrite RULE might fail to fire because the function might be inlined before
the rule has a chance to fire. See How rules interact with INLINE/NOINLINE pragmas
(page 602).

-Wcpp-undef

Since
8.2

This flag passes -Wundef to the C pre-processor (if its being used) which causes the
pre-processor to warn on uses of the #if directive on undefined identifiers.

-Wunbanged-strict-patterns

Since
8.2

This flag warns whenever you write a pattern that binds a variable whose type is un-
lifted, and yet the pattern is not a bang pattern nor a bare variable. See Unboxed types
(page 563) for information about unlifted types.

-Wmissing-home-modules

Since
8.2

When a module provided by the package currently being compiled (i.e. the “home” pack-
age) is imported, but not explicitly listed in command line as a target. Useful for Cabal
to ensure GHC won’t pick up modules, not listed neither in exposed-modules, nor in
other-modules.

-Wpartial-fields
Since
8.4

The option -Wpartial-fields (page 133) warns about record fields that could fail when
accessed via a lacking constructor. The function f below will fail when applied to Bar,
so the compiler will emit a warning at its definition when -Wpartial-fields (page 133)
is enabled.

The warning is suppressed if the field name begins with an underscore.

[data Foo = Foo { f :: Int } | Bar J

-Wunused-packages

Since
8.10

The option -Wunused-packages (page 133) warns about packages, specified on command
line via -package (pkg) (page 254) or -package-id (unit-id) (page 255), but were not
loaded during compilation. Usually it means that you have an unused dependency.

You may want to enable this warning on a clean build or enable -fforce-recomp
(page 240) in order to get reliable results.

-Winvalid-haddock

Since
9.0

5.2. Warnings and sanity-checking 133



GHC User’s Guide Documentation, Release 9.2.8

When the -haddock option is enabled, GHC collects documentation comments and asso-
ciates them with declarations, function arguments, data constructors, and other syntac-
tic elements. Documentation comments in invalid positions are discarded:

myValue =
-- | Invalid (discarded) comment in an expression
2 + 2

This warning informs you about discarded documentation comments. It has no effect
when -haddock (page 111) is disabled.

-Woperator-whitespace-ext-conflict

Since
9.2

When TemplateHaskell (page 539) is enabled, f $x is parsed as f applied to an untyped
splice. But when the extension is disabled, the expression is parsed as a use of the $
infix operator.

To make it easy to read f $x without checking the enabled extensions, one could rewrite
itas f $ x, which is what this warning suggests.

Currently, it detects the following cases:
* $x could mean an untyped splice under TemplateHaskell (page 539)
* $$x could mean a typed splice under TemplateHaskell (page 539)
* %m could mean a multiplicity annotation under LinearTypes (page 424)

It only covers extensions that currently exist. If you want to enforce a stricter policy
and always require whitespace around all infix operators, use -Woperator-whitespace
(page 134).

-Woperator-whitespace

Since
9.2

There are four types of infix operator occurrences, as defined by GHC Proposal #229:

al'!b -- a loose infix occurrence
alb -- a tight infix occurrence
a'b -- a prefix occurrence
al' b -- a suffix occurrence

A loose infix occurrence of any operator is always parsed as an infix operator, but other
occurrence types may be assigned a special meaning. For example, a prefix ! denotes a
bang pattern, and a prefix $ denotes a TemplateHaskell (page 539) splice.

This warning encourages the use of loose infix occurrences of all infix operators, to pre-
vent possible conflicts with future language extensions.

-Wauto-orphans

Since
7.4

Does nothing.

134 Chapter 5. Using GHC


https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0229-whitespace-bang-patterns.rst

GHC User’s Guide Documentation, Release 9.2.8

-Wmissing-space-after-bang

Since
8.8

Does nothing.

-Wderiving-typeable

Since
7.10

This flag warns when Typeable is listed in a deriving clause or derived with
StandaloneDeriving (page 451).

Since GHC 7.10, Typeable is automatically derived for all types. Thus, deriving Typeable
yourself is redundant.

-Wambiguous-fields

Since
9.2

When DuplicateRecordFields (page 437) is enabled, the option -Wambiguous-fields
(page 135) warns about occurrences of fields in selectors or updates that depend on
the deprecated mechanism for type-directed disambiguation. This mechanism will be
removed in a future GHC release, at which point these occurrences will be rejected as
ambiguous. See the proposal DuplicateRecordFields without ambiguous field access and
the documentation on DuplicateRecordFields (page 437) for further details.

This warning has no effect when DuplicateRecordFields (page 437) is disabled.

-Wunicode-bidirectional-format-characters

Explicit unicode bidirectional formatting characters can cause source code to be ren-
dered misleadingly in many viewers. We warn if any such character is present in the
source.

Specifically, the characters disallowed by this warning are those which are a part of the
‘Explicit Formatting™ category of the Unicode Bidirectional Character Type Listing

Since
9.0.2

If you're feeling really paranoid, the -dcore-1lint (page 298) option is a good choice. It turns
on heavyweight intra-pass sanity-checking within GHC. (It checks GHC’s sanity, not yours.)

5.3 Optimisation (code improvement)

The -0* options specify convenient “packages” of optimisation flags; the -f* options de-
scribed later on specify individual optimisations to be turned on/off; the -m* options specify
machine-specific optimisations to be turned on/off.

Most of these options are boolean and have options to turn them both “on” and “off” (be-
ginning with the prefix no-). For instance, while -fspecialise enables specialisation,
-fno-specialise disables it. When multiple flags for the same option appear in the command-
line they are evaluated from left to right. For instance, - fno-specialise -fspecialise will
enable specialisation.

5.3. Optimisation (code improvement) 135


https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0366-no-ambiguous-field-access.rst
https://www.unicode.org/reports/tr9/#Bidirectional_Character_Types

GHC User’s Guide Documentation, Release 9.2.8

It is important to note that the -0* flags are roughly equivalent to combinations of - f* flags.
For this reason, the effect of the -0* and - f* flags is dependent upon the order in which they
occur on the command line.

For instance, take the example of -fno-specialise -01. Despite the -fno-specialise ap-
pearing in the command line, specialisation will still be enabled. This is the case as -01
implies - fspecialise, overriding the previous flag. By contrast, -01 -fno-specialise will
compile without specialisation, as one would expect.

5.3.1 -0*: convenient “packages” of optimisation flags.

There are many options that affect the quality of code produced by GHC. Most people only
have a general goal, something like “Compile quickly” or “Make my program run like greased
lightning.” The following “packages” of optimisations (or lack thereof) should suffice.

Note that higher optimisation levels cause more cross-module optimisation to be performed,
which can have an impact on how much of your program needs to be recompiled when you
change something. This is one reason to stick to no-optimisation when developing code.

No ""-O*""-type option specified: This is taken to mean “Please compile quickly; I'm not
over-bothered about compiled-code quality.” So, for example, ghc -c¢ Foo.hs
-00

Means “turn off all optimisation”, reverting to the same settings as if no -0 options had
been specified. Saying -00 can be useful if e.g. make has inserted a -0 on the command
line already.

-01
Means: “Generate good-quality code without taking too long about it.” Thus, for exam-
ple: ghc -c -0 Main.lhs

-02
Means: “Apply every non-dangerous optimisation, even if it means significantly longer
compile times.”

The avoided “dangerous” optimisations are those that can make runtime or space worse
if you're unlucky. They are normally turned on or off individually.

-0(n)
Any -On where n > 2 is the same as -O2.

We don’t use a -0* flag for day-to-day work. We use -0 to get respectable speed; e.g., when

we want to measure something. When we want to go for broke, we tend to use -02 (and we
go for lots of coffee breaks).

The easiest way to see what -0 (etc.) “really mean” is to run with -v (page 104), then stand
back in amazement.

136 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

5.3.2 -f*: platform-independent flags

These flags turn on and off individual optimisations. Flags marked as on by default are enabled
by -0, and as such you shouldn’t need to set any of them explicitly. A flag - fwombat can be
negated by saying - fno-wombat

-fcase-merge

Default
on

Merge immediately-nested case expressions that scrutinise the same variable. For ex-
ample,
case x of

Red -> el

_ => case x of

Blue -> e2

Green -> e3

Is transformed to,

case x of
Red -> el
Blue -> e2

Green -> e2

-fcase-folding

Default
on

Allow constant folding in case expressions that scrutinise some primops: For example,

case X minusWord#® 10## of

10## -> el
20## -> e2
Y, -> e3

Is transformed to,

case x of
20## -> el
30## -> e2

-> let v = x “minusWord#  10## in e3

-fcall-arity

Default
on

Enable call-arity analysis.

-fexitification

Default
on

Enables the floating of exit paths out of recursive functions.

5.3. Optimisation (code improvement) 137



GHC User’s Guide Documentation, Release 9.2.8

-fcmm-elim-common-blocks

Default
on

Enables the common block elimination optimisation in the code generator. This optimi-
sation attempts to find identical Cmm blocks and eliminate the duplicates.

-fcmm-sink

Default
on

Enables the sinking pass in the code generator. This optimisation attempts to find iden-
tical Cmm blocks and eliminate the duplicates attempts to move variable bindings closer
to their usage sites. It also inlines simple expressions like literals or registers.

-fcmm-static-pred

Default
off but enabled with -0 (page 136).

This enables static control flow prediction on the final Cmm code. If enabled GHC will
apply certain heuristics to identify loops and hot code paths. This information is then
used by the register allocation and code layout passes.

-fasm-shortcutting

Default
off

This enables shortcutting at the assembly stage of the code generator. In simpler terms
shortcutting means if a block of instructions A only consists of a unconditionally jump,
we replace all jumps to A by jumps to the successor of A.

This is mostly done during Cmm passes. However this can miss corner cases. So at -O2
we run the pass again at the asm stage to catch these.

-fblock-layout-cfg

Default
off but enabled with -0 (page 136).

The new algorithm considers all outgoing edges of a basic blocks for code layout instead
of only the last jump instruction. It also builds a control flow graph for functions, tries to
find hot code paths and place them sequentially leading to better cache utilization and
performance.

This is expected to improve performance on average, but actual performance difference
can vary.

If you find cases of significant performance regressions, which can be traced back to
obviously bad code layout please open a ticket.

-fblock-layout-weights

This flag is hacker territory. The main purpose of this flag is to make it easy to debug
and tune the new code layout algorithm. There is no guarantee that values giving better
results now won’t be worse with the next release.

If you feel your code warrants modifying these settings please consult the source code
for default values and documentation. But I strongly advise against this.

138 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

-fblock-layout-weightless

Default
off

When not using the cfg based blocklayout layout is determined either by the last jump
in a basic block or the heaviest outgoing edge of the block in the cfg.

With this flag enabled we use the last jump instruction in blocks. Without this flags the
old algorithm also uses the heaviest outgoing edge.

When this flag is enabled and - fblock- layout-cfg (page 138) is disabled block layout
behaves the same as in 8.6 and earlier.

-fcpr-anal
Default
on
Turn on CPR analysis in the demand analyser.

-fcse

Default
on

Enables the common-sub-expression elimination optimisation. Switching this off can be
useful if you have some unsafePerformIO expressions that you don’t want commoned-
up.
-fstg-cse
Default
on

Enables the common-sub-expression elimination optimisation on the STG intermediate
language, where it is able to common up some subexpressions that differ in their types,
but not their representation.

-fdicts-cheap

Default
off

A very experimental flag that makes dictionary-valued expressions seem cheap to the
optimiser.

-fdicts-strict

Default
off

Make dictionaries strict.
-fdmd-tx-dict-sel

Default
on

Use a special demand transformer for dictionary selectors. Behaviour is unconditionally
enabled starting with 9.2

5.3. Optimisation (code improvement) 139



GHC User’s Guide Documentation, Release 9.2.8

-fdo-eta-reduction

Default
on
Eta-reduce lambda expressions, if doing so gets rid of a whole group of lambdas.
-fdo-lambda-eta-expansion
Default
on
Eta-expand let-bindings to increase their arity.
-feager-blackholing
Default
off

Usually GHC black-holes a thunk only when it switches threads. This flag makes it do so
as soon as the thunk is entered. See Haskell on a shared-memory multiprocessor.

See Compile-time options for SMP parallelism (page 154) for a discussion on its use.

-fexcess-precision

Default
off

When this option is given, intermediate floating point values can have a greater preci-
sion/range than the final type. Generally this is a good thing, but some programs may
rely on the exact precision/range of Float/Double values and should not use this option
for their compilation.

Note that the 32-bit x86 native code generator only supports excess-precision mode,
so neither -fexcess-precision nor -fno-excess-precision has any effect. This is a
known bug, see Bugs in GHC (page 718).

-fexpose-all-unfoldings

Default
off

An experimental flag to expose all unfoldings, even for very large or recursive functions.
This allows for all functions to be inlined while usually GHC would avoid inlining larger
functions.

-ffloat-in

Default
on

Float let-bindings inwards, nearer their binding site. See Let-floating: moving bindings
to give faster programs (ICFP’96).

This optimisation moves let bindings closer to their use site. The benefit here is that
this may avoid unnecessary allocation if the branch the let is now on is never executed.
It also enables other optimisation passes to work more effectively as they have more
information locally.

This optimisation isn’t always beneficial though (so GHC applies some heuristics to de-
cide when to apply it). The details get complicated but a simple example is that it is often
beneficial to move let bindings outwards so that multiple let bindings can be grouped into

140 Chapter 5. Using GHC


http://community.haskell.org/~simonmar/papers/multiproc.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz

GHC User’s Guide Documentation, Release 9.2.8

a larger single let binding, effectively batching their allocation and helping the garbage
collector and allocator.

-ffull-laziness

Default
on

Run the full laziness optimisation (also known as let-floating), which floats let-bindings
outside enclosing lambdas, in the hope they will be thereby be computed less often. See
Let-floating: moving bindings to give faster programs (ICFP’96). Full laziness increases
sharing, which can lead to increased memory residency.

Note: GHC doesn’t implement complete full laziness. Although GHC'’s full-laziness op-
timisation does enable some transformations which would be performed by a fully lazy
implementation (such as extracting repeated computations from loops), these transfor-
mations are not applied consistently, so don’t rely on them.

-ffun-to-thunk

Default
off

Worker-wrapper removes unused arguments, but usually we do not remove them all,
lest it turn a function closure into a thunk, thereby perhaps creating a space leak and/or
disrupting inlining. This flag allows worker/wrapper to remove all value lambdas.

-fignore-asserts

Default
on

Causes GHC to ignore uses of the function Exception.assert in source code (in other
words, rewriting Exception.assert p e to e (see Assertions (page 610)).

-fignore-interface-pragmas

Default
off

Tells GHC to ignore all inessential information when reading interface files. That is, even
if M. hi contains unfolding or strictness information for a function, GHC will ignore that
information.

-flate-dmd-anal

Default
off

Run demand analysis again, at the end of the simplification pipeline. We found some
opportunities for discovering strictness that were not visible earlier; and optimisations
like - fspec-constr (page 144) can create functions with unused arguments which are
eliminated by late demand analysis. Improvements are modest, but so is the cost. See
notes on the wiki page.

-fliberate-case

Default
off but enabled with -02 (page 136).

5.3. Optimisation (code improvement) 141


http://research.microsoft.com/en-us/um/people/simonpj/papers/float.ps.gz
https://gitlab.haskell.org/ghc/ghc/wikis/late-dmd

GHC User’s Guide Documentation, Release 9.2.8

Turn on the liberate-case transformation. This unrolls recursive function once in its own
RHS, to avoid repeated case analysis of free variables. It's a bit like the call-pattern
specialiser (- fspec-constr (page 144)) but for free variables rather than arguments.

-fliberate-case-threshold=(n)
Default
2000
Set the size threshold for the liberate-case transformation.
-floopification
Default
on
When this optimisation is enabled the code generator will turn all self-recursive saturated
tail calls into local jumps rather than function calls.
-fllvm-pass-vectors-in-regs
Default
on

This flag has no effect since GHC 8.8 - its behavior is always on. It used to instruct GHC
to use the platform’s native vector registers to pass vector arguments during function

calls.
-fmax-inline-alloc-size=(n)
Default
128

Set the maximum size of inline array allocations to n bytes. GHC will allocate non-pinned
arrays of statically known size in the current nursery block if they’re no bigger than n
bytes, ignoring GC overheap. This value should be quite a bit smaller than the block size

(typically: 4096).
-fmax-inline-memcpy-insns=(n)
Default
32
Inline memcpy calls if they would generate no more than (n) pseudo-instructions.
-fmax-inline-memset-insns=(n)
Default

32
Inline memset calls if they would generate no more than n pseudo instructions.

-fmax-relevant-binds=(n)

Default
6

The type checker sometimes displays a fragment of the type environment in error mes-
sages, but only up to some maximum number, set by this flag. Turning it off with
-fno-max-relevant-binds gives an unlimited number. Syntactically top-level bindings
are also usually excluded (since they may be numerous), but - fno-max-relevant-binds

includes them too.

142 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

-fmax-uncovered-patterns=(n)

Default
4

Maximum number of unmatched patterns to be shown in warnings generated by
-Wincomplete-patterns (page 121) and -Wincomplete-uni-patterns (page 122).

-fmax-simplifier-iterations=(n)

Default
4
Sets the maximal number of iterations for the simplifier.

-fmax-worker-args=(n)

Default
10

A function will not be split into worker and wrapper if the number of value arguments of
the resulting worker exceeds both that of the original function and this setting.

-fno-opt-coercion
Default
coercion optimisation enabled.
Turn off the coercion optimiser.
-fno-pre-inlining
Default
pre-inlining enabled
Turn off pre-inlining.

-fno-state-hack

Default
state hack is enabled

Turn off the “state hack” whereby any lambda with a State# token as argument is con-
sidered to be single-entry, hence it is considered okay to inline things inside it. This can
improve performance of IO and ST monad code, but it runs the risk of reducing sharing.

-fomit-interface-pragmas

Default
Implied by -00 (page ??), otherwise off.

Tells GHC to omit all inessential information from the interface file generated for the
module being compiled (say M). This means that a module importing M will see only
the types of the functions that M exports, but not their unfoldings, strictness info, etc.
Hence, for example, no function exported by M will be inlined into an importing module.
The benefit is that modules that import M will need to be recompiled less often (only
when M’s exports change their type, not when they change their implementation).

-fomit-yields

Default
on (yields are not inserted)

5.3. Optimisation (code improvement) 143



GHC User’s Guide Documentation, Release 9.2.8

Tells GHC to omit heap checks when no allocation is being performed. While this im-
proves binary sizes by about 5%, it also means that threads run in tight non-allocating
loops will not get preempted in a timely fashion. If it is important to always be able to
interrupt such threads, you should turn this optimization off. Consider also recompiling
all libraries with this optimization turned off, if you need to guarantee interruptibility.

-fpedantic-bottoms

Default
off

Make GHC be more precise about its treatment of bottom (but see also - fno-state-hack
(page 143)). In particular, stop GHC eta-expanding through a case expression, which is
good for performance, but bad if you are using seq on partial applications.

-fregs-graph

Default
off due to a performance regression bug (7679)

Only applies in combination with the native code generator. Use the graph colouring reg-
ister allocator for register allocation in the native code generator. By default, GHC uses
a simpler, faster linear register allocator. The downside being that the linear register
allocator usually generates worse code.

-fregs-iterative

Default
off

Only applies in combination with the native code generator. Use the iterative coalescing
graph colouring register allocator for register allocation in the native code generator.
This is the same register allocator as the - fregs-graph (page 144) one but also enables
iterative coalescing during register allocation.

-fsimplifier-phases=(n)

Default
2

Set the number of phases for the simplifier. Ignored with -00.
-fsimpl-tick-factor=(n)

Default
100

GHC'’s optimiser can diverge if you write rewrite rules (Rewrite rules (page 598)) that
don’t terminate, or (less satisfactorily) if you code up recursion through data types (Bugs
in GHC (page 718)). To avoid making the compiler fall into an infinite loop, the optimiser
carries a “tick count” and stops inlining and applying rewrite rules when this count is
exceeded. The limit is set as a multiple of the program size, so bigger programs get more
ticks. The -fsimpl-tick-factor flag lets you change the multiplier. The default is 100;
numbers larger than 100 give more ticks, and numbers smaller than 100 give fewer.

If the tick-count expires, GHC summarises what simplifier steps it has done; you can use
-fddump-simpl-stats to generate a much more detailed list. Usually that identifies the
loop quite accurately, because some numbers are very large.

144 Chapter 5. Using GHC


https://gitlab.haskell.org/ghc/ghc/issues/7679

GHC User’s Guide Documentation, Release 9.2.8

-fspec-constr

Default
off but enabled by -02 (page 136).

Turn on call-pattern specialisation; see Call-pattern specialisation for Haskell programs.

This optimisation specializes recursive functions according to their argument “shapes”.
This is best explained by example so consider:

last :: [a]l -> a
last [] = error "last"
last (x : [1) X

last (x : xs) last xs

In this code, once we pass the initial check for an empty list we know that in the recursive
case this pattern match is redundant. As such -fspec-constr will transform the above

code to:
last :: [a] -> a
last [] = error "last"
last (x : xs) = last' x xs
where
last' x [] = X
last' x (y : ys) = last' y ys

L

As well avoid unnecessary pattern matching it also helps avoid unnecessary allocation.
This applies when a argument is strict in the recursive call to itself but not on the initial
entry. As strict recursive branch of the function is created similar to the above example.

It is also possible for library writers to instruct GHC to perform call-pattern specialisation
extremely aggressively. This is necessary for some highly optimized libraries, where we
may want to specialize regardless of the number of specialisations, or the size of the
code. As an example, consider a simplified use-case from the vector library:

import GHC.Types (SPEC(..))

foldl :: (a -=> b ->a) -> a -> Stream b -> a

{-# INLINE foldl #-}

foldl f z (Stream step s _) = foldl loop SPEC z s

where
foldl loop !sPEC z s = case step s of

Yield x s' -> foldl loop sPEC (f z x) s'
Skip -> foldl loop sPEC z s'
Done -> 7

Here, after GHC inlines the body of foldl to a call site, it will perform call-pattern
specialisation very aggressively on foldl loop due to the use of SPEC in the argument
of the loop body. SPEC from GHC.Types is specifically recognised by the compiler.

(NB: it is extremely important you use seq or a bang pattern on the SPEC argument!)

In particular, after inlining this will expose f to the loop body directly, allowing heavy
specialisation over the recursive cases.

-fspec-constr-keen

5.3. Optimisation (code improvement) 145



https://www.microsoft.com/en-us/research/publication/system-f-with-type-equality-coercions-2/

GHC User’s Guide Documentation, Release 9.2.8

Default
off

If this flag is on, call-pattern specialisation will specialise a call (f (Just x)) with an
explicit constructor argument, even if the argument is not scrutinised in the body of the
function. This is sometimes beneficial; e.g. the argument might be given to some other
function that can itself be specialised.

-fspec-constr-count=(n)

Default
3

Set the maximum number of specialisations that will be created for any one function by
the SpecConstr transformation.

-fspec-constr-threshold=(n)

Default
2000

Set the size threshold for the SpecConstr transformation.
-fspecialise

Default
on

Specialise each type-class-overloaded function defined in this module for the types at
which it is called in this module. If - fcross-module-specialise (page 146) is set im-
ported functions that have an INLINABLE pragma (INLINABLE pragma (page 618)) will
be specialised as well.

-fspecialise-aggressively

Default
off

By default only type class methods and methods marked INLINABLE or INLINE are spe-
cialised. This flag will specialise any overloaded function regardless of size if its un-
folding is available. This flag is not included in any optimisation level as it can mas-
sively increase code size. It can be used in conjunction with - fexpose-all-unfoldings
(page 140) if you want to ensure all calls are specialised.

-fcross-module-specialise

Default
on

Specialise INLINABLE (INLINABLE pragma (page 618)) type-class-overloaded functions
imported from other modules for the types at which they are called in this module. Note
that specialisation must be enabled (by - fspecialise) for this to have any effect.

-flate-specialise

Default
off

Runs another specialisation pass towards the end of the optimisation pipeline. This can
catch specialisation opportunities which arose from the previous specialisation pass or
other inlining.

146 Chapter 5. Using GHC



GHC User’s Guide Documentation, Release 9.2.8

You might want to use this if you are you have a type class method which returns a
constrained type. For example, a type class where one of the methods implements a
traversal.

-finline-generics
Default
on

Since
9.2.1

Annotate methods of derived Generic and Genericl instances with INLINE[1] pragmas
based on heuristics dependent on the size of the data type in question. Improves per-
formance of generics-based algorithms as GHC is able to optimize away intermediate
representation more often.

-finline-generics-aggressively

Default
off

Since
9.2.1

Annotate methods of all derived Generic and Genericl instances with INLINE[1] prag-
mas.

This flag should only be used in modules deriving Generic instances that weren’t con-
sidered appropriate for INLINE[1] annotations by heuristics of -finline-generics
(page 147), yet you know that doing so would be beneficial.

When enabled globally it will most likely lead to worse compile times and code size
blowup without runtime performance gains.

-fsolve-constant-dicts

Default
on

When solving constraints, try to eagerly solve super classes using available dictionaries.

For example:

rclass Mabwherem:: a ->b
type Ca b = (Num a, M a b)

f:: CIntb=>0b->1Int ->Int
f_x=x+1

The body of f requires a Num Int instance. We could solve this constraint from the context
because we have C Int b and that provides us a solution for Num Int. However, we can
often produce much better code by directly solving for an available Num Int dictionary
we might have at hand. This removes potentially many layers of indirection and crucially
allows other optimisations to fire as the dictionary will be statically known and selector
functions can be inlined.

The optimisation also works for GADTs which bind dictionaries. If we statically know
which class dictionary we need then we will solve it directly rather than indirectly using
the one passed in at run time.

5.3. Optimisation (code improvement) 147



GHC User’s Guide Documentation, Release 9.2.8

-fstatic-argument-transformation

Default
off

Turn on the static argument transformation, which turns a recursive function into a non-
recursive one with a local recursive loop. See Chapter 7 of Andre Santos’s PhD thesis.

-fstg-lift-lams

Default
on

Enables the late lambda lifting optimisation on the STG intermediate language. This
selectively lifts local functions to top-level by converting free variables into function pa-
rameters.

-fstg-1ift-lams-known

Default
off

Allow turning known into unknown calls while performing late lambda lifting. This is
deemed non-beneficial, so it’s off by default.

-fstg-lift-lams-non-rec-args

Default
5

Create top-level non-recursive functions with at most <n> parameters while performing
late lambda lifting. The default is 5, the number of available parameter registers on
x86 64.

-fstg-lift-lams-rec-args

Default
5

Create top-level recursive functions with at most <n> parameters while performing late
lambda lifting. The default is 5, the number of available parameter registers on x86 64.

-fstrictness

Default
on

Turn on demand analysis.

A Demand describes an evaluation context of an expression. Demand analysis tries to
find out what demands a function puts on its arguments when called: If an argument is
scrutinised on every code path, the function is strict in that argument and GHC is free
to use the more efficient call-by-value calling convention, as well as pass parameters
unboxed.

Apart from strictness analysis, demand analysis also performs usage analysis: Where
strict translates to “evaluated at least once”, usage analysis asks whether arguments
and bindings are “evaluated at most once” or not at all (“evaluated at most zero times”),
e.g. absent. For the former, GHC may use call-by-name instead of call-by-need, effec-
tively turning thunks into non-memoised functions. For the latter, no code needs to be
generated at all: An absent argument can simply be replaced by a dummy value at the
call site or omitted altogether.

148 Chapter 5. Using GHC


https://www.microsoft.com/en-us/research/publication/compilation-transformation-non-strict-functional-languages/

GHC User’s Guide Documentation, Release 9.2.8

The worker/wrapper transformation (- fworker-wrapper (page 153)) is responsible for
exploiting unboxing opportunities and replacing absent arguments by dummies. For
arguments that can’t be unboxed, opportunities for call-by-value and call-by-name are
exploited in CorePrep when translating to STG.

It’s not only interesting to look at how often a binding is evaluated, but also how often
a function is called. If a function is called at most once, we may freely eta-expand it,
even if doing so destroys shared work if the function was called multiple times. This
information translates into OneShotInfo annotations that the Simplifier acts on.

Notation

So demand analysis is about conservatively inferring lower and upper bounds about how
many times something is evaluated/called. We call the “how many times” part a cardinal-
ity. In the compiler and debug output we differentiate the following cardinality intervals
as approximations to cardinality:

Interval Set of denoted Syntax Explanation tying syntax to semantics

cardinalities
[1,0] {} B Bottom element
[0,0] {0} A Absent
[0,1] {0,1} M Used at most once (“Maybe”)
[0,w] {0,1,w} L Lazy. Top element, no information, used at
least 0, at most many times
[1,1] {1} 1 Strict, used exactly once
[1,w] {l,w} S Strict, used possibly many times

Note t