
@eell Laboratories Cover Sheet for Technical Memorandu
The information contained herein is for the use of employees of Bell Laboratories and is not for publication (see GEi 13.9-

Title- Emulation of UNIX on Peripheral
Processors

Date - January 9, l975

TM- 75-l352-2

Other Keywords - Minicomputer Support
Multiprocessing

Author(s)

Lycklama, H.

Christensen, C.

Location and Room

MH 7C-2ll

MH 7C-2l7

Extension

6l70

4441

Charging Case - 39394

Filing Case- 39394-11

ABSTRACT

The UNIX operating system has been emulated on a peripheral
PDP-11 computer which has a communication link to a central
PDP-11/45 computer running UNIX. Emulation is achieved by
passing all traps that cannot be handled by the peripheral
processor (PP) to the central processor (CP). This technique
enables one to run object code produced by the C, LIL and
Fortran compilers, as well as the standard assembler, on the
peripheral processor, providing a powerful way of developing
software for the PP and of running programs on the PP. The
PP has complete access to the file system on the CP, yet the
PP does not require a resident UNIX operating system.

This UNIX emulation technique also provides the capability to
support a stand-alone PDP-11 minicomputer by connecting it to
a CP running UNIX. When the program for the PP is developed
and debugged, the link to the CP may be severed, producing a
stand-alone system.

Besides providing programming support for a PDP-11 minicomputer,
the emulation package also provides the ability to configure a
cost-effective multi-processor UNIX system. For example, a
minimally configured PDP-11/45 PP may be linked to a central
PDP-11/45 processor to run compute-bound programs.

The minimum configuration for any PP is a 4K PDP-11 machine
with a communication link to the CP. The entire communication
package and trap handler in the PP require only 400 words of
code.

Pages T ext __ 2_0 Other 3 Total 23
No. Figures __ O No. Tables _O __ No. Refs. 8

Address Lobel

BEL L TELE PHONE LABORA1'01UES, INC. TM-75-1352-2

COMPLETE MEMORANDUM TO

CORRESPONDENCE FILES

OFFICIAL FILE COPY
PLUS ONE COPY FOR
EACH ADDITIONAL FILING
CASE REFERENCED

DATE FILE COPY
(FORM E-1328)

10 REFERENCE COPIES

ACKERMAN, A F
ALLES,HAROLD G
ANDERSON,ROBERT V
ANDERSON,WILLIAM A

+ARDIS,R B
BAYER, DOUGLAS L
BEYER,JEAN-DAVID
BILINSKI,D J
BOYD,GARY D
BRAINARD,RALPH C
BREECE,HARRY T III
BREWSTER,HAROLD 0
BROWN,W STANLEY
BUCHSBAUM, S J
CAMLET,J V JR
CANADAY,RUDD H
CHRISTENSEN,C

+CLOGSTON,A M
+CONDON,J H
CONNOLLY,C V
CUTLER, C CHAPIN
DOLAN,MRS MARIE T
DOLOTTA,T A
FAULKNER,R A
FISCHER,W C
FREEMAN,K GLENN

+FREENY,S L
GELLIS,H S

+GILLETTE, DEAN
GIORDANO,PHILIP P
GLASSER,ALAN L
GOGUEN,MS NANCY
GRAVEMAN,R F
HAGELBARGER,D W
HAIGHT,R C
HAMMING,R W

+HANNAY,N B
HAUSE,A D
IVIE,EVAN L
JARVIS,JOHN F
JUDICE,CHARLES N
KAISER,J F
KAMINSKI,WILLIAM
KEEFAUVER,W L
KNUDSEN,DONALD B
KUBIK,P S
LICWINKO,J S
LIMH,J 0
LOZIER,JOHN C
LUDERER,GOTTFRIED W R

+ NAMED BY AUTHOR

COMPLETE MEMORANDUM TO

LUDWIG,J J
LYCKLAMA,HEINZ
LYONS,T G

+MALTHANER,W A
MANCUSI,M D
MARANZANO,JOSEPH F
MASHEY,JOHN R
MC ILROY,M DOUGLAS
MCDONALD,H S
MENNINGER,R E
METAXIDES,A
METZLER,MRS HELEN M
MILLER,S E
MOLLENAUER, J F
MORGAN,S P
MUENZER,T B

+NINKE,WILLIAM H
+OSSANNA,J F JR
+PATEL,C K N
PINSON,ELLIOT N
PLAUGER,P J

;t PRIM, ROBERT C
ROBERTS,CHARLES S
ROCHKIND,M J
ROCHKINC,M M
RONKOVITZ,FRANK J JR
ROOME,WILLIAM D
ROSENFELD,PETER E
ROWLINSON,[) E
SABSEVITZ,A L
SATZ,L R
SJURSEN,C A

+SLICHTER,W I?
SMITH,D W
STEVENSON,H P
SWANSON,GEORGE K
SWARTZWELDER, JOHN C
TAGUE, BERKLEY A
TERRY,M E
TEWKSBURY,S K
THOMPSON,BERNARD E
THOMPSON, JOHN S

+THOMPSON,K
TILLOTSON,! C
VAN LAAR,MRS A
WEHR,L A
WELLF.R,DAVIP R
WILD,J CHRISTIAN
WOLONTIS,V MICHAEL
YAMill,MRS EE

+YOUNG,JAMES A
1(,1 NAMES

COVER SHEET ONLY TO

CORRESPONCENCE FILES

4 COPIES PLUS ONE
COPY FOR EACH FILING
CASE

DISTRIBU'r-ION
(REFER GEI 13.9-3)

COVER SHEET ONLY TO

ABRAHAM,STUART A
AHO,A V
AHRENS, RAINER B
ALBERTS,BARBARA A
ALCALAY,DAVID
ALLEN,JAMES R
ALMQUIST,R P
AMORY,R W
AMOSS,JOHN J
ANDERSON ,M M
ANDERSON,MRS CM
ARNOLD,GF.ORGE W
ARNOLD, S L
ARTHURS,EDWARD
ATAL,B S
AVERILL,R M JR
BAKER,B S
BALDWIN,G L
BALIJWIN,GARY L
BARBER,A J
BARTLETT, WADE S
BASEIL,RICHARD J
BAUER,BARBARA T
BAUGH,C R
BECKETT,J T
BENGTSON,A H
BENJAMIN,O CONNELL J
BERGLAND,G DAVID
BERNSTEIN,LAWRENCE
BERRANG,J E
BIAZZO,MARTIN R
BIGELOW,J H JR
BILOWOS,RICHARD M
BIRCHALL,R H
BIREN,MRS IRMA B
BLEICHER,EDWIN
BLINN,JAMES C
BLUM,MRS MARION
BLY,JOSEPH A
BODEN,F J
BODNAR,J J
BOHACHEVSKY, I 0
BONACHEA, R N
BOSWORTH, R H
BOWEN,EDWARD G
BOWEN,F W
BOWERS,J L
BOWYER,L RAY
BOYCE,W M
BRANDT,RICHARD B
BREITHAUPI',ALLAN R
BRITT,WARREN D
BROWN,COLIN W
BROWN,EARL F
BURROWS,T A
BUTLETT,D L
BUTZIEN,PAUL E
BYRNE,ECWARP R
BZOWY, D E
CABLE,GORDON G JR
CAMPBELL,J H

> CITED AS REFERENCE SOURCE

COVER SHEET ONLY TO

CANDY,JAMES C
CARDOZA,WAYNE M
CARRAN,J H
CASEY,JOSEPH P
CASPERS,MRS BARBARA E
CAVINESS,JOHN D
CHAFFEE,N F
CHAMBERS,J M
CHAMBERS,MRS BC
CHANG,HERBERT Y
CHANG,S-J
CHAPPELL,S G
CHEN,STEPHEN
CHERRY,MS L L
CHIANG,T C
CHIN,GEN M
CHODROW,MARK M
CHRIST,C W JR
CIRILLO,CARL
CLAYTON,D P
CLIFFORD,ROBERT M
CLOUTIER,J E
COBEN ,ROBERT M
COCHRON,D E
COHEN,HARVEY
COLDREN,LARRY A
COLE,LOUIS M
COLLIER,ROBERT J
COLTON,JOHN R
COOK, THOMAS J
COPP, DAVID H
COSTANTINO,B B
COSTON,WALTER P
COULTER,J REGINALD
COURTNEY PRATT,J S
CRAGUN,D W
CRUME,LARRY L
CUNNINGHAM,STEPHEN J
DAVIDSON,CHARLES L
DAVIS,R L JR
DE JAGER,D S
DETRANO,MRS MK
DEUTSCH,DAVID N
DI MARSICO,BRIAN J
DICKMAN,B N
DICK,GEORGE W
DIMMICK,JAMES 0
DIRKSEN,G E
DOMPIERRE,J A
DONOFRIO,L J
DOUGHTY,DAVID W
DOWD,PATRICK G
DREIZLER,HOWARD l(
DRISCOLL,PATRICK J
DUBIS,M
EDELE,JAMES S
EDELSON,D
EDMUNDS,T W
EIGEN,D
EILENBERGER,ROBERT L
EITELBACH,DAVID L
ELLIOTT,R J

COVER SHEET ONLY TO

ELY,T C
ESSERMAN,ALAN R
FABISCH,MICHAEL P
FARGO,GEORGE A
FEDER;J
FELDMAN,STUART I
FELS,ALLEN M
FIGLIUZZI,MISS ME
FIORE,MRS RHODA J
FISCHER,H B ~
FLANAGAN,J L
FLANDRENA,R J
FLEISCHER,HERBERT I
FLUHR, ZACHARY C
FORMICA,JOHN F
FORTNEY,MRS VIRGINIA J
FORT,JAMES W
FOUGHT,B T
FOUNTOUKIDIS,A
FOWLER,BRUCE R
FOWLER,C F
FOX,R T
FOY,J C
FRANKS,RICHARD L '-_,,
FRANK,H G
FRANK,MISS A J
FRANK,RUDOLPH J
FRASER,A G
FREEDMAN,M I
FREELING,M L
FREEMAN,R DON
FREIDENREICH,MRS B
FRITZSCHE,D
FROST,H BONNELL
FUCHS,EDWARD
FULTON,ALAN W
GALLI,A T
GARCIA,R F
GATES,G W
GAY,FRANCIS A
GEER,EUGENE W JR
GEPNER,JAMES R
GERARD,ALLAN
GEYLING,F T
GIBB, KENNETH R
GILBERT,MRS HINDA S
GIMPEL, JAMES F
GITHENS,JOHN A
GLUCK,F
GOETZ,FRANK M
GOLABEK,MISS R
GOLDSMITH,L D
GOLDSTEIN,A JAY
GORDON,P L
GOSNELL, MISS J
GRAHAM,R L
GRAMPP,F T
GRANDLE,J A JR
GREENBAUM,H J
GREENE,MRS DELTA A
GREENHALGH,H WAIN
GREISEN,MISS KE

558 TOTAL

lERCURY DISTRIBUTION •••••• , ••••••••••••••••••••• , •••••• , ••• , •••••••• , • , • , ••••••••••••••• , ••••• , •• , •• , •••••••••••••••••••••••••• ~

:OMFLETE MEMO TO:
10-EXD 13-DIR 135-DPH 127-DPH 8231-SUP 8234-SUP 9152-MTS 1352 1353 1356

'.OVER
135
coos
COOSSI
UNOS
UNSU

SHEET TC:
1271 1273 8234 5222

COMPUTING/OPERATING SYSTEMS/SURVEY PAPERS ONLY
COMPUTING/OPERATING SYSTEMS/ SYSTEM INTERCONNECTION, NETWORKS
UNIX/OPERATING SYSTEM
UNIX/SERVICE,UTILITY PROGRAMS

RADY,J E; MH 7B201;

TM-75-1352-2 TOTAL PAGES 21

0 GET A COMPLETE COPY:

BE SURE YOUR CORRECT ADDRESS IS GIVEN ON THE OTHER SIDE.
FOLD THIS SHEET IN HALF WITH THIS SIDE OUT AND STAPLE.
CIRCLE THE ADDRESS AT RIGHT. USE NC ENVELOPE.

PLEASE SEND A COMPLETE COPY TO THE ADDRESS SHOWN ON THE
OTHER SIDE
NO ENVELOPE WILL BE NEEDED IF YOU SIMPLY STAPLE THIS COVER
SHEET TO THE COMPLETE COPY,

IF COPIES ARE NO LONGER AVAILABLE PLEASE FORWARD THIS
REQUEST TO THE CORRESPONDENCE FILES,

@
Bell Laboratories

•
~subject: Emulation of UNIX on Peripheral date:

Processors
January 9, 1975

from: H. Lye k 1 arna

C. Christensen

'l'M-7 5-13 52-2

Memorandum for File

Introduction

The Peripheral Processor concept allows a UNIX system (1) in

a PDP 11/45 computer to be extended out to several peripherally

attached PDP-11 processors. Each peripheral processor (PP) exe-

cutes a regular UNIX process and has access to the central

processor's (CP) file system and peripherals, yet does not con-

tain a UNIX system. A process executing in a PP passes all UNIX

system calls (read, write, create, etc.) to the CP for execution.

This technique of partitioning a process at the UNIX system call

level provides a clean, well-defined communication interface

between the processors.

The hardware requirements for a PP are minimal compared to

those for the CP. Since a PP doesn't reauire a resident UNIX

system, it could have as little as 4K words of memory, depending

on the size of the process to be executed. Since a PP executes

only one process, segmentation hardware is not required.

- 2 -

Emulation of several PDP-11/45 instructions such as MOL, DIV,

etc. allows the use of PDP-ll/05's /10's and /20's as PP's.

Applications for a PP also cover a wide range. A mini PDP-11

might be an experiment or system controller, deriving its

software support and data storage from the CP. A large PP could

execute compute-bound programs, extending the processing capacity

of the CP system. A variety of communication links between the

PP and CP can be used. In the case of the large PP handling

compute-bound programs the DEC LINK (2) device is appropriate. A

PP controlling an experiment must be close to the experiment and

could be connected to a remote UNIX CP via the SPIDER (3) network

or, as in the system we describe, a serial I/0 loop (4). A Data-

phone connection could also be considered if a low data rate is

satisfacto~y. A strong argument for supporting mini PDP-ll's as

UNIX peripheral processors is that a PP can be programmed in one

-of the high level languages available on UNIX, C (5), FORTRAN or

LIL (6).

Configuration

The current configuration on which the PP concept is imple-

mented includes three small PDP-ll's attached to a UNIX CP

through a serial I/0 loop. The PP's are a PDP-11/10 with 8K words

of memory used to control an experimental telephone system, a

PDP-11/20 with 8K words of memory to be used as a front-end I/0

processor, and a DEC GT-40 (PDP-11/05) to be used as a controller

in an experimental digital filter system.

The CP is a DEC PDP-11/45 with 64K words of primary memory

- 3 -

and 96 megabytes of secondary storage. Other peripherals include

three graphic terminals, six 113B data sets, one 201B data set

with automatic calling unit, a connection to the SPIDER communi-

cation system, and a pair of Dectape drives. UNIX is supported on

the CP by the MERT (7) operating system.

The serial I/0 loop which connects all the pp·s to the CP

runs at an average rate of 3010 16-bit words per second. It is a

message communication system, each message containing a 16-bit

data word and a header specifying which PP the message is for.

This I/0 loop can support up to 63 PP's or other peripherals

spaced at intervals of up to one thousand feet along the cable.

PP Communications Package

The PP.communications package is a program which executes in

the PP and handles all I/0 loop communication with the UNIX CP.

It is initially loaded from the CP by a bootstrapping procedure;

execution of this package effectively connects the pp·s local

tel$type to the UNIX CP as a terminal. This allows the PP user

to login and run UNIX processes in the CP like any other CP ter-

minal. A PP user sitting at the PP teletype can then edit, com-

pile, assemble and run programs in the CP and ask the CP to load

and run a program in the PP. Command dialog will be covered in

detail later. The PP communications package does the loading and

begins execution of a PP process under control of the CP. Then,

when the process is running in the PP and a trap occurs, the com-

munications package is called to alert the CP and handle CP re-

quests for trap arguments and the return of trap results.

- 4 -

The PP communications package is dependent upon the type of

PP to CP connection. In the case of the I/0 loop it occupies

about 400 octal bytes. A seven word PP bootstrap is used to load

it from the CP, using the command "bootll -h", which must be

issued from another CP terminal. 11-h" specifies the PP to be

booted. After the "bootll" command finishes and the PP communi-

cation package is started, the CP responds by typing the standard

UNIX "login: " message on the PP's teletype.

Peripheral Processor !rap Handler

A version of the PP trap handler is prepended to each pro-

gram that is to be executed in a PP. It catches all PP traps and

passes those that it cannot handle to the CP via the communica-

tion package. This is the front-end package which must be link-

edited with the object code produced by a UNIX compiler.

The trap handler includes code to determine the trap type

(and, in the case of SYS traps, to determine the type of SYS

trap). If the trap is an illegal instruction trap, the handler

will determine if it has the capability to emulate this instruc-

tion, or whether it must be passed to the CP. If the trap is to

be passed to the CP, a five word communication area in the PP is

filled with the state of the PP at the time of the trap. The

communication package causes an interrupt to occur in the CP,

thereby alerting the CP process running on behalf of the PP. The

PP trap state is then read from the communication area and upon

processing this trap in the CP, the CP process passes argument(s)

back in the communication area of the PP. Control is then

- 5 -

returned to the PP.

The trap handler also monitors the PP program counter and
~

local teletype sixty times per second using the sixty hertz

clock. This permits profiling of a program running in the PP and

controlling it from the local teletype. Upon detecting either a

rubout character (delete) or a control backslash character (quit)

from the local teletype, a signal is passed back to the CP, caus-

ing the PP program to abort if these •signals" are not handled by

the PP process. At the same time a check is made to see if there

have been any delete or quit signals from the CP process. If the

PP has no local teletype, setting a -1 in the switch register

will turn control over to the CP process. If an undebugged pro-

gram in the PP halts, restarting it at location 2 will force an

IOT trap.

The trap handler consists of up to four separate components

(see Appendix A for a detailed memory layout):

1. trap vectors, communication area, trap routines (400 words)

2. PDP-11/45 instruction emulation package (500 words)

3. floating point instruction emulation package (1000 words)

4. start up routine.

Of these, the first is always required. The illegal instruction

emulation packages are loaded from a library only if required.

CP Emulation£! Traps

During the time that the PP is executing a program, the

associated CP process is roadbi'ocked waiting for a trap signal

- 6 -

from the PP. Upon receiving one, the CP process reads the PP

trap state from the communication area, decodes the trap and emu-

lates it, returning results and/or errors. A check is also made

to see if a "signal" (quit, delete, etc.) has been received. The

CP process keeps a list of all of the current signals which are

to be caught or ignored by the PP program, or caught by the CP - process. If the PP is to catch a specific signal, control is

then returned to the PP at the signal's entry point and the CP

roadblocks waiting for another trap signal from the PP.

Of the more than 40 UNIX system (SYS) calls emulated, about

30 are handled by simply passing the appropriate arguments from

the PP to the CP process and invoking the corresponding SYS call

in the CP. The other 10 SYS calls require more elaborate treat-

ment. Their emulation is discussed in more detail here.

The "getcsw" call (8) returns the CP's switch register, not

the PP's, which is easily read without a SYS call. To emulate

the "signal" SYS call, a table of signal registers is set aside

in the CP process, one for each possible signal handled by UNIX.

No SYS call is made by the CP process to handle this trap code.

When a signal is received from the PP, this table is consulted to

determine the appropriate action to take for the CP process. The

PP program may itself catch the signals. If a signal is to ca~le

a core dump, the entire PP memory is dumped into a CP "core" file

with a header block suitable for the UNIX debugger.

.. The "stty" and "gtty" SYS calls are really not applicable to

- 7 -

the PP process, but if one is executed, it will be applied to the

CP process control channel. The •prof11 kYs call is emulated by

transferring the four arguments to the profile buffer in the PP

memory. The PP, upon detecting non-zero entries here during each

clock tick (60 times per second), will collect statistics on the

PP program's program counter. Upon completion of the PP program,

this data will be written out on ·the 11mon.out" file. The "sbrk"

SYS call causes the CP process to write out zeroes in the PP

memory to expand the bss area available to the program. A SYS

"exit" changes the communication mode between the PP and the CP

back to the original terminal operation mode. It then causes the

CP process to "exit" giving the reason for the termination of the

PP program.

The three most time-consuming SYS calls to emulate are

"r.ead", "write" and "exec". The "exec" SYS call involves load-

ing the executable file into the PP memory, zeroing out the bss

area in the PP memory and setting up the arguments on the stack

in the PP. A SYS "read" involves reading from the appropriate

file and then transfering this data into the PP buffer. The SYS

"write" is just the reverse procedure.

The "fork", "wait" and "pipe" SYS call emulations have not

been written at this time and are trapped if executed in a PP.

One possible means of emulating the "fork" call would be to copy

an image of the parent process in one PP into another PP, permit-

ting the "pipeing" of data between two PP's.

- 8 -

Forming~ PP Program

The output of the C, LIL and Fortran compilers as well as of

the assembler can be run on the PP's. The procedure is to com-

pile the appropriate object modules using one or more of the fol-

lowing commands:

1 . cc -c pr og • c

2. 1 c -c pr og .1

3 • fc -c pr og • f

I -> prog.o

-> prog.o

-> prog.o

4. as - prog.s -> a.out

and then link-edit in the appropriate trap handler, instruction

emulators and start-up routines.

This link-editing is accomplished by means of the new

program:

ldm [-mefp] [-f] prog.o [-lm]

Here [] indicates that the enclosed parameters are optional. The

-m' option (default) determines which one of the eight possible

start-up routines is to be link-edited with the specified object

modules to form the final 'a.out' file. The symbol '_main' must

be defined in one of these modules as the program entry point.

The various start-up routines include all possible combinations

of the emulation package (e), floating-point. package (f) and the

profiler package (p). The default option '-m' will include none

of these packages. The '-f' option specifies that the Fortran

start-up routine is to be loaded along with the designated object

modules. The symbol 'main must be defined in the object

- 9 -

modules. In performing the "ldm" command, libraries are searched

in the following order:

1. user specified libraries

2. library of special PP run-time routines

(in °/lib/libn.a")

3. C library routines

4. standard library routines.

If the ·-t· option is specified the Fortran library is searched

in place of the C library.

The mini run-time library "/lib/libn.a" includes routines to

read and write the local teletype directly rather than by passing

back the eauivalent SYS "read" or SYS ''write'' to the CP. The

illegal instruction emulation routines and three special start-up

and clock routines are included in this library as well. The

three routines are ."config() ·, 'sigtst() · and 'profile(&profbuf,

pc)·. The configuration routine is used to specify the addresses

of the hardware registers (control teletype, I/0 loop, clock)

which are dependent on the machine on which the program is to be

~un. This routine also starts the sixty Hertz clock. During the

running of a program on a PP, the clock will interrupt sixty

times per second and cause the execution of the 'profile()'

routine, if profiling has been turned on, and of the "s i q t s t t) •

routine. This latter routine checks for external signals from

the local teletype, the ·I/0 loop and a (-1) in the PP switch

register. The user may provide his own versions of these

- 10 -

.routines for different PP hardware configurations. In fact, he

may wish to allocate the clock to some specific real-time func-

tion. This can be done by overwriting the clock interrupt vector ,~

with the address of the entry point of his clock routine.

Other special run-time routines exist in '/lib/librn.a' and

may be loaded by means of the '-lm' option in the ·1am' program.

These routines include a special 'putchar' routine to direct the

output from 'printf' statements directly to the local teletype.

The "a.out" file generated by the "ldm" command can be run

directly in the PP.

Loading and Running a Pro9ram on a PP

The command used to load and run a program on a PP is:

llr [-sij] prog [argl •.• argn]

'I'he first optional argument specifies on

prog (typically 'a.out') is to be run.

which PP the program

The default PP is the

one from which the command was issued. If a configuration has a

number of identical PP's, the user may run his program on whi-

chever PP is available to him, i.e. he may invoke the scheduling

option -s'. However if the user's program can only be run on PP

'i' or PP 'j', he may specify the '-sij' option. A check is made

to see if PP 'i' is available, and if not, the availability of PP

'j' is checked for. Locks are provided to avoid conflicting

requests. Having determined on which PP the program is to be

loaded, its text and data sections are loaded starting at address

- 11 -

0. The 'bss· section is appropriately zeroed out and the argu-

ments (argl argn) are put on the PP's stack in UNIX fashion

starting at the top core address available to the user program.

The program in the PP is started off at location 0 by the CP

which then roadblocks waiting for a trap signal from the PP. In

the PP, the initialization program ·config() • is executed before

control is transferred to the user's program starting at the

address main.

The user sitting at his terminal has complete control over

his program running in the PP. The "delete" or "quit" button on

his terminal will abort execution or abort and produce a core

dump of his program back in the CP. When running a program in a

remote PP not attached to the user's terminal, the CP forwards

any abort commands to the PP. If the PP has a local teletype,

the abort commands can be issued from the PP local teletype or

the user's terminal. If the PP has no local teletype, loading

the control switch register with a (-1) will produce a core dump.

For those undebugged programs which run wild or halt, restarting

the PP at location 2 produces a core dump. A breakooint trap may

be planted deliberately in the PP program, producing a core dump

upon execution.

For interactive control of a PP program, a symbolic debugger

is available:

lld [-sij] prog [argl ••• argn]

- 12 -

The PP program 'prog' is loaded in the specified PP and control

is returned to the CP for further directions. Symbolic dumping,

patching and planting of breakpoint traps may be done by the

user. The flow of control of the PP program may be traced by

planting multiple breakpoint traps.

Some Operational Statistics

Estimates have been made of the execution time of the vari-

ous emulation routines. The times are approximate and assume a

PDP-11/20 PP, a PDP-11/45 CP and an I/0 loop connecting them.

The running times for the PDP-11/45 instructions emulated in

the PP are as follows:

Inst. usec.

mul
div
ash
ashc
xor
sob
sxt

8 30
1200
660
7 20
440
400
400

If execution time is important in a PP program, these instruc-

tions should be avoided. Inc programs these instructions are

generated not only when explicit multiplies, divides and multiple

shifts are written, but also when referencing a structure in an

array of structures. Using a PDP-11/35 or PDP-11/40 with a fixed

point arithmetic unit as a PP would reduce the execution time for

these instructions.

The average times to emulate floating point instructions in

- 13 -

the PP are as follows:

Inst.

add
sub
rnul
div

usec.

2100
2300
3500
5600

For applications which require large quantities of CPU time run-

ning Fortran programs, it is possible to use a PDP-11/45 CPU with

a floating point unit as a PP. More will be said about this in a

later section.

For each SYS call the emulation package on the CP must read

the communication area in the PP, emulate the actual SYS call and

then return th-e arguments back to the communication area in the

PP. Most SYS call's also require the passing up of some argu-

ments from the PP. Typical times for a few SYS call's are listed

below along with the ratio of time taken in the PP relative to

tne normal SYS call time in the CP:

SYS call msec. (PP) PP/CP

read 110 20
write 110 20
getuid 65 15
creat 160 5
open 150 5

Another data point is provided by a test program which copies

30,000 characters from one CP file to another. Running on the

PP, the program takes 35 seconds, compared to 7 seconds on the

CP. These times are strongly· dependent on the data rate of the

- 14 -

communication link between the PP and CP. For the I/0 loop used

in the present configuration, the average data rate is 6000 bytes

per second. It should be noted that most compute-bound and

real-time PP programs do not require much CP communication.

Indeed, communication is typically only required to access the

file system on the CP.

Supporting Mini PDP-lls

Supporting a mini PDP-11 as a PP on a UNIX CP combines all

the advantages of UNIX programming support with the real time

response and economic advantage of a stand-alone PDP-11. Let's

examine a typical PP programming session. A programmer sitting

at the PP local teletype logs into the CP and uses the UNIX edi-

tor to update a PP program source file. It could be assembly

language or one of the higher level languages available on UNIX (

C, LIL, FORTRAN). Assume a C source file "prog.c".

edit is complete the following commands are issued:

When the

% cc -c prog.c

% ldm -me prog.o

% llr a.out

"cc -c" compiles the C program "prog.c" in the CP and produces

the object file 11 prog. 011
• "ldrn -me" combines the pp trap handler

(-m) and instruction emulator (e) with the C object file

"prog. 011
, generating an 11 a.out" object file. "llr" loads the

"a.out 11 file into the PP, and starts it with the PP teletype as

- 15 -

the standard input and output. The programmer then observes the

results of running the program or forces a core dump, and uses
~,

the UNIX debugger to examine it. If any program changes are

required the preceeding steps are repeated. During this typical

PP support sequence the programmer initiates the editing, compil-

ing, loading, running, and debugging of a program on a mini

PDP-11 without leaving its control teletype. It is the speed and

convenience of this procedure along with the availability of high

level languages which makes the Peripheral Processor concept a

powerful mini PDP-11 support tool.

Some mini PP's will be disconnected from the CP when their

software has been developed and the final product is a "stand-

alone" system. Other mini PPs will always have a CP connection:

they supply the real time response, unavailable from the CP, com-

bined with access to,J:.he CP's software base, file system, oeri-

pherals, and connection to the computing community.

Some Possible PP configurations

Having shown the power of the emulation of UNIX on low-level

pp's (e.g PDP-11/05 up to PDP-11/35), we will now consider the

possibilities of emulating the UNIX operating system on a more

powerful set of pp's (e.g. PDP-11/40 and PDP-11/45) with higher

bandwidth communication channels to the central CP and making use

of the scheduling algorithms developed previously. As a specific

example, consider a PDP-11/45 CP with the full complement of

memory, large secondary storage, and other peripherals. Now if

thi~ CP is compute-bound, it is feasible to connect one or more

- 16 -

PDP-ll/45's as pp's. The appropriate communication link would be

the DEC LINK device which permits the transfer of data on a

cycle-stealing basis without intervention by the CPU. If these

pp's each had 28K of memory (no segmentation unit necessary) and

a Floating Point unit, they can be loaded with a Fortran-type or

other compute-bound jobs, leaving the CP to handle the occassion-

al file system requests. This multi-processor system would give

good interactive response and have the ability to run compute-

bound jobs without disturbing the rest of the system. It is also

cost-effective, since the additional PP adds only about $35,000

to a total system cost of about $200,000. A 20% increase in cost

yields a possible doubling in the throughput of the system. Yet

the PP's have complete access to the CP file system. The addi-

tion of a few more PP's would increase the effective throughput

of the system correspondingly. The PP's need not have local con-

trol terminals, rather they may be directly controlled by the CP.

In running a configuration in this manner, there is no swapping

overhead, since the PP program remains loaded until execution of

the program is complete. This in itself can provide significant

savings. From the PP user's point of view he has a dedicated

processor working on his problem, with minimal load on the CP.

Taking the compute-bound job off of the CP maintains the interac-

tive nature of the CP.

Carrying the above example one step further, consider the

running of a compute-bound job which requires more than 32K words

of address space •. A PDP-11/45 processor could be configured with

- 17 -

a segmentation unit and up to 64K words of memory as a PP on such

a system. The PP could be loaded with a program which required

the separation of I and D space, doubling the address space

available to the PP program. This increases the cost of the PP,

but it gives the user the ability to run processes which cannot

be run in the CP.

The use of a PDP-11/45 with a segmentation unit and memory

greater than 32K words opens up other possibilities as a PP. A

SYS "fork" could be handled within a PP by copying an image of

the process to another area of memory in the PP. All scheduling

would still by done by the CP. There would exist a heirarchy of

processes in the PP about which the CP would not need to know

many details. For efficiency reasons, the PP trap handler could

handle certain SYS call"s such as "fork", "wait" and "break".

However this requires parts of a UNIX operating system in the PP.

Emulation of Other Operating Systems

The concept of emulation of the UNIX operating system in a PP can

be expanded to include the emulation of other operating system

environments in a PP. This can be accomplished easily now by

writing a new emulation package on the CP to handle traps from

the PP. The trap handler in the PP has no knowledge as to what

the operating system environment is, so that it can serve as a

rather general-purpose trap handler for many different environ-

men ts.

- 18 -

Summary

We have discussed the emulation of the UNIX operating system

on a peripheral PDP-11 processor. This technique has facilitated

the development of programs for the peripheral processors. In

fact programs may be written in a wide choice of languages: as-

sembler, LIL, C and Fortran. The PP's may range in complexity

from a PDP-11/05 up to a PDP-11/45. The range of applications

for the PP's covers real-time tasks, interactive tasks and

compute-bound tasks. For this whole class of problems, programs

may be developed on the CP and run on the PP under control of the

CP and have access to the CP file system. Core dumps may be

obtained to aid in debugging PP programs. UNIX software is

available bo t h during the development and running of PP programs.

We have discussed the implementation of this system using

the I/0 loop as the communication link between PP and CP. Other

possible communication links include:

(1) data-phone

(2) DRllC 's

(3) SPIDER system

(4) DEC LINK device (DRllB's back-to-back)

The LINK is now being programmed as a communication channel on

the system described above. It offers a higher bandwidth commun-

ication channel than the I/0 loop and should improve response

significantly.

- 19 -

Acknowledgments

We are grateful to P.J. Plauger for his contributions to the

peripheral processor concept and his aid in reviewing this docu-

ment.

package.

B.C. Hoalst provided the PDP-11/45 instruction emulation

MH-1352-HL-JER

H. Lycklama

{?~
C. Christensen

Atts.
References
Appendix

- 20 -

REFERENCES

1. D.M. Ritchie, "The UNIX Time-Sharing System", MM 71-1273-4.

2. DEC PDPll Peripherals Handbook.

3. A.G. Fraser, "SPIDER - A Data Communication Experiment", TM
7 4-127 3-6.

4. D.R. Weller, "A High Speed I/0 Loop Communication System for
the DEC PDP-11 Computer", MM 73-1356-8.

5. D.M. Ritchie, 11C Reference Manual", TM 74-1273-1.

6. P.J. Plauger, "LIL Reference Manual", TM 74-1352-8.

7. D.L. Bayer and H. Lycklarna,
Real-Time Operating System
preparation.

"MERT
for the

A Multi-Environment
PDP-11/45", memo in

8. K. Thompson and D.M. Ritchie, "UNIX Programmer's Manual - 5th
Edition", June,1974.

- 21 -

APPENDIX A

PP Memory Layout

0-036

040-052

070-076

0100-0106

0110-0116

0120-0316

0320-0576

0600-037376

037400-037776

trap vectors

communication area

register save area

clock interrupt vectors

profile parameters

clock routine, user interrupt vectors

trap routines

start up routines

PDPll/45 instruction emulation routine

(optional)

Floating point instruction emulation routine

(optional)

User programs

Communication Package

