

AIX/6000 Developer's
Tool Kit

J. Ranade Workstation Series

BAMBARA/ALLEN • PowerBuilcler: A Guicle for Developing Client I Server Applications,
0-07-005413-4

CHAKRAVARTY • Power RISC System I 6000: Concepts, Facilities, and Architecture,
0-07-011047-6

CHAKRAVARTY/CANON • PowerPC: Concepts, Architecture, and Design, 0-07-011192-8

DEROEST • AIX for RS I 6000: System and Administration Guicle, 0-07-036439-7

GRAHAM • Solaris 2.X: Internals and Architecture, 0-07-911876-3

HENRY/GRAHAM • Solaris 2.X System Administrator's Guide, 0-07-029368-6

JOHNSTON • OS I 2 Connectivity and Networking: A Guicle to Communication
Manager I 2, 0-07-032696-7

JOHNSTON • OS I 2 Productivity Tool Kit, 0-07-912029-6

LAMB • MicroFocus Workbench and Toolset Developer's Guicle, 0-07-036123-3

LEININGER • Solaris Developer's 'lbol Kit, 0-07-911851-8

LEININGER • UNIX Developer's Tool Kit, 0-07-911646-9

LOCKHART • OSF DCE: Guicle to Developing Distributed Applications, 0-07-911481-4

PETERSON • DCE: A Guide to Developing Portable Applications, 0-07-911801-1

RANADE/ZAMIR • C++ Primer for C Programmers, Second Edition, 0-07-051487-9

SANCHEZ/CANTON • Graphics Programming Solutions, 0-07-911464-4

SANCHEZ/CANTON • PC Programmer's Handbook, Second Edition, 0-07-054948-6

WALKER/SCHWALLER • CPI-C Programming in C: An Application Developer's Guicle to
APPC, 0-07-911733-3

WIGGINS • The Internet for Everyone: A Guicle for Users and Proviclers, 0-07-067019-8

'lb orcler or receive additional information on these or
any other McGraw-Hill titles, please call 1-800-822-8158
in the United States. In other countries, contact
your local McGraw-Hill representative. BC15XXA

AIX/6000 Developer's
Tool Kit

Kevin E. Leininger

McGraw-Hill
New York San Francisco Washington, D.C. Auckland Bogota

Caracas Lisbon London Madrid Mexico City Milan
Montreal New Delhi San Juan Singapore

Sydney Tokyo Toronto

Library of Congress Cataloging-in-Publication Data

Leininger, Kevin E.
AIX/6000 developer's tool kit I Kevin E. Leininger.
p. cm. - (J. Ranade workstation series)
Includes index.
ISBN 0-07-911992-1 (set : he). - ISBN 0-07-911993-X (set : sc)
1. Operating systems (Computers) 2. AIX (Computer file) 3. IBM

RS/6000 Workstation-Programming. I. Title. IL Series.
QA76. 76.063L4473 1995
005.26-dc20 95-18964

CIP

The McGraw-Hill Companies

Copyright© 1996 by The McGraw-Hill Companies, Inc. All rights re­
served. Printed in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this publica­
tion may be reproduced or distributed in any form or by any means, or
stored in a data base or retrieval system, without the prior written per­
mission of the publisher.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 9 0 0 9 8 7 6 5 (PBK)
1 2 3 4 5 6 7 8 9 0 DOC/DOC 9 0 0 9 8 7 6 5 (HC)

PIN 0-07-037679-4
PART OF
ISBN 0-07-911993-X (PBK)

PIN 0-07-037678-6
PART OF
ISBN 0-07-911992-1 (HC)

The sponsoring editor for this book was Jerry Papke, the editing
supervisor was Nancy Young, and the production supervisor was
Pamela A. Pelton. This book was set in Century Schoolbook by Carol
Woolverton Studio in cooperation with Warren Publishing Services.

Printed and bound by R. R. Donnelley & Sons Company.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY

The authors and publisher have exercised care in preparing this
book and the programs contained in it. They make no repre­
sentation, however, that the programs are error-free or suitable for
every application to which the reader may attempt to apply them.
The authors and publisher make no warranty of any kind, ex­
pressed or implied, including the warranties of merchantability or
fitness for a particular purpose, with regard to these programs or
the documentation or theory contained in this book, all of which are
provided "as is." The authors and publisher shall not be liable for
damages in amount greater than the purchase price of this book, or
in any event for incidental or consequential damages in connection
with, or arising out of the furnishing, performance, or use of these
programs or the associated descriptions or discussions.

Readers should test any program on their own systems and com­
pare results with those presented in this book. They should then
construct their own test programs to verify that they fully under­
stand the requisite calling conventions and data formats for each of
the programs. Then they should test the specific application thor­
oughly.

Contents

Preface xi
Acknowledgments xiii

Part 1 AIX: Getting Started

Chapter 1. The AIX Software Development Environment

1.1 The History of AIX
1.2 AIX 3.1.5
1.3 AIX3.2
1.4 AIX 4.1
1.5 Standards
1.6 AIX Futures

Chapter 2. AIX Devices

2.1 Introduction
2.2 Tape Devices
2.3 CD Devices
2.4 Disk Devices

Chapter 3. Program Development Under AIX

3.1 Introduction
3.2 Linking and Loading
3.3 Process-Related System Calls
3.4 Memory Management System Calls
3.5 The XL C Compiler
3.6 The Linkage Editor
3.7 Conclusion

Chapter 4. Native AIX Software Development Tools

4.1 Introduction
4.2 dbx

1

3

3

5

5

6
8

9

11

11

13

15

15

17

17

17

23
25
26
36
39

41

41

41

v

vi Contents

4.3 lint
4.4 prof and gprof
4.5 ar
4.6 nm
4.7 strip
4.8 The r commands
4.9 install

4.10 Cb
4.11 cf low
4.12 ex ref
4.13 tn3270

Chapter 5. Native AIX Software Development Scripting Tools

5.1 Introduction
5.2 awk
5.3 sed
5.4 make
5.5 lex
5.6 yacc

Part 2 Nonnative AIX Tools

Chapter 6. The Internet

6.1 What Is the Internet?
6.2 Tools of the Internet
6.3 Who Uses the Internet?
6.4 Why Use the Internet?
6.5 How to Access the Internet
6.6 The Structure of Internet Software
6.7 GNU and Their Paradigm
6.8 How to Locate and Retrieve Software from the Internet
6.9 How to Build Software from the Internet

6.10 Understanding Internet Software Documentation
6.11 FAQ
6.12 Internet Futures

Chapter 7. Nonnative Software Development Tools

7.1 gzip
7.2 gee
7.3 libg++
7.4 configure
7.5 make
7.6 flex
7.7 bison
7.8 patch
7.9 gas

52

55

58

63

65

67

73

75

76

77

79

87

87

87

98

107

123

130

135

137

137

143

154

155

155

157

162

163

177

178

179

179

181

182

187

205

208

212

215

224

227

233

Contents vii

7.10 gdb 235
7.11 gawk 239
7.12 RCS 243
7.13 CVS 254
7.14 Smalltalk 259
7.15 f2c 263
7.16 Ftncheck 269
7.17 imake and xmkmf 272

Chapter 8. General Tools 277

8.1 oleo 277
8.2 per I 281
8.3 texinfo 283
8.4 bsplit 290
8.5 less 291
8.6 bash 294
8.7 diff 302
8.8 screen 308

8.9 fax 311
8.10 mtools 316
8.11 cpio 321
8.12 ispell 325
8.13 monitor 327
8.14 sysinfo 329
8.15 xzap 330

Chapter 9. The GNU emacs Editor 333

9.1 Introduction 333
9.2 Installation 334
9.3 Usage 337
9.4 The emacs Screen 338

9.5 emacs Modes 339
9.6 emacs Commands 340
9.7 Help and the Tutorial 340

9.8 emacs apropos 342
9.9 Getting Current Information 343

9.10 Reading in a File 344
9.11 Making Changes to a File 345
9.12 Undoing Commands 347
9.13 Working with Text Blocks 347
9.14 Using Multiple Buffers 349
9.15 Halting the Execution of emacs Commands 350
9.16 Saving a File 350
9.17 Exiting emacs 351
9.18 Suspending emacs 351
9.19 Autosave Files 351
9.20 Multiple Windows in emacs 352

viii Contents

9.21 Searching for and Replacing Text
9.22 Text Formatting and Its Relation to emacs
9.23 Shell Commands
9.24 emacs Customization
9.25 X Windows Support
9.26 Spell Checking
9.27 Printing from within emacs
9.28 Other Things You Can Do in emacs
9.29 emacs and Programming Languages
9.30 Multiuser File-Level Locking Support
9.31 Concluslon

Chapter 10. Nonnative Output Format and Display Tools

10.1 Ghostscript
10.2 Ghostview
10.3 groff
10.4 pbmplus
10.5 gnuplot
10.6 Tel
10.7 xloadimage
10.8 mpeg_play
10.9 xearth

Chapter 11. Nonnative Communication Tools

11.1 Kermit
11.2 xmodem
11.3 zmodem

Chapter 12. Games

12.1 Introduction
12.2 Games Overview

Chapter 13. Nonnative Internet Tools

13.1 Archie
13.2 Xarchie
13.3 xrn
13.4 Xgopher
13.5 Mosaic

Appendix A. How to Get Software from the CD

Appendix B. General Notes About the Software on the CD

B.1 Archives
B.2 Makefiles and Installation Notes
B.3 xmkmf/lmake

353
358
361

361

362

362

362

363

363

367

368

369

370
378
382
387
393

399

404

408
410

413

414
429
432

437

437

437

439

439
442

444

446
450

455

457

457
458

458

B.4 M.l.T. and IBM X11 Libraries and Include Files
B.5 Tool Locations and Choices
B.6 Common Errors

Appendix C. General Licenses

C.1 GNU General Public License
C.2 GNU Library General Public License
C.3 Most Recent GETTING.GNU.SOFTWARE File
C.4 Author's Disclaimer
C.5 M.l.T.'s Disclaimer
C.6 The Regents of the University of California Disclaimer
C.7 AT&T/BellCore Copyright
C.8 pbmplus Copyright
C.9 gnuplot Copyright

C.10 GNU Manifesto
C.11 aixpdslib Warnings File

Appendix D. Where to Go to Get More Information

D.1 Some Recommended Books
D.2 Where You Can Get Help

Appendix E. Internet Access Providers

Index 493

Contents ix

458
459
459

461

461
465
472
473
473
473
474
474
475
475
481

483

483
483

485

Preface

In my first book, UNIX Developer's Tool Kit, I provided a generic intro­
duction to the UNIX development environment and the paradigm of
UNIX tools. I also provided a fairly focused overview of the Internet
and how you can use it to get software from the Internet. I have in­
cluded a condensed chapter on the Internet and how to get software
from it in this book. However, if you want more information, see UNIX
Developer's Tool Kit or any of a number of other good books on the In­
ternet.

This book focuses exclusively on AIX tools. The first book provided
tools for SunOS and AIX environments as well as a general discussion
of other UNIX platforms and their capabilities. This book is exclusively
focused on some of the tools available in the AIX environment and how
you can get, use, and build them for the AIX environment.

I have added sections on nonnative Internet tools to those in the first
book and hope these will be of as much value to you as they have been
tome.

Finally, differences between AIX 3.x and AIX 4.1 are discussed at
some length. There are some significant differences between these two
versions, and you should carefully examine them before migrating.

I hope this book assists you with your migration to AIX since it will
probably be as arduous and difficult as you are currently thinking.
Good luck.

Kevin E. Leininger

xi

Acknowledgments

I would like to thank my wife, Karen, and my sons, Alex and Michael,
for their understanding and patience during the production of this
book. Only one more to go.

xiii

Part

1
AIX: Getting Started

1.1 The History of AIX

Chapter

1
The AIX Software

Development Environment

AIX stands for Advanced Interactive Executive and is IBM's primary
UNIX offering. Contrary to popular opinion, IBM has been involved
with UNIX for many years and, in fact, released the first commercial
UNIX offering in the early 1970s. While they never marketed AIX or
were successful in selling AIX, it wasn't simply because AIX was infe­
rior. There were obviously other forces at work causing IBM's lack of
interest in selling UNIX into their customer base.

AIX was introduced for the workstation platform on the ill-fated RT
platform beginning in 1986. The RT was the first Reduced Instruction
Set Computer (RISC) IBM offered and came with their new version of
System V known as AIX 2.1. For a variety of reasons, the RT was a
disaster and IBM sold very few machines. It was underpowered and
marketed poorly and to the wrong marketplaces. This failure caused
IBM to significantly rethink their UNIX strategy and announce a new
machine in 1990 known as the RS/6000.

The initial RS/6000 offerings were targeted at the technical market­
place and subsequently had very good floating-point performance num­
bers relative to their integer performance. Along with the RS/6000,
IBM's first announced AIX version was 3.1 in 1990. They had signifi­
cant problems with early versions of AIX 3.1, including massive instal­
lation problems, standards support issues, and a plethora of kernel
problems. In fact, AIX didn't stabilize until Version 3.1.5 in 1992. With
this version of AIX, however, IBM had finally hit upon an operating
system that was commercially viable and with this version of AIX, the
RS/6000 took off.

3

4 AIX: Getting Started

AIX 2.1 was the first true port of UNIX System V onto the RISC
hardware that IBM developed. Underlying the "UNIX-like" component
of AIX 2.1 was a lower-level operating system known as Virtual Re­
source Manager (VRM). The VRM was responsible for managing all the
low-level capabilities of the RISC hardware, and the AIX kernel essen­
tially functioned as a guest operating system running on top of VRM
(much like a guest operating system can run on top of VM). However,
as work begin on AIX 3.x, IBM folded much of the low-level VRM tech­
nology into the kernel and began to build a low-level, powerful kernel
integrated with much more of the higher-level functionality they
needed in a commercial operating system.

The initial components of AIX 3.x included BSD 4.3, Xll, NFS, NCS,
and some portions of System V Release 3. Combining all of these differ­
ent technologies proved to be a significant challenge; however, IBM did
a fairly good job in pulling together a commercially viable and stable
operating environment.

AIX 3.2.x consists of a fairly large kernel which provides rich func­
tionality and increased capabilities such as the virtual memory man­
agement subsystem, resource controller subsystems, and other
powerful features. It also contained a new, revolutionary filesystem
known as the Journalled File System (JFS), which provides a much
more reliable and robust filesystem than the standard UNIX filesys­
tem (ufs). There is also an enhanced system administration environ­
ment which provides tools such as smit and the Licensed Program
Products (lpp) subsystem which make it considerably easier to admin­
ister and manage an AIX system. Finally, AIX is very sophisticated as a
development environment and includes bundled C compilers (no longer
true in AIX 4.1), debugging and performance analysis tools, shared li­
brary tools, and sophisticated memory management tools which pro­
vide a very sophisticated development environment. All of these
capabilities have given AIX a significant competitive advantage with
respect to the commercial UNIX environment.

Given the technical market focus of the RS/6000, early machines
were sold primarily to engineering and technical markets. However, in
1994 IBM got serious about the commercial capabilities of AIX and
started offering machines and software systems that provide a total so­
lution to the commercial marketplace. With the announcement of AIX
4.1, IBM increased their committment to standards and commercial ca­
pabilities and now claim to be the leading commercial UNIX vendor in
the industry today. Also, their new PowerPC-based technology is offer­
ing world-class integer performance for the commercial marketplace.
With a new, improved version of AIX and new, extremely powerful proc­
essors, IBM is poised to leap forward in the UNIX market.

The other issue which needs to be addressed with AIX 4.1 is the sup-

1.2 AIX 3.1.5

1.3 AIX 3.2

The AIX Software Development Environment 5

port for multiprocessing. This will be discussed in more detail later on
in the book, but it is important to note that with AIX 4.1, IBM is now
providing large symmetric multiprocessing machines to the market­
place. This is important to note for commercial shops that have a need
for large multiprocessing solutions. IBM also offers the SP2 machine,
which is a large multiprocessing system. It has been largely focused on
the technical marketplace with the POWER2 instead of the PowerPC
architecture. IBM will continue to focus the SP2 on the technical mar­
ketplace but will increase its presence in the commercial marketplace
along with their uniprocessor and SMP-based solutions.

IBM's first stable version of their operating system was AIX 3.1.5. This
was the first release of their operating system that ran reliably and
was widely distributed. There are still many machines running AIX
3.1.5 and experiencing no difficulties. However, there were several
problems with AIX 3.1.5, and IBM is recommending that users upgrade
to at least AIX 3.2.5 or later to begin to take advantage of several new
features included in the new version of the operating system. AIX 3.1.5
support from third-party vendors is waning as well, and it is in most
users best interest to upgrade as soon as possible.

AIX 3.2.x is IBM's most installed UNIX operating system and encom­
passes most of IBM's recent UNIX-related work. IBM has signficantly
enhanced AIX from 3.1.x to 3.2.x, including increased support for
standards, increased kernel sophistication, and significantly enhanced
software packaging and support capabilities.

Due to the standards focus of AIX 3.2.x, most companies have up­
graded from AIX 3.1.5 to AIX 3.2.5. Along with more stable and reliable
technology, AIX 3.2.x offers a more consistent UNIX implementation
which allows for much higher application portability, scalability, and
integrity. The standards supported by AIX 3.2.5 are outlined in Sec.
1.5.

AIX 3.2.x is clearly the operating system of choice for the near future
on the RS/6000 platform due to its reliability and software support.
However, if you have higher-performance needs, particularly relating
to multiprocessing, or a need for new standards support such as COSE
and Single UNIX Specification, you will need to move to the new AIX
4.x platform.

6 AIX: Getting Started

1.4 AIX 4.1

There is more discussion of the native development tools and envi­
ronment of both AIX 3.2.x and AIX 4.1 in Chap. 4.

With AIX 4.1, IBM significantly increased its emphasis on the com­
mercial marketplace. With support of COSE and Single UNIX Specifi­
cation (formerly known as SPEC 1170), symmetric multiprocessing,
and other commercial enhancements, IBM is positioning AIX 4.1 as the
new standard operating environment for the RS/6000. AIX 4.1 also
supports some of the upgraded standards and features which makes
it a very powerful UNIX environment. Advanced features of AIX 4.1
include:

NFS 4.2

Motif 1.2

Display Postscript

Logical Volume Manager

Mirroring

Disk Striping

POSIX threads

C2 Security

System V Curses

SO MID SOM

FDDI

Fibre Channel

ATM

Symmetric Multiprocessing Support

COSE

Common Mode

Single UNIX Specification (formerly known as SPEC 1170)

There are a variety of other standards and features which are being
followed by AIX 4.1, and IBM will continue to evolve as the market
changes. The standards supported by AIX are described in Sec. 1.5.

The important new standards to software developers in AIX 4.1 are
related to Motif, SOM/DSOM, POSIX threads, System V Curses, and
the Common Mode.

COSE stands for Common Open Software Environment. COSE was
formed by various UNIX vendors in an attempt to create a series of

The AIX Software Development Environment 7

uniform standards for UNIX. This consists of both operating interface
specifications, originally known as SPEC 1170 and a user interface
known as Common Desktop Environment (CDE).

AIX 4.1 supports both SPEC 1170 (and Single UNIX Specification
soon) and XPG4. XPG4 is based on POSIX 1003.1. and 1003.2 with
additions from SVID 3 and other standards. Because some vendors
thought that XPG4 was incomplete, SPEC 1170 was born.

Motif 1.2 supports a variety of standards for X-based development
which will significantly enhance the portability of X Windows-based
applications across platforms. Motif 1.2 supports a variety of new
standard X11R5 and beyond constructs which are commonly provided
and supported by most, if not all, UNIX vendors.

POSIX 1003.4a Draft 7 threads define a standard way to develop
multithreaded applications. These applications can then take advan­
tage of true symmetric multiprocessing machines. These threads also
conform to the OSF/1 locking model to ensure portability of the lock
code across diverse systems. POSIX thread support ensures that any
thread-related code you develop under AIX 4.1 will be supported by
most or all of the other UNIX vendors. POSIX thread support is clearly
the leader in terms of thread architecture and will be the standard by
which all others are judged. AIX 4.1 libp threads implementation is
based on the DCE implementation of threads. This will ensure maxi­
mum portability across diverse platforms.

AIX 4.1 also provides support for 64-bit-long long int and 128-bit­
long double types, which signficantly enhance your ability to manipu­
late and create portable code.

SOM/DSOM is System Object Model/Distributed System Object
Model. IBM is making a hard push into the object-oriented develop­
ment world with their SOM/DSOM standard. SOM/DSOM allows dis­
tributed objects to be shared not only between machines but between
different object-oriented languages. Through support of CORBA 2.0
and the future OMG standards, AIX 4.1 will provide a robust object-ori­
ented development platform which ensures portability across different
object-oriented environments.

IBM is the first commercial vendor to offer a full implementation of
COSE with AIX 4.1. This will provide not only a uniform user interface
to the operating system but also a uniform API for developing applica­
tions that are GUI related.

System V Curses is the AIX 4.1 update to the libcurses/terminal in­
terfaces package. Because SPEC 1170 was incomplete during AIX 4.1
development, IBM chose System V R31R4 curses because this con­
tained most of the requested changes to the libcurses system.

Finally, Common Mode is an environment which allows binaries to
be created that will run across the entire AIX hardware line: Power PC,
POWER2, and POWER. This will allow you to build efficient ex-

8 AIX: Getting Started

1.5 Standards

ecutables that run on all platforms with a single compilation and link.
Common Mode is also available for AIX 3.2.5 and should be utilized
immediately to begin to prepare for the newest IBM hardware technol­
ogy. This is discussed in more detail in Chap. 3.

One important point is that AIX 4.1 maintains binary compatibility
with AIX 3.2.x, and as such your applications should run virtually un­
modified on AIX 4.1. This is critical for the short-term issues involved
in the migration to AIX 4.1. There are a variety of changes which occur
in AIX 4.1; however, you should be able to continue to operate your ap­
plications without a recompile until you deem it necessary to recompile
for other reasons.

IBM has a clear focus on standards conformance and is working hard
on both defining and conforming to industry standards.· Standards are
continuing to evolve and will mature to some final state sometime in
the mid- to late 1990s. The most visible standards are those related to
the X/Open group. Single UNIX Specification outlines a set of operat­
ing interface calls which will support portability across a variety of
platforms. X/Open is also responsible for branding UNIX for all ven­
dors. IBM is clearly the vendor driving the UNIX standardization proc­
ess.

The other relevant technology is the XPG branding process. The first
XPG standard, known as XPG3, has been conformed to by most ven­
dors in the UNIX market. XPG4 is the successor to XPG3 and has be­
come the standard by which all UNIX implementations are judged.
Single UNIX Specification was the successor to XPG4 and is more com­
plete than XPG4. As mentioned earlier, however, there are a variety of
standards which need to be conformed to in order to be considered
UNIX or compatible with UNIX. Contrary to popular opinion, IBM has
a very compliant UNIX implementation. In fact, a recent report on
standards has IBM in front in most areas. Table 1.1 lists the standards
supported. While there are many other standards available for this en­
vironment that are not listed in the table, most are implemented with
third-party products and are not appropriate for the operating systems
environment; therefore, there are standards such as XTI and others
which are not discussed.

AIX 4.1 supports all the standards listed in Table 1.1 as well as sev­
eral new ones, which are listed in Table 1.2. These new standards are
the key to ensuring maximum portability for AIX software systems.
Through the adherence to standards, AIX 4.1 is providing a platform
which will maximize portability and minimize the need for "kludged"
code to force portability.

The AIX Software Development Environment 9

TABLE 1.1 Standards Supported by AIX 3.2.5

Standard

POSIX 1003.1
POSIX 1003.2
POSIX 1003.4
SVID Issue 2
SVID Issue 3
XPG3 Base
XPG3 Plus
XPG4Base
OSF/AES
BSD
FIPS 151-1
FIPS 151-2
SPEC 1170
ADA
c
C++
COBOL
FORTRAN
Pascal
PHI GS
GKS
GL
XllR5
OpenGL

1.6 AIX Futures

Supported Standard Supported

Yes PEX5.1 Yes
Yes Motif Yes
Yes Xll Yes
Yes COSE Committed to
No SNMP Yes
Yes CMIS/CMIP Committed to
No ONC/NFS Yes
Committed to CPI-C Committed to
Yes SQL Yes
Yes DCE Yes
Yes SNA-LU6.2 Yes
Yes COREA Yes
Committed to FTAM Yes
Yes X.400 Yes
Yes X.500 Yes
Yes X.25 Yes
Yes Token Ring Yes
Yes Ethernet Yes
Yes TCP/IP Yes
Yes DECnet Yes
Yes SNA Yes
Yes Appletalk Yes
Yes IPX/SPX Yes
Yes LANManager Yes

AIX continues to evolve as the market changes. There is a clear focus
on standards support and the commercial market. Because of this,
technologies such as COSE and others will continue to be supported
and will evolve along with their capabilities. A clear move to an object­
oriented environment is in the works, and IBM has structured an envi­
ronment known as PowerOpen. The goal is to provide a microkemel
environment with different personalities. For example, OS/2, UNIX,
and other operating environments will be supported with a single-ker­
nel environment. This is no different from other companies that are
moving to support different environments from within the same oper­
ating environment. Finally, the COSE environment will be fully sup­
ported to provide commercial UNIX users with the best possible
operating environment for their needs.

IBM is one of the leaders in standards support and advanced tech­
nology. Clearly, nothing is going to change in the near future with re­
spect to these capabilities or focus issues.

10 AIX: Getting Started

TABLE 1.2 Additional Standards Supported by AIX 4.1

Standard

XPG4Base
COSE
Single UNIX Specification

(formerly known as SPEC 1170)
System V Curses
FIPS 158-1
FIPS 160
FIPS 189
UNIX93
POSIX 1003.4a, Draft 7

Supported

Yes
Yes*

Yes*
Yes
Yes
Yes
Yes
Yes
Yes

*The standard is supported at the current freeze release of the stand­
ard. Some of these standards are not yet finalized, and IBM is making
every effort to follow and implement the working and final standard.

2.1 Introduction

Chapter

2
AIX Devices

As with any other operating system, it is critically important to under­
stand the devices and how to access and control them on a machine.
This is going to be your primary 1/0 mechanism to the operating sys­
tem. The fundamental thing to remember about UNIX devices is that
they all look exactly the same to the operating system. They are simply
bitstreams with no preformatted structure. This makes it easy to write
the underlying kernel, but it relies on specific device drivers to access a
specific device. Each type of device supports a different type of inter­
face; however, the basic operating is the same. To examine all devices
available on the system, use the command:

$ lsdev -c
sysO
sysplanarO
ioplanarO
busO
sioO
scsiO
scsil
scsi2
entO
sysunitO
fpaO
memo
fdaO
siokbO
siotbO
saO
sal
tokO
hdiskO
hdiskl
lvdd

Available
Available
Available
Available
Available
Available
Defined
Defined
Available
Available
Available
Available
Available
Available
Available
Available
Available
Defined
Available
Available
Available

00-00
00-00
00-00
00-00
00-00
00-00-0S
00-01
00-02
00-00-0E
00-00
00-00
00-0C
00-00-0D
00-00-0K
00-00-0T
00-00-Sl
00-00-S2
00-03
00-00-0S-00
00-00-0S-10

System Object
CPU Planar
I/O Planar
Microchannel Bus
Standard I/0 Planar
Standard SCSI I/0 Controller
SCSI I/O Controller
SCSI I/O Controller
Standard Ethernet Adapter
System Unit
Floating Point Processor
32 MB Memory Card
Standard I/0 Diskette Adapter
Keyboard Adapter
Tablet Adapter
Standard I/0 Serial Port 1
Standard I/0 Serial Port 2
Token-Ring High-Performance
1.0 GB SCSI Disk Drive
1.0 GB SCSI Disk Drive
N/A

11

12 AIX: Getting Started

fdO
kbdO
hd5
hd7
ttyO
hdB
hd4
hd2
hd9var
hd3
hdl
ppaO

mousO
ptyO
inetO
loO
enO

etO
hdisk2
hdisk3
hdisk4
hdisk5
lvOO
db2space
trl
chnaO

pprO
hftO

rmtl
cdO
rmt2
afpO

rmt3
cdl
rmtO

Available
Defined
Defined
Defined
Available
Defined
Defined
Defined
Defined
Defined
Defined
Available

Defined
Available
Available
Available
Available

Defined
Defined
Defined
Defined
Defined
Defined
Defined
Stopped
Defined

Available
Available

Defined
Defined
Available
Defined

Defined
Available
Defined

00-00-0D-00 Diskette Drive
00-00-0K-00 United States keyboard

Logical volume
Logical volume

00-00-Sl-OO Asynchronous Terminal
Logical volume
Logical volume
Logical volume
Logical volume
Logical volume
Logical volume

00-00-0P Standard I/0 Parallel Port

00-00-0M-00

00-01-00-00
00-01-00-10
00-02-00-00
00-02-00-10

00-02

00-03

00-00-0S-20
00-00-0S-50
00-00-0S-60
00-02-00

00-00-0S-40
00-00-0S-50
00-00-0S-60

Adapter
3 button mouse
Asynchronous Pseudo-Terminal
Internet Network Extension
Loopback Network Interface
Standard Ethernet Network

Interface
IEEE 802.3 Ethernet Network
1.37 GB SCSI Disk Drive
1.37 GB SCSI Disk Drive
1.37 GB SCSI Disk Drive
1.37 GB SCSI Disk Drive
Logical volume
Logical volume
Token Ring Network Interface
IBM S/370 Channel Emulator/

A Adapter
POWER Gt3i Graphics Adapter
High Function Terminal

Subsystem
2.3 GB Brom Tape Drive
CD-ROM Drive
2.3 GB Brom Tape Drive
IBM S/370 Channel Emulator/

A Printer Driver
Other SCSI Tape Drive
CD-ROM Drive
5.0 GB Brom Tape Drive

Note that there is a difference between available and defined. Available
means that there are actually devices that ate attached to the system
and are available for use. Defined devices are those contained in the
Object Data Manager (ODM) database but are not actually attached to
the system. You can only use devices that are available.

As mentioned earlier, all device information is contained and control­
led from the system-level database known as the ODM. This contains
all predefined and available system-level resources such as devices,
communications, and kernel characteristics. It is critically important
to understand the basic functioning of the ODM before you can begin to
develop in the AIX environment.

There are a series of complex and powerful commands which control
the ODM. These are beyond the scope of this book; see the AIX InfoEx­
plorer system for more details on the ODM.

AIX Devices 13

You can query a specific type of device with the command:

$ lsdev -c -c tape
rmtl Defined 00-00-0S-20 2.3 GB 8mm Tape Drive
rmt2 Available 00-00-0S-60 2.3 GB Smm Tape Drive
rmt3 Defined 00-00-0S-40 Other SCSI Tape Drive
rmtO Defined 00-00-0S-60 5.0 GB Smm Tape Drive

This tells you that there are four defined tape devices, rmtO through
rmt3; however, only one is actually attached to the system and avail­
able: rmt2. This means that you need to access the tape drive with the
filename (a.k.a. device name) /dev/rmt2. The section below outlines
this in more detail.

2.2 Tape Devices

Tape devices are your primary external I/O mechanism to the operat­
ing system. Each UNIX implementation has a different convention for
naming the device interfaces, and AIX is no different. As mentioned
above, you need to query the ODM database to find out which tape de­
vice is actually available and to discover the associated name. Once you
have found the available tape device name, there are some specifics
you must be aware of. The basic syntax for the complete device name
is:

/dev/rmtn.m

where n is the logical device name assigned when the kernel is built.
m controls the behavior and characteristics of the device.

Again, to examine the tape devices on the system, use the command:

$ lsdev -c -c tape
rmtl Defined 00-00-0S-20 2.3 GB Smm Tape Drive
rmt2 Available 00-00-0S-60 2.3 GB Bmm Tape Drive
rmt3 Defined 00-00-0S-40 Other SCSI Tape Drive
rmtO Defined 00-00-0S-60 5.0 GB 8mm Tape Drive

This shows that the tape device available is /dev/rmt2, and you can ac­
cess it using this filename. To control specific types of behavior on the
tape device, you must use the full filename as specified above. The suf­
fix on the device name (designated by them in the syntax description
above) controls the behavior of the device itself. There are eight possi­
ble suffix values as shown in Table 2.1. Each category controls three
particular aspects of the device: (1) rewind on close specifies that the
tape is rewound after each command operation, (2) retension on open
specifies that the tape should be retentioned before each command op-

14 AIX: Getting Started

TABLE 2.1

Filename

/dev/rmt*

/dev/rmt*.1

/dev/rmt*.2

/dev/rmt*.3

/dev/rmt* .4

/dev/rmt*.5

/dev/rmt*.6

/dev/rmt*.7

Tape Special File Characteristics

Rewind Retension
on close on open Bytes per inch

Yes

No

Yes

No

Yes

No

Yes

No

No Density setting #1

No Density setting #1

Yes Density setting #1

Yes Density setting #1

No Density setting #2

No Density setting #2

Yes Density setting #2

Yes Density setting #2

eration, and (3) bytes per inch specifies a density based on the type of
tape device physically attached to the processor. Each of these can be
used to control a particular tape device and the type of behavior you
wish. For example, to use a device and not rewind the tape after the
operation, use the command:

$ mt -f /dev/rmtO.l fsf 1

This will skip the first file on the tape and leave the tape positioned at
the end of the first file. Note that the default device (with no suffix) will
rewind the tape at the end of each operation. This means that if you
execute the following command:

$ mt -f /dev/rmtO fsf 1

you will skip the first file, the mt command will end, and the operating
system will rewind the device to the beginning of the tape. Obviously,
this defeats the purpose of the skip command in the first place and
needs to be clearly understood.

If you have two tar files on tape and you need to access both, you
need to use a series of commands such as:

$ tar xvf /dev/rmt0.1
$ tar xvf /dev/rmtO

This will read the first tar file, pause the tape, and then read the sec­
ond tar file on the tape. Again, if you simply use the device name
/dev/rmtO, you would simply read the first tar file twice. Keep this in
mind as you begin to use tape devices.

For more information on the rmt devices, see the man page on rmt.

2.3 CD Devices

AIX Devices 15

AIX has been behind with respect to CD support. The UNIX standard
has been High Sierra with support for long filenames and other non-
180 constructs. AIX 3.2.5 does not fully support the High Sierra stand­
ard, but AIX 4.1 does. This may be one reason to upgrade to AIX 4.1.

To see what CD devices are defined and available on your machine,
use the command:

$ lsdev -C -c cdrom
cdO Defined
cdl Available

00-00-0S-50 CD-ROM Drive
00-00-0S-50 CD-ROM Drive

This tells you that /dev/cdl is available and that this is the filename
you should use to access the CD device.

Given its lack of High Sierra support, you may have to play some
games with filenames and extensions to get most of your CDs to work
correctly. The command you use to mount up a CD is:

$ mount -r -v cdrfs /dev/cdl /cdrom

where /cdrom is an arbitrary mount point, and /cdrom is an empty di­
rectory which you can create anywhere.

2.4 Disk Devices

The disk structure in AIX is different than in most other versions of
UNIX. AIX has structures called logical volumes which consist of logi­
cally defined partitions which may or may not correlate to physical
disks. Logical volumes can span physical volumes or be wholely con­
tained within one physical disk. They can also be mirrored and striped
to enhance reliability and performance. This entire filesystem struc­
ture is called the JFS.

While it is beyond the scope of this book to document the AIX JFS,
there are a few basic concepts you need to understand in order to help
your system administrator manage your disk space effectively.

To see what disk drives are available on your system, you can use the
command:

$ lsdev -c -c disk
hdiskO Available 00-00-0S-00 1. 0 GB SCSI Disk Drive
hdiskl Available 00-00-0S-10 1. 0 GB SCSI Disk Drive
hdisk2 Defined 00-01-00-00 1. 37 GB SCSI Disk Drive
hdisk3 Defined 00-01-00-10 1. 37 GB SCSI Disk Drive

As you can see, this machine has four disk drives defined but only two
attached. This means that there are probably external disks that have

16 AIX: Getting Started

been removed for any number of reasons. Once you have examined the
physical disks attached to the system, you need to understand the logi­
cal volume structure of the disks before you can make intelligent deci­
sions concerning software placement. Use the command:

$ lsvg
dbasevg
rootvg

This shows that there are two volume groups on this system. Each of
these volume groups consists of one or more logical volumes. To get in­
formation about a particular volume group use the command:

$ lsvg rootvg
VOLUME GROUP: rootvg VG IDENTIFIER: 00000044e0f15bll
VG STATE: active PP SIZE: 4 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 496 (1984 megabytes)
MAX LVs: 256 FREE PPs: 202 (808 megabytes)
LVs: 11 USED PPs: 294 (1176 megabytes)
OPEN LVs: 10 QUORUM: 2
TOTAL PVs: 2 VG DESCRIPTORS: 3
STALE PVs: 0 STALE PPs 0
ACTIVE PVs: 2 AUTO ON: yes

This tells you that the rootvg volume group is active, has physical par­
tition sizes of 4MB, is read/write, and consists of 496 4MB physical par­
titions, giving you a total capacity of l.984GB worth of storage.

rootvg is a special filesystem (volume group) which exists on all AIX
machines and which has special tools for backup and recovery. It is
usually a good idea to create a different volume group to contain special
software systems such as databases and other applications. For exam­
ple, the other volume group shown above is dbasevg. This volume
group contains a database system which is separate from the rootvg
volume group. This has a variety of advantages, including separate
backup and recover, maintainability, and reliability. You can vary the
volume group and other volume specific activities on- and off-line.

The bottom line is that it is a good idea to create separate volume
groups for your software systems. Note that it is a maintenance head­
ache if you create too many volume groups, and you should attempt to
cluster as many software systems together as possible to decrease the
maintenance load on the system administrator.

This is certainly not an exhaustive discussion of the disk subsystems
on AIX. It does, however, provide you with enough information to dis­
cuss the disk allocation and usage issue with your system administra­
tor intelligently and come to some mutual agreements on an overall
storage strategy.

3.1 Introduction

Chapter

3
Program Development

Under AIX

AIX is a very sophisticated development environment that includes a
variety of features and functions not found in other development envi­
ronments, even other versions of UNIX. This chapter will outline some
of the basic capabilities and features of the AIX development environ­
ment. It is by no means an exhaustive presentation of the capabilities
of AIX but merely represents the most basic and fundamental AIX of­
ferings.

It is important to note that AIX 3.2.x is the topic of the general sec­
tions in this chapter. AIX 4.1 information is covered in specific sections
that are noted as 4.1sections.AIX4.1 is compatible with AIX 3.2.x un­
less otherwise noted.

3.2 Linking and Loading

One of the advantages of the AIX operating system is its ability to link
and load dynamically. Unlike many other operating systems, AIX can
dynamically include pieces of the executable at run-time instead of at
compile- and link-time. This provides several advantages:

Smaller executable size

Less memory usage

Ease of program maintenance

More dynamic kernel and program capabilities

17

18 AIX: Getting Started

The logical counterpart to dynamic linking is static linking. Stati­
cally linked applications simply include all executable code from all ref­
erenced objects into a single executable file. This results in large
executables which are resource intensive and relatively inflexible.
With static linking you have lost the ability to dynamically change
large portions of your executable without so much as a recompile.
There are reasons to use static linking, however, and people who de­
velop real-time systems and other performance-intensive systems can
tell you what they are. However, it is a rare situation where a statically
linked system is a better choice than a dynamically linked one.

The basic capabilities of this dynamic development environment ex­
tend to the AIX kernel itself and provide significant advantages over
most other operating systems. AIX, due to its nature as a dynamically
built kernel, provides:

Dynamic kernel extensions

System call modification and extensions

Dynamic device driver configurations

These make AIX a very flexible and powerful development environ­
ment.

The ability to dynamically load and link an executable means that
you can created shared libraries which can be changed with little im­
pact to the production system. This means that you can create a library
which can be simultaneously shared by more than one running applica­
tion. This is key to aiding in software developer productivity and code
quality.

At this point it is appropriate and necessary to talk about the com­
piler technology on AIX, known as the XL compiler technology. (Note
that this has changed in AIX 4.1, see Section 3.2.1 for specific informa­
tion.) All of IBM's compilers generate an exact intermediate language
from their compilers known as XIL. From this, the specific compiler
generates the appropriate codes for the individual platform on which it
was generated. The basic steps in the compilation process are:

1. Language analysis. This tokens (breaks apart) all parts of the lan­
guage syntax in order for the optimization and internalization to oc­
cur. This step creates the XIL intermediate codes that are similar
across different IBM platforms.

2. Optimization. The optimization phase manipulates the previously
created XIL codes to enhance performance.

3. Register allocation. This phase of the compilation creates an inter­
mediate format based on a limited number of registers on a given
machine and begins to form the executable to the specific machine.

Program Development Under AIX 19

4. Assembly to object format. This is the final step in the process
where the compiler generates machine-specific codes which are then
linked into an XCOFF format file.

These steps are common across all IBM XL compiler technologies.
Given this similarity across platforms, IBM can generate more flexible,
portable systems in any language. XIL and the common intermediate
executable architecture are why it is easy to link C, Fortran, Pascal,
and other languages together on an AIX machine.

Under AIX, creating a dynamically loaded application is very simple.
By using specific options on the compilation statement, you can create
both dynamic libraries as well as applications that use them. A simple
example including code segments is shown below:

/* This is prog.c */
#include <stdio.h>
int common;
main()

printf("This is a shared library function example\n");
common();
printf ("This example is complete\n") ;
}

The above segment outlines a file called prog.c, which is the C source
file for the main program we are going to build. Next you need to create
a file known as an import file (let's call this file common.imp). The fol­
lowing is an example of such a file:

(common. imp)
! . I commonobj
common

The first line defines the name of the import file. The second line de­
fines the name of the object file in which the succeeding shared objects
will be found; in this case the object filename is commonobj. The third
and following lines define the shared objects contained in the file com­
monbj (in this case only common).

The basic structure of an import file is as follows:

1. Object path

2. Object filename

3. Object members

4. Shared symbols

The syntax looks like:

20 AIX: Getting Started

*This is a comment

#! path/file (member)
symboll
symbol2

symboln

where *-comments always begin with an * and are ignored.
#! defines the first line containing the definition of the import

path.
path/file is a fully qualified or relative path and filename to the

shared object.
member specifies a shared object within a shared library (if one

exists).
symboll to symboln defines all shared symbols within the

shared object.

The basic syntax is the same for all import files and needs to be fol­
lowed explicitly to ensure the correct results.

'lb compile the prog.c application and link in the shared objects, use
the command:

$ cc -b import:common.imp -oprog prog.c

This will create an executable file named prog which has an external
object common() that will be located in a file named commonobj.

Next we need to build the file which contains the shared code known
as commonobj. The source code for a program known as common.c is
shown below:

#include <stdio.h>
/* This is common.c */
int common() ;
{

printf("We are inside the shared function known as common\n");

You compile this with the command:

$ cc -c common.c -o common.o

You now need to generate a file similar to common.imp but one which
tells the linker which files are being exported from the file common.c.
This file is named common.exp, and it contains the following code:

! . I commonobj
common

Program Development Under AIX 21

Again, the first line defines the name of the shared object file, while the
subsequent line defines the objects to be shared from the file com­
monobj. The structure of the export file is identical to that of the import
file as described above and all issues are the same regarding the strict
adherence to the syntax and structure of the file. Now you link the final
shared object file with the command:

$ ld -H512 -T512 -bglink:/lib/glink.o -b export:eoromon.exp -bM:SRE
-oeoromonobj -le eoromon.o

The Id command invokes the loader portion of the XL compiler system
on AIX. It servers only as a linker and not as a compiler. Note that this
step doesn't require any code to be compiled but merely linked into a
form which other object files can be linked against. The important op­
tions in the command above are described as follows:

-H512

-T512

-bglink:/lib/glink.o

-b export:eoromon.exp

-bM:SRE

-oeoromonobj

-le

eoromon.o

An option which defines text, data, and loader sections of
the output file. This number is the boundary number of the
output file.

512 marks the starting address of the text segment in the
resulting object file.

/lib/glink.o is a prototype file used by the linker to generate
code for all defined external references.

This references the export file as described above.

This defines the object output type. There are other options
for this; see the manual page for more details.

This outputs to a file named commonobj.

This is used to link the library /lib/libc into the executable.

This is the object file to load.

Once you have created the shared library as above, you can execute
your main program as created in the initial compile:

$. /prog

This will invoke the executable prog that is dynamically linked to the
commonobj object. Thus, when prog calls common during execution,
the loader will dynamically load and execute the code from commonobj.
Note that the loader determines if commonobj has been loaded into
memory previously. If it has, it uses the current in-memory copy; if not,
it loads and executes the copy from disk.

You can place shared objects into a common respository known as a
library by simply using the UNIX archive facility. A simple example is:

$ ar q eoromonlib .a eoromonobj.o

22 AIX: Getting Started

The syntax to include a shared object from a library is very similar to
that used to include a shared object. The exp file as described earlier
might look like:

#! commonlib.a(commonobj.o)
common

and in the input file you might use might look something like:

(common. inp)
#! commonlib.a(commonobj.o)
common

Finally, to link and use an object from a shared library, you would use
a command like:

$ cc -oprog prog.c
$ ld -b export:common.imp -o prog -le prog.o

This will create an executeable named prog that is dynamically linked
to an object named common in the shared library commonlib.a.

This section has presented the basic commands necessary to create
and use the dynamic capabilities of the XL compiler subsystem on AIX.
There are many other capabilities and characteristics under AIX which
are more fully described in your system documentation.

3.2.1 AIX 4.1 specific linking and loading information

The first and most important thing to note about AIX. 4.1 is that the XL
C compiler is no longer included with AIX. You now must buy a sepa­
rate product know as C for AIX. XL C will not run under AIX. 4.1. This
places a larger emphasis on using either gee or some other equivalent
tool unless you have explicitly ordered C for AIX with your AIX 4.1 re­
lease. Be careful of this!

The major differences between XL C and C for AIX. are as follows:

1. C for AIX implements much tighter ANSI conformance including:
a. You can no longer mix K&R and ANSI function prototypes.
b. You can no longer create null dimension multidimensional arrays
c. Tags introduced at the parameter scope are not exported to the

enclosing nonparameter scope.

2. Parameter evaluation order has changed; this is not portable across
various compilers.

3. Preprocessor differences including:
a. Output preserves coordinate of each token.

Program Development Under AIX 23

b. No redundant #LINE directives or multiple successive blank
lines in output.

c. Erroneous or incomplete macro invocations are expanded.

4. C for AIX requires that #pragma options align=opt appear before
the structure definition, while XL C allowed it anywhere before the
closing brace of the structure definition.

5. C for AIX supports a long long type.

6. C for AIX does not define _ANSI_C_SOURCE by default.

7. References to array out of bounds information react differently. C for
AIX does not pad arrays like XL C did.

8. Uninitialized variables may be different between XL C and C for
AIX.

9. C for AIX behaves differently with pointer arithmetic. Differences
due to optimization may occur during pointer arithmetic, so be care­
ful.

Those are the major differences in terms of language support. There
are other differences in compiler modes, linking capabilities and other
issues as outlined in later sections.

3.3 Process-Related System Calls

AIX fully supports most accepted UNIX standards for system interface
calls and definitions. However, since the standards are still being de­
fined, IBM was forced to make some decisions regarding interface sup­
port and definitions. This section outlines some of the major differences
between AIX system calls and other UNIX system calls. It merely rep­
resents the major differences and certainly doesn't present all relevant
system call information. Consult your system documentation for more
information regarding the hundreds of other system calls available to
you under AIX.

UNIX is based on the concept of the fork, the system call which cre­
ates a new process. By forking new processes, UNIX creates an envi­
ronment which isolates individual programs and processes to avoid
conflict. The basic system call is the fork() system call. This will create
an entirely new process with its own process context and content.

Along with the fork system call, UNIX uses the exec() system call.
This copies executable information from disk to memory. Unfortu­
nately, the exec() process writes any disk data into your current process
context, overwriting your current process-level information. This is ob­
viously unacceptible since it will erase everything you are doing in your
current process. That is why exec() is normally used with fork() to first

24 AIX: Getting Started

create an entirely new process, then load some executable information
into the newly created process, and execute from there. When that
process is finished, you are returned to your current process context for
continuing execution.

The process of exec() is extremely resource intensive and often
wasteful in its use of system capabilities. IBM realized this and has
created several system calls (see Table 3.1) which provide an alterna­
tive to this paradigm.

The load() system call loads an individual object file into a known
shared space in your current process context. This makes this object
available to your current process without requiring the overhead of
forking a new process and "exec-ing" an entirely new executable into
memory. There are many additional things which must be loaded into
memory for an entirely new process that are not required by a simple
executable "load" operation. This provides a significant advantage to
AIX over many other versions of UNIX and many other operating sys­
tems.

The unload() system call unloads an individual object from the
shared section of a process' memory. This is useful for memory cleanup.
An object can only be unloaded when it is not in use or has another
object importing symbols from it.

The loadbind() system call is used if you have set the L_NOAUTO-

TABLE 3.1 AIX Specific System Calls

Call

load

unload

loadbind

loadquery

Definition

#include <sys/ldr.h>
int (*load(ObjectFile,LoadFlags,LibraryPath))()
char *ObjectFile;
unsigned int LoadFlags;
char *LibraryPath;

#include <sys/ldr.h>
int unload (ObjectPointer)
int (*ObjectPointer)();

#include <sys/ldr.h>
int loadbind(BindFlag,ExportPointer,ImportPointer)
int BindFlag;
void *ExportPointer;
void *ImportPointer;

#include <sys/ldr.h>
int loadquery(QueryFlags,DataBuffer,BufferLen);
int QueryFlags;
void *DataBuffer;
void *Bufferlen;

Function

Provides individual object file
loading capabilities

Unloads an individual object file
from memory

Resolves all outstanding
references between loaded objects

Provides information regarding
errors on system calls as well as
objects in memory

Program Development Under AIX 25

DEFER in the load system call routines. If you choose the resolve refer­
ences upon object load, you may not need loadbind(). However, you will
need to use loadbind() to resolve any unresolved references if all calls to
load include the L_NOAUTODEFER flag in their execution. This
means that the loadbind() system call will resolve any unresolved ref­
erences in the executable upon execution of the loadbind() system call
itself. See the manual pages for more on the capabilities of loadbind().

Finally, the loadquery() system call will provide information on cur­
rently loaded objects as well as errors from the other related system
calls such as load(), unload(), loadbind(), and exec().

3.4 Memory Management System Calls

AIX has a very unique memory management subsystem which has
caused significant debate among UNIX developers. Suffice it to say
that AIX has some very sophisticated memory management capabili­
ties which should be understood and exploited carefully, if at all. How­
ever, since most AIX developers will need to understand some of the
basic capabilties of AIX, the basic ones are mentioned in this section.
While the subsystem itself is unique, the memory management calls to
the operating system itself are not. The standard ones supported by
AIX are shown in Table 3.2 broken into several functional areas.

While dynamic memory allocation is recommended, there are other
AIX calls which can be used to manipulate memory and the process
context on which you are operating. Two such system calls are brk()
and sbrk(). These calls are used by the above calls to obtain additional
memory from the kernel allocator/deallocator. It is this process which is
responsible for the actual distribution and management of dynamic
memory space. It is strongly recommended that you use the system
calls in Table 3.2 instead ofbrk() and sbrk() to ensure the proper oper­
ating of your memory allocation process.

AIX has a particular memory management algorithm which seems
to give software developers unexpected results. When the AIX virtual
memory system crosses a threshold known as a highwater mark, the
kernel begins to send messages to processes with the highest memory
utilization current in memory. It first send a warning signal on which it
expects the program to act. If the memory situation worsens, the ker­
nel will send a KILL signal to a high-memory-usage process. This
means that this process is KILLed (SIG 9) without any recovery. This
can be disasterous to a large memory program. It is important to code
your programs to check for signals from the kernel regarding memory.
See the AIX system documentation for more information on how to do
this.

26 AIX: Getting Started

TABLE 3.2 AIX Specific System Calls

Call

malloc

alloca

calloc

valloc

free

realloc

Definition

#include <sys/types.h>
#include <malloc.h>
void *malloc(MemSize)
size_t MemSize;

#include <sys/types.h>
#include <malloc.h>
void *alloca(MemSize)
int MemSize;

#include <sys/types.h>
#include <malloc.h>
void *calloc(NoOfElements,ElementSize)
size_t NoOfElements
size_t ElementSize

#include <sys.types.h>
#include <malloc.h>
void *valloc(MemSize)
unsigned int MemSize;

#include <sys/types.h>
#include <malloc.h>
void free (MemoryPointer)
void *MemoryPointer;

#include <sys/types.h>
#include <malloc.h>
void *realloc(MemPointer,NewSize)
void *MemPointer;
size_t NewSize;

Function

Allocates a specific piece of memory

Allocates a specific piece of memory and frees
it automatically when finished using it

Allocates space for the number of array
elements specified by NoOfElements

BSD equivalent to malloc but doesn't return a
pointer to the first correctly aligned address
but instead to the first data character (this
can cause problems; use malloc)

Frees up memory reserved by on of the
allocations calls listed above

Reallocates current memory segment to
NewSize from the current size

3.5 The XL C Compiler

One of the advantages of AIX3.2.x is the inclusion of the XL C compiler
with native AIX 3.2.x.

IBM is known for its best of breed compiler technology, not the least
of which is their XL series of compilers. The XL compiler system para­
digm was discussed earlier in this chapter and will not be discussed
again. However, it is fair to remind you that the XL compiler system
generates highly efficient code optimized for a particular piece of hard­
ware while still maintaining compatibility across a variety of hardware
platforms and third-generation languages.

The XL C compiler is include with AIX since most of AIX is written in
C. In fact, UNIX and Care ubiquitous in that most of UNIX is written

Program Development Under AIX 27

in C to ensure portability and performance. Because of this, the XL C
compiler is the most important native compiler technology available
with AIX. This section outlines its basic capabilities as well as charac­
teristics to give you a better understanding of the native AIX develop­
ment environment.

As with most other lpp, there are environment variables which must
be set properly to use the XL C compiler system. The first is the LANG
variable, which defines the language in which the compiler messages
are to be presented. LANG should be set to En_US in the United
States. Check your local documentation for details outside the United
States. The other variable to be set is NLSPATH. This should be set to
/usr/lpp/msg/%U%N. These variables have probably been defined by
your system administrator. Check before setting them explicitly in
your . profile or .cshrc files.

The XL C compiler system uses a default configuration file /etc/
xlc.cfg. The actual program executed when you invoke the XL C com­
piler is /usr/lpp/xlc/bin/xlcentry. When xlcentry is invoked, it references
the /etc/xlc.cfg file, which defines the default options for both the com­
piler and linkage editor based on things called stanzas.

There are three default symbolic links to the same executable for the
XL C compiler system: /bin/cc, /bin/xlc, and /bin/c89. Each of these ref­
erences a stanza in the /etc/xlc.cfg file. The default /etc/xlc.cfg looks
like:

* @(#) xlc.cfg 1.12 9/16/93 04:05:19

* COMPONENT_NAME: (CC) AIX XL C Compiler

* FUNCTIONS: C Configuration file

* ORIGINS: 27

* (c) COPYRIGHT IBM CORP. 1989,1993
* All Rights Reserved
* Licensed Materials - Property of IBM

* US Government Users Restricted Rights - Use, duplication or
* disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

* ansi c compiler
xlc: use

crt
mcrt
gcrt
libraries
proflibs
options

= DEFLT
/lib/crtO.o
/lib/mcrtO.o
/lib/gcrtO. o
-le
-L/lib/profiled,-L/usr/lib/profiled
-H512,-T512,-D_ANSI_C_SOURCE,-qansialias

* extended c compiler aliased as cc
cc: use = DEFLT

crt /lib/crtO.o
mcrt = /lib/mcrtO.o

28 AIX: Getting Started

gcrt
libraries
proflibs
options

/lib/gcrtO.o
-le
-L/lib/profiled,-L/usr/lib/profiled
-H512,-T512,-qlanglvl=extended,-qnoro,
-qnoroconst

* ansi c compiler aliased as c89
DEFLT
/lib/crtO.o
/lib/mcrtO.o
/lib/gcrtO.o
-le

c89: use
crt
mcrt
gcrt
libraries
proflibs
options

-L/lib/profiled,-L/usr/lib/profiled
-H512,-T512,-D_ANSI_C_SOURCE,-qansialias

* ansi c compiler aliased as xlc_r
xlc_r: use DEFLT

crt /lib/crtO_r.o
mcrt /lib/mcrtO.o
gcrt /lib/gcrtO.o
libraries -L/usr/lib/dce,-lc_r,-lpthreads
proflibs -L/lib/profiled,-L/usr/lib/profiled
options -H512,-T512,-D_ANSI_C_SOURCE,-qansialias,

-D_THREAD_SAFE,-D_CMA_NOWRAPPERS_

* extended c compiler aliased as cc_r
cc_r: use DEFLT

crt /lib/crtO_r.o
mcrt /lib/mcrtO.o
gcrt /lib/gcrtO.o
libraries -L/usr/lib/dce,-lc_r,-lpthreads
proflibs -L/lib/profiled,-L/usr/lib/profiled
options -H512,-T512,-qlanglvl=extended,-qnoro,

-D_THREAD_SAFE,-D_CMA_NOWRAPPERS_,-qnoroconst

* common definitions
DEFLT: xlc /usr/lpp/xlc/bin/xlcentry

as /bin/as
ld
options
ldopt

/bin/ld
-D_IBMR2,-D_AIX,-D_AIX32,-bhalt:4
"b:o:e:u:R:H:Y:Z:L:T:A:V:k:j:•

Note that each section defines a different usage of the XL C compiler
system. The basic options for each are the same, however, and are out­
lined below:

as

as opt

crt

csuffix

gcrt

ld

ldopt

libraries

Defines the pathname for the assembler.

A list of options on tbe command line directed to the assembler and not
the compiler.

The pathname of the C run-time object passed as the first parameter to
the linker (also known as the linkage editor).

The default suffix used for C source programs.

An alternative C run-time object used if -pg is on tbe command line.

Defines pathname for the linker.

Defines the options passed to the linker.

Specifies the comma-separated flags passed from the XL C compiler to tbe
linker.

libraries2

mcrt

options

osuffix

prof libs

ssuf fix

use

xlc

xlcopt

Program Development Under AIX 29

Is similar to libraries, but each parameter specified must have a profiled
version in the stanza proflibs.

An alternative C run-time object used if the -p option is on the command
line.

Command line options.

Default suffix for object files.

Comma-separated parameters which specify profiled versions of the li­
braries specified in the stanza libraries2.

The default suffix for assembler files.

Use option values are specified after the stanza name; any comma-sepa­
rated options are added to those in the specified stanza, and options with­
out commas apply only if no value for that stanza is specified locally in the
current stanza.

The pathname to the XL C compiler.

The options are specified to the XL C compiler only when seen on the com­
mand line.

Each of the above options can be specified for a particular invocation of
the XL C compiler. In other words, you can create your own symbolic
link to /usr/lpp/xlc/bin/xlcentry and define a stanza in /etc/xlc.cfg to
control the compiler options, environment, and interface to the other
systems such as the assembler and linker.

Based on the invocation of the XL C compiler, you are requesting
varying levels of the C standard. You can also specify a particular lan­
guage level by using the -qlanglvl option on the command line. For ex­
ample:

$ cc -qlanglvl=ansi prog.c

This specifies that you should compile prog.c using the ANSI standard
conventions and not some other level, such as SAA. There are four ba­
sic C language levels supported:

ansi

saa

saal2

extended

ANSI standard

SAA current standard

SAA Level 2 standard

Older Kernighan and Ritchie (K&R) style

The basic syntax for the XL C compiler system is as follows:

cc [option I file] .. .
xlc [option I file] .. .
c89 [option I file l .. .

The cc, xlc, and c89 commands compile XL C source files. These com­
mands are the same except for the default language level. For cc, the
default language level is extended. For xlc and c89, the default lan­
guage level is ansi. These commands also process assembler source

30 AIX: Getting Started

files and object files. Unless the -c option is specified, these commands
call the linkage editor to produce a single object file. Input files can be
any of the following:

1. Filename with .c suffix: C source file

2. Filename with .i suffix: preprocessed C source file

3. Filename with .o suffix: object file for Id command

4. Filename with .s suffix: assembler source file

There can be one or more options. Flag options are:

-#

-B<prefix>

-c

-C

-D<name>[=<def>]

-E

-F<x>[:<stanza>]

-g

-I<dir>

-l<key>

-L<dir>

-M

-o<name>

-0

-02

-03

-p

-pg

-P

-Q<x>

Displays verbose information on the compiler's progress without
invoking anything.

Constructs alternate compiler/assembler/linkage editor program
names. <prefix> is added to the beginning of the standard program
names.

Compiles only; does not call ld.

Writes comments to output when doing preprocessing; used with
-E and-P.

Defines <name> as in #define directive. If <def> is not specified, 1
is assumed.

Preprocesses but does not compile; outputs to stdout.

Uses alternate configuration file <x> with optional <stanza>. If
<stanza> is not specified, xlc is assumed.

Produces debug information.

Searches in directory <dir> for include files that do not start with
an absolute path.

Searches the specified library file, where <key> selects the file
lib<key>.a.

Searches in directory <dir> for files specified by -kkey>.

Creates an output file suitable for inclusion in a description file for
the UNIX make command.

When used with -c, names the .o fikname>; otherwise names the
executable file <name> instead of a.out.

Optimizes generated code.

Equivalent level of optimization as -0 in the previous release.

Performs some memory- and compile-time-intensive optimizations
in addition to those executed with -02. The -03-specific optimiza­
tions have the potential to alter the semantics of a user's program.
The compiler guards against these optimizations at -02, and the
option -qstrict is provided at -03 to turn off these aggressive op­
timizations.

Generates simple profiling support code.

Generates profiling support code. Provides more extensive profil­
ing than -p.

Preprocesses but do not compile; outputs to .i file.

In-lines all appropriate functions where x can be one of the follow­
ing:

-s
-t<x>

-U<name>

-v

-w

-y<x>

Program Development Under AIX 31

!-Does not in-line any function
=<k>-In-lines if number of source statement in function is less

than the number specified in <le>
-<nm>-Does not in-line function listed by names in <nm>
+<nm>-Attempts to in-line function listed by names in <nm>

Produces a .s file for any source file processed by the compiler.

Applies prefix from the -B option to the specified program <x>,
where x can be one or more of the following: p = preprocessor, c =
compiler, a = assembler, and 1 = linkage editor.

Undefines name as in #undef directive.

Displays verbose information on the compiler's progress.

Suppresses informational, language-level, and warning messages.

Specifies compile-time rounding of constant floating-point expres­
sions, where <x> can be one of the following: n = round to nearest,
m = round toward minus infinity, p = round toward positive infin­
ity, and z = round toward zero.

Other options are specified as follows:

-q<option>

where <option> is an on/off switch such that, if xis the option, -qx turns
the option on, and -qnox turns the option off. For example, -qsource
tells the compiler to produce a source listing, and -qnosource tells the
compiler not to produce a source listing.
The following override the initial compiler settings:

ansialias

attr

compact

cpluscmt

dbxextra

extchk

idirf irst

inlglue

list

listopt

mbcs

noprint

Specifies type-based aliasing to be used during optimiza­
tion.

Produces attribute listing (only referenced names).

Reduces code size where possible, at the expense of execu­
tion speed. Code size is reduced by inhibiting optimizations
that replicate or expand code in-line.

Permits II to introduce a comment that lasts until the end of
the current source line, as in C++.

Generates symbol table information for unreferenced vari­
ables. By default such information is not generated, thus re­
ducing the size of the executable compiled with the -g
option.

Performs external name type-checking and function.

Specifies the search order for files included with the #in­
clude file_name directive. Uses -qidirfist with the -!direc­
tory option. If -qidirfirst option is specified, the directories
specified by the -!directory option are searched before the
directory in which the current file resides.

Generates fast external linkage by in-lining the code
(pointer glue code) necessary at calls via a function pointer
and calls to external procedures.

Produces object listing.

Prints settings of all options in listing.

String literal and comments can contain MBCS characters.

Directs listing to ldevlnull.

32 AIX: Getting Started

nostdinc

ro

phsinfo

pro to

ro

roconst

source

srcmsg

statsym

strict

tocdata

xcall

xref

-q<option>=<suboption>

Specifies which files are included with the #include
"file_name" and #include <file_name> directives. If -qnost­
dinc is specified, the /usr/include directory is not searched.

Does not put string literals in read-only area.

Displays phase information on the screen.

Asserts that procedure call points agree with their declara­
tions even if the procedure has not been prototyped. This
allows the caller to pass floating-point arguments in float­
ing-point registers instead of general-purpose registers.

Places string literals in read-only area. This option is the
default for xlc.

Places static external and global identifiers that are const
qualified in the read-only area.

Produces source listing.

Specifies that source lines are to be displayed with the mes­
sage, with pointers to the column position of the error.

Adds user-defined nonexternal names that have static stor­
age class to the name list (the symbol table ofxcoff objects).

Valid only at -03. This option turns off aggresive optim­
izations which have the potential to alter the semantics
of a user's program. This option also sets -qfloat=nofltint:
norsqrt.

Places scalar external data of one word or less in the TOC
(table of contents). If this option is not on, the address of
scalar external data is placed in the TOC. This requires an
extra load of the address before accessing the data.

Generates code to static routines within a compilation unit
as if they were external routines.

Produces cross-reference listing (only referenced names).
For example:

-q<option>=<suboptionl>:<suboption2>: ... :<suboptionN>

where <option> is assigned a specific suboption value or list
of suboption values as follows:

align=<algnopt> Specifies one of the following three alignment rules: (1)
POWER architecture (align=power, default), (2) 2-byte
alignment (align=twobyte), or (3) 1-byte alignment (align=
packed) for aligning C structs and unions. <algnopt> can be
one of: power, twobyte, or packed.

arch=<option> Specifies the architecture on which the executable program
will be run. The available options are:

attr=full

chars=signed

com-produces an object that contains instructions that
will run on all the POWER and PowerPC hardware
platforms.

pwr-produces an object that contains instructions that
will run on the POWER hardware platform.

pwr2-produces an object that contains instructions that
will run on the POWER2 hardware platform.

pwrx-same as pwr2.
ppc-produces an object that contains instructions that

will run on any of the 32-bit PowerPC hardware
platforms.

The default is -qarch=com. If the -qarch option is specified
without the -qtune=<option>, the compiler uses -qtune=pwr.

Produces attribute listing (all names, whether referenced or
not).

The data type char will be signed.

datalocal=<namel>:
<name2>: ...

dataimported=<namel>:
<name2>: ...

enum=<enumopt>

flag=<sevl>:<sev2>

float=<optl>:<opt2>:
... :<optN>

flttrap=<optl>:<opt2>:
... :<optN>

halt=<sev>

ignprag=<pragval>

initauto=<hh>

isolated_call=<namel>:
<name2>: ...

langlvl=<langlvl>

rnaxmem=<nurn>

pgmsize=<p>

Program Development Under AIX 33

Specifies which data items are local. If no names are speci­
fied, all data items are assumed to be local.

Specifies which data items are imported. If no names are
specified, all data items are assumed to be imported. This is
the default.

Specifies whether minimum-sized enumerated types will be
produced or not. <enumopt> can be either small or int.
small denotes that either 1, 2, or 4 bytes of storage will be
allocated for enum variables based on the range of the
enum constants. int is the default and causes enum vari­
ables to be treated as though they were of type (signed) int.

Specifies severity level of diagnostics to be reported in list­
ing, <sevl>, and on screen, <sev2>.

The available options are:
rndsngl-ensures strict adherence to IEEE standard. All

operations on single-precision values produce results
that remain in single precision.

hssngl-rounds single-precision expressions only when
the results are stored into REAL*4 memory locations.

nans-detects conversion of single-precision N aNS to
double-precision call checking.

hsflt-never rounds single-precision expressions, and
doesn't perform range checking for floating-point to
integer conversions.

nomaf-suppresses generation of multiply-add
instructions.

nofold-suppresses compile-time evaluation of constant
floating-point expressions.

rrm-specifies run-time rounding mode. Compiles with
this option if the run-time rounding mode is rounded
toward minus infinity; rounds toward positive infinity or
not known.

rsqrt-specifies whether a division by the result of a
square root can be replaced with a multiply by the
reciprocal of the square root. Default at -02:
-qfloat=norsqrt. Default at -03: -qfloat=rsqrt.

fltint-specifies whether range checking of floating-point
to integer conversions is done. Default at -02:
-qfloat=nofltint. Default at -03: -qfloat=fltint.

Generates instructions to detect and trap floating-point.
The available options are: overflow, underflow, zerodivide,
invalid, inexact, enable, and imprecise.

Stops compiler after first phase if severity of errors detected
equals or exceeds <sev>.

Specifies the aliasing pragmas to be ignored. Used with
#pragma disjoint and #pragma isolated_call. <pragval> can
be disjoint, isolated, or all.

Initialializes automatic storage to <hh>. <hh> is a hexa­
decimal value. This generates extra code and should only be
used for error determination.

Specifies that the calls to the functions listed have no side
effects. <namel> and <name2> are function names. The
user may specify as many function names as necessary.

Specifies language level to be used during compilation.
<langlvl> can be ansi, saal2, saa, or extended.

Limits the amount of memory used by space-intensive op­
timizations to <num>. <num> is specified in kilobytes.

Sets initial table size used by the compiler. <p> can be s for
small or 1 for large.

34 AIX: Getting Started

proclocal=<namel>:
<name2>: ...

procimported=<namel>:
<name2>: ...

procunknown=<namel>:
<narne2>: ...

spill=<size>

tune=<option>

xref =full

Specifies which functions are local. If no filenames are
specified, all invoked functions are assumed to be defined
within the current file. The last explicit specification for a
function takes precedence.

Specifies which functions are imported. If no filenames are
specified, all invoked functions are assumed to be defined
outside the current file. The last explicit specification for a
function takes precedence.

Specifies which functions are unknown to be local or im­
ported. If no filenames are specified, all functions called are
assumed to be unknown. This is the default when no user
options are specified. The last explicit specification for a
function takes precedence.

Specifies the size of the register allocation spill area.

Specifies the architecture system for which the executable
program is optimized. The available options are:

601-produces an object optimized for all the
PowerPC601 processors.

pwr-produces an object optimized for the POWER
hardware platform.

pwr2-produces an object optimized for the POWER2
hardware platform.

pwrx-same as pwr2.

Produces cross-reference listing (all names, whether refer­
enced or not).

As you can see, there are many options available with the standard
XL C compiler system which comes with AIX. They will provide sup­
port for most of the compilation tasks you will need. There is included
on the CD-ROM accompanying this book, however, an additional C
compiler known as the GNU C compiler, which is also a best-of-breed
compiler. It has certain advantages over the native XL C compiler, and
you may want to investigate this before making a final decision about
the C compiler to use.

3.5.1 Compiler modes including AIX 4.1 specific information

As mentioned in Sec. 3.5, there are a variety of modes in which the
compiler can generate code. This is true for both XL C as well as C for
AIX. A brief outline of the compiler mode issues is too important not to
be mentioned in this book.

As outlined in the options portion of the XL C compiler in Sec. 3.5,
the way to control the compiler output is through the use of the -qarch
option. To recap, the available options are as follows:

-qarch=pwr This generates code for the POWER instruction set. This will run on
POWER, POWER2, and PowerPC-601 without the need for emulation.
Software emulation may be required on the PowerPC 603 and 604.

-qarch=pwr2 This generates code for the POWER2 instruction set. This will run only on
POWER2 if any of the unique POWER2 instructions are generated.

-qarch=ppc This generates code for the Power PC instruction set. This will run only on
the PowerPC platform including 601, 603, and 604.

-qarch=com In XL C this does not generate true common code, while on AlX 4.1 it does.

Program Development Under AIX 35

Each of these will support a particular compiler mode. While the first
three support a specific platform or platforms, the fourth (or common
mode) supports all hardware platforms. This is the recommended way
of compiling with both XL C and C for AIX.

Common mode generates instructions which are common to all ar­
chitectures. With XL C, it sometimes did not generate what is called
millicode calls. These calls are specific low-level memory calls which
allow for integer multiply, divide, and remainder operations. Because
XL C did not generate these calls, you might run into compatibility
problems and, therefore, not have true common mode. C for AIX gener­
ates millicode for all platforms and thus guarantees that code will be
common and execute properly across all platforms. This means that
you can generate a single binary image which will execute across all
AIX platforms, regardless of the hardware platform.

For common mode to operate properly on AIX 3.2.5 with XL C, you
need to ensure that you have installed the mandatory 8 PTFs that are
required to include all relevant files. These are U432415, U432416,
U432417, U432431, U432447, U432448, U432449, and U432450. See
your system administrator for details on these.

Several steps must be followed to generate a common mode binary.
They are:

1. Develop on AIX 3.2.5 (this is recommended to the support in the
above mandatory eight PTFs).

2. Use the flags -qarch=com -qxflag=useabs on the compile line.

3. 'lb link the application, use a special static library compiled in
COMMON mode. This library is available from IBM as feature code
2504. You must then specify this library with the -I option on the
compile line before all other system libraries.

4. Use the flag -bl:lowsys.exp where lowsys.exp is provided by the
eight mandatory PTFs described earlier. This file contains symbols
for the millicode that reside at the low memory locations. This al­
lows for true common code to be generated.

Related to compiler modes are the tuning flags. You can tell the
compiler to optimize common mode code for one type of hardware or
another with the -qtune parameter. This will serve to increase per­
formance if the application is run on the particular platform for which
it was optimized. This will also cause the code to run significantly
slower if run on a platform other than the one for which it was opti­
mized. Keep this in mind if you are running across multiple architec­
tures.

Finally, you can run in what is known as hybrid mode. This means
that you can compile various routines within your application in more

36 AIX: Getting Started

than one mode and provide run-time testing to determine which one
should be used. See the C for AIX guide or XL C guide for more details.

3.6 The Linkage Editor

The tool used to actually link all object files generated by the compiler
is known as the linker, or linkage editor. This tool is responsible for
combining object files, libraries, and import lists to create a final ex­
ecutable during the final phase of the compilation process as described
earlier.

The basic format used by the linker is known as XCOFF (eXtended
Common Object File Format). This is fast becoming the standard for­
mat for representing executable information under UNIX. The prede­
cessor ·to XCOFF was COFF. XCOFF and COFF are very similar
formats, the primary difference being that XCOFF supports dynamic
linking.

·You can invoke the linker directly with the Id command. As you can
imagine, there are many options available to the Id command, some of
which are shown below:

ld [-eLabel] [-Dnum] [-Hnum] [-KMm] [-oname] [-rs] [-Snum] [-Tnum] [-vz]
[-Zstring]
[-Ldir] [-ffile] [-lkey ... J [-b option ...] file ...

where -eLabel makes the contents of the Label variable the entry point
of the executable output file.

-Dnum makes the contents of the num variable the starting
address for the initialized data of the ouput file.

-Hnum makes the value of the num variable the boundary to
which the .text, .data, and .loader sections are aligned
within the output file.

-K pads the header, .text, .data, and .loader segments of the
output file to lie on page boundaries.

-M lists to the load map output file the names of all files and
archive members processed to create the output file.

-m is the same as -M.
-oname names the output filename instead of the default a.out.
-r creates the output file even with unresolved symbols.
-s strips the symbol table, line number information, and

relocation information from the output.
-Sn um makes the value of num the maximum size of the user

stack.
-Tnum makes the value ofnum the maximum size the user

stack is allowed to grow.
-v is verbose mode.

Program Development Under AIX 37

-z is the same as -K.
-Zstring-prefix the standard library directory with string.
-L dir adds dir to the list of directories to be searched for library

files.
-ffile takes the filenames to be processed from file.
-Ikey processes the libKey.a file.
-b option is binder options.
file is the input file to be processed.

The only thing to watch out for relative to symbol definition and resolu­
tion is the use of reserved symbols. The XL C system generates re­
served symbols which normally begin with _. Some of the more
common ones are:

_text

_data

_et ext

_edata

_end

Pointer to the first location of the program segment
Pointer to the first location of the data segment
Pointer to the first location above the program segment
Pointer to the first location above the data segment

Pointer to the first location above all data including dynamic and initial­
ized data

This means that you must not use these symbols in your programs;
otherwise you will have linker resolution problems.

Import and export files were discussed in the section relating to dy­
namic library and object creation; however, it is important to remember
that the import and export files are used by the linker to dynamically
''bind" objects from a shared environment into your executable. The
binder is the software that actually does this. See the man page on Id
for more information. See the earlier discussion for more details on
their exact construction and syntax.

There was a simple example of usage of the linker command given in
Sec. 3.2; this section provides several more examples in order to pre­
sent a more thorough discussion of the linker. A simple example is as
follows:

$ ld -T512 -estart -le /lib/ertO.o -omain main.o subl.o sub2.o

This will create an executable named main from three object files and a
library named libc.a. The /lib/crtO.o is the run-time support object used
by all C object code and needs to be included.

To review the creation of linking to a shared object, first create an
export file as outlined above (let's call it common.exp) and use a com­
mand like:

$ ld -T512 -H512 -bM:SRE -le -bE:eommon.exp -o eommon.o subl.o
sub2.o sub3.o

38 AIX: Getting Started

This will create a shared object named common.o that can then be
linked to other objects as shown next. You must first create an import
file (let's call it common.imp) that follows the syntax outlined earlier.
Once you have done this, you can issue a command like:

$ ld -T512 -H512 -le -o main -bI:common.imp main.o -L ":"

Note that the ":" instructs the linker to include the current path in the
search. This command generates an executable named main which can
be invoked by typing:

$. /main

There are many other ways to use the linker; it is often used as the
last step in the compilation process and, therefore, is invoked automat­
ically by the XL C compiler system.

3.6.1 C for AIX and AIX 4.1 changes to the linker/binder
and loader

The binder has the following new features:

1. Increased performance. Compile times may be 2 to 5 times faster.

2. Smaller object files due to the inclusion of global scalars in the TOC
entry.

3. Removed the TOC overflow problem by removing the TOC size limit
of64KB.

4. You can now use LIBPATH variable to override any previously de­
fined -L options.

There are also a variety of new options as well as some obsoleted ones
with C for AIX. See the man pages on the respective machines for more
details.

There are also a variety of enhancements to AIX 4.1 and C for AIX
relative to symmetric multiprocessing (SMP). These are beyond the
scope of this book; however, it is safe to assume that all applications
written for uniprocessor machines will run correctly on a multiproces­
sor machine. This is not always the case in the other direction. New
technologies such as threads are making SMP a commercial reality.
There is more on threads in Chap. 4.

Finally, the core file has changed in AIX 4.1 to support POSIX
threads. This means that it won't be possible to analyze core dumps
between AIX 3.2.x and AIX 4.1 operating systems. Keep this in mind if

3.7 Conclusion

Program Development Under AIX 39

you have any core dumps. You must analyze them on the same archi­
tecture on which they were generated.

This chapter has shown you some of the capabilities of the compilation
system included with AIX 3.2.5 and available as a separate product
with AIX 4.1. It is an extremely powerful and complex environment;
however, once you understand its intricacies, you will find it extremely
flexible and usable. IBM has led the industry in compiler technology
for many years, and the XL C compiler subsystem along with C for AIX
are the results.

While the GNU C compiler system is an alternative, consider the al­
ternatives carefully before moving away from the native C compiler
subsystem that is available for AIX.

4.1 Introduction

4.2 dbx

Chapter

4
Native AIX Software
Development Tools

The previous chapter outlined the basic software development environ­
ment in AIX. This chapter presents several of the more important tools
available to you in AIX that are related to software development and
the free tools included with this book.

Much of the functionality discussed relating to the tools in this chap­
ter is replicated by the tools discussed in Part 2 of this book. See these
later chapters for more information about the tools included on the CD.

dbx is the interactive command line debugger that comes with most
UNIX implementations. It is a symbolic debugger which allows you to:

Examine object and core files

Control the execution of an application

Set breakpoints and trace program execution and variables

Use symbolic variables and display them in their correct formats

Manipulate variables in virtual memocy

Use several languages in the same executable and debug session

Languages most often supported are C, Fortran, Pascal, and COBOL.
dbx is the Berkeley equivalent to sdb from AT&T. Most UNIX systems
today use dbx as their standard debugger; sdb is not available on most
machines today.

41

42 AIX: Getting Started

4.2.1 Using dbx

To invoke dbx use:

dbx [-a pid] [-c commandfile] [-d nesting] [-I dir] [-kl [-u] [-fl
[-r] [objectfile [corefile]]

where -a pid attaches the debug process to the process with process id
ofpid.

-c commandfile-dbx commands executed before beginning
debug session.

-d nesting sets limit for nesting of program blocks; default is 25.
-I dir is directory to look in for associated source files; default is

the current directory and directory where the executable
is located.

-k maps memory addresses; useful for kernel debugging.
-u causes dbx to prepend symbols with an @ to avoid possible

conflicting symbol names.
-f starts dbx reading only a minimum number of symbols to

minimize start-up time and memory requirements
(useful for large programs).

-r runs object file immediately; if program terminates
successfully, dbx is exited.

objectfile specifies object file to debug.
corefile specifies core file to debug.

To use dbx, the programs must have been compiled with the -g option
to generate symbol information which dbx uses.

When dbx starts, it checks for the existence of an initialization file
.dbxinit in the current directory and the user's HOME directory. Any
commands in the .dbxinit file are executed before the debugging ses­
sion begins.

When you invoke dbx, you are placed in an interactive session from
which you can issue commands and examine variables inside the pro­
gram. For example, the following simple C program will be compiled
and debugged:

$ cat test.c

main()
{

printf ("this is a test of the debugger\n");
}

$ cc -g test.c
$ dbx a.out
Reading symbolic information ...
Read 31 symbols
(dbx)

Native AIX Software Development Tools 43

You are now at the dbx interactive prompt. From this point you can
issue dbx commands and examine variables, change values, and run
the program line by line. Note that a.out is the default object name
from most UNIX compilers.

4.2.2 The dbx language

dbx commands are C-like in syntax and function. dbx works with ex­
pressions which consist of constants, operators, procedure calls, and
variables. Some of the most important of these are:

Constants, which consist of constants declared within the program:

Character constants must be enclosed in single quotes
Octal format must be preceded with a 0.
Hex format must be preceded with a Ox.

Operators. The standard operators in most languages are:

+

*
I
div
<<

>>
&

&
<
>

<=
>=

!=
&&
11

sizeof(cast)
. field

Add
Subtract
Multiply
Divide
Remainder
Bitwise shift left
Bitwise shift right
Bitwise AND
Bitwise OR
Bitwise complement
Address and content of operator
Less than
Greater than
Less than or equal to
Greater than or equal to
Equal to
Not equal to
Logical AND
Logical OR
Size of variable or case
Reference

44 AIX: Getting Started

4.2.3 Scope

4.2.4 Running dbx

Scope is a concept which defines the availability of constants and vari­
ables within procedures. The scope of variables is defaulted to within
the current file and function. Values of variables are updated as func­
tions are entered and exited. You can apply a specific scope with the file
and func commands within dbx. Source files are expected to have the
same name as the function with the proper language extension (.f, .c,
etc.) to make it available to the compiler.

The basic dbx commands are·:

I [regular expression]

?[regular expression]

alias [name ["command"]]

assign var=expression

call proc [params]

case [default I mixed I
lower I upper]

catch [signum I signame]

clear [line]

cont [signum I signame]

delete {number ... I all

detach [signum I signame]

display [expr]

down [num]

Searches forward in current source code for regular ex­
pression. Most often used to match strings (e.g., /string).
Searches backward in current source code. Opposite of/.

Creates aliases for dbx commands for shorthand nota­
tion for commonly used commands. Note that the
.db:xinit file is ideal for these commands. alias alone
prints out all aliases.

Assigns the value expression to the variable var; expres­
sion can be a string, logical type, or constant. See the
examples for more information.

Call executes the procedure specified by proc and passes
parameters. Note that this procedure can be any stand­
ard procedure supported by the language (e.g., printfin
the C language).

Changes how dbx interprets symbols. Default is lan­
guage dependent.

Sets a catch for the signal signum or signame before it
reaches the program. If no parameters are used, all sig­
nals are trapped except SIGHUP, SIGCLD, SIGALARM,
and SIGKILL.

Clears all breakpoints or only one on line if chosen. See
set for more details; line can be either a line number (in­
teger) or a filename followed by a colon.

Continues program from the current stopping point. If
either signum or signame is included, the program con­
tinues as if it had been sent the appropriate signal con­
tained in signum or signame.

} Removes traces and stops from the current session. All
traces and stops have an associated number which can
be viewed with the status command and established
with the trace and stop commands.

Continues execution but exits dbx. Useful if you have
seen all you need in the debugger and simply want to
finish the program.

Prints on the screen the value of expression, where ex­
pression is a regular expression.

Moves the current functions down one level or num level
in the call stack. This is relevant for scope and name
resolution.

Native AIX Software Development Tools 45

dump [proc] [>file] Prints all variables local to the current procedure or
named procedure. You can redirect your output to a
specified file.

edit [proc I file] Invokes an editor on the specific procedure or file. You
can set the variable EDITOR to choose an editor other
than vi.

file [file] Changes the current source file to another. Simply type
file to display the current source file.

func [proc J Changes the current procedure to another. Simply type
func to see your current context.

help [crnd] Prints listing of dbx commands or more detailed descrip­
tion of command cmd.

ignore [signum I signarne] Ignores signals signum or signame sent to the current
program.

list [proc I line, line] Lists source lines either in the current procedure if no
parameters are used, from proc if a procedure name is
specified, or from linel to line2 if a line expression is
used. The default is 10 lines starting at the current line
in the current procedure. The $ represents the current
line, and you can use regular expressions to designate
lines.

rnultproc [on I off] Enables multiprocess debugging (not available on all
dbx implementations).

next [num] Executes one line or num lines jumping over function
calls. Note that this means that a function call will be
executed in its entireity and treated as a single line. See
step for an alternative.

print [expr] Prints the value of an expression. The expression can be
any expression supported by the language used in the
program.

quit Exit dbx. Program execution is terminated.

rerun [args]

return [proc]

run [args]

set var=expression

sh [command]

skip [num]

source [filename]

status [>file]

step [num]

Begins execution again passing args as command line
input parameters.

Continues execution until the procedure proc is reen­
tered. If you don't specify a proc, you will execute until
you leave the current procedure. This is not available on
all implementations of dbx.

Begins execution of the program, optionally passing
args as command line arguments. The arguments
should be entered exactly as they would on the com­
mand line.

Same as assign.

Executes a shell specified by the SHELL environmental
variable. You can specify a command to execute within
this shell with the optional command parameter. If you
use command, when the command is finished, you are
placed back in dbx.

Resumes execution skipping 1 or num breakpoints be­
fore honoring a breakpoint. This is not supported on all
versions of dbx.

Executes dbx commands from the filename file.

Prints trace and breakpoint information which can be
optionally placed in a file.

Steps through one line of execution into calls. This
means that if the next line of execution is a function call,

46 AIX: Getting Started

4.2.5 Example

stop {var I [var] { at
line I in proc}} [if
condition]

trace [line I expression
at line I proc I [var] I
[at line I in proc] l [if
condition]

unalias name

unset var
up [num]

use [dirl dir2 ...]

where [>file]

which [name]

whereis [name]

whatis [name]

you will stop at the first executable line in the function
as a result of a step command. This is opposite of the
next command.
Sets breakpoints where program execution is halted.
Execution is halted when:

var-the variable var changes.
at line-the source line is reached.
in proc---the procedure is called.
if condition-the condition is reached.

dbx associates a number with each breakpoint. Use
status to see these associations. You can use the delete
function to remove them.
Prints tracing information specified on the dbx com­
mand line:

at line-specifies a source line which contains the
expression to be traced.

if condition-specifies a condition for the trace to
begin.

in proc-specifies the procedure which contains the
procedure or variable to be traced.

See the examples sections for details.
Removes the alias for name.
Removes the value of var.
Moves the current function up the program stack. The
default is 1.

Specifies which directories to use for source files sepa­
rated by spaces; used by itself, it displays which directo­
ries are currently being searched.
Displays a list of active procedures. Output can be redi­
rected to a file.
Displays the fully qualified identifier name.
Displays the fully qualified symbol name.
Displays the declaration of name; name can be a func­
tion, procedure, variable, or constant.

Most dbx commands will print out the current status of associated
variables or parameters if executed without any parameters (e.g., alias,
case). There are also machine-level instructions which allow for low­
level debugging at the machine instruction level. See your machine's
specific dbx documentation since this is machine and debugger specific
in many cases.

The above list is not all inclusive for all implementations of dbx, but
it does include the majority of commands in dbx. If you use these com­
mands fully, you will realize most of the power of dbx.

The example below documents many of the dbx commands described
above. The program test consists of three separate files: test.c, testl.c,
and test2.c. All three files reside in the same directory, /tmp/book. The
content of test.c is as follows: ·

main() {
int a=5;

Native AIX Software Development Tools 47

printf("This is test and a is %d\n",a);
testl ();
test2(a);
}

testl.c contains:

testl () {
printf ("This is testl \n");
}

And test2.c contains:

test2(a) {
printf ("This is test2 and a is %d\n", a);
}

The example is:

** Now compile the files to create a single executable a.out. **

% cc -g test.c testl.c test2.c
test.c:
testl. c:
test2.c:
Linking:

% dbx a.out # now invoke the debugging session

Reading symbolic information ...
Read 80 symbols
(dbx) help /* printout help for SunOS dbx */
Command Summary

Execution and Tracing
catch clear cont delete ignore next rerun
run status step stop trace when

Displaying and Naming Data
assign call display down dump print set
set81 undisplay up whatis where whereis which

Accessing Source Files
cd edit file func list modules pwd
use I ?

Miscellaneous
alias dbxenv debug detach help kill make
quit setenv sh source

Machine Level
nexti stepi stopi tracei

The command "help <cmdname>' provides additional help for each
command

48 AIX: Getting Started

** Now help on a specific command. **
(dbx) help print
print <exp>, ... - Print the value of the expression{s) <exp>, ...
{dbx) print a
bad data address

** List status of all breakpoints, traces, etc. Note there are none
set yet. **

(dbx) status
(dbx) list /* list source code of current procedure */
2 int a=5;
3 printf {"This is test and a is %d\n", a) ;
4 testl();
5 test2 (a);
6 }
{dbx) step /* execute the first executable command but can't because
I have invoked dbx yet */ can't continue execution

** Note that you must issue the run command before you can invoke
any dbx execution commands since the run commands begins the execu­
tion of the program. What you typically do it set a breakpoint at
the first executable statement with the stop command and then type
run. **
{dbx) stop at 3
{dbx) run
Running: a.out
stop at 3
stopped in main at line 3 in file "test.c"
{dbx) list
3 printf{"This is test and a is %d\n" ,a);
4 testl {);
5 test2(a);
6 }
{dbx) status
(2) stop at "/tmp/book/test.c":3
(dbx) step
This is test and a is 5
stopped in main at line 4 in file "test.c"
4 testl {);
(dbx) stop in testl

** Now set a breakpoint to stop at first executable line inside
testl **

(4) stop in testl
{dbx) step /* step into testl; note next would have stepped over
testl */
stopped in testl at line 2 in file "testl. c"
(dbx) list /* lists source code inside current procedure */
2 printf{"This is testl\n");
3 }
(dbx) trace test2
(5) trace test2 /* notify me whenever we enter test2 */
(dbx) status
(2) stop at "/tmp/book/test.c":3
(4) stop in testl
(5) trace test2
(dbx) delete stop in test2
(6) stop in test2 /* set a breakpoint at the beginning of test2 */
(dbx) status
(2) stop at "/tmp/book/test.c":3

(4) stop in testl
(5) trace test2
(6) stop in test2

Native AIX Software Development Tools 49

(dbx) delete 6 /* remove the stop in test2 */
(dbx) status
(2) stop at "/tmp/book/test.c":3
(4) stop in testl
(5) trace test2
(dbx) continue /* whoops */
unrecognized command/syntax "continue"
(Type 'help' for help)
(dbx) cont /* continue on until next breakpoint or end of execution
*/
This is testl
calling test2(a = 5) from function main
This is test2 and a is 5
returning 5 from test2

execution completed, exit code is 1
program exited with 1
(dbx) rerun /* reexecute program maintaining all breakpoints, etc.
*/
Running: a.out
stopped in main at line 3 in file "test.c"
3 printf("This is test and a is %d\n",a);
(dbx) status
(2) stop at "/tmp/book/test.c":3
(4) stop in testl
(5) trace test2
(dbx) use /* which directory is everything in */
/tmp/book/
(dbx) file /* what source code file am I in now */
test.c
(dbx) func /* what is my current function name */
main
(dbx) list
4 testl () ;
5 test2(a);
6 }
(dbx) next /* step over testl function call, see where we end up */
This is test and a is 5
stopped in main at line 4 in file "test.c"
4 testl ();
(dbx) next
This is testl
stopped in main at line 5 in file "test.c"
5 test2 (a);
(dbx) step
calling test2(a = 5) from function main
stopped in test2 at line 2 in file "test2.c"
(dbx) list
2 printf ("This is test2 and a is %d\n", a);
3 }
(dbx) sh /* fork a shell, to get back to dbx type exit */
% ls
a.out test.c testl.c test2.c
book.script test.a testl.o test2.o
% exit
(dbx) where /* where is my current line position */
test2(a = 5), line 2 in "test2.c"
main(), line 5 in "test.c"
(dbx) quit /* quit dbx without finishing execution of my program */

50 AIX: Getting Started

The above example is all inclusive and demonstrates much of the
power and functionality of the dbx debugger. While there are subtleties
in this example which you may not understand, you can refer to it
again as you learn more about AIX.

Another powerful use of dbx is to analyze where run-time errors are
occurring in your programs. For example, let's assume you compile a
program named test as follows:

$ cc -o test -g test.c
$./test
Bus Error - core dumped

When you attempt to run the application, you get a core dump. This
means that you have had a run-time failure in your application. The
system creates a file in the current directory named core which con­
tains information relating to the most recent core dump. While you can
go into dbx and step through the program line by line, you can get a
quick notification of where the run-time error occurred by simply in­
voking dbx in the same directory with the command:

$ dbx test
dbx version 3.1
reading symbolic infonnation ...
[using memory image in core]
20 array[i]=O;
(dbx) quit

Note that this tells you that your run-time error occured on line 20
when you attempted to initialize an array variable. From here you can
use dbx to step through your system to understand exactly what is
causing the problem.

Finally, you can use dbx to attach to a running process and step
through the system just as you could if you started the process with
dbx. A simple example is:

$./test &
$ ps -u userid /* where userid is your userid*/
PID TTY TIME COMMAND
666 hft/3 10: 01 test
$ dbx -a 666
Waiting to attach to process 666 ...
Determining program name
Successfully attached to /home/kevin/test
dbx version 3.1
Type 'help' for help.
reading symbolic information
6 printf(array[i]);
(dbx)

Native AIX Software Development Tools 51

This example demonstrates that you have initiated either a back­
ground process or a process in a different login session named test
which has a process id (PID) of 666. You can attach to this process and
manipulate it just as you would a process that you invoked from within
dbx. This is a very powerful feature of dbx, and it allows you to manipu­
late daemons and other detached processes from a command line. Keep
this feature in mind as you begin to develop in AIX.

4.2.6 dbx enhancements for AIX 4.1

4.2.7 Conclusion

While there were no dramatic changes to dbx with AIX 4.1, there were
several enhancements worth mentioning. Some of the more important
are:

1. Support for reduced size executables with the -g option was added.

2. dbx now supports full path information from the compiler. This
makes it much easier to access the relevant source files.

3. Support for C type casting is now included in dbx.

4. Thread support is now included to support threads implementations
inAIX4.1.

5. dbx now supports long double types.

6. Enhanced support for multiprocessing.

One other note is that the xde graphical debugging program is gone in
AIX4.1.

This section has demonstrated a significant amount of the functional­
ity of dbx. There are, however, more commands which can perform
tasks which you may be interested in. See your man pages for your
particular machine for more details. There is also a GNU version of dbx
which provides enhanced functionality and commonality across plat­
forms. The dbx session shown in this section was run from within a
terminal window. There are tools which provide a more sophisticated
interface to dbx; however, these are all changing in the near future as
UNIX vendors change their interface, so they will not be documented
here; however, see your local system documentation for more informa­
tion on GUI-based dbx tools and use them just as you would use dbx as
show above.

dbx is a powerful tool for software developers and maintainers. dbx
in combination with other more sophisticated tools will help you to
write and deliver better software.

52 AIX: Getting Started

4.3 lint

4.3.1 Introduction

4.3.2 Usage

The lint tool has been used for years to analyze C source code for syn­
tax and possible run-time errors. lint can also check for nonportable
and inefficient code. Some of the basic things you can do with it are:

Perform type-checking rules more strictly than with most compilers

Identify variable and function problems

Identify flow control problems

Identify inefficiencies in constructs

Identify unused and unreferenced code

Identify nonportable code

Identify code and library incompatibilities

The basic syntax is:

lint [-al [-bl [-Cl [-cl [-hl [-lkeyl [-nl [-olibraryl [-pl [-qDBCS]
[-u] [-v] [wclass [class ...]] [-x] [-MA] [-Ndnumber] [-Nlnumber]
[-Nnnumber] [-Ntnumber] [-Idir] [-Dname [=Def]] [-Unamel file ...

where -a suppresses messages concerning assignments of long
variables to variables that are not defined as long.

-b suppresses messages about unreachable break statements.
-C specifies the use of C++ libraries.
-c produces a .ln file for every C file which can be used later by

lint for more thorough analysis.
-h suppresses bug, style, and inefficiency checking.
-lKey includes a lint library for further cross checking. Key can

be any of:
Key-includes the llib-lKey.ln lint library
m-includes the llib-lmath.ln lint library
dos-includes the llib-ldos.ln lint library

-n suppresses check for compatibility with standard and
portable lint libraries.

-olibrary creates the llib-llibrary.ln library.
-p performs portability checks.
-qDBCS selects multibyte character set specified by locale.
-u suppresses messages about unused variables and functions.
-v suppresses unused function messages.
-wclass [class] specifies warning classes which determine what

is reported. Some of the classes are:

4.3.3 Examples

Native AIX Software Development Tools 53

a-non-ANSI features
c-comparison with unsigned values
d-declaration consistency
h-heuristic complaints
k-use for Kernighan and Ritchie (K&R) style C code
I-assignments of long variables to nonlong variables
n-nulleffectcode
o-unknown order of evaluation
p-portability concerns
r-return statement consistency
u-proper usage of variables and functions
A-disables all warnings
C-constants occurring in conditional statements
D-external declarations never used
0-obselete features
P-function prototypes
R-unreachable code
S-storage capacity checks

-x suppresses messages about variables that have external
declarations but were never used.

-MA enforces ANSI standards constructs in C code.
-Ndnumber changes table dimension to number.
-Nlnumber changes number of type nodes.
-Nnnumber changes symbol table size to number.
-Ntnumber changes tree node numbers to number.
-Idir adds dir to directories to search for #include files.
-Dname=Def is a macro definition similar to that used by cpp.
-Uname removes definition of name where name is a symbol

used by the program.
file is any number of files to scan with lint.

lint has been in use for a long time and has a history of support for
the K&R style of C code. It has only recently has begun to support
ANSI standard C. Keep this heritage in mind when you are using lint
to analyze code.

There are a number of strings you can place within your source code
to control lint's behavior. They are beyond the scope of this chapter. See
other lint documentation for more information on these commands.

To check a simple program for syntax errors, issue the command:

$ lint kevin.c

54 AIX: Getting Started

4.3.4 Conclusion

To check a series of files, you should first run each file through with
the -c option, which produces a .In file. After performing this operation
on each file, run lint on the result with the appropriate -1 options to
generate lint statements that reference the appropriate file. If you
don't use this method, you will get lint messages from unknown file
locations.

$ lint -c filel.c
$ lint -c file2.c
$ lint -lfilel -lfile2 filel

Each lint -c command generates a file with a .In extension which is a
lint library. This is then cross-referenced in the last command and will
produce error messages which reference the appropriate file. This is
particularly useful for makefiles since you can lint only those files that
have changed and can issue the appropriate lint command with the
correct -1 options to regenerate the executable.

The lint executable checks your C source file against a variety of data
files it uses to store standard syntax and rules. The basic files under
AIX are listed in Table 4.1.

lint is a very powerful analysis tool for C code. Use this before compila­
tion to check for inconsistencies and for syntax and run-time errors.
You can also search for unused and inefficient code before you waste

TABLE 4.1 AIX lint Standard Libraries

lint Library Name

/usr/ccs/lib/llib-lansi

/usr/ccs/lib/llib-lansi.ln

/usr/ccs/libfilib-lc

/usr/ccs/lib/llib-lc.ln

/usr/ccs/lib/llib-lcrses

/usr/ccs/lib/llib-lcrses.ln

/usr/ccs/libfilib-lm

/usr/ccs/lib/llib-lm

/usr/ccs/llib-port

/usr/ccsfilib-port.ln

/usr/ccs/xlC/lib

/var/tmp/*lint*

Contents

Declarations of standard ANSI functions (source)

Declarations of standard ANSI functions (binary)

Declarations for standard functions (source)

Declarations for standard functions (binary)

Declarations for curses functions (source)

Declarations for curses functions (binary)

Declarations for standard math functions (source)

Declarations for standard math functions (binary)

Declarations of portable functions (source)

Declarations of portable functions (binary)

Directory containing C++ libraries

Temporary files

Native AIX Software Development Tools 55

time with more sophisticated performance analysis tools. lint is one of
the most powerful tools available on the AIX platform for code analysis
and design.

4.4 prof and gprof

4.4.1 Introduction

4.4.2 Usage

Profiling consists of code analysis to understand where you are spend­
ing most of your resources, including CPU time, I/O, and memory. With
profiling tools you can study how your program behaves and where it is
using the most resources. Once you have found the "hot spots" in your
code where it spends most of its time, you can focus on fine tuning
these areas to increase the performance of your overall system.

The general profiling and application-tuning utilities available with
AIX are prof and gprof. While these tools do not offer the functionality
of many performance and profiling tools that you can purchase, they do
offer basic capabilities which will assist you in monitoring and analyz­
ing the hot spots and other problems with your code.

To take full advantage of the profiling, you must compile your code
with the -p option for use with the prof command and with -pg for use
with the gprof command. See the sections below for more details.

Profiling your code will provide information on the percentage of
time spent in each function, the number of times a particular function
was called, and the number of milliseconds spent within each function.
While the granularity of the statistics made available is not high, it
will provide you with enough information to structure your code differ­
ently if necessary.

prof usage. The basic syntax for the prof command is:

prof [-t I -c I -a I -n] [-o I -x] [-g] [-z] [-h] [-s] [-SJ [-v]
[-L path] [prog] [-m file ...]

where -t sorts by decreasing percentage of total time (default).
-c sorts by decreasing number of calls.
-a sorts by increasing symbol address.
-n sorts by symbol name.
-o displays addresses in octal.
-x displays addresses in hex.
-g includes nonglobal symbols.
-z includes all symbols, even those not referenced or executed.
-h suppresses default heading.
-s produces a summary file in mon.sum.

56 AIX: Getting Started

-S displays statistics on standard error.
-v displays output graphically on standard output.
-L path uses alternate path for shared libraries.
prog is the program to execute.
-m file takes profiling data from file instead of from mon.out.

To use prof effectively, you should first compile your codes with the -p
option and execute normally. This produces a file named mon.out by
default which contains information on that particular iteration of the
code. Once that has been run, you would issue a command like:

$ prof -t
Name %Time Seconds Cumsecs #Calls msec/call
.printf 52.0 0.02 0.02 6 2.
.main 42.0 0.02 0.04 2 1.
subl 8.0 0.01 0.05 1 1.

As you can see, it produces a decreasing listing of times spent within a
particular function call. The columns are self-explanatory and consist
of percentage of time spent in each routine, total section in each rou­
tine, accumulated time for the overall program, the number of calls
from each routine, and the milliseconds per call for each subroutine or
function. This will give you a good estimate of how much time your sys­
tem is spending in each routine as a percentage of total execution time.
You can issue the command:

$ prof -L/usr/share/lib kevin.out -Mkevin.mon

It will generate information using shared library files contained in
/usr/share/lib and will use the executable kevin.out and the monitor
data from the file kevin.mon instead of from the default mon.out.

gprof usage. The basic syntax for the gprof command is:

/usr/ucb/gprof [-bl [-e name] [-E name] [-f name] [-F name]
[-L path] [-s] [-z] [a. out [gmon. out ...]]

where -b suppresses field descriptions.
-e name suppresses graph profile entry for name and all of its

descendants.
-E name suppresses graph profile entry, time spent, and

percentage time information for name.
-fname displays graph profile entry for name and its

descendants.
-F name displays graph profile entry and time and percentage

entries for name and its descendants.

Native AIX Software Development Tools 57

-L path uses path for locating shared libraries instead of
default.

-s produces gmon.sum, which sums statistics for multiple gprof
executions.

-z displays functions that have zero execution times.
a.out is default executable name.
gmon.out is default gprof statistics file.

The basic operation of gprof is the same as prof. After compilation of
the source code with the -pg option, you invoke the resulting executable
as you normally would. This results in a file named gmon.out, which
contains information which is used by gprof. Once you have collected
the information by running your program, use a command like:

$ gprof
gprof
@(#)64 1.4 com/cmd/stat/gprof/gprof.callg, bos, bos320 7/31/91
18:48:5

COMPONENT_NAME: (CMDSTAT) gprof

FUNCTIONS: N/A

ORIGINS: 27

(C) COPYRIGHT International Business Machines Corp. 1989
All Rights Reserved

US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

call graph profile:
The sum of self and descendents is the major sort for this listing.

function entries:

index the index of the function in the call graph listing, as an aid
to locating it (see below) .

etc ...

0.00 0.00 13/13 ._doprnt [5]
[1] 0.0 0.00 0.00 13 .fwrite [1]
0.00 0.00 13/13 .memchr [2]
0.00 0.00 3/7 ._xflsbuf [3]
0.00 0.00 1/2 ._wrtchk [20]

0.00 0.00 13/13 .fwrite [1]
[2] 0 . 0 0 . 0 0 0 . 0 0 13 . memchr [2]

0.00 0.00 1/7 .fflush [22]
0.00 0.00 3/7 ._flsbuf [7]
0.00 0.00 3/7 .fwrite [1]
[3] 0. 0 0. 0 0 0. 0 0 7 . _xflsbuf [3]
0.00 0.00 7/7 .write [4]

58 AIX: Getting Started

4.4.3 Conclusion

4.5 ar

4.5.1 Introduction

etc.

@(#)65 1.4 com/cmd/stat/gprof/gprof.flat, bos, bos320 7/31/91
18:49:52

COMPONENT_NAME: (CMDSTAT) gprof

FUNCTIONS: N/A

ORIGINS: 27

(C) COPYRIGHT International Business Machines Corp. 1989
All Rights Reserved
etc.

% cumulative self self total
time seconds seconds calls ms/call ms/call name
0.0 0.00 0.00 13 0.00 0.00 .fwrite [1]
0.0 0.00 0.00 13 0.00 0.00 .memchr [2]

This will produce several outputs. The first is very similar to that pro­
duced by prof, including function times as a percentage of total execu­
tion time, number of times the functions are called, and the total
execution times of each. Times are then propagated to a call graph as
illustrated above. The second piece of output includes call graph execu­
tion times including time distribution to the descendants. Finally, cy­
cles are shown, including an entry for the cycle as a whole and a listing
of the members of the cycle and their individual cycle and call count
times. The above is a very limited presentation of the actual output of
the gprof command. Run some examples on your local machine for
more information.

prof and gprof provide basic profiling capabilities which allow for a cer­
tain level analysis of code to occur, including performance and analysis
information. By using these tools, you can better understand the execu­
tion characteristics of your code and thereby perform the appropriate
actions on it to enhance performance and any other desired charac­
teristics.

There are other commercial tools available which do far more than
prof and gprof, but these tools do provide the basics that you need to
tune your code effectively and efficiently.

The ar command is used to create and manipulate archive files. These
are libraries of files which are typically used for the link process. Files

4.5.2 Usage

Native AIX Software Development Tools 59

are created by a compiler into a format known as the object format and
can then be stored as members in an archive file. These members are
then used by the link editor to generate a final executable.

ar [c][l][o][s][v]{m [ajbj] position Ir [ajblilul position I
{djhjqjtlwlxJ) archivename [membername ...]

where c suppresses normal creation messages.
1 places temporary files in current directory instead of in

default /tmp.
o sequentially orders and compresses archive file.
s regenerates symbol table.
v is verbose mode.
m moves members within an archive:

a position-move to position following position
b position-move to position preceding position
i position-same as b position

r replaces members within an archive; a position, b position,
and i position are the same as the m option.

d deletes member from archive.
h changes modification times of members to current date and

time.
q displays contents of named members or entire archive if no

member is specified.
t displays table of contents.
w displays symbol table.
x extracts members to current directory.
archivename is the name of archive library.
membername ... is the name or names of members to be

manipulated.

The archive library consists of members generated by a compiler and
a symbol table which is used by the link editor to create an executable.
Most operations which affect members cause a regeneraton of the sym­
bol table; however, this is not always the case. See the examples below
for more information.

The basic options for the ar command must be used as described
above. You must select one of closv and one of dhqtwx. The rest are
optional and depend on the other options chosen. Keep in mind that the
options must be placed seqentially on the command line with no inter­
vening spaces.

60 AIX: Getting Started

4.5.3 Linking

4.5.4 Examples

The linking process generates a single executable file from a series of
object files generated by a compiler. Most linkage editors are contained
within the command used to invoke the compiler. For example, the cc
command by default invokes both the compiler and the linkage editor.
The same holds true for the f77 command.

When the linkage editor examines the link statement, it performs a
single pass through all referenced files and archives to generate an ex­
ecutable file. The first discovered reference is used to build the ex­
ecutable. This means that if you have multiple references to the same
member or object filename, the linkage editor will use the first. This
implies that the order of members within the archive library is impor­
tant to determine the final executable contents. Keep this in mind
when generating the archive library and using the position commands
such as m and r to move members within an archive. See the examples
below for more information. Also see Sec. 3.6 on the Id command which
describes the linkage editor in more detail.

Suffice it to say that most developers use archive libraries as func­
tion or as subprogram libraries, especially when the software systems
get large. This provides an easy way to track and maintain groups of
functions or subprograms.

These examples will assume the existence of four object files (mem­
berl.o, member2.o, member3.o, and member4.o) in a single directory.

To generate an archive library from these files, use the command:

$ ar vq members.a memberl.o member2.o member3.o member4.o

This will create an archive file named members.a which contains four
members named memberl.o through member4.o.

If the archive file members.a already exists, it will add these four
members to the end of the archive without checking for previous mem­
bers of the same member name. This is important since the linkage
editor will use the first occurrence of the member name to generate the
executable. Keep this in mind as you create more archive libraries. It is
generally not a good idea to create equivalent member names within an
archive library; however, if you know what you are doing, this can be a
powerful technique.

To view the results of your archive creation, issue the command:

$ar vt members.a
rw-r--r-- 0/0 4997 May 01 10:14 1993 memberl.o
rw-r--r-- 010 5121 May 01 10:14 1993 member2.o

Native AIX Software Development Tools 61

rw-r--r-- 0/0
rw-r--r-- 0/0

4030 May 01 10:14 1993 member3.o
10939 May 01 10:14 1993 member4.o

This generates a table of contents which is similar to ls -1.
To replace a member, use the command:

$ ar vr members.a memberl.o

You can use the positioning command to affect the order of members in
the archive. To add the contents of a modified members Lo file, you can
use the command:

$ ar vq members.a memberl.o

Note that this command creates a duplicate member. The results of the
table of contents command show the following:

$ar vt members.a
rw-r--r-- 0/0 4997 May 01 10:14 1993 memberl.o
rw-r--r-- 010 5121 May 01 10:14 1993 member2.o
rw-r--r-- 010 4030 May 01 10:14 1993 member3.o
rw-r--r-- 0/0 10939 May 01 10:14 1993 member4.o
rw-r--r-- 010 4128 May 02 10:24 1993 memberl.o

This is dangerous; however, it does provide certain functionality that
you may need. You can position files within the archive with a com­
mand like:

$ ar vma member3.o members.a member2.o

This moves the member member2.o to follow member3.o:

$ar vt members.a
rw-r--r-- 0/0 4997 May 01 10:14 1993 memberl.o
rw-r--r-- 0/0 4030 May 01 10:14 1993 member3.o
rw-r--r-- 0/0 5121 May 01 10:14 1993 member2.o
rw-r--r-- 010 10939 May 01 10:14 1993 member4.o
rw-r--r-- 0/0 4128 May 02 10:24 1993 memberl.o

This command moves the member member2.o to follow the member
member3.o. You may want to do this to place a global symbol contained
in member3.o before the same global symbol contained in member2.o.
This is related again to linkage editor resolution requirements.

To extract a member, use the command:

$ ar vx members.a member2.o

This will place the contents ofmember2.o in a file named member2.o in
the current working directory. Because of ar's use of standard I/O, you

62 AIX: Getting Started

4.5.6 Conclusion

can use redirection and piping as you would with most other AIX com­
mands.

For example, to rename the results of the above extraction to a file
named something other than member2.o, use:

$ar vx members.a member2.o > cmember2.o

This will create a file named cember2.o that contains the contents of
the member member2.o.

You can delete a member in an archive with the command:

$ ar vd members.a member4.o

As you have made changes to the archive, its structure and order
have changed. Because of the structure of the archive, it may have un­
used space and inefficiencies within itself. To reorder and compress the
archive, use the command:

$ ar vo members.a

This sequentially orders and compresses the members.a archive. This
is particularly useful after a number of delete operations since these
often don't compress the archive file as efficiently as possible.

Finally, you can use the strip command (see information on the strip
command) to remove symbol and other information, and this is related
to the ar command. You may want to strip the archive library to remove
many deleted symbols from deleted members. After you strip the ar­
chive library, rebuild the symbol tables with the command:

$ ar vs members.a

This will generate a clean up-to-date copy of the global symbols con­
tained in the members within the archive. To view the new symbol ta­
ble, use the command:

$ ar vw members.a

There are other commands related to archives such as strip and ld. See
Secs. 4. 7 and 3.6 for more details about strip and Id and more examples
of how to use archive libraries.

The ar command is a powerful command that creates and manipulates
archive libraries. These libraries can help you organize your develop-

4.6 nm

4.6.1 Introduction

Native AIX Software Development Tools 63

ment effort and control the generation of executables. There are special
provisions in make and in the linkage editor which take advantage of
archive libraries. UNIX power developers take full advantage of the ar
facility.

The nm facility generates a listing of the symbols in an object file. The
file can be a simple object file, an executable file, or an archive file.
Each symbol is preceded by a value which defines the characteristics of
the symbol itself.

There are two versions of the nm command: Berkeley and AT&T.
They use different syntax but perform the same basic tasks. Keep this
in mind and examine the manual pages for AIX.

AIX is largely a System V-based UNIX operating system and, there­
fore, the nm command follows the System V option conventions. The
syntax for nm is:

run [-Cl [-Ol [-Tl [-el [-fl [-hl [-rl [-ul [-n I -vl [-o I -d I -xl
[file ... l

where -C suppresses the mangling of C++ names.
-0 displays file or archive name with each symbol rather than

once.
-T truncates symbol names as necessary.
-e displays static and external symbols.
-f displays all symbols.
-h does not display header information.
-r displays in reverse order.
-u displays undefined symbols.
-n displays external symbols ordered by name; use with the -e

option.
-v displays external symbols ordered by value; use with the -e

option.
-o displays values in octal.
-d displays values in decimal.
-x displays values in hex.
file ... is one or more files to operate on.

An example of a simple nm command is:

% run bin/kermit I more
000227a4 d _ATT7300
000225c4 d _CERMETEK

64 AIX: Getting Started

0002277c d _CONCORD
000222f0 D _DELCMD
000225ec d _DF03
00022614 d _DFlOO
0002263c d _DF200
000222fc D _DIRCMD
00022d4c d _EXP_ALRM
000228ac d _F_reason
00022664 d _GDC
0002268c d _HAYES
000226b4 d PENRIL -
000222f4 D PWDCMD -
000226dc d _RACAL
00022304 D SPACM2 -
00022300 D SPACMD -
000222f8 D _TYPCMD
00022704 d _UNKNOWN
0002272c d _USROBOT
00022754 d _VENTEL
00022308 D _WHOCMD

The characters preceding the symbol name designate the following:

A-absolute variable

B-BSS segment symbol

D-data segment variable

T-text segment symbol

U-undefined symbol

f-file name symbol

--debugger symbol

Symbol information is sorted alphabetically by symbol.
The AIX variant of this output is slightly different but represents es­

sentially the same type of information. With the AIX variation, the
variable types and contents are generally described in a little more de­
tail. Example output might look like:

$ run transform
$ run transform I more
Symbols from transform:

Name Value Class Type Size Line Section

·~start I 512lexternl I I I .text
~start I 64Blexternl I I I .data
_adata I 216lunamexl I I I .data
TOC I 656lunamexl I I I .data
_adata I 692junamexl I I I .data
errno I 696lunamexl I I I .data

Native AIX Software Development Tools 65

The nm command is a very useful tool to understand, and it deter­
mines the scope and function of all variables in an object or executable
file. For example, when you have an executable and you would like to
understand which symbols are defined where, you can use the nm com­
mand to determine this. nm is also useful to better understand the
structure of code that exists without source code. nm provides access to
some information on the structure and content of object and executable
files. This is one of the first things you may want to do when taking a
look at someone else's code.

To display symbol sizes and values in octal and sort by value, use:

$ nm -eov kevin.out

To display external symbols, use:

$ nm -e kevin.out

4.6.2 Berkeley usage

4.6.3 Conclusion

4.7 strip

4.7.1 Introduction

AIX contains the Berkeley version of the nm command in the /usr/ucb
directory. To invoke it, type:

$ /usr/ucb/nm

See the man page for more information on the syntax of this command.

The nm command is frequently used by power users to provide infor­
mation on the structure and content of object and executable files. Both
versions of the command (Berkeley and AT&T) provide similar func­
tionality and can be used by anyone to learn more about binary files.

The strip command removes symbols and relocation information from
object files. Symbols and relocation information are placed in the ex­
ecutable for linking and debugging purposes. Many of the tools you use
to debug your code as well as to link and compile your code rely on this
information in the executable file. Once you have finished debugging,
however, you may want to remove this for a variety of reasons.

Removing this information is useful when you want to decrease the
size of your executable and remove all unnecessary information from
the binary file before using it in production mode. By doing this, you

66 AIX: Getting Started

4.7.2 Usage

4.7.3 Conclusion

shrink all resources required to run it, including memory, disk, and
CPU. This is often used by more advanced AIX developers, particularly
in real-time system development and embedded control systems where
resources are tight. It is generally used to make object files and sub­
sequent executables smaller without sacrificing performance. This is
generally used after a program has been completely debugged and is
ready for distribution and use.

The basic syntax for strip is:

strip [-V] [-r] [-1]] 1-x [-1] I [-t I -H]file

where -V displays strip version number.
-r removes all symbol table information except external and

static symbols. Does not remove relocation information.
-1 removes line number information.
-x removes symbol table information except external and static

symbols. Does remove relocation information.
-t removes symbol information except function symbols or line

number information.
file ... is one or more object code files.

Once you have compiled a file and debugged the application, you can
issue the strip command on the resultant executable to remove all sym­
bol table information and relocation bits. These are only used by the
debugger and linker and are not relevant to the execution process. This
allows you to minimize the size of your executable while not effecting
the execution of your program.

A simple example is:

$strip file.a filel.o file2.o

Once you have stripped the object files, you can link as you normally
would with a Id or some other precompiler command such as f77 or cc.

The strip command is useful when you want to minimize the size of
your executable and, therefore, minimize disk space and memory re­
quirements. You can invoke the strip functionality either with the strip
command or with the -s option on the link (Id) command. See the Id
command (Sec. 3.6) for more information.

Native AIX Software Development Tools 67

strip provides the flexibility to minimize executable size while not
affecting the execution process of your program.

4.8 The r Commands

4.8.1 Introduction

4.8.2 Usage

The r commands consist of several commands which begin with an r.
The r designates remote. These commands allow you to emulate local
commands on a remote machine. Basic examples of the r commands
are:

rsh

rep

rlogin

These commands were traditionally shipped with the Berkeley deriva­
tive of the UNIX operating system. Because of this, most versions of
UNIX, other than standard System V, came with the r commands.
These commands allow you to execute the cp, sh, and login commands
remotely without requiring a password. Because of this they are often
seen as inferior to the standard FTP and telnet sorts of operations.
However, since these commands are so widely used, they are still in­
cluded with almost every UNIX operating system shipping today.

Security and the r commands. The r commands use three files to per­
form user authentication on the remote machine. The first is the global
r security file called /etc/hosts.equiv. This file contains a global map­
ping of hostnames and usernames supported for remote access. If the
remote machines contains a /etc/hosts.equiv file which equates to the
local and remote hosts and usernames, you will be allowed access ifthe
remote machine is in the /etc/hosts file and you have an account in both
/etc/passwd files.

The basic syntax of the /etc/hosts.equiv file is:

hostname username
hostname username username

where hostname is the hostname of a particular machine on the net­
work and username is the name of a user who you want to allow access
on the local machine. For example, if you place the line:

devtech kevin

68 AIX: Getting Started

in the /etc/hosts.equiv file on a machine named ibmgod and issue a rlo­
gin, rsh, or rep command from devtech to ibmgod and you are the ac­
count kevin, you will permitted access. Note that the username
specifies that you can share usernames between machines. You can al­
low all users with entries in the /etc/passwd machine on both machines
access with the line:

devtech +

in the /etc/hosts.equiv. This says that all users with matching id's on
ibmgod and devtech will be allowed access to their exact account on the
ibmgod machine from devtech. If you placed this line in the
/etc/hosts.equiv file on ibmgod and executed the command:

$ rsh ibmgod ls

from the devtech machine, you would be logged on to ibmgod, and the
command ls would be executed on your HOME directory just as if you
had logged on and issued the ls command. Note that you must have the
same account on both machines (but not the same password), and there
must be a mapping in the /etc/hosts.equiv file for this to work correctly.

You can also allow only specific other accounts access to your account
with the r commands by placing their account names and machine spe­
cifically in the .rhosts file. An example file might be:

ibmgod root kevin
devtech kevin glen
pegasus gch psm glen

This says that the root and kevin accounts can issue the r command in
the current account from ibmgod, kevin and glen can execute com­
mands from devtech, and gch, psm and glen can execute commands
from pegasus. This allows you to pick and choose who you give "pass­
wordless" access to your account to. This is key to successfully control­
ling access to your account.

Given all of this discussion about the /etc/hosts.equiv file, it is impor­
tant to note that it is generally not a good idea to use it. The better
solution is to create a file named .rhosts in your HOME directory that
contains the mapping information exactly as described in the
/etc/hosts.equiv file but applies only to your account. This file is con­
sulted after the /etc/hosts.equiv file to see if access is allowed. The syn­
tax of the .rhosts file is exactly the same as that of /etc/hosts.equiv. For
example, if you wanted to allow access to your kevin account on
devtech from your kevin account on ibmgod, you would create the fol­
lowing $HOME/.rhosts file on devtech:

Native AIX Software Development Tools 69

ibrngod kevin

This would specifically allow the kevin account on ibmgod to access the
kevin account on devtech without requiring a password for the r com­
mands.

You can also allow others to access your account from this file by cre­
ating a .rhosts file like:

ibmgod

This will allow all users on ibmgod to access the kevin account on
devtech without requiring a password. This is obviously a bit of a secu­
rity issue and should be avoided if possible.

It is generally not a good idea to allow root to access other machines
without a password. If you place the line:

ibmgod

in the /etc/hosts.equiv or /.rhosts file on devtech, root from ibmgod now
has access to root on devtech without a password. Even if you maintain
both systems, it is generally not a good idea to do this and should be
avoided.

While there are a variety of security holes and problems associated
with this methodology, it is generally used and is exceedingly powerful
when it comes to saving time moving files and information around in a
network.

The r commands and login scripts. People often experience strange
problems with the r commands which cause rep to fail and rsh to work
intermittently. Often this is caused by something in their login
scripts issuing output to standard output. If your login scripts (.login,
.profile,.cshrc, etc.) issue output to standard output, they may confuse
the r commands and cause either intermittent or complete failure of
the r command itself. Check your login scripts and ensure that you do
not issue any reads or writes from within them, or code them such that
they check your terminal type to ensure that they are local when exe­
cuting them. If you are not local, you should not execute any I/O since
you may have problems wth your r command execution.

The rlogin command. The rlogin command allows you to log on to a re­
mote machine without typing a password. The basic syntax is:

rlogin hostname [-e character] [-1 username] [-8]

70 AIX: Getting Started

where hostname is the remote machine hostname.
-e character changes the escape character.
-1 username specifies a usemame which can be other than your

current username.
-8 establishes an 8-bit data path instead of the usual 7.

rlogin provides a virtual terminal session into a remote computer.
From this you can execute applications and run just as if you were
logged on to the remote machine directly. You can use the -1 option to
specify an account other than the matching account for your current
login id on the remote machine.

The standard escape character, unless modified with the -e flag, is
tilde(\-). This means that you can escape back to the local machine by
entering the \-. sequence. The period(.) designates that you want to
end the remote session.

The rsh command. The rsh command allows you to execute remote
commands on machines without issuing a password. Using the
/etc/hosts.equiv and .rhosts file as described above, you can transpar­
ently access and run remote commands and display the output locally.

The basic syntax of the rsh command is:

rsh hostnarne (-1 username] [-n] [command]

where hostname is the remote hostname you wish to connect to.
-1 username allows you to specify a username other than your

current one.
-n sends input to the null device (/dev/null).
command is the command to execute on the remote machine.

rsh is used to execute remote commands from the local command
line. A simple example is:

$ rsh ibmgod ls

This, as described earlier, will log you on to ibmgod with your current
userid and issue the ls command in your home directory. You can exe­
cute any command from this rsh command. Standard I/O is mapped
and appears local as you expect it to if you were executing the com­
mand locally.

A more interesting example is:

rsh -1 kevin devtech ls;echo $PATH;cat .profile

If you execute this as root (denoted by the#) from the ibmgod machine,
it will execute all three commands on the devtech machine as userid

Native AIX Software Development Tools 71

kevin. This assumes that you have specifically allowed access to root
from ibmgod access to the kevin account as described above. If you
have not allowed specific access, you will get an access denied error
message.

Note also that sometimes the -1 username option is after the host­
name. See your local system for documentation on the exact syntax for
your machine.

Another interesting example of using the r commands to make mov­
ing data between machines more interesting is the following:

$ rsh ibmgoc cat filel ">>" file2

This will append the contents of the remote file filel to the remote file
file2. Note that you must include any shell metacharacters (in this case
the >>) to prevent the shell from interpreting them.

The rep command. The rep command allows you to do a remote copy of
a file without requiring a password. The basic syntax is:

rep [-pl [-r] filel file2

where -r recursively copies any directories underneath the current one.
-p preserves the modification times and modes of the original

files.
file 1 is the file to copy from.
file2 is the file to copy to.

The syntax of the file is:

[username@]hostname:filename

where username is the name of the remote user (default is your
current userid).

hostname is the name of the remote host.
filename is the filename either fully qualified or given a relative

path from the HOME directory of the user.

Note that the username is not required and will default to your current
userid on the local machine. The colon (:) is what tells rep that you are
manipulating a remote file. This provides you with the ability to trans­
fer a file without requiring a password like FTP does. This is very com­
monly used by users of several machines in a network and is definitely
a time-saving feature of UNIX.

A simple rep command might look like:

$rep devtech:/tmp/file /tmp/file

72 AIX: Getting Started

If executed on ibmgod, this command will look for a file named /tmp/file
on the remote machine devtech and attempt to copy it to the ibmgod
machine and place it in /tmp/file. You can use a command like:

$rep devteeh:.rhosts .rhosts

which will copy the remote machine's (devtech) .rhosts file in your
HOME directory to your curent directory on your local machine.

The filename can be a directory if you wish to place the file in a direc­
tory. This is particularly useful if you are copying a group of files. A
simple example might be:

$ rep filel file2 file3 ibmgod:

This will copy three files and name them filel, file2, and file3 in your
HOME directory on ibmgod. You can use wildcards to match filenames
as your normally would with UNIX. A simple example is:

$rep devteeh:"*.txt" textfiles

Note that textfiles must be a directory. In fact, anytime you copy multi­
ple files, you must use a directory; otherwise what is the filename of
the three files? Note also that if the wildcards are to be expanded on
the remote systems, you must enclose them in quotes to prevent the
local shell from interpreting them before passing them to the r com­
mand.

A recursive copy looks like:

$ rep -r devteeh:prog prog

This will copy all files, recursively, from devtech and the subdirectory
prog to the current directory prog. Note also that symbolic links are not
supported in this environment and actual copies of the files will be
made. Therefore, if you have symbolic links in some directories which
you are copying, you will need more disk space. If you are interested in
preserving the exact structure of the data, you need to issue a com­
mand like:

$ tar evf - test I rsh devteeh tar xBf -

This will copy the current directory structure test to a remote machine
named devtech and place it in a test subdirectory in your account on
devtech. Note that this is a very powerful way of moving files around in
your network.

The final example of using r commands is used to access and control

4.8.3 Conclusion

4.9 install

4.9.1 Introduction

4.9.2 Usage

Native AIX Software Development Tools 73

remote devices. 'lb retrieve a tar file from a remote tape device on
devtech from ibmgod, you might use a command like:

$ rsh devtech dd if=/dev/rmtO obs=16b I tar xvfBb - 16

This will dump (dd) the files from the tape drive (/dev/rmtO) with a
blocking size of 16 to standard output. The tar command will take in­
put from standard input (-) and place in on the local disk in the tar
format in which it is received.

'lb copy a file to a remote tape device, you might use a command like:

$ rsh tar cvfb - 16 filel file2 groupl I rsh devtech dd of=/dev/rmtO
ibs=l6b

This will take filel and file2 files as well as the contents of the groupl
directory and place them in a tar file on the remote tape device
/dev/rmtO on the remote machine devtech.
· These kinds of tools represent the kind of tricks you can perform
with UNIX and illustrate some of the kinds of things you can do with­
out writing a single line of code.

The r commands are often used by people who want to increase their
effectiveness with AIX. Because of the security implications of using
the r commands, however, it is important that you understand exactly
what you are doing and ensure that you are not opening up security
holes in your network. Keep this in mind as you begin to look at these
tools more carefully.

The install command is used by many software packages to install into
a particular directory or set of directories. It is often used by free soft­
ware tools in the build process to place files in particular directories.
Because of this, it is included in this section so that you will under­
stand what it does later on in this book.

There are two styles of syntax for the install command:

install [-c dir) [-f dir) [-imosSJ [-M mode) [-0 owner) [-G group)
[-n dir) file [dir ...)

74 AIX: Getting Started

where -c dir installs file in dira only if it does not previously exist in
dir.

-f dir forces installation of file even if it already exists in dir.
-i ignores default directory list and uses only command line

directories.
-m moves the file instead of copying it.
-M mode specifies mode of destination file.
-o saves copy of file as OLDfile in the same directory.
-0 owner specifies a different final owner than your id.
-G group specifies a different group for the installed file.
-n dir installs file in dir if it is not in any of the searched

directories.
-s displays error messages only.
-S strips binary after installation (see strip for more

information).
file is file to be moved.
dir is directory in which to move the file.

install searches the default directories /usr/bin, /etc/ and /usr/lib in that
order for files to move unless a directory is specified in the command
line. This is the System V syntax of the install command and is what
the RS/6000 uses by default.

AIX also provides the Berkeley install command, which has the syntax:

/usr/ucb/install [-cl [-m mode] [-o owner] [-g group] [-s] file dir

where -c copies the file to dir. .
-m mode specifies the mode of the file (default 755).
-o owner specifies an owner other than your id.
-g group specifies a group other than your gid.
-s strips the file after installation.
file is file to move (or copy).
dir is destination directory.

Note that the syntax of the two commands is different. You may en­
counter problems with your installation scripts with some of the free
software. The error messages will say something about being unable to
move file dir, etc. This error message may be coming from the install
command. Check the syntax of the makefile (or Makefile) as well as the
syntax supported on your machine before you proceed.

Some very simple examples are:

$ install -c kevin /usr/bin (BSD style)

This will copy the file kevin into the /usr/bin directory. From then on
you can execute kevinjust as ifit were a system-level command.

4.9.3 Conclusion

4.10 cb

Native AIX Software Development Tools 75

The command:

$ install -c /usr/bin kevin (SYSV style)

will accomplish the same as the previous Berkeley command. Note the
difference in syntax and the problems that this may cause and beware.

The command:

$ install -i kevin /usr/local/bin, /usr/bin, /usr/kevin

will install a copy of kevin in /usr/local/bin, /usr/bin, and /usr/kevin if
the file kevin exists. Remember that install only replaces existing files
unless you use the -f dir option on the command. To force kevin into all
three directories above, you might use:

$ install -f /usr/bin -o kevin
$ install -f /usr/bin -o kevin
$ install -f /usr/bin -o kevin

Note that you must execute this command three times to place it in
three directories. Note also that the -o preserves any other kevin com­
mand in these directories and renames it OLDkevin.

There are a variety of ways you can use the install command. See
your local documentation for more details.

install is a tool which allows you to place or replace files in directories
from the command line. It provides a capability used by many make­
files to move files in and out of directories relatively transparently.
Keep this in mind as you read through this book.

4.10.1 Introduction

4.10.2 Usage

ch stands for C source beautifier and is a tool which formats C source
files into more readable formats. It is a very powerful tool which assists
the C developer in reading source code, particularly that written by
other developers.

The basic syntax for cb is:

cb [-s] [-1 length I -j] [file ...]

76 AIX: Getting Started

4.10.3 Conclusion

4.11 cflow

where -s formats the output source code according to the K&R style.
-I length splits lines longer than length characters.
-j joins split lines.
file ... is one or more input files.

ch reads from standard input or specified files and directs to stand­
ard output, so you can use the standard shell manipulation characters.
A simple example is:

$ cb test.c > newtest.c

This will generate the file newtest.c from the old file test.c.

ch is a tool which significantly enhances the readability of certain C
source files. Through the use of indentation and formatting techniques,
ch makes source files significantly more readable and understandable.
It is particularly useful for reading other developers' source files.

4.11.1 Introduction

4.11.2 Usage

cflow is a tool which generates a flow graph of external references
within a program or set of programs. You can use it to document all
external references and calls between C source programs. This is par­
ticularly useful when beginning to examine other developers' code.

The sytax for cflow is:

cflow [-dnurnber] [-Idir] [-i_] [-ip] [-ix] [-qDBCS] [-r] [-MA]
[-Uname) [-Ndnurnber) [-Nlnumber) [-Nnnurnber) [-Ntnurnber)
[-Dname[=definition)) file ...

where -dnumber sets the depth of functions to the number to which
the graph system goes.

-ldir adds dir to directory in which to search for #include files.
-i_ includes names that begin with an underline.
-ip disables ANSI function prototypes.
-ix includes static and external data symbols.
-qDBCS sets multibyte mode matching current locale.
-r produces an inverted listing.
-MA specifies that the first pass of the lint command is operated

in ANSI mode. The default is extended mode.

4.11.3 Conclusion

4.12 cxref

Native AIX Software Development Tools 77

-Uname removes the definition of the name parameter.
-Ndnumber changes the dimension table size to number. The

default is 2000.
-Nlnumber changes the number of type nodes to number. The

default is 8000.
-Nnnumber changes the symbol table size to number. The

default is 1500.
-Ntnumber changes the number of tree nodes to number. The

default is 1000.
-Dname=definition defines the name parameter; is similar to

the #define statement.
file ... specifies one or more files to analyze.

cflow works on C source, yacc, lex, assembler, and object files and
writes the results of its analysis to standard output. It actually passes
non-C source files such as yacc and lex through the compilation proc­
ess, then analyzes the resulting C source code before generating its re­
sult. It also takes the symbols from the assembler files and produces its
output.

A simple cflow example is:

$ cflow testl.c test2.c >test.output

This will produce a file test.output which contains the flow graphs of
the testl.c and test2.c files. Another simple example is:

$ cflow scan.l

This will generate a flow graph of the lex intput file scan.I on the stand­
ard output. Remember that the file scan.I is run through lex before the
cflow program analyzes the output.

The cflow command is very useful for understanding the relationship
between C and other source files in a software system. Through the
generation of flow graphs, you can quickly understand where depend­
encies and calls are created.

4.12.1 Introduction

cxref is a command which analyzes C source code files and produces a
cross-reference table containing all symbols, including those in the #de-

78 AIX: Getting Started

4.12.2 Usage

fine statements. It is a very useful tool for analyzing and debugging
unfamiliar C source code.

The syntax for cxref is:

cxref [-cl [-ofile] [-qDBCS] [-s] [-t] [-w [number]] [-Dname
[=definition]] [-Idir] [-Uname] [-Ndnumber] [-Nlnumber] [-Nnnumber]
[-Ntnumber] file ...

where -c displays the combined listing of cross-references of all input
files.

-ofile specifies file as the output file.
-qDBCS specifies the multibyte character set.
-s does not display the input file names.
-t generates 80-column-wide listing.
-wnumber generates a listing number columns wide; number

must be greater than 51.
-Dname=definition defines name as in a #define statement.
-Idir adds additional directories to search for #include files.
-Uname removes any definition of name.
-Ndnumber changes the dimension of table size to number.

Default is 2000.
-Nlnumber changes the number of type nodes to number.

Default is 8000.
-Nnnumber changes the symbol table size to number. The

default is 1500.
-Ntnumber changes the number of tree nodes to number. The

default is 1000.
file ... specifies one or more input filenames.

The only issue to watch out for is the function prototye issue. Func­
tion prototypes are handled in a special way. Old-style function decla­
ration statments are displayed simply as the function prototype name
without the optional prototype identifiers, whereas the newer ANSI­
style function prototypes are fully listed, including optional prototype
identifiers.

A simple example is:

$ cxref -c -t testl.c test2.c test3.c > test.cxref

This will generate an 80-column-wide combined cross-reference listing
in test.cxreffrom the input files testl.c, test2.c and test3.c.

4.12.3 Conclusion

4.13 tn3270

Native AIX Software Development Tools 79

cxref is a very useful command for generating a functional listing of the
separate source files making up a single software system. Use it in the
initial stages of analyzing a software system to ensure that you have a
complete understanding of how the program is functioning and where
the dependencies are before proceeding to the change phase of the
project.

4.13.1 Introduction

4.13.2 Usage

tn3270 is an application which provides 3270 terminal emulation from
a UNIX workstation. It requires no special hardware and can run with
either the tn3270 protocol over a LAN or WAN. All that is required is
that a transport such as TCP/IP be present on the connection. It is a
tool which constantly amazes people, and after using it, they wonder
why they have been buying expensive solutions that provide similar or
less functionality.

There are several freeware versions of tn3270 available from the In­
ternet; however, a reasonably good version of tn3270 comes with AIX
and, therefore, this is the one discussed in this section.

The tn3270 protocol. The tn3270 protocol is a public domain protocol
which runs above the transport layer of your network. It is approxi­
mately a layer 5 protocol in the seven-layer ISO model. It is a specifica­
tion which describes full-screen 3270 data stream emulation on a
non-3270 data stream device.

With the tn3270 protocol, you can distribute the 3270 data stream
onto LANs and WANs that are running a TCP/IP transport. tn3270
uses the standard ports for telnet to provide this service and merely
relies on the tn3270 emulation software package to be on the client end
to interpret the contents of the delivered packets, break them apart,
and transform them from 3270 to curses packets which UNIX uses to
manipulate the screen.

Most implementation of TCP/IP for mainframe support the tn3270
protocol. Certainly IBM's TCP/IP for VM and MVS provide a tn3270
data stream with no additional configuration on the mainframe re­
quired. An example of the use of this architecture is shown in Fig. 4.1.
Note that the tn3270 product does not provide any cluster controller
emulation capabilites but instead looks like a 3278 dumb terminal de­
vice. There are other products which provide these sorts of capabilities,

80 AIX: Getting Started

Figure 4.1 The tn3270 window.

and they are beyond the scope of this book. Suffice it to say that you can
use various vendor products to provide local 317x and 327x cluster con­
troller emulation capabilites, and you can use tn3270 to provide a
dumb terminal emulation in these products.

To invoke tn3270, type the command:

$ tn3270 [-d] [-n filename] [-e termtype] [hostname [port]]

where -d turns on socket-level tracing.
-n filename is the file to receive tracing information; default is

stderror.
-e termtype specifies a terminal type to emulate.
hostname is the hostname of the remote system.
port is used to specify a port other than the standard port.

When you invoke tn3270, a negotiation takes place between your ter­
minal and the mainframe which establishes your terminal charac­
teristics. The tn3270 application looks at your TERM variable and
establishes things such as rows, columns, and keyboard mappings. In
all cases the terminal looks like a 3278 to the mainframe, and the nego­
tiation determines which model within the 3278 family is emulated.

tn3270 uses curses to map keyboard ASCII sequences to the signals

Native AIX Software Development Tools 81

the mainframe is expecting. There is a default file which describes the
mapping of all keys on the keyboard to keys and actions expected on
the mainframe. /etc/map3270 contains example codes and mappings
for the tn3270 product. This describes the default characteristics of the
terminal emulation if you make no changes. You can also create your
own mapping file named $HOME/.3270keys which contains informa­
tion in a similar format to /etc/map3270 but allows you to define your
own key mappings. In addition, tn3270 looks for an environmental
variable MAP3270 to define the mapping file. Use this to point to your
own defined key mapping files.

Modes of operation. There are two modes of operation with tn3270.
One is command mode, which gives you a prompt tn3270> (the other is
full-screen mode). From here you can issue tn3270 commands which
control most aspects of your tn3270 session. A key command is the
help. Type:

tn3270> help

Commands may be abbreviated. Commands are:

close

display

emulate

mode

open

quit

send

set

status

toggle

z

?

Closes current connection

Displays operating parameters

Emulates a vtlOO or 3270 terminal

Tries to enter line-by-line or character-at-a-time mode

Connects to a site

Exits telnet

Transmits special characters ('send?' for more)

Sets operating parameters ('set?' for more)

Prints status information

Toggles operating parameters ('toggle?' for more)

Suspends telnet

Prints help information

This is a listing of the commands available within the tn3270 command
mode. Note that these are very similar to the standard telnet com­
mands.

If you don't include a hostname on the tn3270 line, you will be placed
in command mode. To open a connection to a remote machine using the
3270 data stream issue the command:

tn3270>open hostname

This will connect you to the remote host, negotiate a session and termi­
nal characteristics, and put you at the login screen just as if you were

82 AIX: Getting Started

sitting on a 3270 data stream full-screen terminal. You are now in full­
screen emulation mode. From this mode you can execute all commands
you normally would from a full-screen 3278-style terminal. A mapping
has occurred, as is discussed in the following section.

You can move from full-screen emulation mode to command mode by
typing CTRL-C. This will take you to a tn3270> prompt where you can
issue command mode commands as you normally would. 'lb return to
full-screen mode, type <return> on a blank line. While you are in com­
mand mode, the full-screen session is merely suspended. When you
reenter the full-screen session, you should return to your previous full­
screen state.

There are many commands within the command mode for tn3270. In
fact, the full set for telnet is supported. You can use quit and open to
quit and open new connections to other machines as well as use a vari­
ety of other commands from with tn3270 to control your environment.
Use the interactive help for more information on which commands may
be useful to you.

Terminal emulation issues. The best way to use the tn3270 tool is
through Xll. Simply move into a terminal shell window on your local
machines and invoke the tn3270 exactly as described above. The emu­
lation will be taken care of by your machine.

It gets more interesting, however, when you are accessing a tn3270
server remotely. In other words, the tn3270 application runs on a node
other than your local one. There are two ways to use the tn3270 prod­
uct effectively on a remote station. The first is to use the Xll capability
and the xterm terminal emulator to provide remote support:

$ TERM=vtlOO;export TERM /* export the TERM variable as a standard
vtlOO */
$ telnet rernotehost /* go to the remote machine which is running
tn3270 */
login
$ /usr/lpp/Xll/bin/xterm -display localhost:O
/*this pops up an xterm window on your local display ... select this
window to make it active*/
$ tn3270
/*now you have invoked the tn3270 and used the X11 server to provide
terminal emulation*/

The second way is to set both the local TERM and remote TERM to
vtlOO and use the existing window:

$ TERM=vtlOO;export TERM
$ telnet remotehost
login
$ TERM=vtlOO;export TERM
$ tn3270

Native AIX Software Development Tools 83

Note that both solutions work, but the first is more elegant in terms of
full-screen terminal emulation and support for windowing functions.
You could, and probably should, set up a rsh-type command to invoke
the shell from a remote machine. For example:

$ rsh remotehost -1 usename /usr/lpp/Xll/bin/xterm
$ tn3270 /* from within the newly created window */

Keyboard mapping issues. As discussed earlier, when tn3270 is in­
voked, it looks first for a file $HOME/.3270keys and then for a file
/etc/map3270. These files contain the default keyboard mappings for
tn3270. There is a manual page on map3270 that gives more informa­
tion on the exact structure of the keyboard mapping files. See this and
below for more information.

To avoid having to scan the /etc/map3270 file every time tn3270 is
invoked, you can set the environmental variable MAP3270, which is
read before tn3270 scans the /etc/map3270 file. MAP3270 conains
either a fully qualified path (beginning with a/) which points to a file
which contains the keyboard mappings for your particular terminal or
contains actual keyboard charactersitics and key mappings. The
tn3270 tool scans the string contained in MAP3270. If it begins with a
I, it looks for a file with a name matching the string which contains the
mappings. If the MAP3270 variable does not begin with a/, the tn3270
uses the mappings contained within the MAP3270 variable itself to es­
tablish mappings for your session.

The /etc/map3270 file is a database file which contains a listing of
terminal types and corresponding keyboard mappings. The final step
in building tn3270 is to move a copy of this file to the /etc directory.
Now let's take a look at the structure of the map3270 file. There are
many terminal types represented in the map3270 database. The vtlOO
section looks as follows:

vtlOO I vtlOOnam I ptlOO [vtl25 I vtl02 I direct831 I tek4125 I
pcplot I microvax{ enter = 'Am'; clear = 'Az' I '\EOM';

nl = 'A?'; tab= 'Ai'; btab = 'Ab'; left = 'Ah' I '\EOD'; right
= 'Al' ['\EOC'; up 'Ak' ['\EOA'; down = 'Aj' I '\EOE'; home
'\EOn';

delete = 'Ad'; eeof = 'Ae'; einp = 'Aw'; insrt = 'A ' I '\E ';

#pf keys pfkl = '\EOq' I '\El'; pfk2 = '\EOr' I '\E2'; pfk3
= '\EOs' I '\E3'; pfk4 = '\EOt' I '\E4'; pfk5 = '\EOu' I '\ES'; pfk6
= '\EOv' I '\E6'; pfk7 = '\EOw' I '\E7'; pfk8 = '\EOx' I '\EB'; pfk9
= '\EOy' I '\E9'; pfklO = '\EOP\EOp' I '\EO'; pfkll = '\EOP\EOq'
'\E-'; pfk12 = '\EOP\EOr' I '\E='; pfk13 = '\EOP\EOs' I 'Af13';
pfk14 = '\EOP\EOt' I 'Af14'; pfk15 = '\EOP\EOu' I 'Afl5'; pfk16

'\EOP\EOv' I 'Af16'; pfk17 '\EOP\EOw' I 'Afl7'; pfk18
'\EOP\EOx' I 'Afl8'; pfk19 '\EOP\EOy' I 'Afl9'; pfk20

= '\EOQ\EOp' I 'Af20'; pfk21 = '\EOQ\EOq' I 'Af21';

84 AIX: Getting Started

program attention keys pal
'Ap2';

local control keys

'\E\EOP' I 'Apl' ; pa2 '\E\EOQ' I

escape = 'Ac';# escape to telnet command mode master_reset 'Ag';
centsign = 'A\';

local editing keys settab = '\E; '; deltab
= '\E\' '; clrtab = '\E: '; setmrg = '\E, '; sethom = '\E. '; coltab
= '\E\E[B'; colbak = '\E\E[A'; indent = '\E\E[C'; undent = '\E\E[D';
} # end of vtlOO,
etc. sun {

The first line describes all terminal types supported by the following
definitions. The next fields describe characteristics of the ENTER key,
CLEAR SCREEN key, newline (nl), TAB, and cursor movement keys.
The sections entitled pf keys describes how the traditional PF keys are
mapped. The vertical bar denotes options that perform the same task.
The following characters are also special:

'IE'

'/n'

'It'

'Ir'

ESC
Newline

TAB

Carriage Return

CRTL

So, if you want to understand how to execute a PFl as you would from
a normal 3278-style terminal to access a help function, you would type:

ESCAPE 1

In general, the PF keys are mapped with an ESC and the associated
numberic key across the top of the keyboard. Note that you should
avoid using the keypad since this may be mapped to something else. To
generate an interrupt (PA2), you would type:

Control-P 2

Again CRTL-C takes you back to command mode. You can create your
own terminal definitions and map the keys appropriately and simply
include it in this file. The map3270 manual page contains a very nice
description of all functions supported and mapped by the map2370 da­
tabase. See this for more information.The most commonly used keys
are (remember " is CRTL):

CLEAR
ATTN

ENTER

RESET

4.13.3 Conclusion

Native AIX Software Development Tools 85

PFl ESC 1

PF2 ESC2

... etc ...

PF13 ESC!

PF14 ESC@

... etc ...

AU ERASE

If you have problems with the terminal emulation and keyboard
mappings, take a look at the termcap database for a listing of sup­
ported ASCII terminals. This should not be necessary since most ASCII
terminals support the vtlOO emulation, and this should provide rea­
sonable emulation for you. However, if you have a keyboard which has
special keys that you would like to use, consult the termcap and ter­
minfo databases for more information.

This kind of tool will allow you to dial in from home with a dumb termi­
nal or PC running ASCII full-screen emulation (vtlOO or something
similar) and log on to a full-screen 3270 environment. This same tool
will allow you to access a full-screen 3270 environment from any work­
station on any LAN that is connected to the 3270 environment.

5.1 Introduction

5.2 awk

5.2.1 Introduction

Chapter

5
Native AIX Software Development

Scripting Tools

While Chap. 4 focused on native UNIX tools which provided functional­
ity based on command sets and syntax, this chapter focuses on native
tools which provide scripting and development capabilities well beyond
those described in Chap. 4. The tools described in this chapter are very
flexible and powerful ones to use to develop applications and tools on
your own.

awk is an interactive programming language which provides signi­
ficant function similar to a fourth-generation language in common
business nomenclature. awk provides pattern recognition and manipu­
lation capabilities. It is typically used to manipulate large pieces of text
without actually having to modify or even edit the file. It is a very pow­
erful tool and one that is certainly underutilized on most AIX comput­
ers. The name awk says much about AIX and the way in which it was
developed. awk stands for the last names of each of the authors: Alfred
Aho, Peter Weinberger, and Brian Kernighan. Modesty has never been
a characteristic of most UNIX developers.

awk is really a programming language all by itself. It is one of the
most powerful pattern recognition and manipulations languages avail­
able on AIX. It is a language which is C-like in syntax but is optimized
to search files for strings and perform subsequent operations on these

87

88 AIX: Getting Started

5.2.2 Usage

input lines. It uses ed commands to search for regular expressions in
strings within files and performs a specified action on them. While this
chapter cannot begin to describe all the features and functions of awk,
it does present the main areas of functionality and provides enough in­
formation to allow you to decide whether you should look into awk in
more detail.

awk is invoked as follows:

awk [-Fx] -f program [filel file2 ...]

where -Fx allows you to specify a separator x other than whitespace.
-fprogram specifies a file which contains the awk commands.
[filel file2 ...]contains a list of input files separated by blanks.

awk contains many of the features you would find in third-generation
languages such as conditional branching, looping, string and arithme­
tic variables, and output format statements. It also contains things
that you don't see in most languages such as transparent typing of
variables and very flexible syntax. This allows you to code very power­
ful awk programs without being concerned with variable typing, defini­
tion, and manipulation.

The awk program represented by the -f program in the awk com­
mand syntax contains the following general syntax:

pattern command {action}

where pattern command is an ed command which provides for string
searching and manipulation, and the action part consists ofC-like com­
mands which perform actions on the output of the pattern command.
awk performs all actions on all lines selected by the pattern part of the
awk program. The best way to understand this is to take the example
input file called datal:

lcoll lcol2
2coll 2col2
3coll 3col2
4coll 4col2

This corresponds to the file part of the awk command. In other words,
this will be the file that awk performs its program against. Let's also
assume that we have a program called awkl which looks like:

/3coll/ {print $1, $2)

Native AIX Software Development Scripting Tools 89

To invoke this program against the above file, you would type:

$ awk -f awkl datal
3coll 3col2

The output of that command is 3coll 3col2. awk first looked at the file
awkl for a pattern or ed command to use when examining the file
datal. The /3coll/ command is the ed command to search for the string
3coll. awk performed the search and action pair on each line in the
input file. In other words, it scanned line 1 and didn't find a match. It
scanned line 2 and didn't find a match. It scanned line 3 and did find a
match. It then applied the action print $1, $2 (more about this later) to
this line and produced the output shown below the awk command. Fi­
nally, it scanned line 4 and didn't find a match. Once it reached the end
of the datal file, awk exited. This basic model holds true for all awk
invocations; however, the awk program (awkl) can get much more pow­
erful.

You can also execute the awk command functions from the command
line by surrounding them with single quotes to prevent shell interpre­
tation. For example, to execute the above awk commands without us­
ing the awkl file, type:

$ awk '/3coll/ {print $1,$2}'
3coll 3col

If you place several files separated by blanks on the awk command line,
awk will process one line at a time and step sequentially through each
file on the command line. If you choose to use standard input, use a -.
For example:

$ awk -f awkl -
lcoll lcol2
2coll 2col2
3coll 3col2
3coll 3col2
4coll 4col2

Note that as you type each line in, awk processes it and presents the
results to standard out. In this case the awkl program searched for
3coll and thus matched the third line.

The awk language. The awk language is a very powerful one which con­
sists of most functions you would expect within a procedural language.
Patterns can be ed commands that match patterns within the data files
and regular expressions as well. The regular expressions consist of ob­
jects and operators. awk statements can combine both string and arith-

90 AIX: Getting Started

metic operations in the same statement. Statements are terminated by
NEWLINE or a semicolon. Also, just as in C, awk treats all statements
within curly braces as a single statement. This allows you to nest state­
ments under conditional branches just as you would with most other
procedural languages.

Looping and conditional statements. The if conditional statement looks
like:

if (condition) [{ statement }]

If you have a single statement, the curly braces are unnecessary. How­
ever, if you have more than a single statement, you must enclose them
in curly braces to ensure that all are executed under the condition. For
example:

{if (i<lO)
print i
++i }

Note that the outside curly braces are necessary to denote that this is
the action part of the awk statement while the inner braces are neces­
sary to group the two statements together under the conditional state­
ment. If you do not include a statement, the default action {print} is
performed. This merely performs a print of the entire matched line.

There is also a while loop which looks like:

while(condition) [{] condition [}]

where the condition is similar to the if conditional, and the curly braces
must be used to contain more than one statement if you want them
treated as one statement group under the while command.

There is a do loop in nawk (see the nawk section below for more in­
formation on nawk). It looks like:

do [{] action [}] while (condition)

Finally, there is a for statement which looks like:

for (initcounter;test;increment) action

where initcounter sets the initial value for a loop counter.
test is the condition that is tested.
increment is the number to increment initcounter each time.

An example is in the examples section.

Native AIX Software Development Scripting Tools 91

There are two other commands that affect command execution and
flow:

break

continue

Breaks completely out of a loop and begins at first line outside ofloop

Begins at top ofloop in next iteration ofloop itself

Besides string manipulation, numeric operations are fully suported by
awk. The standard arithmetic statements supported are:

Assignment

< Less than

> Greater than

++ Increment by one

Decrement by one

Divide

* Multiply

+ Add

Subtract

+= Add expression following operator to variable preceding it

Subtracts expression following operator to variable preceding it

All numbers are converted to floating point before being manipulated,
which eases a lot of problems you normally experience when program­
ming. There are also relational operators supported by awk which al­
low for comparisons within the condition section of the statement. The
primary relational operators supported by awk are:

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Equal to

!= Not equal to

Matches

-! Does not match

You can also separate multiple patterns with boolean operators such
as:

&& AND

II OR
Range

See the examples for more discussion of the boolean operators.
Variables do not need to be initialized. This allows you to set the

value of a variable without declaring it. For example:

92 AIX: Getting Started

s = 3

assigns the value of 3 to the variable s. It is not necessary to declare s
anywhere else in the awk program. There are several special variables
which are predefined:

$0

$1-$n

FILENAME

FS

NF

NR

OFS

ORS

RS

Current record

Fields in the current record

Name of current data file

Input field separator (default space)

Number of fields in current record

Number of current record

Output field separator (default space)

Output record separator (default NEWLINE)

Input record separator (default space)

Several of these can be changed either by invocation switches (-F) or
within the awk program.

There are are also standard string functions which are supported by
awk:

index (stringl, string2} Returns index ofstring2 in string!

length [(string}] Returns the length of string; without an argument re-
turns line length

split (string, arr, del} Places elements of string, delimited by del in array arr[]

sprintf (fmt, args} Defines formatted output args in format defined by fmt

subs tr (string, pos, length} Returns string that begins at pos and is length charac-
ters long

All string functions act like their C language equivalents. See help on
sprintf or other functions for more details about exact syntax and us­
age. See also some examples of function usage.

Finally, there are arithmetic operators in awk:

cos(x)

sin(x)

int(x)

log(x)

sqrt(x)

It is rare that you will need functions like these, but it is nice to know
they are there.

BEGIN and END functions. You can structure special clauses, before
and after the actual awk program, which are executed before and after
the awk program reads the data input file. For example:

Native AIX Software Development Scripting Tools 93

BEGIN {
print "this is the beginning ... "
}

{

awk program commands ...
}

END {
print "all done now ... "
}

The BEGIN and END clauses can do computations based on numbers
generated in the main body of the awk program. A classic example of
using the END function is to calculate the sum and mean of a set of
numbers in a column.

m += $1
n++

END {
print "mean is" ,rn/n, "number of items is" ,n
}

Remember that the END is processed after all lines are read. This
makes end perfect to perform numerical calculations on an entire set of
numbers. You can use this much as you would a spreadsheet to perform
calculations on columns of numbers.

Errors. awk is notorious for ignoring errors and simply producing gar­
bage output. You have to be extremely careful when structuring and
coding your awk program. This is why it is almost always recom­
mended to create an awk command file instead of using the command
line since this will allow you to change and iterate your program sever­
als times to eliminate all possible errors. When you place the awk com­
mands on the command line, you run the risk of the shell command
interpreter doing something to them before routing them to the awk
command. While there is nothing wrong with using the command line,
experience dictates that the awk command file is a better way to go. In
the interests of space, this book uses most examples on the command
line; however, this is not an endorsement of this technique.

Passing parameters into a script. You can pass variables into awk pro­
grams by placing assignment statements between the script and data
file name. For example:

$ awk -f awkl varl=l var2=2 datal

Note that the varl and var2 statements must not contain spaces. Once
you have invoked the awkl script, the variables varl and var2 are ac-

94 AIX: Getting Started

cessible to the script itself. For example, if you invoked awkl as above
and awkl looked like:

{print varl, var2}

Your output would be:

1 2
1 2
1 2
1 2

Remember that each line is processed and the command executed.
Note that command line parameters are not available to the BEGIN

section of the awk program. With nawk, there is a -v option that allows
for command line parameters to be available to the BEGIN procedure
through the ARGC and ARGV parameters (similar to argc and argv in
C).

Arrays. In awk, all arrays are associative. This means that the array
index can be a string or number. Arrays look like:

array[index] = value

where index represents a position within the array.
value assigns the value to array[index].

The structure to access and loop through this array structure is:

for (elem in array) action

where elem is the variable that takes on value of each array element.
array is the array name.
action is the action taken for each element in array.

Some examples. There are almost an infinite number of possible ex­
amples for awk. Below are some examples which illustrate some of its
uses. Let's use the same data file as before (datal):

lcoll lcol2
2coll 2col2
3coll 3col2
4coll 4col2

Example 1

$ awk '/l/' datal
lcoll lcol2

Native AIX Software Development Scripting Tools 95

This uses the default action of printing the entire line.

Example2

$ awk '$1 -/1/' datal
lcoll lcol2
2coll 2col2
3coll 3col2
4coll 4col2

Example 3. Example 2 matches all ls in the first column (-) and per­
forms the default action (print). If you want to check for all matching
strings which begin with a 1, use:

awk '$1 -/Al/' datal
lcoll lcol2

Example4

$ awk '$1 == 2coll' datal
2coll 2col2

This example uses a boolean operator to compare the first column ($!)
with the string 2coll. Remember that you can use any regular expres­
sion.

Example 5. You can combine any number of functions and regular ex­
pressions to accomplish what you want:

$ awk 'length> 11 {print NR}' datal

This will scan the datal file for lines longer than 11 characters. Note
that the length function returns the length of the entire line including
separators:

$ awk '{print length}' datal
11
11
11
11

Example &. To print out the middle two lines, you could use:

$ awk 'NR == 2, NR == 3 {print}' datal
2coll 2col2
3coll 3col2

Note that the print command is redundant since this is the default ac­
tion.

96 AIX: Getting Started

Example 7. You can also redefine variables and fields on the fly before
output. For example, create an awk file called rename as shown below:

BEGIN {
print "Changing stuff ... here we go ... "

if ($2 -/2col2/) $2 = "2column2"
}
END

print "Hope you're satisfied now ... "
}

Still operating on datal, you would see:

$ awk -f rename datal
2coll 2column2

Example 8. To see some examples oflooping commands with flow con­
trol commands, use:

for (i=l;i<2;++i)
if ($i == "2col2")
print i, $i
break
}

This example will loop through an input file looking at the first two
fields until it finds a column match for 2col2; it then prints out the
value of i and the column at i and breaks out of the loop.

Example 9. This example scans the passwd file for accounts without
passwords and users with duplicate user id's. It demonstrates many of
the features available in awk. (This example is taken from A Practical
Guide to the UNIX System, by Mark G. Sobell, Benjamin/Cummings,
1989.)

awk < /etc/passwd ' BEGIN{
uid[void] = " " #tell awk that uid is an array
}

{ # no pattern indicates process all records
dup = 0
split($0,field,":") #split fields delimited by:
if (field[2] == "") #check for null password field
{

else

if (field [5] == "") #check for null info field
{

print field[l] "has no password"
}

print field[l] " (" field[5] ") has no password"
}

Native AIX Software Development Scripting Tools 97

for (name in uid) == field[3] #loop through uid array
{

if (uid[name] == field[3]) #check for 2nd use of id
{

print field[l] "has the same UID as "\
name " : UID = " uid [name]
dup = 1 #set duplicate flag
}

if (!dup) #same as if (dup==O)
{

} '

uid[field[l]] = field[3]
}

There are many things to note about the above file including com­
ments, standard input redirection, and arrays. See awk help and books
such as the O'Reilly and Associates Nutshell books for more informa­
ton. Generate a sample file in the structure of a standard password file
and try the above program out for yourself. Note that you invoke it by
simply typing its name. This is a complete awk invocation in itself. For
example, ifthe file is named checkpasswd, simply type:

$ checkpasswd

to run this awk program.

nawk. nawk stands for new awk and was released with SVR3. Many
UNIX machines treat awk as nawk and don't tell you. nawk contains a
richer set of commands and functions. Some of the newer functions are:

Multidimensional arrays

ARGV and ARGC system variables

Arithmetic functions such as atan2, rand, srand

String substitution commands such as sub and gsub

Writing your own functions

System access via the system() call

Again, it should be said that many of these functions have been inte­
grated into awk as awk has been replaced by nawk. However, you will
still find awk out there, and you should be careful how you code your
awk scripts if portability is an issue. Perhaps GNU's awk (gawk) may
be of interest if you are concerned about portability.

gawk. This is GNU's version of awk. It contains functions not in awk
or nawk and runs on almost all platforms running today. See Sec. 7.11

98 AIX: Getting Started

in this book as well as the software included on the accompanying CD
for more information about gawk.

awkcc. awkcc is a utility which converts awk programs to C programs
which can then be compiled and executed. Because awk is an inter­
preted language, it is slow and relatively clumsy when it comes to exe­
cution and performance. The awkcc program is available from the
AT&T System Toolchest. Call AT&T for more information.

5.2.3 awk changes in AIX 4.1

5.2.4 Conclusion

5.3 sed

5.3.1 Introduction

There are some minor changes to awk in AIX 4.1 which need to be men­
tioned here. They are:

1. First, the usage message will be issued and a nonzero value will be
returned when invalid flags are specified.

2. awk now counts comment lines once instead of twice.

3. Variable assignments to the BEGIN procedure are no longer avail­
able from the command line. In AIX 4.1, they must be made using
the -v variable=value option before the -f file commands option is
specified on the command line. This is in conformance to XPG4 and
POSIX specifications.

awk is a very powerful language for file and string manipulation. Its
strengths occur when data is formatted in such a way that it can be
manipulated by column. You can treat data as type independent and
awk will behave as you would expect most of the time. Spend some
time with awk and you will begin to see some of its power. If you are
interested in the GNU version of awk, see Sec. 7.11. This has the ad­
vantage of being the same awk on all platforms in your environment,
while awk can vary from UNIX to UNIX implementation.

sed is an acronym for stream editor. It interprets scripts written in sed
format. It supports the basic functions of ed while having an interac­
tive capability of grep. ed reads in one line at a time and performs a sed
command against it, it then reads in the next line, and so on. If there is
a match in the current line, the substitution is made and the resulting

5.3.2 Usage

Native AIX Software Development Scripting Tools 99

line printed out. If there is no match, the current line is printed out
unchanged.

sed is most often used to perform substitutions in medium- and
large-size files. Because of the ability to act on one line at a time, you
can alter very large files without invoking an editor or worrying about
memory or disk space requirements. Many editors, including vi and ed,
read a file from the disk into virtual memory and create a temporary or
working file. This essentially doubles the disk space required and may
cause problems when working with large files. sed helps you avoid this,
and many AIX developers use sed for just this reason.

The syntax for the sed command is:

sed [-n] [-e sedcomrnand[-e sedcomrnand ...]] [-f scriptfile] [filelist]

or:

sed "sed comrnand(s)" [filelistl

where -n means no print; sed does not copy files to stdout except as
specified by the p command.

-e sedcommand allows you to enter multiple sed commands on
the command line without having to create a file.

-f scriptfile specifies a sed command script.
filelist is a list of files separated by blanks to be processed; if

filelist is not specified, standard input (stdin) is used,
which means the keyboard.

Simple, short sed commands are usually entered on the command line,
while more complex and lengthy sed scripts are typically invoked from
a file containing multiple sed commands.

The sed command uses standard ed commands and performs substi­
tutions that you would normally expect to enter within an editor. For
example, examine the file named file.text below:

john is great
pete is good
gerard is cranky
sam is bad
joe is good
frank is frank, what can you say

If you wanted to change a simple string within the above file, you could
issue the command:

100 AIX: Getting Started

$ sed "s/john/kevin/" file.txt

The resultant output would be:

kevin is great
pete is good
gerard is cranky
sam is bad
joe is good
frank is frank, what can you say

The above command substitutes the first occurrence of jim in every line
with kevin. To substitute for good, you would use:

$ sed "s/good/okay/" file.txt

The resulting output is:

kevin is great
pete is okay
gerard is cranky
sam is bad
joe is okay
frank is frank, what can you say

You can issue all of the commands in the ed editor such as deletes,
copies, moves, and include lines numbers for ranges. For example:

$ sed "l,3s/is/is not/" file.txt

kevin is not great
pete is not okay
gerard is not cranky
sam is bad
joe is okay
frank is frank, what can you say

Finally, if you want to replace multiple instances on the same line, you
would use the /g switch as follows:

sed "s/frank/kevin/g" file.txt

john is great
pete is good
gerard is cranky
sam is bad
joe is good
kevin is kevin, what can you say

If you had not included the /g option (for global), it would have only
substituted kevin for the first occurrence of frank, and the subsequent
line would have been:

Native AIX Software Development Scripting Tools 101

kevin is frank, what can you say

Note that the sed command is included in double quotes to prevent the
shell from interpreting the contents before passing it to the sed ex­
ecutable. This is a common requirement in UNIX since the shells like
the C shell and Bourne shell parse and process all command line infor­
mation before passing it to any commands or utilities. To ensure no
shell preprocessing, simply include any information in double quotes.

sed scripts. sed command files typically consist of lines of the follow­
ing format:

[address[,address]] instruction [arguments]

where address consists ofline numbers (and special characters such as
$ and 11.) separated by commands to denote a range.

instruction is an editing instruction that modifies the text.
arguments are commands dependent on the instruction; see ed

syntax for more information.

You can include all sed commands in a file and invoke the file from
the command line to provide the sed commands. For example, the sed
input file (named sed.input) might look like:

s/oldstring/newstring/
/newstring/d

The example data file called file.data looks like:

this contains oldstring
this doesn't contain oldstring
this contains oldstring
this doesn't contain oldstring

To invoke the sed script file on the above data file, you would type:

$ sed -f sed.input file.data
this doesn't contain oldstring
this doesn't contain oldstring

To understand what sed did in this context, you must understand how
sed processes sed scripts and input data files. sed first reads in the first
line of data.file and processes the entire sed script file against this line
before moving to the second line of file.data. This means that sed reads
in the first line:

this contains oldstring

102 AIX: Getting Started

and performs a string substitution resulting in the string:

this contains newstring

It then performs the next command in the sed script file, which deletes
the line which contains the string newstring, which this line does. It
deletes the line. sed has reached the end of the sed script file and reads
the next line in the input file file.data. It then replicates the above pro­
cedure; however, because there is no string substitution, the line is not
deleted. The line is printed out and sed moves to the next line in the
intput file. This occurs for all lines in the input data file.

The above discussion may concern you; if it doesn't it should. It is
often very difficult to predict exactly what is going to happen when you
apply multiple edits to a file with sed. Because of this, sed has the ad­
ditional safeguard of writing the resultant lines to standard output and
not to the original input file. If you want to write the resultant output
to a file, you simply redirect standard output as you would with any
other command:

$ sed "s/oldstring/newstring/" file.txt > newfile.txt

This will generate a file called newfile.txt with the resultant output. It
is a good idea, however, to first save a copy of the file you are modifying
before performing a sed on it since this will ensure you get the results
you are expecting. If you have a backup copy, you can always recover
from a mistake, but if you don't

Basic sed commands. Some of the basic sed commands are:

a

c

d

i

1

Appends one or more lines to the current line. Append has a special for­
mat:

[address] a\
text\
text\
text

where the address must consist of a single number or defaults to the en­
tire file, and the insertion text must be continued with backslashes (see
examples).

This is a comment line and must occur on the the first line only; the com­
ment can be continued onto the next line with a backslash.

Changes selected lines and replaces them with new text.

Deletes the current line. Note that this causes sed to read the next line in
the input data file when it is done processing the line even if there are
other sed commands in the sed script file.

Insert is exactly the same as append except that it places the insertion
text on a line before the current line instead of appending onto the current
line.
Lists nonprintable characters as their ASCII code equivalents.

n

p

q

r

s

t

w

Native AIX Software Development Scripting Tools 103

Next reads the next input line from the input data file. It also writes out
the current line.

Prints current line as is with no future changes caused by sed script com­
mands.

Quits processing in sed.

Reads the contents of a specified file and appends to the current line.

Substitute works exactly as in ed and vi; see examples above and below.

Transforms a character in a given position to another (see transform sec­
tion).

Writes output to a specified file.

Blank lines and spaces. A useful example is the following:

$ sed •/A$/d" file.txt

This will remove all blank lines in the file named file. txt. The A repre­
sents the beginning of the line, and the $ represents the end. The lack
of address means that this command will act on all lines, and the d
means delete any lines that match the pattern of a blank line.

Note that, just as in ed, blank spaces within substitute strings are
honored. For example, to remove a leading blank on each line, you
could use the command:

$ sed "s/ //" file.txt

This would remove the first blank on each line in the file file.txt.

More about addresses. It is important to note that, just as in ed, sed
can use strings matches as addresses. For example, if you have the fol­
lowing input file named input.dat:

this is stuff before the .include macro
blah blah blah
.include
this is an include part of the file because
it is in the include macro section contained by a .include directive
and a ..

this is other stuff not related to the include macro section
blah blah blah ...

you can print out the include macro section with the command:

$ sed -n "/A\.include/,/A\.\./p" input.dat
.include
this is an include part of the file because
it is in the include macro section contained by a .include directive
and a

104 AIX: Getting Started

Note that the first address is derived by the resultant match of the .in­
clude macro and the last address to close the range is derived by the
match of ... Note also that the .s must be backslashed(\), which escapes
them from the sed interpreter and ensures that they are interpreted
literally.

Append, change, and insert. The append, change, and insert commands
all have a similar syntax:

append [line]a\
text\
text

change [line,line]c\
text\
text

insert [line]i\
text\
text

where the text to be appended, changed, or inserted ends in a line with­
out a backslash. Note also that the line cannot be a range of lines but
must be a single line for both append and insert, while the change com­
mand can accept a range of lines.

Insert inserts any text before the line is matched. Append appends
text to the end of the line matched in the line statement. Finally,
change outputs the text once and deletes all lines in the range specified
in the command.

An example data file called file.data might look something like:

root:S9KIMi9QQ4f8U:O:l:Operator:/:/bin/csh
nobody:*:65534:65534::/:
daemon:*:l:l::/:
sys:*:2:2::/:/bin/csh
bin:*:3:3::/bin:
uucp:*:4:8: :/var/spool/uucppublic:
news:*:6:6: :/var/spool/news:/bin/csh

You can use the insert command to insert information before the lines
to be processed. An example sed script (sample.sed) might look like:

li\
This is the Password File for this Machine

You would get:

$ sed -f sample.sed data.input

This is the Password File for this Machine
root:S9KIMi9QQ4f8U:O:l:Operator:/:/bin/csh

Native AIX Software Development Scripting Tools 105

nobody:*:6SS34:6SS34: :/:
daemon:*:l:l: :/:
sys:*:2:2::/:/bin/csh
bin:*:3:3::/bin:
uucp:*:4:8: :/var/spool/uucppublic:
news:*:6:6: :/var/spool/news:/bin/csh

Transform. Transform is structured as follows:

[address]y/abc/xyz/

where the replacement is made character by character without regard
to any characters around it. In other words, the above sed command
will replace all a characters with an x character regardless of their po­
sitions or the surrounding characters. Where this is particularly useful
is in changing uppercase to lowercase and vice versa. For example:

/.*/y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

will transform all lowercase letters to uppercase in a file.

Reading and writing files with sed. You can use the w and r commands
to include files and write intermediate files with sed. The read com­
mand can be used as follows:

[address]r file

where you can specify an address to include a file to be processed. For
example, if you have the following input data file named data.file:

this is not linel
this is not line2
this is not line3

and an additional file named data.file2 which contains:

this is line4
this is lines
this is line6

you can combine the files and process them as follows:

$ sed '$r data.file2' data.file

this is not linel
this is not line2
this is not line3
this is line4
this is lines
this is line6

106 AIX: Getting Started

The write command allows for the creation of multiple files from a
single input data file. For example, if you have a data input file con­
taining the following information:

sun gerard
ibrri kevin
sun betty
sun carol
ibm john
ibm jeff

and you wanted to create separate files containing information broken
down as machine types and names, you could build a script like:

/Asun/w sun.out
/Aibm/w ibm.out

This would create two separate files called sun.out and ibm.out con­
taining a list of Sun users and a list of IBM users.

5.3.3 sed changes in AIX 4.1

5.3.4 Conclusion

There are some minor changes to sed in AIX 4.1 which need to be men­
tioned here. They are primarily related to output of sed. The two major
changes are:

1. [2 addr]l outputs nonprintable characters as one 3-digit octal num­
ber, except for\\, \a, \b, \f, \n, \r, \t, and \v, which are output
with the corresponding escape sequence.

2. Long lines are folded or wrapped at 72 characters with each end-of­
line designated by a$.

sed is an extremely powerful stream editor which allows you to perform
quick and easy changes to a file without entering an editor. It can be
applied within shell scripts and other environments to provide incred­
ible functionality and power. This chapter touched briefly on most of
the commands and techniques you would use with sed, but there is
much more capability which has not been explored. Techniques such as
pattern and hold space are key to utilizing the more powerful aspects of
sed. Finally, scripts can contain branching and conditional information
which can provide for more functionality inside the sed script files. See
both the sed documentation and the books in Sec. D.1 in the back of
this book for more detail.

5.4 make

5.4.1 Introduction

5.4.2 Usage

Native AIX Software Development Scripting Tools 107

The make utility is one of the most powerful and complex of all the
tools in the AIX environment. Because of its tremendous complexity,
this chapter will not address all of the functionality of make but in­
stead will attempt to introduce you to the essential concepts and power
of the make utility so that you can understand, modify, and use the
make facility to build all Internet software products described in this
book, as well as products of your own.

What you will find is that once you understand make and all it can
do, you will use it for all of your software development. make is most
useful in large projects which involve a lot of source code files and a
somewhat complex compilation and linking environment.

make allows you to define a set of dependencies between files and ob­
ject code and executables which defines the compilation process. make
will ensure the minimum compilation necessary to rebuild a product
which reflects all changes since the last rebuild. make can call any
source compilers including Fortran, C, and COBOL and can rebuild the
associated products. make can also be used with noncompiled code
such as documentation text to maintain dependencies between files.

Let's assume you have a program which consists of 100 source code
files. Ninety of those files are contained an an archive library. You also
need to link in four other libraries from a different product. You may
find a bug or want to enhance some functionality of the product. This
may require changes to several source code files. When you have made
those changes, you will need to recompile and relink your executable.
Because of the large number of files and libraries, it would take quite a
while to recompile, rearchive, and relink all source files into a new ex­
ecutable. What you would like to do is recompile only those files that
were affected by your changes. make allows you to do this by defining
all relationships and dependencies between all files and libraries at the
beginning of the project in a makefile. Once this is done, you can simply
invoke make after making changes, and the make facility will only re­
compile and relink only those files which were changed.

make requires an investment of time at the front of the development
process in terms of building the makefile and testing it. However, once
it is finished, you will save a tremendous amount of time when making
changes since make will handle all rebuilds for you automatically. This
is the power of make and why most AIX software developers use it.

The syntax for make is:

108 AIX: Getting Started

make [-d] [-el [-i] [-kl [-n] [-p] [-q] [-r] [-S] [-s] [-t]
[-f file] [target ...] [macro ...]

where -d is debug mode.
-e overrides assignments with environmental variables.
-i ignores errors and continues processing.
-k stops processing current target if error occurs but continues

with other unrelated targets.
-n displays commands but doesn't execute them. Useful when

debugging.
-p displays set of default macros and dependencies.
-q checks to see if current executable is up to date.
-r doesn't use default rules.
-S terminates if any command receives an error.
-s doesn't display commands as they are executed. Silent mode.
-t touches files without recompiling anything. Used to fool make.
-f file is used to use a makefile other than the default.
- target ... specifies a target or targets contained in the makefile

to execute.
macro ... You can specify one or more macros.

The makefile. When make is invoked, it looks for a file in the current
directory unless otherwise directed. This file is typically named make­
file or Makefile and is searched for in that order. Both are equivalent
and define dependencies and actions which control make's behavior.

The typical makefile contains targets, associated files, and actions.
The basic structure is:

target [target] ... :[:] [file] ... ['commands'] ... [;command]
[(tab) command]

where the first line is known as the dependency line. The dependency
line contains a target which is used by make to direct execution, a co­
lon, and a list of files and commands on which the target is dependent.
Note the commands are contained within backquotes, and in UNIX and
in make, this means that make will treat the output of the command
enclosed in backquotes as the input to the current context. All com­
mands on the lines following the dependency line contain commands
which will be executed to build the target. All command lines must be
preceded with a tab. Blanks are not a substitute for a tab and will
cause make to fail. This is one of its many idiosyncracies.

The second colon represents a target that is used more than once. In
other words, if you have a target that is defined more than once in a
makefile, you must follow each target occurrence with two colons to in-

Native AIX Software Development Scripting Tools 109

form make that you are using the target more than once. The format
for each occurrence of target is the same as for the single occurrence.

Comments are preceded with a pound(#) sign and continue until the
end of a line. You must precede each command line with a #, or make
will interpret the line. Blank lines can also be used and will be ignored
by make except in a command list under a dependency.

Commands are executed each in its own shell, and therefore commu­
nication between commands is not possible. As is standard with UNIX,
each command gets its own process context and variable space, and
this will not be maintained even within a command list under a de­
pendency. Keep this in mind when you are building makefiles and are
thinking about dependencies between commands under a dependency
line. You can execute more than one command in a single shell by plac­
ing a \ at the end of a command line. This continues the command onto
the next line. You can place multiple commands separated by \s, and
they will run in a single shell. Therefore communication between them
will be possible through the use of variables and other process context­
sentivite information.

There are three special characters which control the behavior of com­
mands within the makefile:

+ Executes this command even if the -n, -q, or -t commands are specified

Ignores errors returned from this command line

@ Does not print out this command when executing

These, in conjunction with command line switches, control the behav­
ior and output of make and the makefile.

Commands can be continued onto the next line with a \ placed at the
end of a line.

A simple makefile. An example of a simple makefile is as follows:

kevin.o: kevin.c
cc -c kevin.c

This tells make that there is a dependency between kevin.o and
kevin.c, and to generate the target kevin.o from the input file kevin.c,
make needs to issue the command cc -c to compile the C source file and
generate an object output file.

To execute this file named makefile, you would simply type:

$ make

in the directory which contained the makefile. This example happens
to be a default rule (see the section on default rules) and is unneces-

110 AIX: Getting Started

sary; however, it is a good example of a simple makefile and how to use
make. Note that the tab before the cc command is essential since the
make command will not work without this exact structure. For more
complex makefiles, see the examples section.

Environment. Environmental variables play a key role in determining
how make behaves. By altering these variables, you can change the
characteristics of make and its behavior. You need to understand which
variables to use and how to use them.

When you run make, it reads the environment and treates all vari­
ables as macro definitions. The order of processing of those macro defi­
nitions is as follows:

1. Make's own default rules

2. Environmental variables

3. Description files

4. Command line

Note that the last definition of a macro overrides the previous. This
means that the command line macro definitions will override all pre­
vious definitions and that description file definitions will override envi­
ronmental variables, etc.

The behavior of make is determined as much by command line
switches as by definitions in files. You can use the MAKEFLAGS or
MFLAGS variables and these will be examined, in that order, for make
switches. For example:

$ export MAKEFLAGS=-n
$ make

will display commands but not run them. Remember that, because of
the definition order described above, if there is a conflicting switch in
the definition makefile, the -n will be overriden. You can also override
this variable with a command line option.

When commands are invoked, a default shell is used. make first
looks for the environmental variable MAKESHELL and then for
SHELL. If neither are defined, the Bourne shell (/bin/sh) is used. Tu
change the shell to Korn shell, for example, you would type:

$export MAKESHELL=/bin/ksh

and all subsequent commands executed within the context of the make
procedure would be executed in the Korn shell. The same is true for the
C shell.

Native AIX Software Development Scripting Tools 111

The environment is also important relative to your current file
searches and contexts. If you issue commands which rely on the exist­
ence of unqualified filenames, you will need to be concerned with your
current working directory and the existence and accessibility of your
files.

Default (internal) rules. make has default rules and dependencies which
govern the behavior of make when no explicit dependencies and rules
are defined in the makefile. You can use the -p command to view some
of these rules:

$ make -p

Macros:
ALL = $ (WERMIT)
MANEXT l
MANDIR = /usr/man/manl
BINDIR = /usr/local/bin
DESTDIR =
WERMIT = makewhat
CC2 = cc
SHAREDLIB =
EXT = o
BOOTFILE = /edition?
makewhat:
commands:

@echo 'make what? You must tell which system to make C-Kermit for.'
@echo Examples: make bsd43, make sys5, make sunos41, etc.
@echo Please read the comments at the beginning of the makefile .

. C-.a:
commands:

$(GET) $(GFLAGS) -p $< > $*.C
$(CCC) -c $(CCFLAGS) $*.C
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.[Co]

.C.a:
commands:

$(CCC) -c $(CCFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.o

.C.o:
commands:

$(CCC) $(CCFLAGS) -c $<

.h-.h:
commands:

$(GET) $(GFLAGS) -p $< > $*.h

.f-.a:
commands:

$(GET) $(GFLAGS) -p $< > $*.f
$(FC) -c $(FFLAGS) $*.f
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.[fol

112 AIX: Getting Started

. f.a:
corrunands:

$(FC) -c $(FFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.o

.s-.a:
corrunands:

$(GET) $(GFLAGS) -p $< > $*.s
$(AS) $(ASFLAGS) -o $*.o $*.s
$(AR) $(ARFLAGS) $@ $*.o
-rm -f $*.[sol

.c-.a:
corrunands:

$(GET) $(GFLAGS) -p $< > $*.c
$(CC) -c $(CFLAGS) $*.c
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.[co]

.c.a:
corrunands:

$(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.o
rm -f $*.o

.l.c:
corrunands:

$(LEX) $<
mv lex.yy.c $@

.y-.c:
corrunands:

$(GET) $(GFLAGS) -p $< > $*.y
$(YACC) $(YFLAGS) $*.y
mv y.tab.c $*.c
-rm -f $* .y

.1-.o:
commands:

$(GET) $(GFLAGS) -p $< > $*.l
$(LEX) $(LFLAGS) $*.l
$(CC) $(CFLAGS) -c lex.yy.c
rm -f lex.yy.c $*.l
mv lex.yy.o $*.o

.C-:
corrunands:

$(GET) $(GFLAGS) -p $< > $*.C
$(CCC) $(CCFLAGS) $(LDFLAGS) $*.C -o $*
-rm -f $*.C

.C:
corrunands :

.h­

.h

$(CCC) $(CCFLAGS) $(LDFLAGS) $< -o $@

.sh-:
corrunands:

$(GET) $(GFLAGS) -p $< > $*.sh
cp $*.sh$*; chrnod 0777 $@
-rm -f $*.sh

.sh:
commands:

Native AIX Software Development Scripting Tools 113

cp $< $@; chmod 0777 $@

. f:
commands:

$(FC) $(FFLAGS) $(LDFLAGS) $< -o $@

.c-:
commands:

$(GET) $(GFLAGS) -p $< > $*.c
$(CC) $(CFLAGS) $(LDFLAGS) $*.c -o $*
-rm -f $*.c

.c:
commands:

$(CC) $(CFLAGS) $(LDFLAGS) $< -o $@

.o

.SUFFIXES:
depends on: .o .c .c- .f .f- .y .y- .1 .1- .s .s- .sh .sh- .h .h- .C
.c-
make what? You must tell which system to make C-Kermit for.
Examples: make bsd43, make sys5, make sunos41, etc.
Please read the comments at the beginning of the makefile.

The above is only a partial listing of the output of the make -p com­
mand but is representative of the kind of default or built-in rules make
contains. All definitions for compilers and library formats have a de­
fault format for make which determines how things will be compiled
and linked. Keep in mind that this differs from system to system. It is
generally a good idea to do a make -p before invoking make on your
makefile to understand any default rules that may affect your desired
result.

This describes the default dependencies and rules defined in make
without any explicit definitions. Keep these in mind when you are
building your makefile.

You can disable the internal rules of make with the -r command.
Each machine typically stores internal rules in a file which you can
examine. On AIX this file is /usr/ccs/lib/make.cfg.

Suffixes and dependencies. Suffix rules consist of default definitions
and predetermined behaviors based on file suffixes. For example, the .c
suffix tells make that this is a C source input file, and the default ac­
tion to produce a .o file is the cc -c command. This default rule tells you
why the above simple makefile is unneccesary since this rule is already
predefined. You could have built the makefile as:

kevin.o: kevin.c

without a command, and make would have known what to do.

114 AIX: Getting Started

You can modify or include suffix rules in the default list of suffix
rules by including a .SUFFIXES section in your makefile. For example:

.SUFFIXES: .o .kev

defines an additional suffix rule that says that to create a .o file you can
look, in addition to the default fules, for a file ending in .kev. Note that
later you must define what you want this rule to entail by defining
commands to execute for this rule.

The default suffix rules are:

.SUFFIXES: .o .c .c\- .f .f\- .y .y\- .1 .1\- .s .s\- .sh .sh\- .h

.h\- .a

This defines the order in which files are searched to produce a nonex­
plicitly defined behavior for a given file suffix. The \~ on the end of
some of the suffixes allows for the use of Source Code Control System
(SCCS), which is the standard way to maintain and control versions of
software in AIX. The rest of the suffixes pertain to:

.0 Object code

.c C source code

.c\- C source code in SCCS

.f Fortran source code

.f\- Fortran source code in SCCS

.y yacc code

.y\- yacc code in SCCS

.1 lex code

.1\- lex code in secs

.s Assembler

.s\- Assembler in SCCS

.sh Shell source

.sh\- Shell in SCCS

.h Header file source

.h\- Header file source in SCCS

.a Archive library

If you want to clear the default suffix list, simply use the .SUFFIXES
command with no suffixes. For example:

.SUFFIXES:

will clear all default suffix rules.
The order of the SUFFIXES rules is important since make interprets

the SUFFIXES lines from left to right. This means that make will first
try to find an associated C source input file before a Fortran source file

Native AIX Software Development Scripting Tools 115

before a yacc, etc. Be careful when placing files with the same name in
the directory in which make is going to build a product. Always remem­
ber the order of the SUFFIXES default list.

Suffix rules which are explicitly contained in your makefile override
default rules. For example, if you define a .c.o suffix rule and an associ­
ated set of commands, this will override the default rule. For example:

.c.o:
f77 $<

tells make to invoke the Fortran compiler to translate a .c file into a .o
file. You should get a lot of syntax errors if you try this one. Obviously
this doesn't make sense; however, you can do this and override the de­
fault cc invocation if you would like.

make is extremely flexible and allows you to define any relationship
you would like based on your needs. Don't forget that make maintains
various default rules and relationships, and these must be considered
when defining your own.

Targets. Targets define how make will behave. You can specify a target
on the command line which will force make to begin execution of the
makefile at that target line, skipping any previous commands and tar­
gets. This is used to give the makefile different behaviors based on
which target you choose. For example, it is common in Internet soft­
ware to provide a target called clean. This will delete all object files and
executables from the current product. This ensures that when you is­
sue a new build command (make) you get completely new executables
independent of the relationship between the source code dates and the
object and executable dates. This is necessary when recompiling a
product on an architecture that is different from the one the ex­
ecutables were originally built on.

There are default targets which perform special functions. Some of
these are:

. DEFAULT Commands following this target tell make what to do if it can
find no commands or rules to generate a specific file or files .

. IGNORE Tells make to ignore errors in the commands and continue proc­
essing .

. POSIX Processes the makefile as the POSIX_standard specifies .

. PRECIOUS [file ...] Files named on this line are not removed if make is inter­
rupted; if no file is specified, all files are the default .

. SILENT Make does not display any commands during the make .

. SUFFIXES Adds suffixes to the suffix list (see above section).

If you do not specify a target on the make command line, the first tar­
get in the makefile will be executed. Note that a target can call make

116 AIX: Getting Started

recursively to build other dependent products. Note also that a target
can use other targets to build products, and in fact, this is often the
case when building more sophisticated makefiles for large products.

Targets can appear more than once in a makefile; however, only the
first occurrence of the target can contain a command section. The de­
pendency list between the two can and should be different, but the
commands to operate on the target will be the same. Remember that
make processes the first target it sees if not given an explicit target and
will therefore find the first target and then the second. If you need to
use more than one set of commands for the same target, you must use
the double colon option described in the makefile section of this chap­
ter.

Macros. Macros are like traditional variables. The basic syntax for a
macro definiton is:

oldstring = newstring

This defines oldstring to be replaced by newstring everytime it occurs.
To designate what you want replaced, use the syntax:

$(oldstring)

Everytime the $(oldstring) occurs in the file, it is replaced by new­
string. This allows you to code your makefile with a symbol and create
one single macro definition at the beginning of the makefile. Using
this, you can change one line in your makefile and the change is re­
flected throughout the entire makefile.

make has a set of default macros that consist of:

$*

$@

$<

$$

$$@

$%

$?

cc
AS

CFLAGS

Filename without the suffix of the input file

Full target name of the current target

Source files of an out-of-date module

Represents an actual dollar sign

Represents the current target name

Name of an archive library member

List of out-of-date files; used with explicit files

Default C compiler on the system

Default assembler on the system

Default flags for C compiler

These default macros are used constantly throughout most makefiles
since they make it much easier to define a set of files and associated
behaviors. The most commonly changed macros are the final three.
While you can change their definition in the beginning of the makefile

Native AIX Software Development Scripting Tools 117

with a definition statement like those defined above, you can also
change the macro definition from the command line. For example:

$ make "CC=gcc"

will cause make to invoke the GNU C compiler instead of the standard
C compiler which comes with the system. The other most commonly
used macro is CFLAGS. You can use this on the command line to
change the compiler flags used by make when building object codes.
For example, you may want to run the debugger on the resultant ex­
ecutable. For this you need to use the -g switch on the cc command:

$ make "CFLAGS=-g"

This will enable debugging for the resultant executable.
Macros are most often used much as you would use an environ­

mental variable in a shell. By creating a macro at the beginning of the
makefile, you can issue a change to the value of the macro once, and it
is reflected through the entire makefile instantly. An example is:

KEVDIR = /usr/kevin
INCDIR = $(KEVDIR)/include
LIBDIR = $(KEVDIR)/lib
CFLAGS = -0 -c -g
kevin: kevin.o

$(CC) $(CFLAGS) -o kevin kevin.o
kevin.o: kevin.c $(LIBDIR)/kevin.lib $(INCDIR)/kevin.inc

This will use the default rules to compile kevin.o and will use the ex­
plicit rules stated as macros to link kevin. This is a strange example;
can you find anything wrong with it?

Library archives and related issues. Archives are groups of executable
files placed together in a library for ease of linking and maintenance.
Most archives use the suffix .a to signify their type. The command to
use with archives is ar (see Sec. 4.5 for more information). Archives are
a special entity to make since they are used so often when developing
software in an AIX environment. Because of the history of archives,
they are well understood, and therefore, there are default rules and
behavior within make related to archives.

make has several default rules which apply to archive libraries:

.c.a

.c\-.a

.s\-.a

.f.a

.f\-.a

C source code to an archive library (described below)

SCCS C source code to archive library

SCCS assembler source to archive library

Fortran source to archive library

SCCS Fortran source to archive library

118 AIX: Getting Started

These rules apply to give you default behavior for taking both SCCS
and normal source code and placing compiled objects into a library.
This saves you from having to write the commands section to compile
and archive the resultant object code.

If a target contains parentheses, make assumes you are using an ar­
chive. The string within the parentheses denotes a member within the
achive. The basic structure is:

lib(kevin.o)

This denotes an archive library named lib and a member within this
library named kevin.o. You typically want to build entire archives con­
sisting of compiled subroutines. There is a default rule for the construc­
tion of archive libraries. It is:

.c.a:
$(CC) -c $(CFLAGS) $<

ar rv $@ $*.o
rm -f $*.o

This rule breaks down as follows:

.c.a

$(CC) -c $(CFLAGS) $<

ar rv $@ $*.o

$@

$*.o

Target, which denotes that the translation from a .c file to a
.a file is determined by the commands that follow the tar­
get.

The net result of the $(CC) command is to recompile any C
source code files that have a more recent modification date
than their associated member in the archive where:

$(CC)-the CC macro has been previously defined and is,
by default, the cc command.

$(CFLAGS)-the CFLAGS macro has been predefined
and contains C compiler switches.

$< says that you should use any .c file with the same
name as a module in the archive with the same
filename.

Uses the archive (ar) command to replace all object modules
with a more current .c source code file. This is done one
member at a time.

Denotes the target in process.

Denotes the current .o file in process. rm -f $* .o

This default rule for archives describes a significant amount of the
power of make and how you can use it to control your software develop­
ment process. Typically, the way you would see the dependencies and
targets structures for an archive is as follows:

library: library(filel.o) library(file2.o) library(file3.o)
library(file4.o)

The target is library, the archive name is library, and the members
within the library are named filel.o through file4.o. If you run make on

Native AIX Software Development Scripting Tools 119

a makefile which contains the line above, the default rule described
earlier will be invoked, and make will examine the current directory for
an archive named library.a. It will then examine filel.o's modification
date and compare it to filel.c in the current directory. If filel.c's modifi­
cation date is newer than filel.o in the archive library, make will in­
voke the C compiler, archive (with the replace option) the new module,
and remove the resultant filel.o from the compilation. It will then do
the same for file2.o through file4.o sequentially. This is a very powerful
capability and allows you to save a tremendous amount of time when
maintaining large software libraries and packages.

Include files. Include files are the most commonly changed and used
aspect of a makefile. In most programming languages you include files
which contain header and variable information that is common to more
than one source code file. Dependencies between source code files and
header/include files should also be described in the makefile. For exam­
ple, let's assume we have a program which consists of four source code
files named filel.f through file4.f and two header files named filel.h
and file2.h. You should describe the dependencies between these files in
the makefile. For example:

files: filel.o file2.o file3.o file4.o
create file executable files

f77 filel.o file2.o file3.o file4.o -o files
now build targets referenced above
filel.o: filel.f

f77 -c filel.f filel.h
file2.o: file2.f

f77 -c file2.f filel.h
file3.o: file3.f

f77 -c file3.f file2.h
file4.o: file4.f

f77 -c file4.f file2.h

Note that in the above example, the first two object files (filel.o and
file2.o) depend not only on their respective source code files but on an
include file (filel.h) as well. You have told the make facility that this
dependency exists by including the name of the include file in the de­
pendency statement. By doing this, make will automatically build only
those executables that are affected when an include file is changed.

For example, if you change file2.h and reissue the make command,
only file3.f and file4.f will be recompiled. After these have been recom­
piled, files will be relinked with the original filel.o and file2.o and with
the new file3.o and file4.o. While this is a fairly simple example, you
can see how very complex systems can be described with the makefile
and how make can save you a significant amount of time in rebuilding
a product.

120 AIX: Getting Started

Examples. You have seen most of the techniques used by makefile de­
velopers in structuring the makefile. Once you understand these basic
techniques, the biggest part of constructing a makefile is the tedious
work of understanding all of the relationships and workings of your
development environment. Now that you have seen some simple exam­
ples, the best way to understand make is to see a relatively complex
example. Once you study this example, much of the above information
will begin to make sense as a whole.

This example is taken directly from the AIX manual page shipped
with AIX on an RS/6000. It is the makefile used to maintain make it­
self.

Description file for the Make program
Macro def: send to be printed
P = qprt
Macro def: source filenames used
FILES = Makefile version.c defs main.c \

doname.c misc.c files.c \
dosy.c gram.y lex.c gcos.c

Macro def: object filenames used
OBJECTS = versio .o main.o doname.o

misc.o files.a dosys.o \
gram.o

Macro def: lint program and flags
LINT = lint -p
Macro def: C compiler flags
CFLAGS = -0
make depends on the files specified
in the OBJECTS macro definition
make: $(OBJECTS)
Build make with the cc program

cc $(CFLAGS) $(OBJECTS) -o make
Show the file sizes

@size make
The object files depend on a file
named def s
$(OBJECTS): defs
The file gram.a depends on lex.c
uses internal rules to build gram.a
gram.o: lex.c
clean:

rm *.o gram.c
-du

Copy the newly created program
to /usr/bin and delete the program
from the current directory
install:

@size make /usr/bin/make
cp make /usr/bin/make; rm make

#Empty file ":print" depends on the
files included in the macro FILES
print: #(FILES)
Print the recently changed files

pr $? I $P
Change the date on the empty file,
print, to show the date of the last
printing

Native AIX Software Development Scripting Tools 121

touch print
Check the date of the old
file against the date
of the newly created file
test:

make -dp I grep -v TIME > lzap
/usr/bin/make -dp I grep -v TIME > 2zap
diff lzap 2zap
rm lzap 2zap

The program, lint, depends on the
files that are listed
lint: dosys.c doname.c files.c main.c misc.c \

version.c gram.c
Run lint on the files listed
LINT is an internal macro

$(LINT) dosys.c doname.c files.c main.c \
misc.c version.c gram.c
rm gram.c

Archive the files that build make
arch:

ar uv /sys/source/s2/make.a $(FILES)

There are several things to note about this makefile. First is the
macro definitions. There are spaces surrounding the = sign, but this is
not required. Unlike most other AIX utilities, you can either put spaces
around the = signs or not. Several macros are used to define lists of
files and commands. FILES and OBJECTS define lists of files to be
used in a later command, while LINT and P define commands them­
selves. Remember macros are simply strings which will be substituted
before execution of the line in the makefile, so they can be anything you
would like.

The extensive use of comments is excellent practice since makefiles
tend to end up being maintained by someone other than the original
author. Documenting the makefile is just as important as documenting
the code itself. Note that each commands is executed in its own shell,
one per command line, except for the case of the command "cp make
/usr/bin/make; rm make." Two commands will be executed in the same
shell because of the use of a semicolon. This is a powerful technique
you can employ if you want to execute more than one command in a
single shell.

As the make begins, the first target is make. When make reaches
this target, it begins to process the makefile. The objects listed in the
OBJECTS macro are substituted on the line, and dependencies are
built. The OBJECTS files are dependent on defs, which is another tar­
get which make finds. grame.o depends on a file lex.c and make will
use default rules to build gram.o from lex.c. Note that this is a special
case, and make has internal rules for yacc and lex files. In this case,
gram.c is dependent on gram.y, which is a yacc file. First make invokes
the yacc compiler on gram.y to create gram.c Then make invokes the C
compiler on gram.c to create gram.o. This chapter will not detail this;

122 AIX: Getting Started

5.4.3 Conclusion

see make, yacc, and lex documentation for more details. Finally, all de­
pendencies are established, and the make executable is built.

The output of the make command would be something like:

$ make

cc -0 -c version.c
cc -0 -c main.c
cc -0 -c doname.c
cc -0 -c misc.c
cc -0 -c files.c
cc -0 -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -0 -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o
gram.o -o make
13188+3348+3044 = 19580b = 046174b

Note that targets like print, test, and lint are not executed. 'lb run lint
on all files to check for syntax errors, you would use:

$ make lint

This would run lint on all files and would generate the proper output
for syntax checking. Once the first target (in this case make) is done,
execution is stopped. Changed files can be printed by issuing the com­
mand:

$ make print

This command outlines a sophisticated makefile, and if you under­
stand all that occurred with this makefile, you are ready to use make
for your project; if you aren't comfortable with this example, see your
make man page and a book such as the O'Reilly & Associates' Manag­
ing Projects with Make by Oram and Talbot.

make is a very powerful tool for building and maintaining software sys­
tems on a variety of platforms, including AIX. It is used by virtually
every tool on AIX that consists of more than just a few source files to be
built. By using make, you significantly reduce the maintenance load on
your developers while at the same time increasing the quality of your
code. It is certainly a tool you will read more about as you go through
this book.

5.5 lex

5.5.1 Introduction

5.5.2 Usage

Native AIX Software Development Scripting Tools 123

lex stands for lexical analysis program generator. It uses its own lan­
guage and syntax to generate programs called scanners. These pro­
grams read data and parse according to the rules structured in the lex
input file. These are typically used as parsers and as scanner programs
for input data. You can generate a relatively simple lex input program
which will scan input for regular expression patterns and generate an
action coded in C. This gives you a relatively simple way to structure
code for input structures while at the same time having the power of
the C language to execute an action based on some string or expres­
sion. This is the real power of lex and why many sophisticated AIX us­
ers use it.

From the lex input file, a C source code file is created named lex.yy.c.
This file is known as a scanner and is compiled with a special lex li­
brary which contains functions which lex uses. The resultant ex­
ecutable is what you use to scan input and generate the appropriate
actions.

There is a GNU program known as flex which is used by most AIX
power users to replace lex. See Sec. 7.6 for more details on the lex syn­
tax itself since flex is backward compatible with respect to most lex
functionality.

Lexical analysis is the process of taking information and dividing
into units typically called tokens. This process requires a great deal of
complexity in terms of analysis and coding to provide the "tokeniza­
tion" of text. This is what lex excels at.

lex is often used with an associated product called yacc, which is a
parsing language. yacc is described more fully in the next section. lex
and yacc work togther to provide a significant fourth-generation/RAD
capability which is not found in many other systems. In fact, many AIX
tools are written with lex and/or yacc.

lex takes input syntax and converts it to C source code which can then
be compiled and executed just as you would any other C program. lex
creates a routine named yylex in the output file lex.yy.c. This can then
be linked and executed to achieve the lexical analysis desired.

Figure 5.1 shows the process that is involved in creating a sophisti­
cated program using lex and yacc. It is taken directly from lex & yacc,
by Tony Mason and Doug Brown, O'Reilly & Associates, Inc. This is a
great book and a must for any lex/yacc developer.

The figure accurately describes the process of generating both lex

124 AIX: Getting Started

y.tab.c

cc

program

Figure 5.1 The lex and yacc process.

output (lex.yy.c), yacc output (y.tab.c) and your own C routines to com­
bine into a single executable. This is a very powerful yet complex proc­
ess which involves a large amount of knowledge about languages and
parsers. Keep this in mind as you examine lex and yacc.

The basic synax for lex is:

lex [-fntv] [file ... J

where -f specifies faster compilation and larger scanner tables.
-n doesn't display output.
-t displays results on standard output instead oflex.yy.c.
-v is verbose mode.
file ... is one or more files to treat as input to lex.

Native AIX Software Development Scripting Tools 125

The lex language. lex input files consist of sections based on rules and
actions as well as on descriptions separated by %%s. The basic format
is:

definitions
%%
rules
%%
user defined functions

The definitions section allows you to specify definitions which can de­
fine token values to pass to yacc as well as to other routines in lex and
C. The rules section defines the rules and associated actions which
your parser will use to parse and tokenize input. Finally, the user-de­
fined functions allow you to write your own C routines to interface with
the lex analyzer.

Often the user-defined functions consist solely of a main routine
which takes some input and calls yylex. A simple example of this is:

extern int num;
... rules using num to determine behavior and possible
modifying num in the code ...
%%
int num;

main(argc,argv)
int argc;
char *argv [];
{

if (argc ! = 0)
num=atoi(argv[l]);

else

yylex();
}

printf ("You need some command line arguments\n");

This example demonstrates that you may create your own main rou­
tine and call yylex to do the lexical analysis. You are sharing the vari­
able num, which you can access and modify in both the rules section
and in the user-defined function section.

A slightly more complex example is given in the man page for lex as:

%% [A-Z] putchar (yytext[O]+'a'-'A'); []+$; []+putchar(' ');

This lex input file will replace all uppercase letters with lowercase let­
ters and remove all blanks at the end of a line. Finally, it will replace
all multiple blank occurrences with a single blank.

The [A-Z] is the pattern lex uses to match against. This means that a
match will occur on any uppercase letter. The resulting C functions
work as follows:

126 AIX: Getting Started

put char (yytext [OJ+' a' - 'A') ; Standard algorithm used to replace uppercase with
lowercase letters by subtracting the difference be­
tween the ASCII representations of the characters
themselves

[J + $; Removes all blanks at the end of the line

[J +putchar (' '); Replaces all multiple character occurrences with a
single space

yytext[O] is a special lex function which provides the current tokenized
string of information to output. If you don't use yytext, you will get the
token value and not the token itself in the output stream. See the next
example for this.

If you assumed the name of this file is uptolower.lex, you could exe­
cute the command:

$ lex uptolower.lex

The resulting file is named lex.yy.c and consists, on an AIX platform, of
more than 572 lines ofC code. The code is not included here for obvious
reasons; however, take 1 minute and key this into your local system
and execute the commands as listed above. You should get something
similar.

Note that if you want to compile this system, you should use a com­
mand like:

$ cc lex.yy.c -11

This will generate an executable a.out which can be executed normally
and which uses standard input and output during its operation. Issue a
command like:

$./a.out< datainput

and the a.out executable will modify the data input appropriately and
will take the actions determined by the match to an uppercase charac­
ter. Note that the -ll on the command line is necessary because the lexi­
cal analyzer yylex() needs a dummy main routine to initiate the
program. Without the libl library, the program will not link.

Another simple example is the following simple lexical analyzer
named caps.I:

%{
#define NUMBER 400
#define COMMENT 401
#define TE402
#define COMMAND 403
%}
%%

[\t]+ ;
[o-9J + I
[0-9]+\. [0-9]+
\.[0-9]+
#*
\"[A\"\n]*\"
[a-zA-Z] [a-zA-Z0-9]+
\n
#include <stdio.h>
main(argc,argv)
int argc;
char * argv [] ;
{

int val;

Native AIX Software Development Scripting Tools 127

{return NUMBER;}
{return COMMENT;}
{return TEXT;}
{return COMMAND;}
{return '\n';}

while (val= yylex()) printf("value is %d\n",val);
}

This example is taken directly from lex & yacc, by Tony Mason and
Doug Brown, O'Reilly & Associates, Inc. It illustrates is the relative
simplicity of the lex syntax. If you generated equivalent C code, it
would need to be much more sophisticated and complex to provide the
same function.

Anything between %{ and %} is copied directly into the resulting C
source code. This allows you to embed any information in the declara­
tions section that you want, and it will appear exactly as written in the
resulting C source code file.

A thing to note about the lex syntax is that the first pieces of infor­
mation on a line are simply UNIX regular expressions which allow you
to express just about any type of expression without too much difficulty.
This is the rules part of the lex input file and is designated by sur­
rounding %%s. This specifies what you want to match and has an asso­
ciated action to execute if a match occurs.

If you look at the above example and take a line to examine, you
might use the following:

[0-9] +\. [0-9]] +

The [] denotes an exclusive choice of one character 0-9, and the + de­
notes one or more occurrences of the match. The\ is the escape charac­
ter and ensures that the. (dot) is taken literally and not as a position
holder to match any single character (as is the default case if the . is
not escaped). The section [0-9]+ has the same meaning as the first oc­
currence. Therefore, this will match any string like:

1.1
0.0
11.11
100.100
... etc ...

128 AIX: Getting Started

Note that this, taken in context with the other three lines representing
different regular expression syntax, will match to a number. Note also
that the I is a continuation line which allows you to specify alternate
rules for each specific action. This is exactly what is done in this exam­
ple to ensure that we get all the kinds of numbers we are looking for.

The other part of the lex input file is the actions section. Each rule
has an associated action which will be performed when a rule is
matched.

To use the above example, issue the series of commands:

$ lex caps.l

This will create a file lex.yy.c which contains all the C source code cre­
ated from the lex input file. Next compile and link the code:

$ cc -o caps lex.yy.c -11

This will create an executable caps which you can then execute as you
normally would. If you took an input file named caps.input, which
looks like:

This is a test of the caps (or CAPS) program. It has UPPERCASE
and lowercase words from which to CHOOSE. OKAY ... bye ..

and ran the lex analyzer above, you would use a command like:

$ caps < caps.input
UPPERCASE
OKAY

Note that only the uppercase tokens followed by a blank, tab, or newl­
ine character willl be displayed.

The #define statements define tokens and associated token numbers
to the parser routine yyparse. Both yacc and lex must share the same
routines and tokens to ensure that the parser and lexical analyzer are
communicating correctly and can recognize each other's tokens. See
Sec. 5.6 for more details on parsers.

This section is a very brief introduction to lex. For more information
and before you get serious about using lex, see the already referenced
Nutshell book, lex & yacc, by Tony Mason and Doug Brown, O'Reilly &
Associates; it is the de facto standard documentation for these tools
and contains much more information than is presented here.

Flex and its differences. flex is a lex equivalent available from GNU
software. See Sec. 7.6 for more examples and information on both lex
and flex. In summary, the basic differences between flex and lex are:

Native AIX Software Development Scripting Tools 129

flex generates faster code.

flex provides larger table sizes.

flex has no external library libl.a.

flex doesn't support RATFOR.

flex supports more flexible grouping with parentheses.

flex reads in one file; lex reads in many files and concatenates them
together.

flex doesn't support lex input and output functions.

There are other functions that flex provides. See Sec. 7.6 for more infor­
mation.

5.5.3 lex changes in AIX 4.1

There are some significant changes to lex in AIX 4.1 which need to be
mentioned here. Much of the work done on lex is to bring it into confor­
mance with XPG4; however, there are other changes which need to be
mentioned.

The default type of yytext has been changed from an unsigned char­
acter array to a character array. This is only relevant for C++ users
since char and unsigned char are the same in C. Beware of this.

lex in AIX 4.1 supports extended regular expressions as described in
XPG4. Along with support for XPG4 regular expressions, multibyte
characters are fully supported. In AIX 4.1, %z(%Z) is used to change the
default number ofmultibyte character class output slots, while %x(%X)
was used to accomplish this in AIX 3.2.x. Note that AIX 4.1 will support
AIX 3.2.5 lex code with the appropriate changes related to %x(%X), and
AIX 3.2.5 will run AIX 4.1 lex code except for %z(%Z).

As described on the IBM home page, "%x(%X) is also used in AIX 4.1
to specify an exclusive start condition. When the scanner is in o/ox state,
patterns with no state specified will not be active as opposed to when in
a o/os state (regular start condition) where such patterns are active."

AIX 4.1 supports multibyte character sets with respect to character
values. In AIX 4.1, ranges are evaluated based on the current collating
sequence, including multibyte character sets. If the collating and the
character sequences are the same for a given locale and range, this will
have no effect on lex. However, with the inclusion of multibyte charac­
ter sets and a renewed emphasis on locale, the output may vary be­
tween AIX 4.1 and AIX 3.2.x depending on sequence matching.

New delimiters have been added to lex in AIX 4.1. They are:

[:: l

[..]
[==]

Character class

Collating symbol

Equivalence class

130 AIX: Getting Started

5.5.4 Conclusion

5.6 yacc

5.6.1 Introduction

These new special delimiters allow lex to support character classes, col­
lating symbols, and equivalence classes in addition to those supported
in the earlier versions of lex.

Finally, lex under AIX 4.1 will no longer accept ranges where the end
value is lower than the start value. If this occurs, an error will be pro­
duced and lex will exit.

lex is a very powerful language which supports many different pro­
grams. This section is realtively short because of a similar discussion
which takes place in Sec. 7.6 as well as because of the sheer complexity
and power oflex. flex is the GNU version oflex and provides enhanced
functionality as well as greater speed and reliability. Because of this, it
is recommended that you take a look at flex as an alternative to lex.
More discussion oflex input files occurs in Sec. 7.6.

Some good examples of lex files exist in the groff distribution. See
this distribution for working with lex input files and associated scan­
ners.

yacc is an acronym for "yet another compiler compiler." yacc is very
similar to lex in that it provides a context-free grammar which it con­
verts to C code which must be compiled and executed as you normally
would C code. yacc generates a system called a parser. The parser is
responsible for taking tokens generated from a lexical analyzer (typi­
cally) and generating an action based on the parsing of the input data.
This is typically the second phase in the processing of an input stream
and occurs immediately after the lexical analyzer has broken the input
stream into independent pieces called tokens. The tokens are then ana­
lyzed for patterns and matches and processed according to actions de­
fined based on the result of the parsing. If this seems complicated, it is.
However, it is also extremely powerful and lends itself to techniques
such as rapid prototyping and rapid application development. Using
lex and yacc often speeds up the development of an application inter­
face by orders of magnitude and is, in fact, used in many tools in AIX,
including some on the accompanying CD.

yacc is commonly used to generate parsing routines in conjunction
with lex. See Sec. 5.5 for more details on lex itself. There is a GNU
equivalent called bison, which is discussed in Sec. 7. 7. See this for more
information on bison and other aspects of yacc, including differences
between different implementations of yacc itself.

5.6.2 Usage

Native AIX Software Development Scripting Tools 131

The basic syntax for yacc is:

yacc [-dvlt] grammar

where -d generates y.tab.h with the define statements that assign
token codes with the user-declated token names.

-v is verbose mode. Creates file y.output, which contains table
and conflict reports.

-1 generates y.tab.c containing no numbered line directives.
-t sets y.tab.c so that it will be compiled with debug mode

enabled.
grammar is grammar which determines the structure of the

generated parser.

While this section does not discuss the yacc grammar in detail, there
are some good examples in the distributions on the CD accompanying
this book. See the groff distribution for some good examples of yacc
grammar files and lex parser interaction.

You typically create a yacc input file named * .y. You also need a lexi­
cal program to pass tokenized information (yylex). Once you have cre­
ated both of these, you run yacc on the * .y yacc input file to generate
the C source code file. This file is typically named y. tab.c. Finally, you
compile and link the resulting C source code files into an executable,
which you can execute as you normally would.

The C source code file contains a routine yyparse(). This is very simi­
lar to lex's yylex and simply performs operations on tokens it gets from
yylex(). Each time yyparse needs a token, it calls yylex and is passed
the next token. yyparse() must be called from a main routine. Neither
yacc nor lex generate a main function, and therefore you must link in
with other libraries to complete the build.

The yacc language. While this section does not pretend to be a real ref­
erence for yacc, it outlines some very basic information and gives exam­
ples of yacc to illustrate the power of these tools. The basic structure of
a yacc input file is very similar to a lex input file, namely:

declarations
%%
rules
%%
C routines

The declarations section consists of recognized keywords and associ­
ated definitions as well as C code. The basic keywords are:

132 AIX: Getting Started

%left Declares left associative operators

%nonassoc Defines operators which may not associate with themselves

Declares right associative operators %right

%start

%token

%type

Defines the start symbol

Declares token names

Declares the type of nonterminals

Just as with lex, the rules section defines the grammar of the parser,
and the C routines section contains any C source code you may want to
include in your final C source code routine.

Again, a simple example file named print-int.y from the lex & yacc
O'Reilly & Associates book is:

%token INTEGER

%%
lines: /* empty */

I lines line
{ printf("= %d\n",$2) ;}

line: INTEGER '\n'
{ $$ = $1;}

%%
#include "lex.yy.c"

The first part of this file contains a token definition INTEGER. This
will be made available from the lex.yy.c lexical analyzer which is in­
cluded at the bottom of the file. The %% denotes the beginning of the
rules section of the file. The line lines: tells us that, as is the conven­
tion, the first of the two alternative definitions is empty. This is a yacc
convention and says that an empty string is legitimate. The alternative
definition (lines line) specifies that the input consists of one or more
lines. Note that line is recursive and is in fact defined below as an IN­
TEGER followed by a new line character.

The characters contained within the curly braces are the action
items. These specify what should be done given a match of the rule. In
the case oflines, a printf is specified which displays an equals sign and
the integer on the input line. The line action sets the value of the re­
turn of the function to the first token. Note that yacc supports special
syntax pertaining to the $ sign. $$ denotes the value that is returned
from the action, while $n specifies the value of the nth token. Therefore
$1 is the value of the first token, $2 the second, and so on.

Given this, the line action sets its return value as the value of the
INTEGER on the input line and passes this back to the lines rule as
the value line. The lines action takes the value of the second token (de­
noted by $2 and line in this case) and prints it to standard output. Fi-

Native AIX Software Development Scripting Tools 133

nally, the included file lex.yy.c contains a lexical analyzer which must
know about and determine what an INTEGER is.

If you assumed that you had both the appropriate yacc and lex files
as described above, you would build and use them as follows:

$ yacc print-int.y
$ lex pint-int.l
$ cc -o print-int y.tab.c -ly -11

There are several important things to notice about the above series of
commands. First is that you can invoke yacc and lex in any order to
create the resulting executable. Because print-int.y includes lex.yy.c, it
is not necesssary to invoke lex.yy.c on the cc command line. Finally, it is
necessary to include both the libl.a and liby.a archive libraries to en­
sure that all the proper yacc and lex files and a main routine are in­
cluded so that the program will build properly.

This section does not do justice to the power of yacc and its possible
interaction with lex. It does, however, present you with some of yacc's
basic capabilities and should give you some idea as to how you can use
a tool like this in your development work. There are several examples
in the systems on the accompanying CD. See in particular the groff dis­
tribution for some very sophsiticated examples of lex and yacc files.
Sun systems also have an example system in /usr/lib/yaccpar. Examine
this for another good example of a yacc grammar file.

5.6.3 yacc changes in AIX 4.1

5.6.4 Conclusion

With AIX 4.1, multiple yaccs and multiple parsers in the same file are
possible. The flag to specify an alternate parser to yacc is -y instead of
-p. The -y option specifies a parser other than the default /usr/ccs/lib/
yaccpar. The -p option is now used to change the prefix of all external
names produced by yacc from the default yy to the prefix specified with
the -p flag.

yacc, very briefly discussed here, is a very powerful parser generator
which provides capabilities well beyond most AIX commands. The com­
bination of lex and yacc provide a very sophsticated and powerful way
to build complex parsing systems quickly and easily. This is how sev­
eral available compiler systems were built. Keep these tools in mind for
your development efforts.

Much of the functionality of yacc has been replaced and improved
with a tool like bison from GNU. There is more information on some
syntax and capabilities in Sec. 7.7.

Part

2
Nonnative
AIX Developer Tools

While there are a wealth of tools available on the native AIX
platform which provide tremendous power and flexibility
when using AIX, there are just as many if not more power tools
that don't come native with an AIX platform. Some of the more
powerful tools are documented in this section.

Editors, compilers, debuggers, object-oriented compilers and
analyzers, text formatters, and many native AIX replacement
tools are just some of the tools discussed in this section of the
book. Keep in mind that a large portion of this part of the book
is dedicated to GNU tools. GNU is reengineering most of the
tools that come with native AIX and, in fact, is rewriting a
freely distributable UNIX kernel based on the Mach
microkernel architecture from Carnegie Mellon. Many of the
tools discussed are part of the GNU paradigm which is
attempting to replace UNIX with a freely distributable version
of the same environment.

Tools such as GNU's C compiler, called gee, are considered
better than what you can typically get from your vendor.
Unlike many shareware and free tools you can get for DOS
and Mac platforms, these tools are of the highest quality.
Support is usually excellent, and with a price of $0 for most
products discussed in this book, the price is right. Keep in
mind that all of these tools are freely available from the
Internet as well as in the distribution that accompanies this
book.

Chapter

6
The Internet

UNIX and the Internet used to be synonymous; however, with the ex­
plosion of growth on the Internet, many other types of machines are
beginning to access the Internet. Because of the correlation between
UNIX tools distribution and the Internet, this chapter is necessary to
present a background on the history and distribution of software tools
for UNIX.

The Internet is now being used to deliver not only AIX developer
tools but MS-DOS, Macintosh, VMS, and many other types of power
tools. The Internet is already the information superhighway that many
people are talking about today. This chapter presents just enough of
the capabilities and power of the Internet to prepare you to get infor­
mation from it and to know where to learn more about it. This book by
no means attempts to be a reference guide to the Internet but instead
attempts to provide just enough information to allow you to get AIX
tools and software packages as they become available.

6.1 What Is the Internet?

The Internet is simply the largest computer network in the world. With
millions of nodes, it surpasses even the largest of corporate networks
by many orders of magnitude. It is a collection of many networks
bridged and gatewayed together to provide a relatively seamless net­
work which spans the entire world. At one time the Internet was a
large network consisting of the IP protocol exclusively; however, today
it consists of many networks and protocols gatewayed together to form
a patchwork of networks that span the world.

The Internet started out as the ARPAnet, which was an experimen­
tal network designed to support government research for the Defense
Department. Because of the disparities of hardware and software plat-

137

138 Nonnative AIX Developer Tools

forms among the participants, there was an immediate need to develop
an architecture which supported all systems. The protocol known as
Internet Protocol (IP) was invented as an ISO layer 3 protocol that
would run on both LAN s and WAN s while the ISO organizations de­
bated their own layer 3 protocol.

Berkeley began distributing IP with their UNIX kernels and an en­
tirely new network protocol de facto standard was born. Along with
Berkeley, a number of new agencies were beginning to build computing
centers, and the only economical way for them to connect everyone to­
gether was through the ARPAnet since most universities and research
labs were now on it.

In the mid 1980s, the National Science Foundation (NSF) put a 56-
kbs architecture in place based on regional supercomputer centers that
ran IP. This not only allowed universities and research labs access to
their network (known as NSFnet) but to access the ARPAnet as well.
The NSF is promoting educational access and helping defer costs in an
effort to place all educational institutions on the NSFnet. This has
been extremely successful, and as a result, demand is growing dra­
matically not only in the educational market but in the commercial one
as well. As students leave their educational environments and move to
the commercial world, they are convincing corporatons to connect to
the Internet.

There are several volunteer groups which govern and maintain the
Internet. The presiding body responsible for guiding Internet develop­
ment and direction is the Internet Society (ISOC). They appoint mem­
bers to a group known as the Internet Architecture Board (IAB). The
IAB is responsible for setting standards for communications and archi­
tecture to sustain the tremendous growth seen in the Internet in the
last few years. The IAB meets regularly to discuss these issues and
hear proposals for change and growth.

Finally, the Internet Engineering Task Force (IETF) is responsible
for short-term goals and deliverables on the Internet. They hold regu­
lar meetings, and everyone who is interested in the Internet is invited.
By splitting into working groups, different problems are solved based
on volunteers' experiences and interests. The typical output of a work­
ing group is a report to the IETF and often the IAB to be set as stand­
ards.

Because of the regional nature of the Internet, a Network Operations
Center (NOC) was established to handle each region or backbone. For
example, NASA has a set of backbones which are managed by one
NOC, while the NSF backbones are managed by another NOC. If you
connect to the Internet, you will get a NOC that is responsible for your
connection. If it cannot solve your problems, it escalates to the next
NOC that can solve them.

LAN

The Internet 139

Beyond providing the NOC, most agencies are responsible for paying
for their segment of the Internet (e.g., NASA, NSF). The Internet was
developed to share research and engineering data and not commercial
data; however, this is changing as corporations and individuals realize
the potential of the Internet for sharing information quickly and inex­
pensively. As this commercial access has grown, several companies
have sprung up to provide for-fee commercial access to the Internet.
These companies purchase a segment of the capacity of the Internet
and resell access to commercial customers. Companies like PSinet,
Netcom, and UUnet provide commercial users access to the Internet.
The price ranges from just a few dollars a month for a simple dial-up
line to thousands of dollars a month for full-function leased-line capac­
ity running IP.

The Internet is simply an extension of the phone and leased line in­
frastructure around the world. There are gateways and routers which
connect a large number of disperate networks around the world. As
Fig. 6.1 denotes, you can access the Internet with a variety of compo­
nents including modems, routers, and bridges. The Internet uses both
the public telephone network and a variety of leased lines from a vari-

router Public
Switched
Data
Network

router LAN

Figure 6.1 The Internet.

140 Nonnative AIX Developer Tools

ety of government organizations and private access providers such as
UUnet.

There are protocols which run between the routers and gateways
which allow each to understand who they are responsible for based on
a concept called a domain. A domain is established by a place called the
Network Information Center (NIC). The NIC has been responsible for
distribution of addresses and domains since the inception of the In­
ternet.

Internet addresses are IP adresses that are represented by four
groups of numbers separated by periods. An example of an IP address
is:

191.9.200.1

Each number left to right represents a subnetwork of the higher-level
representated to the left. In this example there is a large network rep­
resented by 191. Within this network there is a subnetwork repre­
sented by 191.9. Inside this is 191.9.200, and finally the actual node IP
address is 191.9.200.1. The NIC is responsible for providing IP (e.g.,
Internet) addresses based on dividing customers by geography or or­
ganization. These numbers allow routers and gateways to section off
certain portions of the Internet to reduce the packet loads on individual
segments of the network. For example, if you want to send a message
to address 192.10.10.10, the initial router you contact through your
part of the Internet maintains a table containing who is responsible for
the 192 subnetwork and then figures out the quickest way to get your
infomation to this subnetwork. It may have to route it through several
gateways and routers; however, the algorithm used by the routers will
ensure the most efficient path at the time it calculates this. It is impor­
tant to note that this path may be different at any given time based on
network congestion and router/gateway availability.

Figure 6.2 denotes a network which consists of a gateway machine
between two networks. If a packet from the 191 network wants to get to
the 192 network, it must be routed through the gateway. Note that the
gateway can be a UNIX computer or a specialized device such as a
router or brouter (bridge/router). This device contains tables which
help to route the packets to the appropriate network based on the IP
address. The Internet works very similarly to this. A rough schematic
is shown in Fig. 6.3. This figure represents the telecommunication
links between the interior gateway routers. Most of these lines are high
speed Tl and T3 lines, but there are still lines which run at much
slower speeds on the Internet network. Suffice it to say that you must
connect to the Internet network either directly through a router that is
directly connected to the Internet backbone or through an access

191.1.1.1

192.1.1.2

Figure 6.2 IP gateway.

The Internet 141

191.1.1.2

192.1.1.1

provider such as UUnet or PSinet. The Internet itself takes care of
routing packets through the network by communicating between all
routers on the network. This ensures redundancy and reliability on the
network and increases the stability of the entire network.

Because remembering IP addresses is virtually impossible for peo­
ple, the NIC began to give computers names people could remember.
Originally, the NIC distributed all IP addresses and names; however,
as the Internet began to grow, this became impossible. A new scheme
known as the Domain Name System (DNS) was developed. This gave
each group of users on the Internet the responsibility to manage its
own machine names and IP addresses. The naming structure was
based on the success of the IP addressing scheme and therefore was
divided into subgroups separated by periods. Each level in this system
is called a domain. An example is:

fnalb.fnal.gov
nic.ddn.mil
fred.csu.upenn.edu

142 Nonnative AIX Developer Tools

Figure 6.3 The Internet and its routers.

This works in exactly the opposite way from the way IP addresses
work. The major domain is the farthest to the right in this address
(known as domain name). There are six main domains: gov (govern­
ment), mil (military), com (commercial), net (network resources), org
(other organizations), and edu (educational institutions). There are
new domain names emerging based on the country of the machine (e.g.,
au, us, bg, etc.). These will become more prevalent in the next few
years. Within a given domain, there exist machines and groups of ma­
chines. For example, take the address:

fred.cs.uchi.edu

The machine exists in an educational institution, probably at the Uni­
versity of Chicago (uchi), perhaps in the computer science department
(cs), and the actual machine name is fred, who is probably the graduate
student who uses the machine. This domain name may translate to an
address of 192.9.200.1. There is a correlation between the uchi and the
subnetwork addresses of 192.9 since the NIC probably gave the Uni­
versity of Chicago all addresses within 192.9. This correlation is main-

The Internet 143

tained by the NIC and is crucial since neither IP addresses or domain
names can be duplicated on the Internet. If this occurs, major problems
result, and therefore it must be avoided at all costs.

You can have two machines with the same name, but they must be in
different domains. For example, fred.cs. upenn.edu would be perfectly
fine. Even fred.bio.uchi.edu is find as long as they are not exactly the
same. Note also that the IP addresses of these machines will be very
different depending on their domains. Most likely fred.cs.upenn.edu
has a different major IP address, while fred.bio.uchi.edu probably
starts with 192.9.

6.2 Tools of the Internet

6.2.1 News

Note that this is not entitled "Tools on the Internet" but "Tools of the
Internet." These are tools that allow the Internet user to be most pro­
ductive and reap the most benefit from the Internet. There are really
three fundamental tools of the Internet which enable users to maxi­
mize its usefulness:

1. News

2. anonymous ftp

3. mail

News is the Internet bulletin board system. News consists of groups of
information and exchange based on a topic known as newsgroups.
Newsgroups consist of readers that present a menu-like interface to
newsgroups and allow you to browse and interact with any newsgroups
of your choice.You get information on "newsfeeds" which consist of
many megabytes of information per day depending on which news­
groups you intend to read. The full newsfeed daily traffic is in the hun­
dreds of megabytes per day and is a tremendous effort to manage. Most
users subscribe to a small subset of newsgroups in an effort to mini­
mize the traffic as well as management aspects of the newsfeeds.

Newsgroups are hierarchical in nature, consisting of what look very
similar to domain names. For example:

cornp.os.aix

The largest group is the comp (computer) group followed by the os (op­
erating system) group and finally the aix operating system division of
this newsgroup.

144 Nonnative AIX Developer Tools

By far the largest set of newsgroups and information comes from the
Usenet. The Usenet consists of seven primary newsgroups:

1. comp-computer science and related topics

2. misc-miscellaneous

3. news-questions relating the news network itself

4. rec-recreational activities

5. sci-scientific and research activities

6. soc-social activities

7. task-controversial topics such as religion, politics, and the like

There are other sources for newsgroup feeds; however, they are be­
yond the scope of this book. See App. D for more books and information
on this topic. In addition to the core Usenet newsgroups, there are sev­
eral alternative news groups including:

1. alt

2. bit

3. biz

4. ieee

5. gnu

6. k12

7. vmsnet

These and other newsgroups like them contain much lively discussion
and information on an almost infinite variety of topics. You should
carefully choose which newsgroups you would like to receive since you
will quickly be overwhelmed by information if you aren't careful. Fi­
nally, other sources, such as Clarinet which is run by the United Press
International (UPI) and contains up-to-the-minute news and informa­
tion and broadcasts, are available on a for-fee basis.

To get a better understanding of the Usenet network, you must ex­
amine its origins. When the Usenet began, it consisted of people using
primarily PCs connected with modems. They would periodically dial
each other up and trade information. As the group grew, it developed
methodologies for sharing information which involved known locations
and flows for the shared information. A person or persons agreed to be
the distributor of certain types of information by allowing others to dial
into their computers and download information that they required.
This was known as a newsfeed. As this matured and the number of
newsfeeds grew, a large network consisting of a complex and confusing

News
Reader

The Internet 145

architecture evolved. With the adoption of high-speed WAN technology,
much of this transfer is now occurring over leased lines. However, there
are still many informal newsfeeds occurring around the world.

Figure 6.4 is from The Whole Internet User's Guide & Catalog, by Ed
Krol. It is representative of the kind of network that News typically
travels through. News servers originally used the basic telephone net­
work to transfer information. Today, many newsfeeds move across the
Internet at Tl and T3 speeds for faster transfer.

Different news servers provide different newsfeeds based on the
needs and usage of that particular node's users. Administrators must
choose which newsfeeds they wish to accept and those they wish to dis­
tribute. If administrators choose to distribute a newsfeed, they accept
the responsibility that others may call and wish to connect to them,
and they need to be responsive and provide those requesters access.

By providing transparent network access to users on the network,
the newsreader can access newsgroups transparently. The newsreader
has the responsibility not only to act as the menu-like front end but to
attach to the news server and download article lists as well as actual
articles selected. It acts as the router to control access to newsgroup
information. There are several prominent readers:

1. nn

2. rn

3. trn

4. tin

Since the man pages for each of these tools are some 40 to 50 pages,
this book will not discuss individual readers. Suffice it to say that

News
Server

Server

News
Server

News
Server

Figure 6.4 The News network.

146 Nonnative AIX Developer Tools

6.2.2 FTP

reader choice is like religion, and each person prefers one or the other.
Each reader has disadvantages and advantages, but nn is certainly as
good as any other and provides certain benefits such as more control
when reading information and tracking. You can change readers at any
time, so feel free to experiment with each of the readers.

The second core technology of the Internet is the anonymous FTP capa­
bilities. FTP stands for File Transfer Protocol and is the core utility
that works with TCP/IP to provide file transfer capabilites between
nodes on a network. By utilizing login security checks, users can trans­
fer files based on the existence of their accounts on each machine.

The general syntax of the FTP command is:

$ ftp remote-machine-name

where remote-machine-name is the name of any other machine that
you can access independent of where the machine is or what operating
system it runs. As long as it supports the FTP protocol, you can use
FTP to transfer files.

When a connection is established, you are prompted for a username
and password for the remote machine. After typing these in, you are
placed at the interactive FTP prompt ftp>. Once you are at this prompt,
you are ready to begin transferring files. An example of a file transfer
from your current machine named dumpy to another machine named
dopey is:

dumpy>$ ftp dopey
Connected to dopey.
220 dopey FTP server (AIX(r) System V Release 4.0) ready.
username: kevin
Password required for dopey.
passwd: password
User kevin logged in.
ftp> put /tmp/stuff
200 PORT command successful.
150 ASCII data connection for stuff (55 bytes).
226 ASCII transfer complete.
83 bytes sent in .02 seconds (4 kbs)
ftp> quit
221 Goodbye.
dumpy> $

This example transfers a file named /tmp/stufffrom a machine named
dumpy to a file in your home directory named stuff on a remote ma­
chine named dopey. FTP allows for file transfer in both directions. To
transfer a file from a remote machine named dopey to the local ma­
chine named dumpy, use the get command. For example:

dumpy>$ ftp dopey
Connected to dopey.

The Internet 147

220 dopey FTP server (AIX(r) System V Release 4.0) ready.
username: kevin
Password required for dopey.
passwd: password
User kevin logged in.
ftp> get /tmp/stuff
200 PORT command successful.
150 ASCII data connection for stuff (55 bytes).
226 ASCII transfer complete.
83 bytes sent in .02 seconds (4 kbs)
ftp> quit
221 Goodbye.
dumpy> $

There are a variety of commands within FTP that may be of some
use; they are:

binary

ascii

put local-file-name
remote-file-name

mput f ilelist

get remote-file-name
local-file-name

mget filelist

user username

help

led dir

cd remote-dir

close

delete remote-file-name

dir filename

open machine

pwd

quit

Transfers a file in binary mode and performs no transla­
tion

Transfers a file in ASCII mode; performs any necessary
translation to maintain an accurate representation

Puts file from your local machine to the remote machine

Multiple file put

Gets a file from the remote machine to your local ma­
chine

Multiple file get

Logs on to remote machine

Prints list of all FTP commands

Local change directory

Changes remote directory

Closes current ftp session on remote machine and re­
turns to FTP mode

Deletes remote-file-name on the remote machine

Shows remote filename listing (wildcards supported)

Opens a connection to a remote machine

Prints the name of the current working directory

Closes any open connections and exits FTP

If you are interested in transferring multiple files with the mput and
mget commands, you will be prompted for each file before transfer un­
less you invoke FTP with the -i switch. Keep this in mind before you
invoke FTP for file transfer.

Also, to interrupt file transfer you can use the CTRL-C sequence.
This will halt file transfer after the server has had time to process the
interrupt. It usually takes some time before the data stops flowing into
or out of the local machine based on network load and file server per­
formance and load. Be patient.

148 Nonnative AIX Developer Tools

You will note the lack of any cat command in the FTP subcommand
listing above. If you want to examine a file before transfer, you must be
a little clever and remember AIX and its standard 1/0 structure. To ex­
amine a file on the screen before transferring it, use:

ftp> get filel -

where the - represents standard output. If this doesn't work, try:

ftp> get filel /dev/tty

which uses the standard terminal device name as the output file. Re­
member, everything in AIX is a file, and, as such, redirection is as sim­
ple as that shown above.

6.2.3 Anonymous FTP

6.2.4 Internet mail

The FTP utility relies on username and passwords for ensuring integ­
rity of filesystems and machines. However, there is a de facto standard
in AIX and on the Internet for using FTP for general-purpose file shar­
ing and transfer. It is known as anonymous FTP. This means that when
you connect to the remote machine and are prompted for your user­
name, you type anonymous. The password can be left blank; however,
it is generally accepted that you type your mail address so that you can
be tracked and notified in the case of a problem. After logging on, you
typically have access only to a small area of files which are explicitly
permitted to you. This is how almost all Internet software is shared
and propogated. All FTP commands are maintained as in formal FTP;
the only difference is that now you don't have to have an account on a
machine to access its files. This allows millions of users to share ideas
and software without requiring any maintenance and overhead associ­
ated with managing large groups of users and software systems.
Anonymous FTP is the way a general user will interact with the In­
ternet for almost all tasks.

Electronic mail (e-mail) to the Internet is one of the primary benefits of
the Internet. Beyond the capabilites of file transfer via anonymous FTP
and telnet capabilities, which allow for machine sharing, e-mail is by
far the most useful feature of Internet access. By acquiring Internet
access, you gain the ability to send mail to millions of computer users,
not only those directly attached to the Internet but through gateways
to other networks such as MCI Mail and CompuServe as well. Mail is
clearly a great way to communicate and exchange information without

The Internet 149

requiring expensive and high-maintenance options such as leased lines
and IP access to the Internet.

Limitations of the e-mail system are time and cost. It clearly costs
you something to send a message to someone on the Internet; however,
the cost is a matter of cents and depends on where you send the infor­
mation and how large the message is. Suffice it to say that the cost is
very low compared to the increased functionality received. It also costs
you something in terms of time. The Internet is a store and forward
network, which means that packets of information are gathered at a
node and then, at some later time, forwarded to the next node in the
chain. There may be zero to many nodes in between your sending node
and the receiving node depending on the physical topology of the net­
works and node configurations. This is transparent to the end user
since the underlying mail subsystem handles the routing of this infor­
mation; however, it does affect the transfer times of the mail.

The store and forward nature of the Internet mail subsystem means
that information such as mail messages may take some time to reach
their final destination. While the time required to receive a message
from the Internet is usually seconds, it may take minutes or hours for
a message to reach its final destination depending on the status of
links and machines on the path from initator to final destination. This
is clearly not as convenient as using an interactive access method in
some instances; however, the many conveniences of mail often out­
weigh the costs.

Addressing. Mail addressing is based on the domain naming conven­
tions described earlier in this chapter. The general format of a mail ad­
dress is:

usename@machine-name

where username is the usename of the person to whom you want to
send mail, and the machine-name is the hostname of the machine. For
example, to send mail to a user named kevin on a machine named
devtech.devtech.com, you would structure the mail name as:

kevin@devtech.devtech.com

This uniquely identifies me on the Internet, and it is guaranteed that
there is no other person with exactly that same address on the In­
ternet. You do not need to worry about including any other information
than the username and node name to which you want the mail sent.
There may well be nodes that this information will pass through be-

150 Nonnative AIX Developer Tools

tween the authoring node and the receiving node, but this is hidden
from you by the Internet mailing subsystem.

'lb send a mail message to the above user, you could use the follow­
ing:

$ Mail kevin\@devtech.devtech.com
Subject: test
this is a test of the Internet mailing stuff. Please reply if you
get this.
thanx ... kevin

There are several things to note about the above mail. First note that
the @ is preceded with a backslash. This is because the @ is a special
shell character and should be "escaped" to avoid shell translation. Re­
member, in AIX, the shell interprets the entire command line before
passing it to the program to be executed. In this case, if you do not
precede the @ with a \, the shell will interpret the @ as a shell
metacharacter and will perform actions before passing the command
line information to the Mail executable. 'lb avoid this, the @ must be
"escaped" and thus avoid interpretation. Another thing to note is that
all mail is terminated with a. in the first column on the last line of the
text input area. This will take you out of text input mode and back into
command mode. Finally, note that the command Mail was used to in­
voke a mail subsystem. Remember that AIX is case sensitive, and, in
this case, there is a difference between mail and Mail. The Mail inter­
face is a Berkely interface which is slightly more feature rich than the
mail interface; however, it does not matter which interface you use to
address Internet mail.

There are many gateways to other networks beyond the standard In­
ternet such as MCI Mail and CompuServe which you may want to ac­
cess. Your access provider will supply information on how to address
mail to ensure that it reaches those connected networks. There are a
few standard naming and addressing conventions, however, that allow
you to send mail through gateways to these networks:

Bitnet. Bitnet address are of the form user@host.bitnet. 'lb route
from the Internet to a node on a Bitnet network, use user%host and
follow this with a standard gateway from Internet to Bitnet. For exam­
ple:

kevin%fnal@fnal.fnal.gov for the Bitnet address kevin@fnal.bitnet

Ask your access provider for more information on how to access the Bit­
net network.

The Internet 151

CompuServe. Standard CompuServe addresses consist of two num­
bers separated by commas (12345,123). To route to CompuServe from
the Internet, use the syntax:

12345.123@compuserve.com

Note that the comma used in CompuServe addresses is replaced with a
period and followed by a hostname of compuserve.com.

MCI Mail. MCI Mail uses two different kinds of addresses: number
and name. If you are sending to a number, simply following the number
with the standard hostname syntax for:

1234567@mcimail.com

If you are addressing a name, use the syntax firstname_lastname fol­
lowed by the hostname:

Kevin_Leininger@mcimail.com

There are other networks which you may want to access. Ask your
Internet access provider for more information on how to access them.

Sending binary data. Most mailers are structured to only send text
files. If you are interested in sending nontextual information such as
executables, audio files, etc., you must encode these files before correct
transmission can occur.

The utilities used most often to accomplish this are uuencode and
uudecode. uuencode is provided on most AIX platforms and converts
binary information to text. Once you have converted the binary infor­
mation to text, you can then mail it as you normally would any text file.
Then the receiver must uudecode the file before accessing it. For exam­
ple, to send an executable file named runit to user joe on hostname
galaxy@devtech.devtech.com, use:

$ uuencode runit < a.out > runit /*takes a.out and makes a text file
runit*/
$ Mail joe@devtech.devtech.com
Subject: uuencoded program
Here is the runit program, have fun ...
-r runit /* mail command to include a file*/

This creates a file with the first line text and the uuencoded file follow­
ing. When joe receives the mail, he will see something like:

$ Mail
begin 644 runit

152 Nonnative AIX Developer Tools

Joe first must save the mail message as an external file and then run
uudecode on it. The uudecode command will ignore any information be­
fore the begin command and will rebuild the executable to be exactly as
before it was uuencoded. Joe now has a program named runit which he
can execute normally.

Note that for an executable, he must be running on the same type of
machine as the executable file was originally built on. uuencode and
uudecode do not provide binary compatibility but are merely dumb
tools to allow for binary transmission from one machine to another.

It should be noted that there are a variety of standards discussions
occurring with respect to sending binary files, and there will be stand­
ards for mailers and binary files adopted in the very near future re­
lated to the MIME extension. MIME stands for Multipurpose Internet
Mail Extensions. This represents the new format in transmitting mul­
tiformat files between dissimilar computers.

Returned mail. There are many reasons that you may receive returned
mail. The address was incorrect, the receiving node was down, the re­
mote host was unknown, or the remote machine is not configured cor­
rectly. Any one of these will cause mail to be returned with a message
in your mail file like the following:

$ Mail
Subject: returned mail for bogusid
Status: R

Mail error was: 550 <bogusid> ... User unknown

-- returned mail follows --­
To: bogusid
Subject: test

this is a test

If the remote host was unknown, you will receive all the information in
the returned message which will document the path the mail message
took before being returned. An example is:

Subject: returned mail for bogusid
Status: R

Mail error was: 5110 <host!bogusid> ... Unknown host

-- returned mail follows
To: host!bogusid
Subject: test

this is a test

By tracking the path of the returned mail, you can see which machine
failed in the store and forward mail network. Check the hostname and

The Internet 153

full address; if it is correct and the mail will not go through, contact you
Internet access provider with a detailed description of the problem.

You will also see a returned mail message with the "User unknown"
message. Check that this user does in fact exist; if he or she does, con­
tact your Internet access provider for more information.

If there is a significant downtime of the receiving machine, you may
see returned mail with a Subject line describing the condition. If this
occurs, contact that machine's system administrator for more informa­
tion. Note that due to the store and forward nature of the Internet mail
subsystem, your mail message will be retransmitted several times to
the receiving node before failing. This will avoid having this kind of
problem with a short-term downtime for a machine.

If you send mail to more than one person and you get a returned mail
message, check to see who received the mail and who didn't and resend
to only those who did not receive the message. All mail messages that
can be sent will be, and only those with unreachable addresses will be
returned.

Getting files with mail. If you don't have direct access to the Internet
and want to get files and archives, you can use mail to accomplish this.
While interactive methods such as FTP and telnet are more conven­
ient, there are a variety of reasons for using mail to access and retrieve
files.

There are two general kinds of mail servers available via e-mail:

1. Generic Internet file servers

2. FTP mail servers

Generic Internet mail servers provide a mail server daemon which
waits for incoming mail with a specific subject or text heading ad­
dressed to it and process the information contained in the mail mes­
sage. Depending on the included information, it performs different
actions from sending help information on its commands to getting files
from a local directory and sending them to the mail originator. The
standard syntax for these servers is to include a command on the Sub­
ject: line such as:

$ Mail mail-server@devtec.devtech.com
Subject: help

which will provide help on the commands and capabilities of the mail
server. Note that text for the message is not required since only the
Subject: line is examined to determine an action for the mail server.
The other common command is send. The syntax is:

154 Nonnative AIX Developer Tools

Subject: send filename

where filename is a filename which may include a relative or fully
qualified directory name. For example:

$ Mail mail-server@uunet.uu.net
Subject: send ls-lR.Z

will retrieve a file named ls-IR.Z from the machine named
uunet.uu.net. This file just happens to be the compressed index of all
files on the UUnet machine.

The FTP mail server provides the capability for a remote machine to
FTP a file to itself and then mail it to your machine. This provides un­
limited acces.s to Internet archives through one of these FTP mail serv­
ers. The FTP mail machine most commonly used is decwrl.dec.com. Tu
address commands to this machine, use:

$ Mail ftpmail@decwrl.dec.com
Subject: junk
connect devtech.devtech.com
chdir pub/physics/hep
binary
get intro
quit

As shown above, you build an FTP script in your mail text which is
executed on the decwrl machine. In the above script, decwrl connects to
devtech.devtech.com, changes directories to the pub/physics/hep direc­
tory, sets mode to binary, and transfers a file named intro back to your
machine via e-mail. The Subject: line is ignored with this server, but
you can use it to document your activities. There are many commands
available on this server, and you should send the command help to the
server for complete details.

6.3 Who Uses the Internet?

As the Internet grows and gains more commercial users, questions
arise about who is paying for traffic on different parts of the Internet.
What began as an educational and research network is rapidly becom­
ing a commercial network. When you establish a connection to the In­
ternet, you must specify whether you will be using it for research and
education or commercial traffic. If you choose research and education,
you will be routed over prefered routes using government subsidized
links on what is known today as National Research and Education Net­
work (NREN). NREN was recently federally funded to allow all In-

The Internet 155

ternet research and education users to access a common backbone.
However, if you establish your access as commercial, you will need to
use a value-added Internet access provider such as Performance Sys­
tems International (PSI) or UUnet. See App. E for more information on
how to contact these organizations.

Most computer hardware and software vendors are beginning to use
the Internet for distribution of software updates and patches. Because
of the lower cost of distribution and of access to more timely informa­
tion, the Internet makes the most sense for them. Of course, the big­
gest users are still research laboratories and universities; however,
commercial users are beginning to utilize the Internet for collaboration
between their engineering and research businesses as well as other
parts of their organizations such as marketing and sales. The complex­
ion of the Internet is changing rapidly, driven by the commercialization
of AIX and the entire open systems paradigm. The most fundamental
change in the Internet is the Worldwide Web (WWW). This, along with
a browser known as mosaic, is revolutionizing the Internet. See Sec.
6.8.5 for more information on WWW.

6.4 Why Use the Internet?

The question is really not, ''Why use the Internet?" but, more impor­
tantly, "Why not use the Internet?" The Internet provides tremendous
access to information that is vital to the efficient operation of comput­
ers and computer specialists around the world. Because of this, the In­
ternet is rapidly becoming the most used of all computer networks.

Actually, there are three primary reasons to use the Internet: (1) ac­
cess to information newsgroups, (2) access to software via anonymous
FTP, and (3) access to the WWW. These have been discussed, and based
on discussions in the rest of this chapter, we will see why the Internet
is such a powerful resource and why you will use it more and more in
your daily life.

6.5 How to Access the Internet

There are a variety of services that provide both partial and full access
to the Internet. As was discussed before, you must decide what kind of
access you need before contracting with a service provider for Intermet
access.

There are rules that must be agreed to and forms that must be filled
out before access to the Internet will be allowed. If you choose dedi­
cated Internet access, you will be assigned an Internet addresses and a
domain based on information you give to your service provider. This
information will be registered with the NIC and will be made available

156 Nonnative AIX Developer Tools

on the Internet worldwide through the primary routers and gateways.
This allows anyone on the Internet to route to you with things like
anonymous FTP and mail. Keep this in mind when you talk to your
service provider, and make sure you have thought through the ramifi­
cations of the "world" having this kind of access to your machine. This
is not intended to scare you away from getting access to the Internet.
There are many ways to secure your network against network viola­
tions; however, depending on how you access the Internet, you may be
opening up an entirely new set of issues about the security of your ma­
chines and networks.

6.5.1 Dedicated Internet access

For dedicated Internet access, you will pay several hundred or perhaps
thousand dollars for a company to provide you a leased line and a
router/modem device at your site. This typically consists of a Telebit
Netblazer device, which is the standard in the AIX arena for high­
speed modem communications. You will also incur fairly high costs re­
lating to leasing the line, probably $1000 or more per month depending
on line speed.

Dedicated access provides you with full IP capabilities and is clearly
the highest-function solution available. This means anonymous FTP
and complete peer-to-peer access to other machines on the network.
You will have the Internet as a WAN which looks just like your LAN.

6.5.2 Partial Internet access

There are several kinds of partial Internet access ranging from Serial
Line Interface Protocol/Point to Point Protocol (SLIP/PPP) solutions,
which look very similar to dedicated access, to UNIX-to-UNIX Copy
Program (UUCP) access, which is much lower function.

SLIP/PPP. SLIP allows for an IP data stream to run over standard
phone lines. You can use SLIP to run a LAN protocol over a standard
phone line and use tools like telnet, FTP, NFS, etc., just as if you were
connected to a higher-speed LAN such as token ring or Ethernet. SLIP
is freely available on the Internet and is ported to virtually every plat­
form. You may contact a service provider listed in App. E for more infor­
mation on SLIP access. PPP is the successor to SLIP and contains SLIP
functionality and much more. PPP is a better solution if your access
provider supports it.

The SLIP/PPP solution will allow you to look as if you have a dedi­
cated connection to the lntenet only when you bring SLIP/PPP active.
This allows you to avoid the cost of a leased line while still realizing all
the benefits of running as a dedicated peer-level node on the Internet.

6.5.3 Gateways

The Internet 157

Typical costs of this are a few hundred dollars a month for unlimited
access from a service provider. There are other packages which have
lower fixed costs and associated connect time charges. Talk to your
service provider for more details.

UUCP. UUCP is a tradition in UNIX; it was invented to allow UNIX
machines to transfer files over phone lines. It later added support for
remote login and became the WAN protocol of choice between UNIX
machines over phone lines. As high-speed networks proliferated,
UUCP became much less commonly used; however, it is still used by
many Internet access providers for a class of Internet connection
known as UUCP access.

The cost of this kind of connection is tens of dollars a month and an
inexpensive modem. However, you do not get any IP capabilities and
therefore don't get anonymous FTP and WWW capabilities. You can get
News as before, but it must be set up with UUCP for polling on a pre­
defined schedule. All access to files is done through mail. You must
send mail to a mailserver on your access provider's machine, and they
are responsible for sending your requested files to you in the form of
mail. You must then use mail to manipulate and control your files from
the Internet. This is clearly a lower-function way of interacting with
the Internet; however, it does work and is certainly the lowest-cost so­
lution available.

There are other ways to gain access to the Internet such as Bitnet,
CompuServe and MCI Mail. If you have accounts on these networks,
you have mail access to the Internet and can send mail and exchange
information via gateways between these networks. However, you do
not have the kind of access that is provided in the other access meth­
ods, and this should not be your primary interface to the Internet if you
intend on using it in any serious way.

6.5.4 Listing of service providers

There is a listing of service providers for Internet access in App. E of
this book. As you can see, there are many of them, and they provide
many different types of services. Contact them directly for more infor­
mation about their products and services.

6.6 The Structure of Internet Software

Software from the Internet is structured in a way that is similar among
packages. Most packages are large enough to comprise several files

158 Nonnative AIX Developer Tools

which are typically transferred separately and simply appended to
each other before being uncompressed. Compression techniques consist
of the following:

1. compress/uncompress-This creates a file with a .z extension.

2. pack/unpack-This creates a file with a .z extension.

3. gzip-This is a GNU compression algorithm; it also creates a file
with a .z or .gz extension.

These algorithims are the three most common and should describe
most files you find on the Internet. You typically save anywhere from
30 to 60 percent on file size using these algorithims depending on the
file structure and size. The smaller the size, the less efficient the algo­
rithms typically are. For example:

$ ls -1 stuff*
-rwxr--r-- 1 kevin 61400 Jan 29 12:00 stuff.txt
$ compress stuff
$ ls -1 stuff*
-rwxr--r-- 1 kevin 26100 Jan 29 12:00 stuff.txt.Z

Note that the compress algorithm renames the file appending a .Z to
the original filename and saves approximately 55 percent file space. 'lb
uncompress the file, use:

$ uncompress stuff.txt
$ ls -1 stuff*
-rwx-r--r-- 1 kevin 61400 Jan 29 12:01 stuff.txt

Note that the original file is restored and the input filename to use
with the uncompress is the original filename without the extension.
The pack algorithm works the same way and both pack and compress
are equally utilized on the Internet. If you look on a remote system
with anonymous FTP and see extensions like .z or .z, you can be sure
that these are compressed or packed files and should be transferred
and undone at the local machine.

gzip is a GNU product which contains no copyrighted source code
and is compatible with both pack and compress. There are options on
the gzip command line which document how to handle both packed and
compressed files as well as its own gzip format. Most, if not all, GNU
software is now distributed in gzip format. See Secs. 6. 7 and 7 .1 for
more information.

If the files come separated into named parts such as PARTOl,
PART02, etc., you must append them together with a simple command
like:

The Internet 159

$ cp PART* >> newfile.tar.z

where newfile.tar.z is the name of the compressed file you can now un­
compress. It is common that a file named README contains check­
sums of the PART* files. This allows you to check to see that the file
transfer occurred correctly. Run either the sum or the cksum command
on the PART* files and compare them against the files and associated
numbers in the README file. One note of caution: There are two pri­
mary algorithms used to generate the checksum numbers and they will
not produce the same result. If you run the checksum on several files
and they are wildly different, it is a pretty safe bet that you have a sum
or cksum command that is not the same as that used to compute the
checksums in the README file.

The most common directory structure on an anonymous FTP ma­
chine is the pub or public directory. This typically contains all public
domain software and is the first place you should look for software. The
other common directory is the gnu or GNU directory. This contains
software from GNU which is free as well. See Sec. 6.7 for more informa­
tion. At the top of the pub directory, there is typically a file called ls-IR
or index on an anonymous FTP machine. You should examine this to
understand what is on that particular machine and choose what you
would like to transfer based on what you learn.

6.6.1 Tar file archives

Often, entire directory structures are stored in tar files and then com­
pressed using the pack or compress algorithm. This example illustrates
the process of getting such a file and restoring it to a local directory:

$ ftp dopey
Connected to dopey
220 dopey FTP servers awaits your command
Name: anonymous
230 Guest login okay, send ident as password
password:
331 Guest login ok, access restrictions apply
ftp> binary
ftp> cd pub
ftp> ls
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
total 4096
drwxr-s-r-x 2 root 120 512 Nov 10 12:05 dirl
-rw-rw-r-- 1 lib 120 47400 Jan 20 05:45 packagel.tar.z
-rw-rw-r-- 1 lib 120 32300 Jan 18 09:00 package2.Z
226 transfer compete.
220 bytes received in 0.1 seconds.
ftp> get packagel
200 PORT command successful.
150 Opening BINARY mode data connection for packagel.tar.Z (47400
bytes)

160 Nonnative AIX Developer Tools

226 Transfer complete.
47400 bytes received in 1.0 seconds (47 kbs)
ftp> quit
221 Goodbye.

You must now uncompress the file and tar it into its proper form:

$ uncompress packagel.tar
$ tar -xvf packagel.tar
$ ls -1
-rw-r--r-- 1 kevin 4600 Sep 1 README
-rw-r--r-- 1 kevin 50001 Aug 20 packagel.c
-rwxr--r-- 1 kevin 59000 Aug 20 packagel

You may want to use the tar -tvf command as well to see the table of
contents of the tar file before unwinding it since things such as path­
names and file sizes may determine how and where you untar the file.

Inside tar files you will typically see a file named README or
READ.ME or some other variation. This should be the first file you
look at after unwinding the tar file. In fact, you should extract the
README file separately before unwinding the entire tar file to exam­
ine it for any issues relating to disk space, installation procedures, etc.
There is also a Makefile which contains all necessary commands and
information to build the product on a particular machine. Frequently
there is also an Imake file which allows you to make a Makefile for a
particular machine. You should examine the tar file for these before us­
ing the product since you may have to rebuild the product before execu­
tion will occur correctly.

As mentioned earlier, you may also see compressed files broken into
parts to allow for easier transmission. Each piece is typically lOOKB in
size and numbered sequentially beginning wth 01 as an extension. For
example, if packagel consisted of three pieces-packagel.tar.Z.01,
packagel.tar.Z.02, and packagel.tar.Z.03-you would bring over each
file separately and put them back together using the cat command and
its append capabilities. For example:

$cat packagel.tar.Z.* > packagel.tar.Z

would place all files back into a single file named packagel.tar.Z as­
suming the files were numbered sequentially. Then you would proceed
as above.

The other common file naming convention for Internet files is
partnn, where nn is an integer between 01 and some number. Tu gener­
ate a combined file from these files, use a command like:

$ cat part* > newfile

where newfile is the name of the file you would like to generate.

The Internet 161

6.6.2 Shell archives

Shell archives consist of files which are merely shell scripts which un­
wind themselves by invoking themselves. To unwind a file called
kevin.shar:

$ sh kevin.shar

You may see this divided as before, and you should apply previously
discussed techniques before invoking the shell to unwind this archive.
Be careful with these since they have been known to contain Trojan
horses. You should examine each shell archive before unwinding it. As
a general rule, you should also do all work related to the Internet as a
nonroot account to ensure local system integrity.

6.6.3 Manual pages

Most software packages come with one or more manual pages to de­
scribe the usage of the tool. You can typically find the manual pages by
looking in the main source directory for a file that has a single-digit file
extension such as .1 or .2. A quick and dirty command to look for these
files is:

$ls *.?

which tells AIX to look for a file with a single character file extension.
If you see anything with a numeric extension (1-8), it is probably a
man page. Man pages are written in nroff format, which is a command­
driven text processing language.

Everytime you invoke the man command, man searches for a match­
ing man page in a certain area on the filesystem, and if it finds it, it
executes an nroff command on the file. This displays the man pages in
a formatted way on standard output (which is most often your terminal
screen). You can issue this nroff command manually on a man page file.
For example:

$ nroff -man gcc.1 I more

will print out the manual page for the GNU C compiler on your screen
and pipe the output to more so you can page through at your own
speed. With the an macros (note that with the -m switch they spell man
... clever, huh?), you can format almost any manual page for preview
on your screen.

The other nice thing about this is that you can print out the man
page by simply redirecting standard output. For example:

$ nroff -man gcc.1 I lpr

162 Nonnative AIX Developer Tools

By using a pipe to the printer system, you will see the formatted man­
ual page on your default printer. This is one of the first things you
should do when you begin looking at and using a new product, whether
it is from the Internet or already installed on the system you are using.

6.7 GNU and Their Paradigm

GNU stands for GNU's Not UNIX and is the brainchild of a man named
Richard Stallman. While at M.I.T., Mr. Stallman wrote much of emacs
and many other tools which are widely used in the UNIX community
today. After getting frustrated with organizational and legal barriers to
creating free software, he left M.I.T. and formed GNU. Today, GNU and
the associated Free Software Foundation (FSF) are clearly the leaders
in providing high-quality free software on the Internet. The FSF pro­
vides for the distribution of code and maintenance and some support of
the GNU software. They can be contacted at:

Free Software Foundation
675 Massachusetts Avenue
Cambridge, MA 02139

They are interested in any support they can receive, particularly with
respect to free hardware, labor, and money. This helps them in their
effort to continue to develop and distribute quality free software.

Originally, GNU was a project to create a replacement for the UNIX
operating system and environment. In doing this, hundreds of tools
have been written ranging from text processing systems to editors and
compilers. Most are excellent and none are poor. Mr. Stallman is seen
as somewhat of a radical, particularly by those who want to sell soft­
ware for money. There is an article in the GNU sections on most In­
ternet machines called the GNU Manifesto. You should read this if you
are interested in getting a better understanding of Mr. Stallman's phi­
losophy and, subsequently, of GNU's philosophy on software (it is in­
cluded on the CD with this book and in App. C). It doesn't take long to
understand that Mr Stallman has some pretty radical ideas about in­
tellectual property and software. This philosophy has driven him to de­
velop and distribute free software on the Internet.

The quality of the GNU software is high and the support and main­
tenance is good. There is much fear, uncertainty and doubt (FUD)
about free software, most created by software vendors who sell prod­
ucts. They claim that support and quality of free products is low. This is
simply not true. emacs is one of the best editors, if not the best, avail­
able today on every platform it runs on. Keep this in mind when you
are thinking about using free software in your environment. Free soft-

The Internet 163

ware, particularly GNU software, is of excellent quality, and you will
have very little trouble with these products.

A few of the more popular GNU utilities are outlined in this book;
however, there are many more available. See Sec. 6.9 for more informa­
tion on how to get listings of GNU and other free software from the
Internet.

GNU and the FSF don't have copyrights on their software; instead
they have what they call a copyleft. This provides that the software can
be distributed for a fee; however, it also says that anyone who distrib­
utes the software cannot stop it from being distributed again for what­
ever cost and in whatever manner anyone sees fit. This fits in with
their philosophy of freely sharing software and information in the
hopes that this will only improve the product and make it accessible to
everyone who wants it. A copy of the GNU Manifesto, their COPYING
information, and the GNU General Public License is included on the
CD with this book as well as in App. C. These documents are included
with all GNU software in this book and must be included in all distri­
butions of their software.

6.8 How to Locate and Retrieve Software from the Internet

6.8.1 Archie

For years, the location of software on the Internet was communicated
through information networks of people who were "in the know." Be­
cause of the tremendous growth of the Internet in the last few years,
this methodology is no longer sufficient to allow all Internet users to
know where all the software they are interested in exists. Because of
this, several new systems have been developed to support search and
retrieval capabilities from this massive network.

Archie was developed by several people at McGill University in an ef­
fort to consolidate file information on a few servers located around the
world. By periodically polling servers which are contained in a list
which the Archie people maintain, they create a list which can be ac­
cessed and searched with either telnet or mail. This list is an index of
all files on those polled servers with additional information which de­
scribes the contents of the files.

In other words, Archie provides an index to files on the Internet. This
is a wonderful feature when you are looking for particular products or
tools and are not sure of their location. With this tool, you can find files
virtually anywhere on the Internet. Once you have found them, you can
use one of the tools described in this chapter to retrieve them.

164 Nonnative AIX Developer Tools

There are several Archie servers around the world including the fol­
lowing:

Server name

archie.ans.net
archie.au
archie.doc.ic.ac.uk
archie.funet.fi
archie.ngam.ca
archie.rutgers.edu
archie.sura.net
archie. unl.edu

Geographical area covered

Sites connected to ANS access provider
Australia and the Pacific Basin
United Kingdom
Europe
Canada
Northeastern United States
Southeastern United States
Western United States

Other servers are listed in the archive help file shown later in the chap­
ter. Note that you should try to use the server closest to your geo­
graphical area since this will minimize the network traffic as well as
the load on the Archie server.

telnet support for Archie. If you have IP and telnet capabilites to the In­
ternet, you can use telnet to access the Archie servers. For example:

$ telnet archie.mcgill.ca

Connected to archie.mcgill.ca
Escape character is 'A]'.
SunOS UNIX (services.bunyip.com)
login: archie
Bunyip Information Systems, Inc., 1993, 1994, 1995

Welcome to the ARCHIE server

archie>

There are a variety of commands within Archie to search the database
and print results:

help

list

maxhits number

prog string

servers

set variable

show variable

set search type

Prints out help menus.
Lists anonymous FTP servers used by Archie.

Sets the maximum number of matches allowed.

String is the string to match against the files in the database;
probably a filename or substring within a filename.

Lists all current Archie servers.

Sets a boolean variable; use show to see possibilities.

Shows boolean variable. If you don't use variable, it will list all
variables.
Type can be:

exact-exact string match.
regex-string is regular expression.
sub-string is a substring, case independent.
subcase-string is a substring, case must match.

Shows search type.

Unsets a boolean variable.

The Internet 165

sho search

unset variable

whatis string Matches string against index entries in database.

The most common way to use Archie is to search by filename. All
products will contain files which are named in a way that is related to
the product name. This allows you to search filenames collected by the
Archie server by a string using the prog command:

ARCHIE> set search exact
ARCHIE> prog proton
proton: nothing appropriate

no matches

You can use the whatis command to search the associated index da­
tabase. When software is added to the Archie database, the author can
include information which Archie uses to index the files. This allows
you to search for information that may or may not be included in the
filenames for the product. This is a nice way to narrow a search; how­
ever, the information is often out of date and should be used cautiously.
Once you get this information, you can access the server referenced
with anonymous FTP as described earlier in this chapter.

Mail support for Archie. If you do not have full IP access to the Internet,
you will not have telnet access to the Archie servers; however, you still
have mail support. Support for Archie available through the mail inter­
face is very similar to that offered by telnet, and you will not suffer
much loss of functionality. You may wish to submit a mail message to
an Archie server and view the results the next day or simply do not
have time or the inclination to peruse the Archie databases in real
time. Many people who have full telnet access to the Internet still use
the mail interface to access and search the Archie servers.

To access the Archie server via e-mail, simply address the mail to:

archie@server

where server is one of the servers listed earlier in this chapter.
Archie supports what is known as a mail server. This is a process

which runs as a mail background process which, when invoked, proc­
esses incoming mail without human intervention. Many organizations
on the Internet use this to serve files and information via e-mail. Often,
the command to the mail server is contained in the subject line. Archie
requires no subject line information but instead expects the commands
in the text of the message beginning in the first column. You can simply
build commands in the text field of the mail message beginning in the

166 Nonnative AIX Developer Tools

first column. Any command that is not recognized is treated as a help
command, and you will get a help file returned for that command in the
mail message.

Commands supported by the mail server Archie servers are a subset
of the telnet Archie commands, which are:

compress Causes returned mail to be compressed and uuencoded before be­
ing sent

help Causes a help guide to be returned

list expression

path address

Provides a return list of servers matching expression

Gives return e-mail a path other than that contained in the from:
field

prog expression

servers

whatis string

Searches for filenames matching the regular expression

Causes a list of Archie servers to be returned

Causes a list of possible files with string matched in the index
database

quit Ends session

To get a help file on using Archie via e-mail, issue the commands:

$ mail archie@archie.rutgers.edu
Subject:
help

Sometime later you will receive a file containing help information on
Archie and supported commands. For example:

From archie-errors@dorm.rutgers.edu Mon May 29 23:16:36 1995
To: kleining@devtech.devtech.com
From: (Archie Server)archie-errors@dorm.rutgers.edu
Date: Mon, 29 May 95 23:10 -0400
Subject: archie [help] part 1 of 1
> path kleining@devtech.devtech.com
> help

Archie Email Help (Version 3.2)
HELP for this archie email server, as of 11 April, 1994.
To perform an archie search via email, send mail to

archie@archie_server
where <archie_server> is the name of an archie host, some of which
are listed below.
The "Subject:" header in mail sent to archie is treated as part of
the message body.
Command lines begin in the first column. All lines that do not match
a valid commands are ignored.
Empty messages are treated as "help" requests (this file) . If no
command in a particular message can be recognized, the message is
treated as "empty" and this file will be returned.
The current (and complete) list of archie servers can be found with
the "servers" command (described below). A sample list is:

archie.au 139.130.4.6 Australia
archie.edvz.uni-linz.ac.at 140.78.3.8
archie.univie.ac.at 131.130.1.23
archie.uqam.ca 132.208.250.10

Austria
Austria
Canada

archie.funet.fi
archie.univ-rennesl.fr
archie.th-darmstadt.de
archie.ac.il
archie.unipi.it
archie.wide.ad.jp
archie.hama.nm.kr
archie.sogang.ac.kr
archie.uninett.no
archie.rediris.es
archie.luth.se
archie.switch.ch
archie.nctuccca.edu.tw
archie.ncu.edu.tw
archie.doc.ic.ac.uk
archie.hensa.ac.uk
archie.unl.edu
archie.internic.net
archie.rutgers.edu
archie.ans.net
archie.sura.net

128.214.6.102
129.20.128.38
130.83.128.118
132.65.16.18
131.114. 21.10
133.4.3.6
128.134.1.1
163.239.1.11
128.39.2.20
130.206.1.2
130.240.12.30
130. 59 .1.40

192.83.166.12
146.169.11.3
129.12.21.25
129.93.1.14
198.49.45.10
128.6.18.15
147.225.1.10
128.167.254.179

The Internet 167

Finland
France
Germany
Israel
Italy
Japan
Korea
Korea
Norway
Spain
Sweden
Switzerland
Taiwan
Taiwan
United Kingdom
United Kingdom
USA (NE)
USA (NJ)
USA (NJ)
USA (NY)
USA (MD)

If you do not get mail back within 1 day or so, try using the "path"
command described below.
Mail destined for the ADMINISTRATION of individual servers should be
addressed to:

archie-admin@archie_server
where <archie server> is one of the hosts listed above. If you are
having a problem with a particular server, try sending mail to its
administrator first before contacting the general archie contact
address below. They may already be aware of the problem.
To request the ADDITION or DELETION of a site from the archie
database, send mail to:

archie-admin@bunyip.com
To contact the IMPLEMENTORS of archie, send mail to:

archie-group@bunyip.com
For your information anonymous FTP may be performed through the mail
by various ftp-mail servers. Send a message with the word 'help' in
it to:
For BITNET/EARN sites ONLY:

bitftp@pucc.princeton.edu
or (general access):

ftpmail@decwrl.dec.com
for an explanations on how to use them.
Under version 3.2 the email client implements all the
non-interactive commands and variables of the telnet client.
However, interactive commands like "pager" are not supported as they
don't make much sense in the email environment.
For a complete explanation of the the archie system use the
"manpage" command to request a copy of the manual page, what follows
is a short summary of the valid email commands and variables.
NOTE: The "site" command of earlier versions of archie has been
disabled under version 3.2 until it can be reimplemented with the
new architecture of the system.
"Quick and dirty" summary

For those of you who want to get something done now and read the
rest of this later, send the email to an archie server with the line:

find <foo
(where <foo> is the name of the file you are looking for) . You
should get a message back with results of your search. If you want
to be a bit more sophisticated, read on

168 Nonnative AIX Developer Tools

Commands

In the commands that follow, parameters between'[' and']' are
optional. The ellipsis (" ... ") signifies that the previous parameter
can be repeated multiple ti:nes. A 'I' character means "or".
help [<topic> [[<subtopic> J •••]]

find <pattern

prog <pattern

The "help" command by itself produces this message.
An optional topic and subtopic(s) may also be given.
A list of words is considered to be one topic, not a
list of inC.ividual topics. Thus,

help set maxhits
requests he,lp on the subtopic 'maxhits' of topic
'set', not on two separate topics.
This command produces a list of files matching the
pattern <pattern. The <pattern> may be interpreted
as a simple substring, a case sensitive substring,
an exact string or a regular expression, depending
on the value of the variable search.
This is identical to "find" and is included for
backward compatibility with older versions of the
system.

list [<pattern> l
Produce a list of sites whose contents are contained
in the archie database. With no argument all the
sites are listed. If given, the <pattern> argument
is interpreted as a regular expression (see the
archie manual page for an explanation of regular
expressons) against which to match site names: only
those names matching are printed. The format of the
output can be selected through the output_format
variable (described below).
Note that the numerical (IP) address associated with
a site name is valid at the time the site was last
updated in the archie database, but may have changed
subsequently.

mail <address Mail the results generated up until this command to
<address. This must be a vaid email address.

manpage [roff ascii l
Return the archie manual page. The optional
arguments specify the format of the returned
document. "roff" specifies UNIX troff (or nroff)
format, while ascii specifies plain, preformatted
ASCII output. With no arguments it defaults to ascii.

motd Re-display the "message of the day", which is
normally printed at the start of the returned
message.

path <address Set the return email address to <address. This
overrides the default path which the system
automatically generates by looking at the incoming
mail header. This is actually an alias for "set
mail to <add:cess" (see "Variables" below) , and is
included fo:c backwards compatability.

servers Display a list of all publicly accessible archie
servers worldwide. The names of the hosts, their IP
addresses and geographical locations are listed. IP
addresses were valid at the time that this document
was last updated.

domains Give a list of the archie pseudo-domains that the
archie server supports. See the manual page for an
explanation of archie pseudo-domains.

set <variable> <value
Set the specified <variable> to <value. See
"Variables" below.

The Internet 169

show [<variable-name ...]
Without any parameters, display the status of all
the user-settable variables, including such
information as its type (boolean, numeric, string),
whether or not it is set and its current value (if
its type requires a value). Otherwise show the
status of each of the specified arguments. Useful
for finding out what the default settings at a
server are.

unset <variable Unset the specified <variable. The subsequent value
of the variable is defined on a <variable-specific
basis.

version Print the current version of the email interface.
whatis <substring

Variables

Search the Software Description Database for the
given substring, ignoring case. This database
consists of names and short descriptions of many
software packages, documents (like RFCs and
educational material}, and data files stored on the
Internet.
Note that this database is currently maintained by
hand and is certain to be outdated (the net changes
on a daily basis}.

The archie email system has 3 types of variables.
1) Numeric

Numeric variables may have preset internal ranges in which the value
of the variable must lie.
maxhits

maxhitspm

maxmatch

Allow the "find" command to generate at most the
specified number of matches (hits} (permissible
range: 0-1000). Default 100.
Maximum number of files (hits} per filename located
in the find command. See the manual page for more
information. Range 0-1000. Default 100.
Maximum number of filenames to return with the find
command. This is NOT the same as maxhits which
limits the total number of files returned. See the
manual page for more information. Range 0-1000.
Default 100.

max_split_size Approximate maximum size, in bytes, of a file to be
mailed to the user. Any output larger than this
limit will be split in pieces of about this size.
This can be set by the user in the range 1024 to 2Gb
with a default of 51200 bytes. Some mail gateways
will not allow results of over lOOKb and so care
should be taken when setting this limit.

2) String

String variables may have a predefined range of values.
compress The kind of data compression the user can specify

when mailing back output. Currently allowed values
are "none" and "compress" (standard UNIX compress
program} with a default of "none"

encode The type of post-compression encoding the user can
specify when mailing back output. Currently allowed
values are "none" and "uuencode", with a default of
"none". Note that this variable is ignored unless
compression is enabled (via the compress variable} .

language Allows the user to specify the language in which the
help, etc. is presented. Individual servers may be
configured for a range of languages.

170 Nonnative AIX Developer Tools

mail to

match_ domain

match__path

output_format

search

server

sortby

A valid address to mail the results back to. This
overrides tt.e address automatically generated by the
archie system from the incoming mail header. Setting
this variable is equivalent to using the "path"
command.
Restrict the returned files to sites in the colon­
separated list of domains and pseudo-domains. See
the manual page for further information.
Restrict the files returned in the 'find' command to
contain the colon-separated list of pathname
components. See the manual page for further
information.
Affects the way the output of "find" and "list" is
displayed. User settable, with valid values of
"machine" (machine readable format), "terse" and
"verbose", with a default of "verbose".
The type of search done by the "find" (or "prog")
command. The list of valid values is given below in
order of increasing search times. The given search
string may match a directory or filename in the
database.
exact

subcase
sub
reg ex

String has to match exactly
(including case)
Substring match. Case sensitive.
Substring match. Case insensitive.
Regular expression (see ed(l)) search.
Case sensitive. The archie manual
page gives examples of regular
expressions.

There are also compound searches made up of
combinations of the above search methods in sequence:
exact_sub Try "exact". If no matches found use

"sub".
exact_subcase Try "exact". If no matches found use

11 subcase 11

exact_regex Try "exact". If no matches found use
regex.

Note: unless specifically anchored to the beginning
(with A) or ·end (with $) of a line, regular
expressions (effectively) have '' .*'' prepended and
appended to them. For example, it is not necessary
to type

find . *xnlock. *
because

find xnlock
In this instance, the regex match is equivalent a
simple substring match which should be used instead.
The archie/P:rospero server to which the email
interface connects when "find" or "list" commands
are used. Usually defaults to "localhost" on most
archie systems.
Set the method of sorting to be applied to output from the
11 find 11 command.
The five pennitted methods (and their associated
reverse orde::s) are :
none Unsorted (default; no reverse order,

though 'rnone' is accepted)
filename Sort files/directories by name, using
lexical order (reverse order: 'rfilename')
hostname Sort on the archive hostname, in

lexical order (reverse order:
'rhostname')

size

time

3) Boolean

The Internet 171

Sort by size, largest files/
directories first (reverse order:
'rsize')
Sort by modification time, with the
most recent file/directory names
first (reverse order: 'rtime')

Currently the email interface to the archie system has no variables
of type "boolean".

This is an exact duplicate of the message I received when I issued the
help command to an Archie server. You should get something similar.
As an example, if you want to find all information related to protons,
you would do something like:

$ mail archie@archie.rutgers.edu
Subject:
whatis proton

You would receive information with all files found with the correspond­
ing index keyword of proton. For example:

From archie-errors@dorm.rutgers.edu Mon May 29 23:16:35 1995
To: kleining@devtech.devtech.com
From: (Archie Server)archie-errors@dorm.rutgers.edu
Date: Mon, 29 May 95 23:10 -0400
Subject: archie [whatis proton] part 1 of 1
> path kleining@devtech.devtech.com
> whatis proton
Nothing found that matched 'proton'.

In the above example, there were no matches found. An example of
something with a match might look like:

$ mail archie@archie.rutgers.edu
Subject:
whatis gee

You could then search for information on a particular file within the
whatis returned list:

$ mail archie@archie.rutgers.edu
Subject:
prog gee

You now have information describing the location and contents of an
archive on the Internet. You can retrieve it based on FTP or another
method supported by your Internet access provider.

172 Nonnative AIX Developer Tools

6.8.2 FTP servers

As mentioned earlier in this chapter, you can use mail to access FTP
servers if you do not have IP access to the Internet. To do this, you issue
a set of commands which essc~ntially build a script to be executed on a
remote mail server. The bas:lc set of commands available within the
mail message is:

binary

chdir dir

chunksize size

compress

connect [hostname
[login [passwd]]]

dir [dir]

get file

quit

uuencode

Specifies that the file is binary and needs to be encoded with btoa
before trarn;mission begins

Specifies a directory to cd to

Specifies a :maximum file size for transmission

Uses compress to compress the file before transmission

Specifies hostname to connect to and account to use

Generates a directory listing of the current or specified directory

Specifies the file to be sent to you via e-mail

Ends the request

Specifies that the file be uuencoded before transmission instead of
btoa

The FTP mail server will follow all commands as you place them in
the mail message. The Subject: field is ignored, so begin your script at
the beginning of the mail text. The result of the query will be mailed to
you electronically. It may take some time for the request to be serviced
(a matter of hours) since the FTP mail server that you may use may be
heavily loaded with requests or other tasks, and it may take some time
before it gets to your request. The help file tells you where to send mail
if you have trouble.

The only other thing to note about the FTP mail server is that it
breaks files into 64,000-byte files. If the file to be transmitted is larger
than 64,000 bytes, the FTP mail server will break it into as many
64,000-byte chunks as necessary and will transmit these files one by
one. You can change this chunksize with the chunksize command as
described above. Note also that you have to tell the FTP mail server
that you are transferring a binary file if you don't want any translation
to occur.

A simple example of this is:

$ mail ftpmail@decwrl.dec.com
Subject:
ls
quit

This will list all files in the working directory on the default machine
decwrl.dec.com. Note that th9 userid is anonymous unless specified
otherwise.

6.8.3 Gopher

A slightly more sophisticated example is:

$ mail ftpmail@decwrl.dec.com
Subject: anything goes
connect uunet.uu.net
chdir /index/networking
get by-name.Z
ls
quit

The Internet 173

This will retrieve a file named by-name.Z on the UUnet machine in the
directory /index/networking. It will also generate a listing of the direc­
tory contents after the file inclusion. All of this is in the mail message
you will receive back from the FTP mail server machine. The other
point to note is that you can only issue the chdir command once within
a FTP mail script. Therefore, if you want to get more than one file from
different directories, you must send separate mail messages.

Be careful not to confuse the FTP mail server syntax with Archie
syntax since they are clearly not the same. Keep this in mind if you get
some confusing error messages back from either server.

Gopher is a system much like Archie in that it gives you the ability to
search for topics and files on the Internet at random. Gopher was writ­
ten at the University of Minnesota and consists of servers storing infor­
mation on virtually any topic. Along with the Gopher servers, you need
a Gopher client to access all information on the Gopher servers. This
service provides you with a menu-driven interface to a variety of infor­
mation servers. It is not necessary for you to know where the informa­
tion is you are looking at or in what format it is stored, only that you
can access it if you can see the menu item in Gopher.

Gopher clients come from the Internet in a variety of formats, but the
one you will probably be interested in is the X Windows gopher client.
This is available on the boombox.micro.umn.edu machine in the
pub/gopher directory. Use FTP or simply telnet to this machine and
download the Gopher client as you desire. The Gopher client comes
hard-coded with a Gopher server name and address in it, and this will
be a good first connection once you bring up the Gopher server.

There are two Gopher public servers from which you can try Gopher
before installing it on your machine: consultant.micro.umn.edu and go­
pher.uiuc.edu. You can simply telnet to these machines, log on, and in­
voke Gopher to see the standard curses AIX interface to Gopher. Make
sure you have defined your terminal type correctly, or you may have
some strange screen behavior.

The Gopher server knows the format of any resource available to you

174 Nonnative AIX Developer Tools

6.8.4 WAIS

on the network and formats the appropriate command based on type of
·resource you are interested in. As you continue down into the Gopher
menus, you will eventually reach an actual file or piece of information
which requires some action. If it is a file, Gopher will automatically
invoke an FTP session for you and will transfer the file. If it is a login
resource, Gopher automatically creates a telnet session and so on.

A typical first Gopher screen looks like:

$ gopher
Internet Gopher Information Client v0.9

Root Directory

---> 1. Welcome to the U of Illinois Gopher
2. CCSO Documentation/
3. Computer Reference Manuals/
4. Frequently Asked Questions/
5. GUIDE to the U of Illinois/
6. Libraries/
7. National Weather Service/
8. Other Gopher and Information Servers/
9. Peruse FTP Sites/
10. Phone Books/

Press ? for Help, q to Quit, u to go up Page: 1/1

The I at the end of some lines denotes that this is a directory or sub­
menu, while the other lines represent resources. By moving the cursor
to the appropriate line, you can control the context of your environ­
ment. Note that based on the lines above, you can access many types of
information from this one menu. Note also that option 8 provides you
with the capability to move to other Gopher servers and sites.

This is a very brief overview of some of the capabilities and functions
of Gopher. It is an extremely powerful tool to help you to search and use
the Internet more effectively.

Gopher is not the only tool to perform this searching, however. There
are other, newer tools which provide significantly enhanced functional­
ity, such as those documented below.

WAIS stands for Wide-Area Information Servers. The WAIS system
consists of a variety of WAIS database servers which provide text
search capabilities to anyone running a WAIS client. WAIS is based on
an ANSI draft standard known as Z39.50 which has been under devel­
opment for some time in the library community. Z39.50 specifies an ar­
chitecture consisting of information servers which provide text search
services to clients. WAIS clients are available in a variety of formats
including X Windows and curses. To get the WAIS client, FTP from

6.8.5 WWW

The Internet 175

think.com in the directory WAIS. There are a variety of clients based on
machine type from which you can download a WAIS client.

When you issue a search request from a WAIS client, it queries a list
of servers for possible matches. Each server then sends a matching list­
ing back to the client, and the client normalizes the response matches
and displays them. The system with the most relevant matches has a
value of 1000, while the others have proportionally less. This allows
you to move immediately to the document and system which is most
likely to be a good match.

This system is not flawless by any stretch and contains many
strange characteristics and quirks. However, it does provide a rela­
tively simply querying system for the Internet.

There are several example WAIS clients on the network including
quake.think.com and nnsc.nsf.net. You simply log in as WAIS and pro­
ceed from there. This is a good way to see how a real live WAIS client
works before you download your WAIS client.

WAIS has a relatively stupid interface and will not understand com­
plex queries and relational operations such as OR or AND. You must
simply specify words you would like to match as a query and then issue
the query to the known list of WAIS servers. Each WAIS client contains
a listing of known WAIS servers, and from this you can generate a
larger list of servers if you so desire.

The best way to learn more about WAIS is to log on to one of the
example WAIS client machines as mentioned above and try it for your­
self. If you find it useful, simply download the appropriate client and
have at it.

The final tool relevant to this book and Internet tools is the World Wide
Web (WWW). This is a tool which provides hypertext capabilities for
access to the Internet. As with the other tools there are multiple WWW
clients including Mac, PC, and AIX. These support both character mode
and a graphical interface to WWW.

WWW is based on the concept of a home page. The home page is the
intial page of documentation made available to you when you first en­
ter WWW. WWW organizes all information on the Internet into hy­
pertext documents in which you can jump around based on the
hypertext capabilities of WWW. An example home page is shown in Fig.
6.5. The numbers denote hypertext links. To move from one page to
another, simply press the number next to the information you are in­
terested in and press RETURN. This will automatically move you to
this document. From here, you can again move through the document
or use hypertext to move to another document from it.

176 Nonnative AIX Developer Tools

Figure 6.5 Mosaic.

There are several clients known as browsers available for WWW.
One of the first was a browser called Viola. This is an XII-based WWW
client application which provides graphical access to the Internet
WWW. A more recent and powerful browser is known as Mosaic. This
has significant potential and provides true multimedia capabilities to
the average Internet user. Its potential successor is Netscape. Netscape
is faster and more secure than Mosaic; however, Mosaic version 2.0 is
now available and may prove to be the overall winner in the browser
war.

The Internet 177

WWW has not yet really been exploited in ways that make it truly
revolutionary. However, in the next 2 to 3 years, you will see some dra­
matic changes in the way people use tools such as WWW to access the
Internet, and this is going to cause a revolution in the way we live and
work.

6.9 How to Build Software from the Internet

The following chapters on tools from the Internet contain sections on
building the products discussed on the particular machine on which
you are running. However, there is a commonality between all build
procedures ranging from AIX machine to VAXes and mainframes.

Typically, an archive contains a build procedure for the type of ma­
chine it is intended to run on. For UNIX machines, they are typically
makefiles which consist of commands to build all necessary files for the
particular UNIX "flavor" you are running on. For other machines there
are similar files which contain build procedures provided by the soft­
ware developer to ensure that the product builds properly and runs cor­
rectly the first time. Since the focus of this book is AIX, the discussion
of the formats and procedures is limited, but keep in mind that proce­
dures for other non-UNIX platforms are similar based on the function­
ality of the underlying platform.

Traditionally, when you retrieved the software from the Internet, you
had to look through the makefile and make modifications depending on
what architecture you were running on. Different versions of UNIX
have different C compilers, different library locations, and different
versions of make, just to name a few. Consequently, it has sometimes
been difficult to build software from the Internet for certain platforms.

GNUhas made great strides in this area, and they are now providing
a shell script called configure. Most GNU software distributions con­
tain a file called INSTALL which details much of what you need to
know regarding the installation and compilation of all software in the
distribution. Now, instead of having to edit the makefile, you simply
type:

. /configure

from the main directory, and the configure script creates a correct
makefile. Note that it assumes you have your software in the /usr/local
directory and attempts to place executables in /usr/local/bin, libraries
in /usr/local/lib, and man pages in /usr/local/man/manl. If you wish,
and you probably should, to place the resulting files in some other di­
rectory, you need to specify a series of commands to the configure

178 Nonnative AIX Developer Tools

and/or make commands so that the appropriate files will be generated
in a subdirectory that is different from the default.

For all Internet tools described in this book, there is a discussion of
how to build them, and this will show how to build a particular tool into
recommended directory structures. See Sec. 7.4 for more information
on the build process.

6.9.1 Distribution format

AIX archives are typically in one of two formats: tar or cpio. Both are
standard AIX utilities which have their own behaviors and charac­
teristics. The structure of software from the Internet was discussed in
a previous section; suffice it to say that you "unwind" the file in what­
ever format you receive it in. Compression is also an issue, and you
must ensure that you have unpacked or uncompressed the file appro­
priately before beginning installation. See Sec. 6.9 for more informa­
tion on the build process.

Once the software has been restored, it must be built. There are sev­
eral "standard" files with each software distribution. Typically, there is
a README or README.lS'I' or something similar contained within
the directory structure. This should be the first thing read before be­
ginning to build any compilations. It contains release and other infor­
mation pertinent to the building of the product.

6.1 O Understanding Internet Software DocumEmtation

Most Internet packages have software documentation distributed with
them in the form of nroff man pages and/or texinfo documents. These
tools are discussed in Secs. 9.22 and 8.3, respectively; however, it is
worth mentioning here the basic structure of these files in a typical
distribution.

Most tools come with manual pages which typically end in either .1
or .man. These are usually in nroff format and can be viewed with the
command:

$ nroff -man file.man I more

This is what the man command does to unformatted man pages when
you issue the man command itself. While you can view these files with
the man command, you have to construct the proper "MANPATH" and
the proper structure of the directories for the man command to find the
proper input file. It is most often easier simply to issue the above com­
mand.

There is also often a texinfo file distributed with most Internet prod-

6.11 FAQ

The Internet 179

ucts. This file typically ends in . texinfo and consists of input formatted
for the texinfo reader in emacs. This provides a pseudo-hyptertext­
based system which allows you to jump between points in the docu­
ment. You can also use TeX to process the texinfo file into printed
output. This allows you to use one file for both screen display and paper
output. You can also use the stand-alone texinfo reader included on the
accompanying CD to view the texinfo documents even if you don't have
emacs.

The final way you may see documentation is in Postscript. These
files typically end in .PS or . ps. You can print these out or display them
on your screen with tools like Ghostscript and Ghostview.

Sometimes there are doc and man directories and sometimes there
aren't. This is up to the person constructing the distribution, and there
are no hard and fast rules. Simply scan for these files and directories
when you unwind the product.

Much of the information in this book is available in the documenta­
tion delivered with most of the products; you just have to know where
to look. As you use Internet software and other AIX tools more fre­
quently, you will learn how to find your way around the system.

Related to the documentation of a tool are frequently asked questions
(FAQ) files. These files contain questions and answers to frequently
asked questions on a particular topic or tool. Several are included on
the accompanying CD, ranging from XU to Motif and OpenLook. There
are other FAQ files, and you can peruse the Internet for more of these
on your particular topic. The files may also be named faq or some com­
bination of product name and faq or FAQ. Search for faq or FAQ to get
more information about products on the Internet.

6.12 Internet Futures

The future of the Internet is unclear as of this writing. The only thing
that is clear is that the fundamental nature of the Internet has
changed forever in the last 12 to 18 months. With the explosion of com­
mercial access utilizing new technologies such as the World Wide Web,
Mosaic, Netscape, and others, the Internet is growing at rates never
dreamed of by its early users.

Because of the explosion of growth on the Internet, IP addresses are
fast becoming a precious commodity. The IETF is currently working on
the next generation of the IP protocol known as IP version 6 (IPv6.) The
current version of IP is IP version 4 which uses a 32-bit address space.

180 Nonnative AIX Developer Tools

1Pv6 is based on a 128-bit address, which will allow for the repre­
sentation of significantly more addresses than currently supported.

Commercial business is jumping on the "information superhighway''
bandwagon in a big way, and services such as on-line banking, on-line
trading, on-line shopping, and virtually any other activity that you can
imagine is or will soon be occurring on the Internet.

From a developer's perspective, the tools discussed in this book and
many like them are still stored on anonymous FTP servers around the
world. There is a particularly good AIX software server known as
aixpdslib.seas.ucla.edu from which some of the software on the accom­
panying CD was retrieved.

Much is being written about the Internet, but its ability to provide
high-quality software and discussions are its largest value to the soft­
ware developer.

Chapter

7
Nonnative Software
Development Tools

Development software includes software which has been and can be
used to generate other software systems on AIX. While there are many
tools included in this book which do not support the development proc­
ess directly, they are useful in increasing the productivity of the soft­
ware developer. However, these tools are discussed in a different
section of the book. This chapter focuses on tools which are directly
used to generate software systems.

Even though the XL C compiler system that comes with AIX 3.2.5 is
very good, there are many reasons you may want to use a different C
compiler technology such as GNU C. One reason is that AIX 4.1.x does
not include a C compiler by default. Multiplatform support, high per­
formance, cross-compilation capabilities, and other capabilities of the
GNU C compiler system have led to a large following for this compiler.
Because of this, it is discussed in the second section of this chapter. All
programs on the accompanying CD as well as all examples in this book,
unless explicitly noted, have been built with the GNU C compiler.

Another issue which must be addressed before you can begin to build
Internet software such as GNU C is that the software is distributed in
compressed (gzipped) format. gzip is the GNU compression/decompres­
sion system which supports not only pack and compress format files
but its own format as well. This is why gzip is the first tool discussed in
this chapter.

The chapters in the rest of the book outline software packages that
are available from the Internet and a variety of other sources including
IBM. Until recently you had to jump through hoops to get IBM to send
you patches and fixes to support some of the software contained on the

181

182 Nonnative AIX Developer Tools

7.1 gzip

7.1.1 Introduction

accompanying CD. This is no longer true. With the availability of the
FixDist server and the aispdslib server on the Internet, anyone can
now get access to much of the information contained in this book and
elsewhere.

Much of the software on the accompanying CD was retrieved from
the machine named aixpdslib.seas.ucla.edu (128.97.2.211). This ma­
chine contains a variety of directories which contain FAQs, software
source code, precompiled software systems and a variety of other infor­
mation that is very valuable to the AIX user. Simply use the anony­
mous FTP capability of any machine connected to the Internet and
access this wealth of information.

IBM now also has the fixes mentioned in this book for the AIX
operating system including the PTFs available on the Internet. This
service is called Fi:x:Dist and stands for Fix Distribution. The best way
to begin to use FixDist is to anonymous ftp to aix.boulder.ibm.com
(198.17.57.66) and download the FixDist software. Once you have in­
stalled this on your AIX machine, you can access the Fi:x:Dist server and
download patches and other software related to AIX. This will prove to
be invaluable to you as you continue with this book.

These are two of the most important resources available to you for
AIX, and you will want to keep them in mind as you proceed with non­
native AIX software.

gzip is the GNU compression algorithm used to compress most GNU
software products for distribution. gzip supports both compression and
uncompression of its own format and also supports the decompression
of pack and compress files. This makes it the ideal tool for compressing
and uncompressing files on a UNIX platform. Note that gzip and the
often-used PC program called z:ip are in no way related to each other.

The history of the gzip product is that the pack and compress rou­
tines that ship with UNIX contain an algorithm which is proprietary in
nature. Because of this, it is necessary to pay royalties to the owner
when these tools are acquired. As is often the case with Internet soft­
ware, someone decided he or she didn't want to pay royalties to these
people and created his or her own algorithm for compression and de­
compression.

It turns out that the compression algorithm for pack and compress is
proprietary, but the decompression algorithm is not. Therefore, gzip
supports the decompression of both pack and compress files as well as
its own gzip format. This means that there is virtually no file from the
Internet that gzip cannot unwind. This makes it a very powerful tool

7.1.2 Usage

Nonnative Software Development Tools 183

for use with Internet tools. Gzip can also unpack zip files (of DOS and
Windows fame) assuming that they have only a single member and
were compressed in the deflation method.

gzip contains associated tools for viewing compressed files without
uncompressing, changing compressed files from one format to another
(pack to gzip, etc.), and comparing compressed files without performing
uncompression. These tools make it much easier to work with com­
pressed files, especially when disk space is limited.

Since gzip is a GNU product, it is fully covered by the GNU General
Public License and this is how it is distributed.

The basic syntax of the gzip command is:

gzip [-a] [-c] [-d] [-fl [-h] [-1] [-L] [-r] [-S string] [-t] [-v]
[-V] [-#] [file ...]

where -a converts end-of-line using local conventions. This is useful
for DOS to UNIX transfers.

-c writes output to standard output.
-d decompresses.
-fforces compression or decompression.
-h displays help.
-1 lists file sizes before and after compression.
-L displays gzip license.
-n-when compressing does not save original filename or

timestamp. When uncompressing, does not restore the
original filename and timestamp.

-q is quiet mode.
-r follows all directories and uncompresses or compresses files

in subdirectories as well as in the current directory.
-S string uses string as the file suffix instead of the default .gz.
-t checks compressed file integrity.
-vis verbose mode.
-V displays gzip version.
-# is number 1 through 9 for compression levels; 1 performs the

compression the fastest but does the worst job, while 9
takes the longest but maximizes the compression. The
default is 5.

file ... is one or more files to compress or decompress.

You can place gzip default options in the environmental variable GZIP.
These will be overridden by any command line options that conflict
with those in GZIP.

gzip reduces the size of files anywhere from 50 to 70 percent depend-

184 Nonnative AIX Developer Tools

ing on the structure and size of the file. Small files are not as effectively
compressed due to the efficiency of the compression algorithm.

When you use gzip to compress a file, it is replaced with a file of the
same name followed by a .gz. When you uncompress a file, a file with a
.gz extension is searched for and replaced with an uncompressed ver­
sion without the .gz extension .. Note that gzip recognizes the file exten­
sions .tgz and .tax as .tar.gz and .tar.z, respectively, and renames the
files accordingly.

Another command you can use is the gunzip command. The basic sy­
nax is essentially the same as for gzip. In fact, they are symbolic links
to each other. The syntax is:

gunzip [-cdfhlLnqrtvV] [-S string] [file ...]

where the options are exactly the same as for gzip except for the -d,
which is the uncompress option. gunzip is exactly the same as gzip -d.

You can also view files without actually uncompressing them with
the command:

zcat [-fhLV] [file ...]

where the options are again the same as above. zcat will perform a cat
(listing) of the information by uncompressing and piping the results to
standard output, which is most often the screen. This is useful when
you want to see what is conta:Lned in the file before uncompressing it,
especially when disk space is limited.

You would typically pipe the output of the zcat command to a pager
such as more or pg. Because o:f the frequency of this need, there is the
zmore tool. The syntax is:

zmore [file ...]

zmore uses its own pager but does consult the PAGER environ­
mental variable if you want to define a different pager such as pg or
less. Its basic default pager behavior is that of more. Some of the more
basic commands available with this pager are:

/string

!command

i-space

iz

is

Displays the current line number.

Finds the next occmTence of string and positions this on top of the screen.

Invokes a shell command and returns to current location.

Repeats previous command.

i is a number which represents the number oflines to display. A space bar
by itself displays a page defined by the TERM environmental variable.

i lines is the new default window size.

Skips i lines and displays a screenful.

if

q

Nonnative Software Development Tools 185

Skips i screenfuls and displays a screenful.

Quits.

These are fairly standard pager commands and provide much of the
functionality you will need when previewing a file. If you need more,
use an editor.

gzip and related commands will automatically detect the structure of
the compressed file and generate the correct action to uncompress the
file. pack and compress files are automatically recognized and proc­
essed correctly, as is gzip's own format for compressed files.

Keep in mind that gzip understands compressed files with a .z exten­
sion, which is the same as the pack command. You may use gzip to
work with packed files but not the reverse. You will discover this if you
attempt to run the unpack command on a gzip format file.

If you want to compare compressed files, use the commands:

zcmp [captions] file [file ...]
zdiff [doptions] file [file ...]

where captions are options defined by your implementation of cmp.
doptions are options defined by your implementation of diff.
file-if only one file is specified, it is compared against a

matching .z file; if more than one file is specified, it is
compared with previous files.

zcmp and zdiff invoke cmp and diff, respectively. All zcmp and zdiff do
is uncompress files and pass them to the cmp and diff utilities.

You can control the default behavior of gzip through the use of an
environmental variable GZIP. You can define the default options for
gzip by setting these in the GZIP variable. For example:

$ export GZIP="-r -v -9"

When you next invoke gzip, it will work with recursive and verbose
modes enabled and will perform maximum compression, even if you
don't explicitly specify them.

'lb move a file from compressed format (compress) to gzip format, use
the command:

znew (-t] [-v] (-9] [-Kl [-Pl [file.Z ...]

where -t tests new file before deleting original.
-v is verbose mode.
-9 uses maximum compression.
-K keeps the .z file when it is smaller than the new .z.

186 Nonnative AIX Developer Tools

7.1.3 Installation

7.1.4 Conclusion

-Puses pipes to bypass disk utilization, thus saving temporary
disk space needs.

file.Z ... is one or more compressed files to convert.

The installation of the gzip binaries is the first task you must perform
if you are going to use Internet software systems on your AIX platform.
Because all other software packages will come in compressed format,
you must have the gzip software in place before you can unwind and
use or build that particular software. Because of this, you must first get
and install gzip. gzip binaries have been included on the accompanying
CD, or you can build the appropriate gzip binaries from the source code
included on the CD.

To build the gzip binary from the source code, issue the command:

$ make -f Makefile.rs6k

By default, the gzip binary files and associated man pages will be from
this procedure. If you wish to install the binaries, issue the command:

$ make -f Makefile.rs6k install

The standard directory for most GNU AIX software is /usr/local, and
this conforms to the old UNIX standard of using /usr/local as the re­
pository of local and third-party software. If you want to place the re­
sulting binaries in a directory other than /usv/local, you can specify a
command like:

$ make prefix=/usr/kevin -f Makefile.rs6k install

This will place all resulting code in /usr/kevin instead of the default
/usr/local. Note that if you can't get the software from aixpdslib, you
may need to run configure on the code before building with make. con­
figure will figure out the type of machine you have and will generate
the appropriate makefile. If you choose to use the binaries from the CD,
once you have unwound the tar file, you can place the binaries any­
where you like. As long as the bin subdirectory is contained in your
PATH variable, you will be able to find the gzip binaries.

gzip is a very powerful package for generation, control, and manipula­
tion of compressed files. It will handle compressed and packed files as
well as its own gzip format. Along with gzip and gunzip come a variety
of utilities to manipulate compressed files. gzip is needed for almost all
GNU distribution files since they are in gzip format and need to be un-

7.2 gee

7.2.1 Introduction

Nonnative Software Development Tools 187

compressed before use. gzip is clearly one of the most powerful and
widely used Internet tools. Once you have installed both gzip and the
gee system as described in the following section, you can build more
current versions of gzip if they are available. gzip uses the standard
configure system, which provides a relatively easy way to build free
software. See Sec. 7.4 for more information on this capability.

The GNU C compiler is often known as gee and includes not only a C
compiler but a C++ compiler as well. The AIX binaries for gee are avail­
able on the accompanying CD; however, you can also get source code for
any version and build it as described in Sec. 7.2.3. Once you have in­
stalled the gee binaries, you can generate any other system including
the full gee system.

gee is the GNU C compiler and is widely considered to be the best
available, in many cases better than those available directly from ven­
dors. Because of the wide acceptance of the gee, it has become the de
facto standard in many makefile and build procedures. This chapter
certainly cannot cover all aspects of gee; however, it will discuss the
most important aspects of this very good compiler and also describe
where and how to get more information. Much of the information in
this section is taken directly from files delivered with the gee product.
See below for more information.

Since version 2 release of the gee system, both the C compiler (gee)
and C++ compiler (g++) have been integrated together. This provides a
compiler and preprocessor for both the object-oriented C++ environ­
ment and the C language environment. This is the only compiler sys­
tem available today which has this capability. Note, however, that the
run-time libraries for the g++ system known as libg++, are not deliv­
ered with this distribution and must be retrieved and installed sepa­
rately.

Another thing important to note is that because of changes in gee 2.4
and later versions, the newly created binaries are incompatible with
binaries created by earlier versions of gee. Keep this in mind if you at­
tempt to link or use cross-compiled binaries. gee 2.4 and later versions
also supports a floating-point emulation subsystem which makes it
possible to use longer floating-point types as well as to support both big
and little endian environments in a cross-compiler mode. gee 2.4 and
later versions now also support Objective C, which is another object­
oriented environment which provides significant value to object-ori­
ented programmers. Finally, there are a variety of new features for

188 Nonnative AIX Developer Tools

7.2.2 Usage

C++ which are documented in the NEWS file. Remember that to effec­
tively use the C++ capability of gee, you should also use the libg++ files.
These files are contained on the CD included with this book.

It is not the intention of this chapter to provide programming infor­
mation or tips but instead to present some of the capabilities and op­
tions that the GNU compilation system provides. While many options
are discussed in this chapter, they are by no means all the options that
are available. See the GNU documentation included in Using and Port­
ing GNU CC (for version 2.0), which is available from a variety of
sources, including the Free Software Foundation and the gee distribu­
tion in texinfo format. See Sec. 8.3 for more information on how to get
this information.

gee is a GNU product and as such is subject to its GNU General Pub­
lic License as included both in the product distribution and in App. C of
this book.

The basic usage of the gee compiler is:

gee [options I file] .. .
g++ [options I file] .. .

where - option is one of a list of many options some of which are
described below.

- file ... is one or more source input files.
gee invokes the C compiler and uses defaults a standard C

compiler would.
g++ invokes the C++ compiler and uses defaults a standard

C++ compiler would.

The options for gee and g++ are many and can be divided into major
sections which are determined! by functionality. The basic areas of op­
tion functionality, as defined by the GNU documentation, are:

1. Overall options

2. Language options

3. Warning options

4. Debugging options

5. Optimization options

6. Preprocessor options

7. Linker options

8. Directory options

Nonnative Software Development Tools 189

9. Target options

10. Machine-dependent options

11. Code-generation options

Each section will be reviewed and some of the more powerful options
discussed.

Overall options. The overall options section describes options which
apply to the entire command line and compilation process. Some of the
options are:

- E Stops after preprocessing

-s Creates an assembler file for each source code input file

-c Creates object files but does not link to create the executable

- o f i 1 e Places the output in file instead of the standard a.out or * .o

-pipe Uses pipes to commnicate between phases of the compilation process in-
stead of temporary files

-v Verbose mode

-x language Specifies a specific language to compile where the possibilities for lan-
guage are:

assembler
assembler-with-cpp
c
c-header
c++
cpp-output
none
objective-c

Language options. These options provide different levels of support for
different versions and syntax of the various supported GNU languages.
Some of the possible options are:

-ansi

-fdollars-in-identifiers

-fall-virtual

-fenum-int-equiv

-fno-asm

-fno-builtin

-£no-strict-prototype

-fsigned-bitfields

-funsigned-bitfields

-£unsigned-char

Supports ANSI standard syntax.

Supports $ signs in identifiers. This is the default when
the -ansi switch is not used.

C++ only. All member functions declared in the same
class with a method-call operator method are treated as
a virtual function of the given class (except constructor
functions nd new/delete member operators).

C++ only. Allows conversion of enum to int data type.

C doesn't recognize asm, inline, and typeof as keywords.

Tums off support for non-ANSI built-in functions.

This is supported for g++ only. Causes declaration state­
ments to specifically not type function arguments.

Specifies signed bitfields for all machine types.

Specifies unsigned bitfields for all machine types.

Defines the type char to be unsigned for all machine
types.

190 Nonnative AIX Developer Tools

-fsigned-char

-fouriteable-strings

Defines the type char to be signed for all machine types.

s,tores string constants in the writable data segment
and doesn't uniquize them

-traditional

-traditional-cpp

-trigraph

Includes support for Kernighan and Ritchie C syntax.

Includes support for original cpp syntax.

Supports ANSI C trigraphs.

Preprocessor options. These options control the preprocessor phase of
the compilation process. Some of the options available are:

-c
-Dmacro

-Dmacro=string

-Umacro

-E

-H

-M

-MM

-P

-dM

dD

-i file

-include file

-nostdinc++

-undef

-idirafer dir

-iprefix prefix

-iwithprefix dir

-nostdinc

Keeps comments.

Defines macro macro.

Defines macro macro as string.

Undefines macro macro.

Runs only the preprocessor phase.

Displays ea,~h header file as used.

Generates a rule which describes the relationship between all files
in the compilation process. This can be used by make as a depend­
ency listing.

Like -M but only describes header files included with #include.

Does not create #line commands.

Outputs list of macros.

Passes all macros to output.

Processes file as input discarding all output. This makes macros
available to a later part of the preprocessor process.

Processes ff'.e before the regular input file.

Does not search for C++ header files in the standard directories.

Doesn't define any nonstandard macros.

Includes dir in the second include path.

Specifies prefix as the prefix for subsequent "-iwithprefix" options.

Adds dir to 1>econd include path.

Uses only include directories specified on the command line and
not the standard directories.

Linker options. Linker options pertain to the link editor processing
which generates executables from one or more object files. Some of the
more basic are:

-llib

-nostdlib

-static

-logjc

-nostartfiles

-shared

-symbolic

Links with the library lib. lib files are normally archive libraries
(see Sec. 4.5 for more details).

Doesn't use any standard system libraries; uses only those speci­
fied.

Uses static libraries. Dynamic libraries are not used.

Links an Objective C program.

Doesn't use 3tandard system startup files.

Creates a shared object.

Binds references to global symbols when building a shared object.

Nonnative Software Development Tools 191

Directory options. Directory options specify directories on which to op­
erate. Most compilation phases have default directories and areas in
which they look. These commands modify the default behavior of the
compilation commands. Some of the most basic are:

-Bdir

-I-

-Idir

-Ldir

Specifies a directory to search for all compilation process executables
(cpp, eel, ld, etc.).

Directories specified with-I- and with-Idir before -I- are searched only
for #include ''file" and not #include <file>.

Searches for include files in dir.

Searches directory for archive library files.

Warning options. Warning options control the output of all diagnostic
messages. Some of the most basic are:

-w

-Wall

-Wformat

-Wimplicit

-Wswitch

Displays extra warning messages pertaining to optimization prob­
lems, function prototyping, and possible type problems

All-W switches documented below and some others as well

Checks all output statement formats and ensures output variables
match output type definitions

Warns when a function is implicitly declared

Warns when a switch statement is not constructed with all possible
types

-Wunini tialized Warns when an automatic variable is used without being initialized

-Wunused

-fsyntax-only

-pedantic

-w
-wno-import

Warns when a variable or function is not used

Runs a syntax check on the code but doesn't compile

Issues all non-ANSI warning messages as appropriate

Suppresses all warning messages

Inhibits warnings about import statements

There are many other possible warnings you can set when compiling
and building programs with gee and g++. See the man page gcc.1 in the
main directory for more detail on these warning triggers.

Debugging options. Options which support the debugging of your
codes are important and are therefore the focus of one section of this
chapter. The GNU compiler provides many, some of which are de­
scribed below:

-dx Where x is one of the following:
L-dumps after loop analysis
M-dumps all macro definitions
N--dumps all macro names
f-dumps after flow analysis
I-dumps after local register allocation
m--dumps memory usage statistics at end of run
y-dumps debugging information
r--dumps after RTL generation
x-generates RTL for a function instead of compiling it

192 Nonnative AIX Developer Tools

-g

-gcoff

-gdwarf

-ggdb

-gs db

-gs tab

-gxcoff

-p

-pg

-save-temps

-print-file-name=lib

j-durnps after first jump optimization
a-dumps all possible

The dump commands provide information for stages of the
compilation process. This may be used to debug gee itself.

Includes debugging information which can be used by gdb,
dbx, or DWARF. The GNU system allows you to use -g with
optimization. This is the only system available which does
this, and this can be a time saver when you are moving and
porting large amounts of code. The native debugging format
is determined at build time for gee. See Sec. 7 .2.3 for more
details.

Produces debugging informatoin in coff format.

Produces debugging information for DWARF.

Produces debugging information for gdb.

Produces debugging information for sdb.

Produces debugging information in stabs formed.

Produces debugging information in xcoffformat.

Includes information for the prof command.

Includes information for the gprog command.

Saves all temporary files including .cpp and .s files.

Prints the full name of lib that would be used when linking.

-print-libgcc-file-name Sarne as -print-file-narne=libgcc.a.

Optimization options. Optimization will make your code run more
quickly by rearranging statements and reorganizing the way your code
works. This provide significant enhancements in the performance of
your code while requiring almost no work on your part. It does have
one side effect, however. By rearranging the code, you may have prob­
lems with interactive debugging because debugging information in the
executable may or may not match what is being executed. GNU has
addressed this and does provide the capability to debug optimized code.

With optimization options, there are many commands with begin
with -f. The basic structure of these options is:

-foption
-fno-option

where the no- precedes and turns off option. For every -foption, there is
a -fno-option which is exactly the opposite. Because of this, GNU docu­
mentation only describes one or the other. The option described is not
the default. Obviously, to get the default behavior you simply add or
remove the no- options as described, and you can understand the de­
fault behavior of the compiler. The basic -f options described below are
not the defaults.

Some of the more basic options are:

-0

-01

Optimizes.

Sarne as -0.

Nonnative Software Development Tools 193

-02 Highly optimizes.

-03 Highest optimization including -finline functions.

-ffloat-store Doesn't store floating-point variables in registers.

-fno-default-inline C++ only. With this option you must member functions as in
line explicitly rather than assuming it is the default.

-finline Expands functions in line instead of the default of -fno-inline.

-fsave-memo i ted Uses heuristics to compile C++ faster.

-fforce-mem Forces memory operands to be copied into registers before per-
forming arithmetic on them.

-fforce-addr Forces address constants to be copied into registers before per­
forming arithmetic on them.

-finline-functions Expands all functions into their callers.

-ffast-math Optimizes math function.

There are many other -f options related to code optimization; however,
they are beyond the scope of this book. They require a great under­
standing of the compilation process and machine architectures, which
most people do not have. Examine the manual page for gee for more
information if you are interested.

Target options. You can specify a different compiler, including version
and machine architecture, by generating a different target environ­
ment. This allows you to generate code for a machine architecture that
is different from your current one and to use older or newer versions of
the GNU compiler to generate the appropriate code. This is a very pow­
erful feature of the GNU compiler.

Some of the basic options related to this are:

-b machine

-V version

Machine specifies a target machine for which to build the executable. This
relates directly to the gee installation process and its generation as a cross
compiler. See Sec. 7.2.3 for more details.

Specifies which version of the GNU compiler to run. This is useful when
you have installed multiple versions in a cross-compiler environment.

Machine-dependent options. gee and g++ have many features that are
tuned to maximize performance on a particular hardware platform. Be­
cause of this, there are many options which control the exact compila­
tion process for any given architecture. There are sets of -m options
pertinent to several different hardware architectures. Some of the
more basic for the Motorola 6980x0 processors are:

-m68000

-m69020

-m68881

-m68030

-m68040

-mf pa

Compiles for a 68000 processor

Compiles for a 68020 processor

Compiles for a 68881 floating-point processor

Compiles for a 68030 processor

Computes for a 68040 processor

Compiles for a Sun floating-point processor

194 Nonnative AIX Developer Tools

-mshort

-mbitfield

-mnobitfield

Makes int 16 bits wide

Uses the bitfield instruction (this is the default)

Doesn't use the bitfield instruction

For the Sun SPARC processors, they are:

-mfpu

-mno-epilogue

-mv8

-mcypress

:rnsupersparc

Compiles using floating-point instructions

Generates separate return instructions for return state­
ments

Generates SPARC vS code

Generates code optimized for Cypress chip

Generates code optimized for supersparc chip

For the Motorola 88x00 processors, they are:

--mbig-pic

-midentify-revision

-mno-underscores

Compiles position-independent code

Includes ident information in the assembler output

Generates symbol names without a preceding underscore
(_)

-mcheck-zero-division Generates software traps for divide by zero exceptions

Omits debugging information as specified by the 88open
Object Compatibility Standard

-mno-ocs-debug-info

-msvr4

-msvr3

:rn88000

Turns on compiler extensions which are supported in Sys­
tem V Release 4

Turns on compiler extensions which are supported in Sys­
tem V Release 3

Generates code for the 88000 chip

For the RS6000 machine, the options are:

-mno-fp-in-toc Defines no floating-point constants in the table of contents; the de­
fault is -mfp-in-toc.

There are other machine-specific options for MIPS, IBM RT, Convex,
and C2. See the documentation delivered with gee for more informa­
tion.

Code-generation options. These options determine interface options for
code generation including function call definitions and variable and
structure definitions. Some of the most basic are:

+eN

-fshort-enums

-fshort-double

-fno-common

Where N is 0 or 1. +eO declares virtual function definitions as ex­
tern and is used as an interface definition. No code is generated for
this virtual function. +el actually generates virtual function code.

Allocates on as many bytes to an enum as are required.

Makes double same size as float.

Places global variables in bss section rather than generating them
as common blocks.

Nonnative Software Development Tools 195

-fvolatile Defines all memory references through pointers to be volatile.

Generates position-independent code. -fpic

fpcc-struct-return Uses the convention for struct and union values used by the de­
fault C compiler on your system.

There are many other options relating to most major compiler options
areas discussed in this section. See the man page gcc.1 or documenta­
tion from GNU for more information.

The GNU C preprocessor. One of the tools distributed with gee and g++
is the GNU C preprocessor known as cccp. This is a replacement tool
for the standard ccp which comes with most C compilers. This allows
you to include precompiler directives such as #include and #define to
control the behavior of the code and the compiler as well as to build
conditional code based on predefined macros. The basic syntax of the
command is:

cccp [-$] [-Apredicate [(value)]] [-Cl [-Dname [=def]] [-dD] [dM]
[-I dir] [-H] [-I-] [-idirafer dir] [-imacros file] [-include file]
[-iprefix prefix] [-iwithprefix dir] [-lang-c] [-lang-c++l
[-lang-objc] [-lang-objc++l [-lint] [-Ml [-MG] [-MG] [-MDfile]
[-MMD file] [-nostdinc] [-nostdinc++] [-Pl [-pedantic]
[-pedantic-errors] [-trigraphs] [-Uname] [-undef] [Wtrigraphs]
[-Wcomment] [-Wall] [-Wtraditional] [infile I -] [output I -]
[-trigraphs] [-Uname] [-undef] [-Wtrigraphs] [-traditional]

where -$ doesn't support the use of$ in identifiers.
-Apredicate(value) asserts the predicate with value (much like

#assert).
-C preserves comments.
-Dname[=def] predefines name as a macro with a definition of

def.
-dD generates list of #define commands and the results of C

preprocessing except for predefined macros.
-dM generates list of #define commands without any results

from any other commands.
-I dir defines dir as a place to search for include files.
-H displays the name of each included header file.
-I-if any -I dir options follow the -I-, all specified directories

are search for both the #include "file" and #include <file>
directives. Any -I dir options specified before the-!­
option cause only the #include "file" directives to search
in dir and not the #include <file>.

-idirafter dir adds dir to the secondary include search path.
-imacros file preprocesses file and discards all output except

macros which are made available to the rest of the
preprocessor process.

196 Nonnative AIX Developer Tools

-include file includes file in the compilation process.
-iprefix prefix specifies prefix for following -iwith-prefix options.
-lang-c turns off C++-specific features.
-lang-c++ turns on C++ support including comment support and

extra default include directories.
-lang-objc turns on the Objective C #import directive.
-lang-objc++ turns on both -lang-c++ and lang-objc.
-lint examines input code for lint command and precedes with a

#pragma directive.
-M[-MG]-instead of outputting standard preprocessing,

generates rules for a makefile. [-MG] says to treat
missing header files as generated files and to assume
they live in the same directory as the source files.

-MM[-MG] is like -M[-MG] but only outputs files included with
#include.

-MD file is like -M but output is written to file.
-MMD file is like -MD but only outputs user header files, not

system header files.
-nostdinc doesn't use standard include directories.
-nostdinc++ doesn't search for header files in the C++ specific

directories.
-P doesn't generate any# lines as output.
-pedantic checks for ANSI C compliance and issues warnings.
-pedantic-errors issues errors rather than warning as above.
-traditional imitates K&R C, not ANSI C.
-trigraphs supports trigraph sequences.
-Uname doesn't predefine the macro name.
-undef doesn't predefine any of the standard macros.
-Wtrigraphs issues a warning if any trigraphs are encountered.
-Wcomment issues a warning when a comment is encountered.
-Wall is same as both -Wtrigraphs and -W comment.
-Wtradional issues a warning when encountering constructs

which behave differently between ANSI C and
traditional C.

infile I - is infile is the file to be processed. A hyphen (-) denotes
standard input.

outfile I --output is the output file. A hyphen (-) denotes
standard output.

The C preprocessor is the first link in the compilation chain. It is
typically invoked by the cc command but can be invoked separately
with the ccp or cccp command.

cccp provides the function of including header files, expanding mac­
ros, and providing for conditional compilation. It is often used to gener-

Nonnative Software Development Tools 197

ate machine-dependent sections in source programs where the end re­
sult is that only the appropriate lines of code are passed to the C com­
piler itself.

There is a man pages cccp.l included in the gee distribution which
has more detailed information about the options and cccp itself. See
this for more documentation.

g++. g++ is the C++ compiler which comes with gee. It used to be a
script which passed the correct options to gee to invoke the C++ portion
of the gee compiler. However, it is now a full-blown C++ compiler and a
C program. Its options are very similar to those supported by gee with
a few exceptions. The man page g++.1 is a good listing of the issues and
brief commands related to the g++ compiler. See this for more details
ong++.

The other issue related tog++ is your need for libg++. This is a group
of class libraries which complement gee and g++. There are other direc­
tories including libiberty which contain a variety of commonly used
GNU files. See Sec. 7 .3 for more information.

Debugging issues and gcc/g++. GNU distributes a debugger known as
gdb. Section 7 .10 outlines how gdb works and what kind of information
it expects. This is relevant to the gee section because the gee system is
responsible for generation of the appropriate information so that gdb
can function correctly.

The standard debugging system on UNIX is dbx, which comes native
with most flavors of UNIX. You can use dbx on code compiled with gee;
however, gdb has certain features which work better and more effec­
tively with gee-generated code.

One issue directly related to this is the special debugging output for­
mat known as DWARF. DWARF is the standard in System V Release 4
to define standard debugging formats. gee supports DWARF Vl except
in some instances which may cause incompatibilities with SVR4 SDB.
If functionality is replaced by DWARF V2, it is most likely included in
gee, replacing the DWARF VI implementation. These are documented
in the file README.DWARF in the gee distribution. There is work in
progress to finish the DWARF V2 specification, and when this is fin­
ished, you can bet that gee will work toward support of this standard.
In fact many of the features of the early work on DWARF V2 are al­
ready incorporated in gee.

There is not compatibility for DWARF with g++, and there may be
none in the near future since there is some considerable debate about
the need for and relevance of DWARF to C++. Watch the distribution
information with new versions of g++ for more details.

198 Nonnative AIX Developer Tools

7.2.3 Installation

Using gcc/g++ as a cross-compiler. One of the most powerful features of
the gcc/g++ system is its ability to act as a cross-compiler. This means
that gee on one machine can generate code for a different machine ar­
chitecture. For example, if you are running on a Sun, you can generate
an executable that runs on an IBM RS/6000. This is extremely power­
ful and provides multiplatform support from a single machine architec­
ture for not only source code but object and executable code as well. A
simple example of this is given in the Examples portion of the next sec­
tion and some discussion is made in the next section about how this is
accomplished.

For each machine architecture you wish to support, you must install
a version with the configure command and note the target or host ar­
chitecture. This means that you will have a completely separate ver­
sion of gcc/g++ for each architecture you wish to compile code for. For
example, if you are running on an HP machine and plan to distribute
executable code for a SUN and IBM RS/6000 as well, you will need to
install and configure three separate versions of gee on the HP machine
if you wish to perform cross-compilations from one HP.

Now that you are excited about the possiblity of performing cross­
compilation, let's have a brief discussion of what you need to accom­
plish this. In addition to the gee system, you need to provide both a
cross-assembler and a cross-linker. These tools are available from a va­
riety of vendors and can be used with gee to create cross-compiles. You
also need the appropriate header files for a particular machine so that
linking can occur correctly. None of these is a "show stopper" but will
require some additional work with respect to getting the appropriate
tools to provide the cross-compilation capabilities. See the section on
cross-compilation in the INSTALL document for more guidance.

This is a very powerful feature of the gee system and one which you
should take advantage of if you are running in a heterogeneous envi­
ronment of UNIX plaforms. There are several ways you can get the
proper tools assembled to create this capability. Don't let the complex­
ity stop you from pursuing this capability if it is one you really need.
See the next section for more information.

This section will discuss installing gee from the source code. It is in­
cluded on the CD in executable format as well. See the notes on the CD
for relevant issues for installing the executables.

The installation of gee will create various directories including
/usr/local/lib/gcc and /usr/local/bin if they don't already exist (unless of
course you have redefined prefix with some other directory). You can
redirect the result of the builds with specific commands; however, the

Nonnative Software Development Tools 199

default is to write to the /usr/local area. Check your product specifica­
tions and standards before installing gee.

Once you have unwound the tar file, you will notice that there are
several files related to the installation of gee. Some of the more impor­
tant are:

INSTALL

READ ME

README.*, where* stands for a variety of supported platforms in­
cluding ALTOS, APOLLO, DWARF, MIPS, NS32K, RS6000, TRAD,
andXll

ChangeLog. *

NEWS

The INSTALL file contains notes relevant to the building of gee, while
the README files contains specific information on particular platform
issues. Inside the INSTALL file, there is a discussion of a variety of
machine-specific issues. The ChangeLog files contain information on
release information and functionality. The NEWS file contains "note­
worthy changes" in the more recent versions of gee and g++. Examine
these files before proceeding.

The general build recommendation for gee is the same as for most
other GNU commands. If you have built any other versions of gee, you
first need to ensure that you have removed all executables and ma­
chine-dependent scripts with the command:

$ make clean

Now you can run the configure tool, which will build the appropriate
makefiles and install scripts for your platform. There are a variety of
platforms for which you can configure gee. See Sec. 7.4 for more infor­
mation on exact options and machine types for the configure command.

There is a bug in the RS/6000 assembler in versions earlier than AIX
3.2.4. If you are going to use the -g option on the cc, you have PTF
U416277 installed on your machine or the build will not proceed cor­
rectly.

If you are running AIX 3.2.4 or later, the fix is already in place. To
check if this fix is in place, type:

$ as -u < /dev/null

If you get an error about "-n* unknown flag'' you need to apply this
PTF; if not, you can proceed without this.

200 Nonnative AIX Developer Tools

If you are not interested in debug information, remove the -g option
from the CFLAGS macro and the-gl in the LIBGCC2_CFLAGS macro
in Makefile.in before you run the configure command. You also need to
remove the two occurrences of -gO in the crtbegin.o (line 739) and
crtend.o (line 743) targets. If you do not do this, you will get an assem­
bler error that only the PTF mentioned above will fix.

There is also a problem building gee with XLC 1.3.0.0 which ships
standard with AIX 3.2.5. You need to get XLC 1.3.0.1 or later to build
gee from scratch. To get this, get PTF U432238 and install it.

On an RS/6000 machine, you might use a command like:

$ limit mem u
$ limit data u
$ configure --prefix=/usr/local-build=rs6000

The first two commands ensure that you won't run out of memory or
data space. If you don't use the --prefix option, the configure will set up
the default directories for the binaries and library files that result from
the build to be in /usr/local/bin and /usr/local/lib. If you don't want to do
this, use the --prefix and tell configure where you want the make to
create the files. If you are uncertain as to your platform type, use the
default generated by configure. If the type generated by the configure
system is incorrect, match the one which best fits your system, and you
may have to modify the Makefile created before you can successfully
build your product. This should not be the case for gee.

Once you have created the proper build files, you need to examine
the dates on the files c-parse.y, c-parse.c, cexp.y, and cexp.c. If the dates
on the .c files are later than the dates on the .y files, you can proceed. If
this is not the case, you need to either invoke yacc to rebuild the .c files
or use the bison system, which is the GNU equivalent to yacc. See Sec.
7. 7 for more details on GNU bison.

If you are using any other GNU tools such as the assembler (gas) or
the leader (gld), you will need to install them before proceeding. You
can specify these tools instead of the native ones with the --with-gnu-as
and --with-gnu-Id options on the configure command listed above.

Build the compiler by first moving to the main directory and invok­
ing the make command. For example:

$ make LANGUAGES=c CC=/usr/local/bin/gcc

This builds only the C component of the compiler. This is the recom­
mended technique if you are using anything other than the previous
version of GNU C compilers to build gee. Many vendor-supplied compil­
ers will not build gee and g++, and therefore you may want to first build
only the C compiler to minimize the number of possible build problems.

Nonnative Software Development Tools 201

If you are using a previous version of gee, make sure you fully quality
the gee pathname to the makefile to ensure you don't get a partially
built version of gee from the current directory.

Once you have built gee with the above commands, you have built
what is called the stage 1 group of the compiler system. This builds a
minimal implementation of the gee system which you can then use to
build the entire gee and g++ system. 'lb take the results of the phase 1
compilation and move them to proper subdirectory, issue the command:

$ make stagel

This will create a stagel subdirectory which contains all the necessary
files to continue the gee installation. At this stage, it is appropriate to
create and move any other GNU executables that you may need to
build the rest of the products into the stagel subdirectory. An example
tool is gas (GNU Assembler and GNU linker). If you don't want to do
this, you can modify the PATH variables to ensure that the GNU tools
(as and Id) precede the standard vendors' versions of these products.
This ensures that gee finds these tools as it continues to build.

Next you should recompile the gee compiler itself with a full imple­
mentation of the stagel object files and executables. 'lb do this, type:

$ make CC="stagel/xgcc -Bstagel/" CFLAGS="-g -0"

Note that the default is to build everything; however, you can specify
one or more of C, c++, or objective-c to build those individual products.
This means that the LANGUAGES variable above is unnecessary since
this is the default. However, you can specify one or more of the LAN­
GUAGES listed above to build only those languages.

This generates what is known as the stage 2 version of the products.
With this you can generate what GNU calls the stage 3 products by
issuing the the same make command as above but substituting stage2
for stagel in the above string. Remember to include gas and Id as in
stage 1. For example:

$ make stage2
$ make CC="stage2/xgcc -Bstage2/" CFLAGS="-g -0"

This will create a stage3 subdirectory which contains identical infor­
mation to the stage2 subdirectory. With this you can compare the
stage2 and stage3 subdirectories with the command:

$ make compare

202 Nonnative AIX Developer Tools

If you are using Objective-C, now is the time to build the Objective-C
libraries with the command:

$ make objc-runtime CC="stage2/xgcc -Bstage2/" CFLAGS="-g -0"

This will generate the Objective-C libraries in the appropriate directo­
ries.

To install the created files, issue the command:

$ make install CC="stage2/xgcc -Bstage2/" CFLAGS="-g -0"

This installation procedure copies the gee executable to the /usr/lo­
cal/bin directory and eel, cpp, and libgcc.a to /usr/local/lib/gcc-libtrAR­
GETNERSION where TARGET is that specified to configure and
VERSION is the version of gee you are building unless you specified a
--prefix on the configure or make command above. If you used the --pre­
fix directory, the make install will install the binaries in the prefix di­
rectory in a bin subdirectory (as in the case described above), the
libraries in the prefix directory in a lib subdirectory, and so forth. This
is a powerful capability which allows the products to be grouped closely
with the source code and fits with the overall software structure and
philosophy discussed in this book. It will be necessary to include the
correct directory in the PATH variable for the gee executable to ensure
that all other scripts and product builds know of the existence of gee.

You can specify a different directory for these files with the libdir and
prefix switches on the make statement as documented above. Experi­
ment with these variables if you need to modify the location of these
files to conform to your product standards.

If you have problems with the installation related to include file syn­
tax, try the command:

$ make install-f ixincludes

Install the Objective C portion of the compiler with the command:

$ make install-libobjc CC="stage2/xgcc -Bstage2/" CFLAGS="-g -0"

If you want to use the g++ capability of this distribution, you need to
install the libg++ run-time libraries.

If you have problems, you can always type:

$ make clean

If you want to use gee as a cross-compiler system, you must repeat
the above process using a different target architecture in a different

Nonnative Software Development Tools 203

directory structure to create a gee version which will generate code for
this different architecture. Note that there are several problems with
this, not the least of which is that you need to provide cross-linkers and
cross-assemblers. gee generates assembler code which must be assem­
bled and linked for the appropriate platform. You must provide those
cross-assembler and linker files. They are available from a variety of
vendors, including those who develop embedded control systems and
on-line systems. If you can get this technology, gee will provide a trans­
parent executable portability and cross-compilation system. See the
INSTALL document for more information on cross-compilation.

Once you have installed the version for the particular architecture,
you can use machine-specific options (-m ...) for that platform as you
would if that were the native implementation for your current hard­
ware platform.

When you have successful installed the product, you will want to re­
move any excess directories because of their large size. Issue the com­
mand:

$ rm -r stagel

stage2 will contain the correct executables for gee and ensure that you
have the minimum numbers of files to reconstruct gee should you need
to.

There are known problems with using gee. See the PROBLEMS file
for more information.

Examples. Some simple examples of invoking gee follow. To invoke the
compiler with ANSI C language support, type:

$ gee -ansi -o kevin.exe kevin.e

which processes kevin.c and generates an executable named kevin.exe.
To invoke the compiler and build object files without linking the final

executable, type:

$ gee -e filel.e file2.e

The result of the above command is filel.o and file2.o.
If you want to see the preprocessed code as it would be passed to the

compiler, use the command:

$ gee -E kevin.e > kevin.output

and examine kevin.output, which will contain all preprocessed infor­
mation and the original source code.

204 Nonnative AIX Developer Tools

7.2.4 Conclusion

To use directories that are different from the standard for include
files, use a command like:

$ gee -I /usr/loeal/kevin/lib kevin.e

which will cause gee to search in /usr/local/kevin/lib for include files in­
stead of in the standard directories.

To generate files used for debugging, type:

$ gee -g kevin.e

which will create a file a.out, which includes debugging information
which can be use by gdb, dbx, or other debuggers.

Finally, if you want to highly optimize your code after you are confi­
dent it is working correctly, type:

$ gee -02 kevin.e

This will generate an a.out which runs faster than the nonoptimized
version.

To invoke gee as a cross-compiler, use the -b switch as follows:

$ gee -b spare-sun-solaris kevin.e

This will create an a.out file which can run on a Sun machine even
though you may have compiled it on a non-Sun platform. See the sec­
tion "Using gcc/gtt as a Cross-Compiler," above, for more details.

Service. There is a file named SERVICE which provides a listing of
people and organizations which provide support and assistance for gee.
See this file if you are interested in additional support for your gee sys­
tem above and beyond what you get from GNU and the Internet com­
munity.

Much of this information was gleaned from the manual page that
comes with gee. See this manual page and the associated texinfo docu­
mentation for more details.

gee is one of the best C and C++ compilers available today, and it
runs on virtually every platform. With the Version 2 distribution you
get both a C compiler and a C++ compiler. This provides incredible
functionality while maintaining relative simplicity in terms of use and
installation. It should be noted that g++ is a real C++ compiler and not
simply a front-end tool which converts C++ to C and then compiles it.

7.3 libg++

7.3.1 Introduction

7.3.2 Usage

Nonnative Software Development Tools 205

This provides a much better and more powerful capability and sub­
sequent code than some of the other C++ front ends available on the
market today.

There are many options, most of which you will never use. However,
it is nice to know that this kind offunctionality is available if you need
it. There are more options available than are documented in this chap­
ter. See the delivered documentation for more information. gcc/g++ is
one power tool which you should definately investigate.

libg++ is a collection of libraries which are commonly used by g++ and
gee for compilation and construction of programs. Several other librar­
ies come with this distribution, including the liberty library of free soft­
ware. This consists of a collection of commonly used GNU routines and
class libraries. There is a significant amount of documentation in­
cluded with this distribution in the form of texinfo files. See Sec. 8.3 for
more information on texinfo and how to access this information.

libg++ is a GNU product and as such is subject to its GNU Library
General Public License as included in the product distribution and in
App. C of this book.

The usage of libg++ is really from tools like g++. There are no interac­
tive commands which you can execute to produce anything of value.
The value oflibg++ is the class libraries included with the distribution.
There are many class libraries and examples of C++ source code con­
tained in this distribution. Some of the classes in libg++ 2.6 are:

IOStream List

Stream LinkList

Obstack Vector

AllocRing Pl ex

String Stack

Integer Queue

Rational Deque

Complex PQ

Fix Set

Bit Bag

206 Nonnative AIX Developer Tools

7.3.3 Installation

Random

Data

Curses

Map

GetOpt

Projects

These classes provide numerous capabilities to work with a variety of
different objects with the g++ compiler. There is more documentation
in the .info files in the libg++ subdirectory. See this and Sec. 8.3 for
more detail.

The first file to examine in the distribution is the ./libg++-
2.6.2/README file. This contains various pieces of important advice
that you should be aware of before attempting to build the product.
Some of the more important points are:

Use gee to compile libg++, and use a version of gee that is at least as
high as the version oflibg++, in this case gee 2.6.2 or greater (prefer­
ably 2.6.3).

If you haven't installed the gee compiler in the expected /usr/local
area, you must create a symbolic link in the main directory (one level
above the libg++ subdirectory) which points directly to the gee ex­
ecutable so that the make can find gee.

Don't use GNU sed 1.12 or you will have build problems.

The installation of libg++ is very straightforward and uses configure
like most other GNU programs do. At the top directory of the libg++
distribution (probably libg++-2.6.2), type the following to generate the
proper Makefiles for your machine:

$./configure rs6000

The other issue is to make sure configure can find the gee compiler
since this is important to a successful build. If you have used the make
install for gee, the configure will know where to look; however, if you
have placed gee in a directory other than /usr/local/bin, you will need to
create a symbolic link in the libg++-2.6 subdirectory (one level above
the libg++ directory). An example of an ln to create a symbolic link is:

$ ln -s /usr/local/gcc/gcc-2.6.2/bin/gcc gee

This creates a symbolic link in the current directory (in this case
/usr/gnu/libg++/libg++2.6.2/bin) named gee which point to the gee com­
piler created in the previous section of this chapter. It appears, on the

Nonnative Software Development Tools 207

surface, that this may not always work and that you may have to place
a similar symbolic link in the /usr/local/bin for gee to ensure that con­
figure for libg++ finds gee to include in the Makefile. Without this,
libg++ may not use gee and may not compile correctly. Watch out for
this.

Once you have made the gee compiler available to configure, you can
configure your machine. For example, on an RS/6000 running ADC, you
would type:

$ limit mem u
$ limit data u
$./configure --prefix=/usr/local rs6000

The first two commands ensure that you don't run out of either mem­
ory or data space. This will create a Makefile which you can then exe­
cute. If you are using an RS/6000, you will run into the same
compilation problem you had with gee related to the use of the -g debug
option. You must remove all references to the -g options in the resultant
Makefile or Makefile.in. If you don't, you will get a fatal compiler error.
You can eliminate this error by calling IBM and requesting PTF
U416277. As before, if you are running ADC 3.2.4 or later, this is fixed
for you. Once you have fixed this issue, you can proceed with the com­
mands:

$ make CXX="gcc -Wa, -u -0" cc="gcc -0"

This will compile all included libraries in libg++. Note that you must
have compiled the C++ sections of gee to build libg++. If you haven't
compiled all object-oriented parts of gee, you will get error messages
regarding a lack of availability of eel plus. If this is the case, see the
section on gee above to find out how to build full-blown gee.

Optionally, you can now type:

$rm /usr/local/lib/g++-include/*.h
$ make install

if you want to place the resultant files in the /usr/local/lib areas or
wherever you defined your prefix area.

Finally, you can test your results with the command:

$ make check

This will generate and execute some test to ensure that your build
process was successful. If you have errors, you may need to rebuild
from scratch. If you continue to get errors, see the documentation for
potential problems.

208 Nonnative AIX Developer Tools

7.3.4 Conclusion

7.4 configure

7.4.1 Introduction

7.4.2 Usage

libg++ contains a variety of class libraries from curses to iostreams to
data types. By using these class libraries as well as the other library
files provided with libg++, you will get a good look at some excellent
class libraries and applications you can build with them.

GNU has begun distributing most of their software with a tool called
configure. configure examines your machine and structures all appro­
priate build tools such as makefiles and install scripts for the proper
machine and software type. One of the biggest problems with Internet
software has been the installation. Because of the differences between
UNIX implementations, often building software for a particular "fla­
vor" of UNIX has been difficult if not impossible. Only with great modi­
fications to either the source code or the makefiles were you able to
build the software on a given platform. GNU has attempted to fix much
of this problem with their configure tool.

configure prepares a source code system to be built. This tool will
save hours of activity and frustration by providing a consistent and ro­
bust software-building interface.

The basic syntax for the configure command is:

configure HOST [--target=TARGET] [--srcdir=DIR] [--rm] [--site=SITE]
[--prefix=DIR] [--exec_prefix=DIR] [--program_prefix=DIR]
[--tmpdir=DIRJ [--with-PACKAGE[=YES I NO] J [--norecursion] [--nfp]
[-s] [-vV] [--version] [--help]

where HOST is the name of the host machine on which to target.
--target=TARGET builds sources for TARGET and not for the

default of the current machine.
--srcdir=DIR looks for source code in DIR directory.
--rm removes the current configuration; doesn't create one.
--site=SITE uses specific makefiles for SITE.
--prefix=DIR defines location of install files (default is /usr/

local).
--exec_prefix=DIR sets the root directory for host-dependent

files.
--program_prefix=DIR configures installation files to install

programs in DIR.
--tmpdir=DIR defines directory for temporary file creation.

Nonnative Software Development Tools 209

--with-PACKAGE[=YES/NO) sets a flag for the build to
recognize the existence of PACKAGE (the default is yes).

--norecursion configures only the current directory.
--nfp specifies the lack of floating-point units.
-s suppresses status messages.
-vis the verbose option.
-V displays configure version number.
--version is same as -V.
-help displays usage summary.

Most INSTALL files describe the correct usage of configure for each
GNU package distributed.

TARGET descriptions. The basic format of the TARGET descriptions
for the different supported platforms is CPU-COMPANY-SYSTEM,
where each of the three fields can be represented by one of a set of val­
ues. The values for the CPU field are:

a29k, alpha, arm, cN, clipper, elxsi, h8300, hppal.0, hppal.l, i370,
i386, i860, i96D, m68000, m88k, mips, ns32k, pyramid, romp, rs6000,
sh, spare, sparclite, vax, we23k

For COMPANY, they are:

alliant, altos, apollo, att, bull, cbm, convergent, convex, crds,
dee, dg, dolphin, elxsi, encore, harris, hitachi, hp, ibm,
intergraph, isi, mips, motorola, ncr, next, ns, omron, plexus,
sequent, sgi, sony, sun, tti, unicorn

For SYSTEM, they are:

aix, acis, aos, bsd, clix, ctix, dgux, dynix, genix, hpux, isc,
linux, luna, lynxes, roach, minix, newses, osf, osfrose, riscos, sea,
solaris, sunos, sysv, ultrix, unos, vms

The COMPANY field can be ignored if you can uniquely identify the
target system with the CPU and SYSTEM fields. For example, rs6000-
aix is unique and ibm is not required.

You can add version numbers to the end of SYSTEM to more specifi­
cally define a particular target system. For example, you can use
rs6000-ibm-aix31. There is no guarantee that specifying a particular
version of an operating system will generate a different result than
nonspecification, but it can't hurt.

There are also aliases for the CPU-COMPANY combination. Some of
the more popular are:

3300, 3bl, 3bN, 7300, altos3068, altos, apollo68, att-7300, balance,

21 O Nonnative AIX Developer Tools

convex-cN, crds, decstation-3100, decstation, delta, encore, fx2800,
gmicro, hp7NN, hp8NN, hp9k2NN, hp9k3NN, hp9k7NN, hp9k8NN, ifis4d,
iris, isi68, m3230, magnum, merlin, miniframe, mmax, news-3600,
news800, news, next, pbd, pc532, pmax, ps2, rise-news, rtpc, sun2,
sun386i, sun386, sun3, sun4, symmetry, tower-32, tower

There are a variety of bugs and behaviors for each of the possible
configurations which are documented in the INSTALL file which comes
with the documentation. Some examples are:

- elxsi-elxsi-bsd There are current known problems building gee; contact
mrs@cygnus.com for more details.

- m88k-svr3 There are problems with the typically shipped Green Hills C com­
piler which suggest you should use a previous version of GNU C to
generate V2.

- m88k-svr4 You need to create a file called string.h containing #include
- ns32k-sequent <string.h>.
- rs6000-*-aix There is a problem with the IBM assembler. See the file

README.RS6000 for more information on this problem.

You can check for the existence of a particular machine configuration
type with the command:

$ config.sub name

where name is a machine name such as sun, ibm, hp, etc. This is a very
useful to test before beginning the build process on your system.

The other important feature to focus on is the -exec-prefix option.
This provides you with the ability to place the binary files in a different
directory structure from the non-architecture-dependent files that can
either be in /usr/local or in a directory specified by -prefix option. This
is useful if you are exporting a filesystems which contains these pro­
grams in a heterogeneous environment. For example, exporting /usr/lo­
cal to Sun, HP, and IBM machines can be easily supported with the
exec-dir option.

Finally, there is a common makefile label throughout most free soft­
ware packages which use configure. After you have used configure to
build a system, you may want to install it. Most packages will support
this methodology, and it is well described in the coming sections and
chapters. But to summarize, the recommended methodology in most
cases is:

$./configure
$ make clean
$ make target-machine
$ make prefix=/usr/local install

The configure builds the appropriate makefile. Next, the make clean
removes any possible files which have been built on other machines.

7.4.3 Installation

7.4.4 Example

Nonnative Software Development Tools 211

This ensures that you get a clean compile and everything is rebuilt
from scratch. Next, the make with the target-machine option will cre­
ate any binaries and library files which are necessary to run the prod­
uct. Usually, these files will be created in the local subdirectory
hierarchy (e.g., ./ghostscript/ghostscript-2.6). This allows you to test
the executable before installing it in a directory for public use. The fi­
nal command installs the product in a specified directory (the prefix
variable) or in the default /usr/local subdirectory.

Some makefiles are different, and you should see the appropriate
makefile before you build your product to ensure that you are placing
files where you want them to go.

Since configure comes with most newer GNU systems, there is no need
to install it as a separate product. Therefore, this section is really un­
necessary, and in fact configure is not distributed as a separate prod­
uct.

There are many examples in this book which use configure, and a fairly
standard methodology for using configure has been established. Be­
cause of its frequency, a simple example using configure is displayed
here for demonstration purposes. You will learn more as you build and
configure other tools from GNU in other sections of this book.

To configure a product for an AIX machine and include the ex­
ecutables in a subdirectory named bin, use a command like:

$ configure --target=rs6000 --prefix=/usr/local
$ make clean
$ make
$ make install

This example will generate the appropriate makefile for a RS/6000
running AIX. Next the $make clean command removes any executables
and libraries which may cause the make to function improperly. Fi­
nally, the $make will build the product and potentially move files into
the prefix directory structure. Finally, the $make install command
causes the product to be copied into the /usr/local subdirectory and
causes the manual pages as well as the libraries and executables to be
generated and stored in the appropriate subdirectory. Again, this is a
slightly different methodology than documented earlier; however, the
results should be the same. Note that the make command has the pre­
fix directory defined in it due to its definition on the configure com­
mand. This is why the prefix option is not necessary on the make

212 Nonnative AIX Developer Tools

7 .4.5 Conclusion

7.5 make

7.5.1 Introduction

command line. Remember that most of the time the make command
will not copy (install) the resultant files unless you explicitly use the
install option; however, this is not always the case, so beware.

Note that, as this example shows, you can use configure in combina­
tion with make to generate the appropriate executables and library
files. You can either issue options like prefix with the configure com­
mand or the make command. Both are equally correct and will accom­
plish the same thing.

The final thing to note about the install with configure is that it
seems to have trouble with directories that aren't there. This means
that if you need any subdirectories, particularly those related to your
prefix path, you should create them before you issue the make install
command or you may get some nasty error message that install failed.
If you see these, look carefully at the directory in which install was
trying to operating and make sure it exists.

The configure command will become clearer as you use it to build
products throughout this chapter and others in this book. See the fol­
lowing sections for more examples.

configure is a very poweful tools distributed by GNU to ease the port­
ing and building of tools on multiple platforms. By removing and hid­
ing inconsistencies between UNIX platforms and compilers, configure
makes porting and building software on different architectures simple.

Some older versions of GNU tools don't have the configure programs,
and you will have to check makefiles and source code for compatibili­
ties and inconsistencies. While configure will not fix all problems re­
lated to multiplatform support, it removes the majority of problems
and makes porting relatively straightforward.

It is a good idea to check for the existence of newer versions of soft­
ware if the program does not build correctly the first time on a ma­
chine. Most Internet products have been ported to a large variety of
UNIX platforms, and if you experience trouble with the build, check for
a newer version of the product before wasting too much time messing
with the build procedures of the current product.

gmake (now called make) is, as you would expect, GNU's version of
make. Make is a tool used for software development and maintenance.
It allows you to build only the parts of a program which have changed.
By building a makefile which contains information on which files are a
part of the final executable and describing the structure of those files

7.5.2 Installation

7.5.3 Usage

Nonnative Software Development Tools 213

and how they fit together, make can prevent a considerable amount of
errors and inconsistencies later in the software development process.
When you change one piece of an application, make rebuilds only those
pieces that changed and leaves the rest untouched. This save a consid­
erable amount of time over rebuilding the entire executable after each
change. make is extremely powerful for software developers and GNU
fully supports make functionality. See Sec. 5.4 for more detail on make.

There are some fixes and new capabilities with make 3. 70 over ear­
lier releases. See the NEWS file for more details.

gmake (or make) is a GNU product and as such is subject to its GNU
General Public License as included both in the product distribution
and in App. C of this book.

The installation of the make system is straighforward.
As is often the case with Internet software products, you should first

print out the README file in the main directory. And as with most
GNU products, you must first configure the products for your particu­
lar environment. In the case of AIX, the configure system is intelligent
enough to build the system correctly. 'lb build the system, use the com­
mands:

$./configure cc="gcc -traditional"
$ make -f makefile.rs6k

Note that you can build make with either native XLC or you can use
gee. Of course on AIX 4.1 you don't have a native C compiler, so you will
have to use gee unless you have purchased the separate C compiler for
AIX4.1.

Next, to install the product type:

$ make install prefix=/usr/local

This is all there is to building and installing gmake. You can now pro­
ceed to other sections to learn more about gmake.

There are a few other subtle things you can do with the configure if
you want. See the INSTALL file for more information if you are inter­
ested.

The syntax for the gmake command is:

gmake [-f makefile] [option] ... target

214 Nonnative AIX Developer Tools

where -fmakefile defines a makefile other than the default makefile or
Makefile files.

option consists of one or more of the following options:
-C dir-changes directory to dir before searching for makefile.
-d-debugging mode. Gives more information about files and
processing.
-ffile-uses file as makefile input.
-i-ignores all errors.
-I dir-similar to compiles; use dir to search for included
makefiles. Can be used more than once on a single make
command to search multiple directories.
-j jobs-specifies the number of jobs you want to run
simultaneously.
-k-continues after an error has occurred. Files unrelated to
the failed target will still be made.
-1 load-no new jobs will be run ifthere are other jobs running
and the average load on the systems is load (in percent).
-n-prints out commands and results but doesn't execute
them. Useful for debugging.
-o file-doesn't remake file even if the .o file is older than its
associated source file.
-p---prints database that results from reading makefiles. This
generates a schema for the building and stucture of your
program. 'lb print the default database, use the
-f/dev/null with the -p switch.
-q-prints zero if targets are up to date and nonzero if they
are not. Does not execute any commands.
-r-doesn't use implicit rules including suffixes.
-s-silent mode. Doesn't print out any commands as they are
executed.
-t-touches files to fool make and prevent recompilation.
-v-prints the current version of make.
-w-prints working directory.
-W file-tells make that file has been modified even if it hasn't.

One of the big differences between gmake and most other make fa­
cilities is its support of the concept ofrelative path builds. The variable
VPATH is often discussed in many of the configure scripts used to build
many of the products discussed in this book. The configure utility uses
this capability to generate binaries in directories other than where the
source lives. gmake also has much richer support for substitution refer­
ence functionality.

The other very nice feature is the jobs support (-j). gmake will allow
you to create and execute multiple jobs or commands at the same time.

7.5.4 Conclusion

7.6 flex

7 .6.1 Introduction

Nonnative Software Development Tools 215

It will automatically generate a number of job streams to execute the
build more quickly by splitting the compilation job into multiple
streams which are independent of each other. You can limit the load on
the machine with the -1 option. Explore this feature if you have the op­
portunity to create multiple job streams from a single makefile.

A simple example of creating a multistream job is the following com­
mand:

$ make -j 3 all

This will attempt to create up to three jobs to compile all executables
and link them for a final executable. If you have a large number of file
compilations which must occur before a link, this is a good strategy to
speed up the build process since you can be busy compiling while an­
other compile job is waiting for I/O. This can significantly speed up a
build if used properly. Note that you don't need to do anything special
to your makefile in order to take advantage of this capability. gmake
will do as much as it can transparently. This is a simple example of the
power of gmake.

GNU make is a fully compatible version of make that runs on a variety
of platforms. It is generally seen as at least as good as the default ver­
sion of make on your machines and often is better. There are often sub­
tle differences in make functionality and behavior between machines
and operating systems that are not discovered until after the project
has begun. With GNU make, you can avoid many of the pitfalls and
problems associated with different flavors of UNIX by using GNU
make on all platforms associated with your software development.

Finally, by using advanced functions of gmake such as multiple job
stream support and relative path support (VPATH), you can make your
build processes quicker and better.

The latest release of flex is 2.4.6, which has a variety of fixes that help
the compile process and greatly simplify the configuration of the flex
product. The NEWS file contains the details of the changes between
various releases of flex 2.4.6. See this file for more details.

flex is a replacement for lex. While it is significantly faster than
standard lex, it does not maintain complete backward compatibility
with lex, and therefore, you must be careful.

216 Nonnative AIX Developer Tools

7.6.2 Usage

flex stands for fast lex and is a fast lexical analyzer. It allows you to
scan and operate on input and look for patterns on which to operate. A
typical use oflex and flex is to generate parsers of text which allow you
to write relatively simple and straightforward routines which will ana­
lyze input information and structure the corresponding output accord­
ing to rules defined in the flex input file.

The resulting output of a flex input file is a C source code routine
named lex.yy.c which defines a routine yylex(). This routine can be
compiled with a standard C compiler and the -lfl option in the C compi­
lation statement. When the resulting code is executed, it parses the in­
put and applies the rules from the flex input file to process the input
and generate the appropriate output.

In-depth lex and flex syntax is not the topic of this chapter; however,
the basic syntax and operations of flex will be presented to familiarize
you with its basic operation and functionality. See Secs. 5.5 and 5.6 for
more information about them.

flex is a BSD-related product and as such is subject to the copyright
restrictions of The Regents of the University of California. A copy of the
license is included both in the product distribution and in App. C of this
book.

The basic syntax for flex is:

flex [-FILT8bcdfinpstv -C[Fefm] -Sskeleton] [file ...]

where -Fuses the fast scanner table.
-I generates an interactive scanner.
-L tells flex not to generate #line directives in lex.yy.c.
-T is trace mode.
-8 generates an 8-bit scanner.
-b generates backtracking information to lex.backtrack.
-c is the null option (useful for backward compliance only).
-d is debug mode.
-f is full table or fast scanner mode.
-i generates a case-insensitive scanner.
-n is the null option (useful for backward compliance only).
-p is the performance report to standard error.
-s supresses unmatched scanner input to standard output.
-t displays output to standard output instead of to the default

lex.yy.c.
-v generates summary statistics to standard error.
-C[Fefm] is the table compression commands where:

F-uses alternate fast scanner representation.

Nonnative Software Development Tools 217

e-generates equivalence classes.
f-generates full scanner tables.
m-generates meta-equivalence classes.
no option generates compressed tables but no equivalence or
meta-equivalence classes.

-Sskeleton overrides default skeleton scanners file.
file ... is one or more files on which to operate.

flex generates programs it calls scanners. These scanners (typically
named lex.yy.c) contain code which recognizes lexical patterns. The in­
put file to flex is called the rules file. It contains pairs of directives
which consist of regular expressions called patterns and corresponding
C code sequences called actions. When the resulting scanner is com­
piled and executed, it scans input for matching regular expressions and
executes the corresponding C code.

flex is typically used for input parsing and manipulation. See Sec.
6.6.3 for some examples.

While regular expressions have been discussed in other sections of
this book, flex uses an extended set of regular expressions for its rules
file, and it is useful to summmarize their basic syntax here:

c

[abc]

[abd-f]

[AA-Z\t]

regexp*

regexp+

regexp?

regexp{2,5}

regexp{2,}

"string"

\num

\xnum

regexplregexp2

"regexp

regexp$

<<EOF>>

<sl,s2>regexp

Matches any character 'x'.

Matches any character except newline.

Matches a, b, or c in that order.

Matches a, b, or any character from d through f.

Negated character class. This means any character but A through Z
and a tab.

Zero or more regular expressions.

One or more regular expressions.

Zero or one regular expression.

Two to five regular expressions.

Two or more regular expressions.

Literal match of string.

Where num is an octal number.

Where num is a hex number.

Regular expression 1 followed immediately by regular expression 2.

Regular expression at the beginning of a line.

Regular expression at the end of a line.

End of file.

Regular expression when start condition sl or s2 is realized.

The precedence of these operators is exactly as in other regular expres­
sion operators, and they are listed in order from highest to lowest
precedence above.

The basic format of the rules file is:

218 Nonnative AIX Developer Tools

definitions
%%
rules
%%
code

where definitions consist of the variables and function definitions that
you would normally place in the global declaration section of your code.
You can also include name definitions, which allow you to define sym­
bolic names for regular expressions. For example, DIGITS [0-9] and
LOWCHARS [a-z] are common name definitions. These can later be
referenced with:

{name}

syntax. For example:

{DIGITS}

would reference the regular expression (0-9). There are almost an infi­
nite number of things you can do with this section. It is really applica­
tion dependent.

The rules section consists of pairs of patterns and actions. Patterns
must begin in the first column, and the associated action must begin on
the same line as the pattern. There are a variety of rules pertaining to
pattern matching, including negated character classes matching newl­
ine characters unless explicitly stated and the unique occurrence of be­
ginning of line and end of line operators. See the flexdoc. l file for more
details.

The action part of the rules section consists of pure C code. You can
also include several flex directives such as:

ECHO

BEGIN

yymore()

yyless(n)

yyterminate ()

unput(c)

input()

Displays token on the screen

Places scanner in a start condition

Appends matched token to current yytext value

Returns all but first n characters of the current matched token to the
input stream to be rescanned

Acts as a RETURN statement

Places character c back to the input stream

Reads the next character from standard input

flex uses a token-based mechanism which defines token by strings
separated by white space. This is a common methodology for a parser
such as flex. All commands in the resulting scanner work on the cur­
rent token. The token is made available to the program as a pointer
yytext. The length of the token is contained in yyleng. This mechanism

Nonnative Software Development Tools 219

can be effected with the -I option, which generates what is known as an
interactive scanner. This means that instead of the default action to
read ahead one character before matching a pattern, the scanner will
only do this when absolutely necessary. This saves processing time and
makes interactive usage more efficient. The general rule stated with
respect to this is to use -I if the input is going to be interactive; other­
wise, don't use -I.

The default rule is that of simply displaying input text on the output
stream. The flex input file looks like:

%%

Note that if you compile and execute this, it will simply echo all that
you type in.

Finally, the code section consist of C code which can make use of the
flex-generated scanner to manipulate input files. This section contains
the logic of your program and will contain the largest part of the proc­
essing capacity of the resulting scanner.

The resulting lex.yy.c file is large relative to the the flex input file. A
simple example flex input file is that listed above, namely:

%%

If you run flex on this, you get the file:

include "stdio.h"
define U(x) x
define NLSTATE yyprevious=YYNEWLINE
define BEGIN yybgin = yysvec + 1 +
define INITIAL 0
define YYLERR yysvec

struct yysvf *yyestate;
extern struct yysvf yysvec[], *yybgin;
define YYNEWLINE 10
yylex() {
int nstr; extern int yyprevious;
while((nstr = yylook()) >= 0)
yyfussy: switch(nstr) {
case 0:
if(yywrap()) return(O); break;
case -1:
break;
default:
fprintf(yyout,"bad switch yylook %d",nstr);
} return(O); J
/* end of yylex */
int yyvstop[] = {
0,
0};
define YYTYPE char
struct yywork { YYTYPE verify, advance; J yycrank[]

220 Nonnative AIX Developer Tools

0,0, o,o,o,o,o,o,
0' 0};
struct yysvf yysvec[]
0' 0, 0'

yyunput(c)
int c; {

unput (c);
}

The ellipses(. ..) represent large pieces of missing code. In the interests
of space, several hundred lines of code have been removed. The thing to
realize is the complexity and size of this file. The power of flex is that it
generates much of the parsing logic that you would have to write if you
were to generate these routines yourself. You can affect the size and
speed of the parsing by using the -C option. You can use a command
like -Cem and generate the smallest table and, therefore, the slowest
execution, or you can use the -CF option to generate the largest table
and the fastest execution. This entire issue is related to tricks that flex
does to increase parsing speed.

flex builds equivalence classes which are merely equivalent repre­
sentations for patterns. For example, you can use the regular expres­
sion [a-c] which is equivalent to ab c. flex creates tables of information
which store these equivalencies. The more equivalencies you store, the
larger the table but the faster the processing time. This is the trade-off
relative to the -C option.

Start conditions allow you to define conditional rules. To create a rule
with a start condition, use the syntax:

<string>regexp

where <string> is any string which represents that start condition.
regexp is any regular expression.

For example, you can create a start condition known as KEVIN with a
command like:

<KEVIN>"kevin"

This rule will be activated when you place the scanner in KEVIN start
condition with a command like:

%s KEVIN

in the definitions section of the flex input file. You can also use the key­
word BEGIN to define a start condition within your code. The typical
implementation is to use a global boolean variable and test its value to
define a start condition.

For example, you might see a section of code like:

7.6.3 Examples

if (name="KEVIN") then
BEGIN(KEVIN)

etc

Nonnative Software Development Tools 221

This will execute the start condition KEVIN for the scanner.
There is a very good section on performance in the flexdoc. l docu­

ment included with flex. See this for more details on how to get the
maximum performance out of your flex system.

There are a variety of macros which you can redefine with flex. The
most basic are:

YY_DECL Declaration ofyylex

YY_INPUT Redefines the way yylex gets it input

YY_USER_ACTION Defines a user action to be executed before an action

YY_USR_INIT Defines a user action to be executed before scan begins

yywrap () Redefines the end of file condition return code

One of the simple ways you can use flex to manipulate text is to let the
scanner remove any specified text strings from the input file. An exam­
ple rules file named example.flex might look like:

%%
"string to rernove 11

You can first run flex on this file with the command:

$ flex example.flex

This generates a file lex.yy.c, which is the scanner file. This is a C code
file which can be compiled and executed. Note that lex.yy.c does not
have a main function declaration and therefore must be compiled and
linked with the command:

$ cc -lfl lex.yy.c

This generates a file a.out which can then be executed as you would
any other executable. Note that if you use lex (and not flex), you need to
use the option -11 instead of -lfl to generate the same resulting ex­
ecutable.

Assume you have an input file named example.input which contains
the following information:

linel
line2
line3
line4
string to remove
line 6

222 Nonnative AIX Developer Tools

When you execute the command:

$ a.out < example.input

the resulting output will be:

linel
line2
line3
line4
line 6

You can redirect this as you normally would with the command:

$ a.out < example.input > example.output

Now the file example.output contains the above output.

7.6.4 Differences between lex and flex

The basic differences documented between flex and lex are:

yylineno lex variable is not supported by flex.

input() is not redefinable in flex, at least in accordance with POSIX
specifications.

output() is not supported.

flex supports exclusive start conditions.

flex expands definitions with enclosing parens, while standard lex
does not.

%r (ratfor) is not supported by flex.

After a call to unput(), yytext and yyleng are undefined.

The precedence of{} and A are different with flex.

To reference yytext outside of the scanner, you declare yytext as "ex­
tern char *yytext" in flex instead of "extern char yytext[]".

yyin is not defined until the first scanner execution with flex, unlike
lex which defines yyin to stdin.

Special table-size declarations required by lex are not needed by flex
and are ignored.

Multiple actions on the same line are supported by flex.

yyrestart() is available in flex.

yyterminate() is available in flex.

Nonnative Software Development Tools 223

There are other subtle differences and most are documented in
flexdoc.l. See this document if you need more details. Certainly per­
formance is better with flex than with most lex implementations. As
your rules files get large, this becomes a significant benefit.

7.6.5 Special flex 2.4.6 notes

7.6.6 Installation

With flex 2.4.6 there is a subdirectory named MISC which contains
special files and notes for various platforms. See the README file for
details on some new features of flex 2.4.6 as well as for a listing of obso­
lete features.

The installation of flex is very straightforward. There is a very basic
makefile which contains a few comments at the beginning that discuss
POSIX and System V support issues. By including a macro definition
on the make command line, you can override any possible definitions,
and the make should run successfully.

The build of flex is very straightforward. Issue the commands:

$./configure
$ make

This will create an executable named flex and will copy it to the /usr/lo­
cal directory. There is also a file named makefile.rs6k which you can
use in lieu of the configure command to use this type:

$ make cc="gcc" -f makefile.rs6k

To ensure that the build process occurred correctly, issue the com­
mand:

$ make test

There should be no results from the diff command. If there are, you
have a problem and you need to go back and review your makefile for
potential problems on your system. If not, you can install in the /usr/lo­
cal default directories with the command:

$ make install prefix=/usr/local

if you want; otherwise, simply place the resulting flex executable in
your path and have at it.

You may also want to modify the macros BINDIR, LIBDIR, AUXDIR,
and MANDIR to point to some location other than the default /usr/lo-

224 Nonnative AIX Developer Tools

7.6.7 Conclusions

7.7 bison

7. 7 .1 Introduction

7.7.2 Installation

cal. Any choice should be consistent with your product support meth­
dology.

flex is a very powerful tool which provides functions above and beyond
most vendor implementations of lex. One of its most powerful features
is in its relationship to yacc, which was not discussed in this section.
See the documentation accompanying flex for more details. There are
several flex input files in the software on the accompanying CD. See
the groff distribution for a good example of a lex/flex file and of a
yacc/bison file.

Much of the information in the section was taken from the files flex.l
and flexdoc.1. flexdoc.1 contains a lengthy and comprehensive over­
view of flex and is a must read before attempting any real use of flex.
Several of the examples in this section were taken directly from these
documents, and they will prove invaluable as you become more profi­
cient with flex.

bison is the GNU replacement for yacc (yet another compiler compiler).
The standard input file has a standard suffix of .y and the output is C
source code. bison is really a language and precompiler system which
allows you to parse and modify input according to formats specified in
the bison input file.

Bison is backward compatible with yacc and supports yacc input
files. It is a GNU product and as such is subject to its GNU General
Public License as included both in the product distribution and in App.
C of this book.

The basic installation of bison is straightforward. bison uses the config­
ure subsystem from GNU which constructs the appropriate Makefile
from some configuration files.

As with most of the other newer GNU packages, you must first con­
figure the software for your particular machine with the configure com­
mand:

$ configure rs6000-ibm-aix --prefix=/usr/local
--exec-prefix=/usr/local

7.7.3 Usage

Nonnative Software Development Tools 225

This will generate the appropriate Makefiles for you to then build the
product. If you have trouble with the configure command, see Sec. 7.4
for more information.

It appears that the bison Makefile assumes that you have the proper
subdirectories created before it can correctly create files in them. This
works well for /usr/local; however, if you change the path of the final
executables with the --prefix, you need to manually create the following
directories in the /usr/local directory before executing the make com­
mand: bin, man/manl, info, and lib. Once you have done this and con­
figured your machine, you can build the software. 'Th do this, use a
command like:

$ make clean
$ make install

This will generate all executables and place them in lib, bin, and man
directories under the /usr/local directory. If you don't specify the install
option, the executables and other files will be copied into the directories
specified with the prefix option on the configure command. Using the
install option is not a recommended practice in large environments
since you may unintentionally overwrite software. See Sec. 6.6 for
more information.

You can override macros and options with either configure or make.
See Sec. 7.4 for more information.

Once you have compiled and linked bison, you are ready to execute
as described in the rest of this chapter. If you have questions or needs,
reference the INSTALL file in the bison distribution; it contains more
information specific to configure and make which may help with the
bison installation.

The basic syntax for bison is:

bison [-b file-prefix] [--file-prefix=file-prefix] [-d] [--defines]
[-1] [--no-lines] [-o out file] [--output-f ile=output-f ile]
[-p prefix] [--name-prefix=prefix] [-t] [--debug] [-v] [--verbose]
[-VJ [--version] [-y] [--yacc] [--fixed-output-files] file

where -b file-prefix defines a prefix to be used by all bison output files.
--file-prefix=file-prefix is the same as -b file-prefix.
-d generates an additional output file containing macro

definitions for the token type names defined in the
grammar and the semantic value type YYSTYPE. This
file has an exension of .h and a filename which is the
same as file.

226 Nonnative AIX Developer Tools

--defines is the same as -d.
-1 does not place #lines in the bison output file.
--no-lines is the same as -1.
-o outfile specifies output filename.
--output-file=outfile is the same as -o outfile.
-p prefix renames external symbols used by the parser to use

prefix instead of the default yy.
--name-prefix=prefix is the same as prefix.
-t outputs YYDEBUG so debugging is enabled.
--debug is the same as -t.
-v is the verbose option. The output file containing the verbose

information has the same filename as the input file with
an extension of .output instead of .tab.c.

--verbose is same as -v.
-V displays the version of bison.
--version is the same as -V.
-y makes output filename y.tab.c to maintain backward

compatibility with yacc.
--yacc is same as -y.
--fixed-output-files is same as -y.
file is the bison input file to be operated on.

As you can see, most commands have two options that accomplish the
same thing. This is historical and has to do with different parsing
mechanisms on UNIX and how you might establish your input parsing.
There should be no differences between the single and double hyphen
options to the bison command.

See the included bison.1 manual page and bison.texinfo file for more
information since much of this information was taken directly from
there.

7.7.4 Differences between yacc and bison

bison is very compatible with yacc, including support for yacc input
files. The only differences are in the output naming conventions and
the @N operator.

bison will create an output file with the same filename as the input
file except for changing the .y input file suffix to a .c. In other words,
yacc always creates an output file named y.tab.c regardless of the input
filename. bison, on the other hand, will keep the original filename. If
you have a bison input file named kevin.y, when you execute bison, you
will get an output filename ofkevin.tab.c. This is a nice advantage for
bison, but it does tend to confuse make since it has default rules about

Nonnative Software Development Tools 227

yacc output filenames. Keep this in mind when you are building your
software systems.

The other key differences are in bison's support of@N. The @N gives
you access to the character number, beginning line number, and ending
line number of symbols in the current rule. This is not available with
yacc.

7.7.5 Differences between yacc and yacc

7.7.6 Conclusion

7.8 patch

7.8.1 Introduction

There are several versions of yacc available, including a Berkeley ver­
sion and an AT&T version, which provide slightly different functional­
ity. You need to be extremely careful as to which one you are using
because you may or may not get different behavior. This is dependent
not only on which version of UNIX you are using but on your path on a
given machine. For example, on some versions of SunOS, you have two
versions of yacc, one in /usr/bin and the other in /usr/5bin. Keep this in
mind when building makefiles and developing software systems.

The differences between tools on different UNIX platforms are one of
the main reasons to use a tool like bison; it buys you complete portabil­
ity between heterogeneous platforms. This becomes essential as you
distribute your software systems to more than one UNIX architecture.

bison is a parser generator which makes it easy to parse and interpret
command input lines as well as file contents of a given structure. Pars­
ing is one of the most time consuming of all software development ac­
tivities, and bison provides you with a faster interface and developent
cycle for generating this parsing code.

patch is a GNU application which is responsible for providing and in­
stalling patches to GNU software systems. patch supports the various
outputs from diff as well as the diff output from the GNU diff ex­
ecutable.

By simply distributing a diff file, you can use patch to generate any
required changes from one version to the next. An example of that is
included on the accompanying CD with Ghostscript. If you look in the
tar subdirectory for Ghostscript, you will see four compressed patch
files. Uncompress (gzip -d) them and examine them to learn more
about the structure of the patch input files.

228 Nonnative AIX Developer Tools

7.8.2 Usage

The basic syntax for the patch command is:

patch [-b suff] [-B pref] [-cl [-d dir] [-Eefsv] [-o file] [origfile
[patchfile]] [+ [options] [origfile]] ...

where -b suff--suff is the backup extension instead of .orig or N.
-B pref.-pref is the prefix of the backup filename.
-C forces patch to use patch file as a context diff.
-d dir changes directory to dir before executing any patch

commands.
-D sym causes patch to use #if def... #endif construct to make

changes.
-E removes empty files after patches are applied.
-e causes patch to treat patch file as an ed script.
-fforces mode for patch.
-1 is loop patch. This ignores whitespace mismatch problems in

the diff.
-s is silent mode.
-n interprets patch as a normal diff.
-tis similar to -fbut skips patches for which a file to patch can't

be found and those with mismatched versions.
-v displays patch version.
-o file generates output file named file.
origfile is original file to be patched.
patchfile is file containing patch information.

There are many other options which allow you to change the structure
of your patch files and change the default behavior of the patch com­
mand; however, since you will probably never use them, they are not
documented here. For exact information on the syntax of the patch
command and all associated options, see the manual page patch.man
in the main patch directory.

As stated in the introduction, patch applies the results of diff com­
mands to files. This provides a simple and consistent way of providing
software patches to systems currently in use. patch is the most com­
mon way Internet software is patched and is therefore widely used.

The default behavior of patch is to apply the diffs to a given file and
replace the original with the updated file. The original file is given an
extension of .orig in the same directory. If the backup already exists,
patch creates a copy of the backup file by changing the first lowercase
letter in the file extension to uppercase. If all characters in the backup
filename are uppercase, it begins removing a letter from the name un­
til it creates a unique filename. This is then the second-level backup
file.

Nonnative Software Development Tools 229

patch supports several different types of patch files and is intelligent
enough to determine which type of patch file it is operating on. You can
override this with command line options, but this is not recommended
unless you know what you are doing. patch also has some intelligence
to help it determine when a patch files is corrupted, and it attempts to
fix the patch file to ensure the correct updates to the original files. If it
cannot, you will get an error, and patch will fail.

If you are patching large files, you may want to set the TMPDIR
variable which specifies the location of all temporary files. The default
location is /tmp. Finally, you can set the variable SIMPLE_
BACKUP _SUFFIX to change the default backup file suffix from .orig
to anything you want.

The most common use of patch is without command line arguments
and without origfiles. The basic syntax is:

$ patch <file

where file is the patchfile. This will apply all patches within file to all
corresponding files in the current directory, creating new original files
and renaming the original file with a .orig file extension.

Ghostscript 2.6.1 on the accompanying CD contains four patches
which are contained in the tar subdirectory for Ghostscript itself. A
piece of one of the patches is included here to illustrate the structure of
a patch file:

Ghostscript 2.6.l Patch #1

To apply this patch, cd to the directory containing the ghostscript
source and use:

patch -s < ThisFile

patch will work silently unless an error occurs. If you want to watch
patch do its thing, leave out the "-s" argument to patch.

See the readme.fix file, which follows, for a summary of the fixes:

*** /dev/null Sun Jun 27 07:26:01 1993
--- readme.fix Thu Jun 17 11:18:48 1993

*** 0 ****
--- 1, 118 ----
+ Copyright (C) 1993 Aladdin Enterprises. All rights reserved.
+
+ This file is part of Ghostscript; it is licensed under the same
+ terms as the rest of Ghostscript. If you do not have Ghostscript,
+ you do not have the right to have this file.
+
+Fixes for Ghostscript 2.6.1

230 Nonnative AIX Developer Tools

+ ---------------------------
+
+ (last update: 6/14/93)
+
+ This file summarizes a number of important quality fixes for
+ Ghostscript 2.6.1. The fixes are supplied in the form of
+ replacements for corresponding files in the 2.6.1 release. Please
+ report any problems.
+
+ 6/5/93
+ ------

+
+ Problem:
+ The Unix install script used gs rather than $(GS) as the name of
+ the executable.
+ The Unix install script didn't copy gs_dbt_e.ps to $(gsdatadir).
+ Files affected:
+ unixtail.mak (and unix-*.mak, built from it using tar_cat)
+
+ Problem:
+ The ps2ascii script still referenced ps2ascii.ps under its
+ old name gs_2asc.ps.
+ Files affected:
+ ps2ascii
+
+ Problem:
+ ps2image.ps had a 'pop' missing in the written-out definition of
+ 'max' in the boilerplate code it put at the beginning of
+ compressed files.
+ ps2image.ps got a typecheck if a scan line had no repeated
+ data in it anywhere.
+ Files affected:
+ ps2image.ps
+
+ Problem:
+ rectfill drew rectangles with vertices specified in clockwise
+ order as 0-width lines.
+ Files affected:
+ gsdpsl.c
+ gdevx.c

*** 1.1 1993/06/27 12:24:14
--- devs.mak 1993/06/09 08:27:08

*** 108,113 ****
--- 108,114 ----

gifmono Monochrome GIF file format
gif8 8-bit color GIF file format
pcxmono Monochrome PCX file format

+ # pcxgray 8-bit gray scale PCX file format
pcx16 Older color PCX file format (EGA/VGA, 16-color)
pcx256 Newer color PCX file format (256-color)
pbm Portable Bitmap (plain format)

*** 756,765 ****

pcx_=gdevpcx.$(0BJ) gdevpccm.$(0BJ) gdevprn.$(OBJ)

! gdevpcx.$(OBJ): gdevpcx.c $(PDEVH) $(gdevpccm_h)

pcxmono.dev: $(pcx_)
$(SHP)gssetdev pcxmono $(pcx_)

pcxl6.dev: $(pcx_)
$(SHP)gssetdev pcx16 $(pcx_)

--- 757,769 ----

Nonnative Software Development Tools 231

pcx_=gdevpcx.$(0BJ) gdevpccrn.$(0BJ) gdevprn.$(0BJ)

! gdevpcx.$(0BJ): gdevpcx.c $(PDEVH) $(gdevpccm_h) $(gxlum_h)
pcxmono.dev: $(pcx_)

$(SHP)gssetdev pcxmono $(pcx_)
+
+ pcxgray.dev: $(pcx_)
+ $(SHP)gssetdev pcxgray $(pcx_)
pcxl6.dev: $(pcx_)

$(SHP)gssetdev pcx16 $(pcx_)?
*** 1.1 1993/06/27 12:24:14
--- gdevpcx.c 1993/06/01 12:21:26

*** 1,4 ****
! /* Copyright (C) 1992 Aladdin Enterprises. All rights reserved.
This file is part of Ghostscript.
--- 1,4 ----
! /* Copyright (C) 1992, 1993 Aladdin Enterprises. All rights

reserved.
This file is part of Ghostscript.

*** 20,25 ****
--- 20,26 ----

/* PCX file format devices for Ghostscript */
#include "gdevprn.h"
#include "gdevpccrn.h"

+ #include "gxlum.h"
/* Thanks to Phil Conrad for donating the original version */
/* of these drivers to Aladdin Enterprises. */

The first part of the above patch contains documentation which is in­
serted into the file readme.fix. This is documented by the section:

*** /dev/null Sun Jun 27 07:26:01 1993
--- readme.fix Thu Jun 17 11:18:48 1993

0 ****
--- 1,118 ----

The original file to be modified is surrounded by asterisks (*), while the
modified file information is surrounded by hyphens (-). In this case
there is no original file, and a new file readme.fix is created with 118
lines (denoted by 1,118.)

The second file to be modified is devs.mak. The section:

*** 1.1 1993/06/27 12:24:14
--- devs.mak 1993/06/09 08:27:08

108, 113
--- 108,114 ----

232 Nonnative AIX Developer Tools

7.8.3 Installation

7.8.4 Conclusion

says that devs.mak original lines 108 through 113 should be replaced
by lines 108 through 114, which are documented directly below the ---
108, 114 ----line.

This is standard output structure from a diff command. See the diff
manual page for more information and create some simple examples to
understand more clearly how this patch system works. However, un­
less you are going to create patches, it will probably be unnecessary for
you to understand the structure of the patch files to use them.

Most often the syntax is:

$ patch < patchfile

in the proper directory and the rest is magic.

The installation of patch is very simple. patch uses the configure sys­
tem to create a relatively straightforward makefile which can then be
executed normally. The basic commands are:

$./configure prefix=/usr/local
$ make

You can also use the makefile provided on the CD with the command:

$ make cc="gcc" -f makefile.rs6k

Note that the configure is intelligent enough to generate the appropri­
ate makefile, and the makefile works without any additional option. If
you want to place the binaries in some other directory than the main
patch subdirectory, use the make install option (for more details, see
Sec. 7.4).

There were no problems with this simple methodology on the
RS/6000 running AIX. You may have to change a compilation or linking
variable if you encounter problems on your machine, but it is unlikely.

patch is a very powerful tool which allows you to distribute software
updates easily and cleanly. It is also the way most Internet tools are
now updated and should be another tool in your personal UNIX tool
kit.

By supporting both standard diff and GNU diff, patch allows diff files
to be used to support distributed file maintenance and updates.

7.9 gas

7.9.1 Introduction

7.9.2 Usage

Nonnative Software Development Tools 233

gas is the GNU assembler. It is an assembler which compiles and cre­
ates binary files from assembler code. It also provides a cross-compiler
capability for assemblers. This means that you can compile assembler
code to run on an architecture machine that is different from the one on
which it is compiled. This is a powerful feature and is often used by
software engineers to support heterogeneous platforms as easily as
possible.

Even though it can be used as a stand-alone assembler package, its
primary function is to serve as an assembler for many of the other
GNU packages. While there are assemblers distributed with vendor
systems, gas is a very sophisticated package which supports all of the
kind of things GNU products tend to do. You may want to reference this
and install it before you begin to install and configure most of the other
GNU products described in this book.

gas is a GNU product and as such is subject to its GNU General Pub­
lic License as included both in the product distribution and in App. C of
this book.

The basic syntax of gas is:

as [-al-all-as) [-DJ [-fl [-Idir) [-Kl [-L) [-ofile) (-Rvw)
[-- I file ... J

where -a creates an assembly listing file including symbols.
-al creates assembly listing only.
-as creates symbol listing only.
-Dis ignored by as; used for as compatibility.
-f does not perform any preprocessing.
-Idir uses dir for include files.
-k issues warnings when differences tables are altered for long

displacements.
-L keeps local symbols.
-ofile-output file is file.
-R merges data section into text section.
-v displays as version.
-w supresses warning messages.
-- is standard input.
file ... is one or more files to assemble.

Much of the above information was taken from the as man page named
./gas/doc/as.l included in the distribution on the accompanying CD. See
this file for more information.

234 Nonnative AIX Developer Tools

7.9.3 Installation

There is also information in texinfo format which can be viewed with
either texinfo mode in emacs or with the info program available with
the texinfo distribution on the CD. There is also a section on documen­
tation in the ./gas/README file in this distribution. If you want to cre­
ate TeX output files, you will need to install TeX on your machine.

If you want to build the TeX.dvi (device independent) files, you must
use a command like:

$ cd gas-2.1.1/gas/doc
$ make as.dvi

and have TeX installed and available. If you want to build the texinfo
files, use a command like:

$ make info

instead of the make as.dvi as listed above. Note that here you must
have the texinfo available. See Sec. 8.3 for more information.

The installation of gas is very straightforward and consists of moving
to the main directory of the gas distribution and typing:

$ limit mem u
$ limit data u
$. /configure

The first two commands ensure that you have enough memory and
data space available. If you need to know your current target, type the
command:

$./config.guess

This will generate a target string for you. For example, on AIX 3.2 with
software in the /usr/local/gas/gas-2.2.3 subdirectory you might type:

$./configure --prefix=/usr/local/gas

Then you simply issue the make command:

$make CC=gcc

This will build all the proper executables and libraries for gas. There
are a few additional notes in the NEWS file and the associated
README files in the gas subdirectory. See these if you want more in­
formation. Of particular interest is the file README.coff, which de-

7.9.4 Conclusion

7.10 gdb

Nonnative Software Development Tools 235

scribes support for coff and "vanilla" linkers. See this if you are inter­
ested in coff support.

If you would then like to install the package in the /usr/local/bin
area, simply type:

$ make install

gas provides an assembler for many machines and tools, including gee,
gdb, g++, emacs, and many others. If you use gas, you will be assured
of minimal problems when building these tools. You can also use gas as
a very powerful assembler which supports multiple architectures and
machines. Take a look at this technology if you are interested in assem­
bler technology since it is a fairly good implementation of a cross-plat­
form assembler.

7.10.1 Introduction

7.10.2 Usage

gdb is the GNU debugger which you can use to interactively debug ex­
ecutable6 applications in a UNIX environment. gdb works much like
dbx. It provides interactive debugging capabilities for languages such
as C, and C++ and also supports remote debugging and cross-debug­
ging capabilities that allow you to debug a remote application on a
hardware architecture that is different from the local one. The inter­
face for remote debugging is still somewhat primitive and will require
some effort to configure. There are stubs which can be modfied, includ­
ing m68k-stub.c , i386-stub.c, and sparc-stub.c. Examine these for
more details on how to perform remote debugging over a serial line.

gdb is a GNU product and as such is subject to its GNU General Pub­
lic License as included both in the product distribution and in App. C of
this book.

The basic syntax of the gdb command is:

gdb [-help] [-nx] [-q] [-batch] [-cd=dir] [-fl [-b bps] [-tty=dev]
[-s file] [-e prog] [-se prog] [-x file] [-d-dir] [-c file]
[-c file] [prog [core I ID]]

where -help displays interactive help screens.
-nx doesn't run any initialization files such as .gdbinit.
--q is quiet mode. Doesn't print introductory message.

236 Nonnative AIX Developer Tools

-batch executes all commands given by the -x option and
returns.

-cd=dir uses dir as the working directory.
-f is used with emacs to output current position information

within the file.
-b bps sets line speed of any serial line used for remote

debugging.
-tty=dev defines dev as standard input and output.
-s file reads symbol table from file.
-e prog uses prog as the executable file.
-se prog uses prog as the executable file and reads the symbol

table from it.
-x file is file containing gdb interactive commands to be

executed.
-d=dir searches dir for executable files.
-c file uses file as a core file to examine.
prog is executable to run with gdb.
core is the core dump to analyze.
ID specifies the id of the process you want to attach to.

gdb gives you the ability to debug executable programs, analyze core
dumps, and attach to running processes and analyze their operation.
As with all interactive debuggers, gdb provides basic capabilities to
monitor variables and program operation and alter execution by chang­
ing values and conditions during execution.

Basic interactive operation. The basic commands available to gdb are
very similar to dbx. Some of the basic interactive commands are:

break next

ht quit

continue run

help step

print

These are all documented both in the manual page shipped with gdb
and the Postscript reference card refcard.ps. See these for more docu­
mentation and more commands for gdb. Also see Sec. 4.2 for more in­
formation on debugging techniqes and topics.

There continue to be many enhancements to the gdb product, most of
which are documented in the file ./gdb/NEWS. See this file for changes
listed by release to gdb for the last few revisions. The other file of inter-

7.10.3 Installation

Nonnative Software Development Tools 237

est is the ./gdb/README file which documents many of the issues you
will encounter when building gdb and looking at the documentation.

A prebuilt info file (for the Info system and emacs) is contained in
this release as ./gdb/gdb.info. Use emacs or some other tool to examine
this. See Sec. 8.3 for more information on this. There is also a new file
named gdb-4.13/gdb/refcard.ps which is a Postscript file containing a
nice reference card on all gdb commands and syntax. You can build this
file if you need to from the texinfo input file with the command:

$ make refcard.dvi

Note that you need TeX to build this file. See the README file for
more details.

The installation of gdb is very simple. First uncompress the distribu­
tion file with gzip -d or gunzip. Next unwind the tar file into a local
software directory. The directory structure created begins with a root
directory of gdb-4.13 and includes several subdirectories, including li­
brary directories, help directories, a texinfo subdirectory, and a
README file.

Tu build gdb, use the commands:

$ configure TARGET --prefix=dir

where TARGET is the architecture you are currently using and the dir
is the prefix where you would like the resulting files placed. If you have
questions about the configure and build process, see Sec. 7.4.

A simple example of building on an AIX machine might be:

$./configure rs6000 --prefix=/usr/local

$ make CC=gcc

If you using gmake, you might multithread the build with a com­
mand like:

$ make -j5 CC=gcc

This creates the gdb executable in the gdb subdirectory. You can move
this into any directory according to your product structure specifica­
tions. You can create different versions of gdb for different target ma­
chines based on the --target option in the configure command. This
gives you the ability to debug a program on a remote machine that is
not of the same architecture as the local machine. See Sec. 7.4 and the

238 Nonnative AIX Developer Tools

7.10.4 Conclusion

gdb/README file in the gdb subdirectory for more information on
building cross-compiling capabilities with configure and gdb.

There is a premade reference card in a file named ./gdb/refcard.ps
which is a Postscript file and can be printed to any Postscript printer.
You can also preview this document and view it on line with a tool like
Ghostscript. You will make use of this quite often until you get more
familiar with the gdb tool. There is TeX-formatted output in the
gdb.info file which can be built and used by emacs, and other tools can
be used to manipulate and view this information.

Finally, there is a gdb test suite which requires the presence of a tool
called dejagnu, which is available from any Internet source. If you are
interested in this, see the ./gdb/README file for more information.

Known problems. There are several known problems, including prob­
lems with backtraces on the RS/6000, incorrect reporting of struct val­
ues on SunOS, and breakpoint problems when watchpoints are
enabled. See the gdb/README file for more details.

Examples. 'lb debug a file named kevin.out, use the command:

$ gdb kevin.out

'lb analyze a core file and determine where the crash occurred, use
the command:

$ gdb core

You can also attach to a running process with a command like:

$ gdb kevin.out 1111

which will attach to a process with an id of 1111. You can attach to and
detach from a number of processes during a gdb session. See on-line
help for more information. See also Sec. 4.2 for more details on similar
debugging techniques.

gdb is a very powerful debugger which provides most of the capability
you would want in an interactive debugger. It also works well with
other GNU products such as gee and gas and allows for advanced tech­
niques such as cross-compilation and cross-debugging.

For more information than is available in this book and the delivered
documentation, see Using GDB: A Guide to the GNU Source Level De-

7.11 gawk

Nonnative Software Development Tools 239

bugger, by Richard Stallman and Roland Pesch, available from the Free
Software Foundation.

7.11.1 Introduction

7 .11.2 Installation

gawk is an acronym for GNU awk. It is upwardly compatible with
SVR4's awk and supports nawk and awk features. The release that this
chapter is based on is gawk 2.15.4. With gawk, you can run awk on
almost every UNIX platform and ensure that you are running the same
awk on every platform; therefore, the performance will be the same.
gawk supports awk, as described in the book The AWK Programming
Language by Aho, Kernighan, and Weinberger, and some GNU-specific
extensions.

One of the problems with awk on different platforms has been incon­
sistencies in the performance of this tool on different flavors of UNIX.
With gawk as with other GNU products, you eliminate the inconsisten­
cies and provide a stable awk development platform for most versions
of UNIX.

With gawk 2.11 and beyond, there is full DOS support, so you can
begin to take your gawk scripts from UNIX to DOS without portability
problems.

For a more complete discussion of the awk syntax, see Sec. 5.2, which
contains a variety of examples and more discussion of the awk lan­
guage itself. This is directly applicable to gawk and in fact your use of
gawk or awk should be transparent.

gawk is a GNU product and as such is subject to its GNU General
Public License as included both in the product distribution and in App.
C of this book.

All the files in the tar archive will be unwound and placed in directo­
ries under your current working directory. You are now ready to exam­
ine files and build the product for your platform. Note that this process
is unnecessary for the files on the accompanying CD since they are al­
ready unwound; however, you may need to follow this procedure if you
get a different version from the Internet or some other source.

Files. As is standard with most Internet products, the first file to look
for is the README file. Once you find this, print it out and examine it
in detail. It contains information on the current release features and
functionality as well as on bugs and installation notes.

Along with the README file, there are two files, FUTURES and

240 Nonnative AIX Developer Tools

PROBLEMS, which describe future enhancements and features to the
product and known problems with the current gawk. Consult these two
files for more information about relevant topics.

The other file of immmediate interest is the Makefile. As is standard
with most Internet software products, the Makefile is tailored for the
Sun environment. gawk also has built in some dependencies on gee
(GNU's C compiler; see Sec. 7.2 for more information) which you must
watch out for. Different C compilers support different functions within
C. This is discussed in more detail in Sec. 7.2; however, suffice it to say
that you will need to change switches on the make compiles for differ­
ent C compilers to work correctly.

Release 2.15.4 of gawk includes a simple version of the GNU config­
ure tool which supports only the architecture option and none of the
--options that most other tools use. You need to look in the config direc­
tory for the appropriate file. In this case it is rs6000. Therefore to con­
figure for this, type:

$ configure rs6000

To see what configurations are supported, simply type:

$ configure

This will list all supported machine types.
In Makefile.in, there are sections outlined by comments which tell

you which platforms are supported with which commands in the Make­
file. Because of the changing standards in the C language, several fla­
vors are shown. If you are running a compiler which is ANSI compliant,
you should select the ANSI sections of the Makefile and make sure that
the ANSI-compliant switch on your C compiler is invoked by the Make­
file. If this is a problem, consult your C compiler documentation for
more detail. After configuring as explained above, issue the following
command to build the product:

$ make

You can rebuild from scratch if you would like by issuing the com­
mands:

$ make clean
$ make

Next you need to install it; use the command:

$ make -n install

7.11.3 Usage

Nonnative Software Development Tools 241

to verify where it will be installed. If this is not appropriate, change the
makefile and the insure command:

$ make install

The make clean command cleans out any previously existing ex­
ecutables. This ensures you of a new set of executables specifically for
your environment. See Sec. 7.5 for more details on this process.

There is a file named makefile.rs6k included on the CD. Using this,
you can type;

$ make cc=gcc -f makefile.rs6k

There are machine-specific README files for a variety of machines.
For example, there is a file README.rs6000 which documents an is­
sue with the alloca routine. For the most part you can ignore this for
the build.

Finally you will find documentation in the form of gawk.I files in the
directories. The file extension .1 normally means that the file is a help
file and comes from section 1 of the UNIX documentation, which con­
tains general user commands. You can access and print this file to the
screen or a printer with the nroff commands. For example:

$ nroff -man gawk.1 I more /* print out manual page to the screen */

or

$ nroff -man gawk.1 I lpr /* prints out command to default printer */

Printing out the manual page for future reference is one of the best
ways to use Internet software products and will allow you to under­
stand a product's exact functions relatively quickly. See Sec. 6.10 and
other sections in Chap. 6 for more information. Other documentation is
supplied in TeX format. TeX is a macro language which provides very
sophisticated command-driven word processing and typsetting capa­
bilities.

There are a variety of sources listed in the README file for bug re­
ports and fixes as well as general information for the gawk product.
See these for more details on the gawk product.

gawk can use either POSIX-style commands, which are preceded by a
single hyphen, or GNU-style options, which are preceded by two hy­
phens. To simplify the documentation, we will use the POSIX-style

242 Nonnative AIX Developer Tools

syntax. See the manual page (gawk.1) if you want more information on
the GNU syntax.

The syntax for the gawk command is:

gawk [-a] [-el [-W compat] [-W copyleft] [-Whelp] [-W lint]
[-W posix] [-V] [-Fsep] [-v var=value] -f prog [--] file ...

gawk [-a] [-el [-W compat] [-W copyleft] [-W help] [-W lint]
[-W posix] [-VJ [-Fsep] [-v var=value] [--] progtext ...

where -a uses awk-style regular expressions. This is the default.
-e uses egrep expressions as documented in the POSIX

standard.
-W compat is the compatibility mode. gawk runs just like awk.
-W copyleft prints GNU copyright.
-Whelp displays options.
-W lint runs lint to check potential programming problems.
-W posix enables compatibility mode with awk.
-V prints current version of awk to standard error.
-Fsep defines field separator.
-v var=value defines BEGIN block variables.
-f prog is awk command input file.
-- signals the end of options. Used to separate options from files.
progtext-awk commands are included in line instead of in a

file prog as with the -f switch.

gawk looks very similar to awk in terms of syntax and command
structure. There are some things to point out, however. There continue
to be changes in gawk, many of which are documented in the NEWS
file. See this for more information on gawk functionality.

When searching for files to be used with the -f switch, the AWKPATH
variable is examined to detmine fully qualified paths. The default if no
AWKPATH is defined is .:/usr/lib/awk:/usr/local/lib/awk.

As mentioned earlier, gawk is compatible with SVR4 awk and sup­
ports features such as preexecution variable definition with the -v
var=val, multiple -f option concatenation, ANSI C printf support, and
the \a, \ v, and \x escape sequences. See the README file for more
information.

Finally, GNU added some extensions which are unique to gawk such
as:

IGNORECASE variable which allows for character case inde­
pendence.

AWKPATH variable.

-a, -e, -c, -C, and -V options.

7.11.4 Conclusion

7.12 RCS

Nonnative Software Development Tools 243

gawk is a powerful tool which not only provides awk and nawk com­
patibility but also provides its own set of features and functions that
add value to the original awk functionality. It also runs on multiple
platforms and provides a stable and uniform environment for develop­
ing and running awk scripts.

7.12.1 Introduction

7 .12.2 Usage

RCS stands for Revision Control System. The version discussed in this
chapter is 5.6.01. RCS is written and maintained by Walter F. Tichy at
Purdue University. GNU distributes it along with their MANIFEST,
which describes the copyleft licencing arrangement. Because of this,
you can freely distribute RCS and thus it is included in this book.

RCS provides function similar to SCCS in that it provides version
control and configuration management. By providing a series of com­
mands which control and track source files, RCS provides you with the
ability to better control and monitor your software development proc­
esses. This section is by no means an exhaustive overview of the capa­
bilities and subtleties of RCS. Consult the documentation distributed
with RCS for more information. There are manual pages in the man
subdirectory and Postscript documents (*.ps) in the doc subdirectory.
Specifically, there is a document titled res. ps which contains a very

·good overview and description of RCS and version control.
RCS is a GNU product and as such is subject to its GNU General

Public License as included both in the product distribution and in App.
C of this book.

The basic usage of RCS is included in the following commands:

ci

co

ident

res

rcsclean

rcsdiff

res freeze

rcsmerge

rlog

Checks in revisions

Checks out revisions

Extracts identification markers

Changes RCS file attributes

Cleans working directory

Compares revisions

Freezes a configuration

Merges revisions

Reads log messages

Each command is discussed in more detail below.

244 Nonnative AIX Developer Tools

Checking in a file. The basic syntax is:

ci [{-lrufkqIM} [rev]] [-ddate] [-mmsg] [-nname] [-Nname] [-sstate]
[-tfile] [-t-string] [-wlogin] [-Vn] [-xsuff] file ...

where -Urev] checks in file(s) and automatically rechecks this file out
and locks it for future editing.

-r[rev] checks in file(s) and releases the lock.
-u[rev] checks in file(s) and immediately rechecks this file out

but doesn't lock it.
-ftrev] forces the file checkin even ifthe file hasn't changed.
-k[rev] searches the checkin file for information keywords

containing author, change time, state, etc., to place in
RCS instead of computing them locally upon checkin.

-q[rev] is quiet mode.
-l[rev] is interactive mode.
-M[rev] sets the modification time for checkin file.
-d[date] uses current date for checkin.
-msg uses string as the message for checkin log.
-nname assigns name to name of revision instead of simply

using a number to represent the revision number.
-Nname is same as -nname except that it will override any

previous definition of name.
-sstate sets state of checkin file(s).
-tfile writes text contained in file to RCS.
-t-string writes text contained in string to RCS.
-wlogin assigns login as owner of checkin rather than current

userid.
-Vn emulates RCS version n instead of the current version.
-xsuff specifies information regarding the location of file(s) to be

checked in.
file ... is one or more files specified to operate on.

ci is the command which checks files into RCS. You must either own
or be the supervisor of the branch for that particular revision. You can
override protections and locks with switches on the ci command line.

You control all checked in files with a concept called a revision. The
revision tracks all file releases and relates them to other files. The de­
fault revision is 1.1 if no previous matching RCS file exists. ci works
with files it calls working files. Working files are the files to be checked
in, while the files stored in RCS are called RCS files.

Both the working file and RCS files can be specified explicitly. For
example:

$ ci test.c

Nonnative Software Development Tools 245

will create a file ./RCS/test.c and remove test.c. Placing the RCS file in
the RCS subdirectory is the default action for ci. You can specify a re­
sulting RCS filename explicitly. For example:

$ ci test.c testing/RCS/test.c

This takes the file test.c and checks it into RCS in the subdirectory
./testing/RCS as the filenamed test.c.

You can also specify file suffixes for the resulting RCS files. For ex­
ample:

$ ci test.c testing/RCS/test.c,l

where ,1 is the suffix for the RCS file. You can check in a file named
test.c in the current directory by merely specifying the RCS file. For
example:

$ ci RCS/test.c,l

will look in the current working directory for a file named test.c and
check it in. There are several other ways you can manipulate file­
names. See the ci man page for more information.

Checking out a file. The basic syntax is:

co [{-lrufpqIM) [rev]] [-kkv] [-kkvl] [-kk] [-ko] [krev] [-kv]
[-ddate] [-sstate] [-w[login]] [-jlist] [-Vn] [-xsuff] file ...

where -l[rev] checks out file(s) and automatically locks for future
editing.

-r[rev] retrieves latest file or one which matches rev.
-u[rev] retrieves the latest file or the one specified by rev unless

the file is locked; then it unlocks and retrieves the file.
-firev] forces the working file overwrite.
-p[rev] displays retrieved revision on standard output instead

of including in the file.
-q[rev] is quiet mode.
-I[rev] is interactive mode.
-M[rev] sets the modification time for the new working file.
-kkv generates keyword string based on default information.

Username is not included unless the retrieved file is
locked.

-kkvl is the same as -kkv except that username is always
included.

-kk generates keyword strings without substitution.

246 Nonnative AIX Developer Tools

-ko generates old keyword string as it existed before the file
was checked in.

-k[rev] searches the checkin file for information keywords
containing author, change time, state, etc., to place in
RCS instead of computing them locally upon checkin.

-kv generates only keyword substitutions and not keyword
strings.

-d[date] retrieves file whose date is equal to or later than that
specified by date (date can be specified in free format;
see the co man page for more information).

-sstate retrieves latest version whose state is state.
-w[login] checks out latest revision owned by login.
-jlist joins revisions together by taking first comma-separated

pair from list and generates output passed to the next
pair (see rcsmerge).

-Vn emulates RCS version n instead of the current version.
-xsuff specifies information regarding location of file(s) to be

checked in.
file ... is one or more files specified to operate on.

There are a variety of keywords which are placed either in the check
out file or displayed to standard output. Some of the most important
are:

$Author$

$Date$

$Header$

$Locker$

Log

$Revision$

$Source$

$State$

Most of these keywords are self-explanatory. For more information and
more keywords, see the co man page. Files are manipulated much the
same as with ci. See the ci section above for more information.

Searching for keywords. The basic syntax is:

ident [-q] [file ...]

where -q is quiet mode.
file ... is one or more files to search.

ident searches all named files for all RCS keywords. These are desig­
nated by $string$. The result is displayed to standard output.

Changing RCS file attributes. The basic syntax is:

Nonnative Software Development Tools 247

res [-ILUiq] [-alogins] [-Aoldfile] [-e[logins]] [-b[rev]]
[-cstring] [-kstring] [-l[rev]] [-u[rev]] [-Mn:log] [-nname[:[rev]]]
[-Nname [:[rev]]] [-orange] [-sstate [:rev]] [-t [file]] [-t-string]
[-Vn] [-xsuff] file ...

where -I is interactive mode.
-L sets strict checkin, which is useful for shared files; enforces

locking even for the file's owner.
-U sets nonstrict checkin, which means that the owner of a file

can check in and check out without locking restrictions.
-i creates and revises a new RCS file but doesn't deposit

anything.
-q is quiet mode.
-alogins appends logins list (comma-separated usernames) to

the access control list for a file.
-Aoldfile appends login list for oldfile to file.
-e[logins] removes named or all names on the access control list

for file.
-b[rev] sets the default branch to rev or the highest if rev is not

specified.
-cstring makes string the comment displayed before each Log

display.
-kstring sets the default keyword substition to string.
-Hrev] locks the revision rev.
-u[rev] unlocks the revision rev.
-mn:log replaces revision n's log message with log.
-nname:[rev] sets the revision specified to the symbol name. If

rev is not specified, the symbolic name is deleted.
-Nname:[rev] is the same as -nname but overrides any

previously defined symbolic names.
-orange removes revisions specfied by range of the form

revl[:rev2], etc.
-sstate:[rev] sets revision rev to state where state is merely a

symbolic name which represents the state of the revision.
-t[file] replaces contents of specified RCS file with file.
-t-string replaces descriptive log text of specified RCS file with

string.
-Vn emulates RCS version n.
-xsuffuses suffixes (see the ci section above).
file ... is one or more files to operate on.

RCS either creates a new RCS system or modifies the attributes of an
existing one. This is the first command you will execute to begin an
RCS library for a software system.

248 Nonnative AIX Developer Tools

Cleaning up working files. The basic syntax is:

rcsclean [-kstring] [-n[rev]] [-q[rev]] [-u[rev]] [-Vn] [-xsuff]
[file ...]

where -kstring uses subst keyword substitution (see co for more
details).

-n[rev] displays the results of the rcsclean command without
actually executing it.

-q[rev] is quiet mode.
-u[rev] unlocks rev if no difference is found.
-Vn emulates RCS version n.
-xsuff uses suffixes to control RCS files.
file ... is file or files to be operated on.

rcsclean removes any files that have been checked in since they were
last modified. You can either specify files to be checked and removed, or
if no files are specified, all files in the subdirectory RCS are check~d
against working files in the current directory and removed.

Comparing revision differences. The basic syntax is:

rcsdiff [-kstring] [-q] [-rrevl [-rrev2]] [-Vn] [-xsuff] [diff
options] file ...

where -kstring is keyword substitution (see co section).
-q is quiet mode.
-rrevl -rrev2--if only revl is specified, its contents are

compared with its working file; if both are specified, the
corresponding files are compared between revisions; and
if no revisions are specified, the latest revision is
compared with its corresponding working files.

-Vn emulates RCS version n.
-xsuff uses suffix notation for RCS files.
diff options includes all options from the diff command.
file ... is one or more files to operate on.

rcsdiff generates diff commands on various specified revision files
and/or working files outside of RCS. You can even specify diff options to
the rcsdiff command. The output of this command looks much like that
of the diff command and can be used with other commands to merge
file changes.

Freezing configurations. The basic syntax is:

rcsfreeze [name]

Nonnative Software Development Tools 249

where name is the symbolic name for a revision. rcsfreeze freezes a
configuration (revision) in RCS and, optionally, assigns a symbolic
name to this revision. A configuration consists of one or more RCS file
revisions grouped together. This is something like a release of a soft­
ware system. By grouping files together in a configuration, you can
later extract these files as a group for manipulation.

Merging files and revisions. The basic syntax is:

rcsmerge [-kstring] [-p[rev]] [-q[rev]] [-r[rev]] [-Vn] [-xsuff] file

where -kstring uses keyword substitution (see the co section).
-p[rev] displays results on standard output instead of replacing

working file.
-q[rev] is quiet mode.
-r[rev] merges file in revision rev.
-Vn emulates version n.
-xsuff uses suffix to characterize RCS files.
file is file to merge in.

rcsmerge places the changes between two RCS revisions into a work­
ing file specified as file. If you specify two revisions with the -r option,
these are the revisions specified; if you specify one revision, it compares
these files with those of the latest revision in the RCS library. Finally,
if you don't specify a revision, it will merge the results of the latest two
revisions into the working file.

This command is useful to see what revisions have occurred and how
the two specified revisions differ. You can also use this to merge
changes that are received after a revision is released and changes have
been made.

Displaying log information. The basic syntax is:

rlog [-LRbht] [-ddate] [-1 [lockers]] [-r [revs]] [-sstates]
[-w[logins]] [-Vn] [-xsuff] file ...

where -L ignores RCS files without locks.
-R displays only RCS filename without path.
-b displays information about the highest branch.
-h displays RCS information.
-tis the same as-hand includes descriptive text.
-ddate displays revision activities within given dates where

dates are specified by ranges separated by colons.
-llockers displays information about locked revisions. If lockers

250 Nonnative AIX Developer Tools

is specified as a comma-separated list of usernames, only
those revisions owned by these users are displayed.

-rrevs displays information about revision specified in a
comma-separated list.

-sstates displays revision information that is in state.
-wlogins displays all revisions checked in by usernames in the

logins comma-separated list.
-Vn emulates RCS version n.
-xsuff uses suffixes to specify RCS files.
file ... is file or files to display information about.

rlog displays information relating to those files specified in file(s).
With various switches, you can control the display of information and
manipulate it accordingly. A simple and common example of using this
command is:

$ rcslog RCS/*

This will display information on all files in the RCS subdirectory.
There are basic themes which run through the above commands.

One of the most important is the -xsuffix option. Suffixes are merely
ways to control the search order of RCS when looking for RCS files. The
default is determined when RCS is installed but is usually ,v. This
means that RCS will looks for files ending in ,v as RCS files. You can
modify this with the use of suffixes. For example:

$ ci -x.rcs test.c

will generate and search for RCS files which end in .res. When you exe­
cuted the above command, RCS created a file RCS/test.c.rcs, which is
the RCS file created with the ci command. You can specify more than
one suffix by separating them with forward slashes. For example, to
create and use RCS files with suffixes .res and ,v, use a command like:

$ ci -x.rcs/,v test.c

This will create a file test.c.rcs. However, if you had a file named
test.c,v, RCS would find this with a command like:

$ co -xrcs/,v test.c

and retrieve the file correctly. Suffixes allow you to choose your file
naming conventions according to your needs.

The above commands form the base set of commands with which you
can perform RCS operations. The basic user need only use ci and co to

7.12.3 Examples

Nonnative Software Development Tools 251

maintain and use the RCS system. Basic functions of RCS as outlined
in its the accompanying documentation are:

Store and retrieve multiple versions of text

Maintain a history of changes

Lock files and control user access

Support hierarchical versioning

Merge revisions

Provide user-friendly release and configuration control mechanisms

Minimize disk space required by storing only deltas

While most points above are self-explanatory, the last is worth brief
mention. RCS, like SCCS, stores only the differences between file revi­
sions (commonly called deltas), which minimizes the amount of disk
space required while maintaining the proper relationships between file
versions.

There is a manual page named rcsintro.1 which describes in some
detail the operation of RCS.

There are linkages between RCS and some versions of make, par­
ticularly GNU make. See the rcs.ps file in the RCS main directory for
more details on this interface.

A simple example of the use of RCS will explain most of the function
you will need to know to use RCS effectively. Assume you have a For­
tran source file named test.f. You want to check it into RCS. First cre­
ate an RCS subdirectory:

$ rnkdir RCS

Then check the file into RCS with the command:

$ ci test.f

This will create a file in the RCS subdirectory and remove test.f from
the current directory. Remember the default first revision is 1.1. If you
want to check in the file but not remove it from the current directory,
use the command:

$ ci -1 test.f

or

$ ci -u test.f

252 Nonnative AIX Developer Tools

7.12.4 Installation

The first does an implicit checkout after the checkin and locks the file
for editing. The second does an implicit checkout after checkin but does
not lock the file.

Next, you may want to check out the file for modifications. Use the
command:

$ co -1 test.f

This will take the latest version of test.f from the RCS subdirectory and
create a test.f file in your current working directory. Note that if you co
without the -1 option, you will not be able to check the file back in with
a subsequent ci command. This is useful when you want to compile or
examine a file without making changes.

Once you have edited the file, you can check it back in with the com­
mand:

$ ci test.f

This will remove the file test.f from your current working directory and
save it as test.f revision 1.2. If you have not locked the file with co -1,
you will get an error message relating to the fact that you don't own the
lock on test.f. If this is the case, you can force a lock with the command:

$ res -1 test.f

This grabs the lock without actually checking out the file. Note also
that if someone else has the lock, this command will fail and you will
have to see the person who has the lock and coordinate your checkin
with him or her.

You can also compare a working file to an RCS file with a command
like:

$ rcsdiff test.f

This will generate a diff command between your current test.f working
file and the highest revision test.fin the RCS system.

There are other commands provided with res; however, your need for
them will probably be mininimal, at least initially. Keep these simple
examples in mind when beginning to use RCS.

There are several issues to note when installing RCS. You need a diff
command that supports the -n option. If yours does not, get GNU diff
from the accompanying CD and use it. There is a README file in the

Nonnative Software Development Tools 253

main RCS directory which has an in-depth discussion of the history of
features and functions of RCS. See this for related information. The
information on how to build RCS is contained in the ./src/README
file. A synopsis of that file follows.

There is no configure as is standard delivery with most newer GNU
products. There is instead a shell script named conf.sh. This is exe­
cuted from within the Makefile and builds the proper configuration as
well as it can. Note that the initial section of the Makefile is called the
configuration section. This is the place where you may have to change
some variables and macro definitions based on your machine architec­
ture and what pieces of software you have installed. For example, if
you don't have the GNU diff command installed, you need to comment
out the line DIFF and remove the comment sign from the previous line
which defines standard diff. There is a section in the README file en­
titled Makefile notes. See this for more details on possible problems or
notes for your particular platform.

The first commands to type are:

$ cd src
$make conf.h CC=gcc

This generates a new conf.h appropriate for your machine. If you get an
error message, see the README file section entitled conf.h notes. The
error is contained in the src/conf.error file, which you can reference if
you encounter any problems. Remember to use the CC=gcc flag with
make, or you may get results that are different from those described in
this section, which contains some brief comments as to possible prob­
lems or issues with the conf.h. There should be very little problem since
conf.sh seems to be fairly conservative in its construction of conf.h and
assumes very little about your machine.

Once you have built conf.h, issue the command:

$ make CC=gcc

This generates all the appropriate executables for RCS. Next you need
to install the executables in your common directory:

$ make install

To test the installation, type:

$ cd . /svc
$ mkdir RCS
$ make install test

If this fails, type

254 Nonnative AIX Developer Tools

7.12.5 Conclusion

7.13 CVS

$ make install debug

for more detailed error information.
This is all there is to installing RCS. It is really quite simple. If you

find any bugs, report them to rcs-bugs@cs.purdue.edu.

RCS has many of the features of SCCS and other more attractive fea­
tures and an easier interface which provides a more feature-rich and
user-friendly interface. By providing a configuration management ca­
pability, RCS can assist you with your software development projects.
RCS, with its ability to track and control file manipulation and modifi­
cation and provide a history of all changes, will quickly become a re­
quired part of your software development processes.

7.13.1 Introduction

7.13.2 Installation

CVS stands for Concurrent Versions Systems and is a package which,
when combined with RCS, provides version control well beyond the ca­
pabilities of standard packages such as SCCS or RCS. CVS allows a
developer to version control files in multiple directories simultaneously
to support large software development products.

While there are issues you must be aware of with capabilities such as
parallel development support, CVS will support this kind of capability
if you understand exactly what you are doing in your software develop­
ment process.

In the READ ME file there is some discussion of issues related to users
of versions of CVS that are earlier Vl.3. If you are a pre-Vl.3 CVS user,
you should see the README file for more details on backward com­
patibility issues and other related subjects. The basic changes are:

1. The CVS administration directory has changed from CVS.adm to
CVS.

2. The format of the CVS/Entries file has changed and will automat­
ically update older format files but will not generate the older for­
mats.

3. The source files directory has changed from CVSROOT.adm to
CVS ROOT.

Nonnative Software Development Tools 255

CVS recommends that you preinstall GNU diff 1.15 and RCS V5 be­
fore installing CVS. If you are a new CVS user, first you must install it
with the following series of commands:

$./configure --prefix=/usr/local

This will generate the appropriate Makefile to build CVS. There is
some discussion in the INSTALL file regarding the ndbm system. You
should avoid using this system and use the emulation provided with
CVS to ensure maximum portability and consistency across multiple
platforms.

Next you need to build the product:

$ make

Note that this system assumes gee, so it is not necessary to define any
macros or anything else to the build procedure.

Finally, you need to install the binaries with the command:

$make INSTALL= "/usr/ucb/install =c" INSTALLDATA=" /usr/ucb/install
=c -m 644" install

Note that this makefile assumes you are using the Berkeley version of
install instead of the AIX default version of install, which is System V
based. Fortunately, both are delivered with AIX. At this point you can
set up a master source repository. This may be something you want
your users to do; however, it may not be a bad idea to create it yourself
to better control disk space allocation and other system-related issues.

First, find the directory you wish to make your repository and type
the command:

$./cvsinit

This will prompt you for your master source repository directory and
other relevant information. Note that you must have the RCS binaries
in your PATH before you can execute this command.

You then need to tell your users to place the master repository root
directory in their PATH if they wish to use the RCS system. The IN­
STALL document recommends that you actually place the CVS system
itself under RCS control at this point.

Tu do this, move to the root of the CVS distribution directory and
type:

$ make realclean
$ CVS import -m 'CVS 1.3 distribution/ CVS CVS CVS1_3

256 Nonnative AIX Developer Tools

7.13.3 Usage

This will place CVS 1.3 under RCS control in your master repository
directory. Don't forget to define CVSROOT before issuing the above
commands. You can now use standard RCS commands to manipulate
CVS just as you would any other system.

CVS provides for a much more sophisticated level of support for large
software distribution efforts. With packages such as SCCS and RCS,
you are forced to use a single directory for a single project. With CVS,
you can have a package span multiple directories and can manage the
development process accordingly.

The basic syntax for the CVS command is:

cvs [options] cvs_command [command options] [command args]

where options include:

-H

-Q

-q

-b dir

-d dir

-e editor

-1

-n

-r

-t

-w

Displays usage information about a particular command or all com­
mands.

Quiet mode.
Somewhat quiet mode.

Uses dir to locate RCS binaries.

Uses dir as the CVS root directory (which is the master repository direc­
tory).

Editor is invoked for log information.

Doesn't add command to the history log.

Doesn't change any files.

Makes new working files read only.

Trace mode.
Makes new working file read-write (default).

CVS commands consist of:

add file ...

aclmin files

checkout module ...

commit file ...

diff [files]

export module

history [files]

import repository
vendortag releasetag

Adds one or more files to CVS working directory.

Performs RCS control functions on the source repository.

Checks out your private file copy to work on.

Forces one or more file changes to the repository and up­
dates your changes to other developers.

Displays differences between those files in the repository
and those in the current working directory.
Similar to checkout; however, doesn't include any CVS ad­
ministration directories. This is most often used to generate
distribution packages.
Displays history of a file or files.

Used to import an entire distribution from an outside
source.

rdiff module

Nonnative Software Development Tools 257

Creates a diff (patch) file to create one version in the reposi­
tory from another.

release module

remove [files]

rtag symtag

Cancels a checkout, abandoning any changes.

Removes one or more files from the repository.

Used to associate tags with explicit source versions in the
repository. This can then be referenced by other CVS com­
mands.

status [files] Displays current file status.

tag symtag [files] Used to associate tags with the closest repository versions
to the current working directory.

update files Updates your source code with all other changes made by
other developers.

CVS command options consist of:

-D date

-H

-k flag

-1 - local

-n

-P

-p

-r tag

Uses the most recent version no later than date.

Help.

Modifies the default behavior of the -k flags for the RCS command. See
the RCS documentation for more details.

Doesn't trace through any subdirectories.

Doesn't run any checkout/commit/tag program.

Prunes empty directories.

Pipes retrieved output to standard output.

Uses the tag revision. tag can be either HEAD for the most current revi­
sion or BASE for the revision you checked into the current working direc-
tory.

One of the most useful commands is the CVS-H command; it prints out
all help information.

CVS operates on the concept of a working directory. This means that
you place yourself in a directory from which you can direct all CVS ac­
tivity. If you want to work on a file, you use the checkout command and
check out a file from the repository to the current working directory.
From here you can modify the file any way you would like. Once you
have modified the file, you can check the file back into the repository
with the commit command.

CVS has several functions which provide significant additional value
in the software development process. Some of the most important are:

1. Concurrent access control and tracking

2. Flexibility to support a variety of software structures

3. Symbolic naming conventions which allow you to use tags to refer­
ence software packages

4. Location independence of source files within a release

5. Support for the patch format for update distribution

258 Nonnative AIX Developer Tools

Through the use of RCS concepts and commands, CVS provides an en­
vironment which supports much larger and more complex capabilities
such as those described above. Without these capabilities, tools such as
RCS and SCCS often fall short enough that they are not used.

There are a variety of files which are important to understand. Some
of the key ones in the current working directory are:

CVS

CVS/Entries

CVS/Entries.Backup

CVS/Repository

CVS/Tag

CVS/Checkin.prog

CVS/Update.prog

Directory of administrative files

List and status of files in the current working directory

Backup file of CVS/Entries

Pathname to the corresponding directory in the repository

Contains the per-directory sticky tag or date information

Program to run on commit

Program to run on update

In the source repository directories, the key files are:

CVSROOT/CVSROOT Global administrative files for CVS

CVSROOT I commi tinfo, v Programs for filtering commit requests

CVSROOT /history Log of CVS transactions

CVSROOT/modules,v

CVSROOT/loginfo,v

CVSROOT/rcsinfo,v

CVSROOT/editinfo,v

Attic

lfcvs.lock

lfcvs.tfl.pid

lfcvs.rfl.pid

lfcvs.wfl.pid

Definitions of modules in this directory

Records programs for piping commit log entries

Records pathnames to templates used during commit

Records programs for editing commit log entries

Directory of removed source files

Lock directory

Temporary lock file for repository

Read lock

Write lock

Finally, other than placing the CVS commands in your PATH, there
are several environmental variables which you can use to control CVS's
behavior. They are:

CVS ROOT

CVS READ

RCSBIN

EDITOR

Defines the source repository.

Checkout and update will make files in your current working directory
read only.

Pathname to RCS commands.

Specifies the editor to use for logging purposes.

There are many other aspects to CVS that you need to understand to
use it effectively in a project environment. There are several man pages
in the man subdirectory, including cvs. l. This outlines in great detail
all options and gives several examples of how to use the CVS system in
a project. Also there is a paper in the doc subdirectory called cvs.ps.
This is a Postscript file which outlines an actual development project

7.13.4 Conclusion

7.14 Smalltalk

Nonnative Software Development Tools 259

that used CVS and what they discovered. This is a very useful file if
you are thinking of using CVS for a project.

CVS is a very powerful tool and adds significantly to the power of RCS.
By supporting multiple directories in a single release, CVS provides
support for large and complex software development projects. This is a
tool you may want to seriously investigate if you are interested in soft­
ware development and revision control.

7.14.1 Introduction

7 .14.2 Usage

Much has been made of Smalltalk in the last few years as commercial
businesses have begun to make the move to object-oriented develop­
ment. Smalltalk was one of the first object-oriented languages avail­
able, and it still has a dedicated following in the object-oriented world.
Because of this, this section discusses GNU Smalltalk.

GNU Smalltalk attempts to conform to the Smalltalk 80 implemen­
tation specifications as described in Smalltalk-BO, the Language and its
Implementation by Adele Goldberg and David Robson. This is the bible
of Smalltalk syntax and structure and is, therefore, the one which the
GNU Smalltalk attempts to support.

The best documentation on the usage of GNU Smalltalk is in the tex­
info files. This is a texinfo document which outlines in great detail ex­
amples and issues both in terms of generic Smalltalk and the GNU
implementation. This is the first document to print and read. Once you
have done this, you will be much more capable of using the GNU
Smalltalk tool than before. If you need information, see Sec. 8.3 for
more details.

The GNU Smalltalk system is an interpreter. This means that you
can interactively enter Smalltalk commands and display the results as
you proceed. The first step to using GNU Smalltalk is entering the in­
terpreter. Use the command:

$ mst -q
Smalltalk 1.1.1 Ready
st>

You are now sitting at the Smalltalk prompt, and it is waiting for input.
Note that the -q option tells the interpreter to suppress much of its in-

260 Nonnative AIX Developer Tools

formational output. If you want to know various aspects of the inter­
preter's operational context simply use the mst command without the
-q option.

Another command you must first type before proceeding with the ex­
amples shown below is:

st> Smalltalk at: #x put: 0

More on this later.
A simple example as documented in the *.ps document is to make

Smalltalk display the Hello, World string to you. Use the command:

st> 'Hello, World' printNl !
Hello, World
st>

Examining the above command tells you a lot about how Smalltalk op­
erates. The Smalltalk interpreter processes all text that precedes an
exclamation point as a single command. In this case, the command is
'Hello, World' printNL The interpreter actually creates a default object
of type string which contains the string Hello, World. It then passes the
message printNI to the default object which then executes the message
as a procedure inside the object string. This results in the Hello, World
string being displayed on your screen.

What this means is that the default object string has a listing of pos­
sible messages it can be passed. When the object received a message, it
compared it to the list of possible messages and executed code based on
the message it received.

As discussed in mst.texinfo, you can pass virtually any type of object
to the interpreter and expect that it will display itself in a similar man­
ner. For example, you might use the integer object like:

st> 10 printNl
10
st>

This displays exactly the information passed to the object of type inte­
ger.

Smalltalk supports arrays much as languages such as C do; however,
the syntax is dramatically different. Tu create an array, use a command
like:

st> x := Array new: 10 !

This will create a 10 element array. Next, to view the contents of a
member of the array, use a command like:

st> (x at: 1) printNl
nil
st>

Nonnative Software Development Tools 261

This shows that array elements are initialized to nil. Next you may
want to enter some element data. Use a command like:

st> x at: 1 put: 10 !

This will store 10 in the first element of the array. As shown above,
many messages can be passed arguments which consist of syntax like:

message: argument

where the message is followed by a colon and then an argument. This
will be fairly consistent throughout your usage of the Smalltalk inter­
preter.

Note that array elements can be used exactly as you would use any
other variable. For example:

st> ((x at: 1)+ 1) printNl !
11

This takes the contents of the first array element (in this case 10), adds
1 and displays the resulting value of 11.

The other main construct you can use in Smalltalk is the set con­
struct. After you have finished playing with the x array as described
above, you can reassign the x variable to a set. The array previously
bound to x will be automatically destroyed by the Smalltalk interpreter
in a process known as garbage collection. This is similar to the garbage
collection used in other object-oriented languages such as C++ and Eif­
fel and will work approximately the same way.

To create an empty set bound to the variable x, use:

st> x := Set new !

This will create an empty set . To view the empty set, use the com­
mand:

st> x printNl
Set ()
st>

This denotes that the set is empty. To add information to the set, use a
command like:

st> x add: 5; add: 7;add: 'foo'

262 Nonnative AIX Developer Tools

st>

Now display the contents of the set:

st> x printNl !
Set (5 'foo' 7)

Note that this represents only the unique elements in the set. 'lb re­
move an element from the set, use the remove message as shown be­
low:

st> x remove: 5
st> x printNL
Set ('foo' 7)

The final construct this section will talk about is the dictionary.
Everything in Smalltalk is driven from a stored dictionary of informa­
tion and relationships. A dictionary can be indexed by anything, while
an array can only be indexed by integer. For example:

st> x := Dictionary new.
st> x at: 'One' put: 1
st> x at: 'Two' put: 2
st> x at: 1 put: 'One'
st> x at: 2 put: 'Two'

'lb examine the dictionary, use the printNl command again:

st> x printNl !
Dictionary(l, 'One' 2, 'Tow' 'One' ,1 'Two' ,2)

This displays the dictionary as sets of keys and associated values. Note
that you can reference the values by simply using the key as you would
the integer of an array. For example:

st> (x at: 1) printNl !
'One'
st>

The first command you typed consisted of a definition for a Smalltalk
dictionary. Smalltalk is a special variable which both the user and in­
terpreter can access and manipulate. The #x variable represents a true
variable that can be substituted for at any time. Unlike specifying a
simple x, the #x represents something that can change over time. For
example, you can create a new definition with a command like:

st> Smalltalk at: #y put: 0 !

You can now manipulate y just as you have been doing with x.

7.14.3 Installation

7.14.4 Conclusion

7.15 f2c

Nonnative Software Development Tools 263

To display the entire Smalltalk dictionary, you can use the command:

st> Smalltalk printNl !

You can CTRL-C at any time to get back to the st> prompt.
This section has merely paraphrased Sec. 2 of Andrew Valencia's pa­

per included in the Smalltalk distribution. You should reference this
document for more information on Smalltalk and its capabilities.

The source distribution for GNU Smalltalk consists of several directo­
ries, including config, contrib, examples, test, and stix. These directo­
ries include supported platform-specific files, contributed software,
example Smalltalk files, regression testing files, and an XII interface to
Smalltalk, respectively. The main source code for the product is in the
top directory of the distribution and consists of both Smalltalk (.st) and
C source code (.c) files.

Based on some of my surfing on the Internet in the comp.lang.small­
talk and gnu.smalltalk.gnu newsgroups, the support for GNU Small­
talk is not high, and you, therefore, may have to do some
experimenting on your own to get things compiled and working cor­
rectly. However, this does not minimize the power of this tool.

While this has not been an exhaustive account of GNU Smalltalk, it
has introduced you to the concepts and capabilities of the GNU Small­
talk implementation. Acquire and install the product for more informa­
tion. See also the *.ps file written by Andrew Valencia included with
the Smalltalk distribution. It is an excellent overview of Smalltalk and
the GNU Smalltalk implementation.

The paradigm of object-oriented technology is radically different
from that of the procedural paradigm we have been following since the
1970s. Smalltalk is a tool which can assist you in the move toward ob­
ject-oriented development.

7.15.1 Introduction

f2c is a program which attempts to convert Fortran to C. It is not clear
how good this software is; however, it has been recently updated on the
network, so there is work going on at BellCore and AT&T. There is a
disclaimer issued with the product which is contained both in the prod-

264 Nonnative AIX Developer Tools

7.15.2 Usage

uct and in App. C in this book. While I have not personally used this
product, it does look interesting and, if it works, could be quite useful.
The best way to check the usefulness of this system is to try it and see
what kind of code it produces.

f2c is an AT&T/Bellcore product and as such is subject to its AT&T/
Bellcore copyright as included both in the product distribution and in
App. C of this book.

Much of the information in this section is taken from the file f2c.l,
which is a formatted manual page. You can print this out or view it on
line for more information.

The basic usage of f2c is simple:

f2c [-Cl [-I2] [-onetrip] [-C++l [-ec] [-ext] [-i2] [-r8] [-Tdir]
[-w8] [-Wn] [-!c] [-!I] [-!it] [-!Pl [-AEPRUacgpuwz] file ...

where -!P doesn't infer ANSI or C++ prototypes from usage.
-!c doesn't produce C code.
-!I doesn't include include statements.
-!it doesn't infer type of untyped EXTERNALs based on their

use as parameters to previously defined or prototyped
procedures.

-A produces ANSI C (default is K&R C).
-C ensures subscripts are within array boundaries.
-E declares uninitialized COMMON to be extern.
-12 defines INTEGER and LOGICAL as 2 bytes.
-onetrip compiles DO loops that are executed at least once.
-P creates file.P contining prototypes.
-R doesn't make REAL become DOUBLE PRECISION.
-Tdir places temp files in dir.
-U maintains case of variables and external names.
-Wn defines n characters per word.
-a makes local variables automatic.
-c includes original Fortran source code as comments.
-C++ generates C++ code instead of C.
-ec-uninitializedCOMMON placed in separate files.
-ext issues messages concerning non-F77 Fortran code.
-g includes original Fortran line numbers as comments.
-i2 is similar to -12, only INTEGER and LOGICAL may be

assigned by INQUIRE.
-p includes preprocessor definitions too make COMMON block

members look like local variables.
-r8 promotes REAL to DOUBLE and COMPLEX to DOUBLE

COMPLEX.

Nonnative Software Development Tools 265

-u makes the default type undefined.
-w suppresses all warning messages.
-w8 supresses warnings when COMMON or EQUIVALENCE

forces odd word alignment of doubles.
-z doesn't implicitly recognize DOUBLE COMPLEX.
file ... is one or more files to be processed.

The input files will be scanned for .f and .F files with a filename
matching file. An output file will be created with the name file.c. You
should be able to compile this resultant file.c with your C compiler and
proceed as you normally would.

Note that the resulting C routines require both the libl77 and libF77
archive libraries when they are linked. This means that you need to
use the -1F77 -1177 -lm options on the ld or cc command to ensure that
these programs are properly linked.

A simple example consists of a file named test.f, which is a Fortran
file, as shown below:

PROGRAM MAIN
c
C THIS IS PROGRAM TEST
C IT CALCULATES THE SUM OF UP TO N VALUES OF X**3 WHERE
C NEGATIVE VALUES ARE IGNORED
c

READ(S,*) N
SUM=O
DO 10 I=l,N

READ(S, *) X
IF (X.GE.0) THEN

Y=X**3
IF (SUM.GE.0) THEN

SUM=SUM+Y
ELSE

GOTO 20
END IF

END IF
10 CONTINUE
20 CONTINUE

WRITE(6,*) 'This is the sum:' ,SUM
STOP
END

You invoke the f2c converter program on it with the command:

$ f2c test.f

This creates a file test.c which looks like:

* test.f -- translated by f2c (version of 13 June 1995 18:34:30).
You must link the resulting object file with the libraries:

-lf2c -lm (in that order)
*/
lfinclude "f2c.h"
/* Table of constant values */

266 Nonnative AIX Developer Tools

static integer c_3 3;
static integer c_l 1;
static integer c_4 4;
static integer c_9 9;
/* Main program */ MAIN_()
{

/* System generated locals */
integer i_l;
real r_l, r_2;
/* Builtin functions */
integer s_rsle(), do_lio(), e_rsle(), s_wsle(), e_wsle{);
/*Subroutine*/ int s_stop();
/* Local variables */
static integer i, n;
static real x, y, sum;
/* Fortran I/O blocks */
static cilist io __ l { 0, 5,
static cilist io __ 5 = { 0, 5,
static cilist io __ 8 = { 0, 6,

/* THIS IS PROGRAM TEST */
/* IT CALCULATES THE SUM OF UP
/* NEGATIVE VALUES ARE IGNORED
s_rsle(&io __ l);

0,
0,
0,

TO
*/

0, 0 } ;
0, 0 } ;

0, 0 } ;

N VALUES OF X**3 WHERE */

do_lio(&c_3, &c_l, (char *)&n, (ftnlen)sizeof(integer));
e_rsle ();
sum= (float)O.;
i_l = n;

for (i = l; i <= i_l; ++i)
s_rsle(&io __ 5);
do_lio(&c_4, &c_l, (char *)&x, (ftnlen)sizeof(real));
e_rsle();
if (x >= (float)O.) {

/* Computing 3rd power */
r_l = x, r_2 = r_l;
y = r_2 * (r_l * r_l);
if (sum>= (float)O.) {

}
}

sum+== y;
else {
goto L20;

/* LlO: */
}

L20:
s_wsle(&io __ 8);
do_lio (&c_9, &c_l, "This is the sum:", 16L);
do_lio(&c_4, &c_l, (char *)&sum, (ftnlen)sizeof(real));
e_wsle ();
s_stop(1111 , OL);

} /* MAIN_*/
/*Main program alias*/ int main_() {MAIN_ (); }

Once you have created the test.c file, you need to compile and link
the resulting executable with a command like:

$ gee -o test test.c -1F77 -1I77 -lm

Note that the F77 and 177 library archives must either be in the de­
fault /usr/lib, if not, you must include an -L command like:

7.15.3 Installation

Nonnative Software Development Tools 267

$ gee -o test test.c -L/usr/local/f2c/libF77 -1F77
-L/usr/local/f2c/libI77 -1177 -lm

Note that the -L directories must be wherever you have built the ar­
chive libraries included with this distribution.

The best set of examples and discussion of feature/function for f2c is
in the document f2c.ps, which is a Postscript document included with
this distribution. If you have Ghostscript installed, you can preview it.
You can also print it to any Postscript printer for review.

If you have problems with unresolved references, it may be because
of the way your compiler generates labels, and the necessary conver­
sion to link C and Fortran routines together into a single executable.
See your compiler documentation for more details. It is important to
use the same compiler to generate both the libraries and the final ex­
ecutable. gee is a good compiler and worked fine on Sun and IBM ma­
chines. Other machines were not tried but are supported. Keep this in
mind as you attempt to build final executables.

The above example file is included on the accompanying CD in the
./src/example directory. This is something I added in before distribution
and in no way is related to the original distribution of the f2c system.

There is a file named README which you should examine since it
has some information related to the function of f2c, including a discus­
sion of bug reports, machine dependencies, and system call issues. See
this file before building the product. See also a file named fixes. This
contains information on fixes and functionality in various versions of
the product.

This product was built on several UNIX machines, including an
RS/6000. As with most products, there are some subtleties to watch out
for. The first recommendation is to use the GNU C compiler since it will
ensure that ANSI file headers and other constructs will be supported
by your compiler. You can try to build the products with your native
compiler, but if you have trouble, try it with the GNU C compiler.

First move to the ./src subdirectory and build the xsum and f2c ex­
ecutables with a commands:

$ make clean
$ make all

If you want to use the GNU C compiler, you must invoke commands
like:

$ make clean
$ make all CC=gcc

268 Nonnative AIX Developer Tools

You cannot change the makefile contained in the ./src subdirectory be­
cause the makefile itself checks the contents of the makefile to ensure
that it was transmitted over the network correctly. While this is unfor­
tunate, you can modify the C compiler choice by using the macro com­
mand line subsitution with make as described above.

Next you should move to the ./libF77 subdirectory to compile this li­
brary. As is documented in the ./libF77 README file, the makefile as­
sumes that f2c.h header file is contained in /usr/include. As before,
ensure that there are no files in the directories which can change the
results of the makefile with the command:

$ make clean

The next issue is to create the proper f2c.h file in the ./libF77 subdi­
rectory. Unfortunately, the makefile hard-codes the location of f2c.h as
/usr/include. If you do not want to place f2c.h in this directory, you must
first issue the following command:

$ cat /usr/local/f2c/f2c-1993.04.28/src f2ch.add > f2c.h

This assumes that your f2c is installed in /usr/local. If you have placed
the distribution in some directory other than this, you must substitute
your path for /usr/local in the above command. Note also that you need
to be sitting in the ./libF77 subdirectory when you issue the cat com­
mand. This command creates a new f2c.h in the local directory which
you will use to create the libF77 .a archive library. Use the make com­
mand to build the archive library:

$ make CC=gcc

Remember that you can use your default C compiler by simply issuing
the make command without the CC macro definition.

On an RS/6000 there is a bug with the assembler unless you have
PTF U416277 installed. If you do not have this installed, you need to
override the -g option on the compile statement with a command like:

$ make CC=gcc CFLAGS=

This will override the default in the makefile and build the f2c system
without debug information. In fact, this is a good idea anyway since it
creates a more efficient system without the -g option. Note that you
must do the same thing for the other subdirectories (libF77 and libl77).

Finally, move to the ./libl77 subdirectory and issue the same com­
mands you issued to build libF77. There is one change. You must create
an empty file named local.h in the ./libl77 subdirectory since the fp.h

7.15.4 Conclusion

7.16 Ftncheck

Nonnative Software Development Tools 269

include file attempts to include it. This file is useful only for VAX and
CRAY environments, and you therefore only need to create an empty
file with a command like:

$touch local. h

Now use the make command to create the archive library. Once you
have done this you have completely constructed the f2c distribution.

See the corresponding README files for each subdirectory for more
information related to their contents.

f2c is a tool which attempts to take Fortran code and automatically
convert it to C code. The basic syntax seems to be supported fairly well;
however, there is simply not enough experience or information avail­
able as of the time of this writing to confirm its stability. Simply try it
for yourself on some of your codes and see what happens.

Whatever happens, it may be a very useful tool for you to use in be­
ginning the port of some of your Fortran codes to the C language and
environment. See the file f2c.ps in the distribution for more informa­
tion.

7.16.1 Introduction

7 .16.2 Usage

Ftncheck is a freely available tool which significantly enhances the pro­
ductivity of a typical Fortran programmer. Unlike many tools, includ­
ing most Fortran compilers, Ftncheck doesn't check the syntax of the
Fortran programs it analyzes. Instead, it provides semantic checking
which enables developers to catch logic errors and potential run-time
problems well before execution of the application. Through the use of
Fortran logic and other analysis techniques, Ftncheck can alert the de­
veloper to conditions like unused or uninitialized variables, strange
loop constructs, and other wasteful or incorrect programming proce­
dures.

The basic syntax for Ftncheck is:

ftncheck [-[no]declare] [-[no]division] [-[no]extern] [-[no]f77]
[-[no]library] [-[no]linebreak] [-[no]list] [-[no]portability]
[-[no] project] [-[no] sixchar] [-[no] symtab] [-[no] usage]
[-[no]verbose] [-output=file] [-colurnns=num] [-common=num]
[novice=num] file ...

270 Nonnative AIX Developer Tools

where -declare displays a list of all identifiers whose datatype is not
explicitly declared.

-division warns wherever division is done.
-extern warns if external subprograms are never defined.
-f77 warns about violations of the F77 standard.
-library begins library mode. Does not warn if subprograms are

defined but never used.
-linebreak treats line breaks in continue statements as spaces.
-list displays source listing.
-portability warns about nonportable usages.
-project creates project file.
-sixchar displays variable names which clash at six characters

in length.
-symtab displays symbol table.
-usage warns if variables are not used.
-verbose is verbose mode.
-output=file places output in a file.
-columns=num sets maximum line length to num.
-common=num-strictness in checking COMMON blocks.

Minimum is O; maximum is 3.
-novice=num sets novice level. Minimum is 1; maximum is 5.
file ... specifies one or more files to analyze. Be careful

concerning extensions (see below).

There are a tremendous amount of defaults included in the logic of
Ftncheck, including automatic input filename extensions (.prj, then .f
in UNIX) which significantly enhance the usability of Ftncheck. The
. prj files are project files. These are created by Ftncheck and are very
useful in storing information which is useful in building multifile
analysis jobs. There is a more thorough discussion of the options, in­
cluding project files, in the included manual page and Postscript docu­
ment. See these for more details on the individual options.

As with most applications, the best way to learn Ftncheck is through
examples and actual use. A simple example of Ftncheck is:

$ ftncheck -library -noextern -project test.f

This will read the input file test.f and create a project file which con­
tains a variety of information regarding test.f itself. The file created
will be named test.prj. This is called a project file and can be used in
the incremental process of analyzing a large or changing group of files
for consistency across the source code files. This is one of the most use­
ful functions of Ftncheck and should be utilized to the fullest, espe­
cially when building large software systems.

Nonnative Software Development Tools 271

If you used the command:

$ ftncheck -library -noextern test testl.f

Ftncheck would first take the results from the project file test.prj and
cross-reference them with the output of the testl.f analysis. This al­
lows you to save significant time when analyzing changing systems.

You can also modify the default behavior of Ftncheck through the use
of variables. 'lb modify the behavior of a variable, simply precede the
option name with FTNCHECK_ and ensure that you export the vari­
able (or use setenv in the C shell) to ensure that it is passed to sub­
sequent shells. For example, to see the columns to 132, use the
commands:

$ FTNCHECK_COLUMNS=l32
$ export FTNCHECK_COLUMNS

or

$ setenv FTNCHECK_COLUMNS 132

depending on the shell you are using. Note that you have to use the
complete option name in uppercase for this methodology to work.

There is an excellent example of the output of Ftncheck in the man­
ual page. Duplicating this would be a waste of paper, and therefore, I
strongly urge you to examine the accompanying man page for a good
example of Ftncheck output.

Earlier in this section it was stated that Ftncheck does not perform
syntax checking. This is not totally true. Ftncheck does perform some
basic syntax checking along with other more logic-oriented checks.
Ftncheck has four main types of messages:

1. Portability warnings

2. Other warnings

3. Informational messages

4. Syntax errors

Portability warnings outline potential portability problems with the
code regarding the particular use of nonstandard logic. Other warning
messages display messages not normally displayed by the compiler. In­
formational messages consist of warnings which will directly assist de­
velopers in debugging their code. Finally, syntax errors may be
detected and presented to the user; however, Ftncheck does not catch

272 Nonnative AIX Developer Tools

7 .16.3 Installation

7.16.4 Conclusion

all syntax errors and should be used only after the compiler has cor­
rectly compiled the program.

Along with a much more thorough discussion of Ftncheck's functions
and capabilities, the man page provides information on current release
functionality as well as any known bugs. There are a variety of bugs in
the system, and you should check the end of the man page before using
Ftncheck to save yourself some major headaches.

The installation of Ftncheck is very straightforward. Edit the makefile
and modify the BINDIR and MANDIR to your appropriate directories.
Then issue the command:

$ make IBM-RS6000
$ make install

This will generate the Ftncheck binary. Note that Ftncheck is written
in C and obviously requires a C compiler to build properly. Either the
native A.IX C compiler or the GNU C compiler system will work well.

Ftncheck is an extremely useful tool in terms of checking the logic and
flow of Fortran programs. By providing fairly extensive semantic
checking of Fortran programs, Ftncheck can signficantly aid in the
run-time debugging and tuning of Fortran software systems. This is
definitely a tool which will be of great value to almost any Fortran pro­
grammer.

7.17 imake and xmkmf

7.17.1 Introduction

imake is a facility which generates makefiles in conjunction with cpp
(the C preprocessor). This allows you to generate different makefiles
based on cpp directives such as #define and #include. This provides you
with the ability to include and define the appropriate information in
your makefiles so they will build correctly. When you use a heterogene­
ous environment, this becomes a very powerful tool to build portable
makefiles where you can have imake determine what type of machine
you are on and build the appropriate makefile. This powerful feature is
often used by the more complex and sophisticated packages on the
Internet.

imake is used by older software systems from the Internet and be­
came fairly widely used because the Xll distributions used it to gener­
ate their makefiles. In fact, imake still comes with distributions of Xll.

7.17.2 Usage

Nonnative Software Development Tools 273

The distribution included with this book is a subset of those commands
directly related to the imake and associated commands.

imake is part of the Xll distribution and as such is copyrighted by
M.I.T. (Massachusetts Institute of Technology). They have provided
this technology free, given the M.I.T. copyright notice in App. C. See
this or the software distribution itself for more details.

The basic syntax for imake is:

imake [-Ddefine] [-Idir] [-Ttemplate] [-f file] [-s file] [-el [-v]

where -Ddefine allows you to issue #define definitions to pass to cpp.
-Idir-dir is the directory of the !makefile templates.
-Ttemplate is the template is used to give the name of the

template files.
-ffile-file is the per directory input template (default

!makefile).
-s file-file is the name of the output file (default is Makefile).
-e executes the Makefile after it is generated (this is not the

default).
-vis verbose mode.

imake uses a variety of files to generate the final makefile. It works
by placing a preprocessor file named !makefile in each directory which
contains something to be built. imake also uses a generic template file
named Imake.tmpl to get generic machine-specific information. Fi­
nally, !make.rules contains information on a specific platform which
will give imake the ability to generate exactly the makefile necessary
to build on a particular platform. All files are passed first through cpp
to preprocess any cpp directives. The results of this preprocessing pass
are incorporated into the resulting file Makefile.

When you invoke imake, it passes all variables contained in the -I
and -D command line options as well as the following lines:

#define IMAKE_TEMPLATE "Imake.tmpl"
#define INCLUDE_IMAKEFILE "!makefile"
#include IMAKE_TEMPLATE

The convention for variable definitions is that imake variables are
mixed case, while make variables are uppercase.

The !make.rules file contains cpp preprocessor macros of the form:

string(s) @@\

An example, as outlined in the imake man page, might be something like:

274 Nonnative AIX Developer Tools

#define prograrn_target(program, objlist) @@\
program: obj list @@\

$(CC) -o $@ objlist $(LDFLAGS)

When you call it with a command like program_target(foo, fool.o,
foo2.o), it will be expanded to:

foo: fool.o foo2.o
$(CC) -o $@ fool.o foo2.o $(LDFLAGS)

You can see that the rules file is important to allow you to define your
own cpp macros in your !makefiles. For a good example of a complex
!make.rules, see the ./config subdirectory on the accompanying CD.

There are several environmental variables which can be used to alter
the default behavior of imake. Some of the most important are:

IMAKEINCLUDE

IMAKECPP

IMAKEMAKE

Any valid directory for include files to cpp

cpp to use, including fully qualified pathname

make to use, including fully qualified pathname

You can use macro definitions and redirections as you normally would
with any cpp file and directives.

For more information on imake and its associated files, see the man­
ual page for imake in the config subdirectory included with the X11R5
imake distribution. This directory also contains a vareity of cf (configu­
ration) files for different architectures which help to define variables
for several different kinds of UNIX machines.

The misc subdirectory contains a variety of files which contain notes
for porting imake and its associated files to a variety of different plat­
forms. While this provides much of the capabilities for a limited num­
ber of machine, you will probably need to some of your own definitions
and learning as you move imake to your particular platform.

There are a variety of other tools in the scripts subdirectory, includ­
ing the xmkmf command. The basic syntax of this command is:

xmkmf [-a] [topdir [curdir]]

where -a builds the makefile in the current directory and invokes any
subdirectory makefiles automatically.

topdir is the root directory where makefile search should begin.
curdir-you can set this to allows xmkmf to reference any

directory as its current directory.

xmkxf is an easy command interface to imake. It makes assumptions
as to its directory structure and the location of imake template files.
This is often run by Xll distributions to generate the proper makefiles

Nonnative Software Development Tools 275

from the !makefiles. A simple example of how xmkmf and imake are
related is as follows:

$.. / .. /config/imake -I .. / .. /config -DTOPDIR= .. / .. /. -DCURDIR=./lib/X

or

$ xmkmf .. I .. I . . /lib/X

These two commands accomplish the same thing. This is taken directly
from the man page for xmkmf and is very demonstrative of the simplic­
ity of xmkmf. Most machines that run X Windows come with this com­
mand, although they may not have a man page. Look in the Xll area
for the file xmkmf and the subsequent man page for more information.

Another command that is often useful is the imdent command. This
is a script contained in the scripts subdirectory. imdent lists all cpp di­
rectives and their associated nesting level. This allows you to see how
your !makefiles are structured and to ensure that you don't have any
problems due to nesting problems. The basic syntax is:

imdent [-n] [file ...]

where -n specifies the number of spaces used to designate indentation
between nesting levels. Default is two spaces.

file ... is one or more files to analyze. Default is standard input.

The final command of interest with this distribution is the mkdirhier
command. This will create any directory hierarchy, including any inter­
mediate subdirectories as necessary. This is different from the mkdir
command, which forces you to create all intermediate subdirectories.
The basic syntax is:

mkdirhier file

where file is any directory you wish to create.
This command is very useful when creating nested subdirectories.

Unlike the mkdir command, it is not necessary to create any interven­
ing subdirectories before creating the file subdirectory. For example:

$ ls -R
filel file2
$ mkdirhier ./subl/sub2
$ ls -R
fill file2
. /subl:
sub2

276 Nonnative AIX Developer Tools

7.17.3 Installation

7.17.4 Conclusion

Note that, unlike mkdir, it was unnecessary to create the subl direc­
tory and then create the sub2 directory. This is very useful when in­
stalling software and building complex systems.

Both imake and xmkmf are included with AIX but in uncompiled form.
To build imake, you need to type:

$ cd /usr/lpp/XII/Xamples/config
$make -f makefile.ini

This generates imake in this directory for you. You can move the result­
ing files anywhere in your filesystems.

To generate xmkmf, use the following commands:

$ cd /usr/lpp/XII/Xamples/util/scripts
$.. / .. /config/imake -I .. / .. /config -DTOPDIR= .. / .. /

This generates a makefile from the intake templates in the scripts di­
rectory. Now you can use the following commands to build xmkmf.

$ make

This is all there is to do to generate both imake and xmkmf on AIX.

imake and xmkmf are very powerful facilities which are typically
shipped with Xll distributions because of their dependency on them.
AIX includes in source code format by default. Use them after you build
them as described earlier.

imake allows you to use cpp directives within a makefile and pre­
process the appropriate information into the resulting makefile for a
specific platform. It is a very powerful tool and is something to consider
when distributing software systems to heterogeneous environments.

8.1 oleo

8.1.1 Introduction

Chapter

8
General Tools

While other chapters in this book discuss topics directly relevant to a
particular development area or type, this one discusses tools which
don't really fit into any specific category. Tools such as spreadsheets,
documentation tools, interactive shells, and input/output tools are
documented here. There are many more good tools which provide func­
tion beyond those offered here. This is merely an introduction to the
types of tools that are available on the Internet.

oleo is a very sophisticated and powerful spreadsheet package provided
by GNU for most UNIX flavors. oleo works much as other spreadsheets
work with cells referenced by characters and numbers and using mac­
ros to perform common functions. oleo 1.5 has a significant number of
bug fixes from the previous releases and seems to be much more robust
and stable than the previous ones.

oleo supports both dumb terminals through a curses interface and
Xll. You can generate embedded Postscript files which are snapshots
of all or a portion of the spreadsheet. They can then be printed, dis­
played, or faxed with other tools such as Ghostscript and Netfax.

oleo is a GNU product and as such is subject to its GNU General
Public License as included both in the product distribution and in App.
C of this book. The relatively new version of perl is 5.001; older ver­
sions including 4.006 are still available on the net if you need some of
that function.

277

278 Nonnative AIX Developer Tools

8.1.2 Usage

oleo looks very much like other spreadsheets on the surface but has
much more capability than other similar products. The basic input
screen is shown in Fig. 8.1. There is a listing of main commands in the
USING file. See this for a detailed breakdown of basic commands.

The other file which contains useful information is the KEYS file.
This contains a description of all keystrokes and their associated com­
mands. The syntax used below is the same as that used in the emacs
chapter (Chap. 9). Namely, the C-n represents the CTRL character held
down while the n key is pressed. This is the same nomenclature as that
used by emacs.

The basic oleo commands are:

C-g

c-x c-c
c-z
C-x !

C-H

C-h C

c-x j

C-P

C-N

C-F

C-B

C-[p

Aborts the current command

Ends the session

Suspends oleo

Recalculates

Help mode

Help with a command

Moves the cursor to a specific address

Moves cell cursor up

Moves cell cursor down

Moves cell cursor right

Moves cell cursor left

Scans up

Figure 8.1 The oleo screen.

General Tools 279

c- [n Scans down

c- [f Scans right

c- [b Scans left

c- [v Scrolls up

c-v Scrolls down

c-x > Scrolls right

c-x < Scrollsleft

c-x (Begins entering a macro

c-x) Ends entering a macro

c-h o Displays options

c- [c- P a Saves region as ASCII

c- [C-P p p Saves region as Postscript

c- [c-P p s Saves page size for Postscript printer

c- [g Interface to gnuplot, if installed, so you can plot results

c- [c Copies region

c- [m Moves region

c-o Inserts row

c- [o Inserts column

C-K Deletes row

c- [k Deletes column

M-x clear- Clears the spreadsheet
spreadsheet

c-x 5

c-x 2

Splits window horizontally

Splits window vertically

There are a variety of other commands which provide more sophiti­
cated function from oleo. See the KEYS file for a complete listing.

There is a file named USING which contains a description of basic
oleo operations and functionality. Reference it for more detailed infor­
mation on oleo. This section will provide a very brief overview merely
to introduce you to basic oleo capabilities. The basic oleo command
structure is similar to emacs and uses both the escape and control keys.

oleo operates on a cell basis much like Lotus or Excel, and the com­
mand syntax is virtually identical. Keyboard mapping can be control­
led and changed based on user need. You toggle between input and
command mode.

oleo supports a variety of input and output formats including integer,
float, hidden, graph, general, dollar, comma, percent, and several oth­
ers. Because of the power of the underlying UNIX architecture, oleo
has a variety of functions beyond what most spreadsheets provide. For
example, you can have the spreadsheet automatically calculated while
continuing to enter input. You can also have automatic backup genera­
tion and automatic update of various functions such as rnd(), cell(),
my(), and others.

280 Nonnative AIX Developer Tools

8.1.3 Installation

8.1.4 Conclusion

oleo uses the standard configure package that comes with most GNU
utilities. As with other configure utilities, you should use a series of
commands like:

$ cd oleo/oleo-1.5
$ configure
$ make clean
$ make

This will build oleo in the current subdirectory. To install into your de­
fault directory, use a command like:

$ make install prefix=/usr/local

This will copy the file oleo to the /usr/local/bin subdirectory.
There are a few special instructions for the build of oleo documented

in a file INSTALL.OLEO. See this for detailed information. The main
options for compilation include spreadsheet size, Xll support, and a
few machine-specific instructions regarding include files. However,
with AIX, the build is very simple and seamless, and the commands as
listed above will work well to build and install the product.

One thing to note is a bug which exists on AIX. You need to have the
same PTF that needs to be insalled for gee and some other programs
(PTF U416277) from IBM. If you don't have this on your system, you
will need to either remove the -g option from the CFLAGS macro in the
Makefile or issue the make like:

$ make CFLAGS=

This will fix the related problem on the RS/6000.
This installation is fairly straightforward and presents no real prob­

lems. If it does, see the GNU people for more information. Also see the
README file for possible contacts and mail addresses.

oleo is simply one of the most powerful spreadsheet programs available
today. While it supports syntax used by tools like Lotus and Excel, it
provides additional functionality that you may want in a spreadsheet.
Plus it's free.

This has certainly not been an exhaustive presentation of oleo and
its capabilities. However, it has presented some of its basic capabilities
and characteristics. Keep oleo in mind when you are evaluating spreed-

8.2 perl

8.2.1 Introduction

General Tools 281

sheets. By using oleo, you can significantly reduce your need to pur­
chase spreadsheet tools and facilities.

perl stands for practical extraction and report language (but is better
known as pathologically eclectic rubbish lister). perl really consists of
the best of many structures and constructs from C, sed, and awk as
well as many of the functions of shell programming. It is a language
unlike any other you have seen and, subsequently, has a significant
amount of power and capability for doing work on a UNIX platform.

perl is a massive and powerful utility that is fairly new in the UNIX
community. Because of its power, this section will not spend very much
time on its use and syntax but will focus more on its overall capabilities
and function. There is a 100+ page manual page included with the perl
distribution, and this covers all perl capabilities and syntax in great
detail.

perl really provides functionality that combines the best of C pro­
gramming with the best of shell programming. It provides a rich data
manipulation capability as well as data display capability. As perl ma­
tured, it gained the capability to use sockets for network and interproc­
ess communication as well as file and process manipulation.

perl makes easy what has been tradionally difficult to do in the past:
combine interactive applications to manipulate and display informa­
tion not only on the local machine but on remote machines as well. perl
provides a conglomeration of many UNIX functions in one C-like lan­
guage. If you are familiar with C syntax, perl will look very familiar
and should be relatively easy to learn. However, because of the com­
plexity, it will take some time to learn all of the functions available
with perl, so be ready to dedicate a few days to become proficient.

perl supports many of the structures and functions of sed and awk
and in fact contains tools to covert your old awk and sed scripts to perl
scripts. This is a very useful first step in learning perl since it provides
you with a direct translation from something you are familiar with to
something you are trying to learn. From this you can see how perl func­
tions and the advantages it can provide.

perl also delivers a debugging system which allows you to trace your
programs in real time and see its behavior one line at a time.

The benefits of perl in a heterogeneous computing environment are
clear: one consistent development interface across all platforms. There
are many differences between point tools in a UNIX solution. Some ma­
chines use ksh while others use sh. Some machines use awk while oth-

282 Nonnative AIX Developer Tools

8.2.2 Installation

ers use nawk. Because of UNIX's ability to pipe tools together, develop­
ers tend to string single tools together in a long chain to accomplish
their desired result. As the heterogeneity of the environment increases,
this chain begins to break down as different point tools behave differ­
ently on different platforms. perl fixes this by providing a single, con­
sistent interface across all platforms, including most of the point tools
within its domain. This is probably the biggest single benefit of perl for
most power users and is the main reason perl is so widely accepted.

perl is a GNU product and as such is subject to its GNU General
Public License as included both in the product distribution and in App.
C of this book.

perl comes in a compressed tar file. First unzip the file and unwind the
resulting tar file. Once this is done, run the configure command:

$. /Configure

This is not the typical configure system which generates makefiles and
determines the type of machine you are running on by itself. This is a
script which prompts you for input at a variety of places and lets you
help it figure out what kind of machine it is on.

There are only a couple of issues to be concerned with in the Config­
ure script. The first is that you should not select aix for any questions
since this will not work. Instead of aix, select none. For example:

Which of these apply, if any [aix] none
Operating system name [aix] none

You need to select none for both of these questions to ensure that perl
will build correctly.

Finally, do not select dynamic loading. This question will be asked,
and you need to answer the default, which is no.

If you are installing everything in /usr/local, you may want to try the
command:

$./Configure -S

This will take the defaults that are already in the makefile.sh precon­
figured files and generate the makefiles. This was not successful with
the software on the accompanying CD since they were not in this direc­
tory. Therefore, a simple ./Configure was the command I had to execute
and then answer some questions.

Once you have finished Configure, issue the command:

8.2.3 Conclusion

8.3 texinfo

8.3.1 Introduction

$ make install
$ make clean

General Tools 283

This will generate the appropriate perl executables, including utilities
to convert awk and sed scripts to perl scripts, and will install them.
perl runs on many platforms, and you shouldn't have any problems
with the installation.

All answers given to the ./Configure tool are contained in the con­
fig.sh files in each machine's directory. View this to determine what re­
sponses to give to Configure to build these products.

This section did not introduce you to either the syntax or functionality
ofperl. Instead it attempted to whet your appetite for more information
about perl. By providing information about its basic capabilities and
functions, this section may have prodded you into further action.

The best introduction to perl is in the Nutshell Book Programming
Perl from O'Reilly & Associates. The other document to study is the
manual page distributed with perl. There are many pages of in-depth
information on perl and its syntax and functionality in the pod subdi­
rectory. Study these files before proceeding with perl.

perl is the most powerful language to emerge in a long time. It pro­
vides many functions that fourth-generation languages purport to pro­
vide but at the same time provides the power of second- and
third-generation languages. perl 5.001 is on this CD. Dump it to your
hard disk and have fun.

texinfo is a documentation system which delivers both on-line and pa­
per documentation from a single input file. texinfo is written and sup­
ported by the FSF and is, therefore, a very robust and well-written
product.

texinfo files, often known as info files, are distributed with most
GNU products. These files are the documentation you should use to
learn about and understand the product. The most common use of the
info files is in conjunction with emacs. emacs macros are distributed
with texinfo such that you can view info files from within emacs and
use emacs as your on-line documentation system. You can also gener­
ate device-independent (dvi) files for use with TeX and LaTeX pre- and
postprocessor software (see Sec. 9.12.1 for more details).

There is a stand-alone tool called info that is distributed with tex-

284 Nonnative AIX Developer Tools

8.3.2 Installation

8.3.3 Usage

info; it allows you to view documents interactively. See Sec. 8.3.3 for
more details.

Finally, texinfo will eventually be merged into the emacs distribution
and will disappear as an individual distribution. Keep this in mind if
you plan to use texinfo and are not a big emacs user.

texinfo is a GNU product and as such is subject to its GNU General
Public License as included both in the product distribution and in App.
C of this book.

The basic installation of texinfo is similar to many other tools from
GNU:

$ configure --prefix=/usr/local

This will create the proper Makefile. From this you can run make using
a syntax like:

$ make CC=gcc install
$ make install

The make will generate several executables in all subdirectories. It will
install a variety of LISP macro files and build several programs, in­
cluding texi2dvi and makeinfo, which reformat TeX input files to dvi
files and create info files from text files, respectively. These programs
and especially the macros can be used by emacs and TeX to generate
display output and formatted printable output from the same texinfo
document.

The README file contains a listing of files in the distribution and
their contents. The most interesting is the texinfo.texi file. This con­
tains all the documentation for texinfo itself and can be viewed either
with emacs or the stand-alone program info.

The other file of interest is the NEWS file. This contains a variety of
information on changes and enhancements to the texinfo product for
the last few versions. Take a look at this before you begin using the
product.

texinfo consists of a variety of different types of files. The basic texinfo
input file has a . texi or . texinfo suffix. Usually the subject of the texinfo
document is the prefix. For example, the texinfo document for gawk is
entitled gawk.texinfo. The most comon way of using texinfo and texinfo
files is with emacs. You can format and display a texinfo file with a few

General Tools 285

simple keystrokes within emacs. You can also format and display tex­
info files with the info subsystem that is distributed with this book.
Finally, you can use TeX to format the texinfo files for printed output.

There are also several scripts distributed with texinfo 3.1, including
texi2dvi, which takes texinfo input and generates a dvi file for later
TeX processing.

This distribution also contains several LISP files which are used by
emacs to format a texinfo file. There are a couple of utility files which
are not contained in the ./lisp subdirectory with emacs 19 .17. To take
advantage of these, simply move them into the ./lisp subdirectory and
begin to use them.

Finally, there are makeinfo and info files which are executables
which create an info file from a texinfo files and view them.

makeinfo. The makeinfo application takes texinfo input files and gen­
erates info output files which can be viewed with the info viewing sys­
tem. The basic syntax is:

makeinfo [options ...] file ...

where options consist of:

-Idir Specifies dir as a directory to search for @/include files

-Dvar Defines a variable

-uvar Undefines a variable

- -no-validate Suppresses cross-reference validation

--no-warn Suppresses warnings

--no-split Doesn't split large files

--no-headers Doesn't generates Node: headers

--verbose Verbose option

- -version Displays makeinfo version

--output file Specifies output filename other than the once specified in
the texinfo input file with the @setfilename command

--paragraph-indent num Specifies the default paragraph indent as num

f i 1 e . . One or more files to process

You simply move to the directory where the .texinfo or .texi input file
is and issue the makeinfo command. A simple example is:

$ makeinfo gawk.texi

This will generate a gawk.info file which can then be viewed with the
info viewer. If you are in a directory other than the one in which the file
is being built, you can use the -I option to specify a directory for any
include files.

286 Nonnative AIX Developer Tools

info. Once you have generated an info file, you can view it with the
info command. The basic syntax is:

info [options ...] menu-item ...

where options are:

--directory dir

-f filename

-n node

-o file

-h

--version

menu-item

Specifies a directory to search for input files. You can specify a de­
fault search path with the INFOPATH environmental variable.

Specifies a file to use as the initial file (default is dir).

Specifies a node within the input file to move to.

Sends output to file instead of to the default standard output.

Produces help.

Displays info version.

Specifies a menu item within the info display file.

Info is essentially a very limited version of emacs which provides you
a small set of commands with which you can manipulate the viewing of
an info file. The basic command set is:

f

h

?

h

Ctrl-g

Ctrl-1

m

n

p

u

Space

Delete

b

q

g

s

ESC-x print-node

Follows a cross-reference

Invokes tutorial

Gets summary of info commands

Selects a node

Aborts the current command

Refreshes the screen

Specifies a menu item by name

Moves to the next node

Moves to the previous node

Moves up a node

Scrolls forward one page

Scrolls backward one page

Goes to beginning of current node

Quits

Moves to a specified nodename

Searches for a specified string

Prints the current node to !pr

The basic screen is shown in Fig. 8.2. The window in the figure is the
result of the command:

$ info -f info.info

in the ./info subdirectory of the texinfo distribution. From here you
can execute any of the commands above to move around within the info
file.

General Tools 287

Info: An Introduction

******"'**************
Info is a program for reading documentatton, wltich you are ilsi~ llOlol.

To learn how to use Info, type the command 'h', It brings yolt'to a
progriumned instruction sequence.

;l~~ advanced Info commands, type 'n' twiee. This brings you to
\j, , ' Experts', skipping over the • 'Getting Started' chlilpter;

\'t,~tting Started::
*'Advanced Info::
*<Create an Info File::

Done.

Figure 8.2 Example info window.

texinfo syntax. texinfo syntax is not the same as TeX; it replaces TeX to
create a file which can be used by both info and TeX to create output.
The basic syntax for a texinfo file is commands preceded by a @. A short
sample texinfo file is included in the texinfo 3.1 distribution under info.
For an example of this, use the info system to examine the texi.info file.
This has a short example which explains how you would construct a
texinfo file. From this you can create almost any kind of file you would
like. The texinfo files contained in the texinfo distribution contain an
example of virtually every kind oftexinfo command. See these for more
details on the actual language.

To get more information on the texinfo system, type the following
commands when sitting in the top directory of the texinfo 3.1 distribu­
tion:

$ cd info
$. /info -f info

Once you have played with this and learned a little about the info
system, you can use info to get more information on texinfo itself with
the commands:

$ cd ..
$./info/info -f texi

288 Nonnative AIX Developer Tools

Note that some of this information is in the INTRODUCTION; how­
ever, the documentation for above command in the INTRODUCTION
file is incorrect. You should use the above command to get into the info
system and get more information about texinfo.

Finally, to get detailed information about the info system, type:

$./info/info -f info-stnd

Note that the default input filetype is .info for the info system, and it is
therefore redundant to include the file suffix.

You can create a printed document that contains most of the informa­
tion in the texinfo files with the TeX system. See Sec. 9.1.22 and the
INTRODUCTION file in the texinfo distribution for more information.

The other way to use this is from within emacs. texinfo is an emacs
mode and is invoked from within emacs with the command:

C-h i

This drops you into the info system, which is a hypertext-based system
providing access to information and the ability to move around within
the documents as well as return to a previous button. By placing all
texinfo files in the ./emacs/info directory, you can access these files
transparently through the above command. Note that you have to also
modify the dir file in the ./emacs/info subdirectory to make the new info
files known to emacs.

You can also access a texinfo file through emacs in a directory other
than the default texinfo emacs directory by executing the command:

g(filename}nodename<return>

This means that you can move to an info file from within emacs by sim­
ply depressing the g followed by a filename enclosed in parentheses fol­
lowed by a nodename within the file. For example, you can move to the
gawk info file by typing:

g(/usr/local/gawk-2.15.4/gawk.info}

This will produce a screen which looks like that shown in Fig. 8.3.
You can make anything the default upon invocation of the emacs info

mode by placing the appropriate info files into the ./info subdirectory in
emacs and editing the dir file in the same directory to contain the node­
name for the new info files.

Most software distributions from GNU come with texinfo files, and
they are very useful when learning a new product. See the help for tex­
info within emacs for more information.

This £ile documents 'awk•t a program that you can use to select
particular records in a £ile and per£orm operations upon them.

This is Edition 0.15 of 'The GAMK Manual',
for the 2.15 version of the GNU implementation
of AMK.

Copyright CC) 1,8,, 1,,1, 1,,2, 1,,3 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.

Permission is granted to copy and distribute modified versions of
this manual under the conditions for verbatim copyingt provided that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.

Permission is granted to copy and distribute translations of this
manual into another language. under the above conditions for modified
versionst except that this permission notice may be stated in a
translation approved by the Foundation.

!;:;direct:
gawk.info-1: 1052
gawk.info-2: 48248
gawk.info-3: ,8077
gawk.info-4: 146748
gawk.info-5: 1,5871
gawk.info-6: 2435,4
gawk.info-7: 2,1465
gawk.info-8: 340847

wk.info-,: 380680

ading ange-ftp ••• done

Figure 8.3 gawk info screen.

8.3.4 Conclusion

General Tools 289

There is a tremendous amount of information contained within the tex­
info files distributed with many free software products on the Internet.
texinfo has its own syntax and methods for constructing files. It is be­
yond the scope of this book to provide information on the syntax of the
language; however, all the information you need is contained in the info
files in the texinfo distribution on the CD that comes with this book. By
taking some time and reviewing this information using the info system
described above, you will very quickly become a power texinfo user.

emacs is a very powerful editor, and texinfo is one of the reasons why.
By providing a hypertext-like system from the same document from
which you produce hard-copy documentation, you can save a signifi­
cant amount of devloper time and cost. Because of the power of texinfo,
you can use on-line documentation in a way that really enhances your
productivity and effectiveness on a given system.

Finally, texinfo files are written in a format similar to TeX. In fact,

290 Nonnative AIX Developer Tools

8.4 bsplit

8.4.1 Introduction

8.4.2 Usage

TeX is what you use to produce the texinfo in a printed format. See
documentation on TeX for more information.

bsplit comes as a shell archive and works similarly to split. However, it
provides a split which is common among all different platforms. The
other key difference is that bsplit works well on binary files as well as
on ASCII files.

The basic syntax of bsplit is:

bsplit [-size] [file [prefix]]

where -size specifies the size of the file to split out.
file specifies a file to split.
prefix specifies a prefix to add to the output files. The default is

x.

This command is very similar to split except for the binary file sup­
port. A simple example is:

$ls -1 elvis-1.7.tar
... elvis-1.7.tar 227040
$ bsplit elvis-1.7.tar
$ ls -1
... elvis-1.7.tar ... 227040
... xaa 50000
... xab 50000
... xac 50000
... xad 50000
... xae 27040

Note that the default split file size is 50,000 bytes and the file naming
convention is to begin with x and cycle up from aa. You can change both
the default file size and the prefix by simply including these on the
bsplit command line as documented above.

To put the split files back together again, use a command like:

$ cat x* > newf ile

This will take all the x files and concatenate them, in order, back into
the file newfile. From here you can treat it just as you would have be­
fore you split it. In this case, you could issue the tar comand against it
and should notice no differences.

8.4.3 Installation

8.4.3 Conclusion

8.5 less

8.5.1 Introduction

8.5.2 Usage

General Tools 291

bsplit comes as a shell archive. This means that you remove all text in
the bsplit file up to the line:

! /bin/sh

Once you create this file bsplit.c, you simply compile the file with the
command:

$ cc -o bsplit bsplit.c

This creates an executable bsplit which can then be executed just as
the split command is.

The bsplit command is used by many Internet utilities to split large
binary files to allow for better distribution. You can use the cat com­
mand with the append option to recreate the original file as it existed
before the bsplit command was executed.

bsplit is the command many people use to split software on the In­
ternet, so you can't go wrong using it yourself.

less is a pager. A pager controls the output of information to the screen.
The most common example of a pager is the more command. There is
also a pg command; however, this is not as commonly used in the UNIX
environment.

less is a pager much like more, but it allows both forward and back­
ward movement through a file. less has a command structure very
similar to that of more and, therefore, is very easy for most people to
use. Clearly, the biggest advantage of less is the ability to move back­
ward through a file; however, because of its design, less does not have
to read an entire file into memory like more and, therefore, comes up
much faster. Many advanced UNIX users use the less pager instead of
the other vendor-delivered pager tools.

The basic syntax of the less command is:

less [-[+]?aBCcdEefgGHiIMrnNnqQrSsuUVwX] [-bn] [-hn] [-jn] [-kfile]
[-[oO]file] [-p pattern] [-P prompt] [-t tag] [-Ttagfile] [-x tag]
[-y tag] [-[z] tag]
[+[+]cmd] [file] ...

292 Nonnative AIX Developer Tools

where +-a + in front of an option tells less to execute this command
before entering the file.

-? displays a list of commands.
-a begins search after last line on current screen.
-B disables automatic allocation of additional buffers for old

data storage.
-bn uses n buffers instead of the default 10.
-C clears screen, then repaints.
-c repaints screen.
-d suppresses all error messages due to lack of terminal

capability.
-E automatically exits less at first end of file.
-e automatically exits less at second end of file.
-f opens nonregular file.
-g highlights only the string matched in the last search

command instead of all found.
-G suppresses all string highlighting.
-hn-you can scroll n lines backward.
-I is like -i but ignores case.
-i ignores case for searches.
-jn specifies n as the line number where target results are

placed (e.g., search matches).
-kfile-file is a lesskey file which contains key mappings.
-Mis verbose mode.
-m is verbose mode.
-N displays line numbers.
-n supresses line numbers.
-Ofile copies output to file as well as displays, overwriting

existing file.
-ofile copies output to file as well as display.
-P prompt changes prompt.
-p pattern starts at first matching pattern in file upon less

invocation.
-Q is totally quiet mode.
-q is quiet mode.
-r displays raw control characters.
-S doesn't wrap lines.
-s compresses consecutive blank lines into one blank line.
-t tag is related to the ctags command.
-Ttagfile specifies a tagfile for -ttag.
-u treats backspaces and carriage returns as printable

characters.
-U treats backspaces and carriage returns as control characters.
-V displays version.

General Tools 293

-w uses blank lines to represent anything beyond the end of file.
-x disables termcap initialization of the terminal.
-xn sets tabs every n characters.
-yn scrolls forward a maximum of n lines.
-[z]n sets default window scrolling size to n lines.
file is file to page through.

You can define any options using the environmental variable LESS.
This is examined at every invocation of less.

Once you have entered a file and are using the less pager, you can
issue a variety of commands, some of which are listed below:

conunand

SPACE

h

RETURN

d

b

v

w

y

R

g

G

p

/string

?string

n

N

:e [file]

:n

:p

Displays information about the current file

Shell escape

Scrolls forward one screen

Displays help summary

Scrolls forward one line

Scrolls forward one line

Scrolls backward one line

Invokes an editor on the current file

Sets window size

Scrolls backward one line and resizes window as necessary

Repaints the screen

Goes to linen (default of 1)

Goes to linen (default of end of file)

Goes to percent n in the file

Goes to the first matching occurrence of string

Goes backward to the first matching occurrence of string

Repeats previous search

Repeats previous search but in opposite direction

Examines new file

Examines next file in filelist from command line

Examines previous file in the filelist from the command line

Almost all of the above commands can be followed by an integer which
represents the number of lines on which to act. Most of the commands
have a default value of 1.

You can use a program called lesskey to define all keys you may wish
to use with less. Keep in mind that this will change the mapping for
your keys, and the fundamental behavior of less may change depend­
ing on the redefinition of your keyboard. lesskey is beyond the scope of
this book. See the man page less.man and lesskey.man for more infor­
mation.

294 Nonnative AIX Developer Tools

8.5.3 Installation

8.5.4 Conclusions

8.6 bash

8.6.1 Introduction

You can install less using the standard methodology; however, it is not
required with the code as delivered. To build without using configure,
type:

$ make prefix=/usr/local

If you want to use gee instead of CC, simply type:

$ make CC=gcc prefix=/usr/local

Then install with the command:

$ make install

If you have problems, examine the makefile for potential problems
with your system. The build is fairly straightforward, and you
shouldn't have any real problems with it. If you do, there is a mailing
address in the READ ME file of the distribution.

less is a very powerful tool which allows you to examine a file and move
back and forth within that file with ease. You can also move into an
editing function if you so desire. Through the use of keypad definitions
(lesskey) and environmental variables, you can modify less's behavior
to match your specific needs. See the man pages included with this dis­
tribution for more details.

bash is the GNU Bourne-Again Shell and is a sh-compatible shell inter­
preter which provides significantly enhanced functionality over sh
(Bourne shell), csh (C shell), and ksh (Korn shell). While sh and csh are
provided on most UNIX platforms, ksh is not and therefore is not as
widely used as the other two shells.

You can purchase ksh from AT&T for use on any system; however,
you may not be willing to provide additional funding for a shell for your
version of UNIX and, therefore, are limited to sh and csh. ksh has more
functionality than both sh and csh do and, in fact, combines the best
functionality from both sh and csh in its implementation. But because
of its lack of general availability because of its cost, there is a need for
additional shell functionality that bash can provide.

8.6.2 Usage

General Tools 295

bash is intended to be POSIX compliant, which provides consistent
and documented interfaces and command structures as well as hetero­
geneous support of UNIX platforms. This is important as you get larger
and more heterogeneous environments and need to support and use
systems with diverse UNIX flavors. bash utilizes the best functions
from sh, csh, and ksh and provides significant functionality above and
beyond them, and is free.

bash is a GNU product and as such is subject to its GNU General
Public License as included both in the product distribution and in App.
C of this book.

The basic syntax of bash is as follows:

bash [options] [file]

where options consist of both internal (built-in) and external options
which are documented in some detail below:

Disables further command line option processing. All strings fol­
lowing - or -- are filenames or arguments.

-c commands Reads commands from commands.

- i Makes shell interactive.

-login Invokes bash as if invoked by login.

-nobraceexpansion Doesn't perform curly brace expansion.

-noprofile Doesn't load /etc/profile or .bash_profile.

-norc Doesn't load personal initialization file .bashrc.

--quiet Doesn't display start-up information.

-refile file Uses file as personal initialization file instead of .bashrc.

-s Reads commands from standard input.

-version Displays current version of bash.

file File containing shell commands to be executed on bash invocation.

Shell programming. This section will not cover all the functionality pro­
vided by bash; however, some discussion of the shell programming
characteristics and built-in commands is necessary to understand the
context of the shell and its capabilities.

Many of the same functions supported in the other shells are sup­
ported in bash. Things like reserve~ words, pipes, metacharacters, and
other similar functions are fully supported. In fact, making the as­
sumption that you can use sh programming syntax is a good assump­
tion and will create the proper framework for developing shell scripts
and executing commands.

There are ways to control the execution of shell programs and com-

296 Nonnative AIX Developer Tools

mands with basic syntax provided with bash. The standard throughout
the bash command documentation is the use of the word list to repre­
sent a series of one or more commands separated by semicolons. An
example is:

listl = (commandl;command2; command3; ...)

where commando is simply a regular UNIX command or internal shell
command. As with sh, this allows you to create multiple commands on
the same command line. This is a powerful feature for both interactive
use and scripting.

Some examples of command syntax are:

(command; command; ...)

{command;command; ... }

for name [in word;]
do list; done

case word in [patttern
[!pattern] ... list;;] ... esac

if list then list [elif list
then list] ... [else list] fi

while list do list done

until list do list done

In first column, denotes a comment

Executes all given commands in a single subshell

Executes all given commands in current shell

Standard loop syntax

Standard case syntax

Standard if command syntax

Standard while syntax

Somewhat unique until command syntax

There are metacharacters which mean special things to the bash in­
terpreter. They are:

I & ; () < > <space> <tab>

If you want to physically represent the shell metacharacters on a com­
mand line, you must "escape" them much as you have to in the other
shells. In other words, if you have a string:

kevin()

which you want to represent on the command line as a literal and not
have bash interpret the () to mean something special, you would use:

kevin\(\)

where the \ (backslash) escapes the metacharacters from interpreta­
tion.

There are two other ways to affect command line interpretation: the
single quote and the double quote. They behave differently, and there­
fore it is important to understand how they work in bash. The single

General Tools 297

quote maintains the literal string with no command substitution or
shell interpretation. For example:

'string1;$string2;!string3'

will present the literal string as displayed above as the result of the
command interpretation. The only exception to this is the single quote
itself, which may not be placed within a pair of single quotes.

Double quotes maintain the literal string with the exception of$,',
and \ interpretation. This is useful to provide literal metacharacters
other than those listed. The same string as above:

"string1;$string2; !string3"

will provide the output:

string;someotherstring; !string3

where someotherstring is the interpreted value of string2. Note that
this provides basic string-level substitution without interfering with
your ability to pass most literal strings directly to the program invoked
from the shell.

This brings us to a discussion of shell variables and parameters. The
basic syntax for viewing and setting variable values is:

name=[value]

where name is the name of the variable to set.
value - is the value to set for name. If value is not set, the

default is null.

Simple display of the value of name is with the metacharacter $. For
example, to set the value of the variable of author to kevin and view it,
use:

$ author=kevin
$ echo $author
author=kevin

There are special predefined variables in bash which are very similar
to sh and ksh. They are:

BASH

CDPATH

ENV

EUID

HISTFILE

Full pathname of current bash invocation.

Searches path for cd command.

If set, provides bash initialization file.

Effective user id.

File to save history command.

298 Nonnative AIX Developer Tools

HISTSIZE Size of history recall list.

HOSTTYPE Automatically set to current system type.

IGNOREEOF If set, specifies the number of EOFs that must be re­
ceived before bash exits. The default value is 10.

LINENO Current line number in a script.

MAIL Set to a specific :filename; bash notifies you when you
receive mail to this file.

MAILCHECK Sets time in seconds to check for new mail.

MAILPATH Specifies a path to check for new mail. Default is system
mail area.

OLDPWD Previous working directory.

OPTARG Last option argument processed by built-in command.

OPT IND Last option index processed by built-in command.
PPID Parent process id.

PWD Current working directory.

RANDOM Each time RANDOM is used, it generates a random
number.

SECONDS Equates to the number of seconds since bash invocation.

SHLVL Incremented each time bash is invoked.

TMOUT Time in seconds to wait for terminal input before timing
out.

UID Current user id.
comrnand_oriented_history Attempts to save multiple command line commands as a

single history entry for later easier use.

noclobber Will not overwrite existing files with redirection com­
mands.

nolinks Will not follow symbolic link paths for command execu­
tion.

notify Notifies job control issues immediately.

There are many other variables in bash, but these are the most com­
monly used ones. See the documentation for more details, specifically
the man page delivered with bash (bash.1).

Many of the things you have come to expect from a shell interpreter
in UNIX are available and supported in bash. Things like redirection,
command line expansion and substitution, built-in commands, aliases,
and job control are fully supported. Many of these functions, such as
job control and aliases, operate much the same as csh, while functions
such as redirection and substitution operate much as sh does.

There are a variety of ways you can structure the command line
within bash. There are also a variety of ways you can define bash to
interact with respect to command line editing and terminal emulation.
Much of the functionality of bash is derived from emacs, and therefore
commands are documented in a similar fashion to emacs. For example,
the syntax C-c means to depress the CTRL key and the lowercase c key
at the same time. The documentation delivered with bash uses syntax

General Tools 299

like M-c to denote pressing the ESC key and the lowercase c key in
sequence. To be consistent this section will use the same syntax.

Some of the more basic bash capabilities and commands are:

set editing-mode vi Establishes command line editing with vi commands (similar
toksh)

c-a Moves to beginning ofline

c-b Moves back one character

C-d Deletes text under cursor

C-e Moves to end ofline

c-f Moves forward one character

c-k Removes text following cursor

C-1 Refreshes the screen

C-n Recalls the next command from the history list

C-p Recalls the previous command from the history list

C-r Moves sequentially through the history list in reverse order

c-s Moves sequentially through the history list in forward order

C-u Kills the current line

c-v Adds character following C-v as a literal (good way to enter
ESC, etc.)

M- I Attempts filename completion

M- [td J Attempts userid completion

M-< Moves to the first command in the history list

M-> Moves to the last line in the history list

M-b Moves back one word

M-c Capitalizes first character of current word

M-d Removes text in the current word following the cursor

M-f Moves forward one word

M-1 Lowercases the current word

M-u Uppercases the current word

All of the above keystroke sequences can be executed at the command
line to provide the documented functionality. bash has by far the most
flexible and powerful user interface for a shell since it combines all the
best from sh, csh, and ksh. The above listing is a sample of that func­
tionality. See the accompanying documentation for more details.

Most of the built-in commands are similar to those of the other
shells. Commands such as echo, eal, exec, fg, jobs, popd, pushd, set,
test, trap, ulimit, umask, and wait are fully supported. There are some
unique commands which deserve specific mention. Some of these are:

builtin [shell­
builtin [args]

dirs [-1]

help [pattern]

Executes shell-builtin with args. This is used to redefine a
built-in command for execution of itself.

Lists directories in current remembered directories created and
manipulated by pushd and popd.

Provides bash-specific help on built-in commands or those
matching pattern.

300 Nonnative AIX Developer Tools

8.6.3 Installation

times Displays user and system times since shell invocation.

ulimi t [-HSacdfmstpn Displays and manipulates process resources:
[limit J l -H--apecifies a hard limit on the resource, which says that it

cannot be increased at a later time.
-S-specifies a soft limit on the resource, which says that it

can be increased to the hard limit at a later time.
-a-displays all current limits.
-c-core file maximum size.
-d-data segment maximum size.
-f-maximum file size.
-m-maximum resident size.
-s-maximum stack size.
-t--maximum CPU time.
-p-pipe size.
-n-number of open file descriptors.
limit--specifies a limit to set. If limit is not specified, all

above options cause the current variable value to be
displayed.

Some systems may not support the ulimit command. Try it on your sys­
tem and see.

In the documentation subdirectory, there are both nroff input pages
and Postscript files which describe bash in great detail. Print out the
bash.ps and bash_builtins.ps files for much more detailed information
on bash.

There are a variety of files associated with bash and its installation
and usage. One of the first to examine is the ChangeLog file. This file
contains information which describes changes to the current version.
This is important since bash is undergoing constant development and
change, and new features and bug fixes will be documented here.

bash does not use the configure subsystem to assist with the build;
however, it does have the capability to determine which machine you
are on based on information and logic placed in the makefile itself.
While this may not always be accurate, it does provide a good first
guess as to machine type and the files necessary for the correct build to
occur.

The basic syntax to build bash is:

$ make clean
$ make CC=gcc

Once you have done this, the documentation recommends you attempt
to run bash with the command:

. /bash

This should invoke an interactive bash shell. If it does not, see the file
INSTALL for information regarding specific machine information.

8.6.4 Conclusion

General Tools 301

There are a variety of product and machine-specific issues which
may need to be addressed when you build bash. The file machines.h
contains both a general macro definition section and a specific section
for a variety of machine types. Look in this file for your machine type
and ensure that the build agrees that this is the machine type you are
using. Once you have invoked the make command, it creates a file
named .machine which tells you what type of machine it thought you
were using.

If you are using tools other than the standard ones shipped with your
machine, you may need to edit the Makefile to use these tools. For ex­
ample, if you are using the GNU C compiler, you should uncomment
the related lines in the beginning of the cpp-Makefile file. You should
also uncomment the bison line in the same file since the yacc compiler
may have problems building bash. So install bison before you install
yacc.

For example, it was necessary to change the prototype definitions for
both rindex and index in general.c to avoid a prototype conflict on the
RS/6000 using gee. These are the kind of things which sometimes occur
when building these types of products. See the documentation with
bash for more details on building and using bash.

When make executes, it displays what it thinks is the current ma­
chine type and stores it in a file named .machine in the current build
directory. Check this file to see what machine type bash was built for if
you don't see it displayed on your screen. See also the file machines.h,
which contains information regarding compilation parameters for all
defined machine types. In fact, if you are porting to a machine that is
not in machines.h, you should create your own block of information for
your particular architecture and make based on these parameters.

Once you have successfully built bash as outlined above, you will
need to install the bash executable. The basic command to do this is:

$ make install bindir=/usr/local/bin

Note that this is different from that noted in the INSTALL file, but this
is the correct command to install bash poperly.

Bug reports should be mailed to bash-maintainers@ai.mit.edu. See
the file INSTALL for more information on bug reporting.

bash is a very powerful tool which provides shell functionality from sh,
ksh, and csh as well as some of its own unique functionality. Since this
functionality is free and it gives you the ability to run the same shell on
various diverse UNIX platforms, you can significantly enhance the
portability of your environment while at the same time reducing costs

302 Nonnative AIX Developer Tools

8.7 diff

8.7.1 Introduction

8.7.2 Installation

for your environment. bash is backward compatible with sh, csh, and
ksh and will support most shell scripts, commands, and functional sub­
systems to ensure protection of your current investments.

Much of this documentation was taken directly from the GNU bash
man page. See this for more information. Note also that, as with most
newer GNU products, there is a texinfo file in the documentation sub­
directory which you can view with info or emacs to get more informa­
tion than is in the man page. There are also Postscript format files in
the documentation subdirectory which can significantly enhance your
understanding of the bash product.

GNU diff is a package which provides GNU diff, ditr.3, sdiff, and cmp
programs. These programs provide significant enhancement to the
standard diff you get with most UNIX operating systems. This tool is
also required for other GNU and free software tools such as CVS;
therefore, it is important to understand its capabilities.

diff provides a facility which generates files listing differences be­
tween files. You can then use these files to provide upgrades and other
difference files which are used by utilities such as patch to apply these
differences.

You can execute the standard GNU configure script, which you can run
as follows:

$ configure --prefix=/usr/local

This will build the appropriate Makefile, which can then be executed
with the command:

$ make

This will generate the appropriate executables in the current directory
structure. Once you have ensured that the appropriate executables
were built, you need to install the diff executables with the command:

$ make install

This will place the diff executables in the prefix/bin directory. Remem­
ber that you defined prefix when you issued the configure command. In
this case they would be placed in /usr/local/bin.

This is all there is to building and installing diff.

8.7.3 Usage

General Tools 303

The GNU diff product consists of several binaries: cmp, diff, diff3, and
sdiff. Each of these will be described below in enough detail to make
them usable. There are no accompanying man pages or documentation
except for info files. This means that you may want to view the info
files with the info system for more details on the diff utilities and asso­
ciated syntax. See Sec. 8.3 for more details.

GNU diff provides differences between two files or corresponding
files in different directories. Along with the diff command, GNU diff
provides diff3, cmp, and sdiff commands, which provide different func­
tional aspects from diff. Each is described below.

diff is often used to distribute patch files which can then be applied
with the patch command to update and/or change current software dis­
tribution files.

diff automatically checks the format of the file and if it thinks the
files are binary, it will simply report that it found differences. It cannot
differentiate and locate the difference but will simply note that they
exist. There are other utilities which are more useful for binary com­
parisons, but diff will support this notion at a base level.

diff. The basic syntax for diffis:

diff OPTIONS input-file output-file

where OPTIONS consists of:

-a, --text Treats all files as text.

-b Ignores changes in blanks and tabs.

- B Ignores changes that insert or delete blank lines.

--brief Reports only that the files differ without any details.

-c Context output.

-c LINES, - -context [=LINES l Shows LINES number of lines around the differ-
ences reported.

-D NAME Makes merged #ifdefformat output.

-e, --ed

-H, --speed-large-files

-i

-I REGEXP

--ignore-all-space

--ignore-case

-1,--paginate

--left-column

-n,--rcs

The output is a valid ed script.

Applies heuristics to increase the speed of the search
on large files.

Ignores case.

Ignores changes that insert or delete lines matching
REGEXP.

Ignores all whitespace.

Ignores case.

Passes output through pr to paginate it.

Displays only the left column on output.

Outputs RCS format diffs.

/
304 Nonnative AIX Developer Tools

-N, --new-file

-s, --report-identical-files

--sdiff-merge-assist

--show-c-function

--side-by-side

-t, --expand-tabs

-u

-v, --version

-w

When performing directory comparisons, if a file is
found in only one directory, it treats it as present but
empty in the other directory.

Reports when files are identical.

Displays additional information that sdiff can use.

Displays the C function each change is in.

Uses the side-by-side output format.

Expands tabs to spaces.

Displays with unified format.

Displays current diff version.

Ignores horizontal whitespace when comparing
lines.

-w COLUMNS, --width=COLUMNS Specifies the width of columns to use in the side-to­
side format.

Context refers to displaying lines around the difference lines reported.
This is useful in providing information about the context of the change.

There are also ways to control the format of the output. See the info
files for more details, particularly the node Output Formats in the info
files.

Some simple examples of using diff are illustrated below. Using a file
test.c which contains:

#include <stdio.h>

main() {
printf ("This is a test" \n) ;
}

and a file named test.new.c which contains:

#include <stdio.h>

main() {
printf ("This is a new test" \n);
}

you can issue commands like:

$ diff test.c test.new.c
4c4
< printf ("This is a test" \n) :

> printf ("This is a new test" \n) :

The arrows indicate the first file or input file (<) and the second file or
output file (>). Another example using the context option is:

$ cmp -c 3 test.c test.new.c
*** test.c Wed Jun 14 14:03:17 1995
--- test.new.c Wed Jun 14 14:03:38 1994

*** 1,5 ****
#include <stdio.h>

main () {
! printf ("This is a test" \n) :
}

--- 1,5 ---­
#include <stdio.h>

main () {
printf ("This is a new test" \n) :

General Tools 305

This outlines the context format which provides more information for
the results of the diff command.

cmp. The cmp command shows offsets and line numbers for the input
files. cmp can also show character-for-character differences, whereas
diff functions on a line level only.

The basic syntax for cmp is:

cmp OPTIONS input-file [output-file]

where OPTIONS are:

--print-chars

-1, --verbose

-s, --quiet

Displays the differing characters

Displays the decimal offsets and octal values of all differing bytes

Silent mode

The input-file is the input file to be operated on, and the output-file is
the optional output file. The default is standard output.

A simple example of cmp is as follows. Using a file test.c which con­
tains:

#include <stdio.h>

main() {
printf("This is a test"\n);
}

and a file named test.new.c which contains:

#include <stdio.h>

main() {
printf ("This is a new test" \n) ;
}

invoke the cmp command as follows:

$cmp test.c test.new.c
test.c test.new.c differ: char 50, line 4

306 Nonnative AIX Developer Tools

$ cmp test.c test.new.c
test.c test.new.c differ: char 50, line 4 is 164 t 156 n

These are simple examples of using cmp. Clearly you can work on
larger and more sophisticated files with it without any difficulties.

diff3. difl3 shows differences between three files. This is commonly
used for software development where more than one person is making
changes to a file simultaneously and you want to see all differences
from the original. difl3 can also merge the difference files and flag any
possible conflict in the merged file. This is extremely useful for support
of environments such as parallel build.

The basic syntax for difl3 is:

diff3 OPTIONS filel file2 file3

where OPTIONS are:

-a Assumes all files are text.

-A Merges all changes from file2 to file3 into filel.

-e, --ed Creates an ed script which merges all changes from file2 and file3 into
filel.

-i Creates w and q commands at the end of the ed script to maintain
System V compatibility. This option is useful with -AeExX3 options.

-m, --merge Applies the edit script to filel and sends results to standard output.

Incorporates all unmerged changes from file2 and file3 into filel, sur­
rounding all overlapping changes with bracket lines.

--show-all

-v, --version Display diff3 version.

-x Like -e except outputs only the overlapping changes.

filel, file2, file3 are input files in which filel may be modified depend­
ing on the command OPTIONS you choose.

There are other difl3 options; see the info pages for more details.

sdiff. You can use sdiffto merge files interactively. The basic syntax is:

sdiff -o OUTFILE OPTIONS input-file output-file

where OUTFILE is the output file created from the merge.
OPTIONS consist of:

-a, -text-treats all files as text files
-b, --ignore-all-space-ignores changes in the amount of
whitespace
-B, --ignore-blank-lines-ignores changes that just insert or
delete blank lines
-H, --speed-large-files-uses heuristics to increase

performance on large files

General Tools 307

-i, --ignore-case-ignores case
-I REGEXP, --ignore-matching-lines=REGEXP-ignores

changes that match REGEXP
-1, --left-column-displays on the left column of a side-by-side

output
-t-expands tabs to spaces
-v, --version-displays version of sdiff
-w COLUMNS, --width=COLUMNS-displays output

columns of width WIDTH
input-file is the file from which sdiff gets changes.
output-file is file on which sdiff merges input-file.

In other words, sdiff takes all options and merges input-file with out­
put-file and creates OUTFILE. A simple example is:

$ sdiff test.c test.new.c
#include <stdio.h> #include <stdio.h>

main () { main ()
printf ("This is a test" \n): I printf ("This is a new test" \n) :
} }

This shows the default without a -o option, which is a side-by-side out­
put. If you specify the -o option, you get a following file.

$ sdiff -o new.c test.c test.new.c
#include <stdio.h> #include <stdio.h>

main () { main () {
printf("This is a test"\n): printf("This is a new test"\n):

%?
1: use the left version
r: use the right version
e 1: edit then use the left version
e r: edit then use the right version
e b: edit then use the left and right versions concatenated
e: edit a new version
s: silently include common lines
v: verbosely include common lines
q: quit

Note that what happens is that you are dropped into an interactive ed­
iting subsystem which has a prompt of%. From this point you can type
a ?, which will display a list of available commands. You can then
choose to edit or simply choose one version of a file over the other. Once
you have finished choosing and/or editing the appropriate lines, your
resultant file will be contained in new.c. This is a very powerful interac­
tive merge system which can assist you with supporting environments
where more than one person is modifying a file at the same time. Sys-

308 Nonnative AIX Developer Tools

8.7.4 Conclusion

8.8 screen

8.8.1 Introduction

8.8.2 Usage

terns like RCS and other tools make use of this for their file merge sys­
tems.

You can control which editor is invoked by sdiff by setting the EDI­
TOR environment variable before invoking sdiff.

While most UNIX machines come with a diff command, GNU diff adds
significant functionality to the base diff offerings. It also provides a
consistent diff interface and syntax across a variety of platforms. Fi­
nally, it is used to distribute many product patches and updates and
will be critical in the use of several other GNU and other freeware
products.

screen is a utility which provides a full-screen window manager that
allows a dumb terminal to support multiple terminal sessions. Full
vtlOO support is included, and there are history buffers and copy and
paste capabilities between window sessions. This is similar to the new
alphawindows protocol which is coming into vogue; however, this is
free and runs on dumb vtlOO-style devices.

Each screen session has a UNIX command associated with it, and as
you toggle back and forth between screens, you are automatically at­
tached to the UNIX command assigned to that window. The most com­
mon UNIX command within a window is a shell command such as
/bin/csh, /bin/sh, or /bin/ksh. This provides a terminal window just as if
you were logging on to the machine in a single-session mode.

screen is a GNU product and as such is subject to its GNU General
Public License as included both in the product distribution and in App.
C of this book.

The basic command line use for screen is:

screen [-Al [-L] [-0] [-R] [-a] [-c file] [-Dl-d [pid.ty.host]] [-e
xy] [-f,-fn,-fa] [-h n] [-i] [-1,-ln] [-ls,-list] [-t name,-k name]
[-r [pid.tty.host]] [-s] [-wipe] [command [args]]

where -A adapts window size to display size.
-L-last character position on automargin terminal is writeable.
-0 matches more closely your terminal's characteristics if it is

not a vtlOO.

General Tools 309

-R resumes the first detached window.
-a includes all display capabilities in each window's termcap.
-c file overrides the default configuration file from

$HOME/.screenrc to file.
-D 1-d [pid.tty.host] begins session as undetached.
-e xy defines the command character x and the literal command

character y.
-f, -fn, -fa turns flow control on, off, or to automatic switching

mode, respectively.
-h n specifies the size of the history buffer as n lines.
-i causes interrupt key to interrupt display automatically.
-1,-ln turns logon mode on or off.
-ls, -list displays a list of screen sessions.
-tname,-kname sets the title for the default shell or specified

program.
-r [pid.tty.host] resumes a detached screen session.
-s sets the invocation shell to that specified in command.
-wipe is same as -ls but removes sessions instead of simply

marking them as dead.
command [arg] is command to invoke with associated

arguments.

Note that the environmental variable SHELL will determine which
shell will be invoked by default and that the tty setting will determine
the characteristics of the terminal emulation and what features are
utilized and supported.

You can customize the key bindings and other features with the com­
mand:

c-a : command

where command is taken from the list described on p. 13 of the screen
manual page included with the screen distribution. See this file for
more details. With the customization command, you can modify almost
every aspect of your terminal emulation and multiwindow environ­
ment on the fly.

Command mode. There are a variety of interactive commands you can
execute which talk directly to the terminal manager. Some of the more
basic are:

c-a C-\

C-a

c-a l

Kills all windows and terminates screen.

Enters copy/scrollback mode, which allows for screen cut and paste. The
syntax is very similar to vi.

Writes current contents of paste buffer to the current window.

310 Nonnative AIX Developer Tools

C-a ?

C-a n

c-a c-a
C-a c

C-a C

c-a d

C-a D

c-a f

C-a h

c-a H

c-a i

c-a k

C-a 1

C-a L

C-a M

C-a n

C-a p

c-a q

C-a r

C-a s

c-a t

C-a v

C-a w

c-a x
C-a z

C-a Z

Displays a list of available commands.

Where n is a number between 0 and 9 and represents the window session
number.

Switches to previously displayed number.

Creates a new window with a shell and moves to this window.

Clears the current screen.

Detaches the current screen.

Detaches the current screen and kills all associated processes.

Cycles flow control from automatic to on or off.

Generates a hard copy of the current screen.

Begins logging of current window to hardcopy.n where n is the window
number.

Displays information about current window.

Kills the current window and switches to previous window.

Refreshes the current window.

Determines whether entry in /etc/utmp is generated. This determines
whether you are logged in or not.

'Tuggles monitoring of the current window. If the window is placed in the
background and monitoring is on, you will receive status upon output to
that window.

Switches to next window.

Switches to previous window.

Sends CTRL-q to the curren!1process in the current window.

Toggles automatic line wrap.

Sends CTRL-s to the current process in the current window.

Displays the time of date, hostname, and load averages.

Displays version and generation date.

Displays a list of all windows. Current window is marked with an*, and
the previous window is marked with a -.

Runs screenlock on the current window.

Suspends all screen sessions.

Resets window to default values.

There is a message line at the bottom of the screen which keeps you
informed about the status and results of an executed command.

To exit screen, you can type C-a C-\ or simply type exit at the com­
mand prompt. When you have exited the final screen, you will see the
message "screen is terminating." At this point you are back at the origi­
nal session from which you invoked screen.

There is an issue of flow control related to the screen system. When
you want to stop the flow of information, you typically press a C-s.
When you want to resume the flow, you press C-q. With screen, if you
press these, screen may interpret them for you or pass them to the un­
derlying application. By enabling or disabling flow control with the C-a
f command, you can change the behavior of the screen subsystem. If
you want to ensure that you send C-s and C-q to the application and
bypass any processing by screen, use the C-a s and C-a q commands.

8.8.3 Installation

8.8.4 Conclusion

8.9 fax

8.9.1 Introduction

General Tools 311

There is much more information in the 24+ page man page included
with the distribution.

First you need to run the configure script. The typical syntax is:

$./configure --prefix=/usr/local

This will generate not only the appropriate Makefile but an appropri­
ate config.h as well. You may want to preview the config.h file to ensure
that your paths and other variables are correct before proceeding with
the build. There is a section in config.h called the "User Configuration
Section" which outlines all variables you may wish to modify. See these
before compiling screen.

Once you have modified the config.h file, if necessary, you can pro­
ceed with a normal configure build just as you do with most GNU prod­
ucts. The typical command set to build using the configure product is:

$ make
$ make install

Keep in mind that there are more things you can do with the configure
command. See Sec. 7.4 for more details.

screen is a very powerful utility which gives many users of dumb termi­
nals some relief from the limitation of one session. By providing multi­
ple sessions (up to nine sessions at once), you can utilize your dumb
vtlOO-style terminal much more effectively and can dramatically in­
crease your productivity without incurring the expense of purchasing a
new windowed device such as an X-station or workstation.

The Netfax facility provides a distributed fax server capability which
will allow you to preview, send, and receive Group 3 faxes from any
machine on a LAN. The software is free and the only hardware re­
quired is a EIA-592 Asynchronous Facsimile DCE Control Standard,
Service Class 2. An example given in the associated documentation is
the Everfax 24/96D, which retails for $499. The main phone number
for Everfax is 1-800-821-0806. There are other modems that will sat-

312 Nonnative AIX Developer Tools

8.9.2 Usage

isfy the hardware requirements as well. See your UNIX vendor for
more information.

The primary server is a process known as a fax spooler, and it runs
on a machine which is accessible by all other fax client machines. By
posting either mail or flat files to a spooler directory, the server will
scan the queue periodically and distribute the fax material appropri­
ately. You can receive Group 3 faxes, and they will be stored in the ap­
propriate directories for receipt. There are programs delivered which
allow you to modify the format of these files into tiff and other formats
for use by other tools and utilities.

The files to be faxed support ASCII, Postscript, and TeX dvi files as
input. The fax spooling subsystem will generate the appropriate Group
3 fax output automatically. This provides many tools and utilities with
the ability to send faxes transparently by merely creating an output
file in one of the supported fax server input formats.

This is a very powerful tool which will provide fax capabilities for
very low cost.

fax is a GNU product and as such is subject to its GNU General Pub­
lic License as included both in the product distribution and in App. C of
this book. There is also an associated copyright from M.I. T. which is
distributed with the product on the CD. See this for more information.

There are several commands related to the Netfax spooling system.
The basic ones are:

fax -p phone [-cl [-h host] [-ml [-r rec] [-s send] [-S phone]
[-u user] [file] faxps -p phone [-cl [-h host] [-ml [-r rec]
[-s send] [-S phone] [-u user] [file]

where -p phone phones number of fax receiver machine (uses Hayes
string formats).

-c sends fax using information in -r, -s, and-S options.
-h host specifies host acting as fax spooler.
-m sends mail to you when fax is delivered.
-r rec is name of receiver.
-s send is name of sender.
-S phone is phone number of sending fax board.
-u user uses name to queue the job instead of your local userid.
file is file to fax (format is different depending on whether you

are using fax or faxps).

The fax command is the primary command to send a plain ASCII file
as a fax. The faxps command takes a Postscript file as its input file and

General Tools 313

sends it as a Group 3 fax. The input file format is the only difference
between fax and faxps.

The phone number sequence is Hayes compatible. For example, to
dial a fax at the number 555-1212, you would use a command like:

fax -p 5551212 ...

You can use other dial characters such as T for tone dialing and , for
pause. If you are disabling call waiting on your phone, you might use a
command like:

fax -p *70, ,5551212

This will dial *70, wait 4 seconds, and dial 5551212. A full-blown com­
mand might look something like:

$ fax -p *70,5551212 -c -r "John" -s "Kevin" -s "5552020" fax.txt

Using faxps is exactly the same syntax as fax only the input files are
Postscript and not plain text as with the fax command. A sample com­
mand might look like:

$ faxps -p 5551212 -c -r "Joe" -s "Kevin" -s "5552040" fax.ps

where fax.psis a Postscript file. faxps uses Ghostscript to convert the
input file (in this case fax.ps) from Postscript to Group 3.

faxeng. faxenq is a command which queues your faxes to the fax
spooler server for later distribution. This provides an asynchronous fax
capability. This is especially nice to use as a fax server where you have
multiple faxes to send to different locations and you want this to hap­
pen while you continue to work on other things. The syntax is:

faxenq phonel phone2 . . . [--- filel file2 ...] [-ml [-u user]
[-h host]

where phonen is one or more phone numbers to send the fax to.
filen is one or more files to be queued to the fax spooler.
-m sends mail when the fax is sent.
-u user specifies user as the sender of the fax.
-h host specifies fax spooler server.

faxmail. faxmail allows you to send mail as a fax by transmitting
standard input mail as a fax. When you enter faxmail, it asks you for
all pertinent information such as sender, receiver, phone number, etc.,

314 Nonnative AIX Developer Tools

8.9.3 Installation

which will allow it to queue it to the fax spooler server for later trans­
mission.

faxrm. faxrm removes a fax job from the spooler queue. Once the job
has started, you cannot remove the job from the queue. The syntax is:

faxrm job [-h host]

where job is job as specified in the job spooler queue.
-h host specifies spooler host.

faxspooler. faxspooler is the daemon which serves all fax activities to
the network. Faxes are received by the host, and they are spooled in an
incoming directory numbered sequentially. Each page of a fax is given
its own subdirectory within the created directory. E-mail is sent when
the fax is received. The syntax is:

faxspooler [-lloglevel] [-fdev] [-dmaxtime] [-rwaittime] [-DJ [-Idir]
[-Odir] [-Eaddress]

where -lloglevel specifies loglevel as the debug log level from 0 (least
verbose) to 7 (most verbose).

-fdev specifies dev as the fax board.
-dmaxtime is the maximum time to try sending a fax.
-rwaittime specifies wait time between fax retries.
-D runs the spooler as a daemon.
-ldir is incoming fax spool directory.
-Odir is outgoing fax spool directory.
-Eaddress is e-mail notification address for incoming faxes.

faxq. faxq lists all jobs in the queue on host. The syntax is:

faxq [-hhost]

where -hhost specifies the host of the master fax spooler.

These basic commands are all you need to send and monitor faxes on
your LAN. With Netfax, you can provide network access to a central fax
serving facility for minimal cost and maintenance.

Netfax comes with a standard makefile which builds fax and the asso­
ciated executables. The makefile is formated to use gmake by default;
however, you can use standard make if you don't have gmake installed.

The three files that may need modification are:

8.9.4 Conclusion

./include/conf.h

. ./include/conf.mk

./incl ude/fax_prog.mk

General Tools 315

These files consist of header information, a base configuration make­
file, and a makefile which will build the appropriate executables, re­
spectively. conf.h contains information pertaining to the actual device
names for the fax board and commands which determine the default
behavior of the fax server such as retry times, maximum retries, and
the Postscript converter to use when converting from Postscript to
Group 3 fax standards. Look carefully at this file before building.

The conf.mak and fax_prog.mk are template files which document
the makefile features that are needed to build Netfax. These *.mk files
are in subdirectories which will be automatically built when the origi­
nal make is executed. N etfax requires gmake because of its use of sub­
directories. 'lb build, move the the main Netfax directories and issue
the command:

$ gmake

If you don't have gmake installed, you will have to move the *.mk tem­
plate makefiles into the current working directory with the main
makefile before issuing the make command. It would be easier to sim­
ply take gmake from the included CD to build Netfax.

The other requirement for the best use ofNetfax is Ghostscript 2.41
or greater. This provides a Postscript interface and the ability to dis­
play Postscript on a bitmapped display. See Sec. 10.1 for more informa­
tion. The device to use for Ghostscript and fax is dfaxhigh. See the
INSTALL file for exact details on how to build the correct fax driver for
Ghostscript.

There are subdirectories containing manual pages (man), documen­
tation files (doc), Postscript programs (ps), and others.

This system is not delivered compiled on the CD because you need to
link it to your particular fax board. You will need to build it yourself.
Have fun.

Netfax provides the capability of LAN fax serving at a very low cost. By
providing software which allows distributed fax server management,
Netfax provides your LAN with the ability to fax ASCII or Postscript
files as well as TeX files.

N etfax provides most of what you can get from expensive commercial

316 Nonnative AIX Developer Tools

packages without the cost or complexity. Give it a try and see how it
works.

8.10 mtools

8.10.1 Introduction

8.10.2 Usage

mtools contains a variety of tools which allow you to manipulate DOS
filesystems and disks. This gives you the ability to write, read, copy,
format, and copy DOS files and disks to and from UNIX machines. This
section discusses mtools 2.0.7.

There are several commands which come in the mtools command set.
The basic commands included are mattrib, med, mcopy, mdel, mdir,
mformat, mlabel, mmd, mrd, mread, mren, mtype, and mwrite. Each
command and basic syntax is outlined below.

mattrib. The syntax is:

mattrib [-al+a] [-hl+h] [-rl+r] [-sl+s] dosfile

where -a,+a removes or adds attribute bit.
-h,+h removes or adds hidden bit.
-r,+r removes or adds read-only bit.
-s,+s removes or adds system bit.
dosfile ... is one or more dosfiles to operate on.

Note that for all m commands in the mtools toolkit you can specify
pathnames with either the UNIX-like forward slash (/) or the DOS
backslash(\). Note also that you must quote the\ if you don't want the
shell to interpret it as an escape for the following character. For exam­
ple:

$ mattrib +a file.dos
$ mattrib -s "a:\subdir\file.dos"

See the following commands for a discussion of a: and how you can ma­
nipulate this.

med. The syntax is:

med [dir]

where dir is directory to change to. Without a specified dir, you will get
the current working directory displayed.

General Tools 317

mcopy. The syntax is:

mcopy [-rnntv] filel file2

or

mcopy [-rnntv] filel ... dir

where -m preserves file modification time.
-n-no warning displayed when overwriting an existing file.
-t copies as a text file (converts CR/LF to LF or vice versa).
-v is verbose mode.
filel, file2 specifies files to be copied.
dir specifies a directory to copy files to.

This command copies files and performs the proper file modifications if
specified.

mdel. The syntax is:

mdel [-v] file ...

where -vis verbose mode.
file ... is one or more files to delete.

The command deletes DOS files.

mdir. The syntax is:

mdir [-w] dir

where -w is wide output.
dir is directory to be displayed.

mdir displays the contents of a DOS directory.

mformat. The syntax is

mformat [-t tracks] [-h heads] [-s sectors] [-1 label] drive:

where -t tracks specifies the number of tracks on the device.
-h heads specifies the number of sides on the device.
-s sectors specifies the number of sectors on the device.
-1 label writes a label on the device.
device: is device to be operated on.

One thing to note with mformat is that you must preformat the disk
with the UNIX format command. mformat will place DOS information
such as boot sector, FAT, and root directories on a preformatted UNIX

318 Nonnative AIX Developer Tools

disk. Once mformat has been run, you can use this device on any DOS
machine.

mkmanifest. The syntax is:

mkmanifest [files]

where files are long-named files to be shortened.
mkmanifest provides you with a listing of the shortened names of

long-named UNIX files that may be written out with a command like
mwrite. When you write files from a UNIX filesystem to a DOS filesys­
tem, the filenames may need to be shortened to support DOS filename
conventions (8+3). If this occurs, you will want to use mkmanifest as
follows:

mkmanifest filel file2 ... >manifest.out

which will place the shortened names of filel, file2, etc., in the file
manifest.out. You can then copy this to the DOS output device for later
execution as a script. The manifest.out file will look something like:

mv shortl longl
mv short2 long2

where shortn and longn are the converted filenames. In other words,
this creates a script which you can use later to move the files back from
a DOS filesystem to a UNIX filesystem and preserve their original long
names.

mlabel. The syntax is:

mlabel [-v] drive:

where -v is verbose mode.
drive: is drive to operate on.

mlabel generates a label on a DOS output device. You are prompted for
a new label.

mmd. The syntax is:

mmd [-v] dir ...

where -v is verbose mode.
dir ... is one or more directories to create.

General Tools 319

mmd stands for make MS-DOS directory, and it will create MS-DOS
directories on a DOS output device.

mrd. The syntax is:

mrd [-v] dir ...

where -v is verbose mode.
dir is one or more directories to remove.

mrd stands for MS-DOS remove directory.

mread. The syntax is:

mread [-mnt] dosfile unixfile

or

mread [-mnt] dosfilel [...] unixdir

where -m preserves file modification times.
-n doesn't display a warning when overwriting a file.
-t transfers as a text file (change CR/LF for LF and vice versa as

necessary).
dosfile is DOS file to read.
unixfile is UNIX file to write.
unixdir is place to copy one or more DOS files to.

mren. The syntax is:

mren [-v] filel file2

where -v is verbose mode.
filel is file to rename.
file2 is name of renamed file.

mren renames a file from filel to file2.

mtype. The syntax is:

mtype [-st] file [...]

where -s strips high bit.
-t is text line viewing.
file ... is one or more files to operate on.

mtype displays the file(s) on standard output.

320 Nonnative AIX Developer Tools

8.10.3 Installation

These are the basic commands included in mtools. More information
is available for each command in the specific man page included in the
mtools distribution in the main directory with a suffix of .1. See also
the Release.notes file for more information on current release informa­
tion. This is important since new features provide significantly en­
hanced functions.

There is a standard makefile included with the mtools distribution
which needs some modification based on your machine architecture.
Much of this is documented in the file Configure. See this file for more
information if this section is not sufficient to build mtools correctly.

Once you select the correct values for your machine, type the com­
mand:

$ make

This should be sufficient to build mtools for your platform.
For example, on the RS/6000 the best choice seems to be the

RT_ACIS which defines a floppy drive at /dev/rfdO addressable as A:.
However, the first default floppy device sector information is 15 while
on the RS/6000 it should be 18. Make this change and rebuild with the
make command. Note also that gee seems to work better with this than
does CC, so you might use a command like:

$ make CC=gcc

This is useful and seems to work correctly on the RS/6000 used to build
this CD's software. Note that you also need to create the CFLAGS with
the definitions:

CFLAGS=-0 -DRT_ACIS -DLOCKF

This will create the correct system on the RS/6000. To install mtools,
you must ensure that the Berkeley install command is first in your
path. This is in /usr/ucb. The default makefile also seems to fail on in­
stall and is poorly written for modification. You may want to copy the
manual pages and binaries to the appropriate directories manually.

Note that if you need to define additional DOS devices to support,
you need to edit the devices.c file, which is the devices database. See
the Configure file for exact information on the syntax of the devices.c
file.

8.10.4 Conclusion

8.11 cpio

General Tools 321

The utility programs included in the mtools distribution have proven
invaluable to many users of UNIX and DOS machines. This gives you
the ability to transparently transfer information to and from DOS and
UNIX machines. The capability to read, write, and manipulate DOS
files on a UNIX platform provides significant functionality and eases
the transition from DOS to UNIX.

8.11.1 Introduction

8.11.2 Usage

cpio is one tool that comes with most standard versions of UNIX and is
fairly portable between platforms. Because of this fact and the fact that
it is less and less used by UNIX users, it was not discussed as a power
tool in the native tools section of this book. However, because of its
power and the implementation written by GNU, a brief introduction is
included in this section.

cpio is an archive utility much like tar and was tradionally used to
create archives for transmission on the Internet and other places. It is
still used; however, its frequency of use has dropped over the last few
years as the use of tar has increased. With the 2.2 version of GNU cpio,
you have the ability to manipulate tar files as well as cpio archives
with the cpio command.

GNU cpio has documented advantages over most vendor's imple­
mentations of cpio, including network tape drive and symbolic link
support.

cpio is a GNU product and as such is subject to its GNU General
Public License as included both in the product distribution and in App.
C of this book.

The basic syntax for cpio is:

cpio {-ol--create} [-OABLVacv] [-C num] [-H format] [-M string]
[-0 [[user@host:] archive] <list [>archive]

cpio {-i !--extract} [-BSVbcdfmnrtsuv] [-C num] [-E file]
[-H format] [-M string] [-R [user] [:.] [group] l
[-I [[user@] host:] archive] [-F [[user [@host:] archive]
[pattern ...] [<archive]

cpio {-pl--pass-through} [-OLVadlmuv] [-R [user][:.] [group]] dir <
list

where -0 reads list of files terminated by a null instead of the standard
newline character.

322 Nonnative AIX Developer Tools

-A appends to existing archive.
-B sets blocksize to 5120 bytes instead of the standard 512 bytes.
-C num sets blocksize to num bytes.
-E file reads from file the names of more files to be used as

input to cpio.
-F user@host:archive specifies an archive name to use as input

and output. You can specify a remote hostname and
device as show above. Protection is done with .rhosts
(rsh command).

-H format uses format for archive from list below:
bin-obsolete binary format
crc-SVR4 portable format with checksum
newc-SVR4 portable format
ode-old POSIX portable format
tar-old tar format
ustart-new POSIX. l tar format

-I user@host:archive specifies an archive name to use as input.
You can specify a remote hostname and device as shown
above. Protection is done with .rhosts (rsh command).

-L copies actual files pointed to by symbolic links instead oflink
itself.

-M string displays string at end of volume requesting additional
volume.

-0 user@host:archive specifies an archive name to use as
output. You can specify a remote hostname and device as
shown above. Protection is done with .rhosts (rsh
command).

-R user:.group sets the created files' ownership to user and
group.

-S swaps the halfwords of each word (see -b).
-V displays a dot as each file is processed.
-a preserves original access times.
-b swaps order of bytes and halfwords (converts big endian to

little endian).
-c uses old archive format (for backward compatibility).
-d makes appropriate directories as needed.
-f copies only those files, not machine-specified patterns.
-i,--extract is copy-in mode.
-1 maintains links intead of using actual files.
-m preserves file modification times.
-n displays uid and gid instead of username.
-o, --create is copy-out mode.
-p,--pass-through is copy-pass mode.
-r interactively renames files with prompting.

General Tools 323

-s swaps bytes with a halfword.
-t is table of contents.
-u replaces all files disregarding date information.
-v is verbose mode.
archive is archive to manipulate.
dir is output directory.
list is list of filenames (can be used similarly to patterns).
patterns is regular expressions to determine files matched.

There are three basic modes of operation for cpio: copy-out(-o), copy­
in(-i), and copy-pass(-p). Copy-out mode transfers file input one line at
a time into an archive, copy-in mode transfers file from an archive to
files, and copy-pass transfers files from one directory structure to an­
other. These three modes provide all access to cpio and its associated
archives. Actually, cpio is one of the easiest archive commands of any
available on UNIX. The most common way for cpio to be used is with
the find command. A simple example of cpio archive creation is:

$ find . -name "file*" -print ! cpio -o > /dev/rmtO
81 blocks

This command will search starting in the current directory for any files
starting with the string file and move them to a tape device /dev/rmtO.
You could just as easily move them to an archive file with a command
like:

$ find . -name "file*" -print I cpio -o > .. /file.epic

This will create a file named file.cpio in the directory above the current
working directory. Note that you want to be careful if you use the same
directory to create the archive since you may get a copy of the archive
inside the archive itself. Be careful.

Some other simple examples of this command are:

$ cpio -itv files.epic

This will generate a table of contents listing to your screen.
To move an entire directory hierarchy, use a command group like:

$ find . -print I cpio -p /newrootdir

This will move the entire directory structure (including subdirectories
and their contents) beginning with your current working directory into
/newrootdir and will preserve the current structure. This is a very use-

324 Nonnative AIX Developer Tools

8.11.3 Installation

ful command and is often simpler than the tar command that performs
the equivalent functionality.

With respect to tar support, cpio will fully support most vendors' tar
archives. For example, if you have created a file named kevin.tar and
you want to see a table of contents, you could use a command like:

$ cpio -itv -H tar< kevin.tar

This will generate a standard listing just as the tar command would.
You can create and extract from tar files with exactly the same syntax.

As you can see, there are many ways to use the cpio command, all of
which are fairly easy. Keep in mind that there are various formats, and
you may have to use a format other than the default for portability pur­
poses. However, if you use GNU cpio, it will support all formats, and
you shouldn't have to worry about portability.

The cpio installation is very straightforward and consists of the stand­
ard GNU configure subsystem. This means you can simply run the
commands:

$ configure --prefix=/usr/local
$ make
$ make install

This will generate three exectables: cpio, mt, and rmt. The mt and rmt
commands are included to support cpio's operation on your machine. If
you want to use a remote tape device, the rmt command will support
this function if one is not available on your machine. The mt command
is used to manipulate a local tape device if this is necessary. The usage
of this should be transparent to you; however, you can simply type:

$ mt

to get a listing of available options for the mt command. This does not
work for rmt since this is merely an interface to mt on another system.

If you are building this product on an RS/6000, you want to issue the
command:

$ make CFLAGS=

unless you have the PFT U211273 installed since you will get a com­
piler error otherwise. It also seemed to work well with gee, so you
might try this as well as your native compiler.

8.11.4 Conclusion

8.12 ispell

General Tools 325

cpio from GNU has advantages over the vendor-supplied cpio, includ­
ing remote device and tar file support. These features as well as the
increased portability of having one cpio on all vendor platforms makes
GNU cpio a good choice if you are using archives in a heterogeneous
environment.

See the man pages for more information on both cpio and mt.

8.12.1 Introduction

8.12.2 Usage

ispell is an interactive spell checker which presents its best guesses as
to the correct spelling of a misspelled word. You can either use it in an
integrated fashion with emacs or by itself. If you have need for a spell
checker to check ASCII files for typos and misspelled words, ispell is
probably the best way to go.

ispell is a GNU product and as such is subject to its GNU General
Public License as included both in the product distribution and in App.
C of this book.

The basic syntax for ispell is:

ispell [-1 I -D I -El [file ...]

where -1 displays misspelled words from standard input.
-D displays system dictionary flags.
-E displays system dictionary expanded.
file ... is one or more files to spell check. If no file is entered,

ispell uses standard input.

The most common way to use ispell is on a flat ASCII file. Once you
enter the ispell command, it begins to scan the file until it finds a word
not in its dictionary. At this time it places the unknown word at the top
of the screen and prints a series of "near miss" words below it. At the
bottom of the screen, the two lines surrounding and including the line
with the unknown word are displayed.

Once the words are displayed, you can select from the following op­
tions:

Displays help

SPACE Accepts the word this time

A Accepts the word for the rest of the file

I Accepts the word and places it in the user's private dictionary

326 Nonnative AIX Developer Tools

8.12.3 Installation

8.12.4 Conclusion

R Prompts for a replacement word

num Where num is the number is the near miss that is correct

You can create your own private dictionary $HOME/ispell.words as
well as maintain a system-level dictionary /usr/lib/ispell.dict.

The easiest way to add words to your dictionary is to use the com­
mands listed above. You can also add words using a procedure de­
scribed in the README file. See this for more details.

This distribution also contains a texinfo file which has extensive
documentation on ispell. You should definately investigate this file and
read it before beginning to use ispell. If you are unsure as to how to use
the texinfo file, see Sec. 8.3 for more details.

Because ispell is a GNU product, it comes with the standard configure
capability which all users have come to expect from GNU. The method­
ology used to build ispell is no different from that described for other
GNU products in this book:

$./configure --prefix=/usr/local
$ make clean
$ make
$ make install

This will build ispell and place the bin and man pages in the appropri­
ate directory. The other file of interest is the file ispell.diet. This is the
dictionary file which is created by the build procedure. This is placed in
a lib directory, and ispell is compiled with a hard-coded path for this
file. You will see the path on the first execution of ispell. In the above
example, ispell will expect ispell.diet to be in /usr/local/ispell/lib. If it is
not, ispell will fail. Keep this in mind as you build ispell.

The other aspect to this is that you may want to build your own dic­
tionaries. This is beyond the scope of this section; however, it is docu­
mented in the INSTALL file contained with the distribution. See the
end of this document for assistance with developing and building your
own dictionaries.

While ispell is a relatively simple tool to understand and use, it does
provide value when you need to check the accuracy of your typing or
spelling. If you can extract information into a flat ASCII file, you can
use ispell very effectively. You can also use the integrated ispell with
emacs. See Chap. 9 for more information on this capability.

General Tools 327

8.13 monitor

8.13.1 Introduction

monitor is a real-time system monitor for AIX. You can display a vari­
ety of statistics including disk VO, CPU utilization, memory, and pag­
ing and swapping statistics. monitor will also display statistics on
individual processes, including memory utilization, CPU utilization,
and many other useful metrics.

8.13.2 Usage

The basic syntax for monitor is:

monitor [-s time] [-ru] [-top [number] J [-all] [-disk] [-net]

where -s time sets the screen update time for measurements.
-r displays running processes.
-u displays the userid of the users.
-top number displays the top CPU processes and a summary of

system variables.
-all displays all system and top CPU process events.
-disk displays detailed disk statistics.
-net displays detailed network statistics.

An example output display looks like:

AIX monitor vl.12: Snoopy Wed Jun 15 18:48:04 1995
Sys 5.3% Wait 0.0% User 94.7% Idle 0.0% Refresh: 10.56 s
0% 25% 50% 75% 100%
===>>

Runnable processes 8.33 load average: 8.85, 9.01, 8.76

Memory
free
pro cs
files
total

DiskIO
read
write

Real Virtual
85.6 MB 431. 6 MB
84.7 MB 168.4
21. 7 MB
192.0 MB 600.0

Total Summary
0.0 kByte/s
0.0 kByte/s

MB

MB

Client Server NFS/s
transfers 0.0 tps 0.0
active 0/11 disks

Paging (4kB)
1.6 pgfaults
0. 0 pg in
0.0 pgout
0.0 pgsin
0.0 pgsout

39 xmtint 882
0.9 calls
0.0 0.0
0.0 0.0

Process events
189 pswitch
338 syscall
32 read
23 write
0 fork
0 exec
2 rcvint

ttyoutch

retry
getattr Netw read

File/TTY-IO
51 iget
24 namei
0 dirblk
42237 readch
30173 writech
1 ttyrawch
0 ttycanch

write
TOPdisk read write busy 0.0 0.9 lookup loO 0.0 0.0 kB/s
hdiskl 0
enO 3.8
hdisk2 0
hdisk3 0
hdisk4 0

0 kB/s
34.3 kB/s

0%

0 kB/s 0%
0 kB/s 0%
0 kB/s 0%

0.0

0.0
0.0

0.0 read

0.0 write
0.0 other

Snoopy load averages: 1.05, 1.10, 1.14 Sun May 15 18:41:25 1995
Cpu states: 93.1% user, 5.0% system, 2.0% wait, 0.0% idle
Real memory: 110. 9M free 68. 4M user 12. 6M numperm 192. OM total
Virtual memory: 466.6M free 133.4M used 600.0M total

328 Nonnative AIX Developer Tools

PID USER
53453 mheinila
514 root
96310 jmaki
16397 amiettin
55547 jhi
12353 root
11S36 root
771 root
106601 hsirvio
0 root
5109 root
1 root
2650 root
59556 root
9509 root
S995 root

8.13.3 Installation

8.13.4 Conclusion

PRI NICE SIZE RES STAT TIME CPU% COMMAND
105 0 4S2K 616K run 95:26 94.1% prgl
127 21 2SK SK run S157:10 2.0% wait (kproc)
61 0 299K 332K run 0:00 2.0% monitor
60 0 25SK SSK sleep 0:03 1. 0% ybiff
60 0 152K 52K sleep 0:00 1. 0% rlogin
60 0 SS5K 220K sleep 349:49 0.0% glbd
60 0 504K 172K sleep 306:59 0.0% llbd
39 21 32K 16K sleep 201:37 0.0% netw (kproc)
60 0 134SK 12K sleep lSl:lO 0.0% sas.exe
16 21 24K SK sleep 111:51 0.0% swapper (kproc)
60 0 156K 12SK sleep 103:51 0.0% portmap
60 0 2SOK 216K sleep 99:04 0.0% init
60 0 64K 2SK sleep 75:46 0.0% syncd
60 0 656K 356K sleep 47:20 0.0% mumsrn
60 0 146K 12K sleep 43:43 0.0% nfsd
60 0 13SK 12K sleep 43:40 0.0% nf

As you can see, monitor is quite comprehensive in its output of infor­
mation. This is a good tool for developers and system administrators to
use to monitor and tune the performance of a system. This will also
give you some feeling about the efficiency and operation of your soft­
ware systems under AIX.

The installation of monitor is very straightforward. First examine the
makefile for any options that you may wish to change such as ex­
ecutable optimization, compiler you wish to use (native or gee), etc.,
and save the changes. One other thing you may want to change is IN­
STALLDIR to ensure that you place the resulting files in the appropri­
ate directories.

Next, issue the command:

$ make

This will build the executable monitor. You can install the executable in
the default location with the command:

$ make install

This will install all resulting files in /usr/local.

monitor is a very useful and comprehensive tool to use when examining
the current performance of a machine. By using monitor to study the
current load characteristics, you can more clearly understand the im­
pact certain software systems are having on the overall performance
characteristics of the machine.

General Tools 329

8.14 sysinfo

8.14.1 Introduction

8.14.2 Usage

8.14.3 Installation

sysinfo is a tool which provides a vast amount of information about the
particular system it is running on; information such as hostname, net­
work addresses, CPU model and type, kernel achitecture, operating
system name and version; and information about the devices connected
to the system. It is a very useful tool for software systems to take ad­
vantage of in installation and configuration scripts since you can get
much of the information you need to build a software system appropri­
ately for any given machine type.

The basic syntax for sysinfo is:

sysinfo [+I-all] [-debug] [-level levell,level2, ...]
[-offset amount] [-show iteml,item2, ...] [+I-terse]
[+I-unknown] [+1-useprom] sysinfo -list [level I show]
sysinfo -version

where + I -all enables (+) or disables (-) all known information.
-debug enables debug messages.
-level levels sets the show level (see -list).
-list level I show lists all possible values for both level and show.
-offset amount sets the number of spaces to offset when printing

device information.
-show items displays information about only those items in

items.
+ I -terse enables (+) or disables (-) terse format.
+ I -unknown enables (+) or disables (-) those devices that

appear on the system but are unknown to sysinfo.
+ I -useprom enables (+) or disables (-) using values obtained

from the system PROM.
-version displays the syinfo version.

sysinfo works on a variety of systems including ADC. The only issue
directly relating to the RS/6000 in the accompanying documentation is
the fact that you must ensure that the environmental variable LANG
is set correctly so that sysinfo can find all the appropriate device infor­
mation and give you accurate information.

'lb make sysinfo on an RS/6000, you must modify the makefile. Fortu­
nately, there is one included that is already modified for the RS/6000

330 Nonnative AIX Developer Tools

8.14.4 Conclusion

8.15 xzap

running AIX. To invoke the correct build sequence, issue the command
sequence:

$ make clean
$ make -f Makefile.rs6k

This will tell make to use the makefile Makefile.rs6k instead of its de­
fault. This will build the sysinfo executable. You can install this with
the command:

$ make -f Makefile.rs6k install

if you want to install the executables and man pages in the default
/usr/local directories. This is all there is to building sysinfo.

sysinfo is a very useful tool which provides vital system information
regarding the current configuration of a variety of types of UNIX ma­
chines. This can be very useful to include with software distributions to
ensure that the makefiles are structured correctly. This is especially
useful when a software system is sent to a variety of different types of
UNIX machines. Use sysinfo to establish the machine type and help
your installation and configuration scripts do the rest.

8.15.1 Introduction

8.15.2 Usage

xzap is a graphically based process killer. It is based on the zap pro­
gram documented in the Kernighan and Pike book The Unix Program­
ming Environment. It provides a simple way to kill processes from a
GUI instead of requiring the more cumbersome command line inter­
face commands.

The xzap command creates a window on the screen from which you can
send signals to processes. The basic xzap screen is shown in Fig. 8.4.
The basic syntax for xzap is:

xzap [-toolkitoption ...] [ps options]

where -toolkitoption ... consists of:
command
defaultSignal

pidColumn
psOnDeiconfy
scrollHeight
rootCursor
rootTitleSuffix
rootlconN ameSuffix
signalList
zapAccelerator

ps option consists of:
quit
zap
help
clear
ps

General Tools 331

The usage of the above options can either be from the command line or
from within resource files. A resource file is an Xll file which deter­
mines how applications react given certain situations. While it is not
within the scope of this book to discuss this further, suffice it to say
that all of the above resources and more (all documented in the xzap
man page) can be input from either the command line or in resource
files to further refine and control xzap's behavior. See the man page for
more details.

PID TTY TIME CMD
4831 pts/2 B:BB bsh bsh bsh

::=: 1 5 59 pt .s/~ ~I: Elf:) /bin/1·;: h

24286 pts/2 B:BB xzap
25312 pts/2 B:BB /bin/ps

Figure 8.4 The xzap screen.

332 Nonnative AIX Developer Tools

8.15.3 Installation

8.15.4 Conclusion

It is relatively easy to build xzap on AIX 3.2.4 or later. There is a make­
file which has been created for you. If you are running AIX 3.2.4 or
greater, you can simply type:

$ make -f Makefile.rs6k clean
$ make -f Makefile.rs6k

Then to install the images, you can use the command:

$ make -f Makefile.rs6k install

This will copy the generated files to the appropriate directories in
/usr/local. If you want to change the locations of the output files, you
will need to change the makefile to reflect the appropriate files.

If you are running AIX 3.2.3, you will need to follow the instructions
in README.rs6k to first build a new makefile and then execute the
resultant makefile to generate xzap.

xzap provides an easy way to kill processes without requiring use of the
command line. This is a very useful tool for killing runaway processes
or processes created by a software system in debug mode.

9.1 Introduction

Chapter

9
The GNU emacs Editor

There are very few editors available from the Internet which warrant
discussion in this book. The one exception is GNU emacs. emacs is sim­
ply the most powerful editor available today and provides complete ex­
tensibility and portability across many platforms and architectures.

Editors are like religions in nature and become most people's pri­
mary interface to an operating system along with a command inter­
preter. While there are other editors available today such as elvis,
which is a vi/ed rewrite from the GNU people, by far the most perva­
sive nonnative editor is emacs. The most important thing about an edi­
tor is its portability and availability. While these other editors exist,
they are most likely not on any platform you have and therefore won't
be very useful when moving onto a new machine. Because of this, this
book limits itself to a discussion of emacs.

emacs is the premier editor avilable in the UNIX market today. It has
capabilities far beyond most free editors and, in fact, beyond most edi­
tors that cost significant amounts of money. It was written by Richard
Stallman of GNU fame and continues to be one of the best and most
widely used editors available on the UNIX platform today. In fact, ports
of emacs have been made to Macs, PCs, VAX/VMS, and many other
platforms. It is clearly the most widely ported editor available for al­
most any platform today.

Because of the popularity of emacs, it has been widely ported and is
supported and distributed by several companies. emacs is written in
LISP, and because of its complexity, some companies have made en­
hancements and charge a fee for emacs. Companies like Unipress Soft-

333

334 Nonnative AIX Developer Tools

9.2 Installation

ware and CCA provide emacs for a fee, while there is still a free version
of emacs called GNU emacs. This is the version that will be discussed
in this chapter.

emacs stands for "editing macros" and was originally designed as a
set of editing macros for an ancient editor known as TECO. This editor
has since become obsolete, but emacs has continued to grow and thrive.
This is a tribute to its power and flexibility. It is somewhat misleading
to call emacs an editor. In fact, emacs is an entire working environment
and has integrated mail and shell capabilities and a knowledge of your
environment which allows it to help you in programming and compil­
ing. emacs is an extremely sophisticated programming environment
and, because of its sophistication, is a favorite of software developers
and power users.

GNU emacs, as you would expect, is developed and distributed by
the GNU Free Software Foundation (see Chap. 6 for more information
on this organization). This means that it is freely available and of very
high quality. In fact, most people consider the GNU emacs implementa­
tion the best of all emacs versions including those sold by other organi­
zations.

The version of emacs discussed in this chapter is 19.28. Because of
the constantly changing nature and complexity of emacs, this chapter
will focus on discussing the main capabilities and power of emacs and
leave the complexities and advanced capabilities of emacs for another
book. The purpose of this chapter is to get you familiar with emacs and
to provide basic capabilities and knowledge of the product.

With version 19 of emacs, the installation has been greatly simplified
and the functionality of the install procedure has been enhanced.
Through the use of configure, you can select many options related to
the compilation and installation of emacs on a single command line.

There are many files in the emacs distribution, several of which are
key to the emacs installation process. This chapter will discuss each in
turn as they are needed for the installation process.

The first file to examine in the INSTALL file. It documents much of
what you need to know to configure and build emacs. The first thing it
mentions is to ensure that you have enough swap space on your ma­
chine since it requires approximately 8MB or more of swap. If you get
an error from the temacs command or when executing the dumped
emacs, increase your swap space and try the build again. Note that te­
macs uses a file called lisp/paths.el which references several files re­
lated to other nonemacs utilities. You may encounter problems related
to these, so be careful.

Once you have examined the INSTALL file, you will need to carefully

The GNU emacs Editor 335

examine the etc/MACHINES file for details on your particular UNIX
implementation and the issues related to the building of emacs on your
particular platform. Read your specific architecture section carefully
since there are often very specific notes about installation problems
and issues. For example, on a Sun SPARC machine, the file specifies
that you need to be explicit in your choice of platforms. This is key to
the success of building the product.

The first command you will issue is the configure command. The ba­
sic syntax is:

configure architecture [options ...]

where architecture is the architecture of your machine chosen from the
etc/MACHINES file.

options consists of one or more of the following:
--exec-prefix=EXECDIR-specifies a directory where the

architecture-dependent executable files will be placed
(EXECDIR/bin). The nonarchitecture dependent files
such as source code will be left in their normal
directories. Other architecture-dependent files will be
placed in EXECDIR/lib/emacsNERSION/
CONFIGURATION.

--prefix=DIR-specifies the directories in which to place
generated emacs files.

--run-in-place-specifies that you would like to maintain the
emacs directory structure just as in the distribution
and not install it in the /usr/local default directories.

--srcdir=DIR-specifies the emacs source directory.
--with-gee-uses the GNU C compiler.
--with-xll, with-x=no-specifies whether you would like the

Xll interface or not.
--x-includes=DIR-specifies the Xll include file directories.
--x-libraries=DIR-specifies the directories for the Xll library

files.

The configure command is documented in more detail in Sec. 7.4. See
this for more information if you have trouble with the emacs installa­
tion. The first section in the INSTALL file goes into more detail on this,
so reference it if you need more information.

The best way to learn to use configure for emacs is to try it a few
times and see what happens. Note that when you run configure, you do
not compile or build anything but instead create the appropriate make­
file and associated build files, which you can then execute to build the
product.

336 Nonnative AIX Developer Tools

A simple example of running configure on an RS/6000 machine run­
ning AIX is:

$ configure rs6000-ibm-aix3.2.5 --with-x-11
--prefix=/usr/local/emacs/emacs-19.28 --run-in-place

This will generate the appropriate makefile from which you can build
emacs. Issues such as compilers, libraries, utility commands, and
many other details are handled automatically so that the makefile will
execute correctly.

The resulting file from the configure command is config.status. Look
at this if you want to see exactly what happened during the configure
process.

There are a variety of files including ./list/paths.el, which contains
information which tells emacs where to find executables like news
readers, sendmail, and others which you can use in conjunction with
emacs. A corresponding file, ./lisp/site-init.el, is the file you need to edit
if you want to change the configuration of the paths.el file. You should
not edit the paths.el file directly due to the nature of the complex syn­
tax. You may need to edit the ./listp/site-init.el file depending on the
configuration of your machine. Use the seq command in site-init.el in­
stead of defvar as used in ./lisp/paths.el as described in the ./list/site­
init.el file.

Once you have configured the new makefile, you can execute the
make command. There are several options to the make command
which will give you quite a bit of control over the build process. The
basic syntax for the make is:

make [install] [option=value, option=value, ...]

where install is optional and tells the make to place all resultant
executables, libraries, man pages, and other special files
in the default location, which is /usr/local/bin,
/usr/local/lib/emacsNERSION/lisp, etc.

options consist of:
bindir-location of binary files
datadir-architecture-independent emacs data files directory
libdir-emacs library directory
prefix-as described for configure, the directory which is the

root for all emacs files instead of the default /usr/local
statedir-architecture-independent shared emacs files

directory

There are several other variables that are emacs specific. These vari­
ables are documented in the INSTALL file if you want more informa­
tion. Because you have run configure, you can simply invoke:

9.3 Usage

The GNU emacs Editor 337

$ make

to build emacs.
The other files that will be of interest are contained in several differ­

ent directories. The first is the PROBLEMS file. This lists many of the
known problems with emacs and documents either a work around or a
fix. View this before you begin to use emacs since it will save you time
as you proceed.

In fact, there are README files in all directories as well as Chan­
geLog files in most. The ChangeLog files document the changes in the
files in each particular subdirectory from version to version. These are
important to view if you are interested in seeing what changes have
taken place in the new version.

Finally, there are a variety of files in the etc subdirectory which may
be of interest to you. Files ranging from specific information on a par­
ticular kind of computer to cookie recipes to man pages. Note that the
man pages end, as is the norm, with a .1 suffix. Use nroff on the man
page for more information. Probably the most interesting file in the etc
subdirectory is the FAQ file. This contains many of the most commonly
asked questions about emacs and is extremely useful for the new
emacs user to read before beginning to use emacs. See this file before
you read the rest of this chapter.

One of the keys for the generation of the executables is to ensure that
you have installed the development files for Xll. This means that all of
the appropriate include and library files are in the proper Xll directo­
ries. If you have not done this, you will see error messages saying that
the build cannot find a file with a .h extension or there are unresolved
symbol references. This probably means that you haven't installed all
the appropriate files for the Xll portion of emacs to compile correctly.

If you are interested in service and assistance with the emacs prod­
uct, see the file etc/SERVICE for a listing of consultants and others
who will provide maintenance and other support for emacs and a vari­
ety of other free software products. This list is duplicated in App. D of
this book.

The basic syntax is:

emacs [-q] [file]

where -q begins emacs without reading any initialization files (.emacs).
If you invoke emacs without a file, you are automatically dropped into
the help screen. From here you can invoke any emacs command.

An initialization file named $HOME/.emacs is read upon invocation.

338 Nonnative AIX Developer Tools

emacs is primarily a command-driven editor which responds to key­
strokes in some combination with the CTRL character. These key­
strokes execute a corresponding LISP function. Because of the long and
cryptic name of commands, you will want to learn the keystrokes and
forget about the command names.

There is both a built-in tutorial for emacs and a file named etcfl'U­
TORIAL which you should reference if you are interested in learning
more about emacs.

9.4 The emacs Screen

emacs is a full-screen editor and supports many different types ofter­
minals and keyboards. The standard of screen is shown in Fig. 9.1. The
main area of the screen is the input area, which is where all typed text
will be placed. This is a full-screen area, and you can move the cursor
freely from one area to another. The line second to the bottom is the
mode line. It contains ** if you have made changes to the file since it

Figure 9.1 Standard emacs screen.

The GNU emacs Editor 339

was last changed. To the right of this is the string Emacs:. Following
this is the name of the buffer (which may or may not match the name of
the file). In parentheses is the name of the mode (see Sec. 9.5) which
shows you which mode you are in. Finally, your position in the file is
displayed as a percentage from the first to last line. If the entire file is
displayed, the string All is displayed. The last line on the screen is the
minibuffer. It displays all commands and filenames that you enter.

9.5 emacs Modes

emacs has a series of modes which dictate how it behaves when certain
keystrokes are executed. Modes give emacs knowledge of your particu­
lar environment and give you enhanced capabilities that will make you
more productive. A basic listing of modes is:

Mode

c
emacs LISP
Fortran
Fundamental
Indented text
LaTeX
LISP
LISP interaction

Outline
Picture
Scribe
Text
TeX
View
nroff

Use

When writing C code
When writing emacs LISP
When writing Fortran
Default mode; no special behavior
Indents all text
formatting LaTex files
Writing LISP programs
Writing and executing LISP
Writing outlines
Creating simple drawings
Formatting Scribe files
Writing text
Formatting TeX files
Viewing files in read-only mode
Formatting nroff files

Modes are determined by emacs on invocation. emacs examines the
file extension and determines which mode to enter. If it connot deter­
mine mode from the file entension, it examines the contents of the file.
If it cannot determine the mode, it places you in the default mode Fun­
damental. This mode assumes no special characteristics.

To move from one mode to another, simply type:

ESC x modename RETURN

where modename is one of the above mode names. This allows you to
jump back and forth between modes easily.

There are several minor modes which determine certain default be-

340 Nonnative AIX Developer Tools

haviors inside a particular major mode. Minor modes are things like
Abbrev, Fill, Overwrite, and Autosave mode. These provide default
characteristics within a major mode.

9.6 emacs Commands

The commands in emacs are primarily written in LISP and consist of
powerful but cryptic commands which are invoked either by command
name or keystroke. The keystrokes are by far the most common way to
invoke emacs commands because of the cryptic nature of the command
names.

The keystrokes for emacs commonly begin with an ESC or CTRL.
The basic keystroke operations look something like:

C-x

C-c string

C-x string

ESC x

ESC x string

Where x is any character.

Where string consists of a string or additional control sequence; gener­
ally related to modes.

Where string consists of a string or additional control sequence; gener­
ally file-related commands use C-x string.

Where x is any character.

Where string is any emacs command name. This is the general-pur­
pose way to invoke an emacs command.

Note that the notation C-x means that the CTRL key must be held
down while the appropriate key is pressed. Both are then simultane­
ously released. This method of depressing two keys simultaneously is
fundamental to the operation of emacs. While this leads to the need to
use two hands to type and use emacs effectively, it also removes most of
the confusion and inconsistency of keyboard mapping and differences.
This is particularly important in heterogeneous environments with
multiple operating environments and keyboard layouts. emacs is cer­
tainly the most portable multiplatform editor available today. Don't let
the method of multikey operation deter you from using emacs and ap­
preciating its full power and potential. For the ESC key, on the other
hand, you simply press it and then the appropriate key. It is not neces­
sary to continue to hold down the ESC key when depressing the other
key. This is fundamental to the operation of the keyboard, and you will
rapidly become used to this mode of operation. Your fingers will just
learn where to go.

9.7 Help and the Tutorial

The most important thing to learn when moving to a new environment,
particularly something as interactive as an editor, is where to go for
more information and help. Interactive help is one of the most powerful

The GNU emacs Editor 341

of the features in emacs. There is a very sophisticated on-line tutorial
which will introduce you to the emacs editor. This is probably the best
place to start.

To invoke the tutorial, type:

C-h t

This invokes a tutorial, which leads you through much of the basics of
emacs. The screen is shown in Fig. 9.2. Once you are through with the
tutorial, you will be much better prepared to work in emacs and, there­
fore, will be much more productive.

Along with the tutorial, there is a general help facility which pro­
vides an enormous amount of documentation on the emacs system. To
invoke the help facility, type:

C-h command

You are looking at the Emacs tutorial.

Emacs commands generally involve the CONTROL key (sometimes labelled
CTRL or CTL) or the META key (sometimes labelled EDIT). Rather than
write out MEfA or CONTROL each time we want you to prefix a charactert
we 1 ll use the following abbreviations:

C-<chr> means hold the CONTROL key while typing the character <chr>
Thus, C-f would be: hold the CONTROL key and type f,

M-<chr> means hold the META or EDIT key down while typing <chr>.
If there is no META or EDIT key, type <ESC>, release it,
then type the character <chr>. "<ESC>" stands for the
key labelled "ALT" or "ESC",

Important note: to end the Emacs sessiont type C-x C-c. (Two characters.)
The characters ">>•' at the left margin indicate directions f'or you to
try using a command. For instance:

>> Now type C-v (View next screen) to move to the next screen.
(go ahead; do it by depressing the control key and v together).
From now on; you'll be expected to do this whenever you finish
reading the screen+

'' Garhage collecting+++done

Figure 9.2 Screen for c-h-t.

342 Nonnative AIX Developer Tools

where command is:

C-h Displays help on the help facility

b Lists all key bindings for current buffer

c Describes command sequence executed by keystroke

f Displays actions of function

k Describes command sequence and what happens when keystroke is pressed

1 Lists last 100 characters typed

m Displays current mode

s Displays syntax table for current buffer

v Displays variable value and its definition

w Displays key binding for command

These commands all prompt for input after execution.
The best way to learn more about emacs help is to type:

C-h C-h

This places you in a help facility which describes the help facility itself.
Once you have gone through this, you will know how to get help in most
situations. This is very important because you will probably never
know all emacs commands and actions, and the help facility will prove
vital in your productive use of emacs.

When you press C-h ?, you get a list ofletters and commands across
the bottom of the screen, as shown in Fig. 9.3. These provide you with
some of the choices described above. To abort the help function, press
any other key than one of those listed. Keys such as C-h f will prompt
for a function to describe, while others will prompt for a keystroke to be
executed. Each is dependent on context and form. See the above de­
scriptions for more information.

9.8 emacs apropos

On some UNIX systems there is a help system known as apropos.
Loosely interpreted this means "sounds like." Apropos provides you
with a facility which you can search for something when you don't
known quite what you're looking for. To execute apropos, type:

C-h a

This will place you in a mode where you can enter a regular expression,
and emacs will search its help database for any matching strings. For
example, type:

C-h a (reg-exp) compile

The GNU emacs Editor 343

Figure 9.3 The emacs help screen.

This will generate a screen like that shown in Fig. 9.4. Note that it tells
you exactly what it has relating to the compile string. Use this when
you can't remember how to do things, but you have some idea what you
want to do.

There is one other tool within emacs that you should know about. It
is called info and really consist of a hypertext database of text contain­
ing information about emacs and related tools. To invoke info, type:

C-h i

Once inside info, you can type h to get an on-line tutorial. Try this to
learn more about info. A full discussion of info is beyond the scope of
this book; see related emacs documentation for more information on it.

9.9 Getting Current Information

You can get current information on emacs by pressing the command
sequence:

C-h n

344 Nonnative AIX Developer Tools

Figure 9.4 Example of regular expression help.

to invoke the news feature of emacs. This will provide "up to the re­
lease" information on emacs and associated products. See the C-h
minibuffer line for more possible commands.

9.10 Reading in a File

There are two basic ways to read in a file. The simplest way is to simply
type the filename on invocation of the emacs editor. For example:

$ emacs file

Once you are in emacs, you are actually in a buffer named file. If you
determine you have read in the wrong file, issue the following com­
mand from within emacs:

C-x C-f

emacs will prompt you for the filename to read in and will issue a com­
mand to read the correct file into a new buffer with a matching name.
emacs uses the current working directory as a default.

emacs has a nifty feature called command completion. This allows
you to type an abbreviated command, which emacs will finish for you.

The GNU emacs Editor 345

You simply type the shortest unique string and press TAB, and emacs
will finish the string for you. Note that the string must be unique; if it
is not, emacs will prompt you with a list of possibilities. You must type
enough characters to make it unique and again press TAB. emacs will
finish the string for you. This is particularly useful for long filenames.
For example:

C-x C-f get TAB

will expand the file get to any full filename in my current working di­
rectory. If the file is named gethostbyname and it is the only filename
beginning with a get in my current working directory, emacs will read
in the correct file. This can be a real timesaver and is something you
will use more and more as you use emacs.

9.11 Making Changes in a File

emacs, unlike many other editors, is in insert mode by default. This
means that when you move the cursor to the text input area and begin
to type, you insert text and current text is simply moved to accommo­
date inserted text. If you are more comfortable working in the more
normal overstrike mode, type the command:

ESC x overwrite-mode

emacs works as you would expect a full-screen editor to work. With
respect to things like word wrap, you can set the "fill mode" with the
command:

ESC x auto-fill-mode

This will cause word wrapping as you might expect it to work. You can
issue the above command again to toggle out of fill mode. If you don't
use fill mode, emacs places a backslash at the end of every line as a
reminder that the line is continued below.

After using emacs, you will notice that most commands that begin
with an ESC operate on words or other groups of characters, while
commands preceded by a CTRL operate on single characters. Keep this
in mind as you proceed.

There are basic commands to move the cursor within the text window:

C-f

C-b

C-n

C-p

C-a

Moves forward one space

Moves backward one space

Moves to the next line

Moves to the previous line

Moves to the beginning of the line

346 Nonnative AIX Developer Tools

C-e

ESC f

ESC b

ESC e

ESC a

ESC

ESC

Moves to the end of the line

Moves forward one word

Moves backward one word

Moves forward one sentence

Moves backward one sentence

Moves forward one paragraph

Moves backward one paragraph

Definitions of sentences and paragraphs default to two spaces after a
punctuation mark and blank lines, respectively. You can modify these
definitions with the sentence-end and paragraph-end variables. See
Sec. 9.24 for more details.

There are basic commands to move and manipulate screens:

c-v

C-1

ESC v

ESC >

ESC <

Moves forward one screen.

Places the current line at the top of the screen and scroll the
rest.

Moves backward one screen.

Moves to end of file.

Moves to beginning of file.

ESC x goto-line n

ESC x goto-char n

n is the line number you wish to go to.

n is the character number in the file you wish to go to.

With emacs, you can also issue a command and tell it to execute it a
certain number of times with the command:

ESC n command

where n is the number of times to execute command. In other words,
the ESC n command must precede any emacs command which you
wish to execute n times in succession.

There are also simple commands which perform text manipulation
shortcuts. For example:

C-t

ESC t

C-x C-t

ESC c

ESC 1

ESC u

Transposes two letters

Transposes two words

Transposes two lines

Capitalizes the first character of the current word

Puts current word in lowercase

Puts current word in uppercase

There are also basic text formatting commands that you can execute to
justify and center text:

ESC s Centers current line

ESC x center-paragraph Centers current paragraph

The GNU emacs Editor 347

9.12 Undoing Commands

You can undo a previous command with the emacs command:

ESC x u

This will prove invaluable at some point in your emacs usage-don't
forget it.

There are also simple ways to move text around in and between buff­
ers. Some of the more common commands are:

C-d

ESC d

C-k

DEL

ESC DEL

ESC k

C-y

c-w

Deletes the character under the cursor.

Deletes what remains of the current word.

Deletes what remains of the line. Note that it takes two C-ks to remove an
entire line: the first to remove the text and the second to remove the new­
line.

Deletes the character preceding the cursor.

Deletes previous word.

Deletes current sentence.

Yanks. Restores what you have deleted.

Deletes marked region.

When you delete things with any of the above commands except the
DEL and C-d commands, emacs saves them in a buffer known as a kill
ring. You can issue the C-y command to restore all that has been de­
leted. emacs is smart enough to restore them in the order you deleted
them. This means that you can delete two consecutive lines with C-k
C-k C-k C-k, move the cursor somewhere else and issue a C-y com­
mand. The two lines are restored at the position of the cursor and other
lines are adjusted accordingly.

9.13 Working with Text Blocks

One of the most common things you will do is to move blocks of text
around in a buffer. The commands to accomplish this are:

c-@or C-SPACE

c-x c-x
ESC h

C-x C-p

C-x h

c-w
ESC h

ESC w

Marks beginning or end of a region

Exchanges location of cursor and mark

Marks paragraph

Marks page

Marks buffer

Deletes marked region

Marks current paragraph

Copies region into kill ring without removing region in current buffer

348 Nonnative AIX Developer Tools

To mark a region for manipulation in emacs, merely position the cur­
sor to the beginning of the region and press:

c-@

or

C-SPACE

whichever is most convenient. Once this mark has been set, you can
move the cursor (also known as the point) to the end of the region, us­
ing any emacs command. Once you have reached the end of the region,
there is nothing special that you have to do. emacs assumes the region
begins with the mark and ends with current cursor position. You can
verify the position of the mark by issuing the command:

C-x C-x

This will place the cursor (point) at the current mark position and will
place the mark position at the previous cursor location. This is useful to
remind you exactly what you are deleting. Note, however, that it is not
necessary to do this. At this point you can delete the region with the
command:

c-w

Remember that you can undo your deletion with the C-y command.
To copy a block of information, you can mark the region as described

before and, once the region is marked, issue the command:

ESC w

This copies the current marked region to the kill ring. Next, move the
cursor to the desired location and issue the C-y (yank) command. This
will insert the contents of the last deletion stored in the kill ring in the
current location.

You can manipulate the contents of the kill ring with commands like:

ESC y

which deletes the most recent text in the kill ring. The kill ring is es­
sentially a last in first out (LIFO) queue which acts much as a tradi­
tional stack operates. With commands like those listed above you can
manipulate the next block of information in the kill ring to be operated
on. For example, you can use the ESC y command to remove the last

The GNU emacs Editor 349

item from the kill ring until you are at the item you wish to yank with
C-y.

The default size of the kill ring is the last 30 deletions. This can be
modified with the command:

ESC x set-variable RETURN kill-ring-max RETURN value RETURN

where value is the number of deletion items to save in the kill ring.

9.14 Using Multiple Buffers

You can also use multiple buffers in emacs to move blocks of informa­
tion around. Each buffer has a major mode associated with it which
determines its state. You can have any number of buffers each contain­
ing any amount of information. You can move around within buffers
and move between buffers at will. You can merge and cut buffers from
one to another and save the resultant buffer to a disk file. There is al­
most no limit to what you can do with buffers in emacs.

Buffers are a good way to save some but not all information from one
file to another. Let's take an example of how we could do this. We have
a file named testl which contains the following information:

This is line 1
This is line 2
This is line 3
This is line 4
This is line 5

To invoke emacs on this file, type:

$ emacs testl

To cut lines 3 and 4 out of this file, issue the commands, position the
cursor at the beginning of line 3, and press:

C-SPACE

This marks the first line of the region to be copied. Move the cursor to
the beginning of line 4 and press ESC w. This copies lines 3 and 4 to the
kill ring. Now you need to open a new buffer. Use the command:

C-x b buf fername

where buffername is the name of the new buffer you want to create.
Note that it is probably a good idea to have the buffer name match the
filename. Once you type this, a new buffer is created and a blank

350 Nonnative AIX Developer Tools

screen is presented. To yank the last contents of the kill ring into the
current buffer, type:

C-y

which yanks the last kill ring contents to the current buffer. From here
you can save and manipulate this buffer as you would any other.

You can list the buffers in your session with the command:

C-x C-b

This produces a screen which contains information on the current list
of buffers and associated information while leaving a portion of the
screen as your current buffer. To move to the buffer list, use the com­
mand:

C-x o

Once you are in the buffer list, there are a variety of commands which
you can issue to act upon buffers in the list. Some of the more basic are:

C-n

C-p

SPACE

dx

sx

1

2

Moves down a line

Moves up a line

Moves to the next buffer in the list

Marks the buffer for deletion

Saves the buffer

Displays the buffer

Displays the buffer in a portion of the window

9.15 Halting the Execution of emacs Commands

You can halt the execution of any emacs command with the command:

C-g

This will place you back in input mode and stop the execution of the
current command.

9.16 Saving a File

To save a file, issue the command:

C-x C-s

This will save the contents of the current buffer to a file of the same
name. If you have any problems with terminal hangs, they are prob-

The GNU emacs Editor 351

ably related to the C-s sequence, which may stop flow control to your
terminal. If this occurs, type a C-q to unlock the screen and allow data
to begin to flow again.

If you want to save the buffer contents as something other than its
buffer name, issue the command:

C-x C-w

and type the filename under which to save the buffer.

9.17 Exiting emacs

To exit emacs type:

C-x C-c

emacs will ask you if you want to save any unsaved changes. Answer y
or n as appropriate.

9.18 Suspending emacs

You can temporarily suspend emacs with the command:

C-z

This is a function of the job control of the system and will not work on
all systems. If you successfully return to the shell prompt, you can
reenter the emacs editor at exactly the place you left by typing:

$ fg

You can also use the standard job control commands to control more
than one background process.

9.19 Autosave Files

emacs, by default, creates an autosave file every 300 keystrokes. The
name of the autosave file is simply the original filename preceded and
followed by # marks. For example, if you issue the command:

$ emacs kevin

after the first 300 keystrokes a file named #kevin# would be saved.
This will be the place, if a crash occurs, you can recover from. You can

352 Nonnative AIX Developer Tools

force a flush of the current buffer back to the last autosave with the
command:

ESC x revert-buffer

You will then be asked whether you want to revert to the most recent
autosave buffer (y or no) and then if you want to revert buffer from file
filename (yes or no). This means that you can either go back to the last
complete group of 300 keystrokes or to the beginning of your edit ses­
sion. Note that emacs expects exact matching answers, so type y, n, yes
or no, respectively.

emacs also creates a backup file when you begin an edit session on an
existing file. The file is named the filename followed by a-. For exam­
ple, if you entered the command:

$ emacs kevin

and kevin existed, a file named kevin- would be created which con­
tained the contents ofkevin before any changes were made. This allows
you to keep a backup copy in case you want to disregard any committed
changes.

9.20 Multiple Windows in emacs

emacs provides for multiple window support on most platforms. While
many workstations have moved to bitmap support and use windowing
systems, you may want to split a current window into multiple screens.
From within each screen you can perform any task you could from any
full-function emacs screen. For example, you can issue e-mail and shell
commands and can edit other files.

The basic command to split the screen is:

c-x 2

This will split you current window into two segments, as shown in Fig.
9.5. While you can use a mouse and windowing system capabilities to
create multiple windows, it is often more efficient to simply issue the
above command and perform the task at hand than finding your
mouse, creating a new window, entering the editor, etc.

'lb move from one window to another, use the command:

c-x 0

'lb delete a window, type:

c-x 0

The GNU emacs Editor 353

Figure 9.5 emacs split screen.

Note you have all the consequences and behaviors of each of the split
windows being a full-function editing session. Keep this in mind when
you are killing buffers and moving back and forth between them.

You can alter the size of windows within a screen with the com­
mands:

c-x A

c-x
Makes the current window taller

Makes the current window wider

These commands alter the current window size by one line.

9.21 Searching for and Replacing Text

Every editor has a basic search and replace capability; emacs, as you
are probably coming to expect, has a variety of search and replace capa­
bilities. They range from simple searches to complete regular expres­
sion searches. Keep in mind that the flexibility of emacs allows you to
write your own search and replace algorithms, and this may be some­
thing you want to do when you have become more familiar with emacs.

The basic search categories are:

354 Nonnative AIX Developer Tools

C-s ESC string

C-r ESC string

C-s string

C-s ESC c-w string

ESC x re-search-forward

ESC x replace-string RETURN
oldstring RETURN newstring

ESC % RETURN oldstring RETURN
newstring RETURN

Simple search forward

Simple search backward

Incremental search

Exact string search

Regular expression search (see below)

Search and replace (see below)

Query-replace

There is commonality between all search command syntax. All com­
mands begin with a control sequence such as C-s (for forward searches)
or C-r (for backward searches) and end with a carriage return. All com­
mands can also be repeated to find the next occurrence by pressing
either the C-s or C-r command sequence without entering a string. Fi­
nally, to end any string search or replace operations, type ESC. This
tells emacs you are finished with any search and replace operations
and clears the buffer from which to search. It is important to type ESC
when you are finished searching to ensure that you are not continuing
the actions of the last executed search command.

Remember also that emacs works from the current cursor position,
and therefore if you want to execute commands from the beginning of
the file, you should position yourself at the beginning of the file and
before executing any necessary commands.

Finally, emacs is case independent. When you issue commands re­
lated to case, emacs ignores it for the purpose of search and matches it
for the purpose of replace. In other words, emacs attempts to match
case character-by-character when replacing text so as to minimize the
side effects of the word change. For example if you have a file which
contains:

I have a file which has several occurrences of oldstring. Oldstring
really consists of a bunch of gibberish which really has no meaning
or context. I hope the OLDSTRING in all caps will not confuse
anything I do in the emacs editor.

and you issue the command:

ESC x replace-string RETURN oldstring RETURN newstring

the result would be a file which contained:

I have a file which has several occurrences of newstring. Newstring
really consists of a bunch of gibberish which really has no meaning
or context. I hope the NEWSTRING in all caps will not confuse
anything I do in the emacs editor.

The GNU emacs Editor 355

As you can see, the emacs editor attempts to maintain case on a char­
acter-by-character basis. This is useful, particularly when program­
ming since languages such as C are case sensitive.

9.21.1 The simple search

The simple search consists of entering a string and telling emacs to
find the next occurrence. For example, to find the next occurrence of
the string emacs, use:

C-s ESC emacs

This will find the next forward occurrence in the file from the current
insertion point. emacs may be a string inside a longer string and the
match will still occur. If the string gnuemacs occurred next, the cursor
would be positioned at the e in the string gnuemacs. The exact string
match will look for a unique occurrence of the string emacs if that is
what you are after.

To repeat the forward find, type the command:

C-s

To do a backward find, issue the command:

C-r ESC emacs

and emacs will search backward from the current position for any oc­
currence of the string emacs. To repeat the backward find, issue the
command:

c-r

9.21.2 The exact string search

If you are looking for a unique word and not a string, you need to use
the exact string (or word) match capability of emacs. To search for the
word emacs, issue the command:

C-s ESC C-w emacs

To find the next occurrence, issue the command:

C-s

You can also issue backward searches with the C-r version of this com­
mand. For example, to find the previous occurrence of the emacs word,
issue the command:

356 Nonnative AIX Developer Tools

C-r ESC C-w emacs

and to repeat the find, issue the command:

C-r

9.21.3 The incremental search

The incremental search allows you to enter a string, and emacs will
begin matching the string with the first letter. This means that you can
continue to narrow the search for your match by entering characters in
the string you wish to match.

To match the first string that begins with a, type:

C-s a

The first occurrence of the character a will become the current position.
If you are looking for the occurrence abc, you would simply type ab and
a c and watch as emacs continues to narrow the results of your search.
This command is most useful to programmers since they may not re­
member the exact string but know how it begins in the program.

Remember to type ESC when you are finished with your search and
replace activity since this will ensure that you are not telling emacs
something you don't intend. Note that you can also end the search with
another control sequence. Since emacs is CTRL command driven, this
is normally how the search is ended; keep in mind that if you don't
issue an ESC or CTRL command sequence after you have finished
searching, emacs assumes you are still in search mode and will act as
such.

9.21.4 Search and replace

Many times you are interested in replacing one or all occurrences of a
string in a given file. To replace all occurrences of a word in your cur­
rent file, type:

ESC x replace-string RETURN oldstring RETURN newstring RETURN

Remember that the ESC x sequence tells emacs to execute a typed com­
mand. In this case the command is replace-string and the oldstring will
be replaced with the newstring in all occurrences of the file. Remember
also that emacs works from the current position and only those occur­
rences following the cursor position will be changed.

The GNU emacs Editor 357

9.21.5 Query search

If you want to replace only certain occurrences of a string, you must use
the query search capability of emacs. 'lb enter a query search, type the
command:

ESC % RETURN oldstring RETURN newstring RETURN

Once emacs finds the first occurrence of oldstring, the following ques­
tion appears at the bottom of the screen:

Query replacing oldstring with newstring.

At this point, emacs waits for you to tell it whether to replace the string
or perform any of a variety of other options on the string. Some of the
available options are:

DEL

n

SPACE

y

ESC

Doesn't replace; moves to next occurrence of oldstring

Same as DEL

Replaces and moves to next occurrence of oldstring

Same as SPACE

Replaces current occurrence and quits

Replaces current occurrence but doesn't go to next occurrence

Moves back to previous occurrence

Replaces all following occurrence and doesn't ask for assistance

Quits query replace

By far the most common answer is SPACE (space bar) or y. Note that
UNIX and emacs are case sensitive and therefore Y is not the same as
y. Keep this in mind if you have any troubles in emacs.

9.21.6 Regular expression searches

Regular expressions are typically used when you want to perform a
general substitution from a predetermined pattern. Through the use of
wildcard substitutions, you can generate strings which can be matched
according to your specifications. emacs can use regular expressions to
locate strings and words in any of the basic types of search and replace
operations. For example, to find a word that is at the end of a line, issue
the command:

C-s ESC C-w last$

This will search for the next occurrence of the word last that is the last
word on a line. The most basic characters that can be used in regular
expressions are:

358 Nonnative AIX Developer Tools

$

Matches any number of characters

Matches a single character

Matches the end of line

Matches the beginning ofline

The regular expression commands react similarly to those described
earlier. The commands for this should be invoked from the command­
level interface. The basic syntax is:

ESC x re-search-forward Simple search regular expression

ESC x re-search-backward Simple search regular expression

ESC x isearch-forward-regexp Incremental serach regular expression

ESC x isarch-backward-regexp Incremental search regular expression

ESC x query-replace-regexp Query replace regular expression

ESC x replace-regexp Replace regular expression

With these commands, you can execute all the commands described
above but have the added flexibility of using regular expressions to
match multiple strings with substitution capabilities.

9.22 Text Formatting and Its Relation to emacs

emacs has several modes which support a variety of text formatting
utilities. Tools such as troff, nroff, and TeX are supported within emacs.
You can use emacs to assist you with writing these types of files, and it
provides basic syntax checking and generation for each of the text for­
matting languages described above.

There are high levels of support for troff and nroff and exceptional
levels of support for TeX and LaTeX. emacs provides syntax checkers
and generators for these markup languages and, in addition, processes
them into files which can be processed at a later time if necessary.

Each of the major text formatters is represented by a major mode in
emacs. This gives you the ability to simply enter a major mode and
have emacs assist you with formatting and syntax. For example, the
most common type of standard text formatting system on UNIX is
nroff. This is the format which man pages and some Internet documen­
tation come in. Therefore, some of the basic capabilities of the nroff ma­
jor mode in emacs will be discussed. It should be noted that nroff mode
is very similar to troff, and most of the commands will work in both
modes.

To enter emacs major mode, type:

ESC x nroff-mode

You can now use certain defined behaviors in the nroff major mode to
assist you with moving around in the file, formatting the file, and with

The GNU emacs Editor 359

syntax. For example, you can use emacs to automatically insert the
ending part of a macro. Th place emacs in the mode known as electric­
nroff-mode, type the command:

ESC x electric-nroff-mode

An example of this is shown in Fig. 9.6.
When you type .PP, you then press C-j. This creates a duplicate .PP with

a blank line in between and positions the cursor on the beginning of the
blank line. From here you can type your paragraph text. Another example
is to type .LG press C-j; the corresponding .NL will be placed below with a
blank line in between. This function is very useful for building macros in
nroff or troff format in the nroff major mode of emacs.

You can also use emacs to assist with moving around in the file. Be­
cause nroff uses a special file format which does not include blank
lines, you may have trouble moving around in the file easily. nroff ma­
jor mode provides commands which move you both forward and back­
ward with respect to text files. They bypass the interceding macro
commands. They are:

ESC n

ESC p

Figure 9.6 electric-nroff-mode.

Moves forward to next text line
Moves backward to next previous text line

360 Nonnative AIX Developer Tools

With these commands, you can save yourself quite a bit of time by not
having to move, one line at a time, over all macro commands to get to
the next line of text.

There are other commands in the nroff mode; see the on-line help for
more information.

9.22.1 TeX and LaTeX support

Similar support exists for TeX and LaTeX. The two major modes are:

tex-mode emacs determines whether file is TeX or LaTeX and places you in the
correct mode.

latex-mode emacs is placed in LaTeX mode.

plain-tex-mode emacs is placed in TeX mode.

emacs will verify curly braces and quotes as well as provide comment
capabilities.

emacs also provides additional support for TeX in the form of proc­
essing. You can process the contents of your TeX or LaTeX input file
with the command:

C-c C-b - process current buffer

All output messages from this command are placed in the TeX shell
buffer. This should come up automatically; if it doesn't, press:

C-c C-1

This will process your file and produce a dvi file (device independent
file). You can then process the dvi file and send it to the default printer
with the command:

C-c C-p

This will queue the processed dvi file to the default printer. To check
the queue status, use the command:

C-c C-q

Finally, to stop processing of a TeX or LaTeX file, type the command:

C-c C-k

The GNU emacs Editor 361

9.23 Shell Commands

You can escape directly from emacs into a shell window with the com­
mand:

ESC x shell

This forks a new shell and places you at the command prompt. From
here you can issue any shell commands as you normally would. To exit
the shell, type:

$ exit

This places you back in emacs at the place you left.
You may only want to execute a single command and reenter the

emacs editor at the conclusion of this command. To do this, type:

ESC ! command

emacs opens a window with the results of this command. To kill the
window, type:

C-x 1

Because the output of the command is in a buffer, you can perform any
emacs command on the results from within emacs.

9.24 emacs Customization

emacs is one of the most customizable editors available today. By learn­
ing a small amount of LISP, you can create your own command lan­
guange and essentially build your own editor interface. Some
companies have gone so far as to structure editor commands to emulate
an old editor from which they are migrating in an effort to minimize
the migration pain for the developers. This has been very successful, at
least in terms of their ability to create an editor which fits their needs.

There are many variables in emacs which control almost every as­
pect of its behavior. The primary way to change the state of variables is
with the command:

ESC x set-variable RETURN variable RETURN value RETURN

The set-variable command allows you to enter a variable name and a
subsequent value for that variable. This command works in almost
every instance and allows you to customize emacs to behavior that you
expect.

362 Nonnative AIX Developer Tools

9.25 X Windows Support

There are several newer versions of emacs which support X Windows.
Namely, 18.59 has support for X Windows. Support is determined when
you build the emacs product. You can choose to provide X Windows sup­
port when the emacs executable is built.

If you choose to provide X Windows support, you gain the ability to
create multiple windows and utilize the full power of emacs. You will
know if X Windows support is included by simply invoking the emacs
editor from an xterm window (or some derivative). If a new window
appears, you are running with X Windows support; if it doesn't, you
probably aren't. Talk to your system administrator for more details.

9.26 Spell Checking

You can perform basic spell checking on the current word in emacs with
the command:

ESC $

emacs processes the current word and prompts for an action. The ac­
tion list is the same as that presented for the query search capability in
emacs. You would typically type one of:

RETURN

SPACE

C-g

n

Word is correct; store in the dictionary.

Begins a query replace response to correct word.

Quits without changes.

Goes to next occurrence without changes.

To check the spelling of an entire file, use the command:

ESC x spell-buffer

This is one of the few commands that will begin its execution at the
beginning of the buffer without respect to the current cursor position.
It will scan through the entire file, stopping at each occurrence of a
word it does not know and asking for a response as described above.

9.27 Printing from within emacs

You can issue certain commands to print from within emacs. Some of
the most basic are:

print-buffer

lpr-buffer

print-region

Prints contents of current buffer to default printer

Prints contents of current buffer without any preprocessing by lpr

Prints contents of current region

The GNU emacs Editor 363

You invoke the above commands as any other emacs command:

ESC x corrunand RETURN

You can configure emacs to issue the print commands with certain
characteristics with the command:

ESC x lpr-switches -Pibm_laser RETURN

This sets the output queue to ibm_laser. This can be any combination
of switches you normally place on the lpr command.

9.28 Other Things You Can Do in emacs

There are many things you can do within emacs such as invoke mail
and execute commands. While this chapter has discussed how to in­
voke commands, it will not discuss mail since this interface, while func­
tional, is not as sophisticated as most mail interfaces today.

One interesting thing you can do is read manual pages and nroff
documents in general from within the emacs editor. To read a man
page, issue the command:

ESC x manual-entry RETURN corrunand RETURN

This will bring up the manual page for command. To exit, simply exit
the buff er as you normally would.

9.29 emacs and Programming Languages

Just as emacs supports several text formatters, it also supports and
understands several programming languages. Languages with their
own major modes include C, Fortran, LISP, and others. This book will
only discuss C and Fortran since they are the main languages in use
with emacs today. You can also create your own language support
modes with the autoload command. See interactive help for more infor­
mation on this macro.

9.29.1 C language support

emacs has support for automatic recognition of mode based on file ex­
tensions. For example, emacs will place you in C mode if you read in a
file with an extension of .c, .h, or .y. emacs has an understanding of how
the C syntax looks and can assist you with things like semicolons, curly
braces, and quotation marks. It can also help you format your code so
that you can read it more clearly months or years after you wrote it. To
enter this mode manually, type:

364 Nonnative AIX Developer Tools

ESC x c-mode

You can preserve indentation of your code by simply pressing LINE­
FEED (C-j) instead of RETURN at the end of a text line. emacs will
then indent to the first character of the previous line. This is very use­
ful when writing in a structured language such as C and saves key­
strokes and time.

You can also format an entire region with the command:

ESC C-\

Simply mark the beginning of a region as described earlier in this
chapter, place the cursor at the end of the desired region, and press the
above sequence. This will indent all intervening lines appropriately.
Note the use of the word appropriately. emacs has some knowledge of
the form and syntax of C and will make indentations based on blocks
and structures (curly braces, conditional loops, etc.) which significantly
increase the readability of the code. You can alter the indentation de­
faults for C source code with the standard ESC x command macro.
Some of the more basic variables available are:

c-argdecl-indent Indentation for type declarations of functions (de­
fault 5)

c-auto-newline Inserts a newline before and after{} and after; and:
(default nil)

c-brace-offset Indentation for line that begins with {(default 0)

c-continued-statement-offset Extra indentation on continuation lines (default 2)

There are other variables. See the on-line help for more information.
Many programmers alter these with C since it can save a tremendous
amount of time and resources as you key in the code itself.

You can insert comment lines either at the end of a current line of
text or at the beginning of a blank line with the command:

ESC ;

This inserts the correct comment line syntax (for C it is a/* */) struc­
ture and places the cursor in the blank part of the comment string. Use
this to place a large number of comments in your code since this will
increase maintainability.

There are other commands which move you within your source code
file. Some of the more basic are:

ESC C-a

ESC C-e

Moves to beginning of function body

Moves to end of function body

The GNU emacs Editor 365

These allow you to jump between functions, bypassing the rest of the
body with one key sequence.

9.29.2 etags (external tags)

There is another function in emacs related to moving between func­
tions quickly and easily. With the etags command, you can generate an
etags file which contains function references generated from a listing of
files. This is useful when your program is contained in more than one
source code file. Instead of being forced to move between files and buff­
ers, you can generate a tags file which contains file and function map­
pings for emacs. This allows you to act on a function name which is not
in the current buffer and automatically reference that function and
move it into the current screen.

You must invoke etags as a separate command with a syntax of:

etags -f outfile infile ...

where -f outfile saves the output tag file in the file outfile. The default
is a file named TAGS.

infile ... is one or more .c, .h, or, .y files which contain
information related to your C program.

You can use wildcards with any file on the etags command line just
as you can with any other command. One possible invocation of etags is
the following:

$ etags *. [chy]

This will build the TAGS file which contains all function references in
all files in the current directory which end in .c, .h, and .y. You could
create a TAGS file with the command:

$ etags *. [chy] /usr/local/kevin/*. [chy}

to create a TAGS file from all possible C source files in both the current
directory and the /usr/local/kevin directory.

Once you have created a TAGS file, you can act on it from within
emacs with the following commands:

ESC x visit-tags-table
RETURN filename RETURN

ESC . [tag]

ESC ,

ESC x list-tags

SC x tags-appropos

Reads in the tag file.

Where tag is the function you want to find. If you don't
enter a tag, emacs will use the word the cursor is cur­
rently on.

Finds the next occurrence of tag.

Generates a list of all tags in current file.

Generates a list of all matched strings.

366 Nonnative AIX Developer Tools

ESC x tags-query-replace Allows a search and replace, much as described in an
earlier section.

ESC x tags-search Allows you to enter a regular expression on which to
search.

9.29.3 Fortran language support

Just as with C, there is support for the Fortran language in emacs.
Many of the functions are similar and, as you will see, are invoked in
much the same way.

When you invoke emacs with a filename which contains an extension
.f, you will be place in Fortran mode by default. By selecting a major
mode of Fortran, emacs provides support for syntax and structural
checking, much the same as is supported for C. Some of the most basic
commands are:

ESC A

ESC C-j

ESC C-a

ESC C-e

C-c c-n

C-c C-p

C-c C-w

Joins current line to the previous one

Splits current line at cursor position

Moves to beginning of current subprogram

Moves to end of current subprogram

Moves forward to next statement

Moves backward to previous statement

Creates window 72 columns wide to aid in entering source

There are also variables similar to those supported by C. Some of the
most basic are:

fortran-do-indent Additional indentation used in do statements
(default 3)

fortran-if-indent Additional indentation used in if statement
(default 3)

fortran-line-number-indent Indentation ofline numbers (default 1)

fortran-minimum-statement-indent Positions beginning of statement (default 6)

With respect to line numbers in Fortran, you can simply type the line
number at the beginning of the line, and emacs will move your cursor
to column 7 or the column indicated by the variable fortran-minimum­
statement-indent.

9.29.4 LISP language support

LISP is a language which is supported by a major mode of emacs. Be­
cause emacs is written in LISP, there is strong support for syntax and
development of LISP in emacs. Using LISP and its relation to emacs is
beyond the scope of this book; however, suffice it to say that emacs' sup­
port of LISP may well be its best supported languages. See related
books and on-line help for more information.

The GNU emacs Editor 367

9.29.5 Compiling programs

One of the main benefits for programmers in emacs is the ability to
compile code from within emacs itself. The basic command to invoke
the compilation system is:

ESC x compile

This will prompt you with a series of questions relating to the compila­
tion process. The default command is:

make -k

where k continues with compilation after errors (this is not make de­
fault).

You can enter your own compilation command which becomes the de­
fault for the session by using the compile command as described above.

emacs gives you the ability to move from one error to the next with
the command:

C-x '

When you issue the above command, emacs places your cursor where
the error occurred. You can then fix the problem and either move to the
next error by again issuing a C-x' or reissue the compilation command
with ESC x compile.

Each time you issue the C-x ' command, you are placed on the next
error message in the Compilation buffer. To begin at the first error
again, use the command:

C-u C-x '

You can then cycle through the error messages again, using the stand­
ard C-x ' command.

9.30 Multiuser File-Level Locking Support

One of the problems with editing in a UNIX environment is that there
is no support for multiple users editing the same file at the same time.
Because of the nature of UNIX, this kind of logic was not built into the
file management system. This can cause problems with editors like vi
since two or more people can edit the same file at the same time and
the one who saves the file last will overwrite any changes made by the
other users editing the file.

emacs supports file-level locking such that when a user begins to edit

368 Nonnative AIX Developer Tools

9.31 Conclusion

a file, if another person is already editing this file, a warning message
will be issued notifying you that there are others editing the same file.
This can occur either when you read in the file or attempt to save the
file. Either way you are made aware of others editing the same file that
you are working on. This kind of functionality is critical to business
and is one of the most powerful and important features of emacs in a
business environment.

emacs is quite simply the most powerful and extensible editor available
today. While the commands will initially seem awkward, you will
quickly get productive and soon grow to love the emacs editor. Most
professional UNIX people, particularly those who work on multiple
platforms and architectures, use emacs for all editing tasks.

While there are other tools which may provide a better partial solu­
tion, it is difficult to find a tool which provides more power and flexibil­
ity than emacs. With its all encompassing environment, including
syntax checking, structure assistance, mail capabilities, and compila­
tion capabilities, emacs provides a unified environment for working in
UNIX. Once you enter emacs, you may not ever have to leave to accom­
plish your goals. This is the real power of emacs.

There are many emacs features which have not been discussed in
this chapter. See the on-line help or other books for more information.
See the recommended book list in App. D for more information on pos­
sible books.

Chapter

10
Nonnative Output Formatting

and Display Tools

There are many native tools in UNIX which provide basic text format­
ting and display capabilities. Most of these tools are based on output
for a teletype since this is how UNIX began. Because of this, most na­
tive UNIX text formatting tools are somewhat primitive by today's
standards.

This chapter outlines several tools which provide significantly en­
hanced function to a UNIX platform and associated text processing.
These packages also work on most UNIX and non-UNIX platforms and
provide portable input and output files. This becomes very useful when
you want to generate documents for more than one computer architec­
ture.

Other tools provide the capability to preview documents both in a
standard tty-type environment and in a windowing environment such
as Xll. This saves time and paper when building drafts of documents
which are large. Keep in mind that there are several standard text
processing tools which come with UNIX, and the tools documented in
this chapter merely enhance the overall text processing capabilities of
most UNIX machines.

A tool called Tel is discussed. Tel is a very powerful scripting develop­
ment language which adds significant power to the AIX development
environment, particularly in the area of GUI development. Check the
Internet for more information.

Other tools such as xloadimage are discussed, which will allow you to
directly manipulate various types of images such as GIF, TIFF, and
JPEG directly from within your windowing environment. Have fun.

369

370 Nonnative AIX Developer Tools

10.1 Ghostscript

10.1.1 Introduction

Ghostscript is a language that very closely resembles Postscript. It con­
tains interpreters and drivers for many machines and operating sys­
tems such as:

IBM PC and compatibles running DOS with EGA, VGA, or SVGA

Many UNIX systems running X11R3, X11R4, and X11R5

Apple Macintosh

Sun workstations running Sunview

VAX/VMS running X11R3, X11R4 or X11R5

Ghostscript provides for multiprotocol display of Postscript-like files
across heterogeneous platfoms and displays. It provides output drivers
for a variety of cards and display devices as well as Postscript-compat­
ibles devices such as printers and plotters. You can preview documents
with the Ghostscript previewer before printing to make any necessary
corrections.

The primary interface to Ghostscript is the Ghostscript interpreter,
which allows you to display, print out, or save interpreted Ghostscript
files. The Ghostscript interpreter provides several options to control
both input interpretation and output. Many Postscript files will work
with this interpreter. The advantage of Ghostscript is not only its cost
(free) but its multiplatform capability.

Ghostscript was written by GNU but is actually maintained and dis-
tributed by Aladdin Enterprises. Aladdin can be reached at:

Aladdin Enterprises
P.O. Box 60264
Palo Alto, CA 94306
(415)322-0103
... {uunet,decwrl) !aladdin!ghost
ghost@aladdin.com

Aladdin suggests that you subscribe to the Usenet newsgroup
gnu.ghostscript.bug. Because of Ghostscript's widespread distribution,
Aladdin makes no claims to support the product fully but will respond
to e-mail if they have time. Aladdin is looking for help with modifica­
tions to Ghostscript. See the README file for more information. Alad­
din also sells commercial licenses of Ghostscript and associated
products. Call or write them for more information.

See the readme.doc and NEWS files for information on up to the
minute fixes and enhancements to the product.

Ghostscript is a GNU product and as such is subject to its GNU Gen-

10.1.2 Installation

Nonnative Output Formatting and Display Tools 371

eral Public License as included both in the product distribution and in
App. C of this book.

The version of Ghostscript that was used to generate this chapter was
2.6.1. Check for the current version using information provided in
Chap. 6.

As is standard with most Internet software packages for UNIX plat­
forms, the build procedures for Ghostscript are contained in the make­
file. There is a file called make.doc which describes what needs to be
changed within the makefile for Ghostscript to build properly. There is
also a file called use.doc which describes how to use the Ghostscript
interpreter. There are other doc files which describe different aspects of
the Ghostscript distribution. They are:

README.RS6k

drivers.doc

history.doc

humor.doc

fonts.doc

language.doc

lib.doc

make.doc

man.doc

psfiles.doc

readme.doc

use.doc

Descriptions of files in Ghostscript distribution

Describes the interface between drivers and Ghostscript

Describes the history of product releases

Humorous comments on Ghostscript

Information about fonts in distribution

Description of Ghostscript language

Information about Ghostscript libraries

Describes installation and configuration issues

Manual page for Ghostscript

Information about .ps files included

Contains information regarding features

Information about how to use Ghostscript

First make a copy of the compressed tar file in a directory other than
the one in which you are building Ghostscript. This will allow you to
start over if things look like they are going in the wrong direction.

Once you have gotten the compressed tar file from the Internet, un­
wind the tar file into the appropriate directory and begin to build the
executables. Ghostscript unwinds the files into one directory known as
ghostscript2.6. l. While this is not a good practice, it does allow for easi­
est distribution since all files are in one place. You can modify the struc­
ture after you build the product. Note that if you are unfamiliar with or
unsure how to extract, uncompress, and build an appropriate directory
structure for Ghostscript, see Sec. 6.9 for more information.

Examining and modifying the makefiles. There are many makefiles in
the Ghostscript distribution. A brief listing of the ones of interest to
UNIX users are:

372 Nonnative AIX Developer Tools

be .rnak Initial makefile for MS-DOS/Borland C++ platform

bcwin. rnak Initial makefile for Wmdows 3.x/Borland C++ platform

gc . rnak Generic makefile used for all platforms

devs . rnak Makefile listing all device drivers

ansihead.rnak Initial makefile for ANSI C compilation

cc-head. mak Initial makefile for Kernighan & Ritchie C compilation

devs . mak Makefile for device drivers including printers and displays

fonts .mak Initial makefile for Ghostscript fonts

gcc-head.mak Initial makefile for GNU C compilation

gs . mak Generic Ghostscript makefile

msc .mak MS-DOS msc 7.0 makefile

vs-aix32 .mak Makefile for UNIX/ANSI C/XII configurations

tc . mak Initial makefile for Turbo C platform

unix-ansi .mak More of the makefile for ANSI C compilation

unix-cc .mak More of the makefile for K&RC compilation

unix-gcc .mak More of the makefile for GNU C compilation
A

unixhead. mak Generic part of makefile for all UNIX C compilations

unixtai 1 . mak Generic part of makefile for all UNIX C compilations

The makefiles are structured using variables. This allows you to sim­
ply change the variable at the beginning of the makefile and the rest
of makefile can remain unchanged. The areas that may need to be
changed are:

Default search paths for fonts and initialization files

Debugging options

Device drivers to be included

Optional features to be included

The defaults for UNIX machines are:

Current directory where product source code exists

No debug code included

Devices are platform specific

Features are platform specific

Each makefile contains an initial comments section followed by a sec­
tion entitled Options. The Options section is where you may want to
make edits. Do not make edits outside the Options sections without un­
derstanding exactly what you are doing.

The first step to building Ghostscript is determining which series of
makefiles you are going to use. There are three basic sets of makefiles
revolving around different C standards and compilers. K&R C is the
old standard, which was the original C syntax. Most C compilers still

Nonnative Output Formatting and Display Tools 373

support this syntax. If you have a compiler which supports only the K
& R standard, use the command:

$ln -s unix-cc.mak makefile

This creates a symbolic link called makefile. The make utility looks for
a file makefile by default. If you are using the GNU C compiler (known
as gee), you should issue the command:

$ln -s unix-gcc.mak makefile

Finally, if you can, you should use an ANSI standard C compiler. Most
compilers, including gee, support the ANSI standard. If you are using
an ANSI standard compiler but not gee, issue the command:

$ln -s unix-ansi.mak makefile

You must also be concerned with the location of the XU libraries which
are linked to create the Ghostscript executable. The default location for
these libraries is /usr/local/include. If this is not the correct location,
you must change the XINCLUDE macro on invocation of the make
command or modify the proper makefile for your compiler.

There are issues relating to the Xll server and screen refreshing
methods and tiling. This behavior should be okay. If you have problems,
consult the make.doc for more information on some possible fixes.

For specific machine notes, consult the make.doc. An example of
building Ghostscript 2.6.1 on an RS/6000 running AIX 3.2 is as follows:

$ ln -s rs-aix32.mak makefile
$ make XCFLAGS=-D_POSIX_SOURCE -DSYSV\
> XINCLUDE=-I/usr/lpp/Xll/include XLIBDIRS=-L/usr/lpp/Xll/lib

You may get a link error on the final link. Try simply typing make with
no options; the link seems to work correctly that way (your guess is as
good as mine). Note that this is different from the notes in the build.doc
file in that the path to the include and library files for Xll are differ­
ent. This is one of the most common mistakes that must be corrected
between machines. The Xll files are in different places on different
UNIX implementation, and you should use the XINCLUDE and XLIB­
DIRS macros to set the correct directory. According to the Ghostscript
documentation, people often still have trouble on the RS/6000.

You can also use gee to build Ghostscript with a command like:

$ ln -s unix-gcc.mak makefile
$ make CFLAGS= XINCLUDE=-I/usr/lpp/Xll/include
XLIBDIRS=-L/usr/lpp/Xll/lib \
GENOPT=SVR4

374 Nonnative AIX Developer Tools

10.1.3 Usage

This will build Ghostscript with gee. Note that because of the way link­
ing is done, you should make sure you have used gee to create XU li­
braries if you are going to use gee to create Ghostscript. If you have not
done this, you should use the vendor compiler as documented in the
first example. Note that the linking conventions may be different be­
tween the gee and vendor C compiler, and you may experience prob­
lems with symbol resolution. If you do, try the vendor compiler.

This is an example of how to build a software product and the kinds
of things you typically run into. Keep in mind that compiler differences
and XU library and include files are often 95 percent of the battle
when porting to a platform. Once you get by these problems, you are off
and running. There are several machine-specific comments in the gs. l
manual page. Use nroff -man to preview this and ensure that you have
any machine-specific issues understood before you begin to build
Ghostscript. See the file README.RS6k for additional information.

Tu invoke the Ghostscript interpreter, type the command:

$gs [filename ...]

Other available options are listed below. The interpreter looks for the
existence of several initialization files such as:

gs_* .ps

Fontmap

Initialization files which configure initial screens for Ghostscript, includ­
ing gs_init.ps, gs_fonts.ps, gs_statd.ps, etc.

Contains fontsmaps for all fonts used by Ghostscript

Once the interpreter has processed the files on the input command, it
waits for input from standard input, which is the keyboard. The inter­
preter will interactively interpret the commands you type in. Tu quit
the interpreter type exit.

As is the standard for most UNIX applications, to get help, invoke
the interpreter with a -h or-?. For example:

$ gs -h
$ gs -?

When you invoke Ghostscript, it opens a window on your display by
default using the XU protocol. Of course, you must be running an XU
windows-compliant window manager and GUI. This means that you
can distribute the display of the Ghostscript files across the network to
any machine that supports the XU protocol. In addition to the display
window, the original invoking window becomes the Ghostscript control
window. You are asked to press a return to continue. If you press the

Nonnative Output Formatting and Display Tools 375

return, the display window is cleared and you are placed at the Ghost­
script (GS>) prompt. From this prompt you can enter interactive com­
mands that conform to the Ghostscript language for immediate
interpretation on the display device.

For example, type:

$ gs tiger.ps

Another window will open on your screen with a color picture of a ti­
ger's head (see Fig. 10.1). Once the picture is drawn, Ghostscript
pauses and waits for you to do something. Typing a return will clear
the display window and place you at the interactive prompt. For more

Figure 10.1 The Ghostscript display.

376 Nonnative AIX Developer Tools

information on some of the commands you can type, see the section be­
low on the Ghostscript language.

You input the filename, and Ghostscript searches the current direc­
tory, then any specified by the -I switch, any specified by the GS_LIB
environmental variable, and, finally, directories specified by the
GS_LIB_DEFAULT macro in the Ghostscript makefile.

There are several parameters which can be set in your .Xdefaults
file. They are:

borderWidth

borderColor

geometry

xResolution

yResolution

Border width in pixels (default 1)

Border color (default black)

Window size and placement (format WxH+X+Y, where Wis width in
pixels, His height in pixels, Xis numbers of pixels from left hand side
of screen and Y is number of pixels from top of screen)

Number ofx pixels per inch
Number ofy pixels per inch

You can place these in your .Xdefaults file in the format:

Ghostscript*geometry: 1280x1024+0+0

This will make the display window cover your entire display if you
have a screen capable of displaying 1280 x 1024 resolution. It probably
makes sense to use something a little bit smaller but feel free to ex­
periment. Note also that it is not necessary to use the xrdb command
to load these characteristics into the Xll server as documented. This
makes these characteristics available to all users of the Xll server.
This may or may not be what you want to do.

There are several other switches available to Ghostscript; however,
the only one that is useful to the general user is:

-dNOPAUSE

which disables the prompt and pauses at the end of each page. This
allows other applications to use Ghostscript to drive their output. This
means that you no longer have to press return to clear the display win­
dow and end the display of a page. See the use.doc for more informa­
tion.

Devices. You can choose multiple devices for output from the Ghost­
script interpreter. The default for the UNIX environment is the Xll
display. There is a switch on the command line which allows you to
select the output device on invocation of Ghostscript:

-sDEVICE=devicename

Nonnative Output Formatting and Display Tools 377

where devicename is:

sonyfb (monochrome Sony display)

sunview (Sunview window system)

Xll (Xl1R3 or greater)

Any of a variety of printers (see the devs.mak for more information)
and a variety of graphical ouput formats such as GIF, PCX, and bit­
map formats

An alternative is to set the environmental variable GS_DEVICE to the
device you would like to use. Ghostscript will look for this variable on
invocation and use this as the default output device. As a result of the
build, device files are built with an extension of .dev. If you examine all
* .dev files in your Ghostscript directory, you will see which devices are
supported on your system. This is determined in part by which make­
file you choose for your make procedure. Look for the existence of the
* .dev files in your Ghostscript directory. To see what devices names are
availble for your configuration, type:

GS> devicenames ==

Additional drivers can be inserted and built for specific devices you
own.

Manual pages. There are two manual pages distributed with the prod­
uct: man.doc and manl.doc. The man.doc file contains a very basic man
page which can be used to describe syntax, etc. The manl.doc file is a
much more complete man page and should be used for the manual page
for users of the system. The man page is in nroff an macro format. This
means that to view the man page, you should use the command:

$ nroff -man manl.doc I more

Note that the nroff command interprets the manl.doc file and uses the
an macro for assistance. The pipe to more lets you see it exactly as it
would appear through the man system. If you have questions concern­
ing the structure of the man system or how best to use the man pages
from Internet software, see Sec. 6.6.

A brief discussion of the Ghostscript language. Ghostscript supports Post­
script Level 1 and many of the Display Postscript extensions. It also
supports many of the Level 2 operators. It is an interpreter for a lan­
guage specification that is described in the Postscript Language Refer­
ence Manual (Addison-Wesley, 1985).

378 Nonnative AIX Developer Tools

10.1.4 Conclusion

10.2 Ghostview

Some of the very basic commands allow for file manipulation such as:

GS> (filename) run Where filename is a Postscript file

GS> devicenames == Reports what devices are supported

GS> (devicename) selectdevice Where devicename is from list above

The Postscript language itself is a very sophisticated language which
contains commands to perform almost any task you could expect from a
graphics language. See the standard Postscript documentation above
for more information about commands available at the GS> prompt.
Also see language.doc for more information.

The Ghostscript interpreter is a very powerful graphics display and in­
terpretation tool that runs on many platforms and is available free of
charge from a variety of sources. Full Postscript support and interpre­
tive capabilities make Ghostscript a very powerful tool for viewing
documents and graphics before committing them to paper.

10.2.1 Introduction

10.2.2 Installation

Ghostview is a full-function user interface for Ghostscript. While
Ghostscript provides the ability to preview Postscript files by interpret­
ing the Postscript input files, Ghostview provides an interactive inter­
face which allows you to manipulate the Ghostscript and provides a
much more interactive and user-friendly interface. In summary,
Ghostview creates and manages the Xll interface for Ghostscript.

Ghostview is a GNU product and as such is subject to its GNU Gen­
eral Public License as included both in the product distribution and in
App. C of this book.

There is an !makefile distributed with Ghostview, and you can use this
to generate the appropriate makefile for your particular platform. See
Sec. 7 .1 7 for more details on imake. You may have to modify the
IRULESSRC macro in the !makefile or the makefile if you use imake.
This will point imake to the proper template directories.

If you don't have imake installed, you can edit the makefile manu­
ally. The areas you may have to modify are primarily the directories
which point to the Xll subdirectories. For example, on an RS/6000 if

10.2.3 Usage

Nonnative Output Formatting and Display Tools 379

the xmkmf command does not create the correct makefile, you want to
define:

LIBSRC=/usr/lpp/Xll/lib
LIBDIR=/usr/lpp/Xll/lib

You can use the xmkmffor the Sun, but this doesn't typically ship with
xmkmf for AIX. Simply find the DEFINES definition and add:

DEFINES = -DSYSV ...

This ensures that the system is built as a System V system, which most
closely emulates the RS/6000.

There is also a file named Makefile.rs6k which is delivered. You can
make this your makefile and Ghostview should build correctly.

As with many of the delivered makefiles, the defaults are structured
according to the standard SVR4 Xll structure, which is /usr/Xll/lib
and in actuality, exists on very few machines. Keep this in mind when
you examine the makefile.

Or, if you recreate the appropriate makefile with imake, you can sim­
ply issue the command:

$ make

This will build the software system. If you have errors, examine them
and make the appropriate modifications to the makefile and reissue
the make command. Finally, to install the resulting files, issue the com­
mand:

$ make install

Ghostview provides much the same usage interface as does Ghost­
script. The basic syntax is:

ghostview [--[no]install] [-[no]private] [-[no]center] [-[no]title]
[-[no]date] [-[no]locator] [-resolution dpi] [-dpi dpi] [-xdpi dpi]
[-ydpi dpi] [-[no]quiet] [-preload file] [-magstep n] [-portrait]
[-landscape] [-upsidedown] [-seascape] [-letter] [-tabloid]
[-ledger] [-legal] [-statement] [-executive] [-a3] [-a4] [-a5] [-b4]
[-b5] [-folio] [-quarto] [-10x14] [-force] [-forceorientation]
[-forcemedia] [-[no]swap] [-[no]openwindows] [-[no]ncdwrn]
[-page lable] [file]

where -install installs standard color map.
-private installs nonstandard color map.
-center centers the page in the viewport (default).

380 Nonnative AIX Developer Tools

-title displays the %%title comment (default).
-date displays the %%data comment (default).
-locator displays locator (default).
-resolution dpi sets display resolution at dpi dots per inch.
-dpi dpi is the same as -resolution.
-xdpi dpi, -ydpi dpi sets x and y resolution at dpi dots per inch.
-quiet doesn't produce informational messages (default).
-preload file preloads file which may include fonts, etc.
-magstep n defines document magnification. The formula used

to display the document on the screen is (1.2*magstep)
and values range from -5 to 5.

-portrait displays in portrait mode.
-landscape displays in landscape mode.
-upsidedown displays upside down.
-seascape displays in seascape mode (this is counterclockwise 90

degree rotation).
-letter displays page in 8.5 x 11 in.
-tabloid displays page in 11 x 17 in.
-ledger displays page in 17 x 11 in.
-legal displays page in 8.5 x 14 in.
-statement displays page in 5.5 x 8.5 in.
-executive displays page in 7.5 x 10 in.
-a3, -a4, -a5 displays page in 842 x 1190, 595 x 842, and 420 x

595 Postscript points, respectively.
-b4, -b5 displays page in 729 x 1032 and 516 x 729 Postscripts

points, respectively.
-folio displays page in 8.5 x 13 in.
-quarto displays page in 610 x 780 Postscript points.
-10 x 14 displays page in 10 x 14 in.
-force tells Ghostview that orientation or media is being forced

and may not be the default.
-forceorientation tells Ghostview that orientation is being forced.
-forcemedia tells Ghostview that media is being forced.
-swap swaps the meaning oflandscape and seascape and use

the %%Orientation comment in the input source file.
-no openwindows turns off bitmaps usage.
-no ncdwm ignores bug in window resizing when running the

ncdwm.
-page label labels the displayed page with label.
file is input file to be processed.

Most of the options discussed above are the defaults. Note that most
options contain opposites which can be enabled by either including or
excluding the no prefix to the option. Most of the options above will

(362, 385)

~
~
(Magstep)

(Orientation)

~

Nonnative Output Formatting and Display Tools 381

never be used, but they will be useful if you want to change the default
behavior of your Ghostview or Xll environment.

Ghostview fully supports the Adobe Document Structuring Conven­
tions which control things like page size and orientation. The basic
window is shown in Fig. 10.2. There are five buttons in the window:
File, Page, Magstep, Orientation, and Media. Each is a pull-down but­
ton which provide specific function related to a major operational area
of Ghostview. The File button provides all file-level interaction with
Ghostview. The Page button gives you the ability to move around
within the pages of a Postscript document. The Magstep button allows
you to magnify the document to allow for easier viewing or high resolu-

Figure 10.2 The Ghostview screen.

382 Nonnative AIX Developer Tools

10.2.4 Conclusion

10.3 groff

tion of the document. The Orientation button allows you to change the
display of the document from landscape to portrait, to flip the docu­
ment, and to have other orientations of the page. Finally, the Media
button provides a list of possible mediums for display including Letter,
Tabloid, Ledger, Legal, and others. There are also keystrokes called
Keyboard accelerators which provide faster access to commands than
the mouse. Once you have used Ghostview a few times, you will want
to use these to speed your interaction with the product. See the
ghostview.ps file for more information on these options and their ex­
plicit meanings and operations. There is a section on FAQs in the
README file. See this if you experience any problems or have ques­
tions about a certain behavior.

Because Ghostview is an interactive interface to Ghostscript, there
are several ways you can control the integration of the two tools. By
setting the environmental variable GHOSTVIEW to the Xll window id
of the window you want Ghostscript to use, you cause Ghostscript to
draw on an existing window instead of creating its own separate win­
dow. This is useful when you want to concentrate all graphics in one
window and use the attributes such as size and orientation of the cur­
rent window to display the graphic you are looking at.

Ghostview is a very user-friendly inteface to Ghostscript. While Ghost­
script has a variety of cryptic commands with which you display and
manipulate commands, Ghostview provides a single command inter­
face which displays documents using the capabilities of Ghostscript.
Based on experience, Ghostview is the primary interface you will want
to use for displaying and manipulating information on your display.

10.3.1 Introduction

groff is the GNU equivalent of troff and nroff. It provides support for
much of the command set contained in the nroff and troff languages as
well as for all devices supported by these tools. groff also provides sup­
port for additional devices including Xll previewers and Postscript
output devices. In addition, groff provides portability across multiple
platforms, including many varieties of UNIX as well as VMS and other
operating systems. This implementation of groff also contains GNU
versions of troff, pie, eqen, tbl, refer, and a variety of macros, including
an and mm. See the README file for more details on the groff distri­
bution itself.

10.3.2 Usage

Nonnative Output Formatting and Display Tools 383

The basic syntax of the groff command is:

groff [-tpeszaivhblCENRVXZ] [-wname] [-Wname] [-rnname] [-Fdir]
[-Tdev] [-ffam] [-Mdir] [-des] [-res] [nnum] [-olist] [-Parg]
[file ...]

where -t preprocesses with gtbl.
-p preprocesses with gpic.
-e preprocesses with geqn.
-s preprocesses with gsoelim.
-z supresses output from groff.
-a-see gtroff below.
-i-see gtroffbelow.
-v displays version number.
-h displays help.
-b-see gtroffbelow.
-1 sends output to the printer.
-C-see gtroff below.
-E-see gtroff below.
-N doesn't allow newline with eqn commands.
-R preprocesses with grefer.
-V prints pipeline on standard output.
-X previews with gxditview.
-Z doesn't postprocess output.
-wname, -Wname, -mname, -Fdir-see gtroffbelow.
-Tdev processes output for device dev.
-ffam, -Mdir, -des, -res, -nnum, -olist-see gtroffbelow.
-Parg passes arg to the postprocessor.
file ... is file or files to process.

Many of the options for groff are the same as those for nroff and troff.
Available devices consist of Postscript devices, dvi format for TeX proc­
essors, X75 for 75 dpi Xll previewer, and XlOO for XlOO dpi Xll pre­
viewer. To get more information on all available devices, see the
directories named devname where name is the name of the device
class.

The commands are the same as those used by nroff and troff, and, as
such, you should see the man pages for nroff and troff.

groff also contains an nroff implementation. The basic syntax is:

gnroff [-hi] [-rnname] [--nnum] [-olist] [-ren] [-Tname] [file ...]

where all options are describe in the gtroff doc section below.

384 Nonnative AIX Developer Tools

gtroff is the fundamental package contained and used by most other
tools in the groff distribution. The basic syntax of gtroff is:

gtroff [-abivzCER] [-wname] [-Wname] [-des] [-ffam] [-mname] [-nnum]
[-olist] [-rcn] [-Tname] [-Fdir] [-Mdir] [file ...]

where -a generates ASCII output.
-b displays a trace with each error message.
-i reads standard input after all input files are processed.
-v displays version.
-z supresses formatted output.
-C enables troff compatibility mode.
-E suppresses error messages.
-R doesn't load troffrc.
-wname enables warning name.
-Wname disables warning name.
-des defines c as a string s.
-ffam uses fam as the default font family.
-mname reads in the file tmac.name.
-nnum numbers the first page num.
-olist outputs comma-separated pages in list.
-rcn sets number register c ton.
-Tname outputs device format.
-Fdir searches dir for directories containing devname where

name is the device name.
-Mdir searches dir for macro files.
file ... is one or more files to process.

gtroff works very similarly to troff and has support for more and newer
devices such as Xll previewers and high-resolution Postscript print­
ers.

gtroff does have some features in addition to those in troff. Support
for fractional point sizes, numeric expressions including boolean logic
operators such as < and >, and new escape sequences such as \A'any­
thing', which becomes 0 or 1 depending on the properness of the value
of anyting. There are other escape sequences which support new gtroff
funtionality. gtroff also supports a variety of different commands which
manipulate fonts, number registers, provide conditional expressions,
and do many other things. See the file troff/troff.man for more details.
Remember, to view this file before you have built gtroff, use a command
like:

$ nroff -man troff/troff.man I more

This will display the output just as the man command would.

10.3.3 Installation

Nonnative Output Formatting and Display Tools 385

Another powerful command included in the groff distribution is the
grog. The basic syntax is:

grog [-options J [file ... J

where -options are gtroff options which will be inserted to the results
of the grog command.

file ... is one or more files to process.

The grog command stands for groff guess. If you run this command
on a groff input file, grog will guess which macros need to be used to
print the file or files and will insert them into the groff commmand op­
tion automatically. This is very useful when you are not sure what mac­
ros are used in a file and simply want grog to tell you and execute the
appropriate command.

There are also subdirectories which contain commands such as refer,
which builds a bibliography for groff; eqn, which builds equations; tbl,
which builds tables; grotty, which generates standard tty output; and
grops, which generates Postscript output. The best way to see what
commands are available is to examine the subdirectory structure
within the groff directory with a command like:

$ ls -1 I grep Ad I more

This will display and page a listing of the directories within the current
working directory.

The other useful way to see the commands in the current groff distri­
bution is to use a command like:

$ find . -name "*.man" -print

This will generate a listing of all man pages in the current directory
structure.

There are a variety of macros and environmental variables which
determine the execution charactersistics of groff. By settings variables
such as GROFF _TMAC_PATH, GROFF _PATH_DIR, and FONTDIR,
you can change the way gtroff works. See the associated man pages for
each tool to understand which environmental variables you can change
to change gtroff output and behavior.

The first requirement for the installation of groff is a C++ compiler.
This will probably mean the g++ compiler, which is documented in Sec.
7.2. Besides g++, you will need the libg++ libraries to provide all class

386 Nonnative AIX Developer Tools

header information so that the compilations and links will proceed nor­
mally. g++ 2.5 and later contain all the necessary header files to build
grott and therefore it is not necessary to install libg++. See Sec. 7.2 for
more details on installing the g++ compiler if you need it.

Once you have installed the C++ files and compiler, you can run the
standard configure install, which will build the appropriate makefiles,
which can then be executed. The basic format is:

$./configure --prefix=/usr/local
$ make clean
$ make
$ make install

If you have problems with the make, examine the beginnings of the
makefile for the macro definitions which may be incorrect. There are a
variety of makefiles spread throughout various subdirectories. You may
want to investigate gmake as an alternative to make to support the
VPATH variable and various path distributions. The configure will at­
tempt to see that you have the correct files and headers for your C++
compiler before creating the makefile. If you have trouble with the con­
figure, make sure you have installed and made available all compiler
and header/include files for g++ (gee) before invoking configure.

There is a simple command to test the build of groff:

$ test-groff -man -Tascii groff/groff.n I more

This will display reasonable looking output on the display. If it doesn't,
something hasn't built correctly. See the makefiles for more details. If
you have other problems, see the file named PROBLEMS for potential
known problems and solutions.

Be sure to set all appropriate environmental variables such as
FONTDIR when you build the product. See the PROBLEMS sections
for more details if you have problems. Once the product is built, you
shouldn't have any problems; however, if you do, it is probably a misde­
fined environmental variable. See the INSTALL and PROBLEMS files
for more details.

Remember also that there are makefiles in each subdirectory which
describe the dependencies for that particular tool.

Finally, there is tool included called gxditview. This is an Xll pre­
viewer based on xditview. To build this product, you must cd to the
xditview subdirectory and issue the make command. There is an IN­
STALL file which describes this process in more detail in the xditview
subdirectory. As with most Xll-related tools, there is an associated
!makefile which may need to be tweeked and remade with the xmkmf
command. Once you have done this, rebuild the product with the make

10.3.4 Conclusion

Nonnative Output Formatting and Display Tools 387

command. This will generate the appropriate gxditview executable. If
you continue to have problems, check the FONTDIR, XINITDIR, and
XDMDIR macro definitions to ensure that these point to the correct
directories. Often these files do not exist in the standard /usr/ ... /Xll
directory. This is key to generating a correct build and is classic
"gotcha" when building Xll-related tools.

groff is a very powerful environment which consists of nroff and troff
functionality as well as the associated tools eqn, restor, tbl, and others.
See the files in doc and man for more details on these commands. groff
also comes with a groff Xll previewer called gxditview, which can be
built separately to provide bitmapped graphical capabilities.

groff is clearly one of the most powerful environments available on
the Internet and should be investigated if you are doing any work with
text processing and output formatting.

10.4 pbmplus

10.4.1 Introduction

10.4.2 Usage

plmplus is a tool kit which consists of a variety of filters and conversion
programs to take one file format and generate another. There are also
some tools to manipulate various portable file formats.

The distribution is broken down into functional units consisting of:

1. PBM-bitmap manipulation

2. PPM-full-color image manipulation

3. PNM-content-independent manipulations

All units are backward compatible, which means that PNM supports
both PPM and PBM, and PPM supports PBM. Which units you install
is determined when you install the product. See Sec. 10.5.3 for more
details.

pbmplus is a free product and as such is subject to its own copyright
and license as included both in the product distribution and in App. C
of this book.

The basic usage of the pbmplus package is driven by individual com­
mands contained within the package. The basic mode of operation for
pbmplus is to take a given input format and generate a standardized

388 Nonnative AIX Developer Tools

generic output format. From this format you can generate any other
given format with a different tool. pbmplus has four generic (or inter­
mediate) formats:

1. pbm (bitmap)

2. pgm (grayscale)

3. ppm (pixmap)

4. pnm (any format map)

where the bitmap format represents a pixel with a bit, while the
grayscale has additional information to preserve shading and, finally,
the pixmap format preserves color information about each pixel. The
pnm format supports all three previous formats as well as a variety of
others. Each of these generic formats has a set of associated tools
which manipulate these formats and generate the desired output
format.

There are manual pages for each of the commands which convert
from one format to another. All man pages end with a .1 and exist in
the pnm, pbm, pgm, and ppm subdirectories. Because of the large num­
ber of man pages and the small number of options to these commands,
they are not documented here. The basic format of all commands is:

$ command file

where command is the conversion or filter program and file is the file to
be converted.

There are really two basic kinds of utilities included in pbmplus. The
first kind contains conversion and filter programs which take one kind
of information and convert it to another. The second kind of utility pro­
grams manipulates pnm format files. These programs are typically
used once you have converted a file into pnm format to do things like
crop the picture size, enhance a bitmap, and rotate and scale a bitmap.
Keep in mind that these operate on the pnm format files which have
already been converted to pnm format. Both types of utilities are de­
scribed in separate tables below.

The following table outlines the conversion and filter commands and
their basic functionality.

Format To From

Abekas YUV bytes tuvtoppm ppmtoyuv
Andrew Toolkit raster object atktopbm pbmtoatk
ASCII files pbmtoascii
Atari degas .pil piltoppm ppmtopil
Atari degas .pi3 pi3topbm pbmtopi3

Nonnative Output Formatting and Display Tools 389

Format 'lb From

Atari compressed spectrum file spctoppm,
Atari uncompressed spectrum file sputoppm,
Bennet Yee face file ybmtopbm pbmtoybm
bitgraph graphics pbmtobg
CMU window mgr bitmap cmuwmtopbm pbmtocmuwm
DEC sixel ppmtosixel
Doodle brush brushtopbm,
Epson printer pbmtoepson
FITS fitstopgm pgmtofits
GEM .img file gemtopbm pbmtogem
GIF giftoppm ppmtogif
Gemini lOX printer graphics pbmtolOx
Gould scanner file gouldtoppm,
GraphOn compressed graphics pbmtogo
Group 3 fax g3topbm pbmtog3
HIPS hipstopgm,
HP Laserjet pbmtolj
HPPaintjet pjtoppm ppmtopj
IFFILBM ilbmtoppm ppmtoilbm
!mg-whatnot imgtoppm,
LISP Machine bitmap lispmtopgm pgmtolispm
MGR bitmap mgrtopbm pbmtomgr
MacPaint macptopbm pbmtomacp
PICT picttoppm ppmtopict
Motif UIL icon file ppmtouil
MTV or PRT ray tracer output mtvtoppm,
NCSA ICR format ppmtoicr
PCX pcxtoppm ppmtopcx
Portable bitmap pgmtopbm
Portable graymap ppmtopgm
Postscript image data psidtopgm,
Postscript data pnmtops
Printronix printer graphics pbmtoptx
QRT ray tracer output qrttoppm,
RawRGB rawtoppm,
Raw grayscale rawtopgm,
Sun icon icontopbm pbmtoicon
Sun rasterfile rasttopnm pnmtorast
Text pbmtext,
Three portable graymaps rbg3toppm ppmtorgb3
TIFF tiffiopnm pnmtotiff
TrueVision targa file tgatoppm ppmtotga
UNIX plot file pbmtoplot
Unknown anytopnm
Usenix FaceSaver fstopgm pgmtofs
XlO bitmap xbmtopbm pbmtoxlObm
Xll window dump xwdtopnm,
Xll puzzle file ppmtopuzz
Xll bitmap xbmtopbm pbmtoxbm
Xll pixmap xpmtoppm ppmtoxpm
Xll window dump xwdtopnm pnmtoxwd
Xim file ximtoppm,
Zinc bitmap pbmtozinc

390 Nonnative AIX Developer Tools

There are also utilities included with the pbmplus release which oper­
ate on these generic bitmap-type files, as listed in the table below. With
these utilities you can enhance, resize, reshape, and reformat the ge­
neric bitmap files. It should be noted that many of the techniques used
in these utilities are taken from Beyond Photography by Holzmann and
Digital Image Processing by Gonzalez and Wintz. See the individual
man pages for more information on the algorithm and its origin.

Utility

pbmlife
pbmmake
pbmmask
pbmreduce
pbmupc
pgmbentley
pgmedge
pgmenhance
pgmhist
pgmnorm
pgmoil
pgmramp
pnmarith
pnmcat
pnmconvol
pnmcrop
pnmcut
pnmdepth
pnmenlarge
pnmfile
pnmflip
pnmgamma
pnmindex
pnminvert
pnmmargin
pnmnoraw
pnmpaste
pnmrotate
pnmscale
pnmshear
pnmsmooth
pnmtile
ppmdither
ppmhist
ppmmake
ppm pat
ppmquant
ppmquantall
ppmrelief
sxpm

Function

Applies Conway's Rules of Life to portable bitmap
Creates a blank bitmap
Creates a mask bitmap
Reduces portable bitmap n times
Creates a universal product code bitmap
Utilizes the Bentley effect to smear the bitmap
Edge detects the graymap
Edge enhances a portable graymap
Creates a histogram of the graymap
Normalizes the contrast of the graymap
Creates an oil painting (smearing technique)
Creates a grayscale ramp (useful with other bitmaps)
Performs arithmetic on two anymaps
Concatenates anymaps
Generates MxN convolution on anymaps
Crops an anymap
Cuts a rectangle out of an anymap
Changes pixel depth on an anymap
Enlarges an anymap
Describes an anymap
Flips an anymap in any direction
Performs gamma correction on an anymap
Builds an index of several anymaps
Inverts an anymap
Adds a border to an anymap
Converts anymap to plain format
Pastes a rectangle into an anymap
Rotates an anymap by a given angle
Scales an anymap
Shears an anymap by a given angle
Smooths out an anymap
Duplicates an anymap in a specified size
Dithers a color image
Builds a histogram of a pixmap
Creates a pixmap of a specified size and color
Creates a "pretty" pixmap
Quantizes colors down to some chosen number
Operates on multiple files so they can share a colormap
Runs a laplacian relief filter on a pixmap
Shows and/or converts XPM2 files to XMP3 files

Assume you have a G3 fax file named kevin.g3 and you want to cre­
ate a Postscript file of it. You would issue the commands:

10.4.3 Installation

Nonnative Output Formatting and Display Tools 391

$ tifftopnm kevin.g3 > kevin.pnm
$ pnmtops kevin.pnm > kevin.ps

Note that most, if not all, of the commands generate their output to
standard output. You can redirect standard output as you normally
would to create the new file.

With respect to the utility programs, they are typically more complex
in their syntax and require a brief glance at the man page associated
with the command. For example, to use the pnmenlarge command, you
might use something like:

$ pnmenlarge 2 kevin.pnm > newkevin.pnm

This will effectively double the size of the kevin. pnm bitmap file. You
can then create your Postscript file as before with the command:

$ pnmtops newkevin.pnm > kevin.ps

This generates the Postscript file with an image twice as large.
Other utility commands use different syntax. See the man pages for

more information. As mentioned in the earlier sections, you can view a
man page with the command:

$ nroff -man pnmtops.l I more

This is exactly what the man command does, so have at it.
As you can see from the tables above, there are many commands

from which to choose and , therefore, many file formats are supported.

The installation of pbmplus consists of a variety of makefiles, each ex­
isting in a directory that contains source files. The main directories are
pbm, pgm, ppm, and pnm. These contains all the utilities and filters
related to the corresponding type of input file format.

Within each makefile, there is a section marked CONFIGURE.
These are the sections you must modify to ensure that the build pro­
ceeds correctly. For example, ld and cc command options are described,
each in their own CONFIGURE section. You can also define which di­
rectories will contain the output files and which tools (such as gee) are
used to configure and build the pbmplus system.

The first step in building pbmplus is building the included tiff librar­
ies. Use the following series of commands to build libtiff:

$ cd libtiff
$ make clean
$ make -f makefile.aix

392 Nonnative AIX Developer Tools

10.4.4 Conclusion

This will create all necessary files in the libtiff directory. Note that sev­
eral makefiles for different platforms are included in this directory.
Choose the AIX makefile for the RS/6000. Note that your compiler may
or may not support newer C functions such as prototypes, and you may
have to change variables such as -DPROTOTYPE=l to -DPROTO­
TYPE=O to disable prototyping capabilities. The other macros you may
be interested in are USE_ VARARGS and BSDTYPES. See the associ­
ated makefile for the correct definition of these macros for your particu­
lar platform.

There are a variety of macros which you can add to the definitions
within the makefile. These are documented both in the README file
in the libtiff subdirectory and in the makefile in the libtiff subdirectory
itself. Note that these affect whether tags for JPEG and other algo­
rithms are compiled into the system. Choose the default as the first
step to simplify the build process. There is nothing to stop you from
going back later and rebuilding the pbmplus distribution with different
build flags.

Once you have built the libtiff subdirectory, you are ready to build
the rest of the software in the pbmplus distribution. Modify each rele­
vant CONFIGURE section in the makefile in the main pbmplus direc­
tory. Once this is finished, type the command:

$ make

This will generate the appropriate executable files which match those
described in the two tables above. Note that if you are using gmake,
you may have to modify each makefile in each of the pxm subdirecto­
ries (where x can by b, g, p, or n). See each makefile for more details. It
is recommended that you use non-GNU make to build this tools since it
introduces less complexity to the situation than gmake in this case.

If you have any trouble, you may need to run xmakefile to build a
new makefile. Once you have done this, proceed as described above.

pbmplus is a very powerful tool kit which provides conversion and util­
ity programs for many of the bitmap file formats available today. By
using the tools in pbmplus, there is virtually no file format that you
cannot support in full graphical form. By using the ability to convert
from one format to many others, you can suddently share information
from a variety of mediums transparently. This is clearly a very power­
ful UNIX tool kit.

Nonnative Output Formatting and Display Tools 393

10.5 gnu plot

10.5.1 Introduction

10.5.2 Usage

gnuplot is a command-driven plotting package which contains a vari­
ety of functions and commands to generate plots on a large number of
devices. You can automatically generate labels, define constants and
functions, and manipulate plots from an interactive interface. gnuplot
is one of the most powerful plotting packages available for UNIX today.

gnuplot is a GNU product and as such is subject to its GNU General
Public License as included both in the product distribution and in
App. C of this book. It does have a slightly different copyright notice
than the usual GNU Copyright, and therefore it has its own notice in
App.C.

The basic syntax of the gnuplot command is:

gnuplot [Xll options] [-mono] [-gray] [-clear] [file ...]

where Xll options consist of many of the standard options you would
expect to use with an Xll application such as border
size, image size, color maps, and aspect ratios.

-mono uses monochrome rendering.
-gray uses grayscale rendering.
-clear clears the device between plots.
file ... is one or more files to plot.

gnuplot supports two basic types of plotting terminals, Xll and xll,
where the Xll device supports a different points plotting style than
xll.

You can see the man page on X for more details on standard Xll op­
tions. Most of these can be applied to the gnu plot utility.

gnuplot has its own interactive language which is case sensitive and
emulates the UNIX command syntax. You can use the \ to move be­
yond one line and the ; to separate multiple commands on a single line.

The basic types of output devices supported by gnuplot are:

AED AED 512 and AED 767

AIFM Adobe Illustrator Format

AMIGASCREEN Amiga custom screen

APOLLO Apollo graphics

ATT63 0 0 AT&T 6300 graphics

BITGRAPH BEN bitgraph

CGI SCO CGI

CORONA Corona graphics

394 Nonnative AIX Developer Tools

DXYSOOA

DUMB

DXF

EEPIC

EGALIB

EMT EX

EPS60

EPSONP

FIG

GPR

HERCULES

HP2648

HP26

HP75

HPGL

HPLJII

HPLJII

IMAGEN

IRIS4D

KERMIT

LATEX

LN03P

NEC

PBM

POSTSCRIPT

PRESCRIBE

QMS

REGIS

SELANAR

STARC

SUN

T410X

TANDY60

TEK

UNIXPC

UNIX PLOT

V384

VTTEK

Xll

Roland DXY800A plotter

Dumb terminal

AutoCad dxf file format

EEPIC LaTeX driver

EGNVGA PC graphics

LETeX with emTeX specials

Epson 60dpi printers

Epson LX-800, Star NL-10, NX-1000, etc.

Fig graphics lnguage

Apollo graphics

Hercules graphics board

HP2648, HP264 7

HP2623A

HP7580

HP7475 and other GL printers

Laserjet II

Laserjet III

Imagen laser printers

Iris computer

Kermit Textronix 4010 emulator

LaTeX picture environment

DEC LN03P printer

NEC CP6 printer

PBMPLUS pbm, pgm, ppm, and pnm

Postscript

Kyocera printer

QMS/QUIC printer

DEC ReGis graphics

Selanar

Star color printer

Sun workstation

Textronix 4106, 4107, 4109, and 420x terminals

Tandy DMP-130 series printers

Tektronix 4010

AT&T Unix PC

Unixplot

Vectrix 384 color printers

VT-like Tektronix 4010 emulator

X11R4 window system

If you examine the README file, you will see that there are a vari­
ety of commands, probably the most important being the help com­
mand. From within gnuplot, you can issue the help command to see a
listing of all commands available. Rather than duplicate all informa­
tion given in the interactive help section, below is a table of commands
and their basic function.

autoscale

bugs

cd

clear

comments

environment

exit

expressions

help

line-editing

load

pause

plot

print

pwd

quit

rep lot

save

set

shell

show

splot

startup

substitution

userdefined

Nonnative Output Formatting and Display Tools 395

Automatically scales axis to incorporate all data.

Displays a list of current bugs.

Changes the current working directory.

Clears the current screen.

Describes comment support.

Describes a number of environmental variables which can be set.

Leaves gnuplot.

Describes expression support.

Describes this help facility.

Describes basic line-editing capabilities.

Inputs a file for processing.

Causes a pause of a specified time or until the return is pressed.

Displays the plot.

Prints expressions to the screen.

Prints working directory.

Exits gnuplot.

Redraws the current plot.

Saves user-defined functions or variables to a file.

Sets a variety of options which are described in this help.

Forks and execs to a shell.

Shows the values of set commands.

Plots 3-D information.

Defines the start-up file (.gnuplot).

You can use command line substitution within gnuplot with".

You can define your own functions and variables within gnuplot.

See the individual help sections for more information on each com­
mand. The basic things you need to understand to use gnuplot effec­
tively are plot and expressions.

Expressions consist of functions which are supported by C, BASIC,
Fortran, and other third-generation languages. This means that you
can use C- or Fortran- or BASIC-like syntax to define a function to plot
on the display or print to a printer. An example of a very simple expres­
sion to display to the screen is the command:

gnuplot> plot cos(x)

Note, however, that if you do this without either setting the TERM en­
vironmental variable or using the set term command, you will get an
error message. The best way to do this is something like this.

gnuplot> set term dumb
gnuplot> plot cos(x)

This will display a cosine curve on a dumb device such as a vtlOO or
other ASCII device. The output will look something like that shown in
Fig. 10.3.

396 Nonnative AIX Developer Tools

Figure 10.3 gnuplot dumb terminal.

If the output device were a Postscript device, you could use:

gnuplot> set term postscript
gnuplot> plot cos(x)

and you would get Postscript output. To see the current value of term,
use the command:

gnuplot> show term
terminal type is dumb

If you set your term to be Xll, you will get a much better looking graph.
It may look something like that shown in Fig. 10.4.

You can define your own functions (see the plot command for more
information) for any function you can dream up. For example, you can
graph something like:

gnuplot> plot x+S*sin(x)

which looks like an ascending sinusoidal function.
Finally, you can set a range for the plot by prefacing the expression

with a range. For example, the command:

gnuplot> plot [1:5] x+S

Nonnative Output Formatting and Display Tools 397

0.2

-0.2

-0.4

-0.6

-0.8

/
-1

-10 -5 10

Figure 10.4 gnuplot with Xll window.

will display a straight line from 1 to 5 in the x direction and 6 to 10 in
the y direction exactly as you would with a piece of graph paper. This is
a simple example of range. This can be applied to any type of function.

Experiment with your own functions. There is no function you can­
not display.

The other command of interest is lasergnu. This command executes
the gnuplot command to produce output for an IMAGEN or Postscript
printer. The basic syntax is:

lasergnu [-bl [-pl [-P printer] [-f file] [-t title] [-help]
plot-command ...

where -b doesn't print a banner page.
-p generates Postscript output.
-P printer spools output to printer automatically.
-f file takes plot-commands from file as input to lasergnu.
-t title gives the plot a title.
-help displays a list of options.
plot-command ... is one or more plot commands.

A simple example is:

$ lasergnu -p "plot [1:5] x"

398 Nonnative AIX Developer Tools

10.5.3 Installation

This will generate Postscript output displaying a straight line from 1 to
5 and will print to the local default printer.

The gnuplot follows the standard configure methodology. To create the
appropriate makefiles, issue the command:

$ configure --prefix=/usr/local

You may want to examine the first few sections and make any changes
you deem necessary. The only macros you will probably need to change
are the destination directories for the binaries, libraries, and man
pages. Change definitions such as prefix bindir and mandir to deter­
mine where you would like to place the binaries and help files. You
must also set the TTERMFLAGS variable to define which devices you
would like gnuplot to support. The basic list of supported devices is
listed in the README file.

There is an RS/6000 makefile supplied named makefile.rs6k, if you
might like to start with this file. You may still need to change destina­
tion directories for files.

You can build the appropriate devices for a given machine by simply
letting the make choose the defaults for you. The build is fairly
straightforward. Then you can type the command:

$ make

or

$ make aix32o

This will generate a listing of possible machine types and terminals to
support. From this list chose your machine type. A good first attempt is
to type a comand which builds the ALL target. This will generate the
executables with certain macro definitions which gnuplot gives you
when it begins the build.

There are several machines which are supported by this distribution
of gnuplot. See the makefile for more information.

Note that if you are building the version for Xll support, you may
have to modify the XllINCLUDE macros to specify the correct direc­
tory for both the include and library files for Xll. For example, on an
RS/6000 these files exist in the /usr/lpp/Xll directory. Keep this in
mind if you get "can't find file" error messages. This seems to have been
fixed in the newer versions of gnuplot, but keep it in mind if you see the
above kind of error.

10.5.4 Conclusion

10.6 Tel

Nonnative Output Formatting and Display Tools 399

gnuplot is a very powerful plotting package which provides significant
functionality to the UNIX power user. Since it provides plotting sup­
port for many devices including many newer devices, gnuplot is a very
useful tool for data manipulation and display.

10.6.1 Introduction

10.6.2 Usage

Tel stands for Tool Command Language and is a scripting tool which
allows both generic and X Windows applications to be rapidly devel­
oped. You can either write directly in the Tel lanaguage or embed Tel
commands in your programs.

Tel provides a simple to use and intuitive interface to the X Windows
system as its main function. Instead of having to program to the stand­
ard X Windows libraries, you can issue simple Tel calls to the Tel com­
mand language interpreters to generate windows and all other X
Window widgets that you normally program.

Tel is also used as a standard scripting language which can do most
functions including add, subtract, multiply, and divide, among other
things. It functions as many other interpreters do and provides a series
of commands for text and variable manipulation. Overall, Tel is a tool
you will want to check out to enhance your ability to develop applica­
tions rapidly.

Because of the interpretive nature of Tel, there are performance is­
sues which can only be addressed through a compiler. Several people,
including Adam Sah and Jon Blow, have written a compiler for Tel and
have included a paper documenting their effort. Look for a Postscript
file (*.ps) in the Tel distribution and print or view this for more details.

The Tel interpreter can be invoked either interactively from the com­
mand line or with a C function call from a program. You can embed a
call to the Tel parser in your program and link C functions that imple­
ment Tcl's built-in commands. This means that you can interactively
enter Tel commands to your program and make your program's execu­
tion dynamic.

Besides the embedded functions, you can invoke the interactive in­
terpreter known as wish (Windowed Shell). This provides a real-time,
interactive Tel command interpreter. Tel looks most like a combination
of LISP, Perl, and shell scripting.

A set of extensions known as Tk provide the actual interface to the X

400 Nonnative AIX Developer Tools

Windows system. With the Tk system, you can issue Tel commands to
generate Motif-like applications with a significantly smaller number of
lines of code. A good example of this is the classic Hello World example
so often seen in X Windows books. Compare the code below for generat­
ing the Hello World example to those documented in several X Win­
dows books.

#!/opt/gnu/bin/wish -f
#Tcl/Tk hello world script

button .button -text

"Hello World"
.button configure -command "destroy ."
.button configure -foreground red -background black
.wm title . "Tcl/Tk Window"
pack .button

This is all that is required to generate a simple Hello World window
and display it on an X Windows server screen.

The best way to learn more about Tel is to discuss the simple exam­
ple shown above.

The first line tells your shell to invoke the wish interpreter and to
pass the rest of the file to wish for execution. The next two lines are
comment lines which must always have a # in the first column.

The first Tel command is the button command. The button command
generates a push-button widget which is one of the simplest of the X
Windows primitives. The widget is named .button. The. represents the
top-level widget much like I represents the top of a filesystem. It is nec­
essary to precede the child widget (in this case button) with . to repre­
sent a fully qualified widget. Finally, the -text option to button passes a
string to the button widget for inclusion in the windows.

The next line consists of a configure command, which changes the
attributes of the widget on which they are told to operate. In this case,
the destroy command is used to destroy the window when the mouse
button is pushed. Note that this destroy command destroys the parent
widget . and, therefore, destroys all child widgets as well.

The next line changes both the foreground and background colors of
the Hello World window.

The wm command tells the X Windows server software to set the ti­
tle of the window to "Hello World." This could be anything you would
like.

Finally, the pack command sizes the X Window and makes it visible.
Note that all of these commands can be entered interactively to the

wish interpreter. In fact, this is the recommended way to debug your
scripts before putting it into production.

There is a tremendous amount of documentation available in the doc

Nonnative Output Formatting and Display Tools 401

subdirectory. All files ending with a .3 are troff macro input files de­
scribing the Tel core functions. The files ending in .n document the Tel
core commands and the Tcl.n file documents the Tel system in general .
These can be viewed with a command like:

$nroff -man *.n I more

This will cycle you through the manual pages provided with Tel and
allow you to choose the ones to print out.

Tel commands. Tel commands consist of one or more fields separated
by white space. The number of fields depends on the command in the
first field. The first field always contains the command, while the sec­
ond and third fields contain the arguments to the command. There are
also a variety of variable substitutions that you can perform with
brackets and braces. These are documented fully in the tcl.3 file. How­
ever, some of the more powerful commands are outlined below:

array option arrayName arg Manipulates arrays.
arg ...

break Returns break code.

case string Emulates a C language case statement.

cd dirname Changes directories.

close fileid Closes open files.

conca t arg. . . Concatenates all args into a single string.

continue Continues to next outermost loop.

eof f ileid Returns end-of-file condition.

error message Displays an error message.

eval arg arg. . . Concatenates all commands and passes them to
the Tel interpreter.

exec arg arg . . . Executes commands specified as args in a sub­
process.

exit returncode Exits a procedure and generates returncode.

file option name arg arg. . . Operates on a file including time, ownership, di-
rectory name, execution, and file status.

flush fileid Flushes all buffered output to fileid.

foreach varname list body A looping construct.

format formatstring arg arg. . . Generates a formatted string much like sprintf.

gets fileid varname Gets the string from fileid and places it in the
variable varname.

global varname Declares varname as global.

history Generates and controls the history list of com­
mands.

info option arg arg. . . Provides informations about various internals of
Tel.

lappend varname value value. . . Appends each element specified by value to the
list specified by varname.

402 Nonnative AIX Developer Tools

10.6.3 Installation

lindex list index Returns the index's element from list with 0 as
the first element.

linsert list index element . . . Generates a new list by inserting all elements
just before the index's element.

list arg . . . Returns all args in a list.

llength list Returns length of the list.

lrange list first last Returns a new list consisting of the elements
first through last from list.

lreplace list first last Returns a new list consisting of elements first
element. . . through last replaced by elements specified.

lsearch list pattern Returns the index of the matching string pattern
in list.

lsort list Sorts list.

open filename access Opens filename with a specified access.

proc name args body Creates a new procedure named name contain-
ing body which can then be invoked with name.

puts fileid string Outputs string to fileidjust as puts in C does.

pwd Returns current working directory.

read fileid Reads the contents offileid.

rename oldname newname Renames command named oldname to
newname.

return value Returns value from the current procedure.

scan string format var var. . . . Parses string and returns vars according to the
format specified.

seek fileid offset origin Changes the current access position for fileid.

source filname Passes filname as a series of commands to the Tel
interpreter.

split string splitchars Returns list created by splitting string at each
character specified by splitchars.

string option arg arg. . . Performs various string operations including
compare, index, last, length, match, conversion,
and a series of others.

time command Times execution of command.

trace option arg arg. . . Traces commands based on options specified.

unset name Removes one or more variables.

upvar level othervar myvar. . . One or more local variables can refer to global or
enclosing procedure call variables.

The above section outlines most of the commands available with Tel,
but there is significantly more functionality available. See the man
pages included with the product for more details.

The latest versions of Tel and Tk are available on ftp.uu.net in the lan­
guages/tel directory or on ftp.x.org in the contrib directory. Good luck. If
you have difficulty building on AIX, there is a file called porting.notes
which describes many of the isses you may encounter when building
TclonAIX.

10.6.4 Conclusion

Nonnative Output Formatting and Display Tools 403

Using the standard configure utility, type:

$./configure --prefix=/usr/local

This will autoconfigure a new makefile which is consistent with your
machine's configuration. You can ignore any messages unless they say
ERROR. In this case, you may have to examine what error occurred
and make the appropriate modifications. If Tel isn't able to configure
itself, see the Tcl.n file for more details on possible fixes.

Once you have successfuly executed the config script, you need to
build the Tel library libtcl.a with the command:

$ make

Finally, type:

$ make install

to install Tel scripts, libraries, and binaries in the directories you con­
figured before you invoked ./config.

If you want to ensure that you have built and configured Tel cor­
rectly, you can type the command:

$ make tclTest

which will generate some test programs and run them against your
newly built interface.

Tel is a very powerful scripting language which provides much of the
functionality of both C and shell scripts. It also provides an easy-to-use
interface to develop X Windows applications. Investigate Tel if you
need to increase your productivity when developing windowed applica­
tions.

Tel can be used as a substitute for Motif and other higher-level wid­
get tool kits. It provides a lower level of detail but with a significantly
simpler interface. The most common use of Tel is for small applications
which need a graphical user interface. Tel may not hold up under the
rigors of a large software development job and should be carefully stud­
ied before being employed in a situation like that.

If you are interested in doing X Windows programming, you will defi­
nitely want to work with Tel.

404 Nonnative AIX Developer Tools

1o.7 xloadimage

10.7.1 Introduction

10.7.2 Usage

xloadimage is a tool which allows you to manipulate various types of
files and images directly from your AIXWindows environment. You can
also manipulate a variety of image types with techniques such as dith­
ering, depth reduction, zoom, and clipping. This type of capability will
significantly enhance your ability to use your windowing environment
with a variety of image and file types and will increase your productiv­
ity.

The basic syntax for the xloadimage command is:

xloadimage [global_options] {[image_options] [image ...]}

where global_options describes a variety of options which apply to all
input files.

image_options specifies options which act on specific images.
image ... specifies one or more image files to act upon.

Some of the global_ options are:

-border color

-configuration

-default

-delay time

-display name

-dump image_type
[,option[=value]]
durnp_file

-fit

-fullscreen

-geometry WxH [{+-}
X{ +-}Y]

-help [option]

-install

-list

-onroot

-path

-pixmap

-supported

-type type_narne

Specifies the background color of the image

Displays the image path, image suffixes, and supported filters
which will be used when searching for and reading images

Uses default root to display the image

Automatically displays the next image in the list after time sec­
onds

Specifies name as the screen to display the image on

Specifies a dump file of a specific type to dump the resulting
image to instead of displaying it on the screen

Forces the image to fit the current default X Wmdows server
color maps and visual

Displays image on the entire screen

Sets the size of the displayed image on the screen based on the
standard X and Y coordinates used by X Windows

Displays help on a specified option

Forces loading of the colormap when the window is focused

Lists the images along the image path

Displays the image on the root window

Displays information about the program configuration

Uses the pixmap as the backing store

Lists the supported image types

Forces xloadimage to attempt to load the image files as a file
type_name

Nonnative Output Formatting and Display Tools 405

-verbose Verbose mode

-version Displays xloadimage version

Some of the image_ options are:

-at X,Y

-background color

-brighten num

-center

-clip X,Y,W,H

-colors num

-dither

-foreground color

-global

-gray

-halftone

-invert

-merge

-newoptions

-normalize

-rotate num

-shrink

-smoot

-tile

-xzoom num

-yzoom num

-zoom num

Displays the image at X, Y coordinates.

Uses color as the background type.

Brightens the image by num percent, where 100 leaves the im­
age exactly as it originally was. For example, 50 would darken
the image, while 150 would lighten it.

Centers the image on the base image loaded.

Clips the image, where X,Y specifies the upper, left corner of
the image and W,H specifies the width and height, respectively.

Sets the maximum numbers of colors of an image to num.

Dithers a color image to monochrome.

Specifies the foreground color of an image.

Forces the following option to apply to all displayed images.

Displays an image as grayscale.

Displays an image as halftone on a color display.

Inverts a monochrome image.

Merges this image onto the base image.

Resets globally specified options.

Normalizes a color image.

Rotates a specified number of degrees.

Shrinks an image to fit on the display.

Smooths a color image.

Tiles an image.

Zooms num percent in the X axis direction.

Zooms num percent in the Y axis direction.

Zooms num percent in both X and Y directions.

The above listing does not specify all the options; however, it does list
the most important ones. See the man page xloadimage.1 for more de­
tails on the specific options and their function.

Besides the options listed above, xloadimage uses an initialization
file -/.xloadimagerc. This file contains three sections, path, extension,
and filter. Each section is described in some detail in the xloadimage
man page. There is also an example of an initialization file in the man
page, and you should reference this since it is important to proper and
efficient xloadimage start-up in a particular environment.

The image dumper supports the following options. For JPEG, they
are:

arithmetic

grayscale

nointerleave

406 Nonnative AIX Developer Tools

optimize

quality

restart num

For PBM, they are:

normal

raw

For TIFF, they are:

compression (none, rle, g3fax,g4fax,lzwjpeg,next,rlew,mac,thun­
derscan)

These options describe the types of files you can dump with the -dump
option from virtually any image you can create. This is a very powerful
feature which allows you to create images and save them in all the for­
mats listed above. See the xloadimage man page for more information.

Much of the functionality available from the options described above
is automatically performed by the xloadimage system. If you attempt
to display images on a display which will not support the specific needs
of the image, xloadimage will automatically dither the image and ma­
nipulate the color maps and visuals as necessary to give you the best
image your display is capable of. xloadimage will even uncompress
compressed files such as .z and .gz (gzip) files before manipulating
them for you.

Options such as -dump allow you to manipulate the image and save
the newly created image file to disk instead of displaying it directly on
the screen. This gives you the ability to manipulate the image with the
variety of filters provided with xloadimage. Experiment with this to be­
come more familiar with the filters provided with xloadimage.

xloadimage has a significant amount of intelligence about the type of
image file it is attempting to display. It is rare that you have to specify
the image type of an input file. xloadimage will sense which type of file
you are passing to it and use the proper filters to manipulate it accord­
ingly.

The man page for xloadimage gives some advise regarding the dis­
play of certain types of images. For example, most GIF and G3 fax im­
ages have aspect ratios of approximately 2 to 1. You would probably
like to view it as 1 to 1 on a relatively square screen. To do this you
might use the -xzoom 50 or -yzoom 200 options.

Some simple examples are:

$ xloadimage -onroot earth.image

10.7.3 Installation

Nonnative Output Formatting and Display Tools 407

This will load the image file earth.image onto the root window. In this
case earth.image is a raster file.

The following will cause the image to be dithered into monochrome
and centered on the root window. This will be much faster than the
previous command on a monochrome display.

$ xloadimage -default -tile -dither earth.image

This command will double the size of the earth.image image on the
screen:

$ xloadimage -zoom 200 earth.image

Finally, to dump a file like earth.image to a JPEG file, you might use a
command like:

$ xloadimage earth.image -dump jpeg,quality=80,grayscale new.image

There are more examples in the man page for xloadimage.

There is a configuration script with xloadimage which does a good job
building the proper makefile on an RS/6000. To build xloadimage, first
review the makefile file for any options that may not be appropriate for
your machine. The deafults should work fine with an RS/6000 running
AIX in a standard configuration. Once you have reviewed makefile,
type:

$ make clean
$ make configure

This will generate a new makefile which will be properly configured for
your machine. Next, you need to build the xloadimage system. Use the
command:

$ make

Finally, if you want to install the xloadimage binaries and associaged
man pages, you can use the command:

$ make install

This will install all images in /usr/local by default. You can place them
elsewhere by using the standard method as described with many other
tools in this book.

408 Nonnative AIX Developer Tools

10.7.4 Conclusion

There are some notes in the documentation included with
xloadimage that explicitly say not to run either imake or xmkmf with it
since there are too many problems caused with the AIX imake and
xmkmf to be useful. The configure script included with xloadimage
works just find and should be used as described above.

xloadimage it a very powerful utility which can manipulate and display
a large number of image file types. By using xloadimage, you can sig­
nificantly enhance your productivity in an AIXWindows environment
or in any number of other Xll-based windowing environments.

10.8 mpeg_play

10.8.1 Introduction

10.8.2 Usage

mpeg_play is known as a video software decoder. You can take MPEG
input streams and display them in AIXWindows. There are a variety of
standards related to MPEG, and some of them are described in the
README file included with this distribution; however, suffice it to say
that mpeg_play supports many of the more common and documented
MPEG formats.

There are subdirectories which contain source for both the interface
tool kit and the bitmaps for buttons and other display items. You may
want to examine these to learn more about how the program is struc­
tured.

The basic syntax for mpeg_play is:

mpeg_play [-nob] [-nop] [-display macname] [-dither dith_option]
[-loop] [-eachstat] [-no_display] [-shmem off] [-l_range num]
[-cr_range num] [-cb_range num] [-quiet] file

where -nob ignores B frames.
-nop ignores P frames.
-display macname displays output on macname.
-dither dith_option selects from a variety of dithering options

including:
ordered-ordered dither
ordered2-a faster ordering dither
mbordered-ordered dithering at the macroblock level
fs4-Floyd-Steinberg dithering with four error values

propagated

10.8.3 Installation

Nonnative Output Formatting and Display Tools 409

fs2-Floyd-Steinberg dithering with two error values
propagated

fs2fast-fast Floyd-Steinberg dithering with two error values
propagated

hybrid-combination of ordered and Floyd-Steinberg two-
error dithering

2 x 2-2 x 2 dithering technique
gray-grayscale dithering
color-24-bit full-color display
none-doesn't perform any dithering
mono-Floyd-Steinberg dithering for monochrome displays
threshold-Floy-simple dithering for monochrome displays

-loop causes mpeg_play to continually loop to the beginning of
the MPEG file.

-eachstat displays statistics after each frame.
-no_display dithers but doesn't display the file.
-shmem_off turns shared memory off.
-l_range num sets the number of colors assigned to the

luminance component.
-cr_range num sets the number of colors assigned to the red

components of the chrominace range when dithering.
-cb_range num sets the number of colors assigned to the blue

compnent of the chrominace range when dithering.
-quiet suppresses printing of frame numbers.
file is MPEG input file.

This player can display both MPEG-1 and XING input files. If you at­
tempt to display another types of files such as multiplexed video/audio
files, you may experience difficulties.

The installation of the mpeg_play system is very straightforward on an
AIX system. Simply use the commmands:

$ make -f Makefile.RS6k clean
$ make -F Makefile.RS6k

If you want to install the resulting executables and man pages into the
/usr/local area, use the commands:

$ make -f Makefile.RS6k install
$ make -f Makefile.RS6k install.man

If you are running a Gt4x card on your RS/6000, you may need to add
-DRS6000 to the CFLAGS in Makefile.RS6k to ensure that the correct
files are built into the final executable.

410 Nonnative AIX Developer Tools

10.8.4 Conclusion

10.9 xearth

The mpeg_play executable is an extremely powerful MPEG viewer
which allows you to display virtually any MPEG file on an RS/6000 as
well as on a variety of other platforms. By using this tool, you can view
animation in real-time and signficantly enhance the power of your AIX­
Windows environment.

10.9.1 Introduction

10.9.2 Usage

xearth is a program which displays the earth in the root window of
your UNIX workstation. It has a large number of options which include
how you view it, from where, and at what time. It is kind of a neat
thing to put in the root window of your workstation and does generate
a lot of interest and discussion around the office. Have fun.

The basic syntax for the xearth command is:

xearth [-pas pos_spec] [-sunpos pos_spec] [-mag factor] [-size
size_spec] [-label] [-shade] [-grid] [-wait secs] [-timewarp
timewarp_factor] [-time fixed_time] [-display name] [-version]

where -pos pos_spec specifies the position from which the earth should
be viewed. The pos_spec is a fairly complicated
specification and is described fully in the man page for
xearth.

-sunpos pos_spec specifies the position of the sun.
-mag factor specifies the magnification factor.
-size size_spec specifies the size of the image to be rendered.
-label provides a label at the lower right-hand corner of the

window.
-shade shades the surface of the earth.
-grid displays the longitude/latitude grid on the earth.
-wait secs waits secs seconds between view updates.
-timewarp timewarp_factor scales the rate at which time passes.
-time fixed_time uses the fixed time to render the image and

not the current time.
-display name is the display on which to place the xearth image.
-version displays the version ofxearth running.

The above list represents just a small portion of the options available to
xearth and doesn't begin to describe the options at the level of detail
available in the man page for xearth. Before using the xearth applica-

10.9.3 Installation

10.9.4 Conclusion

Nonnative Output Formatting and Display Tools 411

tion, see its man page for more details and specifics on the xearth ap­
plication.

To invoke the xearth application, simply type:

$ xearth

This will generate a root window with the earth as viewed from space
at the current time from a default location. You can use any of the
above options or any of those documented in the man page to modify
any application behavior from there.

A modified makefile is included for the RS/6000. To build xearth, sim­
ply invoke make as follows:

$ make -f Makefile.rs6k clean
$ make -f Makefile.rs6k

If you want to install the generated files, use the command:

$ make -f Makefile.rs6k install

This is all there is to building xearth.

What can you say. This is a neat little program which does demonstrate
some of the power of this type of program. You should examine some of
the code to learn some of the tricks and techniques you can use when
building a program of this type. Plus, it makes for a great conversation
piece.

Chapter

11
Nonnative Communications Tools

There are several very good tools which provide communication inter­
faces from UNIX platforms to other platforms. This chapter presents
some of the best power tools which run on most UNIX platforms.

Kermit provides file transfer and terminal emulation capabilities be­
tween most platforms today including PCs, Macs, UNIX, VMS, and
others. It is widely used and is often the de facto choice when moving
information between different platforms. Because of the tight budgets
at Columbia and various other factors, Kermit is not distributed on the
CD included with this book. However, it is very inexpensive and the
documentation that comes from Columbia is much better and more
complete than this section. For information on the product and how to
get it, contact:

Watson Laboratory
Columbia University Academic Information Systems
612 West 115th Street
New York, New York 10025, USA, Earth
(212) 854-5126 (phone)
(212) 662-6442 (Fax)
kermit@columbia.edu

xmodem is a protocol which provides basic file transfer capabilities
from one platform to another. In fact, xmodem is often supported
within larger programs like Kermit and other emulation packages that
you can purchase. You can, however, use xmodem by itself for file trans­
fer if this is all you need.

tn3270 provides full-screen All Points Addressible (APA) 3270 data
stream emulation. With this tool, you can make an asynchronous AS­
CII device look like a 3270 terminal. This is one of the most powerful

413

414 Nonnative AIX Developer Tools

11.1 Kermit

tools available and provides most of the functionality you get from very
expensive 3270 emulator packages from a variety of vendors.

crttool provides true vtxxx emulation between platforms. While there
are several packages available which provide some level of emulation,
if you are using a software package which needs complete vtxxx termi­
nal-style support, you may want to investigate crttool.

There are many other packages which provide communications func­
tionality which are not mentioned here. However, these packages pro­
vide most of what you will need in these types of packages and will at
least get you started in this area.

11.1.1 Introduction

11.1.2 Installation

Kermit is a terminal emulation and file transfer tool which is provided
free from a variety of sources, including the Internet. Its primary use is
as a file transfer tool over telephone lines. It is written and maintained
primarily at Columbia University by Frank da Cruz, Bill Catchings,
and JeffDamens.

There are two primary versions, of which the most popular is C-Ker­
mit. This version is written primarily in C and is, therefore, portable to
many platforms, including UNIX. The other version is called MS-Ker­
mit and is much less commonly used and will, therefore, not be dis­
cussed.

Kermit is structured based on a client/server paradigm which con­
sists of one machine acting as the server while the other machine is the
client or remote machine. This allows for two-way file transfer using
the put and get commands. You must first start the server function and
then escape back to the client machine and issue commands. The serv­
er can be either local or remote and provides the maximum flexibility
and power.

The primary advantage of Kermit over many other file transfer and
terminal emulation package is that it is available on many platforms,
including UNIX, VMS, Macintosh, DOS, OS/2, VM, and others. This
allows users to use the primary interface and scripts to transfer files
and information from any platform to any platform. And it is free.

As with all other nonnative UNIX tools in this book, the easiest way to
get Kermit is from the Internet. This may mean by purchasing a tape
or using a direct or indirect Internet connection to get Internet access.
See Chap. 6 for more information.

Nonnative Communications Tools 415

There is a Kermit tar file available for a variety of versions. Check
the dates and make sure you get the latest and greatest version since
changes and additions are occurring constantly as the product ma­
tures. Store the kermit tar file in /tmp or some other place which will
not take up permanent disk space since you will not need it once the tar
file is unwound. The following will assume the tar file is called ker­
mit.tar and the directory in which it is stored is /tmp.

C-Kermit files all begin with a ck prefix. You should create a direc­
tory for Kermit and then cd to this directory. Next you need to unwind
the tar file with the command:

$ cd . /kermi t
$ tar xvf /tmp/kermit.tar

Often the tar file is named ckuxxx. tar where xxx is the version of Ker­
mit.

The files resulting from the tar command have the following naming
syntax:

ck<system><what>.<type>

where <system> describes the system to which the file applies:
9: OS-9
a-documentation
c-all systems with C compilers
d-Data General
h-Harris computers
i-Commodore Amiga
m-Macintosh
o-OS/2
p-DOSPC
u-UNIX and UNIX-like systems
v-VAX/VMS
w-Wart

<what> is a mnemonic for what's in the file:
aaa-readme file
cmd-command parsing
con-connect command
deb-debug/transaction log formats
dia-modem/dialer control
fio-system-dependent file 1/0
fns-protocol support functions
fn2-more protocol support functions
ker-general Kermit definitions

416 Nonnative AIX Developer Tools

mai-main program
pro-protocol
scr-script command
tio-system-dependent terminal 1/0 and interrupt handling
usr-user interface
us2-more user interface
us3-more user interface

<type> is the file type:
c-C source
h-header files
w-Wart preprocessor source
nr-nroffi'troff source
mss-scribe text source
doc-documentation
ps-Postscript documentation
hlp-help text
bld-instructions for building Kermit
bwr-bug list
upd-program update log
mak-makefile

For more information on the functionality and content of each file, see
C-Kermit documentation available within the tar file. Depending on
which version of Kermit you get, you may get a different groups of the
files from those discussed above. See your distribution and associated
documentation for more details.

A makefile is provided, as for all tools from the Internet, in an effort
to assist you with the installation and building of the product. This
makefile is called ckuker.mak. Rename this file to makefile and issue
the make command as follows:

$ mv ckubs2.mak makefile
$ make xxx

where xxx is the platform for which you are building Kermit. Note that
within the makefile there are a variety of platforms for which the
UNIX version of Kermit can be built. You need to choose which plat­
form by reviewing the makefile, which has descriptions of which plat­
forms are available and which you should choose depending on the
platform you are on. If your particular platform is not listed, choose
between bsd and sys5r3, which denote Berkeley- and AT&T-derived
systems, respectively. Most systems will work correctly with the Sys V
symbol and therefore the command:

$ make sysr3

11.1.3 Usage

Nonnative Communications Tools 417

would build a working system for you if your particular system is not
specifically listed. The resulting binary will be called wermit. Test this
and make sure it works; then rename wermit to kermit and install it in
the bin subdirectory for general use:

$ mv wermit bin/kermit

Move the source code into the src directory and the documentation into
the doc directory. This again uses the general product structure recom­
mended for nonnative UNIX products in Sec. 6.6.

For AIX with the gee compiler, use the command:

$ make clean
$ make rs6000c

Note that most operating systems and associated machines are sup­
ported with reasonable defaults in the makefile. See the makefile for
all the different machines supported.

Kermit provides both interactive and command line capabilities. For
short and simple file transfers, the command line capabilities will be
sufficient; however, for more complex transactions, the command mode
will be necessary. Each is described in detail below.

There are several things to note when using Kermit with AIX. Use
SMIT and choose either the share or pdisable line characteristic. Make
sure you also choose the correct baud rate. If you define the port at the
same speed as the speed of the connections between the modems, you
won't have to worry about flow control in the modem, and the connec­
tion will work cleaner and with more simplicity. If you don't under­
stand how to do this, see the AIX documentation for more details.

Once you have defined the port as described above, you can use Ker­
mit as described below. There are other ways to configure the ports, but
there are ramifications with each. If you define the port as a share port,
you will have difficulties using Kermit because the getty has control of
the port with a login process by default. This means that the easiest
way to use the port is to define it as a initilized port with no connection.
If the port is in share mode, you may have to play some games to allow
sharing of the port from both getty and Kermit simultaneously. If you
are using Kermit alone, there is no reason to use any other default tem­
plate than the initialize-only template. If you are using other subsys­
tems such as UUCP or PPP, you may have to add an additional modem
and line to support Kermit since this may be easier than manipulating
the getty subsystem under AIX.

418 Nonnative AIX Developer Tools

Of course, if you define the port as either penable or pdisable only,
you are limited to unidirectional connections. This may be too limiting
if you are attempting to establish connections in both directions.

File transfer. Kermit's primary use is as a file transfer tool over tele­
phone lines. In local mode, stdout is continuously updated to show the
progress of the file transfer. A dot is printed to the screen for every four
data packets. Other packets are represented by:

I Exchange parameter information

R Receive initiate

s Send initiate

F File header

G Generic server command

c Remote host command

N Negative acknowledgment

E Fatal error

T Time-out

Q Damaged packet received

% Packet retransmitted

You may control the flow and operation of Kermit during this trans­
fer using the following commands:

CTRL-F

CTRL-R

CTRL-A

CTRL-B

Stops transfer of current file and moves onto the next file

Resends the current packet

Displays status of the transfer

Interrupts entire batch of files and terminates the transfer

Note: With System V versions of UNIX, you may have to precede the
above interrupt commands with a \ to escape the control sequence. Fi­
nally, to regain control in the event of an emergency, type CTRL-C
CTRL-C. This should interrupt the Kermit program and take you back
to the terminal prompt. This will kill anything that was currently in
progress, so do it only as a last resort.

Command line operation. The basic syntax is:

$ kermit [-rkxtfcniwqdh} [-s fn] [-a fnl] (-1 dev] [-b speed]
[-p parity] [-g rfn] [-e len]

where r passively waits for files to receive.
k passively receives files and displays to stdout.
x begins server operation.
t is half-duplex with XON as handshake character.
f sends a "finish" command to the server.

Nonnative Communications Tools 419

c establishes a terminal connection before any protocol
transaction occurs.

n is like -c but do so after a protocol transaction occurs.
i sends file without any conversions.
w is write protect mode; avoids filename duplications for

incoming files.
q is quiet mode; suppresses screen update messages.
dis debug; creates debug.log file current directory with

debugging information.
h displays help information.
s fn sends filename fn.
a fnl is alternate name for file; cannot use wildcards.
1 dev-dev is a terminal line such as /dev/ttyl.
b speed specifies line speed.
p parity specifies parity as e,o,m,s,n.
g rfn requests a remote server to send name(d) files.
e len is extended packet length; allows for packets longer than

the default 90.

Kermit uses a very standard UNIX command syntax utilizing hy­
phens and stdin and stdout. It also uses the client/server paradigm
which allows for either of the two machines communicating to act as
the server. A connection between a server and client must be estab­
lished before transfers can take place. To establish a connection and a
remote server, issue the following command:

$ kermit -1 /dev/ttyl -b 2400 -n -r

This will establish a 2400-baud terminal connection with the remote
machine where you will log in and establish the remote machine as the
server. To transfer a file, enter the send command and then escape back
to the local session using the CTRL-\ c command. You will be able to
watch the file transfer occur. When it is finished, you will be recon­
nected the remote machine. You can then send another file or log off as
you normally would.

The escape sequence to go from remote to local machine is:

CTRL-\ c

The CTRL-\ is equivalent to an ASCII escape. Therefore the escape
sequence to return from remote to local mode is ESC-C. Because the
ESC key is rarely mapped correctly, CTRL-\ is often used to simulate
ESC. Note that to simulate the ESC, you must hold down both the
CTRL key and \ key simultaneously. This sends a single ESC charac-

420 Nonnative AIX Developer Tools

ter. Once you have done this, press the C key, and you should receive a
Kermit prompt.

Local mode really means that you are logged on to a local machine or
you are using an external communication line. Remote mode denotes a
machine which is logged on to and is transferring files over an external
line connected to your local machine. Your local machine is remote un­
less you explicitly point your Kermit session at an external line with a
-1 command.

Some other examples are:

$ kermit -1 /dev/ttyl -b 2400 -c I vtlOO

Note that kermit provides generic terminal emulation, and you can, if
you wish, pipe this through programs which interpret terminal se­
quences and control access to the screen. A common one is a vtlOO pro­
gram, which allows for DEC vtlOO terminal emulation:

$ kermit -1 /dev/ttyl -nf

This will shut down the remote server and establish a terminal session
to the remote machine. This is particularly useful if you with to stop
file transfer activities and resume interactive use of the remote ma­
chine. Note that this works because of the use of then option which
allows the f option protocol to finish before the n option begins. If you
were to use -cf, this would not work correctly.

This command will transfer all remote files with the name kevin. * to
your local directory:

$ kermit -1 /dev/ttyl -b 9600 -qg kevin.* &

There are several things to note about this command. Kermit will be
invoked in the background due to the &. This allows work to continue
while the transfer is occurring. The q causes Kermit to suppress any
output to the terminal, so you don't get those annoying messages to the
screen during transfer and usage. Note also that Kermit understands
wildcards for filenames; however, the only ones that are recognized and
handled correctly are* and?. The* will do a multicharacter substitu­
tion while the ? will do a single-character substitution. All other shell
metacharacters such as [and { are ignored. Finally, note that we had to
escape the * with a backslash so that the shell didn't interpret it before
passing it to Kermit.

Kermit uses standard input and output, and you can therefore use
pipes and redirections with Kermit to provide more functionality in the
tradition of UNIX.

Nonnative Communications Tools 421

Terminal emulation and modems. The command:

$ kermit -1 /dev/ttyl -b 9600 -c

will provide generic terminal emulation and allow you to log on to a
remote machine over a serial line. This will work over any kind of se­
rial line, local as well as remote. If you are using a local connection
such as a null modem cable between two RS-232 ports, this will connect
you directly to the getty subsystem on the remote machine and you will
get a login prompt. If you are using a switched line with modems, this
command will give you control of the modem. Once you have control of
the modem, you can issue standard modem commands such as those
for Hayes-compatible modems. Assuming you have a phone line with
two compatible modems and the remote is set up for autoanswer, you
can issue the following commands to log in over the phone line to the
remote machine:

$ kermit -1 /dev/ttyl -b 9600

At this point, you are talking directly to the modem, which has its own
command language and syntax. Most modems are Hayes compatible
and follow a standardized command syntax. If you have a Hayes-com­
patible modem and want to now connect to a remote system, issue the
following command:

ATDTnumber

where number is the phone number you wish to dial. For example,
5554404 would be a valid dial string, so the command would read:

ATDT5554404

This works exactly as you would dial using a phone. For a long distance
call, you would again follow the same structure as the normal phone.
For example:

ATDT13125554404

At this point, the remote modem and your local modem will begin a
handshaking sequence to establish baud rates, error correction proto­
cols, and compression techniques. There are many Hayes commands
available which control virtually every aspect of your modem. You
should read your modem documentation for more information. To print
out the configuration of your modem type:

AT&V

422 Nonnative AIX Developer Tools

At this point, you will connect to the remote machine and should get
a login prompt. Log on as you normally would and proceed as iflogged
on to a LAN. You now have generic terminal emulation and file transfer
capabilities. If you are interested in using the machine in an interac­
tive mode as if you were logged on locally, you can proceed; however, if
you would like to transfer files, you must first put the remote machine
in "server" mode and escape back to the local machine with the proper
control sequence (probably CTRL \-C). You issue the receive command,
and your local machine waits for any files to arrive. When the trans­
mission is finished, you are returned to your remote session where you
can log off or continue with your work.

An example of this would be as follows:

login: kevin
password:xxxxx
Welcome to foobar, AIX 3.2
$ kermit -x
CTRL\-C

$ kermit
kermit> receive remote-file local-file

$ logoff*(Note we are back at foobar now, so we need to log off.)*
$*(We're back at the local host.)*

remote-file from the remote machine is copied to local-file on your local
machine. Note that paths can be fully qualified or relative in the stand­
ard UNIX way. There are commands to change directories and much
more. These are typically available from within Kermit in what is
known as interactive mode. This is the most powerful way to use Ker­
mit.

Interactive mode. Interactive mode in Kermit is the preferred way to
perform anything but the simplest of tasks. It provides a simple inter­
face to the entire functionality of Kermit. Through the use of simple
commands, you can perform logins and file transfers as well as run
scripts, redirect files, and perform modem control.

The Kermit prompt is C-Kermit>. At this point, you can type any
valid Kermit command and even issue standard UNIX commands.
When you invoke Kermit, it first looks in your home directory and then
your current directory for a file named .kermrc. This must contain Ker­
mit commands only and cannot contain UNIX commands. An example
will appear later in this chapter.

A brief list of Kermit commands is as follows:

% Comment

Executes a UNIX command from within Kermit

bye

close

connect

cwd

dial

directory

echo

exit

finish

get

hangup

help

log

quit

receive

remote

script

send

server

set

show

space

statistics

take

Nonnative Communications Tools 423

Ends session and logs out remote server

Closes a log file

Establishes a session to either a modem or remote machine

Changes working directory

Dials a telephone number

Displays a directory listing

Displays arguments literally

Exits from program

Exits remote server but doesn't log off

Gets file(s) from remote server

Hangs up the phone

Displays help for commands

Opens a log file

Same as exit

Receives files from remote server

Issues command to remote server

Executes a login script with remote system

Sends file(s)

Begins server operation

Sets various parameters

Displays set parameters

Displays current disk space usage

Displays statistics about most recent transaction

Executes commands from a file

These commands are the first entered on the Kermit interactive com­
mand line. The Kermit command interpreter is relatively sophisticated
in that it accepts unique shorthand commands for the above com­
mands. You can also use the ? to prompt for proper responses. This is a
very powerful feature that allows Kermit to help you finish commands.
For example, if you type set and can't remember which set option you
would like to use, you can type:

C-Kermit> set ?

and Kermit will provide you with a list of possible options from which
to choose. This is available for all Kermit commands and is quite help­
ful. The other useful command is help. If you type help, you will be
presented with a listing of all Kermit commands. If you type help com­
mand where command is one of the available Kermit commands, you
will get additional information on that particular command itself. The
other useful feature of the interactive interface is the ESC capability. If
you need to fill in the rest of a keyword or request a default value, sim­
ply press ESC (again, this may be CTRL\) and Kermit will fill in the

424 Nonnative AIX Developer Tools

blanks. This is very useful since you will often forget defaults and key­
words.

A brief description of each kermit command follows.

%. This is useful for inserting comments into script files.

! [command]. This allows you to execute shell commands from within
the Kermit interpreter. For example, to determine whether a file is in
your current directory or not, you could issue the following command:

C-Kermit> ! ls

This will list all files in the current directory. Note that you can issue
any UNIX command; however, you again must be careful of the symbol
substitution. Be sure to separate the ! and the command with at least
one space. If you want to fork a new interactive shell, issue the ! with­
out any command argument. To exit from this shell, type exit or
CTRL-D.

bye. This stops the remote screen and kills the connection between
your local machine and the remote one. This will return you to your
local machine.

close. This closes a log file created by the log command.

connect. This command establishes a session with either the locally
attached modem or the remotely attached machine. This works in coor­
dination with the set line command to establish the connection. This is
the best way to establish a direct connection to the modem and have
access to the Hayes command set directly on the modem. Examples are
given below. To get back to the local Kermit prompt after issuing the
connect command, you must issue the ESC as documented earlier. For
example, CTRL \-C will bring you back to the Kermit prompt where
you can issue any commands you normally would. To reconnect, issue
the connect command again.

cwd [dir-name]. This allows you to change your local current working
directory to dir-name.

dial [tele-string]. This command issues the dial command through the
local modem. You can bypass any direct interaction with the modem
and Hayes command structure as described earlier with this command.
For example:

Nonnative Communications Tools 425

C-Kermit> dial 13125554404

will connect to the modem and issue the command ATDT13125554404
just as documented earlier. This has the disadvantage that you don't
have control over other parameters of the modem, and you may have to
change other properties of the modem. This must be done from the
Hayes direct modem connection with the connect command. This com­
mand is used in coordination with the set line and set modem com­
mands as documented below. Note that you will get a "connected"
message when the modems have established a link; however, you will
then be placed back in interactive Kermit mode. You then need to type
connect to tie in to the established link. For example:

C-Kermit> dial 13125554404
connected
C-Kermit> connect
login: etc.

directory [dirname]. This displays a file listing of the current working
directory or of the dirname directory.

echo [text]. This provides access to the terminal screen. You would
typically use this within a script file to issue messages to the screen.

exit. This exits from the Kermit program and logs off from the re­
mote machine and associated processes. This will place you back on
your local machine in the same state as before you issued the first Ker­
mit command.

finish. Same as bye.

get filename [filename1]. This sends a request to the remote Kermit
server to send the file filename. This requires that the remote Kermit
server be started and a connection established. You can optionally re­
name filename to filenamel on the receiving machine. An example of
using a modem and getting a remote file named /tmp/foobar and plac­
ing it on the local machine as /tmp/kevin follows:

$ kermit
C-Kermit> set modem hayes
C-Kermit> set line /dev/cuaO
C-Kermit> set speed 9600
C-Kermit> dial 9,13125554404
connected ...
C-Kermit> connect
login: kevin
passwd: xxxxx
Welcome to SunOS 4.2, Have a Good Time

426 Nonnative AIX Developer Tools

$ kermit
C-Kermit> server
CTRL\-C*(to escape back to local machine)*
C-Kermit> get /tmp/foobar /tmp/kevin* gets the remote file
/tmp/foobar and places it on the local machine as /tmp/kevin*
C-Kermit> exit
$

You are now back at the local machine with the $ prompt.

hangup. This command hangs up the local modem and kills the con­
nection.

help [command]. This provides help on both what commands are
available and more specific help on a particular command.

log {packets, session, transactions, debugging} filename. This establishes a
log file of various aspects of Kermit's operation. The packets option al­
lows for a trace of all packets in and out of the communications port.
The session option provides for screen trapping. The transactions op­
tion keeps a record of all files transferred. Finally, the debugging option
provides information on the internal workings and operation of Kermit
and is probably only useful to developers and real hacks. You issue the
close command to close and save this log file.

quit. This is the same as exit.

receive [filename]. This passively waits for the receipt of a file. Note
that this is very different from the get command, which actively gets a
file from a remote machine; receive waits for the file to arrive. This
means that the remote machine must issue a send before the receive
will process any incoming information. If we wanted to send a file to a
remote machine, we could use receive as follows:

$ kermit
C-Kermit> set modem hayes
C-Kermit> set line /dev/cuaO
C-Kermit> set speed 9600
C-Kermit> dial 9,13125554404*(note we are using the standard hayes
dialer string) connected ... *
C-Kermit> connect
login: kevin
passwd: xxxxx
Welcome to AIX 3.2, Have a Good Time
$ kermit
C-Kermit> receive /tmp/kevin
CTRL\-C*(to escape back to local machine)*
C-Kermit> send /tmp/foobar
C-Kermit> exit
$

Nonnative Communications Tools 427

This sends the local file /tmp/foobar to the remote machine as
/tmp/kevin. Note that we could have typed connect at the local C-Ker­
mit> prompt and reconnected to the terminal session on the remote
machine if we wanted to.

remote. This allows you to issue commands to the remote machine.
There are several remote commands available:

remote cwd [directory]

remote delete filename

remote directory [dirname]

remote host command

remote space

remote type [filename]

remote who [user]

remote help

Changes remote working directory

Deletes remote filename

Lists files in remote dirname or current directory

Executes command on remote machine

Displays remote disk capacity and usage

Displays remote filename on screen

Displays remote user(s)

Displays remote server's capabilities

script. This allows for execution of canned scripts using send and re­
spond strings. See Kermit documentation for more information.

send filename [filename1]. This sends the file named filename and, op­
tionally, renames it filenamel on the remote system. Note that the
other machine must be either in server mode or have issued the receive
command. See the example above.

server. This places Kermit in server mode. All subsequent com­
mands, such as send, the remote commands and finish, must come
from the other Kermit machine. See the above example.

set [variable value]. This allows you to control virtually every aspect of
the communication between Kermit machines. There are many options
and not all will be documented here, only the most important. See the
Kermit documentation for more information.

duplex {full,half}

file type {binary,text}

flow-control {none, xon/xoff}

incomplete {discard,keep}

Determines full (two-way) or half (one-way)
communication.

Determines whether or not translation takes
place when file is transferred. If the file con­
tains text only, use set file type text, and any
necessary file translations will take place;
use binary to tum off translation. See exam­
ple below.

Controls flow control based on end-to-end
connection.

Keeps or discards incomplete file if line goes
down.

428 Nonnative AIX Developer Tools

line [device] Used to establish line to use for communica­
tion.

modem-dialer {direct, ha yes, Used to establish type of modem or direct con-
racal vadic, ... } nection. Note this must be used before the set

line command.

parity {even, odd, mark, space, none} Establishes parity.

speed { O, 3 00, 12 00, 2400, 9600, 192 00) Establishes line speed. Use after the set line
command.

the set file type command is extremely useful when moving between
diverse machines. If you are using an ASCII machine and transferring
to or from a non-ASCII machine, Kermit will perform any translations
necessary to make the file readable on the other machine. For example,
sending a text file from a UNIX machine to an IBM mainframe in text
mode will automatically translate the ASCII characters to EBCDIC. Do
not use the text mode if the file contains any nontext information. For
example, tar files contain nontext information and you, therefore, must
use the set file type binary command, and the remote machine must
understand the tar format. This is the same for all nontext format files.

To display the values of these variables, use the show command.

show [variables]. This is used to display the value of a variable estab­
lished with set.

space. This displays information on local disk space and usage.

statistics. This displays statistics about the most recent Kermit
transaction.

take [filename]. This runs an file containing Kermit commands. Note
that this cannot send any information after the connect is issued. For
this, you should use the script command. A typical use of the take com­
mand is to establish a connection and get a login prompt from the re­
mote machine. For example:

set modem hayes
set line /dev/ttyl
set speed 9600
dial 13125554404
connect

From here you must log on interactively. Remember that when you en­
ter Kermit, it does a take on the file .kermrc, and this is where you
would typically place commands like those above. If the above file were
named take.file, you would execute it as follows:

C-Kermit> take take.file

11.1.4 Conclusion

Nonnative Communications Tools 429

You would see the connected message and proceed as you normally
would.

Kermit is a very powerful tool which provides generic terminal emula­
tion and file transfer capabilities over serial lines. It runs on virtually
every platform and provides sufficient granularity of control that you
can do almost anything you would like to do when transferring files
between diverse machines. Transfers between mainframes, worksta­
tions, Macs, and PCs work without a hitch. One of the gotchas about
UNIX is that there is a newline character at the end of every line in­
stead of the more standard CR-LF. When transferring files between
machines, Kermit takes care of this for you. Also, when moving from an
ASCII to EBCDIC machine such as an IBM mainframe, Kermit will
perform the translation automatically.

For more information, print out the documentation provided with
Kermit; it is very good and includes more information than is here.

11.2 xmodem

11.2.1 Introduction

11.2.2 Usage

xmodem is a commonly used protocol and comes shipped with most
UNIX machines and PC and Mac terminal emulators. It is used by
tools like Kermit to transfer files and move information from one plat­
form to another.

xmodem is based on a client/server model where you define one end
of a communication link as the server and the other end as the client.
User interaction with xmodem is very similar to that used by Kermit.

xmodem is in fact a protocol and as such handles data transmission
errors and automatically generates retransmission of bad packets.
This allows the higher-level applications such as Kermit and the
xmodem application itself to assume that all packets received are cor­
rect and to proceed accordingly.

The latest version of xmodem (3.4) is probably the last if not one of
the last versions of xmodem to be produced since most work on
xmodem has stopped. While a good tool, xmodem has been superseded
by tools like zmodem and Kermit for file transfer. This distribution
does seem to work well, however, and is of value to anyone who wants
xmodem support and capabilities.

The basic syntax for the xmodem command is:

xmodem [rblrtlsblstll [ymkdlx] [file ...]

430 Nonnative AIX Developer Tools

11.2.3 Installation

where rb receives binary.
rt receives text.
sh sends binary.
st sends text.
y uses ymodem protocol.
muses MODEM7 batch protocol.
k uses XMODEM-lK file transfer protocol.
d deletes the xmodem.log file before file transfer is begun.
1 doesn't create the log file.
x is debug mode.
file ... is one or more files to be transferred.

One machine must be set to send a file while the other must be set to
receive a file. To interrupt any file transfer activity use C-x C-x.

A simple example follows. To receive a file named kevin.text, use:

$ xmodem rt kevin.text

On the serving machine, type:

$ xmodem st kevin.text

This will transfer the file across the link. Note that you can send multi­
ple files with the YMODEM protocol. A simple example follows. On the
receiving machine, use:

$ xmodem rty filel file2 file3

On the sending machine, type:

$ xmodem sty filel file2 file3

Three files will be transferred. See the man page for more information.

This software comes in three shar archives plus a patch for the
partOlarchive. Simply uncompress the archives (if necessary) and re­
move all comments up to the first shell command (in this case each
begins with an echo command). Once you have removed the preceding
comments, issue the command:

$ sh partxx

where xx is 01, 02, or 03.
Finally, you need to shar the patchl archive with the command:

11.2.4 Examples

Nonnative Communications Tools 431

$ sh patchl

This will update the files in the current directory.
Note that xmodem is built for the Berkeley system and as such as­

sumes certain include file structures. Tu properly build xmodem, you
need to use the Berkeley include files. However, due to certain other
problems, you must also make some changes to support some aspects of
the System V model. These changes are described in a section of the
README file which discusses the System V porting issues. What you
must do is:

1. Change includes in xmodem.h from <sys/time.h> to <time.h> and
from <sgtty.h> to <termio.h>

2. Change the string rindex to strrchr in batch.c

3. Change getput.o to getput.sysv.o in the first line of the makefile

Then you can build xmodem for AIX with the make command as fol­
lows:

$ make CC=gcc CFLAGS="-0 -traditional -I/usr/include"

This is all there is to building xmodem.

The best way to understand how to use the xmodem command is to
view a few simple examples.

Sending a file to a remote machine. Tu send a file to a remote machine,
first log on to the remote machine with any standard terminal emula­
tion program such as Kermit. Move to the directory to which you want
the file transferred. On the remote system, type:

$ xmodem -r testfile

This starts the xmodem protocol for receiving on the remote machine.
Now you must interrupt the terminal emulation session with the
proper command. For example, with Kermit you would type C-c while
when using Asynchronous Terminal Emulation (ATE), you would type
C-v. Each different terminal emulator has some command sequence to
interrupt your session and place you back on the local machine. See
your documentation for more details on your specific implementation.

Once you are back at your local prompt, you need to initiate a send
procedure from your terminal emulation system. For example, with
Kermit you would issue a send command from within Kermit; from

432 Nonnative AIX Developer Tools

11.2.5 Conclusion

many emulation programs, you can initiate a send from a pull down
menu or from within a terminal emulation program with a command
like send. For example, with ATE you would issue the command:

s testfile

Each implementation is different. See your documentation for details.
Note that the emulation program must support the xmodem proto­

col. It will say so explicitly if it does. File transfer occurs and is docu­
mented in terms of packets sent and error rates. Once the file transfer
occurs, you are returned to the interactive prompt on the local ma­
chine. You can then reconnect and log off or do whatever you would like
on the remote system.

Receiving from a remote machine. Log on to the remote machine as de­
scribed above and issue the command:

$ xmodem -s testf ile

Return to the local machine and issue a receive command. This will
receive the remote file testfile from the remote machine. Keep in mind
that you can rename the file on the local machine for the receive if you
would like.

Once the transfer is finished, return to the remote machine and log
out or perform any activities as you normally would.

xmodem is not only a protocol supported by most emulation and file
transfer programs but is an application as well. xmodem is available
for most platforms but may not be shipped by the vendor with their
implementation of UNIX. Ifit is not, see the implementation on the CD
that accompanies this book.

11.3 zmodem

11.3.1 Introduction

zmodem is first and foremost a file transfer protocol which allows file
transfer to occur over serial lines (local and dial-up.) It superseded
xmodem and ymodem and their associated protocols. While xmodem
accomplishes relatively simple file transfers and provides some basic
integrity checks, zmodem goes beyond this to provide multifile transfer
capabilities as well as a higher level of redundancy checking to ensure

11.3.2 Installation

11.3.3 Usage

Nonnative Communications Tools 433

file integrity. zmodem is the choice of most PC and UNIX people (per­
haps the Kermit people would object) for file transfer.

The zmodem tar file for the current version (2.6) is simple to unwind
with the basic tar command. Once you have done this, you need to com­
pile the two executables related to send and receive. There is a simple
Makefile which specifies System V, Xenix, 386 Xenix, or Berkeley 4.x. If
you simply type make, you will see what systems are directly sup­
ported. For example:

$make

Please study the #ifdef's in rbsb.c, rz.c and sz.c,
then type 'make system' where system is one of:

sysv SYSTEM 5 Unix
xenix
x386
bsd

System 3/5 Xenix
386 Xenix
Berkely 4.x BSD, and Ultrix

The implementation of System V seems to be relative to Version 2,
which is somewhat old and out of date; however, it may be useful for a
system based on a newer version of System V.

As an example, on an RS/6000, zmodem built using:

$ make bsd CC=gcc

The other thing to note is that the Makefile is very simple and is hard­
coded to use CC. gee seemed to work better, so it was necessary to mod­
ify the Makefile to use gee instead of CC. See the Makefile for details.

This is all there is to building zmodem. See the Makefile for more
information. There is also a way to interactively get code; see the
README file for more information.

There are two basic executables (rz and sz) and four associated sym­
bolic links to those files (rx, rb, sx, and sh.) The r executables refer to
receiving a file or files, while the s executables refer to sending one or
more files. The z refers to the zmodem protocol, the x to the xmodem
protocol, and the b to batch sending of files using either xmodem or
ymodem.

The basic syntax for the s commands is:

sz [-+abdefkLlNnopqTtuvyY] file ...
sb [-adfkqtuv] file ...
sx [-akqtuv] file

434 Nonnative AIX Developer Tools

sz [-oqtv] -c command
sz [-oqtv] -i command

where - denotes standard input.
+ appends transmit data to an existing file.
a converts newline characters to CR/LF for UNIX-to-PC file

transfer.
bis binary mode.
c command sends command to receiver for remote execution;

returns when command execution is complete.
d changes all . to I in the transmitted filename.
e escapes all control characters.
f sends full pathname.
i command sends command to receiver for execution; returns

when command is received.
k sends files using lK blocks instead of the default 128-byte

blocks.
L N uses ZMODEM packets of N length.
1 N pauses for confirmation of data receipt from receiver every

Nbytes.
n sends file if destination file does not exist; overwrites

desination file if source file is newer than the desination
file.

N sends file if destination file does not exist; overwrites
destination file if source file is newer or longer than the
destination file.

o disables 32-bit cyclical redundancy check (CRC).
p does not tranfer file if destination file already exists.
q is quiet mode.
r resumes interrupted file tranfer.
t tim changes timeout to tim tenths of a second.
u unlinks file after transmission.
v is verbose mode.
y overwrites any preexisting file.
Y overwrites any preexisting files and skips any files which do

not have the file with the same pathname on the
destination system.

file ... is one or more files to transfer.

The basic zmodem commands work just as the Kermit commands do.
You must first set up one end of a connection as a sender and then move
back to the other system and use the receive function.

A simple example uses Procomm to receive a file. First log on to the
UNIX machine with Procomm terminal emulation and then type:

Nonnative Communications Tools 435

$ sz *.c

Go back to Procomm and tell it to receive a file using the zmodem pro­
tocol. This will transfer all files ending with a .c suffix in the current
directory back to your PC.

The receiving end of zmodem works much the same way as the send
side. The basic syntax is:

rz [-+abepqtuv]
rb [-+abqtuv]
rz [-labceqtuv] file
[-] [V] rzCOMMAND

where - denotes using standard input.
+ appends transmit to an existing file.
a converts newline characters to CR/LF for UNIX-to-PC file

transfer.
b is binary mode.
c requests 16-bit CRC.
e escapes all control characters.
p does not tranfer file if destination file already exists.
q is quiet mode.
t tim changes timeout to tim tenths of a second.
u unlinks file after transmission.
v is verbose mode.
file is command file to append transferred information to.

The r commands are the receive-style commands which allow you to
receive a file or files from sender.

The rzCOMMAND allows you to take input to the receiver and exe­
cute it as a command file. This is typically used for mail and other re­
mote execution process needs.

zmodem supports a concept called AutoDownload, which means that
the other end of a connection is automatically started when it receives
the appropriate zmodem command. This is the case with a tool like
ProComm; it automatically begins a file tranfer when the opposite end
(typically on a UNIX machine) is invoked with a zmodem command.

There are several strange behaviors of this package with different
types of machines, but the one to watch out for with UNIX machines is
that zmodem tends to have problems when used in conjunction with cu.
Both attempt to take characters from the input stream, and this can
cause problems. You should use some other communications mecha­
nism when using zmodem with UNIX.

Much of this syntax was taken directly from the included manual
pages. Just look for *.1 in the directory and print or display them for
futher information.

436 Nonnative AIX Developer Tools

11.3.4 Conclusion

zmodem is a fairly sophisticated protocol which allows you to transfer
one or more files to a remote machine over a serial line. While zmodem
is both a tool and a protocol, it is included in most terminal emulation
and file transfer packages for PCs and other types of workstations.
This means that you can use this to transfer files to and from your
UNIX machine with a variety of different tools on the other end of the
link.

Chapter

12
Games

12.1 Introduction

No good book on free software would be complete without a chapter on
games. The CD included with this book includes several well-known
games that are available from the Internet. However, it certainly
doesn't do justice to the large collection of good games available from
the Internet.

The games have not been prebuilt, but the full distribution is avail­
able with each game included on the CD. A short description of each
game is included in this chapter. You will need to build them and pro­
ceed at your own risk. Good luck and have fun.

12.2 Games Overview

Here are the games available on the accompanying CD:

gnuchess

xboard

gnushogi

xshogi

gnugo

xtrek

cbzone

xconq

nethack

The GNU chess game; pretty cool

An XII-based interface to gnuchess

A game based on Shogi (Japanese chess)

The X-based interface to gnushogi

GNU's version of Go

X-based space war game

Network-based tank game

X-based strategy game; considered by some to be the
best multiplayer strategy game available today

Visual adventure game similar to Rogue

437

13.1 Archie

Chapter

13
Nonnative Internet Tools

With all of the work going on in the world of the Internet, no devel­
oper's book of tools would be complete without at least some of the most
widely used tools available for the Internet. Tools such as Archie, Go­
pher, and Mosaic are becoming the hottest pieces of software available
for UNIX platforms. Of course, the assumption is that you have a full
IP Internet connection before you can use these tools, and this book
won't get into the details of this connection; however, there is some dis­
cussion of this link in Chap. 6 as well as a listing of some possible In­
ternet access providers in App. D. Please see these two areas for more
information.

Again, the assumption in this chapter is that you have a full IP-level
connection to the Internet and that the speed is fairly high. All of these
tools will work on a lower-speed link; however, the performance will be
significantly impaired. Keep this in mind as you begin to use the tools
described in this chapter. Good luck.

13.1.1 Introduction

Archie is a tool which provides a search capability for the Internet.
With Archie you can search for specific strings in index databases
around the world. A more complete discussion of Archie and its capa­
bilities is contained in Chap. 6. See this for more information. This sec­
tion will focus exclusively on Archie and its capabilities on UNIX and,
more specifically, AIX.

One thing to note about this Archie client software is that it is based
on the Prospero protocol. This protocol offioads a significant amount of
work from the Archie servers and provides significantly better Archie

439

440 Nonnative AIX Developer Tools

13.1.2 Usage

query performance. The software included with this book is a subset of
the full Prospero archie client. See the accompanying documentation
for more details on the full archie client software.

The basic syntax for Archie is:

archie [-cers] [-a] [-1] [-t] [-m hits] [-N [level]] [-h hostname]
[-o filename] [-L] [-VJ [-v] string

where -c searches substrings and is case sensitive.
-e provides exact string match.
-r searches using regular expression.
-s searches substrings and is case insensitive.
-a places results in Alex filenames.
-1 places results in parsing format.
-t sorts the results by date.
-mhits specifies the maximum number of matches.
-N [level] sets the "niceness" of the query. This controls its wait

for resource.
-h hostname specifies the appropriate Archie server to query.
-o filename puts results into the file named filename.
-L lists the known Archie servers.
-V is verbose option.
string specifies a string to search for.

The best way to understand how to use Archie is through examples.
A simple example of a search using Archie is:

$ archie emacs

This will return all matches (up to 95) found on the default configured
Archie server. If you find that this is slow, you may try a different ar­
chie server. For example:

$ archie -L
$ archie -h archie.unl.edu emacs

These commands will first list the available Archie servers and then
allow you to pick one (in this case archie.unl.edu) to query for the
string emacs. Your default Archie server is established when you build
Archie (see next section); however, you can dynamically change your
Archie server by setting the environmental variable ARCHIE_HOST.
Set this to the primary Archie server for your session.

You can also use regular expressions in your search. For example:

13.1.3 Installation

13.1.4 Conclusion

Nonnative Internet Tools 441

$ archie ' [xX] [lL] isp'

This will search for any combination of x and 1 followed by a isp string
including X and L. Note that you need to quote the regular expression
to modify the shell's interpretation ofit. You can also use the - to denote
any search strings. For example:

$ archie -s - -string

denotes that you are going to perform a case-insensitive search for the
string -string. The use of a single hyphen(-) denotes that all text fol­
lowing the hyphen is the string to be searched for.

It is recommended that you use the nice capability of the Archie sys­
tem to prioritize your Archie queries. The nice priorities are similar to
those of UNIX nice and range from 0 (normal) to extremely nice
(10000) and nicest (32765). Choose the higher nice numbers to lower
your priority at the Archie server. For those jobs which are large or for
which you don't need quick response, use a higher nice number.

The installation of Archie is very straightforward for AIX. The
README file contains general notes; however, there is a file already
configured named Makefile.rs6k. Use this makefile to build archie. Use
the commands:

$ make -f Makefile.RS6k clean
$ make -f Makefile.RS6k

This will generate the Archie client system. To install this, use the com­
mand:

$ make -f Makefile.RS6k install

That is all there is to it.

Archie is a very powerful tool for queries of anonymous FTP sites
around the world. The Prospero client included with this book is only
one section of a much bigger software system which allows for much
more sophisticated functionality than Archie does. See its accompany­
ing documentation for more information on sites and other software ca­
pabilities of Prospero.

442 Nonnative AIX Developer Tools

13.2 Xarchie

13.2.1 Introduction

13.2.2 Usage

Xarchie is an Xll client interface to the Archie system. It is very simi­
lar in function to Archie as described above; however, it has a more so­
phisticated user interface based on the Xll GUI. Chap. 6 contains a
more detailed discussion of Archie. The purpose of this chapter is to
give you a basic understanding of the Xarchie system and to provide
you with enough information to proceed with its use.

Just as with Archie as described above, Xarchie uses the Prospero
protocol to improve the performance of the Archie server. See its accom­
panying documentation for more information.

As mentioned above, Xarchie is an Xll-based interface to the Archie
server system. Most interaction can be done with a mouse, requiring
very little knowledge of the underlying operation ofXarchie itself. The
basic Xarchie screen is shown in Fig. 13.1. As you can see, this screen is
quite straightforward and self-explanatory.

Figure 13.1 Xarchie screen.

13.2.3 Installation

Nonnative Internet Tools 443

You invoke Xarchie from the command line as follows:

xarchie [X Toolkit Options] [-host hostname] [-search
type I -e I -c 1-s 1-r I -ec I -es [-er l [-sort type 1-t 1-w] [-maxhi ts num]
[-offset num] [-nice lev 1-N lev] [-noscroll]
[-monol-grayl-color] [-debug numl-D num] [-helpl-?l

where X Toolkit Options can contain any number ofXll resource
definitions. Many of these are documented in the
Xarchie man page beginning on p. 14. Things such as
browser, font, and query resources can be controlled from
either the command line or the .Xdefaults file. See the
Xarchie man page for more details.

-host hostname specifies the Archie server name.
-e searches for exact match.
-c searches for substring.
-s searches for substring.
-r searches for regular expression.
-ec searches for subcase; exact match.
-es searches for substring; provides exact match.
-er searches for regular expression; provides exact match.
-sort type sets the sort mode for displaying archie responses.
-t sorts based on date.
-w sorts based on weight.
-maxhits num sets the maximum number of matches.
-offset num sets the offset of the Prospero query.
-nice level 1-N level sets the nice level.
-noscroll tells Xarchie not to scroll automatically.
-mono I -gray I-color determines the visual type of the display.
-deug level I -D level sets the debug level.
-help I-? displays help.

This is by no means an exhaustive listing or discussion of Xarchie;
however, much of the interaction with Xarchie occurs with a mouse and
not with a command line. Therefore, there is much that does not need
to be documented. There are a tremendous number of nonwidget and
widget resources that can be set which will dramatically affect the be­
havior of Xarchie. See the Xarchie man page for a discussion of all the
possibilities.

The installation of Xarchie can be quite complex; however, in this case
there is a relatively straightforward configure which should work. You
can attempt to build Xarchie using the commands:

444 Nonnative AIX Developer Tools

13.2.4 Conclusion

13.3 xrn

$./configure --prefix=/usr/local
$ /usr/bin/XII/xmkmf
$ make Makefiles
$ make

This first generates a new makefile template and then generates a new
Makefile which is appropriate for the current configuration. If you
want to install the appropriate files, use the command:

$ make install

Note that if you get s SIGSEGV violation and a corresponding core
dump, you may have to recompile with the -D_NONSTD_TYPES flag.

If you encounter difficulties with this method, you may have to ma­
nipulate your imake and xmkmf software. See Sec. 7 .17 for more infor­
mation.

There are a couple of things to watch out for in this file. See the IN­
STALL.RS6k and INSTALL files for more details. There is also a file
named PROBLEMS which contains a variety of information if you
have problems with this process. For example, if you have problems
with an unresolved reference XtStrings when you link the program, it
means that your Xll subsystem hasn't been completely installed. You
need to modify either the Makefile or the !makefile and rebuild the
product to avoid this linking problem. This and other problems are
documented in the PROBLEMS file.

The !makefile needed to be modified to support building xarchie. See
the !makefile and !makefile.orig files for differences.

Xarchie provides all of the functionality of the Archie client described
in the previous section and a signficantly more sophisticated interface.
The Xll interface makes it much easier for the average user to use this
interface and significantly increases the user's productivity.

13.3.1 Introduction

xrn is an Xll-based News reader. xm assumes the existence of a NNTP
1.5 or newer News server on your network which handles all interac­
tion with the Internet News system. xrn is merely a client which inter­
acts with an NNTP server on your local network. There are several
NNTP servers available. See uunet. uu.net for source code for these
servers. This section will focus exclusively on the xrn client software
system. Also see Chap. 6 for more information on News itself.

13.3.2 Usage

13.3.3 Installation

Nonnative Internet Tools 445

As stated earlier, xrn is an Xll-based News reader system which runs
on UNIX. xrn is a fairly simple system to use. Simply select the news­
group you would like to use and proceed as you would with any other
News reader.

You invoke xrn from the command line as follows:

xrn [options]

where options are many and varied. The man page describes all avail­
able options in great detail. It is not necessary, however, to use any of
these options to interact quite nicely with the xrn system. Instead of
documenting all options available with xrn, this section will merely
outline those capabilities which make xrn very useful. Examine the xrn
man page for more information on the large variety of options available
withxrn.

xrn uses the file .newsrc to determine what newsgroups it needs to
read. If this file does not exist, a new one will be created, and you will
automatically join the news.announce.newusers group.

xrn has four modes of operation: add, newsgroup, all, and article.
These modes control the basic operation of xrn itself. The add mode
allows you to add new newsgroups to your reader. Once you have added
a new group, it will remain and be automatically updated when you
enter a new session of xrn. Newsgroup mode provides information on
current newsgroups and gives you the ability to manipulate individual
articles within newsgroups. The all mode provides you with a sorted
list from which you can choose to add or manipulate newsgroups. Fi­
nally, the article mode allows you to manipulate groups or individual
articles within a newsgroup. You can mark articles or groups of articles
as read or unread as well as read individual articles. You can manually
or automatically move from one mode to another based on your interac­
tion with xrn.

This is a very basic introduction to xrn since it is extremely powerful
and flexible. See the xrn man page for much more information on xrn
usage and capabilities.

If you get an error message about not being able to connect to a serv­
er, you need to get the variable NNTPSERVER and reinvoke xrn. This
must be a NetNews server that is accessible before invoking xrn.

The installation of xrn is relatively straightforward. Before you can in­
voke xrn, you must first ensure you have an NNTP server (version 1.5
or newer) on your network to which xrn can connect. Next, you need to

446 Nonnative AIX Developer Tools

13.3.4 Conclusion

ensure that the NNTP server has been compiled with the XHDR
option.

Once you have ensured that the NNTP server is configured and in­
stalled correctly or at least is accessible, you need to build xrn.

There is a makefile named Makefile which you can use as follows:

$ make clean
$ make USRLIBDIR=/usr/lpg/XII/lib/RS
$ make install

This will generate and install a clean copy of the xrn system into the
/usr/local area since it is the default. If you have difficulties with this
method, you may need to generate some new build files before proceed­
ing with the compilation.

Once you have done this, you may install the software in /usr/local
with the standard command:

$ make install

You can modify the behavior of xrn by changing the contents of the
XU resource file. See the Xresources.sample file for examples. See also
the INSTALL.rs6k file for more details.

xrn provides a user-friendly interface to the Internet News system.
While other readers provide a command line interface, xrn provides a
true XU-based interface which makes it much easier to interact with
the News system.

13.4 Xgopher

13.4.1 Introduction

Xgopher is an XU interface to the Gopher system that was developed
at the University of Minnesota. Gopher allows you to scan the Internet
with a significantly enhanced interface from the normal FTP or telnet
interface. The XU interface to Gopher provides that much more useful
information in an XU format to make Gopher even more user friendly.

While Xgopher doesn't change the fundamental characteristics of the
Gopher subsystem, it does provide a significantly more user-friendly
interface to Gopher than the standard character interface. By provid­
ing all the advantages of the XU interface, Xgopher will enhance your
productivity and capabilities with Gopher.

This section does not discuss the function and capabilities of Gopher

13.4.2 Usage

<none>

I ""'

Nonnative Internet Tools 447

but instead focuses on the Xgopher system. See Chap. 6 for more infor­
mation on the Internet and Gopher itself.

The basic Xgopher screen is shown in Fig. 13.2. As you can see, Xgo­
pher provides some basic functionality related to the Gopher subsys­
tem. Buttons allow you to generate bookmarks, move around within
the Gopher space, and perform other configuration-related commands.
Through this Xll interface, you can quickly and easily begin to use the
Gopher system on the Internet.

The syntax for Xgopher is:

xgopher [rootserver [server port]] [-toolkitoption ...]

Select an item from a list below I
Unknown Directory

Bookmarks

Figure 13.2 Xgopher screen.

448 Nonnative AIX Developer Tools

where rootserver specifies the root Gopher server which to initially
attach to.

server port specifies the RPC port to attach to for the Gopher
service.

toolkitoption specifies an Xt tool kit option.

The rootserver and server port options are not required since you have
configured a default Gopher server for initial connection to in the con­
fig.h file as documented below. However, if you wish to connect to a dif­
ferent server than the default, you can specify this on the command
line. Finally, the toolkitoption options are the standard Xt Xll options.
See the man page on Xt for more information on these options. Suffice
it to say that they will merely affect the Xll characteristics of the Xgo­
pher application.

While this section is not intended to provide an exhaustive discus­
sion of Gopher, it is necessary to at least introduce the basic Gopher
concepts. Gopher provides you with a standardized menu interface to
resources on the Internet. Through the use of Gopher servers scattered
throughout the world, you can access a wealth of information in a
structured, organized way. By accessing a menu item, you transpar­
ently access a resource which may exist on a different machine or a
different network halfway around the world. The power of Gopher is
that you never have to know any of this to work effectively and to col­
lect resources and information on your desktop. See Chap. 6 for more
information on Gopher.

Xgopher works with a variety of other tools to enhance your Gopher
capabilities. Tools such as xloadimage and tn3270 provide you with ca­
pabilities that the standard Gopher system does not have. This is what
makes Xgopher so much more powerful than the standard Gopher cli­
ent. All of the tools you need to use Xgopher effectively are contained
either as a native part of AIX or are included on the accompanying CD.

Xgopher has a construct known as a bookmark. This is similar in
many ways to an actual bookmark that has been used for years in pa­
per books. By placing a bookmark at a particular location, you can
quickly access that location again from within the same or a different
session. This is a very powerful feature of Xgopher and is one that
should be used extensively as you become more proficient with it.

Xgopher also provides you with the capability to search text indexes
for specific information. By specifying a particular string, Xgopher will
search all relevant indexes and present you with a list of documenta­
tion with that string in them. This is a powerful feature which can sig­
nicantly enhance your productivity with Xgopher.

As mentioned earlier, Xgopher provides you with a variety of inter­
faces to other non-vtlOO types of terminals. It uses tn3270 to access

13.4.3 Installation

Nonnative Internet Tools 449

mainframe environments as well as tools such as xloadimage to view
and manipulate images. You can also manipulate binary files and
either execute or copy them to a local disk drive for later manipulation.

Finally, the options panel and Xll resources give you the ability to
manipulate virtually all characteristics and behaviors of the Xgopher
system. All the relevant resources are listed in the Xgoher.man file.

The installation of Xgopher is relatively straightforward. The com­
mands are:

$ xmkmf
$ make depend

Once you have done this, you need to compare your newly generated
Makefile with the file Makefile.aix32.r5 which was included in the dis­
tribution on the CD. You should note any changes relating to tool direc­
tories and other machine-specific information that may be different on
your machine. Once you have made these changes, you may want to
inspect the config.h file. This file contains information regarding the
initial Gopher server to connect to as well as other information for Xgo­
pher start-up. Modify these variables as you see fit before compiling
the program. Once you have modified the appropriate variables within
the config.h and Makefile, issue the command:

$ make

Next you may want to examine the application defaults file (an Xll­
based file most often known as the apps default file) Xgopher.ad. This
contains definitions which the Xll server will use to initialize the Xgo­
pher system on start-up. Review this file and modify any variables
which you may want changed. There is certainly nothing that you
should have to change here, and you can ignore this step if you would
like.

Next, you need to make this apps default file known to your Xll
server with the command:

$ xrdb -merge Xgopher.ad

If you have trouble with this, you can set the environment variable
XENVIRONMENT to point to this with commands like:

$ XENVIRONMENT=$XENVIRONMENT:'pwd'/Xgopher.ad

450 Nonnative AIX Developer Tools

13.4.4 Conclusion

or

export XENVIRONMENT

Either of these will make the Xll server aware of the existance of this
apps default file. Finally, you can install the Xgopher application with
the command:

$ make install

If you want to modify the installation directories you can either include
the specific directory on the make command line or modify the IN­
STALL directory in the Makefile.

This is all there is to creating Xgopher.

Xgopher provides an Xll-based interface to the Gopher system on the
Internet. By providing all of the capabilities of Gopher in an Xll inter­
face, Xgopher signficantly enhances your productivity in a Gopher en­
vironment.

Through the use of a menu-driven interface to the Internet and en­
hanced tools which provide image manipulation and enhanced file han­
dling, Xgopher is a must-use tool for any sophisticated developer.

13.5 Mosaic

13.5.1 Introduction

Mosaic is a multimedia viewer to the Internet. Through the use of a
new network paradigm known as the World Wide Web (WWW), Mosaic
provides a new type of view and new, more powerful capabilities to get
to information on the Internet. Mosaic was written at the National
Center for Supercomputer Applications (better known as NCSA) at the
University of Illinois at Champaign and is freely available on the In­
ternet from a variety oflocations. Due to licensing restrictions, it is not
included on the CD accompanying this book. It is freely available, how­
ever, to anyone who wishes to use it for personal use. So, the first thing
for you to do is to get a freely available copy from the Internet. Once
you have done this, you should proceed with the rest of this chapter.

This section will not discuss details of Mosaic but will instead pre­
sent a brief description of its capabilities and relevant information for
AIX. You will need to reference other documentation and books for spe­
cific information on Mosaic.

13.5.2 Usage

Nonnative Internet Tools 451

There is really very little to invoking Mosaic from the command line.
Simply type:

$ xmosaic

There are a variety of Xt options related to the Xll tool kit. See the
man pages for Xt for more information. All other information, including
start-up information, can be controlled and modified from within Mo­
saic itself.

The initial Mosaic screen is shown in Fig. 13.3. As you can see, this
screen presents a lot of information, but there are a few portions which
deserve special mention. The first is the Document Title bar. This pre-

Figure 13.3 The Mosaic screen.

452 Nonnative AIX Developer Tools

sents the title of the current document you are viewing. Mosaic is, in
actuality, only a front end to the WWW and uses other tools such as
image viewers to actually manipulate the data coming onto the local
display. Most of these tools are provided on the accompanying CD; how­
ever, there may be other tools which you want to use depending on your
specific use of Mosaic. See the Mosaic documentation for more details.

The next line represents the Document URL. URL stands for Univer­
sal Resource Locator and is a specification which tells Mosaic where to
get a specific resource and how. The basic syntax of this Document
URL is:

http://www.ncsa.uiuc.edu/SDC/Software/Mosaic/NCSA.html

The http specifies the hypertext transfer protocol; it is the standard
used by all Mosaic implementations to transfer information and coordi­
nate all conversations between server and client. You can specify other
protocols such as FTP to access other types of services if you so desire.

The next string, www.ncsa.uiuc.edu, specifies the Mosaic server to
which the Mosaic client is connected. This is a machine name on the
Internet which is serving the WWW. By changing this specification,
you can move from one machine to another transparently.

Finally, SDC/Software/Mosaic/NCSA.html specifies a file on www.
ncsa.uiuc.edu which contains all the information you are viewing on
your screen. It is important to understand that Mosaic is simply a
viewer to information on the Internet and has very little intelligence by
itself. The files which Mosaic uses are formatted in a special language
known as HyperText Markup Language (html). This is a specific lan­
guage which has many similarities to Standardized General Markup
Language (SGML), which is becoming the de facto standard for docu­
ment and image formatting throughout the world. html is well docu­
mented and actually quite easy to use. You can download the html file
for anything you are viewing by using the Options pulldown menu on
the Mosaic client interface.

The rest of the main screen is the main article which you are view­
ing. This can consist of images and text intermixed in any format. The
important thing to note about the text is that if the text is underlined
or highlighted, it is a hypertext link to a different resource on the In­
ternet. By simply clicking on this piece of underlined or highlighted
text, you will immediately transfer to that resource, and the appropri­
ate html document will be downloaded and viewed automatically. Re­
member that this document may be on a different machine or network
anywhere around the world.

Once you have done this, you will see some of the other buttons at
the bottom of the screen darken. This means that they are now avail-

13.5.3 Installation

13.5.4 Conclusion

Nonnative Internet Tools 453

able for your use. You can move back a document by simply clicking
back, can move forward by clicking on the forward button, and so forth.
You can also go to your original page known as the home page. This will
allow you to go back where you started with the click of a mouse.

There are many other interesting aspects of Mosaic which are be­
yond the scope of this book; however, it is hoped that this has whetted
your appetite for more information on Mosaic and its capabilities. See
any number of good books on the subject as well as the documentation
accompanying the Mosaic distribution.

It should be noted that there are a variety of commercial ports of the
Mosaic system available today. Each has different strengths and weak­
nesses relative to the freeware version; however, the NCSA version is,
overall, as good as the others and should be your first attempt at utiliz­
ing the WWW with Mosaic.

The installation of Mosaic is very straightforward:

$ cp Makefile.RS6k Makefile
$ make
$ make install

If you experience any problems with missing Xll libraries and include
files, you may have to issue the xmkmf command before building. 'lb do
this, use the command:

$ xmkmf

This generates a new Makefile. Next you need to compare the newly
created Makefile with Makefile.RS6k. Make any necessary changes to
ensure that the AIX-specific information for Mosaic is contained in
Makefile. Next issue the commands:

$ make
$ make install

This will generate the Mosaic system for you.

Mosaic is clearly the fastest growing tool in use of the Internet. By pro­
viding multimedia/hypermedia capabilities to the Internet, Mosaic has
opened up an entirely new paradigm for information access and ex­
change on the Internet. No developer will be able to afford to be with­
out it.

Appendix

A
How to Get Software from the CD

This CD was designed and tested for AIX 3.2.x and AIX 4.1. Depending
on the driver software with your operating system, the filenames and
extensions may be uppercase, lowercase, or mixed case. Unfortunately,
because AIX 3.2.x doesn't support Rock Ridge extensions, I was forced
to use ISO 9660 compliant filenames for all compressed tar files and
thus lose some of the power and capabilities of executing this soft­
ware directly from the CD on AIX 3.2.x. This was most definitely a
compromise. In addition, for all source code and executables on the
disk, there are compressed tar files for all software under ./EXEC and
./SRC. Copy these if you have trouble accessing the native software.

To mount the CD on an AIX machine, use the command:

mount -r -v cdrfs /dev/cdO /cdrom

Note that if you have more than one CD device on your machine, you
may have to use a different device than /dev/cdO. Also, /cdrom can be
replaced with any empty directory. You should coordinate with your
system administrator on these issues if you have any questions.

If you are running AIX 3.2.x, you will need to copy the appropriate
file from the CD onto a hard disk and rename it. All files follow the
naming convention outlined below except that they are in lowercase.

A filename without an extension is simply that filename and can be
copied directly as named to a hard disk. A filename with an extension
of TAZ is a compressed tar file. When you copy the file to the hard disk,
replace the TAZ extension with tar.Z. For example, the file for bash is
BASH1142.TAZ. Copy this to the hard disk with a command like:

$ cp /cdrom/EXEC/BASH1142.TAZ /usr/local/bashll42.tar.Z

455

456 Appendix A

From here you need to uncompress and untar the file with the com­
mands:

$ uncompress bash1142.tar
$ tar xvf bash1142.tar

This will uncompress and unwind the tar file in your current directory.
You can examine the contents of the tar file with the command:

$ tar tvf bash1142.tar

There are two areas of special interest on the CD. The first is the
binary area under the EXEC directory; the other is the product source
code directories under the SRC directory.

If you examine the ./EXEC/USR/LOCAL/BIN, you will find all the
precompiled files for all the included software packages. These file­
names have all been included unmodified for your ease of use, and you
can copy them directly from the CD to a hard disk and run them. Under
AIX 3.2.x the driver software for the CD does not support the standard
UNIX filename convention. This means that filenames may be trun­
cated or may contain unusual characters. You can either access these
files as presented or access them through the compressed tar files on
the CD as documented above. In fact, if you desire, you can execute
them directly from the CD. With AIX 4.1, you should be able to view
these. These filenames may cause problems on AIX 3.2.x because they
do not necessarily conform to the ISO 9660 standard. Note that these
are also included in the compressed tar files in the EXEC directory, so
you can get at them this way as well.

In the ./SRC directory, you will see both files with the .TAZ suffix,
which designates compressed tar files, and you will see files which will
vary from machine to machine depending on your driver. You can treat
the . TAZ files the same as those described above. The other files are
directories and you should be able to move into these directories and
examine the files directly. You may see strange filenames since these
also do not conform to the ISO 9660 specification. This was done to al­
low machines which support Rock Ridge extensions (such as AIX 4.1) to
manipulate these files just as if they were a UNIX filesystem. On cer­
tain OSs, including AIX 3.2.x, you may either copy these files directly
to the hard disk or move the equivalent compressed tar files from the
./src directory as described above.

The only file that does not conform to the conventions listed above is
./SRCtrCL 7 4B4.PAZ. The expanded filename of this file is tcl7 4b4.patch.Z.
This is a compressed patch file for the patch utility.

B.1 Archives

Appendix

B
General Notes About

the Software on the CD

This appendix outlines some general notes and information concerning
the software on the accompanying CD. This software was pulled from
the Internet in a variety of ways and from a variety of locations.

The general installation sections in this book assume that you are
using the software provided on the CD. The general differences be­
tween the software on the CD and the ones you can pull from the In­
ternet are documented below. Keep these in mind as you go to the
Internet for more software and systems. You may have to modify the
build behavior depending on where you get the software.

Some of the information on this CD was retrieved from the machine
aixpdslib.seas.ucla.edu. This is a very large AIX software server main­
tained at UCLA. It contains a variety of software systems built for the
AIX environment. You should use this machine to retrieve systems for
your AIX machine if at all possible. They have done work building spe­
cial makefiles (see the next section) and documenting strange and un­
usual behavior when building or running a particular application on
AIX.

There are other archives, particularly prep.ai.mit.edu, which contain
a large number of software systems. You should feel free to pull from
these locations to get these types of software systems; however, they
won't typically have the types of AIX-specific information that
aixpdslib.seas.ucla.edu has; therefore, you may have more work to
build a particular product.

457

458 Appendix B

As you know, there are thousands of UNIX server nodes on the In­
ternet from which you can pull software systems which may be useful
to you. The only way for you to discover more is by investigation. Good
luck and have fun.

B.2 Makefiles and Installation Notes

Some of the systems will have a file Makefile.rs6k or Makefile.RS6k,
while others will not. This turns out to be the first thing you should
look for. If you find the Makefile.RS6k files, you should then look for a
file INSTALL.rs6k or INSTALL.RS6k, which will document many is­
sues with respect to the particular AIX makefile in question. These are
very powerful tools which have been modified and provided by the peo­
ple who maintain the aixpdslib.seas.ucla.edu system.

Note, however, that the AIX-specific makefiles may or may not work.
There are a variety of system-specific things that are built into them,
including Xll locations (see below), tool locations, choices (see below),
and other oddities. If you have trouble building the software systems
with the provided makefiles, you may need to use the xmkmf facility to
generate new, machine-specific makefiles for your particular machine
configuration. See the INSTALL files for more details on this.

B.3 xmkmf/imake

xmkmf and imake are documented in Chap. 7 of this book; however,
there are specific issues related to the software on this CD which de­
serve mention in this appendix. Some of the software systems on the
accompanying CD contain imakefiles which can produce new, machine­
specific makefiles. Several of the INSTALL files suggest that you may
want to use xmkmf to generate new makefiles before building the soft­
ware system.

If you have trouble with unresolved symbols or files that cannot be
found, use the xmkmf facility provided with this CD to generate new,
machine-specific makefiles from which you can then generate your
software. This may save you a significant amount of manual effort in
modifying the makefiles and troubleshooting the results.

B.4 M.l.T. and IBM X11 Libraries and Include Files

Many of the tools included on this CD use the M.I.T. Xll libraries as
the default against which to link. The default location for these librar­
ies is /usr/local/XIIR5. Because of this, many of the Makfile.RS6k files

General Notes About the Software on the CD 459

reference dependencies in this directory. There are two ways you can
handle this. A portion of the X11R5 libraries in the /usr/local area has
been included on the CD. You can also change the references from
/usr/local/X11R5 to /usr/lpp/Xll. This will point the makefiles to the lo­
cation on the RS/6000 where the Xl1R5 libraries exist. Note that you
need to be running AIXWindows 1.2 before you can ensure that you are
running Xl1R5.

Most tools assume you are running X11R5. If you are running an ear­
lier or later release, you will need to see the documentation for details
on exactly what you need to do to make these systems build correctly.

B.5 Tool Locations and Choices

Many of the build scripts assume that you are going to use GNU tools
such as gee, bison, and gawk to build your applications. This may or
may not cause trouble in your build procedures. Check the beginning
definitions in the makefiles before building for the first time to ensure
that you have all referenced tools installed. You can use many of the
tools provided with AIX, such as cc, sed, and awk; however, you may or
may not have strange problems depending on the dependence of the
makefile logic on the functionality of the tools it is using. Watch out for
this one.

B.6 Common Errors

People have been having a problem with dynamic links when running
the prebuilt version ofX-stuffs from this library. The typical error mes­
sages are:

Could not load program [program_name].

Member shr4.o not found or file not an archive.

Member shr4.o not found or file not an archive.

Could not load library libXt.a[shr4.o].

Error was: No such file or directory.

They occur because the programs were built using Xll M.I.T. libraries
which are not compatible with those of IBM. If this is the case, get the
compressed tar file of the source code and recompile on your system
using your libraries. This is explained on the aixpdslib.seas.ucla.edu
system and documents a typical problem encountered on systems re­
trieved from their server. It is related to the Xll discussion above.
Watch out for this one.

460 Appendix B

There is also a relatively common error relating to the XtStrings ref­
erence. You may see this as an unresolved reference in a variety of sys­
tems when you go to link the final executable. If this occurs, you may
need to modify either the imakefile or tb.e appropriate makefile to in­
clude the macro definition XTSTRINGDEFINES. If you include this
with the compilation directives, this will usually remove this linking
problem. Try this or see the INSTALL or PROBLEMS files for more
details.

Appendix

c
General Licenses

C.1 GNU General Public License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA
02139, USA Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public License is intended to guarantee your
freedom to share and change free software-to make sure the software is free for all its
users. This General Public License applies to most of the Free Software Foundation's
software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified
by someone else and passed on, we want its recipients to know that what they have is not
the original, so that any problems introduced by others will not reflect on the original
authors' reputations.

461

462 Appendix C

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that redistributors of a free program will individually obtain patent
licenses, in effect making the program proprietary. 'lb prevent this, we have made it clear
that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The "Program", below, refers to any such program or work, and a "work
based on the Program" means either the Program or any derivative work under copyright
law: that is to say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter, translation is
included without limitation in the term ''modification".) Each licensee is addressed as
"you".

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted, and
the output from the Program is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program). Whether that is
true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus form­
ing a work based on the Program, and copy and distribute such modifications or work
under the terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a whole at
no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary way, to
print or display an announcement including an appropriate copyright notice and a notice
that there is no warranty (or else, saying that you provide a warranty) and that users
may redistribute the program under these conditions, and telling the user how to view a
copy of this License. (Exception: ifthe Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Program, and can be reasonably considered inde­
pendent and separate works in themselves, then this License, and its terms, do not apply
to those sections when you distribute them as separate works. But when you distribute
the same sections as part of a whole which is a work based on the Program, the distribu­
tion of the whole must be on the terms of this License, whose permissions for other licen­
sees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribu­
tion of derivative or collective works based on the Program.

General Licenses 463

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided that
you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium cus­
tomarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed un­
der the terms of Sections 1 and 2 above on a medium customarily used for software inter­
change; or,

c) Accompany it with the information you received as to the offer to distribute corre­
sponding source code. (This alternative is allowed only for noncommercial distribution
and only if you received the program in object code or executable form with such an offer,
in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifica­
tions to it. For an executable work, complete source code means all the source code for all
modules it contains, plus any associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a special exception,
the source code distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler, kernel, and so on) of
the operating system on which the executable runs, unless that component itself accom­
panies the executable.

If distribution of executable or object code is made by offering access to copy from a
designated place, then offering equivalent access to copy the source code from the same
place counts as distribution of the source code, even though third parties are not com­
pelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or distrib­
ute the Program is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you indi­
cate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute or
modify the Program subject to these terms and conditions. You may not impose any fur­
ther restrictions on the recipients' exercise of the rights granted herein. You are not re­
sponsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For exam­
ple, if a patent license would not permit royalty-free redistribution of the Program by all
those who receive copies directly or indirectly through you, then the only way you could
satisfy both it and this License would be to refrain entirely from distribution of the
Program.

464 Appendix C

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a whole is
intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the sole
purpose of protecting the integrity of the free software distribution system, which is im­
plemented by public license practices. Many people have made generous contributions to
the wide range of software distributed through that system in reliance on consistent ap­
plication of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder who places
the Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written in
the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a ver­
sion number of this License which applies to it and "any later version", you have the option
of following the terms and conditions either of that version or of any later version publish­
ed by the Free Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose
distribution conditions are different, write to the author to ask for permission. For soft­
ware which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the
two goals of preserving the free status of all derivatives of our free software and of pro­
moting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD­
ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WAR­
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LI­
ABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDEN­
TAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN AD­
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

General Licenses 465

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the
public, the best way to achieve this is to make it free software which everyone can redis­
tribute and change under these terms.

Tu do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a briefidea of what it does.> Copyright (C)
19yy <name of author>

This program is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge,
MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in

an interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author Gnomovision comes with

ABSOLUTELY NO WARRANTY; for details type 'show w'. This is free software, and you
are welcome to redistribute it under certain conditions; type 'show c' for details.

The hypothetical commands 'show w' and 'show c' should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than 'show w' and 'show c'; they could even be mouse-clicks or menu items-what­
ever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program 'Gnomovision'
(which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1April1989 Ty Coon, President of Vice
This General Public License does not permit incorporating your program into proprie­

tary programs. If your program is a subroutine library, you may consider it more useful
to permit linking proprietary applications with the library. If this is what you want to do,
use the GNU Library General Public License instead of this License.

C.2 GNU Library General Public License

GNU LIBRARY GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc. 675 Mass Ave, Cambridge, MA02139,
USA Everyone is permitted to copy and distribute verbatim copies of this license docu­
ment, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes
with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and
change it. By contrast, the GNU General Public Licenses are intended to guarantee your
freedom to share and change free software--to make sure the software is free for all its
users.

466 Appendix C

This license, the Library General Public License, applies to some specially designated
Free Software Foundation software, and to any other libraries whose authors decide to
use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you
must give the recipients all the rights that we gave you. You must make sure that they,
too, receive or can get the source code. If you link a program with the library, you must
provide complete object files to the recipients so that they can relink them with the li­
brary, after making changes to the library and recompiling it. And you must show them
these terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2)
offer you this license which gives you legal permission to copy, distribute and/or modify
the library.

Also, for each distributor's protection, we want to make certain that everyone under­
stands that there is no warranty for this free library. If the library is modified by some­
one else and passed on, we want its recipients to know that what they have is not the
original version, so that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to
avoid the danger that companies distributing free software will individually obtain pat­
ent licenses, thus in effect transforming the program into proprietary software. Tu pre­
vent this, we have made it clear that any patent must be licensed for everyone's free use
or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU Gen­
eral Public License, which was designed for utility programs. This license, the GNU Li­
brary General Public License, applies to certain designated libraries. This license is quite
different from the ordinary one; be sure to read it in full, and don't assume that anything
in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the
distinction we usually make between modifying or adding to a program and simply using
it. Linking a program with a library, without changing the library, is in some sense sim­
ply using the library, and is analogous to running a utility program or application pro­
gram. However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as
such.

Because of this blurred distinction, using the ordinary General Public License for li­
braries did not effectively promote software sharing, because most developers did not use
the libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those
programs of all benefit from the free status of the libraries themselves. This Library
General Public License is intended to permit developers of non-free programs to use free
libraries, while preserving your freedom as a user of such programs to change the free
libraries that are incorporated in them. (We have not seen how to achieve this as regards
changes in header files, but we have achieved it as regards changes in the actual func­
tions of the Library.) The hope is that this will lead to faster development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay
close attention to the difference between a "work based on the library" and a "work that
uses the library". The former contains code derived from the library, while the latter only
works together with the library.

General Licenses 467

Note that it is possible for a library to be covered by the ordinary General Public Li­
cense rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice
placed by the copyright holder or other authorized party saying it may be distributed
under the terms of this Library General Public License (also called "this License"). Each
licensee is addressed as "you".

A "library" means a collection of software functions and/or data prepared so as to be
conveniently linked with application programs (which use some of those functions and
data) to form executables.

The "Library'', below, refers to any such software library or work which has been dis­
tributed under these terms. A "work based on the Library" means either the Library or
any derivative work under copyright law: that is to say, a work containing the Library or
a portion of it, either verbatim or with modifications and/or translated straightforwardly
into another language. (Hereinafter, translation is included without limitation in the
term "modification".)

"Source code" for a work means the preferred form of the work for making modifica­
tions to it. For a library, complete source code means all the source code for all modules it
contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running a program using the Library is not
restricted, and output from such a program is covered only if its contents constitute a
work based on the Library (independent of the use of the Library in a tool for writing it).
Whether that is true depends on what the Library does and what the program that uses
the Library does.

1. You may copy and distribute verbatim copies of the Library's complete source code
as you receive it, in any medium, provided that you conspicuously and appropriately pub­
lish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and distrib­
ute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming
a work based on the Library, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices stating that you

changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no charge to all third parties

under the terms of this License.
d) If a facility in the modified Library refers to a function or a table of data to be

supplied by an application program that uses the facility, other than as an argument
passed when the facility is invoked, then you must make a good faith effort to ensure
that, in the event an application does not supply such function or table, the facility still
operates, and performs whatever part of its purpose remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is
entirely well-defined independent of the application. Therefore, Subsection 2d requires
that any application-supplied function or table used by this function must be optional: if
the application does not supply it, the square root function must still compute square
roots.)

These requirements apply to the modified work as a whole. If identifiable sections of
that work are not derived from the Library, and can be reasonably considered inde-

468 Appendix C

pendent and separate works in themselves, then this License, and its terms, do not apply
to those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Library, the distribution of
the whole must be on the terms of this License, whose permissions for other licensees
extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribu­
tion of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Li­
brary (or with a work based on the Library) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License in­
stead of this License to a given copy of the Library. To do this, you must alter all the
notices that refer to this License, so that they refer to the ordinary GNU General Public
License, version 2, instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordi­
nary GNU General Public License applies to all subsequent copies and derivative works
made from that copy.

This option is useful when you wish to copy part of the code of the Library into a
program that is not a library.

4. You may copy and distribute the Library (or a portion or derivative of it, under
Section 2) in object code or executable form under the terms of Sections 1 and 2 above
provided that you accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed
to work with the Library by being compiled or linked with it, is called a "work that uses
the Library". Such a work, in isolation, is not a derivative work of the Library, and there­
fore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library creates an ex­
ecutable that is a derivative of the Library (because it contains portions of the Library),
rather than a "work that uses the library". The executable is therefore covered by this
License. Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file that is part of
the Library, the object code for the work may be a derivative work of the Library even
though the source code is not. Whether this is true is especially significant if the work
can be linked without the Library, or if the work is itself a library. The threshold for this
to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and ac­
cessors, and small macros and small inline functions (ten lines or less in length), then the
use of the object file is unrestricted, regardless of whether it is legally a derivative work.
(Executables containing this object code plus portions of the Library will still fall under
Section 6.)

Otherwise, ifthe work is a derivative of the Library, you may distribute the object code
for the work under the terms of Section 6. Any executables containing that work also fall
under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a ''work that
uses the Library" with the Library to produce a work containing portions of the Library,
and distribute that work under terms of your choice, provided that the terms permit

General Licenses 469

modification of the work for the customer's own use and reverse engineering for debug­
ging such modifications.

You must give prominent notice with each copy of the work that the Library is used in
it and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include
the copyright notice for the Library among them, as well as a reference directing the user
to the copy of this License. Also, you must do one of these things:

a) Accompany the work with the complete corresponding machine-readable source
code for the Library including whatever changes were used in the work (which must be
distributed under Sections 1 and 2 above); and, ifthe work is an executable linked with
the Library, with the complete machine-readable "work that uses the Library", as object
code and/or source code, so that the user can modify the Library and then relink to pro­
duce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be
able to recompile the application to use the modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 6a, above, for a charge no more than the
cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated
place, offer equivalent access to copy the above specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the "work that uses the Library" must include
any data and utility programs needed for reproducing the executable from it. However,
as a special exception, the source code distributed need not include anything that is nor­
mally distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other pro­
prietary libraries that do not normally accompany the operating system. Such a contra­
diction means you cannot use both them and the Library together in an executable that
you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in
a single library together with other library facilities not covered by this License, and
distribute such a combined library, provided that the separate distribution of the work
based on the Library and of the other library facilities is otherwise permitted, and pro­
vided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Li­
brary, uncombined with any other library facilities. This must be distributed under the
terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined form
of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as
expressly provided under this License. Any attempt otherwise to copy, modify, sublicense,
link with, or distribute the Library is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in full
compliance.

9. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Library or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Library (or any work based on the Library), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Library or works based on it.

470 Appendix C

10. Each time you redistribute the Library (or any work based on the Library), the
recipient automatically receives a license from the original licensor to copy, distribute,
link with or modify the Library subject to these terms and conditions. You may not im­
pose any further restrictions on the recipients' exercise of the rights granted herein. You
are not responsible for enforcing compliance by third parties to this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for
any other reason (not limited to patent issues), conditions are imposed on you (whether
by court order, agreement or otherwise) that contradict the conditions of this License,
they do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Library at all. For exam­
ple, if a patent license would not permit royalty-free redistribution of the Library by all
those who receive copies directly or indirectly through you, then the only way you could
satisfy both it and this License would be to refrain entirely from distribution of the Li­
brary.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply, and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the sole
purpose of protecting the integrity of the free software distribution system which is im­
plemented by public license practices. Many people have made generous contributions to
the wide range of software distributed through that system in reliance on consistent ap­
plication of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries
either by patents or by copyrighted interfaces, the original copyright holder who places
the Library under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written in
the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the
Library General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new problems or con­
cerns. Each version is given a distinguishing version number. If the Library specifies a
version number of this License which applies to it and "any later version", you have the
option of following the terms and conditions either of that version or of any later ver­
sion published by the Free Software Foundation. If the Library does not specify a license
version number, you may choose any version ever published by the Free Software
Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose
distribution conditions are incompatible with these, write to the author to ask for permis­
sion. For software which is copyrighted by the Free Software Foundation, write to the
Free Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD­
ERS AND/OR OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WAR­
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT

General Licenses 471

LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR
OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO
IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LI­
ABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDEN­
TAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY
OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN AD­
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These 'limns to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the
public, we recommend making it free software that everyone can redistribute and
change. You can do so by permitting redistribution under these terms (or, alternatively,
under the terms of the ordinary General Public License).

Tu apply these terms, attach the following notices to the library. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of warranty;
and each file should have at least the "copyright" line and a pointer to where the full
notice is found.

<one line to give the library's name and a brief idea of what it does.> Copyright (C)
<year> <name of author>

This library is free software; you can redistribute it and/or modify it under the terms
of the GNU Library General Public License as published by the Free Software Founda­
tion; either version 2 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WAR­
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Library General Public License for more
details.

You should have received a copy of the GNU Library General Public License along
with this library; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cam­
bridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your school, if any,

to sign a "copyright disclaimer" for the library, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the library 'Frob' (a library
for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1April1990 Ty Coon, President of Vice
That's all there is to it!

472 Appendix C

C.3 Most Recent GETTING.GNU.SOFTWARE File

-*-text-*- Getting GNU Software, 14 May 94
Copyright (C) 1986, 1987, 1988, 1989, 1990, 1992, 1993, 1994 Free Software Foundation,
Inc.

Permission is granted to anyone to make or distribute verbatim copies of this docu­
ment provided that the copyright notice and this permission notice are preserved, and
that the distributor grants the recipient permission for further redistribution as permit­
ted by this notice.

* GNU and the Free Software Foundation

Project GNU is organized as part of the Free Software Foundation, Inc. The Free Soft­
ware Foundation has the following goals: 1) to create GNU as a full development/operat­
ing system. 2) to distribute GNU and other useful software with source code and
permission to copy and redistribute.

Further information on the rationale for GNU is in file '/pub/gnu/GNUinfo/GNU' (all
files referred to are on the Internet host prep.ai.mit.edu).

Information on GNU Internet mailing lists and gnUSENET newsgroups can be found
in '/pub/gnu/GNUinfo/MAILINGLISTS',

* How To Get The Software

The easiest way to get a copy of the distribution is from someone else who has it. You need
not ask for permission to do so, or tell any one else; just copy it. The second easiest is to
ftp it over the Internet. The third easiest way is to uucp it. Ftp and uucp information is
in '/pub/gnu/GNUinfo/FTP'.

If you cannot get a copy any of these ways, or if you would feel more confident getting
copies straight from us, or if you would like to get some funds to us to help in our efforts,
you can order one from the Free Software Foundation. See '/pub/gnu/GNUinfo/DISTRIB'
and '/pub/gnu/GNUinfo/ORDERS'.

*What format are the *.gz files in?

Because the unix 'compress' utility is patented (by two separate patents, in fact), we can­
not use it; it's not free software.

Therefore, the GNU Project has chosen a new compression utility, 'gzip', which is free
of any known software patents and which tends to compress better anyway. As of March
1993, all compressed files in the GNU anonymous FTP area, 'prep.ai.mit.edu:/pub/gnu',
have been converted to the new format. Files compressed with this new compression pro­
gram end in '.gz' (as opposed to 'compress'-compressed files, which end in '.Z').

Gzip can uncompress 'compress'-compressed files and 'pack'-compressed files (which
end in '.z'). This is possible because the various decompression algorithms are not pat­
ented-only compression is.

The gzip program is available from any GNU mirror site (see '/pub/gnu/GNUinfo/FTP'
for a list of mirror sites) in shar, tar, or gzipped tar format (for those who already have a
prior version of gzip and want faster data transmission). It works on virtually every unix
system, MSDOS, OS/2, and VMS.

* Available Software

**GNU Emacs
The GNU Emacs distribution includes:
-manual source in TeX format.
-an enhanced regex (regular expression) library.
See files '/pub/gnu/GNUinfo/MACHINES*' for the status of porting Emacs to various

machines and operating systems.
** C Scheme - a block structured dialect of LISP.

The Free Software Foundation distributes C Scheme for the MIT Scheme Project on
its Scheme tapes. The full ftp distribution can be gotten via anonymous FTP from alt­
dorf.ai.mit.edu in directory /archive.

General Licenses 473

Problems with the C Scheme distribution and its ftp distribution should be referred to:
g-cscheme@martigny.ai.mit.edu. There are two general mailing lists: heme@mar­
tigny.ai.mit.eduand heme@mc.lcs.mit.edu. Send requests to join either list to:
heme-request@martigny.ai.mit.edu or heme-request@mc.lcs.mit.edu.
** Other GNU Software

A full list of available software are in '/pub/gnu/GNUinfo/ORDERS' and '/pub/gnu/DE­
SCRIPTIONS'.

*No Warranties

We distribute software in the hope that it will be useful, but without any warranty. No
author or distributor of this software accepts responsibility to anyone for the conse­
quences of using it or for whether it serves any particular purpose or works at all, unless
he says so in writing.

* If You Like The Software

If you like the software developed and distributed by the Free Software Foundation,
please express your satisfaction with a donation. Your donations will help to support the
foundation and make our future efforts successful, including a complete development
and operating system, called GNU (Gnu's Not Un*x), which will run Un*x user pro­
grams. Please note that donations and funds raised by selling tapes, CD-ROMs, and
floppy diskettes are the major source of funding for our work.

For more information on GNU and the Foundation, contact us at Internet address
gnu@prep.ai.mit.edu or the foundation's US Mail address found in file '/pub/gnu/
GNUinfo/ORDERS'.

C.4 Author's Disclaimer

The author and distributor of this software is in no way responsible for anything related
to either the performance or distribution of the software on the accompanying CD. The
author is also not responsible for any maintenance or support activities on anything re­
lated to the software or the distribution of the software. The author also stands by all
Copyright and permission notices of all software on the CD.

C.5 M.l.T.'s Disclaimer

Copyright 1991 by the Massachusetts Institute of Technology.
Permission to use, copy, modify, and distribute this document for any purpose and

without fee is hereby granted, provided that the above copyright notice and this permis­
sion notice appear in all copies, and that the name of MIT not be used in advertising or
publicity pertaining to this document without specific, written prior permission. MIT
makes no representations about the suitability of this document for any purpose. It is
provided "as is" without express or implied warranty.

C.6 The Regents of the University of California Disclaimer

Flex carries the copyright used for BSD software, slightly modified because it originated
at the Lawrence Berkeley (not Livermore!) Laboratory, which operates under a contract
with the Department of Energy:

Copyright (c) 1990 The Regents of the University of California. All rights reserved.
This code is derived from software contributed to Berkeley by Vern Paxson.
The United States Government has rights in this work pursuant to contract no. DE­

AC03-76SF00098 between the United States Department of Energy and the University
of California.

Redistribution and use in source and binary forms are permitted provided that: (1)

474 Appendix C

source distributions retain this entire copyright notice and comment, and (2) distribu­
tions including binaries display the following acknowledgement: "This product includes
software developed by the University of California, Berkeley and its contributors" in the
documentation or other materials provided with the distribution and in all advertising
materials mentioning features or use of this software. Neither the name of the Univer­
sity nor the names of its contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED "AS IS" AND WITHOUT ANY EXPRESS OR IM­
PLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WAR­
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

This basically says "do whatever you please with this software except remove this
notice or take advantage of the University's (or the flex authors') name."

Note that the "flex.skel" scanner skeleton carries no copyright notice. You are free to
do whatever you please with scanners generated using flex; for them, you are not even
bound by the above copyright.

C.7 AT&T/BellCore Copyright

Copyright 1990 by AT&T Bell Laboratories and Bellcore.

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both that the copyright notice and this permission notice
and warranty disclaimer appear in supporting documentation, and that the names of
AT&T Bell Laboratories or Bellcore or any of their entities not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior
permission.

AT&T and Bellcore disclaim all warranties with regard to this software, including all
implied warranties of merchantability and fitness. In no event shall AT&T or Bellcore be
liable for any special, indirect or consequential damages or any damages whatsoever re­
sulting from loss of use, data or profits, whether in an action of contract, negligence or
other tortious action, arising out of or in connection with the use or performance of this
software.
***/

C.8 pbmplus Copyright

COPYRIGHTS

All the software in this package, whether by me or by a contributor, has a copyright
similar to this one:

Permission to use, copy, modify, and distribute this software and its documentation for
any purpose and without fee is hereby granted, provided that the above copyright notice
appear in all copies and that both that copyright notice and this permission notice appear
in supporting documentation. This software is provided "as is" without express or im­
plied warranty.

Many people get confused by this legalese, especially the part about "without fee."
Does this mean you can't charge for any product that uses PBMPLUS? No. All it means
is that you don't have to pay me. You can do what you want with this software. Build it
into your package, steal code from it, whatever. Just be sure to let people know where it
came from.

General Licenses 475

C.9 gnuplot Copyright

!*
*Copyright (C) 1986 - 1993 Thomas Williams, Colin Kelley

*
* Permission to use, copy, and distribute this software and its
* documentation for any purpose with or without fee is hereby granted,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation.

*
* Permission to modify the software is granted, but not the right to
* distribute the modified code. Modifications are to be distributed
* as patches to released version.

*
*This software is provided "as is" without express or implied warranty.

*
*
*AUTHORS

*
* Original Software:
* Thomas Williams, Colin Kelley.

*
* Gnuplot 2.0 additions:
*Russell Lang, Dave Kotz, John Campbell.

*
* Gnuplot 3.0 additions:
* Gershon Elber and many others.

*
* Send your comments or suggestions to
* info-gnuplot@dartmouth.edu.
* This is a mailing list; to join it send a note to
* info-gnuplot-request@dartmouth.edu.
* Send bug reports to
* bug-gnuplot@dartmouth.edu.
*!

C.10 The GNU Manifesto

The GNU Manifesto

Copyright (C) 1985 Richard M. Stallman (Copying permission notice at the end.)

What's GNU? Gnu's Not Unix!

GNU, which stands for Gnu's Not Unix, is the name for the complete Unix-compatible
software system which I am writing so that I can give it away free to everyone who can
use it. Several other volunteers are helping me. Contributions of time, money, programs
and equipment are greatly needed.

So far we have an Emacs text editor with Lisp for writing editor commands, a source
level debugger, a yacc-compatible parser generator, a linker, and around 35 utilities. A
shell (command interpreter) is nearly completed. A new portable optimizing C compiler
has compiled itself and may be released this year. An initial kernel exists but many more
features are needed to emulate Unix. When the kernel and compiler are finished, it will
be possible to distribute a GNU system suitable for program development. We will use
@TeX{} as our text formatter, but an nroff is being worked on. We will use the free, port-

476 Appendix C

able X window system as well. After this we will add a portable Common Lisp, an Empire
game, a spreadsheet, and hundreds of other things, plus on-line documentation. We hope
to supply, eventually, everything useful that normally comes with a Unix system, and
more.

GNU will be able to run Unix programs, but will not be identical to Unix. We will
make all improvements that are convenient, based on our experience with other operat­
ing systems. In particular, we plan to have longer filenames, file version numbers, a
crashprooffile system, filename completion perhaps, terminal-independent display sup­
port, and perhaps eventually a Lisp-based window system through which several Lisp
programs and ordinary Unix programs can share a screen. Both C and Lisp will be avail­
able as system programming languages. We will try to support UUCP, MIT Chaosnet,
and Internet protocols for communication.

GNU is aimed initially at machines in the 68000/16000 class with virtual memory,
because they are the easiest machines to make it run on. The extra effort to make it run
on smaller machines will be left to someone who wants to use it on them.

To avoid horrible confusion, please pronounce the 'G' in the word 'GNU' when it is the
name of this project.

WhoAmI?

I am Richard Stallman, inventor of the original much-imitated EMACS editor, formerly
at the Artificial Intelligence Lab at MIT. I have worked extensively on compilers, editors,
debuggers, command interpreters, the Incompatible Timesharing System and the Lisp
Machine operating system. I pioneered terminal-independent display support in ITS.
Since then I have implemented one crashproof file system and two window systems for
Lisp machines, and designed a third window system now being implemented; this one
will be ported to many systems including use in GNU. [Historical note: The window sys­
tem project was not completed; GNU now plans to use the X window system.]

Why I Must Write GNU

I consider that the golden rule requires that ifl like a program I must share it with other
people who like it. Software sellers want to divide the users and conquer them, making
each user agree not to share with others. I refuse to break solidarity with other users in
this way. I cannot in good conscience sign a nondisclosure agreement or a software li­
cense agreement. For years I worked within the Artificial Intelligence Lab to resist such
tendencies and other inhospitalities, but eventually they had gone too far: I could not
remain in an institution where such things are done for me against my will.

So that I can continue to use computers without dishonor, I have decided to put to­
gether a sufficient body of free software so that I will be able to get along without any
software that is not free. I have resigned from the AI lab to deny MIT any legal excuse to
prevent me from giving GNU away.

Why GNU Will Be Compatible with Unix

Unix is not my ideal system, but it is not too bad. The essential features of Unix seem to
be good ones, and I think I can fill in what Unix lacks without spoiling them. And a
system compatible with Unix would be convenient for many other people to adopt.

How GNU Will Be Available

GNU is not in the public domain. Everyone will be permitted to modify and redistribute
GNU, but no distributor will be allowed to restrict its further redistribution. That is to
say, proprietary modifications will not be allowed. I want to make sure that all versions
of GNU remain free.

Why Many Other Programmers Want to Help

I have found many other programmers who are excited about GNU and want to help.
Many programmers are unhappy about the commercialization of system software. It

General Licenses 477

may enable them to make more money, but it requires them to feel in conflict with other
programmers in general rather than feel as comrades. The fundamental act of friendship
among programmers is the sharing of programs; marketing arrangements now typically
used essentially forbid programmers to treat others as friends. The purchaser of software
must choose between friendship and obeying the law. Naturally, many decide that friend­
ship is more important. But those who believe in law often do not feel at ease with either
choice. They become cynical and think that programming is just a way of making money.

By working on and using GNU rather than proprietary programs, we can be hospita­
ble to everyone and obey the law. In addition, GNU serves as an example to inspire and
a banner to rally others to join us in sharing. This can give us a feeling of harmony which
is impossible if we use software that is not free. For about half the programmers I talk to,
this is an important happiness that money cannot replace.

How You Can Contribute

I am asking computer manufacturers for donations of machines and money. I'm asking
individuals for donations of programs and work.

One consequence you can expect if you donate machines is that GNU will run on them
at an early date. The machines should be complete, ready to use systems, approved for
use in a residential area, and not in need of sophisticated cooling or power.

I have found very many programmers eager to contribute part-time work for GNU.
For most projects, such part-time distributed work would be very hard to coordinate; the
independently-written parts would not work together. But for the particular task of re­
placing Unix, this problem is absent. A complete Unix system contains hundreds of util­
ity programs, each of which is documented separately. Most interface specifications are
fixed by Unix compatibility. If each contributor can write a compatible replacement for a
single Unix utility, and make it work properly in place of the original on a Unix system,
then these utilities will work right when put together. Even allowing for Murphy to cre­
ate a few unexpected problems, assembling these components will be a feasible task.
(The kernel will require closer communication and will be worked on by a small, tight
group.)

If I get donations of money, I may be able to hire a few people full or part time. The
salary won't be high by programmers' standards, but I'm looking for people for whom
building community spirit is as important as making money. I view this as a way of ena­
bling dedicated people to devote their full energies to working on GNU by sparing them
the need to make a living in another way.

Why All Computer Users Will Benefit

Once GNU is written, everyone will be able to obtain good system software free, just like
air.

This means much more than just saving everyone the price of a Unix license. It means
that much wasteful duplication of system programming effort will be avoided. This effort
can go instead into advancing the state of the art.

Complete system sources will be available to everyone. As a result, a user who needs
changes in the system will always be free to make them himself, or hire any available
programmer or company to make them for him. Users will no longer be at the mercy of
one programmer or company which owns the sources and is in sole position to make
changes.

Schools will be able to provide a much more educational environment by encouraging
all students to study and improve the system code. Harvard's computer lab used to have
the policy that no program could be installed on the system if its sources were not on
public display, and upheld it by actually refusing to install certain programs. I was very
much inspired by this.

Finally, the overhead of considering who owns the system software and what one is or
is not entitled to do with it will be lifted.

Arrangements to make people pay for using a program, including licensing of copies,

478 Appendix C

always incur a tremendous cost to society through the cumbersome mechanisms neces­
sary to figure out how much (that is, which programs) a person must pay for. And only a
police state can force everyone to obey them. Consider a space station where air must be
manufactured at great cost: charging each breather per liter of air may be fair, but wear­
ing the metered gas mask all day and all night is intolerable even if everyone can afford
to pay the air bill. And the TV cameras everywhere to see if you ever take the mask off
are outrageous. It's better to support the air plant with a head tax and chuck the masks.

Copying all or parts of a program is as natural to a programmer as breathing, and as
productive. It ought to be as free.

Some Easily Rebutted Objections to GNU's Goals

''Nobody will use it ifit is free, because that means they can't rely on any support." ''You
have to charge for the program to pay for providing the support."

If people would rather pay for GNU plus service than get GNU free without service, a
company to provide just service to people who have obtained GNU free ought to be
profitable.

We must distinguish between support in the form of real programming work and mere
handholding. The former is something one cannot rely on from a software vendor. If your
problem is not shared by enough people, the vendor will tell you to get lost.

If your business needs to be able to rely on support, the only way is to have all the
necessary sources and tools. Then you can hire any available person to fix your problem;
you are not at the mercy of any individual. With Unix, the price of sources puts this out
of consideration for most businesses. With GNU this will be easy. It is still possible for
there to be no available competent person, but this problem cannot be blamed on distri­
bution arrangements. GNU does not eliminate all the world's problems, only some of
them. Meanwhile, the users who know nothing about computers need handholding: do­
ing things for them which they could easily do themselves but don't know how.

Such services could be provided by companies that sell just hand-holding and repair
service. Ifit is true that users would rather spend money and get a product with service,
they will also be willing to buy the service having got the product free. The service com­
panies will compete in quality and price; users will not be tied to any particular one.
Meanwhile, those of us who don't need the service should be able to use the program
without paying for the service.

"You cannot reach many people without advertising, and you must charge for the pro­
gram to support that." "It's no use advertising a program people can get free."

There are various forms of free or very cheap publicity that can be used to inform
numbers of computer users about something like GNU. But it may be true that one can
reach more microcomputer users with advertising. If this is really so, a business which
advertises the service of copying and mailing GNU for a fee ought to be successful enough
to pay for its advertising and more. This way, only the users who benefit from the adver­
tising pay for it. On the other hand, if many people get GNU from their friends, and such
companies don't succeed, this will show that advertising was not really necessary to
spread GNU. Why is it that free market advocates don't want to let the free market
decide this?

"My company needs a proprietary operating system to get a competitive edge."
GNU will remove operating system software from the realm of competition. You will

not be able to get an edge in this area, but neither will your competitors be able to get an
edge over you. You and they will compete in other areas, while benefiting mutually in this
one. If your business is selling an operating system, you will not like GNU, but that's
tough on you. If your business is something else, GNU can save you from being pushed
into the expensive business of selling operating systems.

I would like to see GNU development supported by gifts from many manufacturers
and users, reducing the cost to each.

"Don't programmers deserve a reward for their creativity?"
If anything deserves a reward, it is social contribution. Creativity can be a social con-

General Licenses 479

tribution, but only in so far as society is free to use the results. If programmers deserve
to be rewarded for creating innovative programs, by the same token they deserve to be
punished if they restrict the use of these programs.

"Shouldn't a programmer be able to ask for a reward for his creativity?"
There is nothing wrong with wanting pay for work, or seeking to maximize one's in­

come, as long as one does not use means that are destructive. But the means customary
in the field of software today are based on destruction.

Extracting money from users of a program by restricting their use of it is destructive
because the restrictions reduce the amount and the ways that the program can be used.
This reduces the amount of wealth that humanity derives from the program. When there
is a deliberate choice to restrict, the harmful consequences are deliberate destruction.

The reason a good citizen does not use such destructive means to become wealthier is
that, if everyone did so, we would all become poorer from the mutual destructiveness.
This is Kantian ethics; or, the Golden Rule. Since I do not like the consequences that
result if everyone hoards information, I am required to consider it wrong for one to do so.
Specifically, the desire to be rewarded for one's creativity does not justify depriving the
world in general of all or part of that creativity.

"Won't programmers starve?"
I could answer that nobody is forced to be a programmer. Most of us cannot manage to

get any money for standing on the street and making faces. But we are not, as a result,
condemned to spend our lives standing on the street making faces, and starving. We do
something else.

But that is the wrong answer because it accepts the questioner's implicit assumption:
that without ownership of software, programmers cannot possibly be paid a cent. Sup­
posedly it is all or nothing.

The real reason programmers will not starve is that it will still be possible for them to
get paid for programming; just not paid as much as now.

Restricting copying is not the only basis for business in software. It is the most com­
mon basis because it brings in the most money. If it were prohibited, or rejected by the
customer, software business would move to other bases of organization which are now
used less often. There are always numerous ways to organize any kind of business.

Probably programming will not be as lucrative on the new basis as it is now. But that
is not an argument against the change. It is not considered an injustice that sales clerks
make the salaries that they now do. If programmers made the same, that would not be an
injustice either. (In practice they would still make considerably more than that.)

"Don't people have a right to control how their creativity is used?"
"Control over the use of one's ideas" really constitutes control over other people's lives;

and it is usually used to make their lives more difficult.
People who have studied the issue of intellectual property rights carefully (such as

lawyers) say that there is no intrinsic right to intellectual property. The kinds of sup­
posed intellectual property rights that the government recognizes were created by spe­
cific acts of legislation for specific purposes.

For example, the patent system was established to encourage inventors to disclose the
details of their inventions. Its purpose was to help society rather than to help inventors.
At the time, the life span of 17 years for a patent was short compared with the rate of
advance of the state of the art. Since patents are an issue only among manufacturers, for
whom the cost and effort of a license agreement are small compared with setting up
production, the patents often do not do much harm. They do not obstruct most individu­
als who use patented products.

The idea of copyright did not exist in ancient times, when authors frequently copied
other authors at length in works of non-fiction. This practice was useful, and is the only
way many authors' works have survived even in part. The copyright system was created
expressly for the purpose of encouraging authorship. In the domain for which it was in­
vented-books, which could be copied economically only on a printing press-it did little
harm, and did not obstruct most of the individuals who read the books.

480 Appendix C

All intellectual property rights are just licenses granted by society because it was
thought, rightly or wrongly, that society as a whole would benefit by granting them. But
in any particular situation, we have to ask: are we really better off granting such license?
What kind of act are we licensing a person to do?

The case of programs today is very different from that of books a hundred years ago.
The fact that the easiest way to copy a program is from one neighbor to another, the fact
that a program has both source code and object code which are distinct, and the fact that
a program is used rather than read and enjoyed, combine to create a situation in which a
person who enforces a copyright is harming society as a whole both materially and spiri­
tually; in which a person should not do so regardless of whether the law enables him to.

"Competition makes things get done better."
The paradigm of competition is a race: by rewarding the winner, we encourage every­

one to run faster. When capitalism really works this way, it does a good job; but its de­
fenders are wrong in assuming it always works this way. If the runners forget why the
reward is offered and become intent on winning, no matter how, they may find other
strategies-such as, attacking other runners. If the runners get into a fist fight, they will
all finish late. Proprietary and secret software is the moral equivalent of runners in a fist
fight. Sad to say, the only referee we've got does not seem to object to fights; he just
regulates them ("For every ten yards you run, you are allowed one kick."). He really
ought to break them up, and penalize runners for even trying to fight.

"Won't everyone stop programming without a monetary incentive?"
Actually, many people will program with absolutely no monetary incentive. Program­

ming has an irresistible fascination for some people, usually the people who are best at
it. There is no shortage of professional musicians who keep at it even though they have
no hope of making a living that way.

But really this question, though commonly asked, is not appropriate to the situation.
Pay for programmers will not disappear, only become less. So the right question is, will
anyone program with a reduced monetary incentive? My experience shows that they will.

For more than ten years, many of the world's best programmers worked at the Artifi­
cial Intelligence Lab for far less money than they could have had anywhere else. They got
many kinds of non-monetary rewards: fame and appreciation, for example. And creativ­
ity is also fun, a reward in itself.

Then most of them left when offered a chance to do the same interesting work for a lot
of money.

What the facts show is that people will program for reasons other than riches; but if
given a chance to make a lot of money as well, they will come to expect and demand it.
Low-paying organizations do poorly in competition with high-paying ones, but they do
not have to do badly ifthe high-paying ones are banned.

''We need the programmers desperately. If they demand that we stop helping our neigh­
bors, we have to obey."

You're never so desperate that you have to obey this sort of demand. Remember: mil­
lions for defense, but not a cent for tribute!

"Programmers need to make a living somehow."
In the short run, this is true. However, there are plenty of ways that programmers

could make a living without selling the right to use a program. This way is customary
now because it brings programmers and businessmen the most money, not because it is
the only way to make a living. It is easy to find other ways if you want to find them. Here
are a number of examples.

A manufacturer introducing a new computer will pay for the porting of operating sys­
tems onto the new hardware.

The sale of teaching, hand-holding and maintenance services could also employ
programmers.

People with new ideas could distribute programs as freeware, asking for donations
from satisfied users, or selling hand-holding services. I have met people who are already
working this way successfully.

General Licenses 481

Users with related needs can form users' groups, and pay dues. A group would contract
with programming companies to write programs that the group's members would like to
use.

All sorts of development can be funded with a Software Tax:
Suppose everyone who buys a computer has to pay x percent of the price as a software

tax. The government gives this to an agency like the NSF to spend on software develop­
ment.

But if the computer buyer makes a donation to software development himself, he can
take a credit against the tax. He can donate to the project of his own choosing-often,
chosen because he hopes to use the results when it is done. He can take a credit for any
amount of donation up to the total tax he had to pay.

The total tax rate could be decided by a vote of the payers of the tax, weighted accord-
ing to the amount they will be taxed on.

The consequences:
* the computer-using community supports software development.
* this community decides what level of support is needed.
* users who care which projects their share is spent on can choose this for themselves.
In the long run, making programs free is a step toward the post-scarcity world, where

nobody will have to work very hard just to make a living. People will be free to devote
themselves to activities that are fun, such as programming, after spending the necessary
ten hours a week on required tasks such as legislation, family counseling, robot repair
and asteroid prospecting. There will be no need to be able to make a living from program­
ming.

We have already greatly reduced the amount of work that the whole society must do
for its actual productivity, but only a little of this has translated itself into leisure for
workers because much nonproductive activity is required to accompany productive activ­
ity. The main causes of this are bureaucracy and isometric struggles against competition.
Free software will greatly reduce these drains in the area of software production. We
must do this, in order for technical gains in productivity to translate into less work for us.

Copyright (C) 1985 Richard M. Stallman
Permission is granted to anyone to make or distribute verbatim copies of this docu­

ment as received, in any medium, provided that the copyright notice and permission no­
tice are preserved, and that the distributor grants the recipient permission for further
redistribution as permitted by this notice.

Modified versions may not be made.

C.11 aixpdslib Warnings File

aixpdslib is an AIX archive machine maintained by the University of California Los An­
geles. Several of the utilities on the accompanying CD were retrieved from the
aixpdslib.seas.ucla.edu machine. They maintain a Warnings file with each system they
distribute, which follows:

This software is provided AS IS, and neither the staff of SEASnet, The UCLA School
of Engineering and Applied Science, The University of California at Los Angeles, the
Regents of the University of California or any other person or entity is responsible for the
condition of the programs in this archive. Nor are we responsible for the results of any
attempt to copy, retrieve, compile, link or execute any program obtained from these ar­
chives. Nor are we responsible for the results if you follow any of the advice in any mes­
sage, news item, or note contained in these archives.

In other words \flcaveat emptor\fR, or in this case: Let the retriever beware.
Redundantly, for each author's protection and ours, we want to make certain that eve­

ryone understands that there is no warranty for this free software.

482 Appendix C

NO WARRANTY

A. BECAUSE THE PROGRAM IS AVAILABLE FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE
LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLD­
ERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WAR­
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

B. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY
MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LI­
ABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDEN­
TAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY
OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN AD­
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

The above two paragraphs are from the Free Software Foundation Copyright.

Appendix

D
Where to Go to

Get More Information

0.1 Some Recommended Books

There are a wealth of books available in this market, but I thought it
was important to point out a few of the better ones to get you started in
the right direction. Some of the better are:

Any book written by Andrew Tanenbaum

Any Nutshell book (O'Reilly & Associates, Inc.)

Life with UNIX by Don Libes and Sandy Ressler

Any X Window System book by O'Reilly & Associates

The Matrix by John Quarterman

Any C programming books by Rex Jaeschke

UNIX System Security by Patrick Wood and Stephen Kochan

UNIX Network Programming by W Richard Stevens

There are many others but you can't go wrong with those listed above.

0.2 Where You Can Get Help

Besides the free resources of the Internet including e-mail to experts
and newsfeeds, you can purchase expertise. Lists of consultants exist
in a variety of packages and areas on the Internet. See the file in the
emacs distribution under the etc subdirectory entitled SERVICE. This
has a listing of a variety of people who offer services and support con­
tracts for free software, including most of the packages discussed in
this book. If you are a commercial customer, this may not be a bad way
to go.

483

Appendix

E
Internet Access Providers

The following is an approximate list of Internet service providers. To
get a more current list, send e-mail to info-deli-server@netcom.com and
put the text "send PDIAL" in the body of the message. You can also get
a list by sending e-mail to dlist@ora.com.

TABLE E.1 Nationwide and International Service Providers

Provider

AARNet
AARNet Support
GPO Box 1142
Canberra
ACT 2601 Australia
+616 249 3385
+616 249 1369 (fax)
aarnet@aarnet.edu.au

ANS (Advanced Networks
and Services)

2901 Hubbard Road
Ann Arbor, Ml 48105
(313) 663-7610
maloff nis.ans.net

a2i Communications
1211 Park Avenue #202
San Jose, CA 95132
info@rahul.net

CLASS (Cooperative Library
Agency for Systems and
Services)

1415 Koll Circle, Suite 101
San Jose, CA 95112-4698
(800) 488-4559
(408) 453-0444

Demon Internet Services
Demon System Ltd.
42 Hendon Lane
London N3 lTT England
+44 81349 0063
internet@demon.co.uk

Coverage

Australia

Worldwide

Continental U.S.

National

UK

Services

Dedicated (9.6KB-2MB)
SLIP PPP

Dedicated (l.5MB-45MB)

Dial-up

Dial-up (member libraries
only)

Dial-up
SLIP PPP

485

486 Appendix E

TABLE E.1 Nationwide and International Service Providers (Continued)

Provider

EU net
EUnet Support
+31 20 59 25 12 4
glenneu.net

PACCOM
University of Hawaii, ICS
2565 The Mall
Honolulu, HI 96822
(808) 956-3499
torben)hawaii.edu

PSI (Performance Systems
International)

1180 Sunrise Valley Drive
Suite 1100
Reston VA22091
(703) 620-6651
(703) 629-4586 (fax)
PSlLink info@psi.com

SprintLink
Sprintlnternational
13221 Woodland Park Drive
Herndon, VA 22071
(703) 904-2156
mkisericml.icp.net

UKnet
UKnet Support
+44 227 475497
postmasteruknet.ac.uk

UUNET
Suite 570
3110 Fairview Park Drive
Falls Church, VA 22042
(703) 204-8000
(800) 4UU-NET3
info@uunet.uu.net

The Well
27 Gate Five Road
Sausalito, CA 94965
(415) 332-4335
info@well.sf.ca. us

The World
Software Tool and Die
1330 Beacon Street
Brookline, MA 02146
(617) 739-0202

Coverage Services

Europe

Pacific Rim countries Dedicated (64KB-1.5MB)

Worldwide

Worldwide

UK countries

Worldwide

Access through X.25
and direct dial

U.S.

Dedicated (9.6KB-1.5MB)
Dial-up
SLIP PPP/UUI

Dedicated (9.6 KB-1.5MB)

Dedicated
Dial-up
UUCP

Dial-up
SLIP PPP
UUCP
Dedicated (9.6 KB-1.5MB)

Dial-up

Dial-up

Internet Access Providers 487

TABLE E.2 Regional Service Providers

Provider

AccessNB*
Computer Science

Department
University of New

Brunswick
Fredericton, NB
Canada E3B SA4

ARnet*
Walter Neilson
(403) 450-5188

BARRNET
William Yundt
Pine Hall Room 115
Stanford, CA 94305-4122
(415) 723-3104
gd. whyforsythe.stanford.edu

BC net
BCnet Headquarters
419-6356 Agricultural

Road
Vancouver, BC
Canada V6T 1Z2
(604) 822-3932
BCnet'ubc.ca

CERFnet
P.O. Box 85608
San Diego, CA 92186-9784
(800) 876-2373
(619) 455-3990
helpcerf.net

CICnet
ITI Building
2901 Hubbard Drive,

PodG
Ann Arbor, MI 48105
(313) 998-6103
infocic.net

Colorado Supernet
CSM ComputerCenter
Colorado School of Mines
1500 Illinois
Golden, CO 80401
(303) 273-3471
(303) 273-3475 (fax)
info'csn.org

Coverage

New Brunswick,
Canada

Alberta, Canada

San Francisco, CA
area

International-Far
East

British Columbia

Southern CA
International (Korea,

Mexico, Brazil)

Midwest U.S. (IL IA
MN WI MI OH IN)

Colorado

Services

Dedicated
Dial-up
SLIP PPP

Dedicated (2.4KB-1.5MB)

Dedicated (14.4KB-1.5MB)
Dial-up (local and 800)
SLIP PPP

Dedicated (56KB-1.5MB)

Dedicated (9.6KB-1.5MB)
Dial-up
SLIP PPP

488 Appendix E

TABLE E.2 Regional Service Providers (Continued)

Provider

CONCERT
P.O. Box 12889
3021 Cornwallis Road
Research Triangle Park, NC

27709
(919) 248-1404
jrrconcert.net

JVNCnet
Sergio Reker
6 von Neuman Hall
Princeton University
Princeton, NJ 08544
(609) 258-2400
market jvnc.net

Los Nettos
Information Sciences Institute
4676 Admiralty Way
Marina del Rey, CA 90292
(310) 822-1511
los-nettos-requestisi.edu

MBnet*
Gerry Miller
(204) 474-8230

Merit
2200 Bonisteel Boulevard
Ann Arbor, MI 48109-2112
(313) 764-9430
jogdenmerit.edu

MIDnet
29WESC
University of Nebraska
Lincoln, NE 68588
(402) 472-5032
dmfWestie. unl.edu

MRNet (Minnesota Regional
Network)

511 11th Avenue So, Box 212
Minneapolis, MN 55415
(612) 342-2570
(612) 344-1716 (fax)

MSEN
628 Brooks Street
Ann Arbor, MI 48103
(313) 998-4562
info@msen.com

Coverage

North Carolina

Northeastern U.S.
International

Services

Dedicated (56KB-1.5MB)
Dial-up
SLIPPPP/UU

Dedicated (19.2KB-1.5MB)
Dial-up
SLIP

Los Angeleo, CA area Dedicated (1.5MB)

Manitoba, Canada

Michigan

U.S. Plains States
(NE OKAR SD IA,

KAMO)

Minnesota

Michigan

Dedicated (56KB-1.5MB)

Dedicated (56KB-1.5MB)

Dedicated (9.6KB-1.5MB)
Dial-up
SLIP PPP

Internet Access Providers 489

TABLE E.2 Regional Service Providers (Continued)

Provider

NEARnet
BBN Systems and

Technologies
10 Moulton Street
Cambridge, MA 02138
(617) 873-8730
nearnet-join@nic.near.net

N etcom Online
Communication Services

4000 Moorepark Avenue #209
San Jose, CA 95117
(408) 544-8649
ruthann@netcom.com

netlllinois
Joel Hartman
Bradley University
1501 W. Bradley Avenue
Peoria, IL 61625
(309) 677-3100
(309) 677-3092 (fax)
joel@lbradley.edu

NevadaNet
University of Nevada System
Computing Services
4505 Maryland Parkway
Las Vegas, NV 89154
(702) 739-3557

NLnet*
WilfBussey
(709) 737-8329

North WestNet
2435 233rd Place NE
Redmond, WA 98053
(206) 562-3000
ehood@nwnet.net

NSTN*
900 Windmill Road, Suite 107
Dartmouth, Nova Scotia
Canada B3B 137
(902) 468-NSTN
parsons@hawk.nstn.ns.ca

NYSERNet
111 College Place,

Room3-211
Syracuse, NY 13244
(315) 443-4120
luckett@nysernet.org

Coverage

Northeastern U.S.
(ME NH VT CT RI
MA)

Services

Dedicated (9.6KB-10MB)
SLIP PPP

California Dial-up
(6 locations in major
cities)

Illinois

Nevada

Newfoundland,
Labrador

Dedicated (9.6KB-l.5MB)

Dedicated

Northwestern U.S. Dedicated (56KB-l.5MB)
(OR WA WY AK ID,
MTND),

Nova Scotia, Canada

New York State

Dedicated (9.6KB-56KB)
SLIP
Dial-up

Dedicated (9.6KB-l.5MB)
SLIP PPP
Dial-up

490 Appendix E

TABLE E.2 Regional Service Providers (Continued)

Provider

OARnet
Ohio Supercomputer Center
1224 Kinnear Road
Columbus, OH 43085
(614) 292-9248
alisonosc.edu

On et
4 Bancroft Avenue Rm 116
University of Toronto
Toronto, Ontario
Canada M58 lAl
(416) 978-5058
eugenevm.utcs.utoronto.ca

PEIN et*
Jim Hancock
(902) 566-0450

PREPnet
305 S. Craig, 2nd Floor
Pittsburgh, PA 15213
(412) 268-7870
twb+andrew.cmu.edu

PSCnet
Pittsburgh Supercomputing

Center
4400 5th Avenue
Pittsburgh, PA 15213
(412) 268-4960
hastingspsc.edu

RISQ*
3744 Jean Brillant
Bureau500
Montreal, Quebec
Canada H3T lPl
(514) 340-5700
turcotteclouso.crim.ca

SASK#net*
Dean C. Jones
(306) 966-4860

Sesquinet
Office of Networking and

Computing
Rice University
Houston, TX 77251-1892
(713) 527-4988
farrellrice.edu

Coverage

Ohio

Ontario, Canada

Prince Edward
Island, Canada

Pennsylvania
(Dial-in from outside

PA accepted),

Eastern U.S.

Quebec

Saskatchewan

Texas
Latin America

Services

Dedicated
SLIP PPP

Dedicated (9.6KB-l.5MB)
SLIP PPP

Dedicated

Dedicated (8.6KB-l.5MB)
SLIP

TABLE E.2 Regional Service Providers {Continued)

Provider

SURAnet
1353 Computer Science Center
8400 Baltimore Boulevard
College Park, MD 20740-2498
(301) 982-4600
info@sura.net

THEnet
Texas Higher Education
Network Information Center
Austin, TX 78712
(512) 471-2444
infonic. the.net

VE Rn et
Academic Computing Center
Gilmer Hall
University of Virginia
Charlottesville, VA 22903
(804) 924-0616
jajvirginia.edu

Westnet
601 S. Howes, 6th Floor South
Colorado State University
Fort Collins, CO 80523
(303) 491-7260
pburnsyuma.acns.colostate.edu

WiscNet
1210 W. Dayton Street
Madison, WI 53706
(608) 262-8874
dorlmacc.wisc.edu

WV net*
Harper Grimm
(304) 293-5192
ccO 110416)wvnvm. wvnet.edu

Coverage

Southeastern U.S.
Caribbean Islands

Texas
Limited Mexico

Virginia

Western U.S.
(AZ CO ID NM,
UTWY)

Wisconsin

West Virginia

Internet Access Providers 491

Services

Dedicated (56KB-1.5MB)

Dedicated (1.5MB)
Dial-up
SLIP

Dedicated
Dial-up
SLIP PPP

Dedicated

Dedicated (56KB-1.5MB)
Limited Dial-up/SLIP PPP

Dedicated
SLIP PPP

*The information for these providers was not verified by press time.

.rhosts, 68
Adobe, 381
aixpdslib, 181
anonymous FTP, 143, 148
apropos,342
Archie, 163, 439
archive library, 59, 117
archives, 457
ARPAnet, 137
assembler, 233
Asynchronous Terminal Emulation

(ATE), 431
autosave files, 351
awk, 87, 239, 281

bash,294
beautifier, 75
binary files, 151
bison,200,224,226
Bitnet, 150
bsplit, 290
buffers, 349

C, 187
C++, 187, 261
cb, 75
cccp, 195
cflow,76
cmp, 305
compress, 158, 182
CompuServe, 148, 151
Concurrent Versions Systems

(CVS), 254
configure, 208
core dump, 236
cpio, 321
cpp,272
cross compiler, 198

Index

cross-reference table, 77
crttool, 414
CVS (Concurrent Versions

Systems), 254
cxref, 77

dbx,235
diff3, 306
diff, 302
Display Postscript, 377
DNS (Domain Naming Service),

141
domain, 142
Domain Naming Service (DNS),

141
DOS, 316
DWARF, 197

e-mail, 148
ed,89
editor, 333
emacs, 288, 333
emacs tutorial, 341
etags, 365
Excel, 280

f2c, 263
FAQ (Frequently Asked Questions),

179, 182
fax, 311
faxenq, 313
faxmail, 313
faxq, 314
faxrm, 314
File Transfer Protocol (FTP), 146
FixDist, 181
flex, 123, 128,215,222

493

494 Index

Fortran, 366
Free Software Foundation (FSF),

162
Frequently Asked Questions (FAQ),

179
FSF (Free Software Foundation),

162
Ftncheck, 269
FTP (File Transfer Protocol),

146
FTP servers, 172

g++,197,205
games, 437
gas,200,233
gawk, 97, 239
gee, 187
gdb,197,235
Ghostscript, 370
Ghostview, 378
gld, 200
gmake,212
gnroff, 383
GNU, 162
gnuplot, 393
Gopher, 173, 446
graphics, 388
groff, 382
grog,385
gtroff, 384
gunzip, 184
gzip, 158, 182

hosts.equiv, 67
Hypertext Markup Language

(HTML),452
JAB (Internet Architecture Board),

138
IETF (Internet Engineering Task

Force), 138
imake, 272, 458
imdent, 275
info, 283, 286, 343
install, 73
internal rules, 111
Internet, 137

Internet Architecture Board (JAB),
138

Internet Engineering Task Force
(IETF), 138

Internet Protocol (IP), 138
Internet Service Providers, 157
Internet Society (ISOC), 138
IP (Internet Protocol), 138
IP address, 140
ISOC (Internet Society), 138
ispell, 325

Kermit, 413
keyboard mapping, 83

lasergnu, 397
less, 291
lesskey, 293
lex, 123, 129,215,222
lex.yy.c, 216
lexical analysis, 123
libg++,205
LISP, 361, 366
Lotus, 280

mainframe, 79
make, 107, 205
makefile, 108
Makefile, 108
makeinfo, 285
man pages, 161
mattrib, 316
MCimail, 148, 151
mcopy, 316
mdel, 316
mdir, 316
med, 316
mformat, 316
MIME (Multipurpose Internet Mail

Extensions), 152
mkdirhier, 275
mkmanifest, 317
mlabel, 318
mmd,318
modes, 339

monitor, 327
mosaic, 450
mpeg_play, 408
mrd, 319
mread, 319
mren, 319
mtools, 316
mtype, 319
Multipurpose Internet Mail

Extensions (MIME), 152
MVS,79

National Science Foundation (NSF),
138

nawk, 97
netfax, 311
Network Information Center (NIC),

140
Network Operations Center (NOC),

138
News, 143, 444
newsfeeds, 143
newsgroups, 143
newsreaders, 145
NIC (Network Information Center),

140
nm,63
NNTP, 444
NOC (Network Operations Center),

138
NREN, 154
nroff, 161
NSF (National Science Foundation),

138
NSFnet, 138

Objective C, 187
oleo, 277
optimization, 192

pack, 182
parser, 130
patches, 181, 227
pbmplus, 387
perl, 281

Postscript, 370
PPP, 156
PTFs, 182

r commands, 67
rb,435
rep, 67, 71

Index 495

RCS (Revision Control System),
243,255

regular expressions, 357
relocation information, 65
Revision Control System (RCS),

243,255
rlogin, 67, 69
rsh, 67, 70
rz, 435

sb,433
scanner, 123, 217
SCCS (Source Code Control

System), 254, 256
screen, 308
sdiff, 306
security, 67
sed,98,281
SERVICE, 337
SGML (Standardized General

Markup Language), 452
shell archives, 161
SLIP, 156
Smalltalk, 259
Source Code Control System

(SCCS), 254, 255
spreadsheets,277
Standard General Markup

Language (SGML), 452
strip, 65
swinfo, 329
sx,433
symbols, 63, 65
sz, 433

tar, 159
targets, 115
Tel, 369, 399

496 Index

terminal emulation, 421
tex2dvi, 285
TeX,358,360
texinfo, 283, 287
3278,80
tn3270,79,413

uncompress, 158
Uniform Resource Locator (URL),

452
UUCP, 156, 175
uudecode, 151
uuencode, 151

viola, 176
VM,79

Wide Area Information Servers
(WAIS), 174

wish, 399
World Wide Web (WWW), 155, 175,

450

Xarchie, 442
xearth, 410
xgopher, 446
XL C, 181
xloadimage, 369, 404
xmkmf, 272, 458
xmodem,413,429
xmosaic, 451
xrn,444
xzap,330

yacc, 123, 130

zcat, 184
zcmp, 184
zdiff, 185
zmodem,432
zmore, 184
znew, 185
Z39.50, 174

ABOUT THE AUTHOR

Keven E. Leininger is Managing Director at DevTech Associ­
ates, a consulting firm that specializes in the integration of
UNIX technology into large corporations. He serves on the
Board of Editors of Open Computing magazine and has con­
tributed to a variety of publications including Optiv and
CIO Journal. Mr. Leininger is also the author of the UNIX
Developer's Tool Kit and Solaris Developer's Tool Kit, avail­
able from McGraw-Hill.

SOFTWARE AND INFORMATION LICENSE

The software and information on this diskette (collectively referred to as the "Product") are the property of The
McGraw-Hill Companies, Inc. (''McGraw-Hill") and are protected by both United States copyright law and inter­
national copyright treaty provision. You must treat this Product just like a book, except that you may copy it into
a computer to be used and you may make archival copies of the Products for the sole purpose of backing up our
software and protecting your investment from loss.

By saying "just like a book," McGraw-Hill means, for example, that the Product may be used by any number of
people and may be freely moved from one computer location to another, so long as there is no possibility of the
Product (or any part 'efthe Product) being used at one location or on one computer while it is being used at anoth­
er. Just as a book cannot be read by two different people in two different places at the same time, neither can the
Product be used by two different people in two different places at the same time (unless, of course, McGraw-Hill's
rights are being violated).

McGraw-Hill reserves the right to alter or modify the contents of the Product at any time.
This agreement is effective until terminated. The 'Agr~ement will terminate automatically without notice if you

fail to comply with any provisions of this Agreement. In the event of termination by reason of your breach, you
will destroy or erase all copies of the Product installed on any computer system or made for backup purposes and
shall expunge the Product from your data storage facilities.

LIMITED WARRANTY

McGraw-Hill warrants the physical diskette(s) enclosed herein to be free of defects in materials and workmanship
for a period of sixty days from the purchase date. If McGraw-Hill receives written notification within the warranty
period of defects in materials or workmanship, and such notification is determined by McGraw-Hill to be correct,
McGraw-Hill will replace the defective diskette(s). Send request to:

Customer Service
McGraw-Hill
Gahanna Industrial Park
860 Taylor Station Road
Blacklick, OH.43004-9615

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be limited to replacement
of defective diskette(s) and shall not include or extend to any claim for or right to cover any other damages, includ­
ing but not limited to, loss of profit, data, or use of the software, or special, incidental, or consequential damages or
other similar claims, even if McGraw-Hill has been specifically advised as to the possibility of such damages. In no
event will McGraw-Hill's liability for any damages to you or any other person ever exceed the lower of suggested
list price or actual price paid for the license to use the Product, regardless of any form of the claim.

THE McGRAW-HILL COMPANIES, INC. SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MER­
CHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Specifically, McGraw-Hill makes no repre­
sentation or warranty that the Product is fit for any particular purpose and any implied warranty of mer­
chantability is limited to the sixty day duration of the Limited Warranty covering the physical diskette(s) only
(and not the software or in-formation) and is otherwise expressly and specifically disclaimed. j

This Limited Warranty gives you specific legal rights; you may have others which may vary from state to stat~.
Some states do not allow the exclusion of incidental or consequential damages, or the limitation on how long an
implied warranty lasts, so some of the above may not apply to you.

This Agreement constitutes the entire agreement between the parties relating to use of the Product. The terms
of any purchase order shall have no effect on the terms of this Agreement. Failure of McGraw-Hill to insist at any
time on strict compliance with this Agreement shall not constitute a waiver of any rights under this Agreement.
This Agreement shall be construed and governed in accordance with the laws of New York. If any provision of this
Agreement is held to be contrary to law, that provision will be enforced to the maximum extent permissible and
the remaining provisions will remain in force and effect.

ISBN 0-07-911993-X
90000

9 780079 119933

