
MCS®-S1 UTILITIES USER'S GUIDE
FOR SOSO/SOSS-BASED

DEVELOPMENT SYSTEMS

Copyright © 1981, 1982, 1983 Intel Corporation
Intel Corporation. 3065 Bowers Avenue, Santa Clara, California 95051 Order Number: 121737-003

MCS® -51 UTILITIES USER'S GUIDE
FOR SOSO/SOSS-BASED

DEVELOPMENT SYSTEMS

Order Number: 121737-003

Copyright © 1981, 1982, 1983 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, CA 95051 I I

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Intel retains the right to make changes to these specifications at any time, without notice. Contact your
local sales office to obtain the latest specifications before placing your order.

I ntel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes
no responsibility for any errors that may appear in this document. Intel Corporation makes no commitment
to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, dupli­
cation or disclosure is subject to restrictions stated in I ntel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of I ntel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may only be used to identify Intel
products:

BITBUS im iRMX Plug·A-Bubble
COMMputer iMMX iSBC PROMPT
CREDIT Insite iSBX Promware
Data Pipeline inlc l iSDM QueX
Genius intelBOS iSXM QUEST
i I ntelevision Library Manager Ripplemode
6

intcligenl Identifier MCS RMX/80 I

12ICE inlcligent Programming Megachas~is RUPI
ICE Intellec MICROMAINFRAME Seamless
iCS Intellink MULTIBUS SOLO
iDBP iOSP MULTICHANNEL SYSTEM 2000
iDIS iPDS MULTI MODULE UPI
il.BX

REV. REVISION HISTORY DATE APPD.

-001 Original issue. 9/81

-002 Added IXREF and LIB51. 11/82

-003 Added OVERLAY /NOOVERLA Y controls. 11/83 M.S.

iii

I '. n PREFACE

This manual describes the RLSI linker and locator and the LIBSI librarian for
program modules produced by MCS-Sl language translators such as ASMSI and
PL/M-Sl.

The RLSI and the LIBSI program operate on an Intel development system with an
8080 or 808S processor. The configuration must include 64K of RAM, a console, and
at least one diskette or hard disk drive running under the ISIS-II operating
environment.

NOTE
In this manual, the term MCS-Sl refers to all members of the MCS-Sl family
of microcomputers and to the software development tools for the M CS-Sl
family.

Reader's Guide

The manual is organized into six chapters and five appendixes:

Chapter 1 discusses the advantages of modular programming and summarizes the
process of modular programming with the MCS-Sl development tools.

Chapter 2 reviews the mechanics of linkage and location for the RLSI program.

Chapter 3 gives the details on invoking the linker/locator.

Chapter 4 discusses the files and displays produced by the RLSI program, with
examples.

Chapter S contains three examples of programs, with the link and locate steps for
each program.

Chapter 6 describes the LIBSl, the MCS-Sl library manager and its usage.

Appendix A presents the syntax of the RLSI commands with brief definitions of the
controls.

Appendix B lists the error messages and warnings displayed by RLS1, with suggestions
for corrective action.

Appendix C lists a summary of LIBSI commands.

Appendix D lists the error messages generated by LIBSl, with suggestions for
corrective action.

Appendix E contains hexadecimal-decimal conversion tables as a convenient reference.

Related Literature

To help you use this manual, you should he familiar with the contents of the follow­
ing manuals:

• MCS-51 Macro Assembler User's Guide, order number 9800937

• PL/M-51 User's Guide, order number 121966

• MCS-51 Family of Single-Chip Microcomputers User's Manual, order number
121S17

• ISIS-/I User's Guide, order number 9800306

v

Preface

vi

The following manuals may also be of interest:

• MCS-51 Macro Assembly Language Pocket Reference, order number 9800935

• MCS -51 Utilities Pocket Reference, order number 121817

• ICE-51 In-Circuit Emulator Operating Instructions for ISIS-II Users, order
number 9801004

Notational Conventions

UPPERCASE

italic

directory-name

filename

system-id

Vx.y

[]

{ }

{ } ...

[, ...]

punctuation

Characters shown in uppercase must be entered in the order
shown. Enter the command words as shown, or use a system­
defined abbreviation. You may enter the characters in upper­
case or lowercase.

Italic indicates a meta symbol that may be replaced with an
item that fulfills the rules for that symbol. The actual symbol
may be any of the following:

Is that portion of a pathname that acts as a file locator by
identifying the device and/or directory containing the
filename.

Is a valid name for the part of a pathname that names a file.

Is a generic label placed on sample listings where an oper­
ating system-dependent name would actually be printed.

Is a generic label placed on sample listings where the version
number of the product that produced the listing would
actually be printed.

Brackets indicate optional arguments or parameters.

One and only one of the enclosed entries must be selected
unless the field is also surrounded by brackets, in which case
it is optional.

At least one of the enclosed items must be selected unless the
field is also surrounded by brackets, in which case it is
optional. The items may be used in any order unless other­
wise noted.

The vertical bar separates options within brackets [] or
braces { }.

Ellipses indicate that the preceding argument or parameter
may be repeated. .

The preceding item may be repeated, but each repetition must
be separated by a comma.

Punctuation other than ellipses, braces, and brackets must be
entered as shown. For example, the punctuation shown in the
following command must be entered:

SUBMIT PLM8S(PROGA,SRC,'9 SEPT 81'}

< c r)

In interactive examples, user input lines are printed in white
on black to differentiate them from system output.

Indicates a carriage return.

Preface

vii

• ,1 n

CHAPTER 1
INTRODUCTION

PAGE

The Advantages of Modular Programming I-I
Efficient Program Development I-I
Multiple Use of Subprograms I-I
Ease of Debugging and Modifying I-I

MCS®-SI Modular Program Development Process ... I-I
Segments, Modules, Libraries, and Programs 1-2
Entering and Editing Source Modules 1-3
Assembly and Compilation 1-3
Relocation and Linkage .. 1-3
ROM and PROM Versions 1-3
ICPM-SI In-Circuit Emulator 1-3
SDK-SI System Design Kit 1-3
Keeping Track of Files .. 1-4

CHAPTER 2
THE MECHANICS OF LINKAGE
AND LOCATION WITH RL51
Major Functions .. 2-1
Selecting Modules 2-1
Partial Segments .. 2-2
Combining Relocatable Segments 2-2
Allocating Memory for Segments 2-3
Overlaying Data Segments 2-4
Resolving External References 2-4
Binding Relocatable Addresses 2-5

CHAPTER 3
USING THE RL51 PROGRAM
Introduction ... 3-1
Command Entry, Continuation Lines,

and Comments 3-1
RLSI Command Format Summary........................... 3-1
Input List ... 3-2
Output File .. 3-4
Controls 3-4
Listing Controls 3-4

PRINT /NOPRINT .. 3-S
PAGEWIDTH ... 3-S

Listing Switches 3-6
IXREF /NOIXREF ... 3-6

Li·nking Controls 3-7
NAME ... 3-8

Linking Switches ... 3-8
Locating Controls 3-9

Allocation Sequence 3-9·
Format Summary .. 3-9
Table of Locating Controls 3-10
Notes on Locating Controls 3-10

Configuration Controls .. 3-12
RAMSIZE ... 3-12

CONTENTSi

PAGE

OVERLAY /NOOVERLA Y Controls ;................. 3-12
OVERLAY .. 3-13
NOOVERLAY .. 3-13
OVERLAY (A>B) ... 3-13
OVERLAY (A> *,* > B) .. 3-13

Abbreviations for Command Words 3-1S

CHAPTER 4
RL51 OUTPUTS
Console Display 4-1
Listing File 4-1

Link Summary....................... 4-1
Symbol Table ... 4-2
Inter-Module Cross-Reference Report (IXREF) ... 4-4
Error Messages 4-4

Absolute Object File ... 4-S

CHAPTER 5
EXAMPLES OF PROGRAM
DEVELOPMENT
Using Multiple Modules ... S-1
Using the Locating Controls S-9
Using RLSI with PL/M-Sl Modules S-12

CHAPTER 6
LIB51 LIBRARIAN
Introduction ... 6-1
LIBSI Input ... 6-1
The Invocation Line 6-1
The Command Line 6-1
Error Messages .. 6-2
LIBSI Subcommands .. 6-2

ADD ... 6-2
CREATE ... 6-3
DELETE .. 6-3
LIST ... 6-4
EXIT .. 6-S

APPENDIX A
SUMMARY OF RL51 CONTROLS

APPENDIX B
RL51 ERROR MESSAGES

APPENDIXC
LIB51 COMMAND SUMMARY

APPENDIX D
LIB51 ERROR MESSAGES

APPENDIX E
HEXADECIMAL-DECIMAL
CONVERSION TABLE

ix

Contents MCS®-Sl

TABLES

TABLE TITLE PAGE TABLE Tn1E PAGE

2-1 Address Spaces and Segment Types 2-4 A-3 Linking Controls A-4 .
3-1 Definitions of Common Terms 3-2 A-4 Locating Controls A-4
3-2 Listing Switches .. 3-6 A-5 Configuration Controls A-4
3-3 Linking Switches 3-8 A-6 Overlay Controls ,................. A-5
3-4 Locating Controls 3-10 A-7 Abbreviations for Command Words A-5
A-I Definitions of Common Terms A-I E-I Hexadecimal-Decimal Conversion
A-2 Listing Controls ... A-3 Table .. E-I

FIGURES

FIGURE TITLE PAGE FIGURE TITLE PAGE

I-I MCS®-51 Program Development Process 1-2 5-5 TESTOI Assembly Listing File 5-10
4-1 Link Summary.. 4-2 5-6 RL51 Listing File Without PRECEDE... 5-11
4-2 Symbol Table .. 4-3 5-7 RL51 Listing File with PRECEDE 5-12
4-3 IXREF Listing .. 4-5
5-1 SAMPI Listing File 5-2

5-8 PL/M-51 Listing File of CHI<-EQ 5-13
5-9 ASM51 Listing File of HLTICE .. "......... 5-14

5-2 SAMP2 Listing File 5-4 5-10 RL51 Listing File of CHI<-EQ 5-15
5-3 SAMP3 Listing File 5-6
5-4 RL51 butput File 5-8

6-1 LIST Command Output 6-4

x

CHAPTER ·1
INTRODUCTION

The Advantages of Modular Programming

Many programs are too long or complex to write as a single unit. Programming
becomes much simpler when the code is divided into small functional units. Modular
programs are usually easier to code, debug, and change than monolithic programs.

The modular approach to programming is similar to the design of hardware that
contains numerous circuits. The device or program is logically divided into "black
boxes" with specific inputs and outputs. Once the interfaces between the units have
been defined, detailed design of each unit can proceed separately.

Efficient Program Development

Programs can be developed more quickly with the modular approach because small
subprograms are easier to understand, design, and test than large programs. With the
module inputs and outputs defined, the programmer can supply the needed input and
verify the correctness of the module by examining the output. The separate modules
are then linked and located into one program module. Finally, the completed program
is tested.

Multiple Use of Subprograms

Code written for one program is often useful in others. Modular programming allows
these sections to be saved for future use. Because the code is relocatable, saved modules
can be linked to any program that fulfills their input and output requirements. With
monolithic programming, such sections of code are buried inside the program and are
not so available for use by other programs.

If you put your frequently-used subprograms into a library, RL51 will take care to
load only those you need. Thus, you can save RAM and ROM without having to
keep track of what is needed and what is not.

Ease of Debugging and Modifying

Modular programs are generally easier to debug than monolithic programs. Because
the modular interfaces are well-defined, problems can be isolated to specific modules.
Once the faulty module has been identified, fixing the problem is considerably simpler.
When a program must be modified, modular programming simplifies the job. You
can link new or modified modules to the existing program with confidence that the
rest of the program will not be changed.

MCS®-S1 Modular Program Development Process

This section is a brief review of the program development process using an MCS-51
language translator (e.g., the relocatable MCS-51 assembler or PL/M-51 compiler),
linker/locator, code converter programs, PROM programmer, and ICETM-51 in-circuit
emulator. The process is shown in figure 1-1.

1-1

Introduction

TEXT
EDITOR

LEGEND

ASM51
ASSEMBLER

RL51
LINKERI

LOCATOR

(ABSOLUTE PROGRAMS)

FACTORY
MASK

PROM
PROGRAMMER

ICE·51
IN·CIRCUIT
EMULATOR

D INTEL DEVELOPMENT TOOLS
AND OTHER PRODUCTS

O USER·CODED
SOFTWARE

OBJHEX
CODE

CONVERSION

1-2

Figure I-I. MCS®-SI Program Development Process

Segments, Modules, Libraries, and Programs

In the initial design stages, the tasks to be performed by the program are defined and
then partitioned into subprograms. Here are brief introductions to the kinds of
subprograms used with the MCS-Sl assembler and linker flocator.

A segment is a unit of code or data memory. A segment may be relocatable or
absolute. A relocatable segment in a module can be a complete segment or can be a
"partial" segment to be combined with other partial segments from other modules.
A relocatable segment has a name, type, and other attributes that allow the linker to
combine it with other partial segments, if required, and to correctly locate the segment.
An absolute segment has no name and cannot be combined with other segments. See
Chapter 2 for more detail on partial segments.

A module contains one or more segments or partial segments. A module has a name
assigned by the user. The module definitions determine the scope of local symbols.
An object file contains one or more modules. You can add modules to a file by trans­
fering the new modules from their individual files to another file (e.g., COPY filel,
file2 TO file3).

A library is a file that contains one or more modules. A library file is internally
marked as a library, so RLSI can easily identify it as such. RLSI selects, out of the
modules in the library, only those previously referenced. Libraries are created using
the LIBSI utility, which is described in detail in Chapter 6.

A program consists of a single absolute module, merging all absolute and relocatable
segments from all input modules. The name of the output module produced by RLSI
can be defined by the user or allowed to default to the name of the first input module.

SDK·51
SYSTEM
DESIGN

KIT

121737·1

Entering and Editing Source Modules

After the design is completed, use the text editor on your system to code the modules
into source files. The source modules are coded in assembly language or a high-level
language such as PL/M-51. The editor may also be used to make corrections in the
source code.

Assembly and Compilation

The assembler (ASM51) and compiler (PL/M-51) translate the source code into
relocatable object code, producing an object file. The ASM51 object file is relocata­
ble when at least one input segment is relocatable; otherwise the object file is an
absolute file. The PL/M-51 object file is always relocatable. The assembler and
compiler also produce a listing file showing the results of the translation. When the
ASM51 or PL/M-51 invocation contains the DEBUG control, the object file also
receives the symbol table and other debug information for use in symbolic debugging
of the program.

Relocation and Linkage

After translation of all modules of the program, the linker/locator, RL51, processes
the object module files. The RL51 program combines relocatable partial segments
with the same name, then assigns absolute memory locations to all the relocatable
segments. RL51 also resolves all references between modules, using the library files
when they are necessary for this resolution. RL51 outputs an absolute object module
file that contains the completed program, and a summary listing file showing the
results of the link/locate process, including a memory map, symbol table, and,
optionally, an inter-module cross-reference (IXREF) listing.

ROM and PROM Versions

The absolute object module produced by RL51 can be loaded into members of the
MCS-51 family of microcomputers. For ROM versions of the microcomputer, the
program is masked into ROM during the manufacturing process. For PROM versions
and versions with no on-chip CODE memory, a PROM programmer is used to load
the absolute module into program memory accessible to the microcomputer for
execution. Refer to the MCS-5J Family of Single Chip Microcomputers User's
Manual for details on the versions of microcomputers available.

ICETM-51 In-Circuit Emulator

The ICE-51 in-circuit emulator is used for software and hardware debugging and
integration into the final product. The absolute object modules produced by RL51
can be loaded into the emulator's memory for execution. Refer to the ICE-51 manual
listed in the preface for details.

SDK-51 System Design Kit

The SDK-51 system design kit for MCS-51 microcomputers is a useful tool for evalu­
ation and simple program execution. However, the SDK-51 requires the hexadecimal
object code format output by previous assemblers. For use with the SDK-51, the
absolute object file must be processed by the OBJHEX code conversion program.
Refer to the ISIS-II User's Guide for details on OBJHEX.

Introduction

1-3

Introduction

1-4

Keeping Track of Files

It is convenient to use the extensions of filenames to indicate the stage in the process
represented by the contents of each file. Thus, source code files can use extensions
like .SRC, .A51, or .P5I (indicating that the code is for input to ASM51 or
PLfM-5I). Object code files receive the extension .OB] by default or the user can
specify another extension. Executable files generally have no extension. Listing files
can use .LST, the default extension given by the translator. RL51 uses .M51 for the
default listing file extension (in order not to destroy the ASM51 listing file with the
.LST extension).

Library files customarily have the extension .LIB.

Use caution with the extension .TMP, as many ISIS-II utilities (including RL51 and
LIB5I) create temporary files with this extension. These utilities will delete your file
if it has the same name and extension as the temporary files they create.

CHAPTER 2
THE MECHANICS OF LINKAGE

AND LOCATION WITH RL51

This chapter describes the operation of the RUI program. Most of the process is
transparent to the user; however, an understanding of the operation at the level
presented here will help you to use the linking and locating controls in the RL51
invocation. More specific details on the allocating process appear in Chapter 3.

Major Functions

The RL51 program performs the following major functions:

1. Selects modules (including library processing)

2. Combines relocatable partial segments of the same name into a single segment

3. Allocates memory for the combined segments resulting from the previous step,
and for all other complete relocatable segments from the input modules

4. Overlays data segments

5. Resolves external symbol references between the input modules

6. Binds relocatable addresses to absolute addresses

7. Produces an absolute object file

8. Produces a listing file consisting of a link summary, a symbol table, and an IXREF
report

9. Detects and lists errors found in the input modules or in the RL51 command
invocation

Functions I, 2, 3, 5, and 6 are described in the remainder of this chapter. Functions
7, 8, and 9 are discussed in Chapter 4; the RL51 command invocation and overlaying
of data segments are described in Chapter 3.

Selecting Modules

Input files are processed in the order they are specified in the invocation command.

The processing of an input file varies according to the content-that is, whether it is
a library or non-library file. A non-library file may contain a concatenation of zero
or more object modules. A library file contains zero or more object modules together
with control information. A module in a non-library file is processed if it was explic­
itly listed in the module list, or if the module list was not specified at all (in other
words, as if all modules were listed implicitly).

The processing of a library file is more complicated. If a module list was specified
for the library file, then it is processed in the same manner as a non-library file. If a
module list was not specified, then the library file is processed only if the previously
processed modules contained at least one unresolved external. The library is scanned
for modules containing public symbols that match as yet unresolved externals. Each
such module is processed as if it were' explicitly specified. The selection process
continues until the modules in the library cannot satisfy any unresolved externals
(including any externals encountered while processing modules from the library).

RL51 will report an error if the same module name is encountered more than once
during the link process.

2-1

The Mecbanics of Linkage and Location witb RL51

2-2

Take TRIGON. LIB as an (utterly fictitious) example. Assume it contains procedures
called SINE, COSINE, TANGENT, ARCSINE, ARCCOS, ARCTAN, HYPER­
BOLIC_SINE, and HYPERBOLIC_COSINE.

When RL51 starts processing TRIGON. LIB, it has already made a first pass over
all files that appear before it in the invocation line. If one of these contains a refer­
ence to the external SINE, and there is no public by that name, RL51 will assume
that the procedure SINE from TRIGON. LIB is to be loaded. Otherwise, it will leave
SINE alone for the moment.

If, while loading from TRIGON. LIB, RL51 encounters new externals that a module
in the library can resolve, it will scan the library once more. Thus, there is no logical
order among modules in a library; they are all equal. If TANGENT calls SINE and
COSINE, and they are in the same library, in any order whatsoever, a reference to
TANGENT will cause all three to be loaded.

Partial Segments

A segment is a unit of code memory or data memory. The portion of a segment
defined in one module is called a partial segment. A partial segment has the following
attributes (defined in the source module):

• Name. A relocatable segment has a name by which it is linked with other portions
of the same segment from other modules. Absolute segments do not have names.

• Type. The type identifies the address space to which a segment belongs: CODE,
XDATA, DATA, IDATA, or BIT.

• Relocatability. For relocatable segments only, this attribute describes any special
constraints on relocation (PAGE, INPAGE, BLOCK, BITADDRESSABLE, or
UNIT).

• Size. The size of the segment in bytes or bits, depending on the type.

• Base Address. The lowest address in the partial segment. For absolute segments,
the base address is assigned at assembly time; for relocatable segments, it is
assigned at location time.

Absolute segments are complete segments; they are taken as is into the output module.
Relocatable segments are either defined by ASM51 users (using the SEGMENT
directive in the source module) or automatically generated by the PLfM-51 compiler.

Refer to the MCS-5J Macro Assembler User's Guide for details on the assembler
directives.

Combining Relocatable Segments

After processing the invocation command, RL51 performs a first pass over the input
modules identified in the command. Pass 1 generates a segment table, a publics ta,ple,
and an unresolved externals table. The segment table is discussed in this section; the
other two tables are discussed later in this chapter.

The segment table contains the name, length, type, and relocation attribute of all
combined segments from all modules. Combined segments are produced from the
partial segments in the input modules according to the following rules:

• RL51 combines all partial segments with the same name into one relocatable
segment. For example, if three input modules each have a partial relocatable
segment named STACK, the segment table will have one segment named STACK
that combines the length of the three partial segments.

MCS®-51 The Mechanics of Linkage and Location with RL51

• All the partial segments to be combined must be of the same type (CODE, DATA,
IDA T A, XDAT A, or BIT). If any partial segments have the same names but
different types, an error occurs.

• The length of the combined segment must not exceed the physical size of the
memory type. Details on maximum size appear later in this chapter.

• The relocation attributes of all the partial segments to be combined must either
be the same or UNIT-aligned combined with one other attribute. The combined
segment receives the relocation attribute shared by the input partial segments,
or, if the segments have attribute UNIT-aligned combined with one other attrib­
ute, the combined segment receives the more restrictive attribute.

For example, if the three partial segments named STACK have relocation attri­
butes UNIT, PAGE, and UNIT, the combined segment has attribute PAGE
(i.e., page-aligned). Note that the relocation attribute is applied to the combined
segment, not to each component segment. To continue the example, since the
relocation is PAGE, the combined segment will start on a page boundary, but
the component segments will be packed together without any gaps.

Allocating Memory for Segments

After the segment table is complete, RL51 can locate the segments within the memory
spaces. Table 2-1 shows the address spaces used by MCS-51 processors, and the
corresponding segment types.

The allocation process has a definite sequence; the exact order is presented in
Chapter 3. As an overview, the process follows a general pattern of rules as follows:

I. Each of the types of memory space is allocated independent of the other spaces.

2. Within each space, absolute segments are allocated first, then segments specified
within locating controls in the RL51 command, then other relocatable segments.

3. Because the on-chip data space represents three overlapping address spaces
(DA T A, IDAT A, AND BIT), the general pattern in rule 2 is modified.

a. Absolute BIT, DATA, and IDA T A segments, and register banks are allocated
first.

b. Segments specified in PRECEDE and BIT controls are allocated next, then
other relocatable BIT (and BIT-ADDRESSABLE) segments (following
rule 2).

c. DATA type segments are allocated next: segments in the DATA control first,
then other relocatable DATA segments.

d. IDAT A type segments (except ?ST ACK) are allocated next; segments in the
IDATA control first, then other relocatable IDATA segments.

e. Segments specified in the STACK control are allocated, at as Iowan address
as possible. provided that it is above all BIT, DATA, and IDA T A segments
allocated under (c) and (d).

f. Last, the segment ?STACK, if it exists and is IDATA, and is not mentioned
in an explicit location control, is now allocated, at as Iowan address as possi­
ble, provided that it is above all BIT, DATA, and IDA T A segments allocated
under (c) and (d) and (e).

In most cases, you do not need to use any explicit controls to obtain a satisfactory
allocation of segments. RL51 tries to fit your segments into the designated memory
spaces as best it can following the rules. As you can see, most of the complexity
occurs in the on-chip data space.

2-3

The Mechanics of Linkage and Location with RL51

2-4

Table 2-1. Address Spaces and Segment Types

Memory Space Maximum Size Addresses Segment Type

Code 64K bytes OOOOH - OFFFFH CODE

External data 64K bytes OOOOH - OFFFFH XDATA

On-chip data 128 bytes OOH -7FH DATA
(direct addressing)

On-chip data 256 bytes OOH- OFFH I DATA
(indirect addressing) (see 1)

Bit space in 128 bits OOH -7FH BIT
on-chip data (see 2)
memory

1. The amount of indirectly addressable on-chip data memory is machine-dependent within the
MCS-51 microcomputer family (see the discussion of RAMSIZE control in Chapter 3).

2. This bit space overlaps byte addresses 20H - 2FH in on-chip data memory.

Note: Addresses in the special function register memory (direct data addresses 80H - OFFH, bit
addresses 80H - OFFH) cannot be relocated; they are always absolute. Thus, these addresses
are not referenced in this table.

Rule (f) applies to PL/M-Sl. PL/M-Sl produces for the stack an IDATA segment
called ?STACK, whose size is 1. Although, by applying rule (f), RLSI makes the
stack as big as possible, it is the user responsibility to ensure that the size of the stack
is large enough (the segment map shows where the stack is located).

No rules for the allocation process can guarantee an optimal solution. If you are short
of memory and RLSI 's first try is not satisfactory, you can place the segments in
memory using the locating controls. Details on the locating controls are given in
Chapter 3.

Overlaying Data Segments

On-chip RAM is a scarce resource on the MCS-Sl. To economize, the PL/M-Sl
compiler overlays data segments in the compiled module. RL-Sl completes the work
by overlaying the data segments across modules. This is accomplished by using the
OVER LA Y control. If RL-Sl informed you about ignored segments due to lack of
on-chip RAM, try this control. The use of OVERLA Y is, in general, straightforward.
However, for complex applications (for example, those with mixed ASM-Sl and
PL/M-Sl modules), consult Chapter 3.

Resolving External References

An external reference points to a location in another module. The EXTERNAL
declaration for symbols tells RLSI that the reference is to a location defined in another
module. In the latter module, the symbol is declared PUBLIC so that external refer­
ences to that symbol in other modules can be satisfied.

As it processes the input modules, RLSI builds a table of public symbols and
unresolved external references. As each public symbol is added to the table, any
external references to that symbol are deleted. After all segments have been located,

The Mechanics of Linkage and Location with RL51

the public symbols are bound to absolute addresses. RL51 issues a warning for any
unresolved externals that remain in the table.

External symbols and corresponding public symbols must be compatible. That is, both
must be defined to address the same address space, or at least one must be defined
as a typeless symbol (NUMBER); and if the symbol represents a PL/M-51 proce­
dure name, then both must share the same register bank (i.e., must be declared within
the PL/M-5l source modules with the same USING attribute).

Binding Relocatable Addresses

After allocating memory for the combined segments and binding the public symbols,
RL5l makes a second pass (pass 2) through the input modules to build the listing
file and fixup (i.e., bind to absolute addresses) any relocatable or external references.
At this point, RL5l also processes debug records if requested, and performs fixups to
any relocatable debug symbols that require processing to compute their absolute
addresses.

2-5

CHAPTER 3
USING THE RL51 PROGRAM

Introduction

The RL51 program performs two functions for MCS-51 programs:

• The link function, combining a number of object modules specified in an input
list into a single object module in an output file

• The locate function, assigning absolute addresses to any relocatable addresses in
the input modules

This chapter explains how to enter commands, how to continue a long command onto
more than one input line, how to enter comments in the invocation, and how to use
abbreviations of the command words.

The chapter then presents a summary of the format of the RL51 invocation command,
followed by details on the elements of the command with examples.

Command Entry, Continuation Lines, and Comments

The RL51 command is a standard ISIS-II file invocation. Terminate the command
with the RETURN key. Note that the terminating carriage return is not shown in
the command format notation.

Because of the many options available with the RL51 command, command lines can
become very long. To break a command into several input lines, use the continuation
character, an ampersand (&), before the RETURN to end intermediate lines of the
command.

You can break a command between command words or other entries, but not in the
middle of a word or parameter. The program begins a continuation line with a double
asterisk (**) as a prompt.

The continuation feature is not shown in the format notation, but examples of contin­
ued commands occur in the discussions of command elements.

Any characters in a line following a semicolon character (;) or an ampersand are
treated as a comment.

RL51 Command Format Summary

Here is a summary of the syntax of the RL51 invocation command. Refer to the
Preface for an explanation of the command format notation.

The RL51 command has the overall format:

[: F n:] R L 5 1 input-list [T 0 output-file] [control-list]

where

input-list is a list of filenames separated by commas. The files named
in input-list should contain the relocatable modules to be linked
and located in the final absolute output module. For each
file, you can additionally specify which modules are to be
included.

3-1

Using the RL51 Program

3-2

output-file

control-list

is the name of the file that is to receive the output module. If
you omit this entry, the program will supply a default name
based on the first filename in the input list.

selects options for listing, linking, and locating the output.
The listing controls specify what information is to be sent to
the listing file, and the page width to be used. The linking
controls specify the name of the output module, and deter­
mine what debug information is to be placed in the output
file. The locating controls allow you to assign absolute
addresses to relocatable segments, and to specify the order of
relocatable segments within a given type of memory. The
configuration control is used to describe the actual configu­
ration the object is aimed to. The overlay control overlays
data segments between modules.

The next several sections give details and examples of the elements of the RL51
command. Table 3-1 gives brief definitions of some of the terms used in the controls.
A list of abbreviations for command words appears at the end of the chapter.

Table 3-1. Definitions of Common Terms

Term Definition

name Names can be from 1 to 40 characters in length and must be
composed of letters A - Z, digits 0 - 9, or special characters (?, @'
_). The first character must be a letter or a special character.

module-name Same as name.

segment-name Same as name.

pathname A valid ISIS-II filename reference or device reference. See next
two items for examples.

filename A reference to a disk file. The format is

[:Fn:]root [.ext]

Examples: PROG1, :F1 :SAMPL 1, TEST.HEX,

:F2:SAMPLE.OBJ

device A reference to a non-disk device.
Examples: :LP:, :CO:, :TO:

value A 16-bit unsigned integer.

Examples: 1011 B, 304Q, 40960 (or just 4096), OC300H

address Same as value.

Input List

The input list tells RL51 what files are to be processed. The files must be disk files
containing relocatable object modules as described in Chapter 2.

The entry for each file in the list can include the following information:

• The drive number. If the drive number is omitted, drive 0 is assumed as the
default.

• The filename. The filename is the name of the object file including an extension
if one exists.

• A list of modules enclosed in parentheses. If a module list is provided, only the
modules in the list are linked into the output file, and modules not in the list are
ignored. If no module list is provided, the default for a non-library file is to link

Using the RL51 Program

all modules in the file into the output module. The default for a library file is to
link only those modules that satisfy previously declared external symbols (see the
exact process in Cha'pter 2 under "Selecting Modules").

If a module named in the module list is not present in the file, the system issues an
error message but does not halt the link process.

Module names (specified explicitly or implicitly) must be unique throughout the entire
application.

Examples

RL51 :F1:PROG.OBJ TO :F1:PROG.ABS

In this example, the input list has one file (PROG.OBJ on drive I); RL51 links all
the modules in this file into the output file (PROG.ABS). (This and other examples
omit the drive number on the RL51 reference for clarity; i.e., the examples assume
drive 0.)

RL51 :F1:SAMP1.0BJ, :F1:SAMP2.0BJ, :F1:SAMP3.0BJ "
**TO :F2:SAMP.ABS

In this example, the input list has three files. RL51 links all the modules in each of
these files into the output file. (Note that the ** in the second line of the example is
generated by the system in response to the continuation character & on the first line
of the example).

RL51 :F1:PRoG1.oBJ (MoD1 I MoD3), :F1:PRoG2.oBJ (MoD2) •
liTO :F1:PRoG3.ABS

Here, the input list has two input files (PROG l.OBJ and PROG2.0BJ). From
PROGl.OBJ, only the modules named MODI and MOD3 are to be linked into the
output file; any other modules in file PROG l.OBJ are ignored by RL5l. From
PROG2.0BJ, only the module named MOD2 is to be linked.

RL51 :F1:PLMPRG.oBJ, :F'1:UTIL51.LlB, :Fl:Io51.LIB, PLM51.LlB

The example introduces a typical linking using libraries. Here, PLMPRG is linked
with two private libraries and with the mandatory library PLM5l.LIB (which must
be used if modules generated by PLM51 participatein the linkage).

RL51 :F1:EXAMPL.oBJ, CoTRIG.LIB, TRIG.LIB, CoTRIG.LIB

Interaction between libraries (i.e., libraries that reference each other) may sometimes
require the same library to be mentioned twice in the input list.

In the preceding example, COTRIG.LIB contains the COTANGENT and COSINE
trigonometric functions, TRIG. LIB contains the SINE and TANGENT function,
and EXAMPL.OBJ references the COTANGENT function.

Since COTANGENT = I/TANGENT, TRIG. LIB must be specified in order to
resolve the reference to the TANGENT function. Also, since TANGENT = SINE/
COSINE, COTRIG.LIB must be respecified in order to resolve the reference to the
COSINE function.

3-3

Using the RL51 Program

3-4

Output File

The output filename is the name of the disk file that is to receive the absolute object
module.

If the output file name is omitted, RL51 creates a filename for the output file by
removing the extension from the first filename in the input list and using the drive
and root name only. If this input file contains no extension, a fatal error occurs. For
example, the command:

RL51 PROG1

is illegal since the output filename defaults to PROG I.

If there is already a file on the target drive with the name of the output file, that file
is overwritten by the new output file.

Examples

RL51 :F1:PROG.OBJ TO :F1:PROG

This example specifies file PROG on drive 1 as the output file.

RL51 :F1:PROG.OBJ

This example uses the default output file generated by RL51. The effect is the same
as the first example; the output file becomes :FI :PROG.

RLS1 :F1:SAMPLE1.0BJ, :F1:SAMPLE2.0BJ TO :F2:SAMPL.ABS

In this example, the output file is on a different drive from the input files, and both
the filename SAMPL and the extension .ABS are specified.

Controls

After the output filename, you can add a list of controls to select options for listing,
linking, and locating the output. Use blanks (not commas) to separate controls in the
list. The same control may not appear more than once in the list; if a duplicate control
is encountered, a fatal error results and the program aborts. The next several sections
explain the controls and give ex~mples.

Listing Controls

The listing file output by RL51 can contain a link summary, a symbol table, an
IXREF report, and a list of error messages. The link summary can contain a memory
map of the linked segments.

The listing controls are the PRINT option, the PAGEWIDTH control, the MAP
option, the SYMBOLS option, the PUBLICS option, the LINES option, and the
IXREF option. These controls allow you to specify the file or device to receive the
output listing, to omit the listing file altogether, to omit the map from the link
summary, or to omit local symbols, public symbols, or line numbers from the symbol
table. You may also specify if you wish to have the IXREF report generated, and the
specific page width to be used.

MCS@-51 Using the RL51 Program

NOTE

The information in the listing file is taken from the input object modules. If
these are generated without the DEBUG option, the SYMBOLS, PUBLICS,
and LINES information will not be available for listing.

PRINT INOPRINT

The print options control the destination of the list file.

To direct the list file to a disk file, the print control format is

P R I N T ([: F n:] filename [. ext])

Example

RL51 :Fl:SAMPLE1.0BJ &
··PRINT (:Fl :SAMPLE.LST)

To direct the list file to a device other than a disk file, the print control format is

P R I N T (: device:)

where

device is an ISIS-II device code. Common devices are CO (console),
LP (line printer), TO (terminal other than console), and VO
(video terminal screen).

If you omit the print control, or if you enter the command word PRINT without
a filename or device name, RL51 creates a disk file for the listing. The name of
the default listing file has the same root as the output filename and has an exten­
sion of M51; the drive number is also the one used in the output filename.

Example

RL51 :Fl:PROG.OBJ, :Fl:PROG1.0BJ TO :F2:PROG2.ABS

Since this command does not specify a listing file destination, the system creates a
default file named PROG2.M51 on drive 2.

The output listing filename may not be the same as the output filename or any of the
filenames in the input list. If the listing file duplicates an input or output filename, a
fatal error results. If the listing filename already exists on the target drive, the old
file with that name is overwritten by the new listing file.

The NOPRINT option specifies that no output listing file is to be produced.
NOPRINT overrides the MAP, SYMBOLS, PUBLICS, LINES and IXREF
controls.

PAGEWIDTH

The PAGEWIDTH control specifies the maximum number of columns per line in
the print output file. The control takes the form

3-5

Using the RL51 Program

3-6

P AGE WID T H (width)

where

width is an unsigned number which specifies the maximum page
width to be used.

The allowable range for width is 72 to 132. The default
PAGEWIDTH is 78.

Listing Switches

The MAP, SYMBOLS, PUBLICS, LINES and IXREF controls select what portions
of the listing files are to be generated. The default of any switch (with the exception
of IXREF) is the positive form (MAP, SYMBOLS, PUBLICS, and LINES). Table
3-2 summarizes the listing switches.

IXREF INOIXREF

This control specifies whether or not to produce the inter-module cross reference
report. If IXREF is specified, the report is appended to the print file.

A selection list may be added to the positive form (only) of the IX REF control. A
selection list causes RL5l to output or suppress output of various selected entries to
the IXREF report. An entry consists of a symbol and a module where this symbol is
referenced (either as public or as external). The general form of the IXREF control
is

I X REF [(selection-item [,... 1) 1

where

selection-item is either (NO)GENERATED or (NO)LIBRARIES. If
IXREF is specified and any of the selection items are omitted,
the missing selection item assumes its positive form. A selec~
tion item may appear at most once.

The selection-items are best explained by describing the effect of their negative form.

Table 3-2. Listing Switches

Switch Effect

MAP Output memory map to link summary

NOMAP Suppress memory map

SYMBOLS Output local symbols to symbol table

NOSYMBOLS Suppress local symbols

PUBLICS Output public symbols to symbol table

NOPUBLICS Suppress public symbols

LINES Output line numbers to symbol table (high-level language transla-
tors only)

NOLINES Suppress line numbers

IXREF Append intermodule cross-reference report to print file

NOIXREF Suppress the intermodule cross-reference report

Using the RLS} Program

The NOGENERATED control causes RL51 to surpress output of entries whose
symbol name begins with a question mark (?); such symbols are usually PL/M-51
generated symbols. The GENERATED form of the control causes RL51 to output
such entries also.

The NO LIBRARIES control causes RL51 to surpress output of entries whose module
resides within a library. The LIBRARIES form of the control causes RL51 to include
all libraries in the IXREF report.

The selection list is used to control the number of entries collected for the IXREF
report. This is needed when an excessive number of IXREF entries make it impossi­
ble for RL51 to generate the IXREF report.

Examples

Because the default for any listing switch (except IXREF) is the positive form, the
main use of the switches is to suppress unwanted information. To suppress the entire
symbol table, for example, the command would be

RL51 :F1:PROG.OBJ HOSYMBOLS HOPUBLICS HOLIHES

As another example, to see only the public symbols (no map or other symbols or
lines), the command is

RL51 :F1:PROG.OBJ PRINT C:F2:PROG.M51) NOMAP NOSB NOLI

Note the use of abbreviations (NOSB for NOSYMBOLS and NOLI for NOLINES)
to save keystrokes. A complete list of abbreviated forms appears at the end of this
chapter. Note that the blank separating PRINT from its parameters is optional; you
could also use PRINT(:F2:PROG.M5l).

In order to suppress generated symbols from the IXREF report, the command is

RL51 :F1:PROG.OBJ, :F1:PROCS.OBJ, :F1:PLM51.L1B IXREFCNOGN)

Using the NOGN (NOGENERATED) selection item prevents PL/M-51 run-time
library procedures from being written to the IXREF report.

Linking Controls

The linking controls allow you to name the resultant output module and to specify
which debug information is to be copied to the output module.

NOTE
In order to obtain the debug information (SYMBOLS, PUBLICS, or
LINES), the DEBUG control must be included in the invocation line for the
translator used to produce the input modules.

3-7

Using the RLSt Program

3-8

NAME

The NAME control allows you to name the output module. The format is

HAM E (module-name)

If the NAME control is not used, the output module-name defaults to the name of
the first input module processed.

Example

:Fl:RL51 :F1:SAMPL1.0BJ, :F1:SAMPL2.0BJ TO :F1:SAMPLE.ABS ,
**HAME(SAMPLE_PROGRAM)

In this example, the name SAMPLEYROGRAM is assigned to the output module.
Note that the blank between NAME and its parameter is optional and can be omitted
as shown in the example.

Linking Switches

The DEBUGSYMBOLS, DEBUGPUBLICS, and DEBUGLINES controls select
what kinds of debug information are to be included in the output file. The default of
any switch is always the positive form (DEBUGSYMBOLS, DEBUGPUSLICS, and
DEBUGLINES). Table 3-3 summarizes the linking switches.

Examples

Because the linking switches default to the positive form, you will usually use the
negative forms to suppress unwanted debug information in the output file. For
example, to cause the output file debug information to contain only the information
for the public symbols, use

RLS1 :F1 :PROG1 .OBJ HODEBUGSYMBOLS HODEBUGLIHES

To have only the local symbols output to the absolute file, use

RLS1 :F1 :PROGl .OBJ HODP HODL

Note the use of abbreviations (NODP for NODEBUGPUBLICS and NODL for
NODEBUGLINES). A complete list of abbreviations for command words appears
at the end of this chapter.

Table 3-3. Linking Switches

Switch Effect

DEBUGSYMBOLS Copies local symbol information to output file

NODEBUGSYMBOLS Suppresses local symbols

DEBUG PUBLICS Copies public symbol information to output file

NODEBUGPUBLICS Suppresses public symbols

DEBUGLINES Copies line number information (high-level language translators
only) to output file

NODEBUGLINES Suppresses line numbers

Using the RLSI Program

Locating Controls

The locating controls allow you to assign absolute addresses to relocatable segments,
to specify the ordering of relocatable segments of a given type in memory, and to
force allocation of segments into a specific range of addresses.

Allocation Sequence

The system allocates memory in accordance with segment attributes and locating
controls, using a fixed order of precedence. The precedence of the allocating opera­
tions (grouped by type of memory space) is as follows:

Internal Data Space:

• Absolute BIT, DATA, and IDATA segments, and register banks

• Segments specified in a PRECEDE control in the RL51 command

• Segments specified in a BIT control in the RL51 command

• DATA type segments with relocation equal to BIT-ADDRESSABLE

• Other relocatable bit segments

• Segments specified in a DATA control in the RL51 command

• DATA type segments with relocation equal to UNIT-aligned

• Segments specified in an IDA T A control in the RL51 command

• Other relocatable IDAT A segments, except ?ST ACK

• Segments specified in a STACK control in the RL51 command

• ?ST ACK, if it is IDA T A and has not been specified in any other locate control

External Data Space:

• Absolute external data segments

• Segments specified in an XDATA control in the RLSI command

• Other relocatable external data segments

Code Space:

• Absolute code segments

• Segments specified in a CODE control in the RL51 command

• Other relocatable code segments

NOTE

In most cases, the allocation algorithm will produce a workable solution
without requiring the user to enter any locating controls in the RL51
command. These controls are intended for the experienced user, in cases where
running RL51 without them does not give a good enough result.

Format Summary

The locating controls have the format

control (segment [,...])

where

segment : = segment-name [(base-address)]

3-9

Using the RLSI Program

3-10

The segments specified in the locating controls are allocated in the order they appear;
the first segment is assigned the lowest possible address, and succeeding segments
receive higher and higher addresses.

The user has the option of specifying the base address of any or all segments. Segments
with specified base addresses must appear in the list in ascending numerical order.
Segments named in a locating control with a specific base address are allocated at
that address irrespective of segment overlap or segment type contradiction, as long as
ascending order is maintained. Base addresses are byte addresses except for the BIT
locating control, where addresses are bit addresses in the bit space (0 to 127).

Table of Locating Controls

Table 3-4 lists the locating controls in order of precedence. The first column gives
the name of the control. The second column describes the address space affected by
the control. The third column gives the address range for segments within each control.
The last column shows what types of segments are allowed for each control; for each
valid type, the column also shows the allowable relocation attributes. (Refer to the
MCS-51 Macro Assembler User's Guide and PL/M-51 User's Guide for details on
segment types and relocation attributes.)

Notes On Locating Controls

The following notes refer to table 3-4.

1. Bit addresses for non-BIT segments in the BIT control must be on byte bounda­
ries; that is, they must be divisible by eight. (BIT-type segments can be aligned
on bit boundaries.)

2. The range of addresses for the IDATA control is dependent on the target machine.
See the RAM SIZE control later in this chapter.

3. The STACK control specifies which segments are to be allocated uppermost in
the IDAT A space. The memory accessed starts after the highest on-chip RAM
address occupied by any previously allocated segment and continues to the top
of the IDATA space.

Table 3-4. Locating Controls

Address Range Segment Types
Control Address Space (Hex) (and Attributes)

PRECEDE Register banks and bit- OOH-2FH DATA (UNIT-aligned);
addressable space in I DATA
on-chip data RAM

BIT Bit-addressable space OOH -7FH BIT; DATA; IDATA
in on-chip data RAM (see note 1)

DATA Directly-addressable OOH -7FH DATA (UNIT-aligned);
on-chip data RAM I DATA

IDATA Indirectly-addressable OOH - OFFH I DATA
on-chip data RAM (see note 2)

STACK Same as IDATA (see Same as IDATA Same as IDATA
note 3)

XDATA External data RAM 0- OFFFFH XDATA

CODE Code memory 0- OFFFFH CODE

MCS@·Sl Using the RLSI Program

NOTE
This control has no other effect on any segments.

The IDATA ?STACK segment, if it exists, is placed higher than segments
that were mentioned in the STACK control.

The STACK control provides a convenient way to handle the stack (usually for
ASM51-based application, where ?STACK is not used).

First, assign the stack pointer (SP) to a relocatable segment; consider the following
ASM51 example:

STACK_AREA SEGMENT IDATA
D S 1 0 H

MOV SP, ISTACK_AREA-1

SEGMENT directive in source.
Reserve 16 bytes for stack.

Other CODE instructions.

; Initialize SP.

Then, at relocation time, specify the segment named ST ACICAREA in a STACK
locating control:

R lS 1 STACK (STACK_AREA)

where

ellipsis (...) represents the rest of the invocation line exclusive of the
STACK control.

NOTE
If the application contains modules produced by PL/M-51, the ?STACK
should be used as the stack segment.

Examples

Here are three brief examples of invocations with locating controls. See Chapter 5
for a more extended example.

RL51 :F1:PROG1.0BJ, :F1 :PROG2.0BJ TO :F2:PROG.ABS &
"PRECEDE (MESSAGE1) XDATA (ARRAY1 (256), ARRAY2 (512»

In this example, the DATA (or IDATA) segment named MESSAGE I will be
allocated space in on-chip RAM in the lowest available location, overlapping the BIT
space if necessary. The XDAT A control specifies that the two arrays are to be located
at specific addresses (e.g., for debugging).

RL51 :F1 :TEST.OBJ STACK (STACK_AREA)

Here, the STACK control allocates the uppermost portion of IDA T A space for the
segment named STACK_AREA. The software definition of STACK_AREA might
be as given in the previous section.

RL51 APROG.OBJ, BPROG.OBJ, PLM51 .LIB CODE (MOD1 (4DDDH),
MOD2, MOD3)

Here, the CODE control allocates space in 'code memory for segments MODI, MOD2,
and MOD3. MODI is aligned at location 4000H. MOD2 and MOD3 are assigned
contiguous addresses after MODI.

3-11

Using the RL51 Program

3-12

Configuration Controls

The configuration controls are used to describe the actual configurations that objects
are aimed to.

This group contains the RAM SIZE control.

RAMSIZE

The RAM SIZE control format

RAM 5 I Z E (value)

where

value is a number in the range 128 to 2SS.

RAMSIZE specifies the maximum amount of on-chip RAM that may be allocated
for the user program. The default value for RAMSIZE is 128 (as is the case for the
80S1). If the object is aimed at more than one configuration of the MCS-Sl family,
specify the MINIMUM of all on-chip RAM sizes among all machines you want to
link.

The sole use of this control is to enable RLSI to check on-chip memory size constraints
at RL-time and thus avoid confusion at ICE-time.

OVERLA Y / NOOVERLA Y Controls

The linker allows overlaying of on-chip RAM segments among modules, under the
specification of the OVERLAY control. Two segments can be overlaid if all the
following conditions exist:

• The segments have the same type (DATA, IDATA, BIT, or BITADDRESS­
ABLE).

•. The segments use the same register bank (determined by the USING attribute
or the REGISTERBANK control).

• The segments are marked as overlayable. Currently, this is done only by the
PL/M-Sl compiler. ASMSI (V2.1 and lower) lacks this feature. Therefore,
assembler segments are considered non-overlayable.

• The segments belong to disjoint modules. That is, no procedure in one module
can directly or indirectly call a procedure from the other.

The default is NOOVERLA Y. No overlaying of on-chip RAM segments is done by
the linker.

The general form of the OVERLAY control is as follows:

a v E R LAY [(overlay-unit [,... I) I

where

overlay-unit is ov-module-name calls ov-module-name.

ov-module-name is a legal RLSI module name or *, which stands for all the
module names.

calls is >.

Using the RL51 Program

OVERLAY

If the OvERLA Y control appears in the invocation line without arguments, the linker
assumes that no intra-module calls exist except for those deducible from the PUBLIC­
EXTERNAL declarations, and that overlaying of all overlayable segments is safe.

NOOVERLAY

The linker does not overlay data segments.

OVERLAY (A) B)

If the OvERLA Y control appears in the invocation line with arguments, it indicates
that there are invisible calls between modules. The notation A > B means that module
A calls module B. In this case, the linker overlays all overlayable segments, except
that segments from A are not overlaid by segments from B. Note that the added
connection can prevent other segments from overlaying. For example, if the segment
A was overlaid with the segment D, and B calls D (visibly by PUBLIC-EXTERNAL
declarations), then the effect of A > B is that A and D will not be overlaid, since A
can call D through B.

OVERLAY (A> *, * > B)

A module can be declared as non-overlayable in two ways. The argument A> *
indicates that the module A calls all other modules. On the other hand, * > A means
every module calls A. In either case, no segments from A will be overlaid. The effect
of each form depends on the nature of A. For example, if the * > A form is used and
A visibly calls all other modules, then every module can call (through A) each other
module. In this case, the linker will not perform any overlays.

The overlaying of data segments in on-chip RAM has the following restrictions:

The OVER LA Y control cannot be invoked with the IXREF selection items
NOGENERATED or NOLIBRARIES. RL51 generates an error if either one
is specified.

• Combined segments and segments appearing in locating controls are not overlaid
by the linker.

Following is an example in which two disjoint modules share the same on-chip RAM
area:

mod1: DO;

T H R E E_B EAR S: PRO C E D U REP U B L I C ;
DECLARE LITTLE_BEARS_BED BYTE;
IF BOOLEAN (LITTLE BEARS BED) THEN

CALL MSG(.('SOMEONE"S BEEN IN MY BED!'),O);
LITTLE_BEARS_BED = 0;

END THREE_BEARS;

END modl;

3-13

Using the RL51 Program

3-14

mod2: DO;

GOLDILOCKS: PROCEDURE PUBLIC;
DECLARE SPARE_BED BYTE;
SPA R E_B E D = 1;

END GOLDILOCKS;

END mod2;

main_story: DO;

THREE_BEARS: PROCEDURE EXTERNAL; END;
GOLDILOCKS: PROCEDURE EXTERNAL; END;

CALL THREE_BEARS;
CALL GOLDILOCKS;
CALL THREE_BEARS;

END main_story;

In this example, the linker reserves the right to use the LITTLE_BEARS_BED as a
SPARE_BED because the two procedures are never active simultaneously.

To perform overlaying, the linker must determine which procedures are active simul­
taneously. To do this, the linker assumes that all CALLs can be executed. For example,
if procedure A calls procedure B, and B calls procedures C and D, then the linker
can overlay RAM variables from C only with the RAM variables of D.

The linker, however, looks only at the PUBLIC-EXTERNAL declarations. It assumes
that any reference to an EXTERNAL procedure will be executed, but ignores the
possibility of hidden calls. The arguments to the OVERLAY control are therefore
needed to specify those interconnections between modules that cannot otherwise be
detected by the linker.

Such situations arise if the interconnection is done by a computed call to an external
procedure whose address is not determined by a simple PUBLIC-EXTERNAL
relationship. For example, module A imports from module B a public variable that
contains the address of a local or public procedure in B. Module A then performs a
computed call to the procedure in B. The rule can be stated as follows: The linker
assumes a connection from module A to module B if there exists an external refer­
ence in A to a public procedure in B. In all other cases, hidden connections must be
explicitly given as arguments to the OVER LA Y control.

Following is an example of a computed call to an external procedure:

MOD1: DO;

DECLARE I_O_CLEAR WORD EXTERNAL;

END MOD1;

Using the RL51 Program

In another module, you have:

MOD2: DO;

DECLARE I 0 CLEAR WORD PUBLIC;

READER: PROCEDURE;

1_0_5 U C C E 5 5: PRO C E D U R E ;

IF ERR CODE () a
THEN I_O_CLEAR . I _O_E R R 0 R ;
EL5E I_O_CLEAR • 1_0_5 U C C E 5 5 ;

END READER;

END MOD2;

In the above procedure, MODI invokes a procedure defined in MOD2. To prevent
the linker from overlaying on-chip RAM variables of MOD2 with on-chip RAM
variables of MODI, the following form of the OVERLAY control must be used:

OVERLAY (MOD1) MOD2>

Overlaying can be a good way of economizing on-chip RAM space; however, overlay­
ing may, in some cases, give worse results. For example, if most procedures call one
another, the resulting segments will expand, making it more difficult for the linker to
allocate a few large segments than many small ones.

The outcome of the overlaying process can be checked by inspecting the link map.
All overlaid segments are indicated by **OVERLAP**. Warning (4), DATA SPACE
MEMORY OVERLAP, is not generated for those segments.

Abbreviations for Command Words

Most of the command words in the RL51 command have short forms to save you
keystrokes over the full spellings. Here is a list of the command words and their
abbreviations.

Command Word

BIT
CODE
DATA
DEBUGLINES
DEBUGPUBLICS
DEBUGSYMBOLS
GENERATED
IDATA
IXREF

Abbreviation

BI
CO
DT

'DL
DP
DS
GN
ID
IX

3-15

Using the RL51 Program

3-16

Command Word

LIBRARIES
LINES
MAP
NAME
NODEBUGLINES
NODEBUGPUBLICS
NODEBUGSYMBOLS
NOGENERATED
NOIXREF
NOLIBRARIES
NOLINES
NOMAP
NOOVERLAY
NOPRINT
NOPUBLICS
NOSYMBOLS
OVERLAY
PAGEWIDTH
PRECEDE
PRINT
PUBLICS
RAMSIZE

Abbreviation

LB
LI
MA
NA
NODL
NODP
NODS
NOGN
NOIX
NOLB
NOLI
NOMA
NOOL
NOPR
NOPL
NOSB
OL
PW
PC
PR
PL
RS

CHAPTER 4
RL51 OUTPUTS

The RL51 program produces three outputs: console displays, a listing file, and the
absolute object module file. This chapter describes these outputs and gives examples.
As discussed in Chapter 3, the listing controls in the RL51 command allow the user
to suppress some information in the listing file, and the linking controls can suppress
some information in the absolute object file.

Console Display

The console displays produced by RL51 consist of a sign-on message and any error
messages that occur. The sign-on is as follows:

ISIS-II MCS-51 RELOCATOR AND LINKER Vxy

where

x.y is the version number.

Listing File

RL51 produces a listing file unless it is suppressed in the RL51 invocation. The RL51
listing file contains:

• A summary of the link and locate process

• A symbol table, as specified in the RLSI invocation

• An inter-module cross-reference listing (IXREF)

• Error messages detected by RL51

Link Summary

A sample of a link summary is shown in figure 4-1. The summary includes the follow­
ing kinds of information:

• A header echoing the RL51 invocation.

• Input modules included in the link process. Input modules are identified by module
name and file name.

• A link map (unless suppressed by the NOMAP control). The map lists all
allocated segments, giving the type, base address, and length of each segment.
The map also identifies segment overlaps and gaps in the memory space.

• A list of segments that were ignored in the link process. If any segments were
ignored, the reasons for doing so will be reported later as an error.

• A list of unresolved external symbols. An external symbol is unresolved when it
is not matched by a public symbol in one of the input modules. Each occurrence
of an unresolved external symbol in a module will be reported later as an error.

• A list of all symbols that were ignored in the locate process. A symbol is ignored
when the same name appears as a public symbol in different modules, or has
attributes that are incompatible with external references, or belongs to an ignored
segment. Each occurrence of an ignored symbol in a module will be reported
later as an error.

4-1

RLSlOutputs

ISIS-II MCS-51 RELOCATOR AND LINKER, V1.0, INVOKED BY:
RL51 :F1:FILE1.EXTCMOD1,MOD2), :F1:FILE2.EXT TO OUTFIL.EXT ,
NAME CEXAMPLE) MAP PRINT C:LP:)

IN PUT MODULES INCLUDED
FILE1.EXTCMODll
FILE1.EXTCMOD2)
FILE2.EXTCMOD3)

LI N K MAP FOR OUTFIL.EXTCEXAMPLE)

TYPE BASE LENGTH RELOCATION SEGMENT NAME
------ -------,--- ------------

REG 0000 H 0008 H "REG BANK 0"
DATA 0OO8H 00 1 0 H UN I T DATA_SEG_1
DATA o 0 1 4 H 0008 H ABSOLUTE

"OVERLAP" REG o 0 1 8 H 0008 H "REG BANK 3"
BIT 0020 H 0OOlH.6 U HIT A_BIT_SEG

0021H.6 OOOOH.2 ***GAP***
DATA 0022 H o 0 0 1 H BITADDR DATA_SEG_2
DATA 0023H 000 B H ABSOLUTE
IDATA 002 E H 0042 H UN I T STACK_SEG

0070 H 00 1 0 H ***GAp···

XDATA 0000 H COO 0 H UN I T DYNAMIC_MEM

CODE 00 0 0 H 1389H UN I T PRO C 1
1389H 0477H * * * GAP • * *

CODE 1800 H 07A5H INBLOCK PROC2

IGNORED SEGMENTS
DYNAMIC POOL

UNRESOLVED EXTERNAL SYMBOLS
INVERT

IGNORED SYMBOLS
BIT256

4-2

Figure 4-1. Link Summary

NOTE

1. For bit addresses, the display format is byte-address. bit-address (example:
0020H.7 for bit 7 of byte 0020H). However, when bit 0 of a byte is
referenced, only the byte address is displayed (the .0 is not displayed).

2. References to an unresolved external symbol, an external symbol refer­
ring to an ignored public symbol, or a reference to an ignored segment
will produce additional error messages.

Symbol Table

The listing file contains a symbol table as specified by the SYMBOLS, PUBLICS,
and LINES controls in the RL5l invocation. A sample symbol table is shown in
figure 4-2.

SYMBOL TABLE FOR OUTFILE.EXT(EXAMPLE)

VALUE TYPE HAME
........ -

------- MODULE MEMRY
D:0032H PUBLIC L 0 IILM E M_PT R
B:0020H PUBLIC IHIT_FLAG
B:0020H.1 PUBLIC FULL_FLAG
D:0034H PUBLIC HIGH_MEM_PTR
X:OOOOH PUBLIC DYHAMIC_MEMORY
------- PROC ALLOCATE
D:0064H SYMBOL HUM_BYTES
D:0066H SYMBOL POOL_SELECTOR
D:0068H SYMBOL ALLOC_PTR
B:0020H.2 SYMBOL FLAG
C:OOOOH
C:007H
C:0010H
C:0013H

D:006AH
C:0018H
C:0021H
C:0028H
C:002FH
C:0032H
--- .. _ .. -

C:0037H
C:0040H
C:004FH
C:0057H
C:005FH
C:0068H
C:006FH
C:0076H
C:0082H
C:008FH
C:0094H

LI HE' 1 9
LI HE' 20
LI HE' 2 1
LI HE' 22
DO
SYMBOL I
LI HE' 23
LI HE' 24
LI HE' 25
LI HE' 26
LI HE' 27
EHDDO
LI HE' 28
LI HE' 29
LI HE' 30
LI HE' 31
LI HE' 32
LI HE' 33
LI HE' 34
LI HE' 35
LI HE' 36
LI HE' 37
LI HE' 38
EHDPROC ALLOCATE
EHDMOD MEMRY

Figure 4-2. Symbol Table

NOTE

The information in the listing file is taken from the input object modules. If
these are generated without the DEBUG option, the SYMBOLS, PUBLICS,
and LINES information will not be available for listing.

The symbol table contains scope definitions and information about the symbols and
line numbers. Scope definition identifies the module, DO block or procedure that
contains the symbol or line number. Note that when the table contains only public
symbols (i.e., NOSYMBOLS and NOLINES controls are in effect), scope definition
is by module only.

RLSI Outputs

4-3

RL510utputs

4-4

Each entry in the table consists of three parts, as follows:

• V ALUE. The value is the absolute address of the symbol. The address is prefixed
with a letter indicating the type of address space (C, code; D, internal data; I,
indirect internal data; B, bit space; X, external data; N, type less number). A byte
address (or a bit address on a byte boundary) is shown as a four-digit hexadecimal
number (example: OOEOH). A bit address (unless it is on a byte boundary) is
shown as a byte address followed by a period and the bit offset (1 through 7)
into the byte.

TYPE. The type field identifies the entry as a local symbol (SYMBOL), a public
symbol (PUBLIC), segment (SEGMENT), or a line number (LINE#).

• NAME. The name field gives the name of the symbol, or the number of the line.

For scope definition, a line is printed for the beginning and end of each block. The
TYPE field shows the type of block (MODULE, DO, or PROC for PROCEDURE),
and the end of each block (ENDMOD, END DO, ENDPROC). The NAME field
shows the name of the block, if any.

NOTE

Line number information and scope definitions other than MODULE are
applicable only to object files produced by high-level language translators
(e.g., PL/M-51).

Inter-Module Cross-Reference Report (IXREF)

The listing file contains an IXREF report as specified by the IXREF control and its
associated selection list in the RL51 invocation. A sample IXREF report is shown in
figure 4-3.

The IXREF report consists of an alphabetically sorted list of symbols. Each such
symbol begins a new line and represents a symbol that was declared as PUBLIC or
EXTERNAL in at least one of the input modules. Each symbol is followed by its
corresponding address space, followed by a semicolon. To the right of the semicolon
starts a list of modules in which the symbol was declared PUBLIC or EXTERNAL.
The first module name in the list is the one in which the symbol was declared PUBLIC.
If a symbol is unresolved, or if a symbol is defined in a library and the NOLIBRAR­
IES selection item is in effect, then the string ** UNRESOLVED ** appears in front
of the modules list.

Error Messages

RL51 displays error messages on the console and copies them to the end of the listing
file unless the listing file is suppressed.

RL51 error messages describe warnings, errors, and fatal errors. A warning is a
detected condition that mayor may not be what the user desired; a warning does not
terminate the link/locate operation. An error does not terminate operation, but
probably results in an output module that cannot be used. A fatal error terminates
operation of RL51.

Refer to Appendix B for a list of the error messages and probable causes.

RLSI Outputs

INTER-MODULE CROSS-REFERENCE LISTING

N A ME. . . . · .. USAGE MODULE NAMES

? C H E C K_E G ? BYTE . · · DATA; CHKEG TESBAS
?CHECK_EG_BITS?BIT. BIT; CHKEG
?POOO8. · CODE; ?POOO8 TESBAS
?POO15. · · CODE; ?POO15 TESBAS
?POO16. · · · · · CODE; ?POO16 TESBAS
?PIHOR. · · CODE; TESBAS ?PIVOR
?PIVOR. · CODE; ?PIVOR TESBAS
?PSWOR. · · · · · · NUMB; TESBAS ?PIVOR
CHECK_EG. · · · CODE; CHKEG TESBAS
CHECK_EG_BITS · · CODE; CHKEG
C H E C K_E X IT. CODE; CHKEQ
C H E C K_ I NIT. CODE; CHKEG
PUBOO · PUB 01
PUB02
PUB03 · PUB04 · PUB05
PUB06
PUB07
PUB08
PUB09 · PUB10
PUB 1 1 · PUB 12
PUB13
PUB 14 · PUB 1 5 · PUB16 · PUB 1 7
PUB18
PUB19
PUBXO
PUB X 1
PUBYO
PUBZO

CODE; MODULE_O MODULE_1 MODULE_2
CODE; MODULE_O MODULE_1 MODULE_2
CODE; MODULE_O MODULE_1 MODULE_2

· · · · · · CODE; * * UNRESOLVED * * MODULE_1 MODULE_2
CODE; MODULE_O MODULE_1 MODULE_2
CODE; MODULE_O MODULE_1 MODULE_2
CODE; * * UNRESOLVED * * MODULE_1 MODULE_2
CODE; MODULE_O MODULE_1 MODULE_2
CODE; MODULE_O MODULE_1 MODULE_2

· · · · CODE; MODULE_O MODULE_1 MODULE_2
CODE; MODULE_O

· · · XDATA; MODULE_O

· · · · DATA; MODULE_O
IDATA; MODULE_O
BIT; MODULE_O

· · · · NUMB; MODULE_O

· · · CODE; MODULE_O
CODE; MODULE_O
CODE; MODULE_O

· · CODE; MODULE_O
CODE; MODULE_1 MODULE_O
CODE; MODULE_1 MODULE_O
CODE; * * UNRESOLVED f tI MODULE_1 MODULE_2

· · · · · CODE; * * UNRESOLVED f tI MODULE_1

Figure 4-3. IXREF Listing

Absolute Object File

The linking and locating process combines one or more relocatable object files into
one absolute object file. The absolute object file contains one module; the absolute
module consists of

• A module header record that identifies the module.

• A set of intermixed content and debug records. The content records contain the
program code. The debug records contain the location and scope of local symbols,
public symbols, segment symbols, and line numbers, as specified by the DEBUG­
SYMBOLS, DEBUGPUBLICS, and DEBUGLINES controls in the RL51
invocation.

• A module end record that verifies the module name.

4-5

CHAPTER 5
EXAMPLES OF PROGRAM DEVELOPMENT

This chapter shows three brief examples of program development using ASM51,
PL/M-51, and RL51. The first example is the sample program discussed in the
ASM51 User's Guide; the example shows how to assemble each of the three modules,
then link and locate them into a single absolute object module with RL51. The second
example is a short program that illustrates the use of the locating controls. The third
example shows the use of RL51 with PL/M-51 modules, emphasizing the library
process.

Using Multiple Modules

The first example is a program of three modules, named SAMPLE, CONSOLE_IO,
and NUM_CONVERSION. The source for these modules is in three files,
SAMPl.A51, SAMP2.A51, and SAMP3.A51, respectively. To assemble these
modules, invoke the assembler as follows:

:F1:ASM51 :F1:SAMP1.A51 DEBUG

:F1:ASM51 :F1:SAMP2.A51 DEBUG

:F1:ASM51 :F1:SAMP3.A51 DEBUG

Note that this example assumes the three source files are on the same drive as the
assembler and linker/locator, and that the output file will be sent to the same drive.
The assembler invocations use the DEBUG control to have the symbol tables output
to the object files for the three modules.

After assembly is complete, the system has created object files SAMPl.OBJ,
SAMP2.0BJ, and SAMP3.0BJ, and listing files SAMPl.LST, SAMP2.LST and
SAMP3.LST. The three listing files are shown in figures 5-1, 5-2, and 5-3.

To link and locate the three modules, enter the command

:Fl:RLSl :Fl:SAMP1.0BJ, :Fl:SAMP2.0BJ, :Fl:SAMP3.0BJ &

liTO :Fl:SAMPLE &

"PRINT C:Fl:SAMPLE.LST) SYMBOLS LINES PUBLICS

After the RL51 program has executed, the system has placed the absolute object
module in file SAMPLE, and an output file with information on the link and locate
process in file SAMPLE.LST. The output file also contains symbol table information
as requested by the SYMBOLS, LINES, and PUBLICS controls. The listing file is
shown in figure 5-4.

5-1

Examples of Program Development

MCS-51 MACRO ASSEMBLER SAMPLE

ISIS-II MCS-51 MACRO ASSEMBLER V2.0
OBJECT MODULE PLACED IN :Fl:SAMP1.0BJ
ASSEMBLER INVOKED BY: :Fl:ASM51 :Fl:SAMP1.A51 DEBUG
LOC OBJ LINE SOURCE

0000
0000 758920
0003 758003
0006 75980A
0009 o28E

0008 900000
000E 120000
0011 120000

0014 900000
0017 120000
1301A 120000
0010 7800
001F 120000
0022 120000

13025 91313131313
131328 121313013
002B 12013013
13132E 78130
01330 1201300
13033 12013013

01336 791313
131338 1201300
0133B 7900
0030 120000

130413 E5013
13042 25130
0044 F5013

0046 7900
0048 120000

01348 900313013
004E 1200013
01351 7900
0053 7A04
0055 120000
0058 80Bl

0008

5-2

F
F
F

F
F
F
F
F
F

F
F
F
F
F
F

~'

F
F
F

F
F
F

F
F

F
F
F

F

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
413
41
42
43
44
45

46
47
48
49
50
51
52
53
54
55
56
57
58
59

NAME SAMPLE

EXTRN code (put crlf, put string, put data str)
EXTRN code (get=num, binasc, ascbin) - -

CSEG
; This is the initializing
; always starts at address
ORG 0

section. Execution
o on power-up.

MOV TMOD,#001001iJ00B
MOV TH1,#(-253)
MOV SCON,#11011010B
SETB TRl

Set timer to auto-reload
Set timer for 110 BAUO
Prepare the Serial Port
Start clock

This is the main program. It's an infinite loop,
where each iteration prompts the console for 2
input numbers and types out their sum.

START:
; Type message explaining how to correct a typo
MOV DPTR,#typo msy
CALL put string-
CALL put-crlf
; Get first number from console
MOV DPTR,#numl msy
CALL put strlny-
CALL put - crl f
MOV R0, #numl
CALL yet num
CALL put-crlf
; Get second number from console
MOV OPTR,#num2_msg
CALL put string
CALL put-crlf
MOV R0,#num2
CALL yet num
CALL put-crlf
; Convert the ASCII numbers to binary
MOV Rl,#numl
CALL ascbin
MOV Rl, #num2
CALL ascbin
; Add the 2 numbers, and store the results in SUM
MOV a ,numl
ADD a,num2
MOV sum,a

; Convert SUM from binary to ASCII
MOV Rl, #sum
CALL oinasc
; Output sum to console
MOV DPTR,#sum msg
CALL put string
MOV Rl,#sum
MOV R2,H
CALL put datd str
JMP start -

DSEG at 8
STACK: DS 8 At power-up the stack pointer is

initialized to pOlnt here.

Figure 5-1. SAMPI Listing File

Examples of Program Development

0000 54595045
01304 205E5~20

0008 544E'2052
0iJ0C 45545950
0010 45204120
13014 4E554D42
01318 4552
001A 00
001B 54595045
001E' 20494E20
0023 46495253
0027 54204E55
002B 4D424552
002F 3A20
0031 00
0032 54595045
0036 20494E20
003A 5345434F
003E 4E44204E
0042 554D4245
004b 523A20
0049 00
004A 54484520
004E 53554D20
01il52 495320
0055 00

SYMBOL TABLE LISTING

N A M E

ASCBIN.
BINASC.
CONSTANT_AREA
DATA AREA
GET NUM •
NUM! MSG.
NU1'11-:- •
NUM2 MSG.
NUM2-:- •
PUT CRLF.
Pu'r-DATA s'rR.
PUT STRING.
SAMPLE.

T Y P E

C ADD£<
C ADDR
C SEG
D SEG
C ADDR
C ADDR
D ADDR
C ADDR
D ADDR
C ADDR
C ADDR
C ADDR

60
61
62
63
64
65
66
67
68
69
70

71

72

73

74

DATA AREA segment DATA
CONSTANT AREA segment CODE

RSEG
NUH1:
NU~12 :
SUM:

data area
DS 4"
DS 4
DS 4

RSEG constant area
TYPO MSG: DB 'TYPE X TO RETYPE A NUMBER' ,00H

NUMl MSG: DB 'TYPE IN FIRST NUMBER: " IilIilH

NUM2 MSG: DB 'TYPE IN SECOND NUMBER: ',01ilH

SUM MSG: DB 'THE SUM IS • ,1il0H

75 END

V A L U E

1il056H
f000CH

001BH
0000H
0032H
0004H

R
!{

R
R

EXT
EX'r

EXT

EXT
EXT
EXT

A T T RIB UTE S

REL=UNIT
REL=UNIT

SEG=CONSTANT AREA
SEG=DATA AREA
SEG=CONSTANT AREA
SEG=DATA AREA

SCON. D ADDR 0098H A
STACK • D ADDR 0008H A
START C ADDR 000SH A
SUM MSG C ADDR 004AH R SEG=CONSTANT AREA
SUM- D ADDR 0008H R SEG=DATA AREA
THI • D ADDR 008DH A
TMOD. D ADDR 0089H A
TRI B ADDR 0088H.6 A
TYPO MSG. C ADDR 0000H R SEG=CONSTANT AREA

REGISTER BANK(S) USED: 0, TARGET MACHINE(S): ·8051

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure 5-1. SAMP1 Listing File (Cont'd.)

5-3

Examples of Program Development

ISIS-II MeS-51 MACRO ASS~MBLER V2.1il
OBJECT MODULE PLACED IN :F1:SAtIP2.0BJ
ASSEMBLER INVOKED BY: :F1:ASM51 :F1:SAMP2.A51 DEBUG

LuC OBJ

01il0D
000A

0000 7400
0002 120000
001il5 740A
01il07 12001il0
0010A 22

10010B E4
1il01ilC 93
000D 610106
0100F 1201il00
0012 A3
0013 80F6

0015 22

0016 E7
0017 1201il00
001A 09
0018 DAF9
01illD 22

001E 3099FD
0"21 C299
1.:1023 F599
0"25 22

0026 7A04
0"28 A900
restart

002A 120000

5-4

l!'

F

F

F

F

LINE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58

SOURCE

NAME CONSOLE 10

10 ROUTINES segment CODE
-RSEG 10 ROUTINES
This is the console 10 routine cluster.

PUBLIC put crlf, put string,put data str,get num
USING 0 - - - - -

ThlS routine outputs a Carriage Return and
; a Line Feea
PUT CRLF:
Cl{ "EQU 0DH
LF EQU 0AH

MOV A,#cr
CALL put char
MOV A,#If
CALL put_char
RET

carriage return
line feed

Routine outputs a null-t~rminated string located
in CODE memory, whose address is given in DPTR.

PUT STRING:
CLR
MOVC
JZ
CALL
INC
JMP

EXIT:
RET

A
A,@A+DPTR
exit
put char
DPTR
put_string

Routine outputs a string located in DATA memory,
whose address is in R1 and its length in R2.

PUT DATA STR:
MOV A,@R1
CALL put char
INC R1-
DJNZ R2,put_data_str
RET

Routine outputs a single character to console.
The character is given in A.

PUT CHAR:
JNB TI,$
CLR TI
MOV SI3UF,A
RET

Get a 4 character string from console
and stores it at the address given in R0.
IfaX is received, routine starts over again.

GET NUM:
MOV R2,#4
MOV R1,AR0

GET LOOP:
CALL get char

set up string length as 4
R0 value may be needed for

; Next 4 instr's handle x- the routine starts

Figure 5-2. SAMP2 Listing File

Examples of Program Development

59 over if received
klkl2D C2E7 6 iii CLR ACC.7 clear the par i ty nit
klkl2F B418kl5 61 CJNE A,#18H1GO ON if not X- go on
klkl32 12klklklkl F 62 CALL put_cr f -
klkl35 8klEF 63 JMP get_num

64 GO ON:
klkl37 F7 65 -MOV @R1,A
klkl38 kl9 66 INC R1
klkl39 DAEF 67 DJNZ R2,get - loop
kl03B 22 68 RET

69
70 Get a single character from console.

0kl3C 3098FD
iHDF C298
0kl41 E599
0043 22

SYMBOL 'rABLE LISTING

N A 11 E

ACC •••
AR0 •••
CONSOLE 10
CR •• -:
EXIT ••
GET CHAR
GET-LOOP •
GET-NUM.
GO ON ••
ro ROUT INES.
LF- ••
PUT_CHAR ••
PUT CRLF ••
PUT-DATA STR
PUT-STRING •
RI -: •
SHUF •
TI • • •

T Y P E

D ADDR
D AD DR

NUMB
C ADDR
C ADDR
C ADDR
C ADDR
C ADDR
C SEG

NUMB
C ADDR
C ADDR
C ADDR
C ADDR
B ADDR
D ADDR
B ADDR

71
72
73
74
75
76
77
78

The character is returned in A.
GET CHAR:

JNB RI,$
CLR RI
MOV A,SBUF
RET

END

V A L U E A T T RIB UTE S

00EklH A
kl000H A

kllHlDH
kl015H
kl03CH
002AH
0kl26H
0037H
0044H
000AH
kl0lEH
0000H
0!.H6H
000BH
kl098H.0 A
klkl99H A
0kl98H.1 A

A
R
R
R
R PUB
R

A
R
R PUB
R PUB
R PUB

SEG=IO ROUTINES
SEG=IO-ROUTINES
SEG=IO ROUTINES
SEG=IO-ROUTINES
SEG=IO-ROUTINES
REL=UNIT

SEG=IO ROUTINES
SEG=IO ROUTINES
SEG=IO-ROUTINES
SEG=IO-ROUTINES

REGISTER BANK(S) USED: kl, TARGET MACHINE(S): 8051

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure 5-2. SAMP2 Listing File (Cont'd.)

5-5

Examples of Program Development MCS@·Sl

MCS-51 MACRO ASSEMBLER NUM CONVERSION

ISIS-II MCS-51 MACRO ASSEMBLER V2.1O
OBJECT MODULE PLACED IN :Fl:SAMP3.0BJ
ASSEMBLER INVOKED BY: :Fl:ASM51 :Fl:SAMP3.A51 DEBUG

LOC OBJ

100310
10102B
002D

10101010 A8101

REG
1010132 108
010103 E6
010104 C3
1013135 ~431O

1010107 75~'064

01013A A4
13010B FB

IOIOIOC 108
IOIOIOD E6
13IOIiJE 94310
0fOl0 75F01OA
101013 A4

101014 2B
01315 f'B

10016 108
101017 E6
1iJ1iJ18 C3
131319 94310
001B 2B
1iJ01C FB

OiHD E7
13101E B42D04

13021 EB
101022 F4
131023 104
101024 FB

5-6

LINE

1
2
3
4
5
6
7
8
9

110
11
12
13
14
15
16
17
18
19
210
21
22
23
24
25
26
27
28
29
310
31
32
33
34
35
36
37
38
39
410
41
42
43
44
45
46
47
48
49
510
51
52
53
54
55
56
57
58
59
610

SOURCE

NAME NUM CONVERSION
;
NUM ROUTINES segment CODE

RSEG NUM ROUTINES
This modul~ converts from ASCII to oinary
and back. The binary numoers are signed one-oyte
integers, i.e. range is -128 to +127. Their
ASCII representation is always 4 char's long­
i.e. a sign followed by 3 digits.

PUBLIC ascoin, oinasc
USING 10

ZERO EQU '10'
PLUS EQU '+'
MINUS EQU '-'

This routine converts ASCII to binary.
INPUT- a 4 char string pointed at by Rl. The

numoer range must De -128 to +127, and the
string must have 3 digits preceded oy a sign.

OUTPUT- a signed one-byte integer, located where
the input string started (pointed at by Rl).

ASCBIN:
MOV RIiJ,ARI ; RI original value needed later

; Compute flrst digit value, and store it in TEMP
TEMP EQU R3

. INC RIO
MOV A,@RIiJ
CLR C
SUBB A,jlzero
MOV B,#1101O
MUL AB
MOV 'rEMP,A

Compute the second digit value
INC RIO
MOV A,@RIO
SUBB A,jlzero
t10V B,#1!il
MUL AB

Add the value of the second aiglt to num.
ADD A,TEMP
MOV TEMP,A

Get thIrd digit and its value to total
INC RIO
l"lOV A,@RIO
CLR C
SUBB A,jlzero
ADD A,TEMP
MOV TEMP,A

Test the sign and complement the number if the
sign is a tninus

MOV A,@RI
CJNE A,jlminus,pos

MOV A,TEMP
CPL A
INC A
MOV TEMP,A

;Skip the next 4 instr's
;if the number is positive

Epilogue- store the result and exit
POS:

Figure 5·3. SAMP3 Listing File

Examples of Program Development

loHI25 EB
liHl26 F7
0027 22

00E7

0028 E7
10029 772B

'''12H 3k1E704

002£ 772D
16030 14
0031 F4

01.132 iii 9
0033 75F064
0036 84
0037 2430
0039 F7

0k13A 09
0038 E5F0
!dinD 75F00A
0040 84
!dftJ41 2430
0043 In

0044 09
0045 E5F0
0047 2430
!d049 F7

004A 22

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
9i1
91
92
93
94
95
96
97
98
99

101i1
HI1
102

SYMBOL TABLE LISTING

N A M E

ACC ••
ARl. •
ASCBIN
B. • • •
BINASC
GO ON2
MINUS.
NUM CONVERSION
NUM-ROUTINES •
P[;US
POS.
SIGN
TEMP
ZERO •

T Y P E

D ADDR
D ADDR
C ADDR
D ADDR
C ADDR
C ADDR

NUMB

C SEG
NUMB

C ADDR
B ADDR

REG
NUMB

MOV A,TEMP
MOV @Rl,A
RET

This routine converts oinary to ASCII.
INPUT-a siyned l-oyte inteyer, pointed at oy R1·
OUTPUT- a 4 character string, located where the

input numoer was (pointed at oy R1).
BINASC:
SIGN nit ACC.7

Get the numoer, find its siyn and store its sign
MOV A,@R1
MOV @R1,#plus

JNB sign,go on2
3 instructions

@R1,#minus
Next

MOV
DEC
CPL A

A

i Store a plus sign (over­
iwritten oy minus if needed)

iTest the sign oit
handle negative numoers

iStore a minus sign

Factor out the first digit
GO ON2:

INC
MOV
DIV

R1
B,#100
AS

ADD A,#zero
MOV @R1,A

Factor out the
INC R1
MOV A,B
MOV B,#10
DIV AB
ADD A,#zero
MOV @R1,A

Store the third
INC Rl
MOV
ADD
MOV

A,B
A,#zero
@R1,A

istore the first digit
second digit

istore the second digit
dig it

.note
RET

that we return
istore the third digit

without restoriny R1

i
END

V A L U E

00E0H
000lH
0000H
00F0H
0028H
0032H
002DH

A
A
R PUB
A
R PUB
R
A

004BH
002BH A
0025H R
00E0H.7 A
R3
0030H A

A T T RIB UTE S

SEG=NUM_ROUTINES

SEG=NUM ROUTINES
SEG=NUM-ROUTINES

REL=UNIT

SEG=NUM ROUTINES

REGISTER BANK(S) USED: 0, TARGET MACHINE(S): 8051

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure 5-3. SAMP3 Listing File (Cont'd.)

5·7

Examples of Program Development

ISIS-II RL51 PAGE

ISIS-II MCS-51 RELOCATOR AND LINKER, V2.13, INVOKED BY:
:F1:RL51 :F1:SAMP1.OBJ,:F1:SAMP2.0BJ,:F1:SAMP3.0BJ &

**TO :Fl:SAMPLE &
**PRINT (:F1:SAMPLE.LST) SYMBOLS LINES PUBLICS IXREF

INPUT MODULES INCLUDED
:F1:SAMP1.OBJ(SAMPLE)
:Fl:SAMP2.0BJ(CONSOLE 10)
:F1:SAMP3.0BJ(NUM_CONVERSION)

LINK MAP FOR :F1:SAMPLE(SAMPLE)

TYPE BASE LENGTH

REG 13l3l3iJH 013138H
DATA 13008H 131308H
DATA 130HlH 13I3I3CH

CODE 013013H 0135AH
CODE 005AH 13056H
CODE 00B0H 004BH
CODE 130FBH 0044H

SYMBOL TABLE FOR :F1:SAMPLE(SAMPLE)

VALUE TYPE NAME

------- MODULE SAMPLE

RELOCATION

ABSOLUTE
UNIT

ABSOLUTE
UNIT
UNIT
UNIT

C:005AH SEGMENT CONSTANT AREA
D:130113H SEGMENT DATA AREA
C:131375H SYMBOL NUM1-MSG
D: 13I3HlH SYMBOL NUM1
C: 0138CH SYMBOL NUM2 MSG -
D:01314H SYMBOL NUM2
D: 01398H SYMBOL SCON
D:1313138H SYMBOL STACK
C:131313BH SYMBOL START
C:013A4H SYMBOL SUM MSG
D:131318H SYMBOL SUM-
D:008DH SYMBOL TH1
D:0089H SYMBOL TMOD
B:13088H.6 SYMBOL TR1
C:1305AH SYMBOL 'rYPO MSG
------- ENDMOD SAMPLE
------- MODULE CONSOLE 10
D:00E13H SYMBOL ACC
D:00130H SYMBOL AR13
N:1300DH SYMBOL CR
C:01113H SYMBOL EXIT
C :13137H SYMtiOL GE'l' CHAR

ISIS-II RL51

C:0125H SYMBOL GET LOOP
C:0121H PUBLIC GET-NUM
C:0132H SYMBOL GO ON
C:00FBH SEGMENT IO-ROUTINES
N:000AH SYMBOL LF
C:0119H SYMBOL PUT CHAR

SEGMENT NAME

"REG BANK 13"

DATA AREA

CONSTANT AREA
NUM ROUTINES
10 ROUTHIES

PAGE

Figure 5-4 .RL51 Output File

5-8

1

2

Examples of Program Development

C:0fclFBH PUBLIC PUT CRLF
C:fcllllH PUBLIC PUT DATA STR
C:0106H PUBLIC PUT-STIUNG
B:0098H SYMBOL RI
D:fil099H SYMBOL SBUF
B:fil098H.l SYMBOL TI
------- ENDMOD CONSOLE 10 -
------- MODULE NUM CONVERS ION
D:filfilEfilH SYMBOL ACC-
D:filfil01H SYMBOL ARI
C:filfilBfilH PUBLIC ASCBIN
D:fil0F0H SYMBOL B
C:filfclD8H PUBLIC BINASC
C:filfilE2H SYMBOL GO ON2
N:002DH SY,'1BOL MINUS
C:fclfilB0H SEGMENT NUM ROUTINES
N:fclfcl2BH SYMBOL PLUS
C:00DSH SYMBOL POS
B:00E0H.7 SYMBOL SIGN
N:0030H SYMBOL ZERO
------- ENDMOD NUM CONVERSION

ISIS-II RLSI PAGE 3

INTER-MODULE CROSS-REFERENCE LISTING

NAME. • ••• USAGE MODULE NAMES

ASCBIN ••
BINASC. •
GET NUM •
PUT-CRLF.
PUT-DATA STR.
PUT-STRING.

CODE;
CODE;
CODE;
CODE;
CODE;
COD8;

NUM CONVERSION SAMPLE
NUM-CONVERSION SAMPLE
CONSOLE 10 SAMPLE
CONSOLE-IO SAMPLE
CONSOLE-IO SAMPLE
CONSOLE-IO SAMPLE

Figure 5-4. RL51 Output File (Cont'd.)

Using the Locating Controls

The second example shows how to use the PRECEDE control to specify an order for
data segments, in this case because the RL51 algorithm for locating segments results
in a segment being left out.

The program is named TESTOl. After assembly, the listing of TESTOl.OBJ is as
shown in figure 5-5. The program's code sequence is irrelevant to the example. The
two DATA segments, SEGI and SEG2, and the BIT segment, BIT3, are the points
of interest for this example.

SEGI is 21H bytes long; SEG2, 50H bytes long; SEG3, one bit long. The assembler
listing also shows working register bank 0 (8 bytes long, absolutely located at addresses
OOH through 07H).

All these segments are to be located in the on-chip data RAM of an 8051. For the
8051, the directly-addressable on-chip data RAM is 80Hbytes long (addresses OOH
through 7FH); addresses 20H through 2FH are bit-addressable. The working regis­
ters may occupy the first 20H bytes of the space. To see what RL51 does with this
program, enter the command

RL51 :F1:TEST01.0BJ

5-9

Examples of Program Development MCS@-51

MCS-51 MACRO ASSEMBLER TEST01

ISIS-II MCS-51 MACRO ASSEMBLER V2.0
OBJECT MODULE PLACED IN :Fl:TEST01.0BJ
ASSEMBLER INVOKED BY: :Fl:ASM51 :Fl:TBST01.SRC PRINT (:CO:) &
**OBJECT (:Fl:TEST01.0BJ)

LOC OBJ LINE

1
2
3
4
5
6
7
8
9

SOURCE

This test shows the use of the
PRECEDE locating control.

prog
segl
seg2
seg3

One bit causes failure of the
RL51 allocation algorithm,
but the PRECEDE control fixes it.

NAME test01

SEGMENT CODE
SEGMENT DATA
SEGMENT DATA
SEGMENT BIT

RSEG prog

Code segment.

0000 434F4445
0004 204953211J
0008 49525245
000C 4C455641
00l1i3 4E54

10
11
12
13
14
15
16
17
18 DB 'CODE IS IRRELEVANT'

0000

0000

5-10

19
20
21
22
23
24
25
26
27
28
29

RSEG segl
DS 02lH

RSEG seg2
DS 050H

RSEG seg3
DBIT 00lH

END

Figure 5-5. TESTOI Assembly Listing File

The RL5l listing file is shown in figure 5-6. ERROR l07 informs us that the locate
attempt for SEG 1 would overflow the data space; SEG 1 was ignored (not located)
for this reason. The link map shows the following assignments for the remaining
segments:

Addresses

OOH - 07H
OSH - lFH
20H
20H.l - 20H.7
2lH - 7lH

Segment

Register Bank 0
GAP
SEG3 (one bit at bit location 0)
GAP
SEG2 (50H bytes)

After these segments have been located, there is not enough room for SEGl (2lH
bytes). However, there would be enough room if SEGl were located before the BIT
segment. To obtain this result, the command is

RL51 :F1:TEST01.0BJ PRECEDECSEG1)

Examples of Program Development

ISIS-II RL51

ISIS-II MCS-51 RELOCATOR AND LINKER, V2.0, INVOKED BY:
RL51 :F1:TEST01.0BJ

INPUT MODULES INCLUDED
:F1:TEST01.0BJ(TEST01)

LINK MAP FOR :F1:TEST01(TEST01)

TYPE 13ASE LENGTH

REG 0000H 0008H
0008H 0018H

RELOCATION SEGMENT NAME

---------- ------------
"REG BANK 0"
*** GAP ***

BIT 0fd20H 0000H.1 UNIT SEG3
0020H.1 0000H.7 *** GAP ***

DATA 0021H 0050H UNIT SEG2

CODE 0000H 0012H UNIT PROG

IGNORED SEGMENTS
SEG1

- ERROR 107: ADDRESS SPACE OVERFLOW
SPACE: DATA
SEGMENT: SEG1

Figure 5-6. RL51 Listing File Without PRECEDE

The RL51listing file for this example is shown in figure 5-7. The PRECEDE control
caused the link mapping to be as follows:

Addresses

OOH - 07H
08H - 28H
29H
29H.I - 29H.7
2AH -7AH

Segment

Register Bank 0
SEGI (2l"H bytes)
SEG3 (one bit at bit location 0)
GAP
SEG2 (50H bytes)

Refer to Chapter 2 for details on RL51 's allocating algorithm.

5-11

Examples of Program Development

IS I S-I I RL51

ISIS-II MCS-51 RELOCATOR AND LINKER, X021, INVOKED BY:
RL51 :F1:TEST01.0BJ PRECEDE(SEG1)

INPUT MODULES INCLUDED
:F1:TEST01.0BJ(TEST01)

LINK MAP FOR :F1:TEST01(TEST01)

5-12

TYPE BASE LENGTH RELOCATION SEGMENT NAME
---------- ------------

REG 0000H 0008H "REG BANK 0"
DATA 0008H 0021H UNIT SEG1
BIT 0029H 0000H.1 UNIT SEG3

0029H.1 0000H.7 *** GAP ***
DATA 002AH 0050H UNIT SEG2

CODE 0000H 0012H UNIT PROG

Figure 5-7. RL51 Listing File with PRECEDE

Using RL51 with PL/M-51 Modules

The third example shows how to use RLSI with object modules produced by
PL/M-Sl. The example shows the use of PLMSI.LIB and demonstrates PL/M-Sl
generated segments and the PL/M-SI to ASMSI linkage.

The entire application introduces a way to haIt ICE-Sl at run time. The procedure
CHECICEQUAL in the PL/M-Sl module CHICEQ checks if an arithmetic
expression is true. If yes, it calls the HALTJCE assembler routine, which causes
ICES I to stop the program that is currently running. The code of the program is
irrelevant; the example merely intends to show the program development process.

The PLMSI main module CHICEQ is compiled by

PLMS1 :F1:CHKEQ.PS1 DEBUG PW(SO)

The output of the compilation is shown in figure S-8.

The ASMSI module HLTICE is assembled by

ASMS1 :F1:HLTICE.AS1 DEBUG PW(SO)

The output of the compilation is shown in figure S-9.

RLSI is invoked by the following command:

US1 :F1:CHKEQ.DBJ,:F1:HLTICE.DBJ,PLM51.L1B IXREF PW(72)

RLSI links the two pre-translated input modules, along with the mandatory library
PLMSI.LIB. PLMSI.LIB must be linked whenever a PL/M-Sl module participates
in the linkage. The result of the linkage is shown in figure S-10.

PL/M-51 COMPILER ICE51 - Check/Halt

ISIS-II pL/M-51 VI.0
COMPILER INVOKED BY: plm51 :fl:cnkeq.p51 deoug pw(90)

I

2

3

5

6

7

9

10

11

12

I

I

2

1

2

2

1

1

1

1

$title ('== ICE51 - Check/Halt ==')
/***/
I" Check equal: "I
I" Check if compar ison yields the ,,/
I" expectea result. If not, call "I
I" assemoler routine to return to ICE. ,,/
1"""""*"""""*"*****"*******"""****""""*"*""*1

chk eq:
DO;

halt ice:
PROCEDURE (vall, va12, eq_switch) EXTERNAL;

DECLARE (vall, val2) WORD,' e~swltch BIT; END;

check equal:
PROCEDURE (vall, val2, e~switch) PUBLIC;

DECLARE
(vall, va12) WORD,
e~switch BIT;

IF «vall <> val2) <> eq switch)
THEN CALL nalt ice (vall, val2, e~swltch);

END check_equal;

1* aummy main program *1

DECLARE
pl WORD CONSTANT (3),
si WORD;

CALL check_equal(pi"si, 27/si, 1);

MODULE INFORMATION: (STATIC+OVERLAYABLE)

END

CODE SIZE
CONSTANT SIZE
DIRECT VARIABLE SIZE
INDIRECT VARIABLE SIZE
BIT SIZE
BIT-ADDRESSABLE SIZE
AUXILIARY VARIABLE SIZE
MAXIMUM STACK SIZE
REGISTER-BANK(S) USED:
34 LINES READ
o PROGRAM ERROR(S)
OF PL/M-51 COMPILATION

0057H 870
0002H 2D

02H+04H 20+ 40
00H+00H 0D+ 0D
00H+01H 00+ ID
00H+00H 0D+ 00

0000H 00
0006H 60
o

Figure 5-8. PL/M-51 Listing File of CHILEQ

Examples of Program Development

PAGE I

5-13

Examples of Program Development

MCS-Sl MACRO ASS~MBLER '== ICE51 - Halt =='

ISIS-II MCS-Sl MACRO ASSEMBLER V2.13
OBJECT MODULE PLACED IN :Fl:HLTICE.OBJ
ASSEMBLER INVOKED BY: asmSl :fl:hltice.aSl deoug pw(913)

LaC OBJ LINE

1
2
3
4
5
6
7
8
9

SOURCE

$title ('== ICES1 - Halt ==')
.*** ,
· * ,
· * ,
· * ,
· * ,

Halt Ice:
Store word parameters in R45, R67,
Bit in C and execute AS instruction
to return to ICE.

*
*
*
*

.*** ,

hal t ice

PAGE

113
11
12
13
14
15
16
17
18
19
23
21
22
23
24
25
26
27
28
29
313
31
32
33
34
35
36
37
38
39
40
41

bits
bytes
prog

NAME
PUBLIC
SEGMENT
SEGMENT
SEGMENT

hal t- ice, ?nal t_ice?bi t, ?hal t_ice?byte
BIT-

3333

013132

31333 AC33
31332 AD133
01334 AE313
03136 AF33
0038 A230

000A AS
0133B 30
003C 30
013130 03
333E 22

MCS-51 MACRO

SYMBOL TABLE

N A M E

F
F
F
F
F

ASSEMBLER

LISTING

T Y P

?HALT ICE?BI'r. B ADDR -?HALT ICE?BYTE 0 ADDR
BIT PAR. B ADDR
BITS . · · B SEG
BYTES. · · D SEG
FIRS'!' PAR. 0 ADDR
HALT ICE · C ADDR -PROG . · · C SEG
SECOND PAR 0 ADDR

E

DATA
CODE

RSEG bits
?halt ice?bit:
bit par:

- OBIT 1

RSEG bytes
?halt ice?oyte:
first-par:

-DS 2
second par:

DS 2

RSEG prog
halt ice:

MOV
MOV
MOV
MOV
MOV

R4,first par
RS,first-par+1
R6,second par
R7,second-par+1
C,bit_par-

DB 13A5H
NOP
NOP
NOP
RET

END

'== ICESl - Halt =='

V A L U E A T T R I BUT E S

133313H.3 R PUB SEG=BITS
3000H R PUB SEG=BYTES
0030H.0 R SEG=BITS
33UH REL=UNIT
301d4H REL=UNIT
0330H R SEG=BYTES
0030H R PUB SEG=PROG
000FH REL=UNIT
3002H R SEG=BYTES

REGISTER BANK(S) USED: 13, TARGET MACHINE(S): 8051

ASSEMBLY COMPLETE, NO ERRORS FOUND

move 1st par to

move 2nd par to

move bit par to

illegal op-code.
Will stop ICE-51
you type "GO TIL

you can continue

Figure 5-9. ASM51 Listing File of HL neE

5-14

place

place

place

if
OPC IS

after

PAGE

1

AS"

stop

2

Examples of Program Development

I IS-I 1 RL51 PAGE

ISIS-II MeS-51 RELOCATOR AND LINKER, V2.0, INVOKED BY:
RL51 :F1:CHKEQ.OBJ,:F1:HLTICE.OBJ,PLM51.LIB IXREF PW(72)

INPUT MODULES INCLUDED
:Fl:CHKEQ.OBJ(CHK EQ)
:Fl:HLTICE.OBJ(HALT ICE)
:F0:PLM51.LIB(?P0~34)
:F0:PLM51.LIB(?P0038)
:F0:PLM51.LIB(?PIVfi1R)

LINK MAP FOR :F1:CHKEQ(CHK_EQ)

TYPE BASE

REG 1d000H
DATA 0008H
DATA 000CH
DATA 0010H

0012H
BI'r 0020H
BIT fil020H.l

0020H.2
IDATA 0021H

CODE 0filfil0H
CODE 00fil3H
CODE fil05AH
CODE 0070H
CODE 007FH
CODE 008BH
CODE 0094H

LENGTH

1d008H
0004H
0004H
0002H
0!i10EH
0000H.l
fil000H.1
0000H.6
fil001H

0003H
IHJ57H
0016H
0fil0FH
0fil0CH
0009H
fil002H

RELOCATION

UNIT
UNIT
UNIT

UNIT
UNIT

UNIT

ABSOLUTE
INBLOCK
UNIT
UNIT
UNIT
UNIT
UNIT

SYMBOL TABLE FOR :Fl:CHKEQ(CHK_EQ)

VALUE TYPE NAME

------- MODULE CHK EQ
C:00fil3H PUBLIC CHECK EQUAL
C:0033H SYMBOL CHK EO
------- PROC CHECK_EQUAL
D:0filfilCH SYMBOL VALl
D: 000EH SYMBOL VAL2
B:0020H SYMBOL EQ SWITCH
------- ENDPROC CHECK_EQUAL
C:0094H SYMBOL PI
p: 0fil10H SYMBOL SI
C: 0fil33H LINE# 1
C:0003H LINE# 5
C 0003H LINE# 7
C 001FH LINE# 8
C 0032H LINU 9

SEGMENT NAME

"REG BANK 0"
BYTES
?CHK EQ?DT?0
?CHK-EQ?DT
*** GAP ***
?CHK EQ?BI?0
BITS-
*** GAP ***
?STACK

?CHK EQ?PR
?P0038S
PROG
?P0034S
?PIV0RS
?CHK_EQ?CO

Figure 5-10. RL51 Listing File of CHK_EQ

1

5-15

Examples of Program De\e/"pment

ISIS-II RL51

C:0033H
C:005AH

B:002ItlH.l
D:011J11J8H
B:011J2I1JH.l
B:11J11J2I1JH.l
D:11J11J08H
D:11J11J11J8H
C:11J1tl711JH
C:011J711JH
D:11J00AH

ISIS-II RL51

LINE#
LINE#
ENDMOD

MODULE
PUBLIC
PUBLIC
SYMBOL
SEGMENT
SEGMENT
SYMBOL
PUBLIC
SEGMENT
SYMBOL
ENDMOD

HALT ICE
?HALT ICE?BIT
?HALT-ICE?BYTE
BIT PAR
BITS
BYTES
FIRST PAR
HALT ICE
PROG-
SECOND PAR
HALT ICE

INTER-MODULE CROSS-REFERENCE LISTING

NAME • • • • • • • USAGE

?CHECK EQUAL?BIT •
?CHECK-EQUAL?BYTE.
?HALT ICE?BIT.
?HALT-ICE?BYTE •
?P011J34
?P11J038 ••

BIT;
DATA;
BIT;
DATA;
CODE;
CODE;

?PIH0R ••••
? PIV0R • • •
?PSW0R • • • •
CHECK EQUAL.
HALT_ICE

• CODE;
• CODE;
• NUMB;

CODE;
CODE;

MODULE NAMES

CHK EQ
CHK-EQ
HALT ICE CHK_EQ
HALT-ICE CHK EQ
?P011J34 CHK EO
?P011J38 CHK-EQ
CHK EQ ?PIV0R
?PIV0R CHK EQ
CHK EQ ?PIV0R
CHK-EQ
HALT ICE CHK_EQ

PAGE

PAGE

Figure 5-10. RL51 Listing File of CHK_EQ (Cont'd.)

2

3

The result of a linkage process that includes PL/M-51 modules deserves an expla­
nation. The following paragraphs describe the modules, segments, and symbols that
appear in the output listing of such a linkage. The explanation refers to the actual
example (figure 5-10).

5-16

In addition to the two input modules CHK_EQ and HALT_ICE, RL51 pulled some
modules from PLM51.LlB. The two modules ?P0034 and ?P0038 contain common
PL/M-51 run-time routines and were pulled to resolve calls to those routines in the
CHK_EQ module. The module ?PIVOR contains the initialization routine (set the
stack pointer, set PSW), and is pulled whenever a linkage process encounters a main
module written in PL/M-51.

The segments BYTES. BITS. and PROG are the user segments as defined in the
ASM51 HALT_ICE module. The code segments ?P0034S, ?P0038S and ?PIVORS
are the code segments of the previously explained run-time routines.

Examples of Program Development

All segments whose names are of the form ?CH~EQ? any are segments generated
by PL/M-5l as result of compiling module CH~EQ. The prefix ?CH~EQ?
indicates that the segment belongs to the CH~EQ module. The suffix indicates the
segment type; e.g, PR stands for the PRogram CODE segment, CO for the COnstant
CODE segment, DT for DATA segment, and BI for BIT segment.

On-chip segment names may be followed by a register bank number (0-3). This
number indicates the register bank that must be in effect while data in this segment
is accessed.

The ?STACK segment was discussed before. Note that this segment is not supplied
by the user, but is pulled automatically from PLM51.LIB because the main module
is written in PL/M-51. The absolute segment at 0000H-0002H contains the reset
vector, which consists of a JUMP to the initialization routine contained in the
?PIVORS segment.

Most of PL/M-5l-generated relocatable segments have the UNIT relocation type. A
frequent exception is the program code segment (?CH~EQ?PR), which is
INBLOCK whenever a module is compiled under ROM (MEDIUM), which is the
default used by the compiler. Another (less frequent) exception is the BITAD­
DRESSABLE DATA segment generated when bit structures are declared within the
PL/M-5l source program.

User symbols appear in the symbol table and the IXREF report. Symbols whose
names are equal to segments and modules defined previously represent entry points
in the appropriate modules/segments pulled from PLM51.LIB (e.g., the symbol
?P0034 is a code address in the module ?P0034).

Symbols in the format ?procedure?BYTE or ?procedure?BIT (e.g.,
?HALT_ICE?BYTE) are DATA and BIT addresses used for passing parameters to
the appropriate external procedures (as implied by the name). BYTE and WORD
parameters are placed at DATA address starting at, for example,
?HALT_ICE?BYTE. BIT parameters are placed at BIT address starting at
?HALT_ICE?BIT (see also the PL/M-51 User-s Guide about PL/M-5l linkage to
ASM51).

5-17

CHAPTER 61
LIB51 LIBRARIAN

Introduction

LIB51 is used to create and manipulate library files. Library files are specially
formatted collections of object modules, any element of which may be retrieved during
the linkage process in order to resolve program references to external names.

LIB51 also allows you to alter the contents of these files by adding new modules or
deleting old ones.

LIB51 user interface is fully compatible with LIB (the ISIS-II Librarian for the 8080
and 8085 environment).

LlB51 Input

Input to LIB51 consists of modules originally generated by one of the 8051 language
translators.

The Invocation Line

The LIBSI program is called by the command

L1B51 (er)

LIB51 identifies itself with a sign-on message, followed by an asterisk prompt, shown
as follows

I SIS - I I Me S - 5 1 LIB R A R I A N V x.y

where

x.y is the version number.

While in LIBS1, you will receive the asterisk prompt after each command is completed.
Following the asterisk prompt, you may enter any of the following LIB51 subcom­
mands:

ADD
CREATE
DELETE
EXIT
LIST

The Command Line

If the command line is longer than a line on your particular console (up to the
maximum of 122 characters allowed), you may continue it on the next line by enter­
ing an ampersand (&) as the last non-blank character on the line before executing
the carriage return. LIBSI responds to this with a double asterisk prompt (**) to
let you know that it is ready for the continuation of the command line.

6-1

LIBS} Librarian

6-2

LIBSI uses a temporary file named LIB. TMP on the library file disk. If you
have a file with this name, it will be destroyed.

Error Messages

Appendix D lists the error messages generated by LIBSI.

LlB51 Subcommands

Each of the LIBS1 subcommands is described on the following pages. The syntax and
definition of each subcommand is given, along with an example of its use.

ADD

The ADD command adds modules to a specified library.

Syntax

ADD filename [(modname, . • •)] [, • . .] T 0 library

Definition

This command inserts modules into the library. The modules may be elements of
another library, or they may be in object files.

filename is the name of the file containing at least one object module. modname is
the name of a module within filename; modname may be specified only if filename is
a library file.

If modnames are given, only the specified modules within filename are copied into
library; otherwise, all modules are copied. You may enter as many filenames or
modnames as you wish. library is the name of an existing library file, to which the
specified modules will be added.

Example

CREATE

The CREATE command creates a new empty library.

Syntax

eRE ATE filename

Definition

This command creates a new library file called filename. If another file exists with
that name, an error message is generated and the user is prompted for a new
subcommand.

DELETE

The DELETE command deletes modules from a specified library.

Syntax

DEL E T E Iibrary(modname, • . .)

Definition

The DELETE subcommand permits you to remove modules for which you have no
need, from the specified library. DELETE removes the module specified and updates
the library directory. library is the library from which the deletion is to be made, and
modname is the name of the module to be removed. You may specify as many
modnames as you wish.

Example

• DELETE SCHOOL.LIB (ATLAS, YEAiL1932)(cr>

LIB51 Librarian

6-3

LIDS} Librarian

6-4

LIST

The LIST command shows the current content of a specified library(ies).

Syntax

LIS T library [(modname, . . .) I [,... I [T 0 listfile I [P U B L I C 5 I

Definition

The LIST command enables you to examine the contents of the specified library. A
listing of the contents of the library may be printed; you can send this list to a file to
be printed later or you may print the list directly, depending upon listfile. If listfile is
omitted, the listing is sent to the console output.

library is the library for which you need the list of modules, modname is the name of
the module desired, listfile is a file or an output device on which the list of modules is
to be printed, and PUBLICS optionally calls for a listing of the public symbols in
each listed module.

Example

The following examples illustrate the use of the LIST subcommand:

See figure 6-1 for an example of the LIST output format.

P R I N TE D_M A T TE R
PUBLISHER
LIBRARY_OF_CONGRESS_NUMBER

DICTIONARIES
AB.RI DGED
UNA B R ID G ED··

ENCYCLOPEDIAS
VOLUMES
SE TS
PUBLISHER

MAPS
STA TE
COUNTRY
RELIEF
GLOBES

Figure 6-1 • LIST Command Output

EXIT

The EXIT terminates the LIB51 program.

Syntax

E X I T

LIB51 Librarian

6-5

APPENDIX A
SUMMARY OF RL51 CONTROLS

Table of Basic Definitions

Table A-I gives definitions of basic terms used in the command format summary.

Table A-I. Definitions of Common Terms

Term Definition

name Names can be from 1 to 40 characters long and must be composed
of letters A - Z, digits 0 - 9, or special characters (?, @, -l. The
first character must be a letter or a special character.

module-name Same as name.

segment-name Same as name.

pathname A valid ISIS-II filename reference or device reference. See next
two items for examples.

filename A reference to a disk file. The format is

[:Fn:]root [.ext]

Examples: PROG1, :F1 :SAMPL 1, TEST. HEX,

:F2:SAMPLE.OBJ

device A reference to a non-disk device.
Examples: :LP:, :CO:, :TO:

value A 16-bit unsigned integer.

Examples: 1011 B, 304Q, 40960 (or just 4096), OC300H

address Same as value.

RL51 Command Format Summary

Here is a summary of the syntax of the RLSI invocation command. Refer to the
Preface for an explanation of the command format notation.

The RL51 command has the overall format

[: F n: 1 R L 5 1 input-list [T a output-file 1 [control-list 1

where

n :. drive number

input-list :. input-file [module-list 1 ["" 1

input-file :. filename j see table A-I

module-list :. (module-name (,... 1)

module-name :. j see table A-I

output-file :. filename j see table A-I

control-list :. control .

A-I

Summary of RL51 Controls

A-2

I ~~~~7;;~:;~;~~1)
control : = locating-control

configuration-control
overlay-control

print
page width
map

listing-control . = symbols
publics
lines
ixref

print : = {
P R I N T [(path name) 1 }
NOPRINT

pathname . = j see table A-I

page width : = P AGE WID T H (value>

value • = see table A-I

map : = {~~ ~ A P }

{ SYMBOLS }
symbols : = NOS Y M B 0 L S

. {PUBLICS}
publICS : = N 0 PUB Lie S

{ LINES}
lines : = N 0 LIN E S

{ IX REF [selection-list 1 }
ixref . = N 0 I X REF

selection-list : = (selection-item [,... 1 >

{ generated}
selection-item : = libraries

• = {GENERATED }
generated N 0 G ENE RAT E D

.. {LIBRARIES}
libranes : = N 0 LIB R A R I E S

{
N A M E (module-name >}

linking-control . = debugsymbo/s
debuglines
debugpublics

{ DEBUGSYMBOLS }
debugsymbo/s : = NOD E BUG S Y M B 0 L S

{ DEBUGLINES }
debuglines : = NOD E BUG LIN E S

{ DEBUGPUBLICS }
debugpublics : = NOD E BUG PUB Lie S

locating-controls : =

PRECEDE
DATA
BIT
IDATA
S T A C K
XDATA
COD E

(segment [,... 1)

segment . = segment-name [(address) 1

Summary of RL5t Controls

segment-name : = j see table A-I
address : = j see table A-I

configuration-control : = ramsize

ramsize : = RAM 5 I Z E (value)

value : = see table A-I

overlay-control . = {O V E R LAY [(overlay-unit [, .•• 1) l}
• NOOVERLAY

overlay-unit :. ov-module-name calls ov-module-name

ov-module-name : = {* }
module-name

module-name : = j see table A-I

calls .•)

Tables of Listing, Linking, Locating, and
OverlayingControls

Tables A-2 through A-6 describe the RL51 controls. Table A-7 gives abbreviations
for the controls.

Notes On Locating Controls

The following notes refer to table A-4.

I. Bit addresses for non-BIT segments in the BIT control must be on byte bounda­
ries; that is, they must be divisible by eight. (BIT-type segments can be aligned
on bit boundaries.)

2. The range of addresses for the IDA T A control is dependent on the target machine.
The 8051 has 128 bytes (addresses OOH - 7FH). See the RAMSIZE control in
this context.

3. The STACK control specifies which segments are to be allocated uppermost in
the IDA TA space. The memory accessed starts after the highest on-chip RAM
address occupied by any previously allocated segment, and continues to the top
of the IDAT A space.

NOTE
This control has no other effect on any segments.

The IDA T A ?ST ACK segment, if it exists, is placed higher than segments
that were mentioned in the STACK control.

Table A-2. Listing Controls

Control Effect

PRINT [(pathname)] Sends the listing file to the file or device specified by
pathname.

NOPRINT Suppresses the listing file; overrides any of the following
listing controls.

PAGEWIDTH (value) Specifies the maximum page width to be used.

MAP Outputs memory map to link summary.

NO MAP Suppresses memory map.

SYMBOLS Outputs local symbols to symbol table.

NOSYMBOLS Suppresses local symbols.

A-3

Summary of RL51 Controls

A-4

Table A-2. Listing Controls (Cont'd.)

Control Effect

PUBLICS Outputs public symbols to symbol table.

NOPUBLICS Suppresses public symbols.

LINES Outputs line numbers to symbol table (high-level language
translators only).

NOLINES Suppresses line numbers.

IXREF [(selection-list)] Appends intermodule cross-reference report to print file.

NOIXREF Suppresses the intermodule cross-reference report.

NOTE: The default for any control (except IXREF) is the positive form (PRINT, MAP, SYMBOLS,
PUBLICS, and LINES).

Table A-3. Linking Controls

Control Effect

NAME (module-name) Specifies the name of the output module. If the NAME control is
omitted, the output module name defaults to the name of the first
input module processed.

DEBUGSYMBOLS Copies local symbol information to output file.

NODEBUGSYMBOLS Suppresses local symbols.

DEBUGPUBLICS Copies public symbol information to output file.

NODE BUG PUBLICS Suppresses public symbols.

DEBUGLINES Copies line number information (high-level language translators
only) to output file.

NODEBUGLINES Suppresses line numbers.

NOTE: For all linking controls except NAME, the default is the positive form (DEBUGSYMBOLS,
DEBUGPUBLlCS, and DEBUGLlNES).

Table A-4. Locating Controls

Address Range Segment Types
Control Address Space (Hex) (and Attributes)

PRECEDE Register banks and bit- OOH-2FH DATA (UNIT-aligned);
addressable space in IDATA
on-chip data RAM

BIT Bit-addressable space OOH -7FH BIT; DATA; IDATA
in on-chip data RAM (see note 1)

DATA Directly-addressable OOH - 7FH DATA (UNIT-aligned);
on-chip data RAM I DATA

IDATA Indirectly-addressable OOH - OFFH I DATA
on-chip data RAM (see note 2)

STACK Same as IDATA (see Same as IDATA Same as IDATA
note 3)

XDATA External data RAM 0- OFFFFH XDATA

CODE Code memory 0- OFFFFH CODE

Table A-5. Configuration Controls

Control Effect

RAMSIZE (value) Specifies the amount of on-chip RAM the object is aimed to.

Summary of RL51 Controls

Table A-6. Overlay Controls

Control Effect

OVERLAY (overlay-units) Overlays data segments. based on the information in the module
declarations and in the overlay units.

NOOVERLAY Suppresses the overlaying of data segments.

Table A-7. Abbreviations for Command Words

Command Word Abbreviation

BIT BI
CODE CO
DATA DT
DEBUGLINES DL
DEBUG PUBLICS DP
DEBUGSYMBOLS OS
GENERATED GN
IDATA 10
IXREF IX
LIBRARIES LB
LINES LI
MAP MA
NAME NA
NODEBUGLINES NODL
NODEBUGPUBLICS NODP
NODEBUGSYMBOLS NODS
NOGENERATED NOGN
NOIXREF NOIX
NOLIBRARIES NOlB
NOLINES NOLI
NOMAP NOMA
NOOVERLAY NOOl
NOPRINT NOPR
NOPUBLICS NOPl
NOSYMBOlS NOSB
OVERLAY Ol
PAGEWIDTH PW
PRECEDE PC
PRINT PR
PUBLICS Pl
RAMSIZE RS
STACK ST
SYMBOLS ST
TO TO
XDATA XD

A-5

· " APPENDIX B I
ERROR MESSAGES n RL51

RL51 error messages describe warnings, errors, and fatal errors. A warning is a
detected condition that mayor may not be what the user desired; a warning does not
terminate the link/locate operation. An error does not terminate operation, but
probably results in an output module that cannot be used. A fatal error terminates
operation of RL51.

This appendix lists the warning, error, and fatal error messages in that order. The
text of each message is in UPPER CASE. A brief explanation of the probable cause
for the error condition accompanies each error message.

Warnings

WARNING 1:
SYMBOL:
MODULE:

UNRESOLVED EXTERNAL SYMBOL
external-name
fi/e-name(module-name)

The specified external symbol, requested in the specified module, has no matching
public symbol in any of the input modules.

WARNING
SYMBOL:
MODULE:
REFERENCE:

2: REFERENCE MADE TO UNRESOLVED EXTERNAL
external-name
fi/e-name(module-name)
code-address

The specified unresolved external is referenced in the specified module at the specified
code address.

WARNING 3: ASSIGNED ADDRESS NOT COMPATIBLE WITH
ALIGNMENT

SEGMENT: segment-name

The address specified for the segment in a locating control is not compatible with the
segment's alignment. The segment is placed at the specified address, violating its
alignment.

WARNING 4: DATA SPACE MEMORY OVERLAP
FROM: byte. bit address
TO: byte.bit address

The data space in the given range is occupied by two or more segments.

WARNING 5: CODE SPACE MEMORY OVERLAP
FROM: byte address
TO: byte address

The code space in a given range is occupied by two or more segments.

WARNING 6: XDATA SPACE MEMORY OVERLAP
FROM: byte address
TO: byte address

The xdata space in the given range is occupied by two or more segments.

B-1

RL51 Error Messages

B-2

WARNING 7: MODULE NAME NOT UNIQUE
MODULE: file-name(module-name)

The specified name was used as the module name for more than one module. The
specified module is not processed.

WARNING 8: MODULE NAME EXPLICITLY REQUESTED FROM
ANOTHER FILE

MODULE: file-name(module-name)

The specified module was requested, explicitly, to be processed from another file that
has not yet been processed. The specified module is not processed.

WARNING 9: EMPTY ABSOLUTE SEGMENT
MODULE: file-name(module-name)

The specified module contains an empty absolute segment. This segment is not
allocated. The base address of this segment may be overlapped without any additional
message.

Errors

ERROR 101: SEGMENT COMBINATION ERROR
SEGMENT: segment-name
MODULE: file-name(module-name)

The attributes of the specified partial segment, in the specified module, contradict
those of previous (unspecified) occurrences of partial segments with the same name.
The segment is ignored.

ERROR 102: EXTERNALS ATTRIBUTE MISMATCH
SYMBOL: external-name
MODULE: file-name(module-name)

The attributes of the specified external symbol, in the specified module, contradict
those of previous (unspecified) occurrences of public symbol with the same name.
The specified symbol is ignored.

ERROR 103: EXTERNAL ATTRIBUTES DO NOT MATCH PUBLIC
SYMBOL: symbol-name
MODULE: file-name(module-name)

The attributes of the specified external (public) symbol, in the specified module,
contradict those of previous (unspecified) occurrences of public (external) symbol
with the same name. The specified symbol is ignored.

ERROR 104: MULTIPLE PUBLIC DEFINITIONS
SYMBOL: symbol-name
MODULE: . file-name(module-name)

The specified public symbol, in the specified module, has already been defined in a
previously (unspecified) processed module. The specified symbol is ignored.

MCS@-51

RLS 1 Error Messages

ERROR 105: PUBLIC REFERS TO IGNORED SEGMENT
SYMBOL: pUblic-name
SEGMENT: segment-name

The specified public symbol is defined referencing the specified ignored segment. The
specified public symbol is ignored.

ERROR 106: SEGMENT OVERFLOW
SEGMENT: segment-name

The specified segment, after combination, is larger than the maximum segment size
allowed for the segment according to its type or to the given locating control. The
specified segment is ignored.

ERROR 107: ADDRESS SPACE OVERFLOW
SPACE: space-name
SEGMENT: segment name

RL51 was unable to allocate the specified relocatable segment, according to the
segment relocation type, in the specified address space. The specified segment is
ignored.

ERROR 108: SEGMENT IN LOCATING CONTROL CANNOT BE
ALLOCATED

SEGMENT: segment name

RL51 was unable to allocate the specified relocatable segment that appears in the
locating control, according to the requirements imposed by the locating control and
according to the segment relocation type. The specified segment is ignored.

ERROR 109: EMPTY RELOCATABLE SEGMENT
SEGMENT: segment-name

The specified segment, after combination has zero size. The specified segment is
ignored.

ERROR 110: CANNOT FIND SEGMENT
SEGMENT: segment-name

The specified segment name occurred in the command tail but is not the name of any
segment defined within the input files. The specified segment is ignored.

ERROR 111: SPECIFIED BIT ADDRESS HOT ON BYTE BOUNDARY
SEGMENT: segment-name

The specified segment was requested in a BIT locating control. The segment is not a
BIT segment, and the requested address is not on byte boundary. The specified
segment is ignored.

ERROR 112: SEGMENT TYPE NOT LEGAL FOR COMMAND
.SEGMENT: segment-name

The specified segment is not one of the types that are legal for the locating control
for which it is specified. The specified segment is ignored.

ERROR 113: RESERVED.

B-3

LSI Error Messages

B-4

ERROR 114: SEGMENT DOES NOT FIT
SEGMENT: segment-name, base, length

The specified segment cannot be located at the base specified by the locating control.
Starting at that base address there is insufficient memory for a segment of its length.
The specified segment is ignored.

ERROR 115: INPAGE SEGMENT IS GREATER THAN 256 BYTES
SEGMENT: segment-name

The specified INPAGE segment is greater than one page. The specified segment is
ignored.

ERROR 116: INBLOCK SEGMENT IS GREATER THAN 2047 BYTES
SEGMENT: segment-name

The specified IN BLOCK segment is greater than one block. The specified segment
is ignored.

ERROR 117: BIT ADDRESSABLE SEGMENT IS GREATER THAN
16 BYTES

SEGMENT: segment-name

The specified BIT-ADDRESSABLE segment is greater than the BIT space. The
specified segment is ignored.

ERROR 118:
SYMBOL:
MODULE:
REFERENCE:

REFERENCE MADE TO ERRONEOUS EXTERNAL
external-name
file-name(module-name)
code-address

The specified, ignored external symbol is referenced in the specified module at the
specified code address.

ERROR 119:
SEGMENT:
MODULE:
REFERENCE:

REFERENCE MADE TO ERRONEOUS SEGMENT
segment-name
file-name(module-name)
code-address

A symbol, which is defined using the specified, but ignored, segment, is referenced in
the specified module at the specified code address.

ERROR 120: CONTENT BELONGS TO ERRONEOUS SEGMENT
SEGMENT: segment-name
MODULE: file-name(module-name)

A content record, which belongs to the specified, but ignored, segment, has been
encountered. The content record is not relocated.

ERROR 121:
MODULE:
SEGMENT:
OFFSET:

IMPROPER FIXUP
file-name(module-name)
$egment-name
pseg-offset

An error occurred in the evaluation of a fixup. An example of this error is when the
value of the fixup expression does not meet the requirements of the type of the
referenced location.

RL51 Error Messages

ERROR 122: CANNOT FIND MODULE
MODULE: file-name(module-name)

The specified module name, which was explicitly requested from the specified file (in
the command tail), was not found in that file.

ERROR 123:
MODULE:
FROM:
TO:

ABSOLUTE IDATA SEGMENT DOES NOT FIT
file-name(module-name)
data-address
data-address

The specified module contains an absolute IDA T A segment that occupies non-existent
internal RAM space in the target machine. The segment is ignored. Notice, however,
that the module may contain erroneous references to this segment, which are not
reported.

ERROR 124: RESERVED

ERROR 125: MORE ERRORS ENCOUNTERED, NOT REPORTED

Non-fatal errors encountered henceforth will not be reported.

ERROR 126: OVERLAY MODULE NOT FOUND
MODULE: file-name(module-name)

The specified module name explicitly mentioned in the overlay control was not found.

ERROR 127: OVERLAY DATA ADDRESS SPACE OVERFLOW
SPACE: on-chipRAM space

RL-51 was unable to allocate an overlaid segment of the specified address space. Try
to link with the NOOVERLA Y control.

Fatal Errors

FATAL ERROR 201: INVALID COMMAND LINE SYNTAX
partial command

A syntax error was detected in the command. The command is repeated up to and
including the point of error.

FATAL ERROR 202: INVALID COMMAND LINE; TOKEN TOO LONG
partial command

The command line contains a token that is too long. The command is repeated up to
and including the point of error.

FATAL ERROR 203: EXPECT.ED ITEM MISSING
partial command

An expected item in the command line, such as an input file name or a file name
following the TO is missing. The command is repeated up to and including the point
of error.

FATAL ERROR 204: INVALID KEY WORD
partial command

An invalid keyword was found in the command. The command is repeated up to and
including the point of error.

8-5

RL51 Error . .Messages

B-6

FATAL ERROR 205: NUMERIC CONSTANT TOO LARGE
partial command

A numeric constant greater than OFFFFH was found in the command. The command
is repeated up to and including the point of error.

FATAL ERROR 206: INVALID CONSTANT
partial command

An illegally constructed context was found. A common example of this error is enter­
ing a hexadecimal number with a letter first. The command is repeated up to and
including the point of error.

FATAL ERROR 207: INVALID NAME
partial command

An illegally constructed name was found. Names can be from I through 40 charac­
ters long and must be composed of the letters A-Z, the digits 0-9, or special charac­
ters ("?", "@", H_"). The first character must be a letter or a special character. The
command is repeated up to and including the point of error.

FATAL ERROR 208: INVALID FILE NAME
partial command

The file-name specified in the command is not a valid ISIS-II file name. The command
is repeated up to and including the point or error.

FATAL ERROR 209: FILE USED IN CONFLICTING CONTEXTS
FILE: file-name

The specified file is used in more than one context, for example, using the same file
for both input and output. (This may be caused by specifying for the first input file
a file that has no extension, and not specifying an output file.)

FATAL ERROR 210: 1/0 ERROR, INPUT FILE; ISIS-II ERRORI
FILE: file-name

An ISIS-II I/O error was detected in accessing an input file. The text of the message
includes a description of the specific I/O error that occurred. See the ISIS-II User's
Guide for a list of possible I/O errors.

FATAL ERROR 211: 1/0 ERROR, OUTPUT FILE; ISIS-II ERRORI
FILE: file-name

An ISIS-II I/O error was detected in accessing the output file. The text of the message
includes a description of the specific I/O error that occurred. See the ISIS-II User's
Guide for a list of possible I/O errors.

FATAL ERROR 212: 110 ERROR, LISTING FILE; ISIS-II
ERROR'

FILE: file-name

An ISIS-II I/O error was detected in accessing the listing file. The text of the message
includes a description of the specific I/O error that occurred. See the ISIS-II User's
Guide for a list of possible I/O errors.

RL51 Error Messages

FATAL ERROR 213: 1/0 ERROR, TEMPORARY FILE; ISIS-II
ERROR'

FILE: file-name

An ISIS-II I/O error was detected in accessing a temporary file. The text of the
message includes a description of the specific I/O error that occurred. See the
ISIS-II User's Guide for a list of possible I/O errors.

FATAL ERROR 214: INPUT PHASE ERROR
MODULE: file-name(module-name)

This error occurs when RL51 encounters different data during pass two than it read
during pass one.

FATAL ERROR 215: CHECK SUM ERROR
MODU LE: file-name(module-name)

A bad check sum was detected in the input module. This indicates a bad input module
or a read error.

FATAL ERROR 216: INSUFFICIENT MEMORY

The memory available for execution of RL51 has been used up. This is usually caused
by too many external/public symbols or segments in the input files or by too many
errors.

FATAL ERROR 217: NO MODULE TO BE PROCESSED

After scanning all the input files, no module was selected to be processed. This is
usually caused by an empty input file(s) or incorrect module names in the input list.

FATAL ERROR 218: NOT AN OBJECT FILE
FILE: file-name

The file named in the message, judging by its first byte of data, is not a valid object
file.

FATAL ERROR 219: NOT AN 8051 OBJECT FILE
FILE: file-name

The translator-IO field in the module header record indicates that the specified module
is not an 8051 object module.

FATAL ERROR 220: INVALID INPUT MODULE
MODULE: file-name(module-name)

The specified input module was found to be invalid. Possible causes are incorrect
record order, incorrect record type, illegal field, illegal relation between fields, or a
missing required record. This error could be the result of a translator record.

FATAL ERROR 221: MODULE SPECIFIED MORE THAN ONCE
partial command

The input list in the invocation line contains the same module name more than once.
The command is repeated up to and including the point of error.

B-7

RLSI Error Messages

B-8

FATAL ERROR 222: SEGMENT SPECIFIED MORE THAN ONCE
partial command

The locating controls in the invocation line contain the same segment name more
than once. The command is repeated up to and including the point of error.

FATAL ERROR 223: NOT A DISK FILE
partial command

The file specified in the input list or as an output file is not a valid ISIS-II disk file
name. The command is repeated up to and including the point of error.

FATAL ERROR 224: DUPLICATE KEYWORD
partial command

The same keyword appears in the command more than once. The command is repeated
up to and including the point of error.

FATAL ERROR 225: SEGMENT ADDRESSES ARE NOT IN
ASCENDING ORDER

partial command

The addresses of the segments within one locating control are not in ascending order.
The command is repeated up to and including the point of error.

FATAL ERROR 226: SEGMENT ADDRESS INVALID FOR CONTROL
partial command

The address requested for a segment is not valid for the given locating control. The
command is repeated up to and including the point of error.

FATAL ERROR 227: PAGEWIDTH PARAMETER OUT OF RANGE
partial command

The PAGEWIDTH parameter given is out of the acceptable range.

FATAL ERROR 228: RAMSIZE PARAMETER OUT OF RANGE
partial command

The RAMSIZE parameter given is out of acceptable range.

FATAL ERROR 229: 1/0 ERROR, OVERLAY FILE;
ISIS-II ERROR'

FILE: file-name

An ISIS-II I/O error was detected in accessing an overlay file. The text of the message
includes a description of the specific I/O error that occurred. See the ISIS-II User's
Guide for a list of possible I/O errors. (This error occurs only if IXREF was requested.
Its occurrence does not invalidate the output object file.)

FATAL ERROR.230: INCOMPATIBLE OVERLAY VERSION
FILE: file-name

The overlay file, although loaded successfully by ISIS-II, has a version number that
is not the one expected by RL51. The possible cause is that the RL51 program and
the loaded overlay are not of the same version. (This error occurs only if IXREF or
OVERLA Y was requested. If only IXREF was requested, the output object file is
valid.)

RLSI Error Messages

FATAL ERROR 231: TOO MANY IXREF ENTRIES

The number of IXREF entries (entry is a pair consisting of modules and symbol
reference) is too large to be processed. The IXREF listing step is not performed. The
NOLIBRARIES and NOGENERATED controls may be used in order to decrease
this number and overcome the error. (This error occurs only if IXREF was requested.
Its occurrence does not invalidate the output object file.)

FATAL ERROR 232: OVERLAY CONTROL CONFLICTS XREF
SELECTOR ITEMS

The overlay control should not appear with the IXREF selector items NOLI BRAR­
IES or NOGENERATED.

FATAL ERROR 233: ILLEGAL USE OF * IN OVERLAY
CONTROL

The use of *) * with the OVERLA Y control is illegal.

FATAL ERROR 240: INTERNAL PROCESS ERROR

RL51 has detected that it has made a processing error. This error indicates a bug
within RL51.

8-9

APPENDIX C
LIB51 COMMAND SUMMARY

The following is a summary of the commands used by the LIB51 librarian.

Command

CREATE

ADD

DELETE

LIST

EXIT

Action

Creates a new library file

Inserts new modules into a library

Removes modules from a library

Lists the contents of a library

Returns control to ISIS

Col

LIB51
APPENDIX D I

ERROR MESSAGES

All LI B51 error messages are non-fatal because LI B51 is an interactive program.
The command that caused the error will be aborted, but LIB51 will not be interrupted.

Command Errors

Errors caused by improper command entry are followed by a partial copy of the
incorrect command, with a number sign (#) in the vicinity of the error, as shown
below:

ERROR MESSAGE
partial command'

The following are the LI B51 command error messages:

INSUFFICIENT MEMORY

LIB51 cannot execute the command given because it requires more memory than is
available in the Intellec system.

INVALID MODULE NAME

A module listed in the command is incorrectly specified. Module names must conform
to the format given in Chapter 2.

INVALID SYNTAX

Check the command for one of the following:

• Misspelled keywords

• Ampersand followed by a non-blank character

• ADD: TO filename not followed by a < cr)

• DELETE: Iibname (modname) not followed by a < cr)

• DELETE: modname not specified

• CREATE: filename not followed by a < cr)

• LIST: TO filename not followed by PUBLICS or a < cr)

LEFT PARENTHESIS EXPECTED

There is a missing left parenthesis in the command.

RIGHT PARENTHESIS EXPECTED

There is a missing right parenthesis in the command.

MODULE NAME TOO LONG

The specified module name exceeds 40 characters.

IITOII EXPECTED

D-l

LIDSI Error Messages

D-2

The TO filename is omitted in the ADD command.

UHRECOGHIZED COMMAHD

An illegal or misspelled command was entered. The only legal commands are ADD,
CREATE, DELETE, LIST, and EXIT.

File or Module Errors

The following errors indicate that there is some problem with the file or module
specified. There is no partial copy of the command given with these error messages.

FILE ALREADY EXISTS

The file specified in the CREATE command already exists. Choose a new name for
the library.

filename I D U P L I C A TE S Y M B 0 L I H I H PUT

You have attempted to add a file that contains a PUBLIC symbol already within the
library.

filename I HOT LIB R A R Y

The specified file is not a library.

filename(modname): HOT F 0 U H D

You have attempted to delete a module that does not exist. Check for misspelling of
the filename or module name.

modname-ATTEMPT TO ADD DUPLICATE MODULE

The specified module name already appears within the library.

symbol-A L REA D Y I H LIB R A R Y

You have attempted to add a module that contains a PUBLIC symbol that is already
in the library.

filename, C H E C K SUM ERR 0 R (See ISIS-II error 208.)

filename,OBJECT RECORD TOO SHORT (SeeISIS-IIerror217.)

filename, ILL EGA L R E COR D FOR'" A T (See ISIS-II error 218.)

LIBSI cannot process the specified file because it is not a legal object file. Possible
cause is a file damage or translator error.

• (el APPENDIX E
HEXADECIMAL-DECIMAL CONVERSION TABLE

Table E-l is for hexadecimal to decimal and decimal to hexadecimal conversion. To
find the decimal equivalent of a hexadecimal number, locate the hexadecimal number
in the correct position and note the decimal equivalent. Add the decimal numbers.

To find the hexadecimal equivalent of a decimal number, locate the next lower decimal
number in the table and note the hexadecimal number and its position. Subtract the
decimal number shown in the table from the starting number. Find the difference in
the table. Continue this process until there is no difference.

Table E-l. Hexadecimal-Decimal Conversion Table

Most Significant Byte Least Significant Byte

Digit 4 Digit 3 Digit 2 Digit 1

HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0
1 4 096 1 256 1 16 1 1
2 8 192 2 512 2 32 2 2
3 12 288 3 768 3 48 3 3
4 16 384 4 1 024 4 64 4 4
5 20 480 5 1 280 5 80 5 5
6 24 576 6 1 536 6 96 6 6
7 28 672 7 1 792 7 112 7 7
8 32 768 8 2 048 8 128 8 8
9 36 864 9 2 304 9 144 9 9
A 40 960 A 2 560 A 160 A 10
B 45 056 B 2 816 B 176 B 11
C 49 152 C 3 072 C 192 C 12
D 53 248 D 3 328 D 208 D 13
E 57 344 E 3 548 E 224 E 14
F 61 440 F 3 840 F 240 F 15

E-!

abbreviations, 3-12, A-5
absolute object file, 4-5
absolute object module, 1-3
absolute segments, 2-1
ADD,6-2
address, 3-2
address spaces, 2-2, 2-4

. allocation, 3-7
allocation process, 2-3
assembler (ASM51), 1-3,5-1

BIT, 2-2, 2-3, 3-9
BITADDRESSABLE,2-2
BLOCK,2-2

CODE, 2-2, 2-3, 3-9
command entry, 3-1
command, invocation,

see invocation command
comments, 3-1
configuration controls, 3-11
console display, 4-1
continuation lines, 3-1
control-list, 3-2
controls, 3-4

see also linking controls, listing controls,
locating controls

CREATE,6-3

DATA, 2-2, 2-3, 3-9
DEBUG control, 1-3, 3-4, 3-6
debugging, I-I
DEBUG LINES, 3-5
DEBUGPUBLICS, 3-5
DEBUGSYMBOLS, 3-5
DELETE,6-3
development process, I-I, 1-2
device, 3-2

editor, text, 1-3
error messages, 4-4, B-1, D-l
EXIT,6-5
external references, 2-4

filename, 3-2

hexadecimal-decimal conversion, E-I

leE-51 in-circuit emulator, 1-3
IDATA, 2-1 thru 2-3, 3-9
in-circuit emulator,

see ICE-51 in-circuit emulator
INPAGE,2-1
input-list, 3-1, 3-2
invocation command, 3-1, 6-1

address, 3-2
control-list, 3-2
device, 3-2
filename, 3-2

input-list, 3-1, 3-2
module-name, 3-2
name, 3-2
output-file, 3-2, 3-3
pathname, 3-2
segment-name, 3-2

IXREF, 4-4, 4-5

LIB51, 6-1 thru 6-5
error messages, D-l, D-2
LINES, 3-5, 3-6, 3-12
linking controls, 3-8, A-3

NAME,3-8
linking switches, 3-8

DEBUGLINES, 3-8
DEBUGPUBLICS, 3-8
DEBUGSYMBOLS, 3-8
NODEBUGLINES, 3-8
NODEBUGPUBLICS, 3-8
NODEBUGSYMBOLS, 3-8

link summary, 3-4, 4-1
LIST,6-4
listing controls, 3-4, A-3

DEBUG control, 3-5
link summary, 3-4
listing file, 3-4

listing file, 4-1
listing switches, 3-6

IXREF, 4-4, 4-5
LINES, 3-5, 3-6
MAP, 3-5, 3-6
NOLINES, 3-6
NO MAP, 3-6
NOPUBLICS, 3-6
NOSYMBOLS, 3-6
PUBLICS, 3-5, 3-6
SYMBOLS, 3-5, 3-6

locating controls, 3-9, 3-10, 3-11, 5-9, A-4
BIT,3-9
CODE,3-9
DATA,3-9
IDATA,3-9
PRECEDE, 3-9, 5-9
STACK,3-9
XDATA,3-9

major functions, 2-1
MAP, 3-5
memory map, 3-4
modifying, I-I
module, 1-2,2-1
modular programming, 1-1
module-name, 3-2

NAME,3-8
name, 3-2
NODEBUGLINES, 3-6
NODEBUGPUBLICS, 3-6
NODEBUGSYMBOLS, 3-6

INDEX

Index-l

Index

NOlXREF, 3-6, 4-4
NOLINES, 3-5
NOMAP, 3-5
NOOVERLA Y, 3-12
NOPRINT, 3-4
notation, A-I
NOPUBLlCS, 3-5
NOSYMBOLS, 3-5

output-file, 3-2, 3-3
OVERLAY, 3-12

PAGE,2-2
partial segments, 2-2
pathname, 3-2
PRECEDE, 2-3, 3-9, 5-9
PRINT,3-4
program, 1-2
program development, I-I, 1-2
PROM programmer, I-I
PUBLICS, 3-5

Index-2

RAMSIZE, 3-12
relocatable segments, 2-1, 2-2
relocation, 1-3, 2-1
RL51, 1-3, 2-1, 2-2, 3-1, 5-1

command format, A-2
controls, 3-4, A-I
error messages, B-1 thru B-9
pass, 2-2

SDK-51,1-3
segment, 1-2,2-1
segment-name, 3-2
segment type, absolute, 2-1
segment type, relocatable, 2-1
STACK, 2-3
SYMBOLS, 3-5
symbol table, 4-3

UNIT,2-2

XDATA, 2-2, 2-3, 3-9

MCSCX>·S1 Utilities User's Guide
for SOSO/SOSS-Based Development Systems

121737·003

REQUEST FOR READER'S COMMENTS

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel product
users. This form lets you participate directly in the publication process. Your comments will help us correct and
improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact your Intel
representative. If you wish to order publications, contact the Intel Literature Department (see page ii of this
manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of publications
are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ___________ _

NAME __________________________ _ DATE _________ _
TITLE ___ ___
COMPANYNAME/DEPARTMENT _________________________ ___
ADDRESS _______________________________________ __
CITY ________________ _ STATE _________ ___ ZIP CODE ______ _

(COUNTRY)

Please check here if you require a written reply. D

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form will
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 HILLSBORO, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
DSO Technical Publications
5200 N.E. Elam Young Parkway
Hillsboro, Oregon 97124 .. 9987

11.1 •• 1".1,"11 •• 1.1.1 •• 11.1 •• 1.1"1'11.1"11.1'111

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

intJ
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.S.A.

DEVELOPMENT SYSTEMS

1205/3K1058610SPS/AD/DSO

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	6-01
	6-02
	6-03
	6-04
	6-05
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	C-01
	D-01
	D-02
	E-01
	I-01
	I-02
	replyA
	replyB
	xBack

