MCS-51" MACRO ASSEMBLER
USER’S GUIDE

Manual Order Number 9800937-01

]

MCS-51™ MACRO ASSEMBLER
USER’S GUIDE

Manual Order Number 9800937-01

Copyright © 1979 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

{

ii

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

i iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Promware
Insite Megachassis RMX

Intel Micromap UPI
Intelevision Multibus uScove

Intellec

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

A150/1279/10K FL

PREFACE

This manual describes how to program the MCS-51 single-chip microcompnters in
assembly language. It also describes the operating instructions for the MCS-51
Macro Assembler.

The term ““MCS-51"’ refers to an entire family of single-chip microcompnters. all of
which have the same basic processor design. They include:

8051—the 8%51 processor with no ROM on-chip.

8351—the 8%51 processor with 4K bytes ROM. It is manufactured by Intel with
ROM memory pre-programmed.

8751—the 8%51 processor with 4K bytes EPROM. The 8751 can be programmed
and erased many times by the nser.

Throughout this manual when we wish to refer to a specific chip, but also point onut
something that is true for the entire family, we speak of the 8051.

This book is intended as a reference, but it contains some instriuctional material as
well. It is organized as follows:

““Chapter 1—Introduction,’’ which describes assembly language programming and
provides an overview of 8051 hardware.

b

“Chapter 2—Operands and Assembly-Time Expressions,”” which describes each

operand class and discusses assembly-time expressions.

“Chapter 3—Instruction Set,”” completely describes the operation of each
instruction in alphabetical order.

““Chapter 4—Directives,”’” which describes how to define symbols and describes use
of all directives.

“Chapter 5—Macros,”” which describes the definition and use of the Macro
Processing Language.

““Chapter 6—Assembler Operation and Controls,”” which describes how to invoke
the assembler and how to control assembler operation.

“Chapter 7—Assembler Qutput: Error Messages and Listing File Format,”” which
describes how to interpret error messages and the listing file.

Before you program one of the MCS-51 microcomputers, you should read the
MCS-51 User’s Manual, Order Nnmber 121517.

il

CONTENTS

CHAPTER 1 PAGE
INTRODUCTION
Whatisan Assembler? 1-1
What the AssemblerDoesccoouut. 1-1
ObjectFilecoiviiiiii i 1-2
ListingFile.........oooo i, 1-2
Writing, Assembling, and Debugging an
MCS-51Programcoviinenennnnn. 1-2
Hardware Overviewc.ccouiiininnennnnnnn 1-8
Memory Segments.ooiiiiiiiiinaaann 1-8
DatalUnitscovitiiiiii i, 1-11
Arithmetic and Logic Functions 1-12
General-Purpose Registers..................... 1-12
TheStackcoovviiiiiiii i 1-13
Symbolically Addressable Hardware Registers 1-13
Bit Addressing............oiiiiiiiiiiin., 1-14
The Program Status Word 1-15
TimerandCounterccovvvinevnennn.. 1-15
I/OPOItS oot e et 1-16
Serial I/OPort.oviii i 1-17
Interrupt Controlccviiiiiiiinnnn... 1-17
ReSEt. ittt i i i i i e e 1-19
CHAPTER 2

OPERANDS AND ASSEMBLY-TIME
EXPRESSIONS

Operands . ..ooviii i i i e i e 2-1
Special Assembler Symbols 2-2
Indirect Addressing...........coiiiiiin.. 2-2
ImmediateData................cooiiiiinn... 2-3
Data Addressingcoviiiiiiiiin... 2-3
Bit Addressing........ooviiiiiiiiiiiii 2-5
Code Addressingcovvininennenennennennns 2-8

Relative Jump (SJMP and Conditional Jumps). .. 2-8
2K Page Jumps and Calls (AJMP and ACALL).. 2-8

Long Jumps and Calls (LJIMP and LCALL)..... 2-8
Generic Jump and Call JMP or CALL) 2-9
Assembly-Time Expression Evaluation 2-9
Specifying Numbersccovviiiiennn... 2-9
ASMS51 Number Representation 2-10
Character Strings in Expressions................ 2-10
Useof Symbolsoiii ... 2-11
Using Operators in Expressions. 2-12
Arithmetic Operatorscoovvieennn.. 2-13
Logical Operatorscovvvninnnnnnnnnn. 2-13
Special Assembler Operators................. 2-14
Relational Operators.coovvevnnnn.. 2-14
Operator Precedence.c.ooviiivinennnnn, 2-15
Segment Typing in Expressions................. 2-15
CHAPTER 3
INSTRUCTION SET
Introduction.cooiiiniei i 3-1
NOtES . ettt ettt iiiaaeaaan 3-143/3-144

CHAPTER 4

ASSEMBLER DIRECTIVES

Introduction.cooeiiiit ittt 4-1
The LocationCountercccvvivnenen.n. 4-1
Symbol Names.. ... e e 4-2
Statement Labels............. ... oo i, 4-3

Symbol Definition Directives...................... 4-4
EQUDirective.....coovivviiiiinnne it 4-4
SET Directive. .. ovi ittt iiiiieiieineeennn 4-5
DATADIrectivecovviniiiiiiniiienennn 4-5
XDATADIrective. .o oovve i i eiiie e 4-6
BIT Directive ... oovie it iie i i, 4-6

Memory Segment Controlsouu.... 4-6
BSEG Directivevoiveiiie it i i iin s 4-7
CSEGDirectiveooviiie i i iiie e, 4-7
DSEGDirective. . ..ovveiie i it iieiieii e 4-7
XSEG Directive. . .ovvve it i itiieiieiin e 4-7

Location Counter Controlsccvveivn. .. 4-7
ORG DIrective. .o oo iie it ie et iiecee i 4-8
DS Directive. . ..vvvvie it 4-8
DBIT Directiveoviieiiie it i ii e e 4-8

Memory Initialization............................ 4-8
DB DIrectivevvviriiiin it ittt 4-9
DW Directive. ..oovviie i i i 4-10

The END Directivecovvviiiiii e, 4-10

CHAPTER 5

MACRO PROCESSING

LANGUAGE (MPL)

Conceptual Overview of Macro Processing 5-1
MPL Identifiers.............cooviiiiiin.., 5-2
What Is Macro Processing?ccovvnnnn 5-2
WhatIsaMacro?coiviiiiiinnnnn... 5-3

Macro Expansions and Side Effects 5-3
What IsMacro-Time?.........covviievneinn... 5-4
Why Use Macros?oovevnevnnnennnnenann.. 54

Parameters and Argumentso..n.. 5-5

Evaluation of the MacroCall...................... 5-6
A Comment-GenerationMacro.................. 5-7
A Macro to Add 16-Bit Values at Run-Time 5-8
Calling ADD16 with Actual Arguments........... 5-9
The LEN Built-in Function 5-10

The EVAL Built-in Function................. 5-10

Arithmetic Expressions.cooevv... 5-11
String Comparator (Lexical-Relational) Functions. 5-11

Control Functions (IF, REPEAT, WHILE) 5-12
ThelFFunction.............ccovvviniin.... 5-12
The REPEAT Function 5-14
The WHILE Functioncccoun... 5-14
MATCHFunctioncoviiivnennenn... 5-15
Console I/OFunctions..............coovuun... 5-16
TheSETFunction.............ccovvenevnn.... 5-16
The SUBSTRFunction...........cvovvvvnnn... 5-17

CONTENTS (Cont'd.)

CHAPTER 6

ASSEMBLER OPERATION

AND CONTROLS

How to invoke the MCS-51 Macro Assernbler 6-1
Assembler Conirols. ...oovvviieiin i ieennnn. 6-2

CHAPTER 7
ASSEMBLER OUTPUT: ERROR
MESSAGES AND LISTING FILE FORMAT

Error Messages and Recovery 7-1
Console Error Messagescovvenienen. 7-1
I/OEImrors . ..o 7-1
ASMSI Internal Errors.oovvvvin ... 7-2
ASMS1 Fatal Errors ... covevninin i, 7-2
Listing File Error Messageso..... 7-3
Source File Error Messages S 7-4
Macro Error Messagescovvevinnnenen.. 7-8
Control Error Messages e 7-11
Special Assembler Error Messages 7-13
Fatal Error Messagesccoovvienen.. 7-13
Assembler Listing File Format.................... 7-14
List FileHeading..........o oot 7-17
Source Listingcoviiiiiiiiiii, 7-17
Format for Macros and INCLUDE Files 7-18
Symbol Table.................. e 7-19

vi

APPENDIX A
ASSEMBLY LANGUAGE
BNF GRAMMAR

APPENDIX B

INSTRUCTION SET SUMMARY
APPENDIX C o
ASSEMBLER DIRECTIVE SUMMARY

APPENDIX D
ASSEMBLER CONTROL SUMMARY

APPENDIX E
MACRO PROCESSOR LANGUAGE

APPENDIX F
RESERVED SYMBOLS

APPENDIX G
SAMPLE PROGRAM
APPENDIX H
REFERENCE TABLES

APPENDIX J
ERROR MESSAGES

TABLES

TITLE FAGE TABLE TITLE PAGE
Register Bank Selection 1-12 2-7 Arithmeuc Assembly-Time Operators 2-13
Symbolically Addressable Hardware 2-8 Logical Assembly-Time Operators 2-13
Registers. ..., 1-14 2-9 Special Assembly-Time Operators 2-14
State of the 8051 after Power-up.......... 1-19 2-10 Relational Assembiy-Time Operators. 2-14
Special Assernbler Syrabols 2-2 2-11 Segment Typing in Operations. 2-16
Predefined Bit Addresses 2-7 3-1 Aboreviations and Noiations Used 3-3
Assembly Language Number 6-1 Assembler Controls.o, 6-2
Representation. 29 B-1 Instruction Set Sumnmary................. B-2
Examples of Number Representation....... 29 B-2 Insiruciton Opcodes in Hexadecimal B-9
Interpretations of Number D-1 Assernbier Controls D-1
Representation. 2-10 G-1 Sample Program........................ G-1
Predefined Data Addresses e 2-12
FIGURE TITLE PAGE FIGURE TITLE PAGE
AssemblerQutputscciiu. 1-2 Bit Descriptions for Serial Port Control.... 1-17
MCS-51 Software Development - Bit Descriptions for Interrupt Enable and
FlowChart.............c.ooiviun.. 1-3 Interrupt Priority 1-18
MCS-51 Example Program Listing 1-4 2-1 Hardware Register Address Area 2-4
MCS-51 Block Diagram 1-9 2-2a Bit Addressable Bytesin RAM 2-6
MCS-51 Code Address Space and Exiernal 2-2b Bit Addressable Bytes in Hardware
Data AddressSpace 1-10 Register Address Area 2-6
MCS-51 Data Address Space and Bit 3-1 Format For Instruction Definitions 3-2
AddressSpace ..., 1-11 7-1 Example Listing File Format 7-14
MCS-51DataUnits............covvvn... 1-11 7-2 Example Heading 7-17
Bit Descriptions of Program Status Word .. 1-15 7-3 Example Source Listing 7-17
Bit Descriptions of TCON 1-15 7-4 Examples of Macro Listing Modes 7-18
Bit Descriptions for Port3............... 1-16 7-5 Example Symbol Table Listing 7-19

vii

CHAPTER 1
INTRODUCTION

Most lines of source code in an assembly language source program translate into
machine instructions. Therefore, the assembly language programmer must be
familiar with both the assembly language and the microcomputer for which his
program is intended.

The first part of this chapter describes the assembler. The second part describes the
features of the MCS-51 single-chip processor from a programmer’s point of view—
the symbols and instructions that give programmers access to the hardware features.

What is an Assembler?

An assembler is a software tool—a program—designed to simplify the task of
writing computer programs. It performs the clerical task of translating symbolic
code into executable object code. This object code may then be programmed into
one of the MCS-51 processors and executed. If you have ever written a computer
program directly in machine-recognizable form, such as binary or hexadecimal
code, you will appreciate the advantages of programming in a symbolic assembly
language.

Assembly language operation codes (mnemonics) are easily remembered (MOV for
move instructions, ADD for addition). You can also symbolically express addresses
and values referenced in the operand field of instructions. Since you assign these
names, you can make them as meaningful as the mnemonics for the instructions.
For example, if your program must manipulate a date as data, you can assign it the
symbolic name DATE. If your program contains a set of instructions used as a
timing loop (a set of instructions executed repeatedly until a specific amount of time
has passed), you can name the instruction group TIMER.

For your convenience, the assembler has a set of predefined symbols that you may
use in your program. They correspond to addressable hardware features described
‘later in this chapter.

What the Assembler Does

To use the assembler, create a source program with a text file editor. (The text editor
is described in the ISIS-II System User’s Guide, Order Number 9800306.) The
source program consists of comments, assembler controls and directives, and
assembly language instructions. These instructions are written using mnemonic
opcodes and labels as described above.

When you invoke the assembler, specify the ISIS-II filename of your program. The
assembler can only be executed under ISIS-II running on an MDS-800 or SERIES-II
Model 220, 230 or 240 with 64K of memory and at least one disk or diskette drive.

Introduction

1-2

The assembler’s output usually comsists of two files:

the object file —containing the transiated executable source code,
the listing file —containing a copy of the source and object code in human
readable format.

Object File

The object file is the executable form of the assembler’s output. It is recorded in
absolute format hex code. This file may then be programmed into an 8751, or it may
be executed by an ICE-51 (the In-Circuit Emulator for the MCS-51 microcomputer).
The format of this file is described in Absoiute Object File Formats, Order Number
9800183.

Listing File

The listing file provides a permanent record of both the source program and the
object code. The assembler also provides diagnostic messages in the listing file for
syntax and other coding errors. For example, if you specify a 16-bit value for an
instruction that can use only an 8-bit value, the assembler tells you that the value
exceeds the permissible range. Chapter 7 describes the format of the listing file.

OBJECT
FILE

ASSEMBLER
PROGRAM

SOURCE
PROGRAM
FILE

LISTING
FILE

Figure 1-1. Assembler Outputs 9371

Writing, Assembling, and Debugging an MCS-51 Program

There are several steps necessary to incorporate an MCS-51 microcomputer in your
application. The flow chart in figure 1-2 shows the steps involved in preparing the
code. If you are developing hardware for your application in addition to the
software, consult MCS-51 User’s Manual . :

. MCS-51

MCS-51

CORRECT SOURCE CF}\%"E
EDIT
SOURCEFILE
ASSEMBLY
ERRORS ASSEMBLE
SOURCE
l
MINOR .
conF with BuGs DEEUG AND
IC‘:'éI-ET“‘ IN MODIFY
CODE HEX CODE
PROGRAiM EPROM
8751 WITH
UPP™/UPM™
(/6{:2/?” CHSPEgES
” ERASE éTNC‘ VERIFY ORDER
YOUR PROGRAM
i ™ 937-2
Figure 1-2. MCS-51™Software Development Flow Chart

To illustrate the necessary steps let us show how one program was assembled and
programmed into an 8751. The program in figure 1-3 was created for use on any
member of the MCS-51 family. It is a good starting point to get acquainted with
program development in the MCS-51 family. It includes 1/0O and uses several unique
hardware features.

The invocation line and the console output generated by the assembler is shown
below. This example assumes two drives in the system. The assembler program is on
drive 0 and the source program is on drive 1. The output files will be :F1: TEST.LST
(the listing file), and :F1:TEST.HEX (the object file).

—ASM51 :F1:TEST.SRC
ISIS-Il MCS-51 MACRO ASSEMBLER, V1.0
ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure 1-3 shows the resulting listing file, :F1:TEST.LST. A complete listing is
shown in Appendix G.

The next step in debugging your code is to program it into an EPROM 8751 and test
it in a prototype environment. (Further testing could be done via ICE-51.) To pro-
gram your code into an 8751 you must have a UPP connected to your Intellec
system. For a complete description of how to use UPP and UPM see Universal
PROM Programmer Reference Manual, Order number 9800133 and Universal
PROM Programmer User’s Manual , Order number 9800819.

Iniroduction

1-3

Introduction

MCS-51

MCS-51 MACRO ASSEMBLER

ISIS-II MCS-51 MACRO ASSEMBLER V1.0
OBJECT MODULE PLACED IN :F1:TEST.HEX
ASSEMBLER INVOKED BY: ASM51 :F1:TEST.SRC

PAGE 1

; STORAGE LOCATION FOR FIRST NUMBER
; STORAGE FOR SECOND NUMBER

placed in high memory

H
; They will be used to output messages to the terminal

; The OOH byte at the end of each string identifies the end character
T

'*TYPE "X TO RETYPE A NUMBER',00H

*TYPE IN FIRST NUMBER: ',00H

*TYPE IN SECOND NUMBER: ',00H

*THE SUM IS ',00H

The following instructions prepare the serial port to recieve and

Proper power supply
Logic to modify TTL signal to current loop
Necessary cabeling to connect terminal

SET TIMER MODE TO AUTO-RELOAD

SET TIMER FOR 110 BAUD

110 = 10.7TMHz/12%16%#2#253

110 = desired baud rate

10.7MHz = external clock rate
-253 = timer preset value

12%16%2 = conversion constant
PREPARE SERIAL PORT FOR OPERATION
START CLOCK

LOC O0BJ LINE SOURCE
0032 1 FIRST_NUMBER DATA 50
003C 2 SECOND_NUMBER DATA 60

0BB8 3 ORG 3000
4 These strings will be
5
6

0BB8 54595045 7 YPO: DB

0BBC 205E5820

0BCO 544F2052

0BCYU 45545950

0BC8 45204120

OBCC 4E554D42

0BDO 4552

0BD2 00

0BD3 54595045 8 F_NUMB: DB

OBDT7 20494E20

OBDB 46495253

OBDF 54204E55

OBE3 4D424552

OBET 3A20

0BE9 00

OBEA 54595045 9 S_NUMB: DB

OBEE 20494E20

OBF2 5345434F

OBF6 4E44204E

OBFA 554D4245

O0BFE 523420

0CO01 00

0C02 54484520 10 SUM: DB

0C06 53554D20

0COA 495320

ocop 00

0000 11 ORG 0
12 H
13 H send data at 110 baud
14 H Hardware assumptions:
15 H
16 H
17 H
18 H

0000 758920 19 MOV TMOD,#00100000B H

0003 758D03 20 MOV TH1,#(-253) H
21 H
22 H
23 H
24 H
25 H

0006 7598DA 26 MOV SCON,#11011010B H

0009 D28E 27 SETB TR1 H
28 START:

Figure 1-3. MCS-51"YExample Program Listing

937-3

MCS-51 Introduction

MCS-51 MACRO ASSEMBLER PAGE 2
Loc oBJ LINE SOURCE
29 ; This part of program starts communication and gets first number
000B 900BB8 30 MOV DPTR,#TYPO
000E 12006C 31 CALL PUT_STRING ; OUTPUT HOW TO RECOVER FROM TYPO
0011 120061 32 CALL PUT_CRLF
0014 900BD3 33 MOV DPTR,#F_NUMB ;3 GET ADDRESS OF DB STRING
0017 12006C 34 CALL PUT_STRING 3 OUTPUT STRING FOR FIRST NUMBER
001A 120061 35 CALL PUT_CRLF ; OUTPUT CARRIAGE RETURN LINE FEED
001D 7832 36 MOV RO,#FIRST_NUMBER
001F 120077 37 CALL GET_NUMB 3 GET FIRST NUMBER
0022 120061 38 CALL PUT_CRLF
39 ; THIS SECTION GETS SECOND NUMBER FROM CONSOLE
0025 900BEA 4o MOV DPTR,#S_NUMB ; OUTPUT STRING FOR SECOND NUMBER
0028 12006C 41 CALL PUT_STRING
002B 120061 42 CALL PUT_CRLF
002E T783C 43 MOV RO, #SECOND_NUMBER
0030 120077 by CALL GET_NUMB ; GET SECOND NUMBER
0033 120061 45 CALL PUT_CRLF
46 ; THIS SECTION OF CODE CONVERTS ASCII NUMBERS TO BINARY
0036 7932 47 MOV R1,#FIRST_NUMBER
0038 1200BF 48 CALL ASCBIN ; TRANSLATE ASCII STRING TO BINARY NUMBER
003B 793C 49 MOV R1,#SECOND_NUMBER
003D 1200BF 50 CALL ASCBIN ; TRANSLATE SECOND ASCII STRING
0040 ES532 51 MOV A,FIRST_NUMBER ;3 GET RESULT OF FIRST TRANSLATION
52 ; ADD NUMBERS AND CHANGE BINARY SUM TO ASCII STRING
0042 253C 53 ADD A,SECOND_NUMBER ; ADD BOTH NUMBERS
o044 F532 54 MOV FIRST_NUMBER,A
0046 7932 55 MOV R1,#FIRST_NUMBER ; PREPARE FOR RETRANSLATION
0048 120099 56 CALL BINASC ; TRANSLATE BINARY NUMBER TO ASCII
00UB 900C02 57 MOV DPTR, #SUM
58 ; OUTPUT SUM STRING AND CONVERTED ASCII SUM
OO04E 12006C 59 CALL PUT_STRING ; OUTPUT SUM STRING
0051 AAOH 60 MOV R2,4
0053 7932 61 MOV R1,#FIRST_NUMBER
0055 ET 62 PUT_SUM: MOV A,@R1
0056 120091 63 CALL PUT_CHAR
0059 09 64 INC R1
005A DAF9 65 DJNZ R2,PUT_SUM
005C 120061 66 CALL PUT_CRLF
005F 80AA 67 JMP START
68 H BEGIN SERVICE ROUTINES
69 H THIS LISTING DOES NOT DISPLAY I/O SERVICE
70 H SEE APPENDIX FOR COMPLETE LISTING
000D 71 CR EQU ODH
000A T2 LF EQU OAH
73 +1 $ NOLIST
REG 121 NUMB_PTR EQU R1
0030 122 ZERO EQU (‘o)
002D 123 MINUS EQU (r=")
002B 124 PLUS EQU ('+")
125 +1 § EJECT
Figure 1-3. MCS-51™Example Program Listing (Cont’d.) 9a7-4

1-5

Introduction

MCS-51

MCS-51 MACRO ASSEMBLER

LOC 0BJ LINE

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

00ET 143

0099 E7 144

009A 772B 145

009C 30E704 146

009F 772D 147

148

00A1 14 149

0082 FU 150

151

152

0043 09 153

154

00AY4 75F064 155

00AT7 84 156

00A8 2430 157

00AA F7 158

00AB 09 159

160

00AC ESFO 161

0O0AE 75F00A 162

00B1 84 163

00B2 2430 164

00BY F7 165

00B5 09 166

167

00B6 E5FO0 168

00B8 2430 169

00BA F7 170

171

00BB 19 172

00BC 19 173

00BD 19 174

00BE 22 175
176 +1

PAGE 3

SOURCE

R R R R R R R R R I R S R T)]

This routine converts a binary 2's complement number to a 4 character

ASCII string.

INPUT:
The binary value must be located in memory at the address contained
in register 1.

OUTPUT:
The 4 charater result is placed in memory with the first character
at the address contained in register 1.

NOTES:
The contents of register A and B will be destroyed.
The contents of the memory location initially addressed by
register 1 will be replaced with the first charater in the
resulting character string.

R e Ty R Iy e e y)

BINASC:
SIGN BIT ACC.7
MOV A,@NUMB_PTR ; Get number
MOV @NUMB_PTR, #PLUS
JNB SIGN,VAL ; Test bit'7 for] sign
MoV @NUMB_PTR,#MINUS ; Insert negative sign
;3 Change negative number to positive.
DEC
CPL A
;3 Now work on first digit
VAL:
INC NUMB_PTR
; Factor out first digit
B,#100

DIV AB
ADD A,#ZERO
MOV @NUMB_PTR,A
INC NUMB_PTR
; Factor out second digit from remainder
MOV A,B
MOV B,#10
DIV AB
ADD A,#ZERO
MOV @NUMB_PTR,A
INC NUMB_PTR
3 Get third and final digit
MOV A,B
ADD A,#ZERO
MOV @NUMB_PTR,A
; restore NUMB_PTR
DEC NUMB_PTR
DEC NUMB_PTR
DEC NUMB_PTR
RET
$ EJECT

Figure 1-3. MCS-51™Example Program Listing (Cont’d.)

937-5

MCS-51

Introduction

M(S-51 MACRO ASSEMBLER

LOC OBJ LINE
177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

REG 196
197

198

00BF 09 199
00CO0 ET 200
00C1 9430 201
00C3 75F064 202
00C6 Al 203
204

00CT FF 205
00c8 09 206
00C9 ET 207
00CA 9430 208
00CC 75F00A 209
00CF A4 210
211

00D0 2F 212
00D1 FF 213
0092 09 214
oon3 E7 215
0074 9430 216
217

00D6 2F 218
00Dp7 FF 219
oons 19 220
00D9 19 221
00DA 19 222
00NB ET 223
224

00DC BU2DOY4 225
O0ODF EF 226
00EO F4 227
00E1 Of 228
00E2 FF 229
00F3 EF 230
231

MCS-51 MACRO ASSEMBLER

LOC OBJ LINE
00EY4 FT7 232
00F5 22 233

234

PAGE 4

SOURCE

RN AR AR AR AN R R RN RN RSN AR RN R RN AR R R E RN R NRREREN R RN
This routine takes a U4 character string located in memory and converts
it to a binary 2's complement number.
The number must begin with a sign character ('+' or '-'), and be
between -128 and +127.
INPUT:

Four ASCII characters a sign character followed a '0' or a '1'

and the last 2 characters can be any digit.

The contents of register 1 must point to the sign character.

OUTPUT:
A binary 2's complement representation of the value of the
character string.
Register 1 contzins the address of the binary value.
NOTES:

The contents of the memory location initially
addressed by register 1 is destroyed.
The contents of registers 7 and B and the accumulator

are destroyed.
AR AT RO A AR AR AR AR R A PR RN A AR N AR AR RN DA NS N RN DA RRE RN NN

TEMP EQU RT7
ASCBIN:

H

H

POS:

Go right to number compute sign at end
INC NUMB_PTR
MOV A,@NUMB_PTR
SUBB A,#ZERO
MOV B, #100
MUL AB
Store first digit's value and go to next digit
MOV TEMP,A
INC NUMB_PTR
MOV A,@NUMB_PTR
SUBB A,#ZERO
MOV B,#10
MUL AB
Add first digit value to secon store and go to third digit
ADD A, TEMP
MOV TEMP,A
INC NUMB_PTR
MOV A,@NUMB_PTR
SUBB A,#7ERO
Add third digit value to total.
ADD A,TEMP
MOV TEMP,A
DEC NUMB_PTR
DEC NUMB_PTR
DEC NUMB_PTR
MOV A,@PUMB_PTR
Test for sign value
CJNE A,#MINUS,POS
MOV A, TEMP
CPL A
INC A
MOV TEMP,A
MOV A, TEMP
store result and return

Store and go back for sign

PAGE 5

SOURCE

MOV @NUMB_PTR,A
RET
END

ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure 1-3. MCS-51™Example Program Listing (Cont’d.)

Introduction

1-8

Hardware Overview

The 8051 is a high density microcomputer on a chip that is upwardly compatible
with the 8048. Its major features are:

¢ resident 4K bytes of ROM or EPROM program memory (no program memory
resident on 8051), expandable to 64K bytes

¢ resident 128 bytes of RAM memory, which includes 4 banks of 8 general-
purpose registers and a stack for subroutine and interrupt routine calls

® 64K bytes of external RAM address space

® 16-bit Program Counter giving direct access to 64K bytes of program memory
* 8-bit stack pointer that can be set to any address in on-chip RAM

* two programmable 16-bit timers/counters

® programmable full duplex serial 1/0 port

* four 8-bit bidirectional parallel I/O ports

* timer and I/0 interrupts with 2 levels of priority

® 111 instructions with 51 basic functions (including memory to memory move)
* Boolean functions with 128 software flags and 12-bit address instructions

® one microsecond instruction cycle time

* Arithmetic and Logic Unit that includes add, subtract, multiply, and divide
arithmetic functions, as well as and, or, exlusive or, and complement logical
functions

Figure 1-4 is a block diagram of the MCS-51 processor. It shows the data paths and
principal functional units accessible to the programmer.

Memory Segments

The MCS-51 processors have four separate address segments or spaces:

® Code address space—4K on-chip, and up to 60K may be added off-chip by user.

* Internal Data address space—128 bytes RAM and 128 byte hardware register
address space (only 20 addresses used).

e External data address space—up to 64K of off-chip memory added by user.
® Bit address space—shares locations accessible in the data address space.

The code address space, internal data address space, and external data address space
correspond to three physically distinct memories, and are addressed by different
machine instructions. This is an important distinction that is a key to understanding
how to program the 8051.

MCS-51

MCS-51 Introduction

128x 8 4Kx 8 |
I RAM ROM

| -m

I ! TOPOLATCH

EIN=

I T™MP1]——»l }—l PLA
l CONTROL

>0
(o]
roo | xv0
D O0Zz-
IOAP»rNT
N-DO7D

-—42007v
IO-HPr=v

C: A
i3 i I I i

oa PO LATCH SCON TCON IE P3LATCH
1 _" PORTO SBUF (REC) TMOD P PORT3
SBUF (XMIT) TLO INTERRUPT | |
— o CONTROL
PORT e
TH
TIMER |
CONTROL
Figure 1-4. MCS-51™Block Diagram w877

1-9

Introduction

To help you keep these segments and their addresses separate, ASMS51 assigns a seg-
ment type attribute to symbols containing addresses in the various address spaces.

CSEG—Code address space

DSEG—Data address space (on-chip)
XSEG—External data address space (off-chip)
BSEG—Bit address space

When you specify in an operand to an instruction a symbol with the wrong attribute,
ASMS51 generates an error message to warn you of the inconsistency. Chapters 2 and
3 show what segment type attribute is expected in each instruction, and Chapter 4
describes how to define a symbol with any of the segment type attributes.

Figure 1-5 shows the code address space (usually ROM), and external data address
space (usually RAM). Off-chip ROM and RAM can be tailored to use all or part of
the address space to better reflect the needs of your application. You can access
ROM and off-chip RAM with the MOVC and MOVX instructions respectively.

To the programmer, there is no distinction between on-chip and off-chip code. The
16-bit program counter freely addresses on- and off-chip code memory with no
change in instruction fetch time.

65,535 65,535
OFF-CHIP OFF-CHIP
ROM RAM
4095
ON-CHIP
ROM
0 0
CODE EXTERNAL DATA
ADDRESS ADDRESS SPACE

SPACE

937-8

Figure 1-5. MCS-51™Code Address Space and External Data Address Space

Figure 1-6 shows the data address space containing the bit address space. The data
address space contains 4 banks of general-purpose registers in the low 32 bytes
(0 - 1FH). In addition to the 128 bytes of RAM, the 8051°s hardware registers are
mapped to data addresses. The addresses from 128 to 255 are reserved for these
registers, but not all of those addresses have hardware registers mapped to them.
These reserved addresses are unusable.

The data segment contains two areas that are bit addressable. One is located in RAM
in the 16 bytes above the register banks (20H - 2FH). The other bit address area is in
the address space reserved for hardware registers. The contents of both bit address
areas can be accessed as part of a byte with a data address or as a single bit with a bit
address.

A complete description of how to specify all of the addresses and how to access the
various address spaces in your program is given in Chapter 2—Operands and
Assembly-Time Expressions, and Chapter 3—The Instruction Set.

MCS-51

MCS-51

255

HARDWARE

REGISTER
MAPPING
e 127
ON-CHIP
RAM
DIRECTLY
ADDRESSABLE 4 AN a7
O'fzﬂ:m BIT ADDRESS
SPACE
31
4REGISTER
BANKS 08 STACK DEFAULT
L 0

Figure 1-6. MCS-51"Data Address Space and Bit Address Space %"

Data Units

The 8051 manipulates data in four basic units—bits, nibbles (4 bits), bytes, and
addresses (16 bits).

The most common data unit used is a byte; all of the internal data paths are 8 bits
wide, and the code memory, the data memory, and the external data memory store
and return data in byte units. However, there are many instructions that test and
manipulate single bits. Bits can be set, cleared, complemented, logically combined
with the carry flag, and tested for jumps. The nibble (BCD packed digit) is less
commonly used in the 8051, but BCD arithmetic can be performed without con-
version to binary representation. :

Instructions that use 16-bit addresses deal with the Data Pointer (DPTR a 16-bit
register) and the Program Counter (jumps and subroutine calls). However, with the
add with carry (ADDC) and subtract with borrow (SUBB) instructions, software
implementation of 16-bit arithmetic is relatively easy.

BIT

4-BIT NIBBLE
3 0
8-BIT BYTE
7 0

16-BIT ADDRESS
l : |
15 8 7 o

Figure 1-7. MCS-51™Data Units 93710

Introduction

Introduction

1-12

Arithmetic and Logic Functions

The arithmetic functions include:

* ADD-—signed 2’s complement addition

* ADDC—signed 2’s complement addition

e SUBB-—signed 2’s complement subtraction with borrow
® DA—adjust 2 packed BCD digits after addition

® MUL—unsigned integer multiplication

®* DIV—unsigned integer division

o INC—signed 2’s complement increment

* DEC—signed 2’s complement decrement

The accumulator receives the result of ADD, ADDC, SUBB, and DA functions. The
accumulator receives partial result from MUL and DIV. DEC and INC can be
applied to all byte operands, including the accumulator.

The logical functions include:

® ANL—logical and on each bit between 2 bytes or 2 bits

® CPL—logical complement of each bit within a byte or a single bit
® ORL—logical or on each bit between 2 bytes or 2 bits

e XRL—logical exclusive or on each bit between 2 bytes

The accumulator usually receives the result of the byte functions, and the carry flag
usually receives the result of the bit functions, but some instructions place the result
in a specified byte or bit in the data address space.

The instructions shown above are described in Chapter 3.

General-Purpose Registers

The 8051 has four banks of 8 general-purpose registers. They are located in the first
32 bytes of on-chip RAM (00H - 1FH). You can access the registers of the currently
active bank through their special assembler symbols (RO, R1, R2, R3, R4, RS, R6,
and R7). To change the active bank you modify the register bank select bits (RSO
and RS1) contained in the program status word (PSW, described in table 1-3). Table
1-1 below shows the bank selected for all values of RSO and RS1.

Table 1-1. Register Bank Selection

RS1 RSO Bank Memory Locations
0 0 0 00H—O07H
0 1 1 08H—OFH
1 0 2 10H—17H
1 1 3 18H—1FH

MCS-51

MCS-51

The Stack

The stack is located in on-chip RAM. It is a last-in-first-out storage mechanism used
to hold the Program Counter during interrupts and subroutine calls. You can also
use it to store and return data with the POP and PUSH instructions. The Stack
Pointer contains the address of the top of the stack.

The Stack Pointer (SP) is an 8-bit register that may contain any address in on-chip
RAM memory. However, on the 8051 it should never exceed 127. If it does, all data
pushed is lost. A pop, when the SP is greater than 127, returns invalid data.

The SP always contains the address of the last byte pushed on the stack. On power-
up (Reset) it is set to 07H, so the first byte pushed on the stack after reset will be at
location 08H. This location is compatible with the 8048’s stack. Most programs
developed for the 8051 will reset the bottom of the stack by changing the contents of
the SP before using the stack, because 08H-1FH is the area reserved for several of
the 8051’s general-purpose-register banks. The following instruction causes the next
byte pushed on the stack to be placed at location 100.

MOV SP,#99 ; Initialize stack to start at location 100
; The hardware increments the SP
; BEFORE a push

Symbolically Addressable Hardware Registers

Each programmable register is accessible through a numeric data address, but the
assembler supplies a predefined symbol that should be used instead of the register’s
numeric address. Table 1-2 identifies each hardware register, its numeric address,
and its predefined symbol.

The predefined symbols given in table 1-2 stand for the on-chip data addresses of the
hardware registers. In many cases the only access to these registers is through these
data addresses. However, some of the registers have an identity both as a special
assembler symbol and as a data address symbol (e.g., both “ACC’’ and ‘‘A’’ stand
for the accumulator), but even though these symbols may be semantically the same,
they are syntactically different. For example,

ADD A, #27
is a valid instruction to add 27 to the contents of the accumulator, but

ADD ACC,#27
is invalid and will cause an error, because there is no form of ADD taking a data
address as the destination (ACC specifies a data address). The differences become
even more subtle in some assembly instructions where both symbols are valid but
assemble into different machine instructions:

MOV A, #27 ; assembles into a 2 byte instruction

MOV ACC, #27 ; assembles into a 3 byte instruction

Chapter 2 describes the syntax for all instruction operands, and Chapter 3 describes
the operands expected in each instruction.

Introduction

Introduction

Because the hardware registers are mapped to data addresses, there is no need for
special I/0 or control instructions. For example,

MOV A,P2
moves a copy of the input data at Port 2 to the accumulator. To output a character

on the Serial 1/0 port (after preparing SCON), simply move the character into the
Serial port buffer (SBUF):

MOV SBUF #?’
Table 1-2. Symbolically Addressable Hardware Registers
Predefined Data
Symbol Address Meaning
ACC EOH ACCUMULATOR (Data address of A)
B FOH MULTIPLICATION REGISTER
DPH 83H DATA POINTER (high byte)
DPL 82H DATA POINTER (low byte)
IE A8H INTERRUPT ENABLE
P B8H INTERRUPT PRIORITY
PO 80H PORT0
P1 90H PORT1
P2 AOH PORT 2
P3 ‘ BOH PORT 3
PSW DOH PROGRAM STATUS WORD
SBUF 99H SERIAL PORT BUFFER
SCON 98H SERIAL PORT CONTROLLER
SP 81H STACK POINTER
TCON 88H TIMER CONTROL
THO 8CH TIMER 0 (high byte)
TH1 8DH TIMER 1 (high byte)
TLO 8AH TIMER 0 (low byte)
TU 8BH TIMER 1 (low byte)
TMOD 89H TIMER MODE
Bit Addressing

Many of the hardware control registers are also bit addressable. The flags contained
in them can be accessed with a bit address as well as through the byte address shown
above. One way to do this is through the bit selector (.). For example to access the 0
bit in the accumulator, you might specify ACC.0.

Bit addressing allows the same simplicity in testing and modifying control and status
flags as was shown above with addressable registers. For example to start Timer 0
running, set the run flag to 1 via its bit address (SETB TCON.4).

Throughout the remainder of this chapter, several programmable features including
predefined bit addresses of status and conurol flags, discussed. To use these features,
you simply modify the corresponding address as if it were a RAM location.

MCS-51

MCS-51

The Program Statu

s Word

Introduction

The Program Status Word (PSW) contains several status bits that reflect the state of
the 8051. Figure 1-8 shows the predefined bit address symbol, the bit position, and
meaning of each bit in the PSW.

PSW.7
CARRY FLAG RECEIVES CARRY OUT
FROM BIT 7 OF ALU OPERANDS

PSW.6

AUXILIARY CARRY FLAG RECEIVES
CARRY OUT FROM BIT 3 OF
ADDITION OPERANDS

PSW.5
GENERAL PURPOSE STATUS FLAG

PSW.4
REGISTER BANK SELECTBIT 1

Figure 1-8. Bit Descriptions of Program Status Word

lCY I AC I FO |RS1 IRSOJ ov l

o

L

PSW.0

PARITY OF ACCUMULATOR SET

BY HARDWARE TO 1 IF IT CONTAINS
AN ODD NUMBER OF 1’s; OTHERWISE
ITISRESETTOO0

PSW.1
USER DEFINABLE FLAG

PSW.2
OVERFLOW FLAG SET BY
ARITHMETIC OPERATIONS

PSW.3
REGISTER BANK SELECT BIT 0

937-11

Timer and Counter

The 8051 has two independently programmable timers. They feature a 16-bit
counter and are controlled by 2 registers, timer mode (TMOD) and timer control
(TCON). Figure 1-9 shows the predefined bit address symbols, the positions and
meanings of the bits in TCON. (For a complete description of the timer see the
MCS-51 User’s Manual.)

TCON.7

TIMER 1 OVERFLOW FLAG
TCON.6

TIMER 1 RUN CONTROL BIT

TCON.5
TIMER 0 OVERFLOW FLAG

_t

ITF1 lTR1 ITFO lTROl IE1 I 1T I IEO I IT0 l

| 1

TCON.4
TIMER 0 RUN CONTROL BIT

TCON.O

INTERRUPT 0 TYPE CONTROL BIT
TCON.1

INTERRUPT 0 EDGE FLAG
TCON.2

INTERRUPT 1 TYPE CONTROL BIT

TCON.3
INTERRUPT 1 EDGE FLAG

937-12

Figure 1-9. Bit Descriptions of TCON

1-15

Introduction

1-16

1/0 Ports

The 8051 has 4 8-bit 1/0 ports; each bit in the ports corresponds to a specific pin on
the chip. All four ports are buffered by a port latch, and they are addressable
through a data address (as a byte) or 8 bit addresses (as a set of bits). As noted
earlier, this removes the need for special I/0O instructions. The numeric data address
and the predefined symbol for each port is shown below:

Port Predefined Data
Symbol Address

0 PO 80H

1 P1 90H

2 P2 AOH

3 P3 BOH

Port 0 and Port 2 are used for external program and external data addressing. Port 0
also receives the input data from off-chip addressing. If off-chip memory is not
implemented, then ports 0 and 2 are bidirectional 1/0 ports. Port 1 is a general pur-
pose bidirectional I/0 port.

Port 3 contains the external interrupt pins, the external timer, the external data
memory read and write enables, and the serial I/0 port transmit and receive pins.
The bits that correspond to these pins are individually addressable via predefined bit
address symbols. Figure 1-10 shows the meaning of each bit, its position in Port 3,
and its predefined bit address symbol.

If the external interrupts, external data addressing, and serial 1/0 features of the
8051 are not used Port 3 can function as a bidirectional I/O port.

I RD |WR | T | T0 |INT1I|NTOLTXDIRXDI

4] -

P3. P3.0
READ DATA FOR EXTERNAL MEMORY SERIAL PORT RECEIVE PIN

P3.6 P3.1
WRITE DATA FOR EXTERNAL MEMORY SERIAL PORT TRANSMIT PIN

pP3.5 ———— ——P3.2
TIMER/COUNTER 1 EXTERNAL FLAG INTERRUPT 0 INPUT PIN
P3.4 P3.3
TIMER/COUNTER 0 EXTERNAL FLAG INTERRUPT 1 INPUT PIN
Figure 1-10. Bit Descriptions for Port 3 93713

MCS-51

MCS-51

Serial I/0 Port

The serial I/0 port permits /O expansion using UART protocols. The serial 1/0
port is controlled by Serial Port Controller (SCON), a register that is both bit
addressable and byte addressable. Figure 1-11 shows the predefined bit address
symbols, positions and meanings of the bits in SCON. For complete details of Serial
170 port control see the MCS-51 User’s Manual.

|smo|sm|sm2|REN|T38|R58| I I RI |

1 A |

SCON.7 SCON.0

SERIAL MODE CONTROL BIT 0 RECEIVE INTERRUPT FLAG
SCON.§ ————— L———— SCON.1

SERIAL MODE CONTROL BIT 1 TRANSMIT INTERRUPT FLAG

L

SCON.5 ————————— SCON.2

SERIAL MODE CONTROL BIT 2 RECEIVEBITS
SCON.4 SCON.3

RECEIVER ENABLE TRANSMIT BIT 8

Figure 1-11. Bit Descriptions for Serial Port Control 937-14

Interrupt Control

There are two registers that control timer and 1/0 interrupts and priorities. They are
IE (Interrupt Enable) and IP (Interrupt Priority). When the interrupt enable bit for
a device is 1, it can interrupt the processor. The 8051 does not respond to an
interrupt until the instruction being executed has been completed (this can be as long
as 4 cycles).

When it does respond, the 8051°s hardware disables interrupts of the same or lesser
priority and makes a subroutine call to the code location designated for the inter-
rupting device. Typically, that location contains a jump to a longer service routine.
The instruction RETI must be used to return from a service routine, in order to
reenable interrupts. The reserved locations, the predefined labels, and the associated
interrupt devices are listed below. These labels may be used to aid the placement of
I/0 routines in code memory.

Predefined
Label Location Interrupting Device
RESET 00H Power on Reset (First instruction executed on power up.)
EXTIO 03H External interrupt 0
TIMERO 0BH Timer0
EXTH 13H External interrupt 1
TIMER1 1BH Timer1
SINT 23H Serial 1/0 port

Introduction

Introduction

The 8051 has two levels of interrupt priority (0 and 1). Figure 1-12 shows the
predefined bit address symbol, the position and the device associated with each bit
contained in IE and IP. A level 1 priority device can interrupt a level O service
routine, but a level 0 interrupt will not affect a level 1 service routine. Interrupts on
the same level are disabled.

ps [p11] Pxt | PTo [Pxo]
A
RESERVED _—1 ’ L P

PRIORITY OF EXTERNAL INTERRUPT 0

IP.6 IP.1
RESERVED PRIORITY OF TIMER 0 INTERRUPT
IP.5 ‘———— IP.2
RESERVED PRIORITY OF EXTERNAL INTERRUPT 1
IP.4 IP.3
PRIORITY OF SERIAL PORT INTERRUPT PRIORITY OF TIMER 1 INTERRUPT

Interrupt Priority

ﬂ-- ES [ET1 I EX1 I ETOI EXO]
_4 ‘ ‘ |

IE.7 IE.0
ENABLE ALL INTERRUPTS ENABLE EXTERNAL INTERRUPT 0

IE.6 Y IE.1
RESERVED ENABLE TIMER 0 INTERRUPT

|E.5 e~ E.2
RESERVED ENABLE EXTERNAL INTERRUPT 1

IE.4 IE.3
ENABLE SERIAL PORT INTERRUPT ENABLE TIMER 1 INTERRUPT

Interrupt Enable

937-15
Figure 1-12. Bit Descriptions for Interrupt Enable and Interrupt Priority

MCS-51

MCS-51

Reset

On reset all of the registers in the 8051 assume an initial value. Table 1-3 shows these
initial values. This will always be the state of the chip when your code begins
execution. You can use these initial values or reinitialize them as necessary in your

program.

Table 1-3. State of the 8051 after Power-up

dictable at reset.

Register Value
Accumulator 00H
Multiplication Register 00H
Data Pointer 0000H
Interrupt Enable 00H
Interrupt Priority 00H
Port0 OFFH
Port1 OFFH
Port 2 OFFH
Port3 OFFH
Program Counter 0000H
Program Status Word 00H
Serial Port Control 00H
Serial |/0 Buffer undefined
Stack Pointer 07H
Timer Control 00H
Timer Mode 00H
Timer 0 Counter 0000H
Timer 1 Counter 0000H

NOTE

The PC is always set to 0 on reset, thus the first instruction executed in a
program is at ROM location 0. The contents of RAM memory is unpre-

Introduction

1-19

CHAPTER 2
OPERANDS AND ASSEMBLY-TIME
EXPRESSIONS

This chapter discusses the operand types used by ASM51. It describes their use and
some of the ways you can specify them in your program. The latter part of the
chapter deals with expressing numbers and using assembly-time expressions.

Operands
The general form of all instruction lines is as follows:

[Label:] Mnemonic [Operand] [,Operand] [,Operand] [;Comment]

The number of operands and the type of operands expected depend entirely on the
mnemonic. Operands serve to further define the operation implied by a mnemonic,
and they identify the parts of the machine affected by the instruction.

All operands fall into one of six classes:
® Special Assembler symbols

® Indirect Addresses

* Immediate Data

* Data Addresses (on-chip)

¢ Bit Addresses

®* Code Addresses

A special assembler symbol is a specific reserved word required as the operand in an
instruction. Indirect addresses use the contents of a register to specify a data
address.

The remaining operand types (immediate data, data addresses, bit addresses, and
code addresses) are numeric operands. They may be specified symbolically, but they
must evaluate to a number. The range permitted for a numeric operand depends on
the instruction with which it is used. The operand can be made up of predefined or
user defined symbols, numbers, and Assembly-Time operators.

As described in Chapter 1, the data address space, the bit address space, the external
data address space, and the code address space are separate and distinct address
areas on the 8051. In many cases the same numeric value is a valid address for all
four address spaces (segments). To help avoid logic errors in your program, ASM51
performs type checking in instruction operands (and arguments to assembler
directives), that address these segments. The segment type expected in each of these
operands is described below. Chapter 4 describes how to define symbols with
different segment types.

2-1

Operands and Assembly-Time Expressions

2-2

Special Assembler Symbols

The assembler reserves several symbols to designate specific registers as operands. A
special assembler symbol is encoded in the opcode byte, as opposed to a data address
which is encoded in an operand byte. Table 2-1 lists these symbols and describes the
hardware register each represents.

Table 2-1. Special Assembler Symbols

Special
Symbol Meaning

A Accumulator

RO,R1,R2 Stands for the 8 general registers
R3,R4,R5, in the currently active bank
R6,R7 (4 register banks available)

DPTR Data pointer: a 16-bit register
used for indexing tables in

code address space and external
address space

PC Program Counter: a 16-bit register that
contains the address of the next
instruction to be executed.

C Carry flag receives ALU carry out
and borrow from bit 7 of the operands

AB Accumulator/B Register pair used in
MUL and DIV instructions

If the definition of an instruction requires one of these symbols, only that special
symbol can be used. However, you can, with the SET and EQU directives, define
other symbols to stand for the accumulator (A) or the working registers (RO,
R1,...R7). Symbols so defined may not be forward referenced in an instruction
operand. You cannot use a special assembler symbol for any other purpose in an
instruction operand or directive argument. Several examples of instructions that use
these symbols are shown below.

INC DPTR ; Increment the entire 16-bit contents of the Data Pointer by 1
SETBC ; Setthe Carry flag to 1

MOV R6,A ; Move the contents of the accumulator to working register 6
JMP @A +PC ; Add the contents of the accumulator to the contents of the

;program counter and jump to that address

MUL AB ; Multiply accumulator by register B and place resultin Aand B

Indirect Addressing

An indirect address operand identifies a register that contains the address of a
memory location to be used in the operation. The actual location affected will
depend on the contents of the register when the instruction is executed. In most
instructions indirect addresses affect on-chip memory. However, the MOVC and
MOVX instructions use an indirect address operand to address code memory and
external data memory respectively.

MCS-51

MCS-51

Operands and Assembly-Time Expressions

In on-chip indirect addressing either register 0 or register 1 of the active register bank
can be specified as an indirect address operand. The commercial at sign (@) fol-
lowed by the register’s special symbol (RO or R1), or a symbol defined to stand for
the register’s special symbol, indicates indirect addressing. On the 8051 the address
contained in the specified indirect address registers must be between 0 and 127. So,
you cannot access hardware registers through indirect addressing. If an indirect
address register contains a value greater than 127 when it is used for on-chip address-
ing, the program continues with no indication of the error. If it is a source operand,
a byte containing undefined data is returned. If it is a destination operand, the data
is lost.

The following examples show several uses of indirect addressing.

ADD A,@R1 ; Add the contents of the on-chip RAM location addressed by
; register 1 to the accumulator

INC @R0 ; Increment the contents of the on-chip RAM location
; addressed by register 0

MOVX @DPTR,A ; Move the contents of the accumulator to the off-chip memory
; location addressed by the data pointer

Immediate Data

An immediate data operand is a numeric expression that, when assembled, is
encoded as part of the machine instruction. The pound sign (#) immediately before
the expression indicates that is is an immediate data operand. The numeric expres-
sion must be a valid assembly-time expression.

The assembler represents all numeric expressions in 16 bits, and converts to the
appropriate form for instruction encoding. (Appendix H shows how ASMS5I1
represents positive numbers internally. The 2’s complement notation used for
negative numbers is shown below.) Most instructions require the value of the
immediate data to fit into a byte. The low order byte of the assembler’s 16-bit inter-
nal representation is used. This permits a numeric expression range of values from
—256 to +255. These values all have a homogeneous high order byte (i.e., all ones or
all zeros) when represented in 16 bits. The immediate data operands that accept a
16-bit value can use any value representable by the assembler. Immediate data
operands do not require any specific segment type.

The following examples show several ways of specifying the immediate data
operand.

MOV A #0EOH ; Place the hex constant E0 in the accumulator

MOV DPTR,#0A14FH ; This is the only instruction that uses a 16-bit immediate data
; operand

ANL A,#128 ; Mask all but the high order bit of the accumulator

; 128(base 10) = 1000 0000(base 2)

Data Addressing

The memory address operand is a numeric expression that evaluates to one of the
128 on-chip memory addresses or one of the hardware register addresses. The low-
order byte of the assembler’s 16-bit internal representation is used. This permits a
range from —256 to +2535, but since the 8-bit value encoded in the instruction has no

Operands and Assembly-Time Expressions

sign to the 8051, it is easier to think of its value as only positive (0 to 255). (Appendix
H shows how ASMS1 represents positive numbers internally. The 2’s complement
notation used for negative numbers is shown below.) Instructions that use the data
address operand require that the symbol or expression specified be of segment type
DSEG or have no segment type at all. (Symbols are discussed below under
Assembly-Time Expression Evaluation.)

The data addresses from 0 to 127 access the 8051’s on-chip RAM space, while the
addresses from 128 to 255 access the hardware registers. Not all of the addresses in
the hardware register space are defined. The illustration below (figure 2-1) shows the
meaningful addresses and their predefined data address names.

If you read from a reserved address, undefined data will be returned. If you write to
a reserved address, the data will be lost. Using these peculiarities in your program
may result in incompatability with future versions of the chip.

The following examples show several ways of specifying data addresses.

MOV P1,A ; Move the contents of the accumulator to the predefined data
; address 90(base 16) Port 1

ORL A,20*5 ; Logical OR of accumulator with location 100(base 10) uses an
; assembly-time operator multiply

INC 32 ; Increment location 32 (base 10) in memory

Fle
E |acc
RESERVED
ADDRESSES
HIGH D |psw P
ORDER
DIGIT
OF
ADDRESS
B |ps
A | e
o | P
8 | po|spfop]opnf |

LOW ORDER DIGIT OF ADDRESS

Figure 2-1. Hardware Register Address Area 937-16

MCS-51

MCS-51

Operands and Assembly-Time Expressions

Bit Addressing

A bit address is a numeric value encoded in the instruction by the assembler. There
are two ways to represent a bit address in an operand.

1. You can specify the byte that contains the bit with a data address, and single out
the particular bit in that byte with the bit selector (‘‘.”’ period) followed by a bit
identifier (0-7). For example, 40.5, 21H.0 and ACC.7 are valid uses of the bit
selector. You can use an assembly-time expression to express the byte address or
the bit identifier. The assembler will translate this to the correct numeric value.
However, only certain bytes in the on-chip address space are bit addressable.
(See figure 2-2.)

2. Youcan do the translation youself, by using a numeric expression that evaluates
to a bit address. Like memory addresses, the low order byte of the assembler’s
16-bit internal representation is used. This permits a numeric expression range
from —256 to +255, but since the 8-bit value encoded in the instruction has no
sign, it is easier to think of its value as only positive (0 to 255). (Appendix H
shows how ASMS51 represents positive numbers internally. The 2’s complement
notation used for negative numbers is shown below.)

Instructions that use the bit address operand require that symbols or expressions
used be of segment type BSEG, or have no segment type at all. (Symbols are dis-
cussed below under Assembly-Time Expression Evaluation.) Figures 2-2a and 2-2b
show the bits assigned to each numeric bit address.

The following examples show several ways of specifying the same bit.

SETB TR1 ; Set the predefined bit address TR1 (Timer 1 Run Flag)
SETB 88H.6 ; Set bit 6 of location 88H (Timer 1 Run Flag)
SETB 8EH ; Set the bit address 8E(base 16) (Timer 1 run flag)

As with data addresses there are several bit addresses that are predefined as symbols
that you can use in an operand. Table 2-2 shows these predefined bit addresses. You
can also define your own bit address symbols with the BIT directive described in
Chapter 4 Assembler Directives.

Operands and Assembly-Time Expressions

MCS-51

NOT
BITADDRESSABLE

M/".'.M N

BITPOSITION}7 6 5 4 3 2 1 0 5>

7F|7e]| 7o|7clzB]7A] 79 78 53

77| 76|75 | 78] 73] 72| 71] 70 >

6F|6E}eD|6C|6B|6A] 69] 68 5

67| 66|65 | 64| 63 62| 61| 60 =

sF|5E[5D|5¢C|58|5A] 59] 58 2 RAM

57| 56|55 | 54] 53] 52] 51] 50 2 > R'J,,Rgss

aF|aE|aD|ac]aB]an] 9] 48 2 SPACE

a7) 46|45 |44]43]a2] 41|40 53>

3F| 3| anjac]as|3a] 39]38 2

37| 36] 353433} 32]31]30 =

2F| 2e(2D]2c]|28]2A] 29 28 o

27| 26|25 [24] 23] 22]21]20 5>

1F[1E|1D|1C]1B}1A] 19] 18 ne

17]1615 |14]13[12] 11|10 e J

of|oe|opfoc]os]oa] 0o]os S

07] 0605 |oa}o3] 020100

NOT
BITADDRESSABLE

BIT
ADDRESS

Figure 2-2a. Bit Addressable Bytes in RAM

COH |

76543219
B FoH [F7|Fe |F5|Fa|F3]F2[F1]Fo
Acc EoH [e7[ee|es|Ea[e3|E2[E1[EO
PswW DoH [D7|D6[D5|D4|D3{D2|D1| DO
P3 BoH |B7|B6|B5|B4|B3|B2|B1|BO
P2 AoH|a7|as]As| Aa[A3[A2]A1]A0

P1 90H 97|96 | 95|94 |93]92| 91

90

PO 80H 878685/ 8483)82|81

80

Figure 2-2b. Bit Addressable Bytes in Hardware Register Address Area

93717

MCS-51

Operands and Assembly-Time Expressions

Table 2-2. Predefined Bit Addresses

Bit Bit :
Symbol Position Address Meaning
cY PSW.7 D7H Carry Flag
AC PSW.6 D6H Auxiliary Carry Flag
FO PSW.5 D5H Flag0
RSt PSW.4 D4H Register Bank Select Bit 1
RS0 PSW.3 D3H Register Bank Select Bit 0
ov PSW.2 D2H Overflow Flag
P PSW.0 DOH Parity Flag
TF TCON.7 8FH Timer 1 Overflow Flag
TR1 TCON.6 8EH Timer 1 Run Control Bit
TFO TCON.5 8DH Timer 0 Overflow Flag
TRO TCON.4 8CH Timer 0 Run Control Bit
IE1 TCON.3 8BH Interrupt 1 Edge Flag
IT TCON.2 8AH Interrupt 1 Type Control Bit
IEO TCON.A 89H Interrupt 0 Edge Flag
ITO TCON.0 88H Interrupt 0 Type Control Bit
SMO SCON.7 9FH Serial Mode Control Bit 0
SM1 SCON.6 9EH Serial Mode Control Bit 1
SM2 SCON.5 9DH Serial Mode Control Bit 2
REN SCON.4 9CH Receiver Enable
TB8 SCON.3 9BH Transmit Bit 8
RB8 SCON.2 9AH Receive Bit 8
Ti SCON.1 99H Transmit Interrupt Flag
Rl SCON.0 98H Receive Interrupt Flag
EA IE.7 AFH Enable All Interrupts
ES IE.4 ACH Enable Serial Port Interrupt
ET1 IE.3 ABH Enable Timer 1 Interrupt
EX1 IE.2 AAH Enable External Interrupt 1
ETO IE.1 A9H Enable Timer 0 Interrupt
EXO0 IE.O A8H Enable External Interrupt 0
RD P3.7 B7H Read Data for External Memory
WR P3.6 B6H Write Data for External Memory
T1 P3.5 B5H Timer/Counter 1 External Flag
TO P3.4 B4H Timer/Counter 0 External Flag
INT1 P3.3 B3H Interrupt 1 Input Pin
INTO P3.2 B2H Interrupt 0 Input Pin
TXD P3.1 B1H Serial Port Transmit Pin
RXD P3.0 BOH Serial Port Receive Pin
PS IP.4 BCH Priority of Serial Port Interrupt
PT1 1P.3 BBH Priority of Timer 1 Interrupt
PX1 IP.2 BAH Priority of External Interrupt 1
PTO IPA B9H Priority of Timer 0
PX0 IP.0 B8H Priority of External Interrupt 0

2-7

Operands and Assembly-Time Expressions

2-8

Code Addressing

There are three types of instructions that require a code address in their operands.
They are relative jumps, absolute 2K page jumps or calls, and long jumps or calls.
The difference between each type is the range of values that the code address
operand may assume. All three expect an expression which evaluates to a code
address (a numeric expression between 0 and 65535) but if you specify a relative
jump or a 2K page jump, only a small subset of all possible code addresses is valid.
Instructions that use the code address operand require that the symbol or expression
specified be of segment type CSEG or have no segment type at all. (Symbols and
labels are discussed below under Assembly-Time Expression Evaluation.)

Relative Jump (SJMP and Conditional Jumps)

The code address to a relative jump must be close to the relative jump instruction
itself. The range is from —128 to +127 bytes from the first byte of the instruction
that follows the relative jump.

The assembler takes the specified code address and computes a relative offset that is
encoded as an 8-bit 2’s complement number. That offset is added to the contents of
the program counter (PC) when the jump is made, but, since the PC is always
incremented to the next instruction before the jump is executed, the range is com-
puted from the succeeding instruction.

When you use a relative jump in your code, you must use a numeric expression that
evaluates to the absolute code address of the jump destination. The assembler does
all the offset computation. If the address is out of range, the assembler will issue an
€rror message.

2K Page Jumps and Calls (AJMP and ACALL)

The code address operand to a 2K page jump or call is a numeric expression that is
evaluated and then encoded in the instruction by the assembler. The low order 11
bits of the destination address are placed in the opcode byte and one operand byte.
When the jump or call is executed, the 11-bit page address replaces the low order 11
bits of the program counter. This permits a range of 2048 bytes, or anywhere within
the current 2K byte page.

If the page jump or call is the last instruction on a 2K page, the high order bits of the
PC change when incremented to address the next instruction; thus, the jump will be
made within that new 2K page.

Long Jumps and Calls (LJMP and LCALL)

The code address operand to a long jump or call is a numeric expression that will be
evaluated and then encoded as a 16-bit value in the instruction by the assembler. All
16 bits of the program counter are replaced by this new value when the jump or call
is executed. Since 16 bits are used, any value representable by the assembler will be
acceptable (0-65535).

The following examples show each type of instruction that calls for a code address.

SJMP LABEL ; Jump to LABEL (relative offset LABEL must be within —128
; and +127 of instruction that follows SUMP)

ACALL SORT ; Call subroutine labeled SORT (SORT must be an address to
; within the current 2K page)

LJMP EXIT ; Long jump; the label or symbol EXIT must be defined
; somewhere in the program

MCS-51

MCS-51

Operands and Assembly-Time Expressions

Generic Jump and Call (JMP or CALL)

The assembler provides two instruction mnemonics that do not represent a specific
opcode. They are JMP and CALL. JMP may assemble to any of the unconditional
jump instructions (SJMP, AJMP, or LIMP). CALL may assemble to ACALL or
LCALL. These generic mnemonics will always evaluate to an instruction that will
reach the specified code address operand.

This is an effective tool to use during program development, since sections of code
change drastically in size with each development cycle. (See Chapter 3 for a complete
description of both generic jumps.)

Assembly-Time Expression Evaluation

An expression is a combination of numbers, character strings, symbols, and
operators that evaluate to a single 16-digit binary number. Except for some direc-
tives all expressions can use forward references (symbols that have not been defined
at that point in the program) and any of the assembly-time operators.

Specifying Numbers

You can specify numbers in hexadecimal (base 16), decimal (base 10), octal (base 8),
and binary (base 2). The default representation, used when no base designation is
given, is decimal. Table 2-3 below shows the digits of each numbering system and
the base designation character for each system.

Table 2-3. Assembly Language Number Representation

Number System Base Designator Digits in Order of Value
Binary B 0, 1
Octal OorQ 0,1,2 3,45,6,7
Decimal D or (nothing) 0,1,2 3,45,6,7, 89
Hexadecimal H 0,1, 2 3,4,5,8, 7,

8 9,A,B,C,D,EF

The only limitation to the range of numbers is that they must be representable within
16 binary digits.

Table 2-4 gives several examples of number representation in each of the number
systems.

Table 2-4. Examples of Number Representation

base 16 base 10 base 8 base 2

50H 80 1200 010100008

0ACH* 172D 254Q 10101100B

01H 1 1Q 1B

10H 16D 20Q 10000B

* A hexadecimal number must start with a decimal digit;
0is used here.

2-9

Operands and Assembly-Time Expressions

2-10

ASM51 Number Representation

Internally, ASMSI1 represents all numeric values with 16 bits. When ASM51
encounters a number in an expression, it immediately converts it to 16-bit binary
representation. Numbers cannot be greater than 65,535. Appendix H describes con-
version of positive numbers to binary representation.

Negative numbers (specified by the unary operator ‘‘—’’) are represented in 2’s
complement notation. There are two steps to converting a positive binary number to
a negative (2’s complement) number. :

0000 0000 0010 0000B = 20H

1111 1111 1101 1111 =Not20H 1. Complement each bit in the number.
1111 1111 1110 0000 =(Not20H)+1 2. Add 1 to the compiement.

1111 1111 1110 0000B =-20H

To convert back simply perform the same iwo steps again.
Although 2’s complement notation is used, ASM51 does not convert these numbers
for comparisons. Therefore, large positive numbers have the same representation as

small negative numbers (e.g., —1 = 65535). Table 2-5 shows number interpretation at
assembly-time and at program execution-time.

Table 2-5. Interpretations of Number Representation

Number Characteristic Asse.m bly-Time Progra.m Exe?utlon
Expression Evaluation Arithmetic

Base Representation Binary, Octal, Decimal, Binary, Octal, Decimal,
or Hexadecimal or Hexadecimal

Range 0-65,535 User Controlled

Evaluates To: 16 Bits User Interpretation

Internal Notation Two’s Complement Two’s Compiement

Signed/Unsigned Unsigned User interpretation

Arithmetic

Character Strings in Expressions

The MCS-51 assembler allows you to use ASCII characters in expressions. Each
character stands for a byte containing that character’s ASCII code. (Appendix H
contains a table of the ASCII character codes.) That byte can then be treated as a
numeric value in an expression. In general two characters or less are permitted in a
string (only the DB directive accepts character strings longer than two characters). In
a one character string the high byte is filled with 0’s. With a two character string, the
first character’s ASCII value is placed in the high order byte, and the second
character’s value is placed in the low order byte.

All character strings must be surrounded by the single quote character (’). To
incorporate the single quote character into the string, place two single quote
characters side-by-side in a string. For example, ‘z’’’ is a string of two characters: a
lower case ‘‘Z’’ and the single quote character.

MCS-51

MCS-51

Operands and Assembly-Time Expressions

The ability to use character strings in an expression offers many possibilities to
enhance the readability of your code. Below, there are two examples of how
character strings can be used in expressions.

TEST: CINE A #X’,SKIP ; If A contains ‘X’ then fall through

JMP FOUND ; Otherwise, jump to skip and
SKIP: MOV A,@R1 ; Move next character into accumulator
DECR1 ; Change R1 to point to next character
DJINZ R2,TEST ; JUMP to TEST if there are still more

; characters to test
MOV A,SBUF ; Move character in seriai port buffer

; to accumnuiator
SUBB A,#0’ ; Subtract ‘0’ from character just read

; this returns binary value of the digit

NOTE

A corollary of this notation for character strings is the null string—two
single quotes surrounding no characters (side-by-side). When the null
character string is used in an expression it evaluates to 0, but when used as
an item in the expression list of a DB directive it will evaluate to nothing and
will not initiate memory. (See Chapter 4 for an example.)

Use of Symbols

The assembler has several kinds of symbols available to the programmer. They may
stand for code addresses, bit addresses, data addresses, constants, or registers. They
allow a programmer to enhance the readability of his code. All symbols are assigned
two attributes when they are defined in the program: a numeric value, and a
segment type.

Once you have defined a symbol anywhere in your program (some expressions
require that no forward references be used), you can use it in any numeric operand
in the same way that you would use a constant, providing you respect segment type
conventions. The segment type required for each numeric operand is described
above. The creation of user-defined symbols is completely described in Chapter 4
““Assembler Directives.”’

Besides the user-defined symbols there are several predefined bit addresses and data
addresses available for commonly used hardware registers and flags. Table 2-6
shows all of the predefined memory address symbols and the values they represent.
The bit address symbols have been listed earlier in this chapter. (See Table 2-2.)

2-11

Operands and Assembly-Time Expressions

Table 2-6. Predefined Data Addresses

Hexadecimal
Symbol Address Meaning
ACC EO Accumulator
B FO Multiplication Register
DPH 83 Data Pointer (high byte)
DPL 82 Data Pointer (low byte)
IE A8 Interrupt Enable
IP B8 Interrupt Priority
PO 80 Port0
P1 90 Port1
P2 A0 Port 2
P3 BO Port3
PSW DO Program Status Word
SBUF 99 Serial Port Buffer
SCON 98 Serial Port Controller
SP 81 Stack Pointer
TCON 88 Timer Control
THO 8C Timer 0 (high byte)
TH1 8D Timer 1 (high byte)
TLO 8A Timer 0 (low byte)
TL1 8B Timer 1 (low byte)
TMOD 89 Timer Mode

Remember that these symbols evaluate to a data address and cannot be used in
instructions that call for a special assembler symbol.

ADD A,#5 ; This is a valid instruction A is the special
; assembler symbol required for this operand
ADD ACC,#5 ; Thisis an invalid instruction and will generate

; an error message. ACC is an address and not
; the special symbol required for the instruction

There is an additional symbol that may be used in any numeric operand, the location
counter ($). When you are using the location counter in an instruction’s operand, it
will stand for the address of the first byte of the instruction currently being encoded.
You can find a complete description of how to use and manipulate the location
counter in Chapter 4, ‘‘Assembler Directives.”’

Using Operators in Expressions

There are four classes of assembly-time operators: arithmetic, logical, special, and
relational. All of them return a 16-bit value. Instruction operands that require only 8
bits will receive the low order byte of the expression (unless the operator HIGH is
used). The distinction between each class of operators is loosely defined. Since they
may be used in the same expression, they work on the same type of data, and they
return the same type of data.

MCS-51

MCS-51 Operands and Assembly-Time Expressions

Arithmetic Operators

Table 2-7 contains a list of all the arithmetic operators:

Table 2-7. Arithmetic Assembly-Time Operators

Operator Meaning

+ Unary plus or add
- Unary minus or subtract

* Multiplication
/ Integer division (discard remainder)
MOD Modular division (discard quotient)

The following examples all produce the same bit pattern in the low order byte
(0011 0101B):

+53

27+26

-203

65-12

2*25+3 multiplication is always executed before the addition
160/3

153 MOD 100

Note that the MOD operator must be separated from its operands by at least one
space or tab.

Logical Operators

Table 2-8 contains a list of all logical operators. The logical operators perform their
operation on each bit of their operands.

Table 2-8. Logical Assembly-Time Operators

Operator Meaning

OR Full 16-bit OR

AND Full 16-bit AND

XOR Full 16-bit exclusive OR
NOT Full 16-bit complement

The following examples all produce the same 8-bit pattern in the low order byte
(0011 0101B):

00010001B OR 00110100B
01110101B AND 10110111B
11000011B XOR 11110110B

NOT 110010108

Note that all logical operators must be separated from their operand by at least one
space or tab.

2-13

Operands and Assembly-Time Expressions

MCS-51

Special Assembler Operators

Table 2-9 contains a list of all special operators:

Table 2-9. Special Assembly-Time Operators

Operator

Meaning

SHR
SHL
HIGH
LOW
()

16-bit shift right

16-bit shitft left

Select the high order byte of operand

Select the low order byte of operand
Evaiuate the contents of the parenthesis first

The following examples all produce the same 8-bit pattern in the low order byte

(0011 0101B):

01AFH SHR 3

HIGH (1135H SHL 8)

LOW 1135H

Bits are shifted out the right end
and 0 is shifted into the left

Parenthesis is required since HIGH
has a greater precedence than SHL
Bits are shiftedout the left and

0is shifted in the right

Without using the LOW operator
the high order byte would have
caused an error in an 8-bit
operand.

Note SHR, SHL, HIGH and LOW must be separated from their operands by at

least one space or tab.

Relational Operators

The relational operators differ from all of the other operators in that the result of a
relational operation will always be either 0 (False) or OFFFFH(True). Table 2-10
contains a list of all the relational operators:

Table 2-10. Relational Assembly-Time Operators

Operator Nieaning

EQ = Equal

NE <> Not equal

LT < Less than

LE <= Less than or equal to
GT > Greater than

GE >= Greater than or equai to

MCS-51

Operands and Assembly-Time Expressions

The following exampies all will return TRUE (OFFFFH):

27H EQ 39D
27TH<>27D
33LT 34
7>5

16 GE 10H

Note that the two-letter (mnemonic) form of the relational operator must be
separated from their operands by at least one space or tab; the symbolic form does
not.

Operator Precedence

Every operator is given a precedence in order to define which operator is evaluated
first in an expression. For example the expression 3*5+1 could be interpreted as 16
or 18 depending on whether the + or the * is evaluated first. The following list shows
the precedence of the operators in descending order.

e Parenthesized expression ()

e HIGH, LOW

e * /,MOD, SHL, SHR

® +, —unary and binary forms

* EQ,NE,LT,LE, GT, GE, = <>,<,<=, >, >=

e NOT
e AND
¢ OR, XOR

All operators on the same precedence level are evaluated from left to right in the
expression.

Segment Typing in Expressions

Most expressions formed with assembly-time operators do not have a segment type,
but some operations allow the expression to assume the segment type of a symbol
used in the expression. The rules for expressions having a segment type are listed
below.

1. Expressions that contain only constants or symbols without a segment type have
no segment type.

2. The result of operations performed by the following operators will have no
segment type.

HIGH Low NOT OR XOR AND
EQ NE GT GE LE LT
* / MOD SHR SHL

2-15

Operands and Assembly-Time Expressions

2-16

Operations performed with +, — and () can have a segment type. Table 2-11
shows what conditions are necessary for the result to have a segment type.

Table 2-11. Segment Typing in Operations

Operand Operator Operand Segment Type
— () Value (S) Segment type maintained
— + Value (S) Segment type maintained
— - Value (S) Segment type maintained
Value (N) + Value (S) Segment type maintained
Value (S) + Value (N) Segment type maintained
Value (S) + Value (S) Segment type lost
Value (N) - Value (S) Segment type maintained
Value (S) - Value (N) Segment type maintained
Value (S) - Value (S) Segment type lost '

(S) is a numeric value (symbol or the result of an operation) with a segment type

attribute

(N) is a numeric value with no segment type attribute

NOTE

The table above shows the result of simple binary and unary operations. These
results are also valid for more complex expressions. Each operation is evaluated
according to precedence and the intermediate result will have a numeric value
and sometimes a segment type.

MCS-51

CHAPTER 3
INSTRUCTION SET

This chapter contains complete documentation for all of the 8051 instructions. The
instructions are listed in alphabetical order by mnemonic and operands.

Introduction

This chapter is designed to be used as a reference. Each instruction is documented
using the same basic format. The action performed by an instruction is defined in
three ways. First, the operation is given in a short notation; the symbols used and
their meanings are listed in the table below. The operation is then defined in a few
sentences in the description section. Finally, an example is given showing all of the
registers affected and their contents before and after the instruction.

NOTE

The only exception is that the program counter (PC) is not always shown.
All instructions increment the PC by the number of bytes in the instruction.
The ‘““Example:’’ entry for most instructions do not show this increment by
the PC. Only those instructions that directly affect the PC (e.g., JMP,
ACALL, or RET) show the contents of the PC before and after execution.

The list of notes that appears at the bottom of some instructions refer to side-effects
(flags set and cleared and limitations of operands). The numbers refer to the notes
tabulated on page 3-143/3-144. You can unfold that page for easier reference while
you are studying the instruction set.

The ““‘Operands:”’ entry for each instruction briefly indicates the range of values and
segment type permitted in each operand. For a complete description of the limits of
any operand see Chapter 2. In general, the operand’s name will identify what section
to consult.

With one exception, the operands to 3 byte instructions are encoded in the same
order as they appear in the source. Only the ‘““Move Memory to Memory’’ instruc-
tion is encoded with the second operand preceding the first.

3-1

Instruction Set

32

The illustration below (figure 3-1) describes the meaning of each section of thé

instruction documentation.

ADD

Add Immediate Data

Mnemonic: ADD

Operands: A Accumulator
data —256 <=data <= + 255

Format: ADD A, #data
Bit Patt

[00100100 [immediate Data]
7 07 0

Operation: (A) < (A) + data

Bytes: 2
Cycles: 1
Flags: C AC FO RS1RSO OV P
[eJe] T T JeJ o]
PSW

Description: This instruction adds the 8-bit immediate data value to the contents
of the accumulator. It places the result in the accumulator.

Example: ADD A, #32H ; Add 32H to accumulator

Encoded Instruction:

[00100100 Joo110010]

7 0 7 0
Before After
Accumulator Accumulator
00100110 01011000
7 0 7 0

Notes: 4,5,6,7

Figure 3-1. Format For Instruction Definitions

937-18

Mnemonic: shows opcode mnemonic. It is shown in upper case, but upper or
lower case characters are permitted.

Operands: indicates range and type of operands permitted.

Format: shows the format of the instruction, including the order of operands
on the source line.

Bit Pattern: indicates bit pattern in opcode and position of operands when
encoded. Letters in the opcode’s bit pattern vary with operand specified.

Operation: symbolically defines the operation performed by the instruction.
The symbols used in this entry are defined in table 3-1.

Bytes and Cycles: shows the number of bytes of code and the number of
machine cycles used by the instruction.

Flags: indicates any status flag that may be changed during the execution of
the instruction.

Description: is a brief prose description of the operation performed by the
instruction.

Example: shows an example instruction as it would appear in the source. It
also shows the bit pattern of the encoded instruction, and the contents of all
registers affected by the instruction, immediately before and after the instruc-
tion is executed.

The PC is incremented by all instructions, but only instructions that affect the
PC as part of their operation show its contents in the example.

Notes: indicates the notes on page 3-143/3-144 that pertain to the instruction.

MCS-51

Table 3-1. Abbreviations and Notations Used

Instruction Set

A

AB

B

bitaddress
page address
relative offset
C

code arddress
data

data address
DPTR

PC

Rr

SP

high

low

i+

Accummulator

Register Pair
Multiplication Register
8051 bit address

11-bit code address within 2K page
8-bit 2’s complement offset
Carry Flag

Absolute code address
Immediate data

On-chip 8-bit RAM address
Data pointer

Program Counter
Register(r=0-7)

Stack pointer

High order byte

Low order byte

Bits i through j

Bitn

Logical AND

Logical complement

Logical OR

Logical exclusive OR

Plus

Minus

Divide

Multiply

The contents of X

The memory location addressed by (X)
(The contents of X)

Is equal to

Is not equal to

Is less than

Is greater than

Is replaced by

33

ACALL

Absolute Call Within 2K Byte Page

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

ACALL
code address

ACALL code address

| aaa10001 |aaaaaaaa|
7 0 7 0

(PC) < (PC) + 2

(SP) < (SP) + 1

((SP)) < (PC low)

(SP) < (SP) + 1

((SP)) < (PC high)

(PC) 0-10 < page address

C AC F0 RS1RS0 OV P

HEEEEEEE

This instruction stores the incremented contents of the program
counter (the return address) on the stack. The low-order byte of the
program counter (PC) is always placed on the stack first. It replaces
the low-order 11 bits of the PC with the encoded 11-bit page

~ address. The destination address specified in the source must be

within the 2K byte page of the instruction following the ACALL.

The 3 high-order bits of the 11-bit page address form the 3 high-
order bits of the opcode. The remaining 8 bits of the address form
the second byte of the instruction.

MCS-51

MCS-51

Example: ORG 35H
ACALL SORT ; Call SORT (evaluates to page
; address 233H)
ORG 233H

SORT: PUSHACC ; Store Accumulator

RET. ; Return from call

Encoded Instruction:

[01010001 [00110011

7 0 7 0
Before After
Program Counter Program Counter
[00000000 | 00110101 | [00000010 [00110011
15 8 7 0 15 8 7 0
Stack Pointer Stack Pointer
[00100110] [00101000 |
7 0 7 0
(27H) (27H)
[00000000 | | 00110111 |
7 0 7 0
(28H) (28H)
[00000000 | [00000000
7 0 7 0

Notes: 2,3

ADD

MCS-51

Add Immediate Data

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

ADD

A Accumulator

data —256 <= data <= +255
ADD A, #data

[00100100 [Immediate Datal
7 0 7 0

(A) < (A) + data

C AC F0 RS1RS0 OV P

[ofe] | | [o] [e]

PSW

This instruction adds the 8-bit immediate data value to the contents
of the accumulator. It places the result in the accumulator.

ADD A,#32H ; Add 32H to accumulator

Encoded Instruction:

00100100 | 00110010

7 0

Before

Accumulator

7 0
After

Accumulator

[00100110

01011000

7 0

7 0

Notes: 4,5,6,7

36

MCS-51

ADD

Add Indirect Address

Mnemonic: ADD

Operands: A Accumulator
Rr Register 0 <=r <=1
Format: ADD A,@Rr
Bit Pattern:
[0010011/ |
7 0

Operation: (A) < (A) + ((Rr))

Bytes: |
Cycles: 1
Flags: C AC FO0 RS1 RS0 OV P
[o]e] | | [o] [e]
PSW

Description: This instruction adds the contents of the data memory location
addressed by register r to the contents of the accumulator. It places
the result in the accumulator.

Example: ADD A, @R1 ; Add indirect address to accumulator

Encoded Instruction:

|00100111 |

7 0
Before After
Accumulator Accumulator
10000110 11101000
7 0 7 0
Register 1 Register 1
[00011100 | [00011100 |
7 0 7 0
(1CH) (1CH)
[01100010 01100010
7 0 7 0

Notes: 5,6,7, 15

3-7

ADD

Add Register
Mnemonic: ADD
Operands: A Accumulator

Rr Register 0<=r<=7
Format: ADD A,Rr
Bit Pattern:

[00101rrr |

7 0

Operation: (A) < (A) + (Rn)
Bytes: 1
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P

[o]e] [| [e] [e]

PSW

Description: This instruction adds the contents of register r to the contents of

the accumulator. It places the result in the accumulator.
Example: ADD A,R6 ; Add R6 to accumulator

Encoded Instruction:

|oo1o111oJ
7 0
Before

Accumulator
[01110110 |
7 0

Register 6

l 10000101 |

7 0

Notes: 5,6, 7

After

Accumulator

11111011

7 0
Register 6

I 10000101 |

7 0

MCS-51

MCS-51

Add Memory
Mnemonic: ADD
Operands: A Accumulator
data address 0<=dataaddress <= 255
Format: ADD A,data address
Bit Pattern:
[00100101 |Data Address|
7 0 7 0
Operation: (A) < (A) + (data address)
Bytes: 2
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P
(oo | | [e] |e]
PSW
Description: This instruction adds the contents of the specified data address to
the contents of the accumulator. It places the result in the
accumulator.
Example: ADD A,32H ; Add the contents of

; 32H to accumulator

Encoded Instruction:

[00100101 [00110010
7 0 7 0

Before After

Accumulator Accumulator

[00100110 | [01111001 |
7 0 7 0

(32H) (32H)

[01010011 | [01010011 |
7 0 7 0

Notes: 5,6,7, 8

ADD

ADDC

Add Carry Plus Immediate Data to Accumulator

3-10

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

ADDC
A Accumulator

data —256 <= data <= +255
ADDC A, #data '

[00110100 [Immediate Data
7 0 7 0

(A) < (A) + (C) + data

C AC F0 RS1RS0 OV P

[ofe] | [Jof Je]

PSW

This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator. The 8-bit immediate data value is
added to that intermediate result, and the carry flag is updated. The
accumulator and carry flag reflect the sum of all three values.

ADDC A,#0AFH ; Add Carry and 0AFH to accumulator

Encoded Instruction:

[00110100 [10101111 |
7 0 7 0
Before After

Accumulator

Accumulator

| 01110001 I 00100001

7 0
Carry

7 0

Carry-

Notes: 4,5,6,7

MCS-51

MCS-51

Add Carry Plus Indirect Address to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

ADDC

A Accumulator
Register 0<=r<=1

ADDC A,@Rr

[00110111 |
7 0

(A) < (A) + (C) + ((Rn)

C AC F0 RS1 RS0 OV P

[ofe] [| [of [e]

PSW

ADDC

This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator. The contents of data memory at the
location addressed by register r is added to that intermediate result,
and the carry flag is updated. The accumulator and carry flag

reflect the sum of all three values.

3-11

Example: ADDC A,@R1

Encoded Instruction:

[00110111 |
7 0
Before

Accumulator

[11101000 |
7 0

Register 1

[01101001 |
7 0

(69H)

[00011000
7 0

Carry

[o]

Notes: 5,6,7, 15

; Add carry and indirect address to
; accumulator

After

Accumulator

00000000

7 0

Register 1

01101001

7 0

(69H)

00011000

7 0

Carry

I

MCS-51

MCS-51 A D D C

Add Carry Plus Register to Accumulator

Mnemonic: ADDC

Operands: A Accumulator
Register 0<=r<=7
Format: ADDC A,Rr
Bit Pattern:
[00111rrr |
7 0

Operation: (A) < (A) + (C) + (Rr)

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P
(ofe [| [of [e]
PSW

Description: This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator at bit 0. The contents of register r is
added to that intermediate result, and the carry flag is updated. The
accumulator and carry flag reflect the sum of all three values.

Example: ADDC A,R7 ; Add carry and register 7
; to accumulator

Encoded Instruction:

[00111111 |

7 0
Before After
Accumulator Accumulator
[00110000 | [00111011 |
7 0 7 0
Register7 Register7
[00001010 | [00001010
7 0 7 0
Carry Carry
[o]
Notes: 5,6, 7

3-13

ADDC

Add Carry Plus Memory to Accumulator

3-14

Mnemonic:

Operands:

Format:

Bit Pattern:'

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

ADDC

A Accumulator
data address 0<=dataaddress <= 255

ADDC A,dataaddress

[00110101 |Data Address|
7 0 7 0

(A) < (A) + (C) + (data address)

C AC F0 RSt RSO OV P

PSW

This instruction adds the contents of the carry flag (0 or 1) to the
contents of the accumulator. The contents of the specified data
address is added to that intermediate result, and the carry flag is
updated. The accumulator and carry flag reflect the sum of all
three values.

ADDC A,25H ; Add carry and contents of 25H to
; accumulator

Encoded Instruction:

| 00110101 [00100101
7 0 7 0
Before After

Accumulator

Accumulator

[fotoirio]

7 0 7 0
(25H) (25H)

00000111 | 00000111 |

7 0 7 0
Carry Carry

[o]

[o]

Notes: 5,6,7,8

MCS-51

MCS-51

AJMP

Absolute Jump within 2K Byte Page

Mnemonic: AJMP
Operands: code address
Format: AJMP code address

Bit Pattern:

[a2a00001 [aaaaaaaa|
7 0 7 0

Operation: (PC) < (PC) + 2
(PC) 0-10 < page address

Bytes: 2
Cycles: 2
Flags: C AC F0 RS1 RS0 OV P
HEEEEEEN
PSW

Description: This instruction replaces the low-order 11 bits of the program
counter with the encoded 11-bit address. The destination address
specified in the source must be within the 2K byte page of the
instruction following the AJMP.

The 3 high-order bits of the 11-bit page address form the 3 high-
order bits of the opcode. The remaining 8 bits of the address form
the second byte of the instruction.

Example: ORG 0E8OFH
TOPP: MOV A,R1

ORG 0EADCH
AJMP TOPP ; Jump backwards to TOPP
; at location OE80FH

Encoded Instruction:

[00000001 | 00001111 |

7 0 7 0
Before After
Program Counter Program Counter
[11101010 | 11011100 | [11101000 [00001111
15 8 7 0 15 8 7 0
Notes: None

3-15

ANL

3-16

Logical AND Immediate Data to Accumulator

Mnemonic: ANL

Operands: A Accumulator

data —256 <= data <= +255
Format: ANL A,#data
Bit Pattern:

[01010100 [Immediate Data
7 0 7 0

Operation: (A) < (A) AND data

Bytes: 2
Cycles: 1
Flags: C AC F0 RS1RS0 OV P

PSW

Description: This instruction ANDs the 8-bit immediate data value to the
contents of the accumulator. Bit n of the result is 1 if bit n of each
operand is 1; otherwise bit n is 0. It places the result in the
accumulator.

Example: ANL A,#00001000B ; Mask out all but bit 3
Encoded Instruction:

[01010100 | 00001000 |

7 0 7 0
Before After
Accumulator Accumulator
7 0 7 0

Notes: 4,5

MCS-51

MCS-51

Logical AND Indirect Address to Accumulator

Mnemonic: ANL

Operands: A Accumulator

Rr Register0<=r<=1
Format: ANL A,@Rr
Bit Pattern:
[0101011 |
7 0
Operation: (A) < (A) AND ((Rr))
Bytes: 1
Cycles: 1
Flags:
C AC FO0 RS1RS0 OV P

[1 | Je]

PSW

Description: This instruction ANDs the contents of the memory location
addressed by the contents of register r to the contents of the
accumulator. Bit n of the result is 1 if bit n of each operand is 1;
otherwise bit n is 0. It places the result in the accumulator.

Example:

Encoded Instruction:

[01010110 |
7 0
Before

Accumulator
[00111111 |

7 0
Register 0
[01010010 |
7 0
(52H)
[00001111 |
7 0
Notes: 5,15

ANL A,@R0

; AND indirect address with
; accumulator

After

Accumulator
[00001111 |
7 0

Register0
[01010010 |
7 0

(52H)
[00001111 |
7 0

ANL

3-17

ANL

Logical AND Register to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

ANL

A Accumulator
Rr 0<=Rr<=7

ANL A,Rr

[01011rrr |
7 0

(A) < (A) AND (Rr)

C AC FO0 RS1RS0 OV P

HEEEEEED

This instruction ANDs the contents of register r to the contents of
the accumulator. Bit n of the result is 1 if bit n of each operand is 1;

- otherwise bit nn is 0. It places the result in the accumulator.

MOV R4,#10000000B ; Move mask to R4
ANL A,R4 ; AND register 4 with accumulator

Encoded Instruction:

01011100

7 0

Before

Accumulator

After

Accumulator

[10011001] 10000000 |
7 0 7 0
Register 4 Register 4

[10000000 [10000000
7 0 7 0
Note: 5

MCS-51

MCS-51

Logical AND Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

ANL

A Accumulator
data address 0<=dataaddress <= 255

ANL A,data address

[01010101 |Data Address|
7 0 7 0

(A) < (A) AND (data address)

C AC F0 RS1RS0 OV P

LI 1T [T 1 [[e]

PSW

This instruction ANDs the contents of the specified data address to
the contents of the accumulator. Bit n of the result is 1 if bit n of
each operand is also 1; otherwise bit n is 0. It places the result in the
accumulator.

ANL A,37H ; AND contents of 37H with
; accumulator

Encoded Instruction:

01010101 [00110111

7 0 7 0
Before After
Accumulator Accumulator
[01110111 | [01110000

7 0 7 0
(37H) (37H)
[11110000 | [11110000

7 0 7 0
Notes: 5,8

ANL

3-19

ANL

3-20

Logical AND Bit to Carry Flag

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

ANL

C Carry Flag
bit address 0 <= bit address <= 255

ANL C,bitaddress

| 10000010 | BitAddress |
7 0 7 0

(C) < (C) AND (bit address)

C AC F0 RSt RSO OV P

lef | T P T T 1]

PSW

This instruction ANDs the contents of the specified bit address to
the contents of the carry flag. If both bits are 1, then the result is 1;
otherwise, the result is 0. It places the result in the carry flag.

ANL C,37.3 ; AND bit 3 of byte 37 with Carry

Encoded Instruction:

[10000010 [00101011 |

7 0 7 0
Before After
Carry Flag Carry Flag
[1]

37) @7
[00101110] | 00101110 |
7 3 0 7 3 0

Notes: None

MCS-51

MCS-51

Logical AND Complement of Bit to Carry Flag

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

Example:

ANL

C Carry Flag
bit address 0 <= bit address <= 255

ANL C,/bitaddress

[10110000 | BitAddress |
7 0 7 0

(C) < (C) AND NOT (bit address)

C AC F0 RS1RS0 OV P
ol [[L1 1 1]
PSW

This instruction ANDs the complemented contents of the specified
bit address to the contents of the carry flag. The result is 1 when the
carry flag is 1 and the contents of the specified bit address is 0. It
places the result in the carry flag. The contents of the specified bit
address does not change.

ANL C,/40.5 ; Complement contents of 40.5
; then AND with Carry

Encoded Instruction:

[10110000 | 01000101 |
7 0 7 0

Before After

Carry Flag Carry Flag

(40) (40)

[01011000 | [01011000 |
75 0 75 0

Notes: None

ANL

3-21

ANL

3-22

Logical AND Immediate Data to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

Example:

ANL

data address 0<=dataaddress <= 255
data —256 <= data <= +255

ANL data address #data

[01010011 [Data Address [Immediate Data
7 0 7 07 0

(data address) < (data address) AND data

C AC FO0 RSt RS0 OV P

HEEEEEEN

PSW

This instruction ANDs the 8-bit immediate data value to the
contents of the specified data address. Bit n of the result is 1 if bit n
of each operand is also 1; otherwise, bit n is 0. It places the result in
data memory at the specified address.

MOV 57H,PSW ; Move PSW to 57H
ANL 57H.#01H ; Mask out all but parity bit
; to check accumulator parity

Encoded Instruction:

01010011 [01010111 [00000001 |

7 0 7 0
After
(57H)

I 01110111 I 00000001

7 0
Before
(57H)

7 0
Notes: 4,9

7 0

MCS-51

MCS-51

Logical AND Accumulator to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

ANL

data address 0<=dataaddress <= 255
A Accumulator

ANL data address,A

[01010010 |DataAddress|
7 0 7 0

(data address) < (data address) AND A

C AC F0 RS1RS0 OV P

HEEEEEEN

PSW

This instruction ANDs the contents of the accumulator to the
contents of the specified data address. Bit nn of the result is 1 if bit n
of each operand is also 1; otherwise, bit n is 0. It places the result
in data memory at the specified address.

MOV A,#10000001B ; Load mask into accumulator
ANL 10H,A ; Mask out all but bits 0 and 7

Encoded Instruction:

[01010010 | 00010000
7 0 7 0
Before After

Accumulator

Accumulator

10000001 10000001

7 0
(10H)

(00000007

7 0
(10H)

7 0
Note: 9

7 0

ANL

3-23

CALL

Generic Call

3-24

Mnemonic:
Operands:

Format:

Bit Pattern:
Operation:

Flags:

Description:

Example:

MCS-51

CALL
code address
CALL code address
Translated to ACALL or LCALL as needed
Either ACALL or LCALL
C AC F0 RS1RS0 OV P

HEEEEEEN

PSW

This instruction is translated to ACALL when the specified code
address contains no forward references and that address falls
within the current 2K byte page; otherwise; it is translated to
LCALL. This will not necessarily be the most efficient representa-
tion when a forward reference is used. See the description for
ACALL and LCALL for more detail.

ORG 80DCH
CALL SUB3 ;CallSUB3(SUB3is a forward
. ; reference so LCALL is encoded
; even though ACALL would work in

. ; this case.)
SUB3: POP 55H ; Address 8233H

Encoded Instruction:
[00010010 [10000010 | 00110011 |

7 0o 7 0 7 0
Before After
Program Counter Program Counter
[10000000 | 11011100 | [10000010 | 00110011

7 0o 7 0 15 8 7 0

Stack Pointer

Stack Pointer

[01100100 [01100110
7 0 7 0

(65H) (65H)

[00000000 [11011111]
7 0 7 0

(66H) (66H)

[00000000 | 10000000
7 .+ 0 7 0

Notes: 1,2,3

MCS-51

CJNE

Compare Indirect Address to Immediate Data,

Jump if Not Equal

Mnemonic: CJNE

Operands: Rr Register 0 <=r<=1
data —256 <= data <= +255
code address

Format: CJNE @Rr,#data,code address

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

| 1011011/ [Immediate Data| Rel. Offset |

7 0 7 0 7 0
(PC) < (PC) + 3
IF ((Rr)) < > data
THEN
(PC) < (PC) + relative offset
IF ((Rr)) < data
THEN
(C) <1
ELSE
(C)<o0
C AC F0 RS1 RSO OV P
lef I [[1T 1 [
PSW

This instruction compares the immediate data value with the
memory location addressed by register r. If they are not equal, con-
trol passes to the specified code address. If they are equal, then
control passes to the next sequential instruction.

If the immediate data value is greater than the contents of the
specified data address, then the carry flag is set to 1; otherwise, it is
reset to 0.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

3-25

3-26

Example: CJINE @R1,#01,SCAB ;Jump if indirect address
; does not equal 1

SCAB: MOV C,F0 ; 54H bytes from CIJNE

Encoded Instruction:

[10110111 [00000001 | 01010111

7 0 7 0 7 0
Before After
Register1 Register1
[01010011 | [01010011
7 0 7 0
(53H) (53H)
[11100001 | [11100001 |
7 0 7 0
Carry Flag Carry Flag
[o]
Program Counter Program Counter
| 00000000 [11011100 | [00000001 [00110110
15 8 7 0 15 8 7 0

Notes: 4, 10,11, 12, 15

MCS-51

MCS-51

CJNE

Compare Immediate Data to Accuinuiator,

Jump if Not Equal
Mnemonic: CJNE
Operands: A Accumulator
data —~256 <= data <= +255
code address
Fosmat: CJNE A #data,code address
Bit Pattern:
[10110100 [Immediate Data| Rel. Offset
7 0 7 0 7 0
Operation: (PC) < (PC) + 3
IF (A) <> data
THEN
(PC) < (PC) + relative offset
IF (A) < data
THEN
(C) <1
ELSE
(C)<0
Bytes: 3
Cycles: 2
Flags: C AC F0 RS1 RS0 OV P
lef [[1 [[[]
PSW

Description:

This instruction compares the immediate data value with the
contents of the accumulator. If they are not equal, control passes to
the specified code address. If they are equal, then control passes to
the next sequential instruction.

If the immediate data value is greater than the contents of the
accumulator, then the carry flag is set to 1; otherwise, it is reset
to 0.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

3-27

3-28

MCS-51

Example: ORG 10DCH
CJUNE A,#10H,NEXT ; Jump if accumulator does not equal
; 10H
NEXT: INCA Location 1136H

Encoded Instruction:

[10110100 [00010000 [01010111

7 0 7 0 7 0
Before After
Accumulator Accumulator
01010000 01010000
7 0 7 0
Carry Flag Carry Flag
[o]
Program Counter Program Counter
| 00010000 [11011100 | [00010001 [00110110
15 8 7 0 15 8 7 0

Notes: 4, 10,11, 12

MCS-51

Compare Memory to Accumulator,
Jump if Not Equal

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

CJNE

A Accumulator

data address 0<=dataaddress <= 255
code address

CJUNE A,data address,code address

[10110101 [Data Address| Rel. Offset

7 0 7 0 7 0
(PC) < (PC) + 3
IF (A) < > (data address)
THEN
(PC) < (PC) + relative offset
IF (A) < (data address)
THEN
(C) <1
ELSE
(C)<o0
C AC F0 RS1 RS0 OV P
lef [T T T [1]
PSW

This instruction compares the contents of the specified memory
location to the contents of the accumulator. If they are not equal,
control passes to the specified code address. If they are equal, then
control passes to the next sequential instruction.

If the contents of the specified memory location is greater than the
contents of the accumulator, then the carry flag is set to 1; other-
wise, it is reset to 0.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

CJNE

3-29

3-30

Example: CJUNE A,37H,TEST; Jump if 37H and accumulator
; are not equal

TEST: INCA ; 4FH bytes from CJNE

Encoded Instruction:

[10110101 [00110111 | 01001100

7 0 7 0 7 0
Before After
(37H) (37H)
[01111110 | [01111110
7 0 7 0
Accumulator Accumulator
[00100110 | [00100110 |
7 0 7 0
Carry Flag Carry Flag
[o]
Program Counter Program Counter
[00000000 | 11011100 | [00000001 [00110110 |
15 8 7 0 15 8 7 0

Notes: 8, 10,11, 12

MCS-51

MCS-51

CJNE

Compare Immediate Data to Register,

Jump if Not Equal
Mnemonic: CJNE
Operands: Rr Register 0<=r<=7
data —256 <= data <= + 255
code address
Format: CJNE Rr,#data,code address
Bit Pattern:
[101117 rr [Immediate Data| Rel. Offset
7 0 7 0 7 0
Operation: (PC) < (PC) + 3
IF (Rr) < > data
THEN
(PC) < (PC) + relative offset
IF (Rr) < data
THEN
(C) <1
ELSE
(C)<0
Bytes: 3
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
lef [T T 1T 1 11
PSW

Description:

This instruction compares the immediate data value with the
contents of register r. If they are not equal, control passes to the
specified code address. If they are equal, then control passes to the
next sequential instruction.

If the immediate data value is greater than the contents of the
specified register, then the carry flag is set to 1; otherwise, it is reset
to 0.

The Program Counter is incremented to the next instruction. If the
operands are not equal, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

3-31

3-32

Example: CJUNE R5,#32H,SKIP10 ; Jump if register 5 does not
; equal 32H
SKIP10: MOV R5,P0 13 bytes from CJNE

Encoded Instruction:

10111101 [10000000 [00001010

7 0 7 0 7 0

Before After

Register 5 Register 5

[00000001 00000001
7 0 7 0

Carry Flag Carry Flag

(1]

Program Counter Program Counter

| 00000000 | 11011100 | [00000000 [11101001
15 8 7 0 15 8 7 0

Notes: 4, 10,11, 12

MCS-51

MCS-51

Clear Accumulator
Mnemonic: CLR
Operands: A Accumulator
Format: CLR A
Bit Pattern:
[11100100
7 0
Operation: (A)<0
Bytes: 1
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P
LI T T T 11 fef

Description:

Example:

PSwW
This instruction resets the accumulator to 0.

CLR A ; Setaccumulatorto 0

Encoded Instruction:

11100100

7 0
Before

Accumulator

After

Accumulator

00111111 00000000

7 0

Note: 5

7 0

CLR

3-33

CLR

3-34

Clear Carry Flag

Mnemonic: CLR

Operands: C Carry Flag
Format: CLR C
Bit Pattern:
| 11000011 |
7 0

Operation: (C)<0

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P
lef [[[T [[]
PSW

Description: This instruction resets the carry flag to 0.
Example: CLR C ; Setcarryflagto 0

Encoded Instruction:

[11000011 |

7 0
Before ‘ After
Carry Flag Carry Flag

[o]

Notes: None

MCS-51

MCS-51

Clear Bit

Mnemonic: CLR

Operands: bit address 0 <= bit address <= 255
Format: CLR bitaddress

Bit Pattern:

[11000010 | BitAddress |
7 0 7 0

Operation: (bit address) < 0

Bytes: 2
Cycles: 1
Flags: C AC F0 RS1RS0 OV P
HEEEEEEE
PSW

Description: This instruction resets the specified bit address to 0.

Example: CLR40.5 ; Setbit5of byte 40t0 0

Encoded instruction:

11000010 | 01000101

7 0 7 0
Before After
(40) (40)
[00100110 | [00000110 |
75 0 75 0
Notes: None

CLR

3-35

C P L | MCS-51

Complement Accumulator

Mnemonic: CPL

Operands: A Accumulator
Format: CPL A
Bit Pattern:
[11110100 |
7 0

Operation: (A) < NOT (A)

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P
HENEEEER
PSW

Description: This instruction resets each 1 in the accumulator to 0, and sets each
0 in the accumulator to 1.

Example: CPL A ; Complement accumulator

Encoded Instruction:

11110011

7 0
Before After
Accumulator Accumulator
[00110101 | 11001010

7 0 7 0

Notes: None

3-36

MCS-51

Complement Carry Flag

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

CPL

C Carry flag
CPL C

[10110011 |

7 0

(C) < NOT (C)

C AC F0 RS1 RS0 OV P
lel T T T T T 1]

PSW

This instruction sets the carry flag to 1 if it was 0, and resets the
carry flag to 0 if it was 1.

CPL C ; Complement Carry flag

Encoded Instruction:

10110011

7 0

Before

Carry Flag

Notes: None

/

After

Carry Flag

[o]

CPL

3-37

C P L MCS-51

Complement Bit

Mnemonic: CPL
Operands: bit address 0 <= bit address <= 255
Format: CPL bitaddress

Bit Pattern:

[10110010 | BitAddress |
7 0 7 0

Operation: (bitaddress) < NOT (bit address)

Bytes: 2
Cycles: 1
Flags: C AGC F0 RS1 RS0 OV P

HEREEEEN

PSW

Description: This instruction sets the contents of the specified bit address to 1 if
it was 0, and resets the contents of the bit address to 0 if it was 1.

Example: CPL 33.7 ; Set bit 7 of byte 33t0 0

Encoded Instruction:

[10110010 | 00001111

7 0 7 0
Before After
(33) (33)
[00100110
7 0 7 0
Notes: None

3-38

MCS-51

Decimal Adjust Accumulator

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

DA
A Accumulator
DA A
[11010100 |
7 0

(See description below.)

C AC FO RS1 RS0 OV P

el I T T [[[e]

PSW

This instruction adjusts the contents of the accumulator to
correspond to packed binary coded decimal (BCD) representation,
after an add of two BCD numbers. If the auxiliary carry flag is 1,
or the contents of the low order nibble (bits 0—3) of the
accumulator is greater than 9, then 6 is added to the accumulator.
If the carry flag is set before or after the add or the contents of the
high order nibble (bits 4—7) is greater than 9, then 60H is added to
the accumulator. The accumulator and the carry flag contain the
final adjusted value.

ADD A,R1
DA A ; Adjust the Accumulator after add

Encoded Instruction:

11010100

7

Before

Accumulator

After

Accumulator

10011011 00000001

7

Carry Flag

[o]

7 0

Carry Flag

Auxiliary Carry Flag Auxiliary Carry Flag

[o]

Notes: 5,6

-]

DA

3-39

DEC

3-40

Decrement Indirect Address

Mnemonic: DEC
Operands: Rr Register0<=r<=1
Format: DEC @Rr
Bit Pattern:

[00010117 |

7 0

Operation: ((Rr)) < ((Rr)) -1
Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P

PSW

Description: This instruction decrements the contents of the memory location
addressed by register r by 1. It places the result in the addressed

location.
Example: DEC @R0

Encoded Instruction:

[00010110 |
7 0

Before

Register 0

00110111

7 0
(37H)

|11011101 I

7 0

Note: 15

; Decrement counter

After
Register 0
[00110111 |

7 0
(37H)
[11011100

7 0

MCS-51

MCS-51 D E C

Decrement Accumulator

Mnemonic: DEC

Operands: A Accumulator
Format: DEC A
Bit Pattern:

[00010100 |
7 0

Operation: (A) < (A) —1

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P

Description: This instruction decrements the contents of the accumulator by 1.
It places the result in the accumulator.

Example: DEC A ; Decrement accumulator

Encoded Instruction:

00010100

7 0
Before After
Accumulator Accumulator
7 0 7 0
Note: 5

3-41

E C MCS-51

Decrement Register

Mnemonic: DEC

Operands: Rr Register0<=r<=7
Format: DEC Rr
Bit Pattern:
| 00011rrr |
7 0

Operation: (Rr) < (Rr) -1

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P

HEEEEENE

PSW

Description: This instruction decrements the contents of register r by 1. It places
the result in the specified register.

Example: DEC Rz ; Decrement register 7

Encoded Instruction:

[00011111
7 0
Before After
Register7 Register7
[10101011 | [10101010
7 0 7 0

Notes: None

3-42

MCS-51 D E C

Decrement Memory

Mnemonic: DEC
Operands: data address 0<=dataaddress <= 255
Format: DEC data address

Bit Pattern:

[00010101 |Data Address|
7 07 0

Operation: (data address) < (data address) —1

Bytes: 2
Cycles: 1

Flags: C AC F0 RS1 RS0 OV P

Description: This instruction decrements the contents of the specified data
address by 1. It places the result in the addressed location.

Example: DEC 37H ; Decrement counter

Encoded Instruction:

[00010101 [00110111 |

7 0o 7 0
Before After
(37H) (37H)

7 0 7 0
Note: 9

3-43

DIV

Divide Accumulator by B

Mnemonic: DIV
Operands: AB Register Pair
Format: DIV AB
Bit Pattern:
[10000100 |
7 0
Operation: (AB) < (A) / (B)
Bytes: 1
Cycles: 4
Flags: C AC F0 RS1RS0 OV P
o] [[[[of [e]
PSW
Description: This instruction divides the contents of the accumulator by the
contents of the multiplication register (B). Both operands are
treated as unsigned integers. The accumulator contains the quo-
tient; the multiplication register contains the remainder.
The carry flag is always cleared. Division by 0 sets the overflow
flag; otherwise, it is cleared.
Example: MOV B,#5
DIV AB ; Divide accumulator by 5

Encoded Instruction:

10000100

7

Before

After

Accumulator

01110110

7 0

Multiplication Register (B)

I 00000101 I

7 0

Note: 5

Accumulator

| 00010111 I

7 0

Multiplication Register (B)

00000011

7 0

MCS-51

MCS-51

DJNZ

Decrement Register and Jump if Not Zero

Mnemonic: DJNZ

Operands: Rr Register0<=r<=7
code address

Format: DJNZ Rr,code address

Bit Pattern:

[11011rrr | Rel Offset
7 0 7 0

Operation: (PC) < (PC) + 2
(Rr) < (Rr) -1

IF(Rr)<>0
THEN
(PC) < (PC) + relative offset
Bytes: 2
Cycles: 2
Flags: C AC F0 RS1RS0 OV P

HEEEEEEE

PSW

Description: This instruction decrements the contents of register r by 1, and
places the result in the specified register. If the result of the decre-
ment is 0, then control passes to the next sequential instruction;
otherwise, control passes to the specified code address.

The Program Counter is incremented to the next instruction. If the
decrement does not result in 0, then the relative offset is added to
the incremented program counter, and the instruction at that
address is executed.

Example: LOOP1: ADD A,R7 ; ADD index to accumulator

DJNZ R7,LOOP1 ; Decrement register 7 and
INCA ; jump to LOOP1 (15 bytes
; backward from INC
; instruction)

Encoded Instruction:
[11011111 [11110001

7 0 7 0

Before After

Register7 Register7

[00000010]
7 0 7 0

Program Counter Program Counter

[00000100 [11011100] [00000100 | 11001111
15 8 7 0 15 8 7 0

Notes: 10, 11, 12

3-45

DJNZ

Decrement Memory and Jump if Not Zero

3-46

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

DJNZ

data address 0<=dataaddress <= 255
code address

DJNZ data address,code address

[11010101 |DataAddress| Rel. Offset
7 0 7 0 7 0

(PC) < (PC) + 3
(data address) < (data address) —1
IF (data address) < >0
THEN
(PC) < (PC) + relative offset

C AC F0 RS1 RSO OV P

HEEEEEEE

This instruction decrements the contents of the specified data
address by 1, and places the result in the addressed location. If the
result of the decrement is 0, then control passes to the next sequen-
tial instruction; otherwise, control passes to the specified code
address.

The Program Counter is incremented to the next instruction. If the
decrement does not result in 0, then the relative offset is added to
the incremented program counter, and the instruction at that
address is executed.

MCS-51

MCS-51

Example: LOOP 3: MOV R7,57H ; Store loop index in register 7

DJNZ 57H,LOOPS3 ; Decrement 57H and jump
INC A ; backward to LOOP3 (51 bytes
; backwards from the INC A
; instruction)

Encoded Instruction:

11010101 [01010111 [11001010 |

7 0 7 0 7 0

Before After

(57H) (57H)
01110111 01110110
7 0 7 0

Program Counter Program Counter

[00000000 | 11011100 | [00000000 | 10101001 |
15 8 7 0 15 8 7 0

Notes: 9,10, 11, 12

3-47

INC

3-48

Increment Indirect Address

Mnemonic:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

INC
Rr Register0<=r<=1
INC @Rr
| 0000011 |
7 0

((Rr)) < ((Rr) + 1

C AC F0 RS1RS0 OV P

HEEEENEE

PSW

This instruction increments the contents of the memory location
addressed by register r by 1. It places the result in the addressed
location.

INC @RO ; Increment counter

Encoded Instruction:

00000110
7 0
Before After
Register 0 Register 0
00110010 00110010
7 0 7 0
(32H) (32H)
11011101 11011110
7 0 7 0
Note: 15

MCS-51

MCS-51 I N C

Increment Accumulator

Mnemonic: INC
Operands: A Accumulator
Format: INC A
Bit Pattern:
[00000100 |
7 0

Operation: (A) <= (A) +1

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P
LI T T T [[[e]
PSW

Description: This instruction increments the contents of the accumulator by 1. It
places the result in the accumulator.

Example: INC A ; Increment accumulator

Encoded Instruction:

| 00000100 I

7 0
Before After
Accumulator Accumulator
[11010000] [11010001 |
7 0 7 0
Note: 5

3-49

INC

3-50

Increment Data Pointer

Mnemonic: INC
Operands: DPTR Data Pointer
Format: INC DPTR
Bit Pattern:
[10100011 |
7 0

Operation: (DPTR) < (DPTR) + 1

Bytes: 1
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
HENEEEEE
PSW

Description: This instruction increments the 16-bit contents of the data pointer
by 1. It places the result in the data pointer.

Example: INC DPTR ; Increment data pointer

Encoded Instruction:

10100011

7 0
Before After
Data Pointer Data Pointer
[00001001 | 11111111] [00001010 | 00000000 |
15 8 7 0 15 8 7 0
Notes: None

MCS-51

MCS-51 I N C

Increment Register

Mnemonic: INC
Operands: Rr Register0<=r<=7
Format: INC Rr
Bit Pattern:
[00001rrr |
7 0

Operation: (Rr) < (Rr) + 1

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P
HEREEEEN
PSW

Description: This instruction increments the contents of register r by 1. It places
the result in the specified register.

Example: INC R7 ; Increment register 7

Encoded Instruction:

00001111 |
7 0
Before After
Register 7 Register 7
[10101011 [10101100]
7 0 7 0
Notes: None

3-51

I N C MCS-51

Increment Memory

Mnemonic: INC

Operands: data address 0<=dataaddress <= 255
Format: INC data address

Bit Pattern:

| 00000101 |Data Address]|
7 0 7 0

Operation: (data address) < (data address) + 1

Bytes: 2
Cycles: 1
Flags: C AC F0 RS1RS0 OV P
L 11
PSW

Description: This instruction increments the contents of the specified data
address by 1. It places the result in the addressed location.

Example: INC 37H ; Increment 37H

Encoded Instruction:

[00000101 [00110111

7 0 7 0
Before After
(37H) (37H)

7 0 7 0
Note: 9

3-52

MCS-51

Jump if Bit Is Set
Mnemonic: JB
Operands: bitaddress 0<=bitaddress <= 255

code address
Format: JB bitaddress,code address
Bit Pattern:

| 00100000 | BitAddress | Rel. Offset |

7 0 7 0 7 0

Operation: (PC) < (PC) + 3

IF (bit address) =1

THEN

(PC) < (PC) + relative offset
Bytes: 3
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
PSW

Description: This instruction tests the specified bit address. If it is 1, control

passes to the specified code address. Otherwise, control passes to
the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JB

3-53

3-54

Example: JB39.6,EXIT ;Jumpif bit6 of byte 39is1
SJMP TOP
EXIT: MOV A,39 ; Move 39 to accumulator (EXIT label

; is 5 bytes from jump statement)

Encoded Instruction:

[00100000 J 00111110 [00000010

7 0 7 0 7 0
Before After
(39) (39)
[01110111 01110111
76 0 76 0
Program Counter Program Counter
[00000000 11011100J | 00000000 | 11100001
15 8 7 0 15 8 7 0

Notes: 10, 11,12

MCS-51

MCS-51

Jump and Clear if Bit Is Set

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

JBC

bitaddress 0 <= bitaddress <= 255
code address

JBC bitaddress,code address

[00010000 | BitAddress | Rel.Offset
7 0 7 0 7 0

(PC) < (PC) + 3
IF (bit address) =1
THEN
(bitaddress) <0
(PC) < (PC) + relative offset

C AC F0 RS1 RS0 OV P

HEEEEEEE

This instruction tests the specified bit address. If it is 1, the bit is
cleared, and control passes to the specified code address. Other-
wise, control passes to the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JBC

3-55

3-56

Example: ORG 0DCH
JBC46.1,0UT3 ; Testbit1 of byte 46
; jump and clearif1

ORG136H
OUT3: INC R7

Encoded Instruction:

[00010000 | 01110001 [01010111 |

7 0o 7 0 7 0
Before After
(46) (46)
01110111 01110101
7 10 7 10
Program Counter Program Counter
| 00000000 | 11011100 | [00000001 | 00110110
15 8 7 0 15 8 7 0

Notes: 10, 11, 12

MCS-51

MCS-51

Jump if Carry Is Set
Mnemonic: JC

Operands: code address
Format: JC code address
Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

[01000000 | Rel. Offset

7 0 7 0
(PC) < (PC) + 2
IF(C)=1
THEN

(PC) < (PC) + relative code

C AC F0 RS1 RSO OV P

HEEEEEEN

PSW

This instruction tests the contents of the carry flag. If it is 1, then
control passes to the specified code address. Otherwise, control
passes to the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JC

3-57

3-58

Example: FIXUP: CLR C ; Clear carry
JC FIXUP I carry is 1 go to FIXUP
; 49 bytes backwards from the JC
; instruction

Encoded Instruction:

01000000 [11001101

7 0 7 0

Before After

Carry Flag Carry Flag

Program Counter « Program Counter

| 00000101 | 11011100 | [00000101 [10101011 |
15 8 7 0 15 8 7 0

Notes: 10,11, 12

MCS-51

MCS-51 J M P

Generic Jump

Mnemonic: JMP

Operands: code address 0<=code address <= 65,535
Format: JMP code address

Bit Pattern: Translated to AJMP, LUMP, or SUMP, as needed
Operation: Either AUMP, SUMP or LUMP

Bytes:
Cycles:

Flags: C AC F0 RS1RS0 OV P

Description: This instruction will be translated to SIMP if the specified code
address contains no forward references and that address falls
within —128 and +127 of the address of the next instruction. It will
be translated to AJMP if the code address contains no forward
references and the specified code address falls within the current 2K
byte page. Otherwise, the JMP instruction is translated to LIMP.
If forward references are used to specify the jump destination, then
it will not necessarily be the most efficient representation. See the
descriptions for SIMP, AJMP, and LIMP for more detail.

Example: JMP SKIP ; Jump to SKIP
FF: INCA ;Increment A
SKIP: INCR5 ; Increment register 5

Encoded Instruction:

| 00000010 [00000100 [10101011

7 0 7 0 7 0
Before After
Program Counter Program Counter
00000100 | 10100111 | [00000100 [10101011
15 8 7 0 15 8 7 0
Notes: None

3-59

JMP

3-60

Jump to Sum of Accumulator and Data Pointer

Mnemonic: JMP

Operands: A Accumulator
DPTR Data Pointer
Format: JMP @A +DPTR
Bit Pattern:
01110011
7. 0

Operation: (PC) < (A) + (DPTR)

Bytes: 1
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
HEREEEEE
PSW

Description: This instruction adds the contents of the accumulator with the
contents of the data pointer. It transfers control to the code address
formed by that sum.

Example: JMP @A +DPTR ; Jump relative to the accumulator

Encoded Instruction:

[01110011 |
7 0
Before After
Accumulator Accumulator
[01110110 | [01110110]
7 0 7 0
Data Pointer Data Pointer
| 00000010 | 10101000 | [00000010 [10101000
15 8 7 0 15 8 7 0
Program Counter Program Counter
[11001101 [00001101 | [00000011 00011110
15 8 7 0 15 8 7 0
Notes: None

MCS-51

MCS-51

Jump if Bit Is Not Set

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

JNB

bit address
code address

JNB bitaddress,code address

[00110000 | BitAddress | Rel. Offset |
7 0 7 0 7 0

(PC) < (PC) + 3
IF (bit address) =0
THEN
(PC) < (PC) + relative offset

C AC F0 RSt RS0 OV P

LI 1T 11 77|

PSW

This instruction tests the specified bit address. If it is 0, control
passes to specified code address. Otherwise, control passes to the
next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed. .

JNB

3-61

3-62

MCS-51

Example: ORG 0DCH '
JNB 41.6,EXIT ;If bit6 of byte 41is 0 goto EXIT

EXIT: ADD A,41 - At location 136H

Encoded Instruction:

| 00110000 [01001110 [01010111 |

7 0 7 0 7 0
Before After
(41) (41)
00110111 00110111
76 0 76 0
Program Counter Program Counter
[00000000 [11011100 | [00000001 [00110110
15 8 7 0" 15 8 7 0

Notes: 10, 11, 12

MCS-51

Jump if Carry Is Not Set

Mnemonic: JNC
Operands: code address
Format: JNC code address

Bit Pattern:

[01010000 | Rel. Offset

7 0 7 0

Operation: (PC) < (PC) + 2

IF(C)=0

THEN

(PC) < (PC) + relative offset

Bytes: 2
Cycles: 2
Flags: C AC F0 RS1 RS0 OV P

Description: This instruction tests the contents of the carry flag. If it is 0, control
passes to the specified code address. Otherwise, control passes to
the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
test was successful, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JNC

3-63

3-64

MCS-51

Example: FIXUP: MOV A,R5

JNC‘F/XUP ; Jump to FIXUP if carry is 0
; (61 bytes backwards)

Encoded Instruction:

[01010000 [11001101 |

7 0 7 0
Before After
Carry Flag Carry Flag
Program Counter Program Counter
|00011100]11011100| [00011100 10101011
15 8 7 0 15 8 7 0

Notes: 10, 11,12

MCS-51

Jump if Accumulator Is Not Zero

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

JNZ
code address

JNZ code address

[01110000 | Rel. Offset |
7 0 7 0

(PC) < (PC) + 2
IF(A)<>0
THEN
(PC) < (PC) + relative offset

HEEEEEEE
PSW

This instruction tests the accumulator. If it is not equal to 0,
control passes to the specified code address. Otherwise, control
passes to the next sequential instruction.

The Program Counter is incremented to the next instruction. If the
accumulator is not 0, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JNZ

3-65

3-66

Example: JNZ TEST ; Jump if accumulatoris not 0
. ; 77 bytes forward

TEST: MOVR3,A

Encoded Instruction:

01010000 | 01001101 |

7 0 7 0
Before After
Accumulator Accumulator
01110111 01110111
7 8 7 0
Program Counter Program Counter
| 00000000 [11011100 | [00000001 [00101011 |
15 8 7 0 15 8 7 0

Notes: 10,11, 12

MCS-51

MCS-51

Jump if Accumulator Is Zero

Mnemonic: JZ

Operands: code address

Format: JZ code address
Bit Pattern:

[01100000 | Rel. Offset

7 0 7 0

Operation: (PC) < (PC) + 2

IF(A)=0

THEN

(PC) < (PC) + relative offset

Bytes: 2
Cycles: 2
Flags: C AC F0 RS1 RSO0 OV P

Description: This instruction tests the accumulator. If it is 0, control passes to
the specified code address. Otherwise, control passes to the next
sequential instruction.

The Program Counter is incremented to the next instruction. If the
accumulator is 0, then the relative offset is added to the
incremented program counter, and the instruction at that address is
executed.

JZ

3-67

3-68

Example: JZEMPTY ;Jump to EMPTY if accumulatoris 0

EMPTY: INCA : 25 bytes from JZ instruction

Encoded Instruction:

[01100000 [00010111

7 0 7 0
Before After
Accumulator Accumulator
01110110 01110110
7 0 7 0
Program Counter Program Counter
[00001111 [11011100 | [00001111 [11011110 |
15 8 7 0 15 8 7 0

Notes: 10, 11, 12

MCS-51

MCS-51

Long Call

Mnemonic:
Operands:
Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

LCALL
code address 0<=code address <= 65,535

LCALL code address

[00010010 [Code Addr. high|Code Addr. low
7 0 7 07 0

(PC) < (PC) + 3

(SP) < (SP) + 1
((SP)) < (PC low)
(SP) < (SP) + 1
((SP)) < (PC high)
(PC) < code address

C AC F0 RS1 RSO OV P

LCALL

This instruction stores the contents of the program counter (the
return address) on the stack, then transfers control to the 16-bit

code address specified as the operand.

3-69

3-70

Example: SERVICE: INCA ; Resides at location 233H.
RETI
ORG 80 DCH

LCALL SERVICE ; Call SERVICE

Encoded Instruction:

[00010010 | 00000010 [00110011

7 0 7 0 7 0
Before After
Program Counter Program Counter
| 10000000 [11011100] [00000010 [00110011
15 8 7 0 15 8 7 0
Stack Pointer Stack Pointer
00101000 I 00101010 |
7 0 7 0
(29H) (29H)
01110111 11011111
7 0 7 0
(2AH) (2AH)
00000000 | 10000000 |
7 0 7 0
Notes: 1,2,3

MCS-51

MCS-51

Long Jump

Mnemonic: LJMP
Operands: code address 0<=code address <=65,535
Format: LJMP code address

Bit Pattern:

| 00000010 [Code Addr. high|Code Addr. low
7 0 7 07 0

Operation: (PC) < code address

Bytes: 3
Cycles: 2
Flags: C AC F0 RS1 RSO OV P

PSW

Description: This instruction transfers control to the 16-bit code address
specified as the operand.

Example: ORG 800H
LJMP FAR - Jump to FAR
FAR: INC A - Current code location (8233H)

Encoded Instruction:

00000010 | 10000010] 00110011

7 0 7 0 7 0

Before After

Program Counter Program Counter
00001000] 00000000 | [10000010 00110011
15 8 7 0 15 8 7 0

Notes: None

LJMP

3-71

M O V : MCS-51

Move Immediate Data to Indirect Address

Mnemonic: MOV

Operands: Rr Register0<=r<=1
data —256 <= data <= + 255
Format: MOV @Rr,#data

Bit Pattern:

[01110117 [Immediate Data
7 0 7 0

Operation: ((Rr)) < data

Bytes: 2
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P

HEREEEE

PSW

Description: This instruction moves the 8-bit immediate data value to the
memory location addressed by the contents of register r.

Example: MOV @R1,#01H ; Move 1 to indirect address

Encoded Instruction:

[01110111 [00000001 |

7 0 7 0
Before After
Register1 Register1
00010011 00010011
7 0 7 0
(13H) (13H)
01110111 00000001
7 0 7 0

Notes: 4,15

3-72

MCS-51

MOV

Move Accumulator to Indirect Address

Mnemonic: MOV

Operands: Rr Register0<=r<=1
A Accumulator
Format: MOV @Rr, A
Bit Pattern:
[11110117 |
7 0

Operation: ((Rr)) < (A)

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P

L1] |

—

PSW

Description: This instruction moves the contents of the accumulator to the
memory location addressed by the contents of register r.

Example: MOV @R0,A ; Move accumulator to indirect
; address

Encoded Instruction:

11110110

7 0
Before After
Register 0 Register0
00111000 00111000
7 0 7 0
(38H) (38H)
10011001 01001100
7 0 7 0
Accumulator Accumulator
01001100 01001100
7 0 7 0
Note: 15

3-73

MOV

3-74

MCS-51

Move Memory to Indirect Address

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 2

Flags:

Description:

Example:

MOV

Rr Register 0 <=r<=1
data address 0<=dataaddress <= 255

MOV @Rr,data address

| 1010011 r [DataAddress|

7 0 7 0

((Rr)) < (data address)

C AC F0 RS1 RS0 OV P

HEEEEEEN
PSW

This instruction moves the contents of the specified data address to
the memory location addressed by the contents of register r.

MOV @R1,77H ; Move the contents of 77H to indirect
;address

Encoded Instruction:

10100111 | 01110111 |

7 0 7 0

Before After

Register 1 Register1

[00001000 00001000
7 0 7 0

(08H) (08H)

[00110011 [11111110 |
7 0 7 0

(7T7H) (77TH)

[11111110 | 11111110
7 0 7 0

Notes: 8, 15

MCS-51

MOV

Move Immediate Data to Accumulator

Mnemonic: MOV

Operands: A Accumulator

data -256 <= data <= +255
Format: MOV A #data
Bit Pattern:

[01110100 [Immediate Data
7 0 7 0

Operation: (A) < data

Bytes: 2
Cycles: 1
Flags: C AC F0 RSt RS0 OV P
LI T T 1 [[[e]
PSW
Description: This instruction moves the 8-bit immediate data value to the
accumulator.
Example: MOV A, #01H ; Initialize the accumulator to 1

Encoded Instruction:

01110100 [00000001 |

7 0 7 0
Before After
Accumulator Accumulator

7 0 7 0
Notes: 4,5 |

3-75

MOV

3-76

Move Indirect Address to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

MOV

A Accumulator
Rr Register 0<=r<=1

MOV A,@Rr

[11100117 |
7 0o

(A) < ((Rn))

C AC FO0 RS1 RS0 OV P

HEEEEEED

PSW

This instruction moves the contents of the data memory location
addressed by register r to the accumulator.

MOV A, @R1 ; Move indirect address to
; accumulator

Encoded Instruction:

11100111

7 0
Before

Accumulator

After

Accumulator

10000110 11101000
7 0 7 0
Register1 Register1

|00011100| 00011100

7 0
(1CH)

11101000

Notes: 5,15

7 0

11101000
7 0

\,

o
=
o
z

MCS-51

MCS-51 M O V

Move Register to Accumulator

Mnemonic: MOV

Operands: A Accumulator
Rr Register0<=r<=7
Format: MOV A,Rr
Bit Pattern:
11101rrr
7 0

Operation: (A) < (Rr)

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P
LI T T 1 [[[e]
PSW
Description: This instruction moves the contents of register r to the
accumulator.
Example: MOV A,R6 ; Move R6 to accumulator

Encoded Instruction:

11101110

7 0
Before After
Accumulator Accumulator
|00101110] |10000101|
7 0 7 0
Register 6 Register 6
10000101 10000101
7 0 7 0
Note: 5

3-77

MOV

3-78

MCS-51

Move Memory to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

MOV

A Accu mulator
dataaddress 0<=data address <= 255

MOV A,data address

| 11100101 |DataAddress

7 0 7 0

(A) < (data address)

C AC F0 RS1RS0 OV P

HEREERED
PSW

This instruction moves the contents of data memory at the specified
address to the accumulator.

MOV A,P1 ; Move the contents of Port 1 to
; accumulator

Encoded Instruction:

11100101 [10010000 |
7 0 7 0
Before After

Accumulator

Accumulator

[00100110 | [01111001 |

7 0
Port 1 (90H)

7 0
Port 1 (90H)

[eFiii007]

7 0

Notes: 5,8

7 0

MCS-51

Move Bit to Carry Flag
Mnemonic: MOV
Operands: C Carry Flag
bitaddress 0 <= bitaddress <= 255
Format: MOV C,bit address
Bit Pattern:
[10100010 | BitAddress |
7 0 7 0
Operation: (C) < (bit address)
Bytes: 2
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P
el [[[[[]
PSW
Description: This instruction moves the contents of the specified bit address to
the carry flag.
Example: MOV C, TXD ; Move the contents of TXD to Carry
; flag

Encoded Instruction:

[10100010 [10110110
7 0 7 0
Before After
Port 3 (BOH) Port 3 (BOH)
00100010 00100010
76 0 76 0
Carry Flag Carry Flag
[o]
Notes: None

MOV

3-79

MOV

3-80

MCS-51

Move Immediate Data to Data Pointer

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

Example:

MoV

Data Pointer ,
data 0 <=data <= 65,535

MOV DPTR,#data

| 10010000 | Imm.Datahigh | Imm. Datalow

7 0 7 07 0
(DPTR) < data
C AC F0 RS1 RS0 OV P
HEEEEEEE

PSW

This instruction moves the 16-bit immediate data value to the data
pointer.

MOV DPTR,#0F4FH ; Initialize the data pointer to 0F4FH

Encoded Instruction:

L10010000 00001111 [01001111
7 0o 7 0o 7 0
Before After

Data Pointer

Data Pointer

00000000

11011100 | [00001111 [01001111

15 8

Notes: None

7 0 15 8 7 0

MCS-51

Move Immediate Data to Register

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

MOV
Rr Register0<=r<=7
data —256 <= data <= +255

MOV Rr.#data

[01111rrr Mmmediate Data]

7 0 7 0

(Rr) < data

C AC F0 RS1 RS0 OV P

HEEEEEEER
PSW

This instruction moves the 8-bit immediate data value to register r.

MOV R5,#01H ; Initialize register1

Encoded instruction:

01111101 [00000001

7 0
After

Register 5

00010011 I 00000001 I

7 0
Before
Register 5

7 0
Note: 4

7 0

MOV

3-81

M O V) MCS-51

Move Accumulator to Register

Mnemonic: MOV

Operands: Rr Register0<=r<=7
A Accumulator
Format: MOV Rr,A
Bit Pattern:
[11111777 |
7 0

Operation: (Rr) < (A)

Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P

PSW
Description: Thisinstruction moves the contents of the accumulator to register r.
Example: MOV R7 A ; Move accumulator to register 7

Encoded Instruction:

11111111
7 0
Before After
Register7 Register7
11011100 00111000
7 0 7 0
Accumulator Accumulator
00111000 00111000
7 0 7 0
Notes: None

3-82

MCS-51

MOV

Move Memory to Register

Mnemonic: MOV

Operands: Rr Register0<=r<=7
dataaddress 0<=dataaddress <= 255

Format: MOV Rr,data address

Bit Pattern:

[10101 rr |DataAddress|
7 0 7 0

Operation: (Rr) < (data address)

Bytes: 2
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
PSW
Description: This instruction moves the contents of the specified data address to
registerr.
Example: MOV R4,69H ; Move contents of 69H to register 4

Encoded Instruction:

10101100 | 01101001

7 0 7 0
Before After
Register 4 Register 4

7 0 7 0
(69H) (69H)

11011000 11011000
7 0o 7 0

Note: 8

3-83

M O V MCS-51

Move Carry Flag to Bit

Mnemonic: MOV

Operands: bitaddress 0<= bitaddress <= 255
C Carry Flag

Format: MOV bitaddress,C

Bit Pattern:

[10010010 | BitAddress
7 0 7 0

Operation: (bit address) < (C)

Bytes: 2
Cycles: 2
Flags: C AC F0 RS1 RS0 OV P
PSW
Description: This instruction moves the contents of the carry flag to the
specified bit address.
Example: MOV 2FH.7,C ; Move C to bit address 7FH

Encoded Instruction:

10010010 | 01111111 |

7 0o 7 0
Before After
(2FH) (2FH)
[00100110] [10100110 |
7 0 7 0
Carry Flag Carry Flag
Notes: None

3-84

MCS-51 M O v

Move Immediate Data to Memory

Mnemonic: MOV

Operands: dataaddress 0<=dataaddress <= 255
data —256 <= data <= + 255

Format: MOV data address ,#data

Bit Pattern:

[01110101]Data Address |Immediate Data
7 0 7 07 0

Operation: (data address) < data

Bytes: 3
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
HEREEEEE
PSW

Description: This instruction moves the 8-bit immediate data value to the
specified data address.

Example: MOV TMOD,#01H ; Initialize Timer Mode to 1

Encoded Instruction:

01110101 [10001001 [00000001 |

7 0 7 0o 7 0
Before After
TMOD (89H) TMOD (89H)
7 0 7 0
Notes: 4,9

3-85

MOV

3-86

MCS-51

Move Indirect Address to Memory

Mnemonic: MOV
Operands: dataaddress 0<=dataaddress <= 255

Rr Register 0 <=r <=1
Format: MOV data address,@Rr
Bit Pattern:

| 1000011 r IDataAddress|

7 0 7 0
Operation (data address) < ((Rr))
Bytes: 2
Cycles: 2
Flags C AC F0 RS1RS0 OV P
PSW

Description: This instruction moves the contents of memory at the location

addressed by register r to the specified data address.
Example: MOV 11H,@R1 ; Move indirect address to 11H

Encoded Instru

ction:

10000111 [00010001 |

7 0
After

—

11H)
10010110
7 0

Register1
01011000
7 0

—_

58H)

7 0
Before
(11H)
10100101
7 0
Register1
01011000
7 0
(58H)
10010110
7 0
Notes: 9, 15

10010110
7 0

MCS-51

MOV

Move Accumulator to Memory

Mnemonic: MOV

Operands: data address 0<=dataaddress <= 255
A Accumulator

Format: MOV data address A

Bit Pattern:

[11110101 |Data Address
7 0 7 0

Operation: (data address) < (A)

Bytes: 2
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P
HEEEEEEE
PSW

Description: This instruction moves the contents of the accumulator to the
specified data address.

Example: MOV 45H,A ; Move accumulator to 45H

Encoded Instruction:

11110101 | 01000101 |

7 0 7 0
Before After
(45H) (45H)
7 0 7 0
Accumulator Accumulator
7 0 7 0
Note: 9

3-87

M O V MCS-51

Move Register to Memory

Mnemonic: MOV

Operands: data address 0<=dataaddress <= 255
Rr Register0<=r<=7

Format: MOV data address,Rr

Bit Pattern:

|10001rrr lDataAddress
7 0 7 0

Operation: (data address) < (Rr)

Bytes: 2
Cycles: 2
Flags: C AC F0 RS1 RS0 OV P

HEEEEEEE

Description: This instruction moves the contents of register r to the specified
data address.

Example: MOV 7EH,R3 ; Move R3 to location 7EH

Encoded Instruction:

[10001011 [01111110

7 0 7 0
Before After
(TEH) (TEH)
[11110111] [10010110
7 0 7 0
Register 3 Register3
[10010110 | 10010110
7 0 7 0
Note: 9

3-88

MCS-51

Move Memory to Memory

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 3
Cycles: 2

Flags:

Description:

Example:

MOV

data address1 0 <=dataaddress1 <= 255
data address2 0 <= data address? <= 255

MOV data address1,data address2

| 10000101 |Data Address2|Data Addresst
7 07 07 0

(data address1) < (data address2)

C AC F0 RS1RS0 OV P

PSW

This instruction moves the contents of the source data address
(data address2) to the destination data address (data address1).

MOV B, 12H ; Move the contents of 12H to B (FOH)

Encoded Instruction:

10000101 [00010010 [11110000

7 0 7 0 7 0
Before After
(12H) (12H)

7 0 7 0
(FOH) (FOH)

7 0 7 0
Note: 16

MOV

3-89

MOVC

Move Code Memory Offset from Data Pointer

3-90

to Accumulator
Mnemonic: MOVC
Operands: A Accumulator
DPTR Data Pointer
Format: MOVC A,@A +DPTR
Bit Pattern:
l 10010011 I
7 0
Operation: (A) < ((A) + (DPTRY))
Bytes: 1
Cycles: 2
Flags: C AC F0 RS1 RS0 OV P
LI LT T T 11 [e]
PSW
Description: This instruction adds the contents of the data pointer with the
contents of the accumulator. It uses that sum as an address into
code memory and places the contents of that address in the
accumulator.
The high-order byte of the sum moves to Port 2 and the low-order
byte of the sum moves to Port 0.
Example: MOVCA,@A+DPTR ;Lookupvalueintable

Encoded Instruction:

10000011

7 0

Before

Accumulator

After

Accumulator

00010001 00011110

7 0 7 0

Data Pointer Data Pointer

| 00000010 | 11110001] [00000010 | 11110001
15 8 7 0 15 8 7 0
(0302H) (0302H)

[00011110 | 00011110

7 0 7 0

Notes: 5§

MCS-51

MCS-51

MOVC

Move Code Memory Offset from Program
Counter to Accumulator

Mnemonic: MOVC

Operands: A Accumulator
PC Program Counter
Format: MOVC A,@A+PC
Bit Pattern:
10000011
7 0

Operation: (PC) < (PC) + 1
(A) <= ((A) + (PC))

Bytes: 1
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
HEEEEEED
PSW

Description: This instruction adds the contents of the incremented program
counter with the contents of the accumulator. It uses that sum as an
address into code memory and places the contents of that address
in the accumulator.

The high-order byte of the sum moves to Port 2 and the low-order
byte of the sum moves to Port 0.

3-91

3-92

Example: MOVC A, @A+ PC ; Look up value in table

Encoded Instruction:

10000011 |
7 0
Before After
Accumulator Accumulator
01110110 01011000
7 0 7 0
Program Counter Program Counter
[00000010 | 00110001 | [00000010 [00110010
15 8 7 0 15 8 7 0
(02A8H) (02A8H)
[01011000 | 01011000
7 0 7 0
Notes: 5,12

MCS-51

MOVX

Move Accumulator to External Memory
Addressed by Data Pointer

Mnemonic: MOVX

Operands: DPTR Data Pointer
A Accumulator
Format: MOVX @DPTR,A
Bit Pattern:
[11110000 |
7 0

Operation: ((DPTR)) < (A)

Bytes: 1
Cycles: 2
Flags: C AC F0 RS1 RS0 OV P

HEEEEEE

Description: This instruction moves the contents of the accumulator to the
off-chip data memory location addressed by the contents of the
data pointer.

The high-order byte of the Data Pointer moves to Port 2, and the
low-order byte of the Data Pointer moves to Port 0.

Example: MOVX @DPTR,A ; Move accumulator at data pointer

Encoded Instruction:

11110000

7 0
Before After
Data Pointer Data Pointer
[00110000 | 00110011 | [00110000 | 00110011 |
15 8 7 0 15 8 7 0
(3033H) (3033H)
11111001 01001100
7 0 7 0
Accumulator Accumulator
01001100 01001100
7 0 7 0
Notes: None

3-93

MOVX

Move Accumulator to External Memory

3-94

Addressed by Register
Mnemonic: MOVX
Operands: Rr Register0<=r<=1

A Accumulator
Format: MOVX @Rr,A
Bit Pattern:

[11110017 |

7 0
Operation: ((Rr)) < (A)
Bytes: 1
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
PSW

Description: This instruction moves the contents of the accumulator to the off-

chip data memory location addressed by the contents of register r.

The contents of the specified register moves to Port 0. The contents
of Port 2 is unaffected, but its previous value will be used in the
address to off-chip data memory.

MCS-51

MCS-51

Example: MOV P2#0
MOVX @R0,A ; Move accumulator to indirect
; address

Encoded Instruction:

11100010

7 0
Before After
Register 0 Register 0

10111000 10111000

7 0 7 0
(00B8H) (00B8H)
|10011001 I 01001100

7 0 7 0
Accumulator Accumulator
[01001100 | 01001100

7 0 7 0
Notes: None

3-95

MOVX

Move External Memory Addressed by
Data Pointer to Accumulator

3-96

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 2

Flags:

Description:

Example:

MOVX
A Accumulator
DPTR Data Pointer

MOVX A,@DPTR

[11100000 |
0

7

(A) < ((DPTR))

C AC F0 RS1RS0 OV P

LI T T T 1 T [ef

PSW

This instruction moves the contents of the off-chip data memory
location addressed by the data pointer to the accumulator.

The high-order byte of the Data Pointer moves to Port 2, and the
low-order byte of the Data Pointer moves to Port 0.

MOVX A,@DPTR ; Move memory at DPTR to
; accumulator

Encoded Instruction:

|11100000|

7 0
Before After
Accumulator Accumulator

10000110 |11101000|

7

Data Pointer

0 7 0

Data Pointer

[01110011 [11011100 | [01110011 [11011100 |
15 8 7 0 15 8 7 0
(73DCH) (73DCH)
[11101000 | 11101000
7 0 7 0
Notes: 5

MCS-51

MCS-51

MOVX

Move External Memory Addressed by
Register to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:
Bytes: 1
Cycles: 2
Flags:

Description:

MOVX

A Accumulator
Rr Register0<=r<=1

MOVX A,@Rr

[1110001 |
7

0

(A) < ((Rr)

C AC F0 RS1 RS0 OV P

LI T [1171 Je]

PSW

This instruction moves the contents of the off chip data memory
location addressed by register r to the accumulator.

The contents of the specified register moves to Port 0. The contents
of Port 2 is unaffected, but its previous value will be used in the
address to off-chip data memory.

3-97

MCS-51

Example: MOV P2, #55H
MOVX A, @R1 ; Move memory at R1to accumulator

Encoded Instruction:

11100011
7 0
Before After
Accumulator Accumulator
01010100 00001000
7 0 7 0
Register 1 Register 1
00011100 00011100 |
7 0 7 0
(551CH) (551CH)
00001000 00001000
7 0 7 0
Notes: 5

3-98

MCS-51

Multiply Accumulator by B

Mnemonic: MUL

Operands: AB Multiply/Divide operand
Format: MUL AB
Bit Pattern:
[10100100 |
7 0

Operation: (AB) < (A) * (B)

Bytes: 1
Cycles: 4
Flags: C AC F0 RS1RS0 OV P
o [[[[ef [e]
PSW

Description: This instruction multiplies the contents of the accumulator by the
contents of the multiplication register (B). Both operands are
treated as unsigned values. It places the low-order byte of the result
in the accumulator, and places the high-order byte of the result in
the multiplication register.

The carry flag is always cleared. If the high-order byte of the prod-
uct is not 0, then the overflow flag is set; otherwise, it is cleared.

MUL

3-99

3-100

Example: MOV B,#10
MUL AB

Encoded Instruction:
10100100
7 0

Before

Accumulator
00011111 |
7 0

Multiplication Register (B)

| 00001010 |

7 0

Overflow Flag

[o]

Notes: 5

; Move 10 to multiplication register
; Multiply accumulator by 10

After

Accumulator

00110110

7 0

Multiplication Register (B)

00000001

7 0

Overflow Flag

MCS-51

MCS-51 N O P

No Operation

Mnemonic: NOP

Operands: None
Format: NOP
Bit Pattern:

[00000000

7 0

Operation: No operation
Bytes: 1
Cycles: 1
Flags: C AC F0 RS1RS0 OV P

PSW

Description: This instruction does absolutely nothing for one cycle. Control
passes to the next sequential instruction.

Example: NOP ; Pause one cycle
Encoded Instruction:

00000000

7 0

Notes: None

3-101

ORL

3-102

MCS-51

Logical OR Immediate Data to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 2
Cycles: 1

Flags:

Description:

Example:

ORL

A Accumulator

data —256 <= data <= + 255
ORL A #data

[01000100 [Immediate Data

7 0 7 0

(A) < (A) OR data

C AC F0 RS1 RS0 OV P

Ll T 1 11 1 [e]
PSW

This instruction ORs the 8-bit immediate data value to the contents
of the accumulator. Bit n of the result is 1 if bit n of either operand
is 1; otherwise bit nn is 0. It places the result in the accumulator.

ORL A,#00001000B ; Setbit3to1

Encoded Instruction:

01000100 | 00001000
7 0 7 0
Before After

Accumulator

Accumulator

01110111 01111111

7 0

Notes: 4,5

7 0

MCS-51

ORL

Logical OR Indirect Address to Accumulator

Mnemonic: ORL

Operands: A Accumulator

Rr Register0<=r <=1
Format: ORL A,@Rr
Bit Pattern

[0100011 |
7 0

Operation: (A) < (A) OR ((Rr))

Bytes: |
Cycles: 1
Flags: C AC F0 RS1RS0 OV P

=

[[]

| | [e]

PSW
Description: This instruction ORs the contents of the memory location
addressed by the contents of register r to the contents of the

accumulator. Bit n of the result is 1 if bit n of either operand is 1;
otherwise bit n is 0. It places the result in the accumulator.

Example: ORL A,@R0 ; Setbit0to1

Encoded Instruction:

01000110

7 0
Before After
Accumulator Accumulator
00101000 00101001
7 0 7 0
Register 0 Register0
01010010 01010010
7 0 7 0
(52H) (52H)
00000001 00000001
7 0 7 0
Notes: 5,15

’

3-103

ORL

3-104

Logical OR Register to Accumulator

Mnemonic:

Operands:

Format:

Bit Pattern:

Operation:

Bytes: 1
Cycles: 1

Flags:

Description:

Example:

ORL

A Accumulator
Rr Register0<=r<=7

ORL A,Rr

| 01001rrr |

7 0

(A) < (A)OR(Rr)

C AC FO0 RS1 RSO OV P

HEEEEEED

PSW

This instruction ORs the contents of register r to the contents of the
accumulator. Bit n of the result is 1 if bit n of either operand is 1;
otherwise bit n is 0. It places the result in the accumulator.

ORL A,R4 ; Set bits7and 3to 1

Encoded Instruction:

01001100
7 0
Before

Accumulator

After

Accumulator

[10010001 | | 10011001 |

7 0 7 0
Register 4 Register 4
[10001000 | [10001000 |
7 0 7 0
Note: 5

MCS-51

MCS-51

Logical OR Memory to Accumulator

Mnemonic: ORL

Operands: A Accumulator

data address 0<=dataaddress <= 255
Format: ORL A,dataaddress
Bit Pattern:

[01000101 [DataAddress|
7 0 7 0

Operation: (A) < (A) OR (data address)

Bytes: 2
Cycles: 1
Flags: C AC F0 RS1 RS0 OV P

PSW

Description: This instruction ORs the contents of the specified data address to
the contents of the accumulator. Bit n of the result is 1 if bit n of
either operand is 1; otherwise bit n is 0. It places the result in the
accumulator.

Example: ORL A,37H ; OR 37H with accumulator

Encoded Instruction:

01000101 | 00110111

7 0 7 0
Before After
Accumulator Accumulator
01110111 11110111
7 0 7 0
(37H) (37H)
10000000 10000000
7 0 7 0
Notes: 5,8

ORL

3-105

ORL

3-106

Logical OR Bit to Carry Flag

Mnemonic: ORL

Operands: C Carry Flag

bitaddress 0 <= bitaddress <= 255
Format: ORL C,bitaddress
Bit Pattern:

[01110010 | BitAddress |
7 0 7 0

Operation: (C) < (C) OR (bitaddress)

Bytes: 2
Cycles: 2
Flags: C AC F0 RS1 RS0 OV P
el [L I I []|
PSW

Description: This instruction ORs the contents of the specified bit address with
the contents of the carry flag. The carry flag becomes 1 when either
the carry flag or the specified bit address is 1; otherwise, it is 0. It
places the result in the carry flag.

Example: ORL C,46.2 ; OR bit 2 of byte 46 with Carry

Encoded Instruction:

[01110010 [01110010

7 0 7 0
Before After
Carry Flag Carry Flag
[o]
(46) (46)
7 2 0 7 20

Notes: None

MCS-51

MCS-51

Logical OR Complement of Bit to Carry Flag

Mnemonic: ORL

Operands: C Carry Fiag

bit address 0 <= bitaddress <= 255
Format: ORL C/bitaddress
Bit Pattern:

[10100000 | BitAddress
7 0 7 0

Operation: (C) < (C) OR NOT bit address

Bytes: 2
Cycles: 2
Flags: C AC F0 RS1RS0 OV P
el [[[[[[]
PSW

Description: This instruction ORs the complemented contents of the specified
bit address to the contents of the carry flag. The carry flag is 1
when either the carry flag is already 1 or the specified bit address is
0. It places the result in the carry flag. The contents of the specified
bit address is unchanged.

Example: ORL C/25H.5 ; Complement contents of 5in byte
; 25H then O<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>