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CHAPTER 1
8086/8088 CPU

1.1 INTRODUCTION

This chapter contains specific hardware design informa-
tion on the operation and functions of INTEL’s 8086/8088
Central Processing Units (CPUs). This information con-
sists of a component overview of the 8086/88 micropro-
cessors presenting architectural and software
considerations, individual device pin functional and elec-
trical signal definitions, a detailed description of the mini-
mum and maximum operating modes, detailed
descriptions of the operation of the address and data
buses, an explanation of the protocols supported for local
bus transfers to other devices, and a detailed description
of interrupt operation. In addition, descriptions of the var-
ious 8086/88 family support circuits and their circuit
functions appear at the end of the chapter. For more spe-
cific information of any of the 8086 family support cir-
cuits, refer to the Microsystem Components Handbook
(Order Number: 230843-002).

1.2 COMPONENT OVERVIEW

The 8086 and 8088 are closely related third-generation
microprocessors. Both CPU’s contain a 20-bit address
bus (1 mega-byte of address space) and utilize an identical
instruction/function format. Differences between the two
devices consist essentially of their respective data bus
widths. The 8088 is designed with an 8-bit external data
path to memory and I/O, while the 8086 can transfer 16
bits at a time. In almost every other respect the processors
are identical; software written for one CPU will execute
on the other without alteration. Both chips are contained
in standard 40-pin dual in-line packages and operate from
a single +5V power source. Except where expressly
noted, the descriptions contained in this chapter are appli-
cable to both microprocessors.

The 8086 and 8088 Microprocessors can be used for a
wide spectrum of microcomputer applications. This flexi-
bility is one of their most outstanding characteristics. Sys-
tems can range from small uniprocessor minimal-memory
designs implemented with a few chips (see Figure 1-1), to
multiprocessor systems with up to a megabyte of memory
(see Figure 1-2).

Both the 8086 and 8088 microprocessors use a combined,
or “time-multiplexed”, address and data bus that permits
several of the device pins to serve dual functions. Some
microprocessor control pins also serve dual functions.
These pins are defined according to the strapping of a
single input pin (the MN/MX* pin). This feature provides
configuration of the CPU’s in either “minimum mode” or
“maximum mode” circuits.
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In the “minimum mode,” the CPU is configured for
small, single-processor systems. In this configuration all
control signals are provided by the CPU and the dual
function pins transfer signals directly to memory and
input/output devices.

In the “maximum mode” these same pins take on differ-
ent functions that are helpful in medium to large systems,
especially systems with multiple processors. An Intel
8288 Bus Controller is used to provide the control signal
outputs. This allows several of the device pins previously
delegated to these control functions to be redefined in or-
der to support multiprocessing applications. A detailed
description of this feature is presented later in the chapter.

The 8086 and 8088 Microprocessors are designed to op-
erate with the 8089 Input/Output Processor (IOP) and
other processors in multiprocessing and distributed proc-
essing systems. When used in conjunction with one or
more 8089s, the 8086 and 8088 expand the applicability
of microprocessors into I/O-intensive data processing sys-
tems. Built-in coordinating signals and instructions, and
electrical compatibility with Intel’s MULTIBUS® shared
bus architecture, simplify and reduce the cost of develop-
ing multiple-processor designs.

Both the 8086 and 8088 are substantually more powerful
than any microprocessor previously offered by Intel. Ac-
tual performance, of course, varies from application to
application, but comparisons to the industry standard
2-MHz 8080A are instructive. The 8088 is from four to
six times more powerful than the 8080A; the 8086 pro-
vides seven to ten times the 8080A’s performance.

The 8086’s advantage over the 8088 is the result of the
8086’s 16-bit external data bus. In applications that ma-
nipulate 8-bit quantities extensively, or that are
execution-bound, the 8088 can approach to within 10%
of the 8086’s processing throughput.

The improved performance of the 8086 and 8088 is ac-
complished by combining a 16-bit internal data path with
a pipelined architecture that allows instructions to be pre-
fetched during spare bus cycles. In addition, a compact
instruction format that enables more instructions to be
fetched in a given amount of time contributes to this high
performance.

Software for 8086 and 8088 systems does not need to be
written in assembly language. The CPUs are designed to
provide direct hardware support for programs written in
high-level languages such as Intel’s PL/M-86. Most
high-level languages store variables in memory; the
8086/8088 symmetrical instruction set supports direct op-
eration on memory operands, including operands on the
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stack. The hardware addressing modes provide efficient,
straightforward implementations of based variables, ar-
rays, arrays of structures and other high-level language
data constructs. A powerful set of memory-to-memory
string operations is available for efficient character data
manipulation. Finally, routines with critical performance
requirements that cannot be met with PL/M-86 may be
written in ASM-86 (the 8086/8088 assembly language)
and linked with PL/M-86 code.

Although the 8086 and 8088 Microprocessors are totally
new designs, they make the most of user’s existing invest-
ments in systems designed around the 8080/8085 micro-
processors. Many of the standard Intel memory,
peripheral control and communication chips are compati-
ble with the 8086 and the 8088. Software is developed in
the familiar Intellec Microcomputer Development System
environment, and most existing programs, whether writ-
ten in ASM-80 or PL/M-80, can be directly converted to
run on the 8086 and 8088.

1.2.1 Architectural Overview

Both the 8086 and 8088 microprocessors incorporate two
separate processing units (see Figures 1-3 and 1-4). These
are the Execution Unit (EU) and the Bus Interface Unit
(BIU). Both microprocessors contain identical EU’s. In

the 8086 the BIU incorporates a 16-bit data bus and a
6-byte instruction queue. In the 8088 the BIU incorpo-

rates an 8-bit data bus and a 4-byte instruction queue.

The EU executes instructions and the BIU fetches instruc-
tions, reads operands and writes results. The two units can
operate independently of one another and are able, under
most circumstances, to extensively overlap instruction
fetch with execution. The result is that, in most cases, the
time normally required to fetch instructions ‘‘disappears’
because the EU executes instructions that have already
been fetched by the BIU. Figure 1-5 illustrates this over-
lap and compares it with traditional microprocessor oper-
ation. In the example, overlapping reduces the elapsed
time required to execute three instructions, and allows two
additional instructions to be prefetched as well.

In the 8086 CPU, when two or more bytes of the 6-byte
instruction queue are empty and the EU does not require
the BIU to perform a bus cycle, the BIU executes instruc-
tion fetch cycles to refill the queue. In the 8088 CPU,
when one byte of the 4-byte instruction queue is empty,
the BIU executes an instruction fetch cycle. Note that
since the 8086 CPU has a 16-bit data bus, it can access
two instruction object code bytes in a single bus cycle.
Since the 8088 CPU has an 8-bit data bus, it accesses one
instruction object code byte per bus cycle. If the EU

210912-001
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issues a request for bus access while the BIU is in the
process of an instruction fetch bus cycle, the BIU comple-
tes the cycle before honoring the EU’s request.

EXECUTION UNIT

The execution units (EU’s) of the 8086 and 8088 are iden-
tical (see Figures 1-3 and 1-4). The EU is responsible for
the execution of all instructions, for providing data and
addresses to the BIU, and for manipulating the general
registers and the flag register. A 16-bit arithmetic/logic
unit (ALU) in the EU maintains the CPU status and con-
trol flags, and manipulates the general registers and in-
struction operands. All registers and data paths in the EU
are 16 bits wide for fast internal transfers.

The EU has no connection to the system bus, the ““outside
world.” It obtains instructions from a queue maintained
by the BIU. Likewise, when an instruction requires ac-
cess to memory or to a peripheral device, the EU requests
the BIU to obtain and store the data. All addresses manip-
ulated by the EU are 16 bits wide. The BIU, however,
performs an address relocation that gives the EU access to
the full megabyte of memory space.

When the EU is ready to execute an instruction, it fetches
the instruction object code byte from the BIU’s instruction
queue and then executes the instruction. If the queue is
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empty when the EU is ready to fetch an instruction byte,
the EU waits for the instruction byte to be fetched. If a
memory location or I/0 port must be accessed during the
execution of an instruction, the EU requesis the BIU to
perform the required bus cycle.

BUS INTERFACE UNIT

The 8086 and 8088 BIU’s are functionally identical, but
are implemented differently to match the structure and
performance characteristics of their respective buses.
Data is transferred between the CPU and memory or I/O
devices upon demand from the EU. The BIU executes all
external bus cycles. This unit consists of the segment and
communications registers, the instruction pointer and the
instruction object code queue. The BIU combines seg-
ment and offset values in a dedicated adder to derive
20-bit addresses, transfers data to and from the EU on the
ALU data bus and loads or “‘prefetches” instructions into
the queue. These “prefetched” instructions can then be
fetched by the EU with a minimum of wait.

During periods when the EU is busy executing instruc-
tions, the BIU “looks ahead” and fetches more instruc-
tions from memory. These instructions are stored in an
internal RAM array called the instruction stream queur.
The 8088 instruction queue holds up to four bytes of the
instruction stream, while the 8086 queue can store up to
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Figure 1-3 8086 Simplified Functional Block Diagram

six instruction bytes. These queue sizes allow the BIU to
keep the EU supplied with prefetched instructions under
most conditions without monopolizing the system bus.
The 8088 BIU fetches another instruction byte whenever
one byte in its queue is empty and there is no active re-
quest for bus access from the EU. The 8086 BIU operates
similarly except that it does not initiate a fetch until there
are two empty bytes in its queue. The 8086 BIU normally
obtains two instruction bytes per fetch. If a program
transfer forces fetching from an odd address, the 8086
automatically reads one byte from the odd address and
then resumes fetching two-byte words from the subse-
quent even addresses.

In most circumstances the queues contain at least one byte
of the instruction stream and the EU does not have to wait
for instructions to be fetched. The instructions in the
queue are those stored in memory locations immediately
adjacent to and higher than the instruction currently being
executed. That is, they are the next logical instructions so
long as execution proceeds serially. If the EU executes an
instruction that transfers control to another location, the
BIU resets the queue, fetches the instruction from the new
address, passes it immediately to the EU, and then begins
refilling the queue from the new location. In addition, the
BIU suspends instruction fetching whenever the EU

requests a memory or I/O read or write (except that a
fetch already in progress is completed before executing
the EU’s bus request).

GENERAL REGISTERS

Both CPU'’s have the same complement of eight 16-bit
general registers (see Figure 1-6). The general registers
are subdivided into two sets of four registers each. These
are the data registers (sometimes called the H & L group
for “high” and “low’), and the pointer and index regis-
ters (sometimes called the P & I group).

The data registers are unique in that their upper (high) and
lower halves are separately addressable. This means that
each data register can be used interchangeably as a 16-bit
register, or as a two 8-bit registers. The other CPU regis-
ters are always accessed as 16-bit only. The data registers
can be used without constraint in most arithmetic and
logic operations. In addition, some instructions use cer-
tain registers implicitly (see Table 1-1), therefore allow-
ing compact yet powerful encoding.

The pointer and index registers can also be used in most

arithmetic and logic operations. All eight general regis-
ters fit the definition of an “‘accumulator” as defined in
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first and second generation microprocessors. The P & I
registers (except for BP) are also used implicitly in some
instructions (see Table 1-1).

SEGMENT REGISTERS

The 8086 and 8088 memory space (up to one megabyte) is
divided into logical segments of up to 64k bytes each. The
CPU has direct access to four segments at a time. The
base addresses (starting locations) of these memory seg-
ments are contained in the segment registers (see Figure
1-7). The CS register points to the current code segment.
Instructions are fetched from the CS segment. The SS
register points to the current stack segment. Stack opera-
tions are performed on locations in the SS segment. The
DS register points to the current data segment. The DS
register generally contains program variables. The ES
register points to the current extra segment, which also is
typically used for data storage.

The segment registers are accessable to programs and can
be manipulated with several instructions. Good program-
ming practice and consideration of compatibility with fu-
ture Intel hardware and software products dictate that the
segment registers be used in a disciplined fashion.

INSTRUCTION POINTER

The 16-bit instruction pointer (IP) is similar to the pro-
gram counter (PC) in the 8080/8085 CPUs. The instruc-
tion pointer is updated by the BIU so that it contains the
offset (distance in bytes) of the next instruction from the
beginning of the current code segment; i.e., IP points to
the next instruction. During normal execution, IP con-
tains the offset of the next instruction to be fetched by the
BIU. Whenever IP is saved on the stack, however, it is
first automatically adjusted to point to the next instruction
to be executed. Programs do not have direct access to the
instruction pointer, but instructions cause it to change and
to be saved on and restored from the stack.

FLAGS

The 8086 and 8088 have six 1-bit status flags (see Figure
1-8) that the EU posts to reflect certain properties of the
result of an arithmetic or logic operation. A group of in-
structions is available that allows a program to alter its
execution depending on the state of these flags, i.e., on
the result of a prior operation. Different instructions af-
fect the status flags differently; in general, however, the
flags reflect the following conditions:
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1. If AF (the auxiliary flag) is set, there has been a carry
out of the low nibble into the high nibble or a borrow
from the high from the high nibble into the low nibble
of an 8-bit quantity (low-order byte of a 16-bit
quantity). This flag is used by decimal arithmetic in-
structions.

If CF (the carry flag) is set, there has been a carry out
of, or a borrow into, the high-order bit of the result
(8-or 16- bit). The flag is used by instructions that add
and subtract multibyte numbers. Rotate instructions
can also isolate a bit in memory or a register by plac-
ing it in the carry flag. .

If OF (the overflow flag) is set, an arithmetic overflow
has occurred; that is, a significant digit has been lost
because the size of the result exceeded the capacity of

its destination location. An Interrupt On Overflow in-
struction is available that will generate an interrupt in
this situation.

. If SF (the sign flag) is set, the high-order bit of the
result is a 1. Since negative binary numbers are repre-
sented in the 8086 and 8088 in standard two’s comple-
ment notation, SF indicates the sign of the result
(0 =positive, 1 =negative).

. If the PF (the parity flag) is set, the result has even

parity, an even number of 1-bits. This flag can be used
to check for data transmission errors.

. If ZF (the zero flag) is set, the result of the operation
is 0.

Three additional control flags (see Figure 1-8) can be set
and cleared by programs to alter processor operations:
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Table 1-1 Implicit Use of General Registers

REGISTER OPERATIONS

AX Word Multiply, Word Divide,
Word 1/0

AL Byte Multiply, Byte Divide, Byte
1/0, Translate, Decimal Arithmetic

AH Byte Multiply, Byte Divide

BX Translate

CX String Operations, Loops

CL Variable Shift and Rotate

DX Word Multiply, Word Divide,
Indirect1/O

SP Stack Operations

Sl String Operations

DI String Operations

CONTROL STATUS
FLAGS FLAGS

— N
CARRY
PARITY

AUXILIARY CARRY
ZERO

SIGN

OVERFLOW
INTERRUPT-ENABLE
DIRECTION

TRAP

Figure 1-8 Status Flags

1. Setting DF (the direction flag) causes string instruc-
tions to auto-decrement; that is, to process strings
from the high address to the low address, or from
“right to left.” Clearing DF causes string instructions
to auto-increment, or process strings from ‘“left to
right.”

2. Setting IF (the interrupt-enable flag) allows the CPU
to recognize external (maskable) interrupt requests.
Clearing IF disables these interrupts. IF has no affect
on either non- maskable external or internally gener-
ated interrupts.

3. Setting TF (the trap flag) puts the processor into
single-step mode for debugging. In this mode, the
CPU automatically generates an internal interrupt af-
ter each instruction, allowing a program to be in-
spected as it executes instruction by instruction.

MODE SELECTION

Each of the processors has a strap pin (MN/MX*) that
defines the function of eight CPU pins in the 8086 and
nine pins in the 8088. Connecting MN/MX* to +5V
places the CPU in minimum mode. This configuration is
designed for small systems (roughly one or two boards)
and the CPU provides bus control signals needed by
memory and peripherals. When MN/MX* is strapped to
ground, the CPU is configured in maximum mode. In this
configuration the CPU encodes control signals on three
lines. An 8288 Bus Controller is added to decode the sig-
nals for the rest of the system. The CPU uses the remain-
ing free lines for a new set of signals designed to help
coordinate the activities of other processors in the system.

SEGMENTATION

Programs for the 8086 and 8088 ‘“view” the memory
space (one megabyte) as a group of segments that are de-
fined by application. A segment is a logical unit of mem-
ory that may be up to 64k bytes long. Each segment is
made up of contiguous memory locations and is an inde-
pendent, separately-addressable unit. Every segment is
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assigned (by software) a base address, which is its starting
location in the memory space. All segments begin on
16-byte memory boundaries. There are no other restric-
tions on segment locations. Segments may be adjacent,
disjoint, partially overlapped, or fully overlapped (see
Figure 1-9). A physical memory location may be mapped
into (contained in) one or more logical segments.

The segment registers point to (contain the base address
values of) the four currently addressable segments (see
Figure 1-10). Programs obtain access to code and data in
other segments by changing the segment registers to point
to the desired segments.

FFFFFH

— 4
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DATA: DS: “ —— i
_
CODE: CS:E— — j o
smocss[ 7 F-— ||
REEE
EXTRA: ES:E—l
T EI
|| :
| L4— —;*
I ,
L1
K
OH e

Figure 1-10 Currently Addressable Segments

Every application will define and use segments differ-
ently. The currently addressable segments provide a gen-
erous work space; 64k bytes for code, a 64k byte stack
and 128k bytes of data storage. Many applications can be
written to simply initialize the segment registers and then
forget them. Larger applications should be designed with
careful consideration given to segment definition.

The segment structure of the 8086/8088 memory space
supports modular software design by discouraging huge,
monolithic programs. The segments also can be used to
advantage in many programming situation. Take, for ex-
ample, the case of an editor for several on-line terminals.
A 64k test buffer (probably an extra segment) could be
assigned to each terminal. A single program could main-
tain all the buffers by simply changing register ES to point
to the buffer of the terminal requiring service.

PHYSICAL ADDRESS GENERATION

In theory, it is useful to think of every memory location as
having two kinds of addresses, physical and logical. A
physical address is the 20-bit value that uniquely identi-
fies each byte location in the megabyte memory space.
Physical addresses range from OH to FFFFFH. All ex-
changes between the CPU and memory components use
this physical address.

‘Programs deal with logical, rather than physical ad-
dresses and allow code to be developed without prior
knowledge of where the code is to be located in memory
an facilitate dynamic management of memory resources.
A logical address consists of a segment base value and an
offset value. For any giveri memory location, the segment
base value locates the first byte of the containing segment
and the offset value is the distance, in bytes, of the target
location from the beginning of the segment. Segment base
and offset values are unsigned 16-bit quantities. The
lowest-addressed byte in a segment has an offset of 0.
Many different logical addresses can map to the same
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physical location. In the example (see Figure 1-11) physi-
cal memory location 2C3H is contained in two different
overlapping segments, one beginning at 2BOH and the
other at 2COH.

Whenever the BIU accesses memory -to fetch an instruc-
tion or to obtain or store a variable -it generates a physical
address from a logical address. This is done by shifting
the segment base value four bit positions and adding the
offset as illustrated in Figure 1-12. Note that this addition
process provides for modulo 64k addressing (addresses
wrap around from the end of a segment to the beginning
of the same segment).

The BIU obtains the logical address of a memory location
from different sources, depending on the type of refer-
ence that is being made (see Table 1-2). Instructions are
always fetched from the current code segment; IP con-
tains the offset of the target instruction from the begin-
ning of the segment. Stack instructions always operate on
the current stack segment; SP contains the offset of the
top of the stack. Most variables (memory operands) are
assumed to reside in the current data segment, although a
program can instruct the BIU to access a variable in one
of the other currently addressable segments. The offset of

a memory variable is calculated by the EU. This calcula-
tion is based on the addressing mode specified in the in-
struction; the result is called the operand’s effective
address (EA).

Strings are addressed differently than other variables. The
source operand of a string instruction is assumed to lie in
the current data segment, but another currently address-
able segment may be specified. Its offset is taken from
register SI, the source index register. The destination op-
erand of a string instruction always resides in the current
extra segment; its offset is taken from DI, the destination
index register. The string instructions automatically ad-
just SI and DI as they process the strings one byte or word
at a time.

When register BP, the base pointer register, is designated
as a base register in an instruction, the variable is assumed
to reside in the current stack segment. Therefore, register
BP provides a convenient way to address data on the
stack. However, BP can also be used to access data in any
of the other currently addressable segments.

The BIU’s segment assumptions are a convenience to pro-
grammers in most cases. However, it is possible for a pro-
grammer to explicitly direct the BIU to access a variable
in any of the currently addressable segments. (The only
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exception is the destination operand of a string instruction
which must be an extra segment.) This is done by preced-
ing an instruction with a segment override prefix. This
one-byte machine instruction tells the BIU which segment
register to use to access a variable referenced in the fol-
lowing instruction.

DYNAMICALLY RELOCATABLE CODE

The segmented memory structure of the 8086 and 8088
makes it possible to write programs that are
position-independent, or dynamically relocatable. Dy-
namic relocation allows a multiprogramming or multi-
tasking system to make particularly effective use of
available memory. Inactive programs can be written to
disk and the space they occupied allocated programs. If a
disk-resident program is needed later, it can be read back
into any available memory location and restarted. Simi-
larly, if a program needs a large contiguous block of stor-
age, and the total amount is only available in non-adjacent
fragments, other program segments can be compacted to
free up a continuous space. This process is illustrated
graphically in Figure 1-13.

To be dynamically relocatable, a program must not load
or alter its segment registers and must not transfer di-
rectly to a location outside the current code segment. In

other words, all offsets in the program must be relative to
fixed values contained in the segment registers. This al-
lows the program to be moved anywhere in memory as
long as the segment registers are updated to point to the
new base addresses.

STACK IMPLEMENTATION

Stacks in the 8086 and 8088 are implemented in memory
and are located by the stack segment register (SS) and the
stack pointer (SP). A system may have an unlimited num-
ber of stacks, and a stack may be up to 64k bytes long, the
maximum length of a segment. (An attempt to expand a
stack beyond 64k bytes overwrites the beginning of the
segment.) One stack is directly addressable at a time; this
is the current stack, often referred to simply as “the”
stack. SS contains the base address of the current stack
and SP points to the top of stack (TOS). In other words,
SP contains the offset of the top of the stack from the
stack segment’s base address. However, the stack’s base
address (contained in SS) is not the “bottom” of the stack.

Stacks in the 8086 and 8088 are 16 bits wide; instructions
that operate on a stack add and remove stack items one
word at a time. An item is pushed onto the stack (see
Figure 1-14) by decrementing SP by 2 and writing the
item at a new TOS. An item is popped off the stack by

Table 1-2 Logical Addresses Sources

DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET
BASE BASE
Instruction Fetch CSs NONE IP
Stack Operation SS NONE sP
Variable (except following) DS CS,ES.SS Etfective Address
String Source DS CS,ES,SS S|
String Destination ES NONE DI
BP Used As Base Register SS CS.DS.ES Effective Address
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copying it from TOS and the incrementing SP by 2. In
other words, the stack goes down in memory toward its
base address. Stack operations never move items on the
stack, nor do they erase them. The top of the stack
changes only as a result of updating the stack pointer.

RESERVED MEMORY

Two areas in extreme low and high memory (see Figure
1-15) are dedicated to specific processor functions or are
reserved by Intel Corporation for use by Intel hardware
and software products. The locations are OH through 7FH
(128 bytes) and FFFFOH through FFFFFH (16 bytes).
These areas are used for interrupt and system reset proc-
essing. 8086 and 8088 application systems do not use
these areas for any other purpose. Doing so may make
these systems incompatible with future Intel products.

8086/8088 MEMORY ACCESS DIFFERENCES

The 8086 can access either 8 or 16 bits of memory at a
time. If an instruction refers to a word variable and that
variable is located at an even-numbered address, the 8086

1-11

accesses the complete word in one bus cycle. If the word
is located at an odd-numbered address, the 8086 accesses
the word one byte at a time in two consecutive bus cycles.

To maximize throughput in 8086-based systems, 16-bit
data should be stored at even addresses (should be
word-aligned). This is particularly true of stacks. Un-
aligned stacks can slow a system’s response to interrupts.
Nevertheless, except for the performance penalty,
word alignment is totally transparent to software. This
allows maximum data packing where memory space is
constrained.

The 8086 always fetches the instruction stream in words
from even addresses except that the first fetch after a pro-

“gram transfer to an odd address obtains a byte. The in-

struction stream is disassembled inside the processor and
instruction alignment will not materially affect the per-
formance of most systems.

The 8088 always accesses memory in bytes. Word oper-
ands are accessed in two bus cycles regardless of their
alignment. Instructions are also fetched one byte at a
time. Although alignment of word operands does not
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Figure 1-14 Stack Operation

affect the performance of 8088, locating 16-bit data on
even addresses will insure maximum throughput if the
system is ever transferred to an 8086.-
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Figure 1-15 Reserved Memory and I/0 Locations
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1.2.2 Software Overview

The 8086 and 8088 execute exactly the same instructions.
This instruction set includes equivalents to the instruc-
tions typically found in previous microprocessors, such as
the 8080/8085. Significant new operations include:

* multiplication and division of signed and unsigned bi-
nary numbers as well as unpacked decimal numbers,

® move, scan and compare operations for strings up to
64k bytes in length,

® non-destructive bit testing,
® Dbyte translation from one code to another,
® software generated interrupts,

® a group of instructions that can help coordinate the
activities of multiprocessing systems.

The following paragraphs provide a description of the in-
structions by category and a detailed discussion of the
various operand addressing modes. In addition, a com-
plete instruction set summary is provided in tabular form
which recaps each device instruction by category, and
provides timing cycles for each instruction. Information
is also described on how to encode and decode machine
instructions for any given assembly code instructioh.
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8086/8088 INSTRUCTION SET

The 8086/8088 instructions treat different types of oper-
ands uniformly. Nearly every instruction can operate on
either byte or word data. Register, memory and immedi-
ate operands may be specified interchangeably in most
instructions. The exception to this is that immediate val-
ues serve as ‘“‘source’” and not “destination’ operands. In
particular, memory variables may be added to, subtracted
from, shifted, compared, and so on, in place, without
moving them in and out of registers. This saves instruc-
tions, registers, and execution time in assembly language
programs. In high-level languages, where most variables
are memory based, compilers can produce faster and
shorter object programs.

The 8086/8088 instruction set can be viewed as existing
on two levels. One is the assembly level and the other is
the machine level. To the assembly language program-
mer, the 8086/8088 appear to have a repertoire of about
100 instructions. One MOV (move) instruction, for exam-
ple, transfers a byte or a word from a register or a mem-
ory location or an immediate value to either a register or a
memory location. The 8086/8088 CPU’s, however, rec-
ognize 28 different MOV machine instructions (‘““move
byte register to memory,” move word immediate to regis-
ter,” etc.).

The two levels of instruction set address two different re-
quirements: efficiency and simplicity. The approximately
300 forms of machine-level instructions make very effi-
cient use of storage. For example, the machine instruc-
tions that increments a memory operand is three or four
bytes long because the address of the operand must be
encoded in the instruction. To increment a register, how-
ever, does not require as much information, so the in-
struction can be shorter. The 8086/88 have eight different
machine-level instructions that increment a different
16-bit register. Each of these instructions are only one
byte long.

The assembly level instructions simplify the programmers
view of the instruction set. The programmer writes one
form of an INC (increment) instruction and the ASM-86
assembler examines the operand to determine which ma-
chine level instruction to generate. The following para-
graphs provide a functional description of the
assembly-level instructions.

Data Transfer Instructions

The 8086/8088 instruction set contains 14 data transfer
instructions. These instructions move single bytes and
words between memory and registers, and also move sin-
gle bytes and words between the AL or AX registers and
1/0 ports. Table 1-3 lists the four types of data transfer
instructions and their functions.

Table 1-3 Data Transfer Instructions

GENERAL PURPOSE
MOV Move byte or word
PUSH Push word onto stack
POP Pop word off stack
XCHG Exchange byte or word
XLAT Translate byte
INPUT/OUTPUT
IN Input byte or word
ouT Output byte or word
ADDRESS OBJECT
LEA Load effective address
LDS Load pointer using DS
LES Load pointer using ES
FLAG TRANSFER
LAHF Load AH register from flags
SAHF Store AH register in flags
PUSHF Push flags onto stack
POPF Pop flags off stack

Data transfer instructions are categorized into four types:
1) general purpose; 2) input/output; 3) address object;
and 4) flag transfer. The stack manipulation instructions,
which are used for transferring flag contents, and the in-
structions for loading segment registers are also included
in this group. Figure 1-16 shows the flag storage formats.
These formats are used primarily by the LAHF instruction

LAHF,

SAHF S 2,V AU, P U C

j7 65432 10]
|<—8080/8085 FLAGS —»-|
I 1
| |
S,2,U,A U, P UC
7 6 6 4 3 2 10

PUSHF, i
POPF v,u,u,v,0,D0,!,T
15 14 13 12 11 10 9 8

U = UNDEFINED; VALUE IS INDETERMINATE
0 = OVERFLOW FLAG
D = DIRECTION FLAG
INTERRUPT ENABLE FLAG
RAP FLAG

Figure 1-16 Flag Storage Formats
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Table 1-4 Arithmetic Instructions

- ADDITION
ADD Add byte or word
ADC Add byte or word with carry
INC Increment byte or word by 1
AAA ASCII adjust for addition
DAA Decimal adjust for addition
SUBTRACTION
suB Subtract byte or word
sSBB Subtract byte or word with
borrow
DEC Decrement byte or word by 1
NEG Negate byte or word
CMP Compare byte or word
AAS ASCII adjust for subtraction
DAS Decimal adjust for subtraction
MULTIPLICATION
MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCII adjust for multiply
DIVISION
DIV Divide byte or word unsigned
IDIV Integer divide byte or word
AAD ASCI| adjust for division
cBwW Convert byte to word
CWD Convert word to doubleword

when converting 8080/8085 assembly language programs
to run on the 8086 or 8088. The address object instruc-
tions manipulate the addresses of variables instead of the
contents of values of the variables. This is useful for list
processing, based variable and string operations.

Arithmetic Instructions

The arithmetic instructions (see Table 1-4) perform opera-
tions on four types of numbers: 1) unsigned binary; 2)
signed binary (integers); 3) unsigned packed decimal; and
4) unsigned unpacked decimal. See Table 1-5. Binary
numbers may be 8 or 16 bits long. Decimal numbers are
stored in bytes, two digits per byte for packed decimal and
one digit per byte for unpacked decimal. The processor

always assumes that the operands specified in arithmetic
instructions contain data that represents valid numbers for
the type of instruction being performed. Invalid data may
produce unpredictable results.

Arithmetic instructions post certain characteristics of the
result of an operation to six flags. Refer to Chapter 3 in
the iAPX 86/88,186/188 User’s Manual Programmers
Reference for a detailed description of the arithmetic in-
structions and flags.

Bit Manipulation Instructions

The 8086 and 8088 CPU’s provide three groups of in-
structions for manipulating bits within both bytes and
word. These three groups are logicals, shifts and rotates.
Table 1-6 lists these three groups of bit manipulation in-
structions with their functions.

a. Logical

The logical instructions include the boolean operators
“not”, “and”, “inclusive or”’, and ‘“‘exclusive or”. A
TEST instruction that sets the flags as a result of a bool-
ean “‘and” operation, but does not alter either of its oper-
ands, is also included.

b. Shifts

The bits in bytes and words may be shifted arithmetically
or logically. Up to 255 shifts may be performed, accord-
ing to the value of the count operand coded in the instruc-
tion. The count may be specified as a constant 1, or
register CL, allowing the shift count to be a variable sup-
plied at execution time. Arithmetic shifts may be used to
multiply and divide binary numbers by powers of two.
Logical shifts can be used to isolate bits in bytes or words.

c. Rotates

Bits in bytes and words can also be rotated. Bits rotated
out of an operand are not lost as in a shift, but are “cir-
cled” back into the other “end” of the operand. As in the
shift instructions, the number of bits to be rotated is taken

Table 1-5 Arithmetic Interpretation of 8-Bit Numbers

UNSIGNED SIGNED UNPACKED PACKED
HEX BIT PATTERN BINARY BINARY DECIMAL DECIMAL
07 00000111 7 +7 7 7
89 10001001 137 119 invalid 89
cs 11000101 197 59 invalid invalid
1-14 210912-001
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Table 1-6 Bit Manipulation Instructions

Table 1-7 String Instructions

LOGICALS
NOT ‘‘Not’’ byte or word
AND ‘‘And”’ byte or word
OR “Inclusive or’’ byte or word
XOR ‘‘Exclusive or’’ byte or word
TEST “‘Test”” byte or word
SHIFTS
SHL/SAL | Shiftlogical/arithmetic left
byte or word
SHR Shift logical right byte or word
SAR Shift arithmetic right byte or
word
ROTATES
ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry left byte
or word
RCR Rotate through carry right byte
or word

from the count operand, which may specify either a con-
stant of 1, or the CL register. The carry flag may act as an
extension of the operand in.two of the rotate instructions,
allowing a bit to be isolated in CF and then tested by a JC
(jump if carry) or INC (jump if not carry) instruction.

String Instructions

Five basic string operations, called primitives, allow
strings of bytes or words to be operated on, one element
(byte or word) at a time. Strings of up to 64k bytes may be
manipulated with these instructions. Instructions are
available to move, compare and scan for a value, as well
as moving string elements to and from the accumulator.
Table 1-7 lists the string instructions. These basic opera-
tions may be preceded by a special one-byte prefix that
causes the instruction to be repeated by the hardware, al-
lowing long strings to be processed much faster than
would be possible with a software loop. The repetitions
can be terminated by a variety of conditions, and a re-
peated operation may be interrupted and resumed.

The string instructions operate similarly in many respects
(refer to Table 1-8). A string instruction may have a
source operand, a destination operand, or both. The hard-
ware assumes that a source string resides in the current
data segment. A segment prefix may be used to override
this assumption. A destination string must be in the cur-
rent extra segment. The assembler checks the attributes of
the operands to determine if the elements of the strings
are bytes or words. However, the assembler does not use
the operand names to address strings. Instead, the con-
tents of register SI (source index) is used as an offset to
address the current element of the source string. Also, the

REP Repeat

REPE/REPZ Repeat while equal/zero

REPNE/REPNZ Repeat while not
equal/not zero

MOVS Move byte or word string

MOVSB/MOVSW Move byte or word string

CMPS Compare byte or word
string

SCAS Scan byte or word string

LODS Load byte or word string

STOS Store byte or word string

contents of register DI (destination index) is taken as the
offset of the current destination string element. These
registers must be initialized to point to the
source/destination strings before executing the string in-
structions. The LDS, LES and LEA instructions are use-
ful in performing this function.

String instructions automatically update SI and/or DI in
anticipation of processing the next string element. Setting
DF (direction flag) determines whether the index registers
are auto-incremented (DF=0) or auto-decremented
(DF =1). If byte strings are being processed, SI and/or DI
is adjusted by 1. The adjustment is 2 for word strings.

Table 1-8 String Instruction Register

and Flag Use
Si Index (offset) for source string
DI Index (offset) for destination
string
CX Repetition counter
AL/AX Scan value
Destination for LODS
Source for STOS
DF . 0 = auto-increment Si, DI
1 = auto-decrement Si, DI
ZF Scan/compare terminator
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If a repeat prefix has been coded, then register CX (count
register) is decremented by 1 after each repetition of the
string instruction. CX must be initialized to the number of
repetitions desired before the string instruction is exe-
cuted. If CX is 0, the string instruction is not executed,
and control goes to the following instruction.

Program Transfer Instructions

The sequence in which instructions are executed in the
8086/8088 is determined by the content of the code seg-
ment register (CS) and the instruction pointer (IP). The
CS register contains the base address of the current code
segment, the 64k portion of memory from which instruc-
tions are currently being fetched. The IP points to the
memory location from which the next instruction is to be
fetched. In most operating conditions, the next instruction
to be executed will have already been fetched and is wait-
ing in the CPU instruction queue. The program transfer
instructions operate on the instruction pointer and on the
CS register; changing the content of these causes normal
sequential operation to be altered. When a program trans-
fer occurs, the queue no longer contains the correct in-
struction. When the BIU obtains the next instruction from
memory using the new IP and CS values, it passes the
instruction directly to the EU and then begins refilling the
queue from the new location.

Four groups of program transfers are available with the
8086/8088 CPU'’s. See Table 1-9. These are unconditional
transfers, conditional transfers, iteration control instruc-
tions, and interrupt-related instructions.

a. Unconditional Transfers

The unconditional transfer instructions may transfer con-
trol to a target instruction within the current code segment
(intrasegment transfer) or to a different code segment (in-
tersegment transfer). The ASM-86 Assembler terms an
intrasegment transfer SHORT or NEAR and an interseg-
ment transfer FAR. The transfer is made unconditionally
any time the instruction is executed.

b. Conditional Transfers

The conditional transfer instructions are jumps that may
or may not transfer control depending on the state of the
CPU flags at the time the instruction is executed. These
18 instructions (see Table 1-10) each test a different com-
bination of flags for a condition. If the condition is ““true”
then control is transferred to the target specified in the
instruction. If the condition is“‘false” then control passes
to the instruction that follows the conditional jump. All
conditional jumps are SHORT, that is, the target must be
in the current code segment and within—128 to +127
bytes of the first byte of the next instruction JMP 00H
jumps to the first byte of the next instruction). Since

Table 1-9 Program Transfer Instructions

UNCONDITIONAL TRANSFERS
CALL Call procedure
RET Return.from procedure
JMP Jump
CONDITIONAL TRANSFERS
JA/JNBE Jump if above/not below
nor equal
JAE/JNB Jump if above or
equal/not below
JB/INAE Jump if below/not above
nor equal
JBE/JNA Jump if below or
equal/not above
JC Jump if carry
JE/JZ Jump if equal/zero
JG/JINLE Jump if greater/not less
nor equal
JGE/JNL Jump if greater or
equal/not less
JL/IJNGE Jump if less/not greater
nor-equal
JLE/JING Jump if less or equal/not
greater
JNC Jump if not carry
JNE/JNZ Jump if not equal/not
zero
JNO Jump if not overflow
JNP/JPO Jump if not parity/ parity
odd
JNS Jump if not sign
JO Jump if overflow
JP/JPE Jump if parity/ parity
even
Js Jump if sign
ITERATION CONTROLS
LOOP Loop
LOOPE/LOOPZ . |Loop if equal/zero
LOOPNE/LOOPNZ | Loop if not equal/not
© lzero i
JCXZ Jump if register CX =0
INTERRUPTS
INT Interrupt
INTO Interrupt if overflow
IRET Interrupt return

1-16
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Table 1-10 Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED “JUMPIF ...”

JA/INBE (CF oRr ZF)=0 above/not below nor equal
JAE/JNB CF=0 above or equal/not below
JB/INAE CF=1 below/not above nor equal
JBE/JNA (CF or ZF)=1 below or equal/not above
JC CF=1 carry

JE/JZ ZF=1 equal/zero

JG/JINLE ((SF xor OF) or ZF)=0 greater/not less nor equal
JGE/JNL (SF xor OF)=0 greater or equal/not less
JL/INGE (SF xor OF)=1 less/not greater nor equal
JLE/ING ((SF xor OF) or ZF)=1 less or equal/not greater
JNC CF=0 not carry

JNE/JINZ ZF=0 not equal/not zero

JNO OF=0 not overflow

JNP/JPO PF=0 not parity/parity odd

JNS SF=0 not sign

Jo OF=1 overflow

JPIJPE PF=1 parity/parity equal

Js SF=1 sign

Note:

‘‘above’’ and ‘‘below’’ refer to the relationship of two unsigned values;

‘‘greater’’ and ‘‘less’’ refer to the relationship of two signed values.

jumps are made by adding the relative displacement of the
target to the instruction pointer, all conditional jumps are
self-relative and are appropriate for position-independent
routines.

¢. Iteration Control

The iteration control instructions can be used to regulate
the repetition of software loops. These instructions use the
CX register as a counter. Like the conditional transfers,
the iteration control instructions are self-relative and may
only transfer to targets that are within—128 to + 127
bytes of themselves, i.e., they are SHORT transfers.

d. Interrupt Instructions

The interrupt instructions allow interrupt service routines
to be activated by programs as well as by external hard-
ware devices. The effect of software interrupts is similar
to hardware-initiated interrupts. However, the processor
does not execute an interrupt acknowledge bus cycle if the
interrupt originates in software or with an NMI.

Processor Control Instructions

The processor control instructions (see Table 1-11) allow
programs to control various CPU functions. One group of
instructions updates flags, and another group is used pri-
marily for synchronizing the 8086 or 8088 to external
events. A final instruction causes the CPU to do nothing.
Except for the flag operations, none of the processor con-
trol instructions affect the flags.

OPERAND ADDRESSING MODES

The 8086 and 8088 access instruction operands in many
different ways. Operands may be contained in registers,
within the instruction itself, in memory, or at I/O ports.
Also, the addresses of memory and I/0 port operands can
be calculated in several different ways. These addressing

Table 1-11 Processor Control Instructions

FLAG OPERATIONS

STC Setcarry flag

CLC Clear carry flag

CMC Complement carry flag
STD Set direction flag

CLD Clear direction flag

STI Setinterrupt enable flag
CLi Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION

HLT Halt until interrupt or reset
WAIT Wait for TEST pin active
ESC Escape to external processor
LOCK Lock bus during next
instruction
NO OPERATION
NOP No operation
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modes greatly extend the flexibility and convenience of
the instruction set. The following paragraphs briefly de-

scribe the register and immediate modes of operand ad-

dressing, and then provide a detailed description of the
memory and I/O addressing modes.

Register and immediate Operands

Instructions that specify only register operands are gener-
ally the most compact and fastest executing of the operand
addressing forms. This is because the register operand
addresses are encoded in instructions in just a few bits,
and because these operands are performed entirely within
the CPU (no bus cycles are run). Registers may serve as
source operands, destination operands, or both.

Immediate operands are constant data contained in an in-
struction. The data may be either 8 or 16 bits in length.
Immediate operands can be accessed quickly because they
are available directly from the instruction queue. Like the
register operand, no bus cycles need to be run to obtain an
immediate operand. The limitations on immediate oper-
ands are that they may only serve as source operands and
that they are constant value

Memory Addressing Modes

Although the EU has direct access to register and immedi-
ate operands, memory operands must be transferred to
and from the CPU over the bus. When the EU needs to
read or write a memory operand, it must pass an offset
value to the BIU. The BIU adds the offset to the (shifted)
content of a segment register producing a 20-bit physical
address and then executes the bus cycle or cycles needed
to access the operand.

a. The Effective Address

The offset that the EU calculates for a memory operand is
called the operand’s effective address or EA. This address
is an unsigned 16-bit number that expresses the operand’s
distance in bytes from the beginning of the segment in
which it resides. The EU can calculate the effective ad-
dress in several different ways. Information encoded in
the second byte of the instruction tells the EU how to cal-
culate the effective address of each memory operand. A
compiler or assembler derives this information from the
statement or instruction written by the programmer. As-
sembly language programmers have access to all address-
ing modes.

The EU calculates the EA by summing a displacement,
the content of a base register and the content of an index
register (see Figure 1-17). Any combination of these
three components may be present in a given instruction.
This allows a variety of memory addressing modes.

The displacement element is an 8-or 16-bit number that is
contained in the instruction. The displacement generally
is derived from the position of the operand name (a varia-
ble or label) in the program. The programmer can also
modify this value or explicitly specify the displacement.

A programmer may specify that either BX or BP is to
serve as a base register whose content is to be used in the
EA computation.

Similarly, either SI or DI may be specified as the index
register. The displacement value is a constant. The con-
tents of the base and index registers may change during
execution. This allows one instruction to access different
memory locations as determined by the current values in
the base and/or index registers. Effective address calcula-
tions with the BP are made using the SS register, by de-
fault, Although either the DS or the ES registers may be
specified instead.

b. Direct Addressing

Direct addressing is the simplest memory addressing
mode (see Figure 1-18). No registers are involved and the
EA is taken directly from the displacement of the instruc-
tion. Direct addressing is typically to access simple varia-
bles (scalars).

c. Register Indirect Addressing

The effective address of a memory operand may be taken
directly from one of the base or index registers (see Fig-
ure 1-19). One instruction can operate on many different
memory locations if the value in the base or index register
is updated appropriately. Any 16-bit general register may
be used for register indirect addressing with the JMP or
CALL instructions.

d. Based Addressing

In based addressing (see Figure 1-20), the effective ad-
dress is the sum of a displacement value and the content of
register BX or BP. Specifying register BP as a base regis-
ter directs the BIU to obtain the operand from the current
stack segment (unless a segment override prefix ‘is
present). This makes based addressing with BP a very
convenient way to access stack data.

Based addressing also provides a simple way to address
structures which may be located at different places in
memory (see Figure 1-21). A base register can be pointed
at the base of the structure and elements of the structure
can be addressed by their displacement from the structure
base. Different copies of the same structure can be ac-
cessed by simply changing the base register.
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Figure 1-17 Memory Address Computation

rOPCODE I MODR/M l

DISPLA

Figure 1-18 Direct Addressing
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e. Indexed Addressing

The effective address is calculated from the sum of a dis-
placement plus the content of an index register (SI or DI)
in index addressing (see Figure 1-22). Indexed address is
often used to access elements in an array (see Figure
1-23). The displacement locates the beginning of the ar-
ray, and the value of the index register selects one element

EMENT =

!

[ OPCODE | MODR/M DISPLAC

BX
B8P

Figure 1-20 Based Addressing
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Figure 1-21 Accessing A Structure
With Based Addressing

( the first element is selected if the index register contains
0). Since all array elements are the same length, simple
arithmetic on the index register may select any element.

l OPCODE MOD R/M DISPLAC|EMENT
S! |
L OR [
DI

Figure 1-22 Indexed Addressing

HIGH ADDRESS

¢ N
ARRAY (8)
r  oispLacemenT | ARRAY (7) ] DISPLACEMENT |- 1
| ARRAY (6) |
| ARRAY (5) |
| pNDEXREGISTER ARRAY (4) INDEXREGISTER. |
I L 14 ARRAY (3) I 2 ] |
| L] ARRAY (2) [] |
L L EA ARRAY (1) |e——d EA l_l
——————— | ARRAY(0) |* — — — — — — —
|

~—1WORD—>
LOW ADDRESS

Figure 1-23 Accessing an Array
With Indexed Addressing
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Figure 1-24 Based Index Addressing

f. Based Index Addressing

Based index addressing generates an effective address that
is the sum of a base register, an index register and a dis-
placement (see Figure 1-24). This mode of addressing is
very flexible because two address components can be var-
ied at execution time.

Based index addressing provides a convenient way for a
procedure to address an array allocated on a stack (see
Figure 1-25). Register BP can contain the offset of a ref-
erence point on the stack, typically the top of the stack
after the procedure has saved registers and allocated local
storage. The offset of the beginning of the array from the
reference point can be expressed by a displacement value,
and the index register can be used to access individual
array elements. Arrays contained in structures and matri-
ces (two-dimensional arrays) can also be accessed with
based indexed addressing.

g. String Addressing

String instructions do not use the normal memory ad-
dressing modes to access operands. Instead, the index
registers are used implicitly (see Figure 1-26). When a
string instruction is executed, SI is assumed to point to the
first byte or word of the source string. DI is assumed to
point at the first byte or word of the destination string. In
a repeated string operation, the CPU’s automatically ad-
just SI and DI to obtain subsequent bytes or words. Note
that for string instructions DS is the default segment reg-
ister to SI and ES is the default segment register for DI.
This allows string instructions to easily operate on data
located anywhere within the one megabyte address space.

1/0 Port Addressing

Any of the memory operand addressing modes may be
used to access an I/O port if the port is memory mapped,
For example, a group of terminals can be accessed as an
“array”. String instructions can also be used to transfer
data to memory-mapped ports with an appropriate hard-
ware interface.
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Figure 1-25 Accessing a Stacked Array with Based Index Addressing

Two different addressing modes can be used to access
ports located in the I/O space (see Figure 1-27). The port
number is an 8-bit immediate operand for direct address-
ing. This allow fixed access to ports numbered 0—255.
Indirect I/O port addressing is similar to register indirect
addressing of memory operands. The port number is
taken from register DX and can range from 0 to 65,535.
By previously adjusting the content of register DX, one
instruction can access any port in the I/0 space. A group
of adjacent ports can be accessed using a simple software
loop that adjusts the value of DX.

INSTRUCTION SET SUMMARY

The following paragraphs, and tables, provide detailed in-
formation for the 8086/8088 instruction set. Tables 1-12,
1-13 and 1-14 explain the symbols that are used in Table
1-16, the instruction set reference data table. Machine
language instruction encoding and decoding information
is provided in the paragraphs immediately following the
instruction set summary.

L
L

S|

+—— sourceea |
}—>|pesTINATIONEA]

DI

Figure 1-26 String Operand Addressing

1-21

Instruction timings are presented as the number of clock
periods required to execute a particular form of the in-
struction (register-to-register, immediate-to-memory,
etc.). If the system is running with a 5 MHz maximum
clock, the maximum clock period is 200ns; at 8MHz, the
clock period is 125ns. When memory operands are used,
“+EA” indicates a variable number of additional clock
periods needed to calculate the operand’s effective ad-
dress. Table 1-15 lists all effective address calculation
times.

OPCODE | DATA

I PORT ADDRESSI

DIRECT PORT ADDRESSING

IOPCODEI

i
| DX ~}—| PorT ADDRESS|

INDIRECT PORT ADDRESSING

Figure 1-27 1/O Port Addressing
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Table 1-12 Key to Instruction Coding Formats

IDENTIFIER USED IN EXPLANATION
destination data transfer, A register or memory location that may contain data
bit manipulation operated on by the instruction, and which receives (is
replaced by) the result of the operation.
source data transfer, A register, memory location or immediate value that is
arithmetic, used in the operation, but is not altered by the instruc-

source-table

target

short-label

accumulator

port

source-string

dest-string

count

interrupt-type

optional-pop-value

external-opcode

bit manipulation

XLAT

JMP, CALL

cond. transfer,
iteration control

IN, OUT

IN, OUT

string ops.

string ops.

shifts, rotates

INT

RET

ESC

tion.

Name of memory translation table addressed by register
BX.

A label to which control is to be transferred directly, or a
register or memory location whose content is the
address of the location to which control is to be transfer-
red indirectly.

A label to which control is to be conditionally
transferred; must lie within —128 to +127 bytes of the first
byte of the next instruction.

Register AX for word transfers, AL for bytes.

An 1/0 port number; specified as an immediate value of
0-255, or register DX (which contains port number in
range 0-64k).

Name of a string in memory that is addressed by register
SlI; used only to identify string as byte or word and
specify segment override, if any. This string is used in
the operation, but is not altered.

Name of string in memory that is addressed by register
DI; used only to identify string as byte or word. This
string receives (is replaced by) the result of the opera-
tion.

Specifies number of bits to shift or rotate; written as
immediate value 1 or register CL (which contains the
count in the range 0-255).

Immediate value of 0-255 identifying interrupt pointer
number.

Number of bytes (0-64k, ordinarily an even number) to
discard from stack.

Immediate value (0-63) that is encoded in the instruction
for use by an external processor.
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Table 1-13 Key to Flag Effects

Table 1-14 Key to Operand Types

IDENTIFIER EXPLANATION IDENTIFIER EXPLANATION
(blank) not altered (no operands) | No operands are written
0 cleared to 0 reg|s;er :n:- or 16-bit general register
reg1 16-bit | i
1 set1o 1 g i genera. register
] seg-reg A segment register
X ts:::;:llteared according accumulator | Register AX or AL
. . immediate A constant in the range
u undefined—contains no 0-FFFFH
reliable value immed8 A constant in the range 0-FFH
R restored from previously- memory An 8- or 16-bit memory
saved value location"
mem8 An 8-bit memory locationV
mem16 A 16-bit memory location™

The timings given for control transfer instructions include
any additional clocks required to reinitialize the instruc-
tion queue as well as the time required to fetch the target
instructions. For instructions executing on an 8086, four
clocks should be added for each instruction reference to a
word operand located at an odd memory address to reflect
any additional operand bus cycles required. Also, for in-
structions executing on an 8088, four clocks should be
added to each instruction reference to a 16-bit memory
operand. This includes stack operations. The required
number of data references is listed for each instruction in
Table 1-16 to aid in this calculation.

All of the instruction times given are of the form “n(m)”’,

“where‘n” is the number of clocks required for the 8086
to execute the given instruction, and “m” is the number of
clocks required by the 80186 for the same instruction.
The number of clocks required for the 8088 will be n for
8-bit operations and n + (4 * transfers) for 16-bit opera-
tions. For the 80188, the number of clocks will be m for
8-bit operations and m + (4 * transfers) for 16 bit
operations.

For instructions which repeat a specified number of times,
the values m and n each consist of two parts in the relation
“x + y/rep”, where x is the initial number of clocks re-

~ quired to start the instruction, and y is the number of
clocks corresponding to the number of iterations speci-
fied. For 16-bit repeated instructions on the 8088 and
80188, when the expression “(4 * transfers)” has to be
added to m or n, it should be added to the y part of the
expression before it is multiplied by the number of
repetitions.

Several additional factors can alter the actual execution
time from the figures shown in Table 1-16. The time pro-
vided assumes that the instruction has already been pre-
fetched and that it is waiting in the instruction queue. This
assumption is valid under most, but not all, operating con-
ditions. A series of fast executing (fewer than two clocks
per opcode byte) instructions can drain the queue and in-
crease execution time. Execution time is also slightly

source-table
source-string
dest-string
DX
short-label
near-label
far-label
near-proc
far-proc

memptri6

memptr32

regptri6

repeat

Name of 256-byte translate

table

Name of string addressed by
register S|

Name of string addressed by
register DI

Register DX

A label within -128 to +127
bytes of the end of the instruc-
tion

A label in current code
segment
A label in another code
segment

A procedure in current code
segment

A procedure in another code
segment

A word containing the offset of
the location in the current code
segment to which control is to
be transferred

A doubleword containing the
offset and the segment base
address of the location in
another code segment to which
control is to be transferred

A 16-bit general register
containing the offset of the
location in the current code
segment to which control is to
be transferred

A string
prefix

instruction repeat

MAny addressing mode—direct, register in-
direct, based, indexed, or based
indexed—may be used
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Table 1-15 Effective Address Calculation Time

EA COMPONENTS CLOCKS*
Displacement Only 6
‘Base orindex Only (BX,BP,SI,DI) 5
Displacement
+ 9

Base or Index (BX,BP,SI,DI) B
Base BP+DI, BX+SI | 7

+
Index BP +SI, BX+ DI 8
Displacement BP + DI+ DISP 11

+ BX + Sl+DISP
Base

+ BP +SI+DISP 12
Index BX + DI+ DISP

*Add 2 clocks for segment override

effected by the interaction of the EU and BIU when mem-
ory operands must be read or written. If the EU needs
access to memory, it may have to wait for up to one clock
if the BIU has already started an instruction fetch bus cy-
cle. (The EU can detect the need for a memory operand
and post a bus request far enough in advance of its need

for this operand to avoid waiting a full 4-clock bus cycle).
If the queue is full the EU does not have to wait because
the BIU is idle. (This assumes the BIU can obtain the bus
on demand and no other processors are competing for the
bus).

With typical instruction mixes, the time actually required
to execute a sequence of instructions will be within
5—10% of the sum of the individual timings provided in
Table 1-16. Cases can be constructed, however, in which
execution time may be much higher than the sum of the
figures provided in the table. The execution time for a
given sequence of instructions is always repeatable, as-
suming comparable external conditions (interrupts, co-
processor activity, etc.). If the execution time for a given
series of instructions must be determined exactly, the in-
structions should be run on an execution vehicle such as
the iSBC 88/25 or 86/30 board.

MACHINE INSTRUCTION ENCODING AND
DECODING

Machine instruction encoding and decoding is primarily
the concern of the programmer. It is presented here for
the hardware designer since such encoding and decoding

Table 1-16 Instruction Set Reference Data

AAA (n6 operands) ODITSZAPC
AAA ASCII adjust for addition Flags UUXUX
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 8(8) — 1 AAA
‘ AAD (no operands) ODITSZAPC
AAD ASCII adjust for division Flags U XXUXU
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 60(15) — 2 ADD
AAM (no operands) ODITSZAPC
AAM ASCII adjust for multiply Flags XXUXU
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 83(19) — 2 AAM
A AAS (no operands) ODITSZAPC
AAS ASCII adjust for subtraction Flags U UUXUX
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 8(7) — 1 | AAS

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word

transfer.
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Table 1-16 Instruction Set Reference Data (continued)

ADC destination, source oDIT S Z PC
ADC Add with carry Flags XXX
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3(3) — 2 ADC AX, Sl
register, memory 9(10)+EA 1 2-4 | ADCCX, BETA[SI]
memory, register 16(10)+ EA 2 2-4 | ADC ALPHA [BX]SI], DI
register, immediate 4(4) — 3-4 | ADC BX, 256
memory, immediate 17(16)+EA 2 3-6 | ADC GAMMA, 30H
accumulator, immediate 4(3-4) — 2-3 | ADCAL,5
ADD destination, source ODITSZAPC
ADD Addition Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3(3) — 2 ADD CX, DX
register, memory 9(10)+EA 1 2-4 | ADD DI, [BX],ALPHA
memory, register 16(10)+EA 2 2-4 | ADD TEMP, CL
register, immediate 4(4) — 3-4 | ADDCL,2
memory, immediate 17(16)+EA 2 3-6 | ADD ALPHA, 2
accumulator, immediate 4(3-4) — 2-3 | ADD AX, 200
AND destination, source ; ODITSZAPC
AND Logical and Flags (0] XXUXO
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3(3) — 2 AND AL, BL
register, memory 9(10)+EA 1 2-4 | AND CX, FLAB WORD
memory, register 16(10)+EA 2 2-4 | AND ASCII [DI], AL
register, immediate 4(4) — 3-4 | AND CX, OFOH
memory, immediate 17(16)+EA 2 3-6 | AND BETA, 01H
accumulator, immediate 4(3-4) — 2-3 | AND AX, 010100008
BOUND destination, source ODITSZAPC
BOUND Array bounds check Flags
Operands Clocks | Transfers* | Bytes Coding Example
register, memory (35) 2 2 BOUND AX, ALPHA
CALL target ODITSZAPC
CALL Call a procedure Flags XXXXX
Operands Clocks | Transfers* | Bytes Coding Example
near-proc 19(14) 1 3 CALL NEAR_PROC
far-proc 28(23) 2 5 CALL FOR_PROC
memptr 16 21(19)+EA 2 2-4 | CALL PROC__TABLE [SI]
regptr 16 16(13) 1 2 CALL AX
memptr 32 37(38)+EA 4 2-4 | CALL [BX].TASK[SI]
CBW (no operands) ODITSZAPC
CBW Convert byte to word Flags UuUuXUX
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2(2) — 1 CcBW

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word

transfer.
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Table 1-16 Instruction Set Reference Data (continued)
CcLC ' CLC (no operands) ODITSZAPC

Clear carry flag Flags (o}
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2(2) — 1 CLC
CLD (no operands) ODITSZAPC
CLD | Clear direction flag Flags o
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) . 2(2) — 1 CLD '
CLI (no operands) ODITSZAPC
CLI Clear interrupt flag Flags o
Operands | Clocks | Transfers* | Bytes Coding Example
(no operands) 2(2) — 1 CLi
CMC (no operands) ODITSZAPC
cmC Complement carry flag Flags X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2(2) — 1 CMC
CMP destination, source - ODIT S Z APC
CMP Compare destination to source Flags XX XX
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3(3) — 2 CMP BX, CX
register, memory 9(10)+EA 1 | 2-4 | CMPDH, ALPHA
memory, register 9(10)+EA 1 24 | CMP[BP+2], SI
register, immediate 4(3)+EA - 34 |CMPBL,02H .
memory, immediate 10(10) + EA 1 3-6 | CMP [BX].RADAR [DI], 3420H
accumulator, immediate 4(3-4) — 2-3 | CMP AL, 00010000B
CMPS des-string, source-string ODITSZAPC
CMPS Compare string Flags XX XXX
Operands ‘Clocks | Transfers* Bytes Coding Example
dest-string, source-string | 22(22) 2 1 CMPS BUSS1, BUFF2
(repeat) dest-string, source-string 9+ 22/rep 2Irep 1 REPE CMPS ID, KEY
(5+22/rep)
CWD (no operands) ODITSZAPC
CwWD ‘ Convert word to doubleword Flags
Operands | Clocks | Transfers* Bytes Coding Example
(no operands) - 5(4) . .- 1 CWD
, DAA (no operands) ODIT S Z APC
DAA Decimal adjust for addition Flags X X X X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) o 4(4) - 1 DAA '

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word
transfer.
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Table 1-16 Instruction Set Reference Data (continued)

DAS (no operands) ODITSZAPC
DAS Decimal adjust for subtraction Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4(4) — 1 DAS
DEC destination ODITSZAPC
DEC Decrement by 1 Flags X X X X
Operands Clocks | Transfers* | Bytes Coding Example
reg 16 3(3) — 1 DEC AX
reg8 3(3) — 2 DEC AL
memory 15(15)+ EA 2 2-4 | DEC ARRAY [SI]
DIV source ODITSZAPC
DIV Division, unsigned Flags U uuuuu
Operands Clocks | Transfers* | Bytes Coding Example
reg 8 80-90(29) — 2 DIV CL
reg 16 144-162(38) — 2 DIV BX
mem 8 86-96 + EA 1 2-4 DIV ALPHA
(35)
mem 16 150-168 + 1 2-4 | DIV TABLE [SI]
EA(94)
ENTER ODITSZAPC
ENTER Procedure entry Flags
Operands Clocks | Transfers* | Bytes Coding Example
locals, level L=0(15) — 4 ENTER 28, 3
L=1(25)
L>1
(22+
16(n—1))
ESC external-opcode, source ODITSZAPC
ESC Escape Flags
Operands Clocks | Transfers* | Bytes Coding Example
immediate, memory 8(6)+EA 1 2-4 | ESC 6.ARRAY [SI]
immediate, register 2(2) — 2 ESC 20, AL
HLT (no operands) ODITSZAPC
HLT Halt Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2(2) — 1 HLT

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word

transfer.
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Table 1-16 Instruction Set Reference Data (continued)

IDIV source ODITSZAPC
IDIV Integer division Flags Uuuuu
Operands Clocks | Transfers* | Bytes Coding Example
reg 8 101-112 - 2 IDIV BL
(44-52)
reg 16 165-184 — 2 IDIV CX
‘ (53-61)
mem 8 107-118+ 1 2-4 | IDIV DIVISOR__BYTE [SI]
EA(50-58)
mem 16 171-190 + 1 2-4 | IDIV [BX].DIVISOR_WORD
EA(58-67)
IMUL source ODITSZAPC
IMUL Integer multiplication Flags X Uuuuux
Operands Clocks | Transfers* | Bytes Coding Example
immed 8 (22-24) — 3 IMUL 6
immed 16 (29-32) — 4 IMUL 20
reg 8 80-98 — 2 IMUL CL
(25-28)
reg 16 128-154 — 2 IMUL BX
(34-37)
mem 8 86-104 + 1 2-4 | IMUL RATE_BYTE
EA(31-34) :
mem 16 134-160 + 1 2-4 | IMUL RATE_WORD [BP] [DI]
EA(40-43)
IN accumulator, port ODITSZAPC
IN Input byte or word Flags
Operands Clocks | Transfers* | Bytes Coding Example
accumulator, immed 8 10(10) 1 2 IN AL, OFFEAH
accumulator, DX 8(8) 1 1 IN AX, DX
INC destination ODITSZAPC
INC Increment by 1 Flags X XX XX
Operands Clocks | Transfers* | Bytes Coding Example
reg 16 3(3) — 1 INC CX
reg 8 3(3) — 2 INC BL
memory 15(15)+ EA 2 2-4 | INC ALPHA [DI] [BX]
INS source-string, port ODITSZAPC
INS Input string Flags
Operands Clocks | Transfers* | Bytes Coding Example
dest-string, port (14) 2 1 INS BUFF1, USART D
(repeat) dest-string, port (9+8/rep) 2/rep 1 REP INS BUFF1, USART D

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word

transfer.
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Table 1-16 Instruction Set Reference Data (continued)

INT interrupt-type ODITSZAPC
INT Interrupt Flags oo
Operands Clocks | Transfers* | Bytes Coding Example
mmed 8 (type =23) 52(45) 5 1 INT 3
immed 8 (type #3) 52(47) 5 2 INT 67
INTR (external maskable interrupt) ODITSZAPC
INTRT Interrupt if INTER and IF =1 Flags = " 50
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 61 7 N/A | NA
INTO (no operands) ODITSZAPC
INTO Interrupt if overflow Flags 00
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 53 or 5 1 INTO
4(48 or 4)
IRET (no operands) ODITSZAPC
IRET Interrupt Return Flags RRRRRRRRR
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 32(28) 3 1 IRET
JA/JNBE short-label ODITSZAPC
JA/UNBE Jump if abovellump if not below nor equal| 1298
Operands Clocks | Transfers* | Bytes Coding Example
Short-label 16 or C— 2 JA ABOVE
4(13 or 4)
JAE/JUNB short-label ODITSZAPC
JAE/UNB Jump if above or equallJump if not below Flags
Operands Clocks | Transfers* | Bytes Coding Example
| short-label 16 or — 2 JAE ABOVE_EQUAL
4(13 or 4)
JB/UNAE ODITSZAPC
JB/JNAE Jump if below/Jump if not above nor equal Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or — 2 JB BELOW
4(13 or 4)
JBE/JUNA short-label ODITSZAPC
JBE/UNA Jump if below or equal/Jump if not above Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or — 2 JNA NOT_ABOVE
4(13 or 4)

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word

transfer.

1INTR is not an instruction, it is included in table 1-16 only for timing information.
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Table 1-16 Instruction Set Reference Data (continued)

JC short-label ODITSZAPC
JC Jump if carry Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or — 2 JC CARRY__SET
4(13 or 4)
JCXZ short-label ODITSZAPC
JCXZ Jump if CX is zero Flags
Operands Clocks .| Transfers* | Bytes Coding Example
short-label 16 or — 2 JCXZ COUNT_DONE
4(16 or 5)
JE/NZ short-label ODITSZAPC
JENZ Jump if equalldump if zero Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or — 2 JZ ZERO
4(13 or 4)
JG/JNLE short-label ODITSZAPC
JG/UNLE Jump if greater/lJump if not less nor equal Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or — 2 JG GREATER
4(13 or 4)
JGE/JNL short-label ODITSZAPC
JGE/JNL Jump if greater or equallJump if not less Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label : 16 or — 2 JGE GREATER__EQUAL
4(13 or 4)
JL/UNGE short-label ODITSZAPC
JL/UNGE Jump if lessidump if not greater nor equal Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or — 2 JL LESS
4(13 or 4)
JLE/ING short-label ODITSZAPC
-JLE/ JNG Jump if less or equal/Jump if not greater Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or — 2 JNG NOT__GREATER
4(13 or 4)

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word

transfer.
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Table 1-16 Instruction Set Reference Data (continued)

JMP target ODITSZAPC
JMP Jump Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 15(13) — 2 JMP SHORT
near-label 15(13) — 3 JMP WITHIN_SEGMENT
far-label 15(13) — 5 JMP FAR_LABEL
memptr 16 18(17)+EA 1 2-4 | JMP [BX].TARGET
regptr 16 11(11) — 2 JMP CX
memptr 32 24(26)+ EA 2 2-4 | JMP OTHER.SEG [SI]
JNC short-label ODITSZAPC
JNC Jump if not carry Flags
Operands Clocks | Transfers* | Bytes | Coding Example
short-label 16 or — 2 JNC NOT__CARRY
4(13 or 4)
JNE/JNZ short-label ODITSZAPC
JNE/UNZ Jump if not equal/Jump if not zero Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or — 2 JNE NOT_EQUAL
4(13 or 4)
JNO short-label ODITSZAPC
JNO Jump if not overflow Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or — 2 JNO NO__OVERLOW
4(13 or 4)
JNP/JPO short-label ODITSZAPC
JNP/JPO Jump if not paritylJump if parity odd Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or — 2 JPO ODD__PARITY
4(13 or 4)
JNS short-label ODITSZAPC
JNS Jump if not sign Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or — 2 JNS POSITIVE
4(13 or 4)
JO short-label ODITSZAPC
JO Jump if overflow Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or —_ 2 JO SIGNED__OVRFLW
4(13 or 4)

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word

transfer.
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Table 1-16 Instruction Set Reference Data (continued)

JP/JPE short-label

ODITSZAPC

JP/JPE Jump if paritylJump if parity even Flggs
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or — 2 JPE EVEN__PARITY
4(13 or 4)
JS short-label ODITSZAPC
JS Jump if sign Flags
Operands Clocks | Transfers* | Bytes Coding Example
short-label 16 or — 2 JS NEGATIVE
4(13 or 4)
LAHF (no operands) ‘ODITSZAPC
LAHF Load AH from flags Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4(2) — 1 LAHF ‘
LDS destination, source . ODITSZAPC
LDS Load pointer using DS Flags .
Operands Clocks | Transfers* | Bytes Coding Example
reg 16, mem 16 16(18)+EA 2. 2-4 | LDS SI, DATA, SEG [DI]
LEA destination, source ODITSZAPC
LEA Load effective address Flags )
Operands Clocks | Transfers* | Bytes Coding Example
reg 16, mem 16 2(6)+EA — 2-4 | LEABX, [BP][DI]
LEAVE (no operand) ODITSZAPC
LEAVE Restore stack for procedure exit Flags UuUXuX
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 8) 1 1 LEAVE
LES destination, source ‘ODITSZAPC
LES Load pointer using ES Flags
Operands’ Clocks | Transfers* | Bytes Coding Example
reg 16, mem 32 |16(18)+EA 2 2-4 | LES DI, [BX], TXT_BUFF
LOCK (no operands) ODITSZAPC
LOCK Lock bus Flags
Operands Clocks | Transfers* :| Bytes Coding Example
(no operands) 2(2) — 1 LOCK XCHG FLAG, AL

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word

transfer.
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Table 1-16 Instruction Set Reference Data (continued)

LODS source-string ODITSZAPC
LODS Load string Flags »
Operands Clocks | Transfers* | Bytes Coding Example
source-string 12(10) 1 1 LODS CUSTOMER__NAME
(repeat) source-string 9+ 13/rep 1/rep 1 REP LODS NAME
(6+11/rep)
LOOP short-label ODITSZAPC
LOOP Loop Flags
Operands Clocks | Transfers* | Bytes Coding Example
short label 17/5(15/5) — 2 LOOP AGAIN
LOOPE/LOOPZ short label ODITSZAPC
LOOPE/LOOPZ Loop if equal/Loop if zero Flags
Operands Clocks | Transfers* | Bytes Coding Example
short label 18 or — 2 LOOPE AGAIN
6(16 or 6)
LOOPNE/LOOPNZ short label ODITSZAPC
LOOPNE/LOOPNZ Loop if not equal/Loop if not zero Flags
Operands Clocks | Transfers* | Bytes Coding Example
short label 19or — 2 LOOPNE AGAIN
5(16 or 5)
NMI (external nonmaskable interrupt) ODITSZAPC
NMIT Interrupt if NMI =1 Flags (o X6}
Operands ' Clocks | Transfers” | Bytes Coding Example
(no operands) . 50 5 N/A | NA
MOV destination, source ODITSZAPC
MOV Move Flags
Operands Clocks | Transfers® | Bytes ' Coding Example
memory, accumulator 10(9) 1 3 MOV ARRAY [Sl], AL
accumulator, memory 10(8) 1 3 MOV AX, TEMP__RESULT
register, register 2(2) — 2 MOV AX, CX
register, memory 8(12) +EA 1 2-4 | MOV BP, STACK__TOP
memory, register 9(9)+EA 1 2-4 | MOV COUNT [DI], CX
register, immediate 4(3-4) — 23 |MOVCL,2
memory, immediate 10(12-13) 1 3-6 | MOV MASK [BX][SI], 2CH
+EA
seg-reg, reg 16 2(2) — 2 MOV ES, CX
seg-reg, mem 16 8(9)+EA 1 2-4 | MOV DS, SEGMENT__BASE
reg 16, seg-reg 2(2) — 2 MOV BP, SS
memory, seg-reg 9(11)+EA 1 2-4 | MOV [BX], SEG__SAVE, CS

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd.address. For the 8088 (80188) add four clocks for each 16-bit word
transfer.

1tNMI is not an instruction, it is included in table 1-16 only for timing information.
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Table 1-16 Instruction Set Reference Data (continued)

‘ MOVS dest-string, source-string o ODITSZAPC
MOVS Move string Flags '

‘ ‘Operands | Clocks | Transfers* | Bytes Coding Example
dest-string, source-string 18(9) 2 1 MOVS LINE EDIT__DATA .
(repeat) dest-string, source-string 9+17/rep 2/rep 1 REP MOVS SCREEN, BUFFER

(8+8/rep)
\ MOVSB/MOVSW (no operands) ODITSZAPC
MovsB/ MOVSW Move string (byte/word) Flags
Operands | Clocks ' | Transfers* | Bytes Coding Example
(no operands) 18(9) 2 1 MOVSB
(repeat) (no operands) 9+ 17/rep 2/rep 1 REP MOVSW
- (8+8/rep)
- | MuL source e ODITSZAPC
MUL. ‘ Multiplication, unsigned Flags _UuuuXx
Operands Clocks | Transfers* | Bytes Coding Example
reg 8 - 70-77 — 2 MUL BL
o (26-28) o B
reg 16 ' 118-133 — 2 | MULCX
(35-37) , g :
mem 8 e , © | 76-83+ | 1 2-4 | MUL MONTH [SI]
EA(32-34)
mem 16 124-139+ 1 2-4 | MUL BAUD__RATE
‘ EA(41-43) o
NEG destination : ODITSZAPC
NEG Negats = - Flags = ,
Operands Clocks | Transfers* | Bytes Coding Example
register 3(3) — 1 2" |NEGAL
memory 16(3)+ EA 2 “| 2-4 | NEG MULTIPLIER
[0 if destination is 0
NOP (no operands) ODITSZAPC
NOP : No Operation Flags ‘ .
Operands ' Clocks | Transfers* | Bytes Coding Example
| (no operands) 3(3) — 1 NOP
NOT destination ODITSZAPC
NOT Logical not Flags .
Operands Clocks | Transfers* | Bytes Coding Example
register _ 3(3) — | 2 |NoTAX ‘
memory ' 16(3)+ EA 2 2-4 | NOT CHARACTER

*For the 8086 (80186) add four clocks for'each 16-bit word transfer with an ‘Qdd address. For the 8088 (80188) add four clocks for each 16-bit word
transfer.
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Table 1-16 Instruction Set Reference Data (continued)

OR destination, source ODITSZAPC
OR Logical inclusive or Flags o XXUXO
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3(3) — 2 ORAL, BL
register, memory 9(10)+ EA 1 2-4 | ORDX, PORT__ID DI}
memory, register 16(10)+EA 2 2-4 | ORFLAG_BYTE,CL
accumulator, immediate 4(3-4) — 2-3 | ORAL, 011011008
register, immediate 4(4) — 3-4 |ORCX,01H
memory, immediate 17(16)+EA 2 3-6 | OR[BX], CMD__WORD, 0OCFH
OUT port, accumulator ODITSZAPC
ouT Output byte or word Flags
Operands Clocks | Transfers* | Bytes Coding Example
immed 8, accumulator 10(9) 1 2 OUT 44, AX
DX, accumulator 8(7) 1 1 OUT DX, AL
OUTS port, source-string ODITSZAPC
OouUTS Output string Flags
Operands Clocks | Transfers* | Bytes Coding Example
port, source-string (14) 2 1 OUTS PORT2, BUFF2
(repeat) port, source-string (8)+ 8/rep) 2/rep 1 REP OUTS PORT2, BUFF2
POP destination ODITSZAPC
POP Pop word off stack Flags
Operands Clocks | Transfers* | Bytes Coding Example
register 8(10) 1 1 POP DX
seg-reg (CS illegal) 8(8) 1 1 POP DS
memory 17(20)+EA 2 2-4 | POP PARAMETER
POPA (no operands) ODITSZAPC
POPA Pop all registers Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) (51) 8 1 POPA
POPF (no operands) ODITSZAPC
POPF Pop all registers Flags cRRRRRRRR
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 8(8) 1 1 POPF
PUSH source ODITSZAPC
PUSH Push word onto stack Flags
Operands Clocks | Transfers* | Bytes Coding Example
register 11(10) 1 1 PUSH SI
seg-reg (CS legal) 10(9) 1 1 PUSH ES
memory 16(16)+EA 2 2-4 | PUSH DRETURN__CODE [SI]

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word

transfer.
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Table 1-16 Instruction Set Reference Data (continued)

| PUSHA (no operands) ODITSZAPC
PUSHA Push all registers Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) (36) 8 4 PUSHA
PUSHF (no operands) ODITSZAPC
PUSHF » Push flags onto stack Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 10(9) 1 1 PUSHF
RCL destination, count ODITSZAPC
RCL Rotate left through carry Flags X C
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2(2) — 2 RCL CX, 1
register, CL 8+4/ — 2 RCL AL, CL
bit(5 + 1/bit)
memory, 1 15(15)+ EA 2 24 | RCLALPHA,1
memory CL 20+4/ 2 2-4 | RCL[BP], PARM,CL
bit(17 +
1/bit) + EA
register, n (5+ 1/bit) — 3 RCLCX, 5
memory, n (17 + 1/bit) 2 3-5 | RCLALPHA,5
RCR destination, count ODITSZAPC
RCR Rotate right through carry Flags C
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2(2) — 2 RCR BX, 1
register, CL 8+4/ — 2 RCRBL, CL
bit(5 + 1/bit)
memory, 1 15(15)+ EA 2 2-4° | RCR [BX], STATUS, 1
memory CL 20+4/ 2 2-4 | RCR ARRAY, [DI], CL
bit(17 +
1/bit)+ EA
register, n (5+ 1/bit) — 3 RCR BX, 5
memory, n (17 + 1/bit) 2 3-5 | RCRALPHA, 5
REP (no operands) ODITSZAPC
REP Repeat string operation Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2(2) — 1 REP MOVS DEST, SRCE

REPE/REPZ (no operands) ~ODITSZAPC
REPE/REPZ Repeat string operation while equal/ Flags
while zero
Operands Clocks | Transfers* | Bytes Coding Example

(no operands)

2(2) -

1

REPE CMPS DATA, KEY

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word

transfer.
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Table 1-16 Instruction Set Reference Data (continued)

REPNE/REPNZ (no operands) ODITSZAPC
REPNE/REPNZ Repeat string operation while Flags UUXUX
not equal/not zero
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2(2) — 1 REPNE SCAS INPUT__LINE
RET optional-pop-value ODITSZAPC
RET Return from procedure Flags
Operands Clocks | Transfers* | Bytes Coding Example
(intra-segment, no pop) 16(16) 1 1 RET
(intra-segment, pop) 20(18) 1 3 RET 4
(inter-segment, no pop) 26(22) 2 1 RET
(inter-segment, pop) 25(25) 2 3 RET 2
ROL. destination, count ODITSZAPC
ROL Rotate left Flags X
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2(2) —_ 2 ROL BX, 1
register, CL 8+4/ — 2 ROL DI, CL
bit(5 + 1/bit)
memory, 1 15(15)+EA 2 2-4 | ROL FLAG__BYTE [DI},1
memory CL 20+4/ 2 2-4 | ROLALPHA, CL
bit(17 +
1/bit)+ EA
register, n (5+ 1/bit) — 3 ROL BX, 5
memory, n (17 + 1/bit) 2 3-5 | ROLBETA,5
ROR destination, count ODITSZAPC
ROR Rotate right Flags X X
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2(2) — 2 ROR BX, 1
register, CL 8+4/ — 2 ROR BX, CL
bit(5 + 1/bit)
memory, 1 15(15)+ EA 2 2-4 | ROR PORT__STATUS, 1
memory CL 20+4/ 2 2-4 | ROR CMD__WORD, CL
bit(17 +
1/bit) + EA
register, n (5+ 1/bit) — 3 RORBX, 5
memory, n (17 + 1/bit) 2 3-5 | RORBETA,5
SAHF (no operands) ODITSZAPC
SAHF Store AH into flags Flags RRRRR
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4(3) — 1 SAHF

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word

transfer.
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Table 1-16 Instruction Set Reference Data (continued)

SAL/SHL destination ODITSZAPC
SAL/SHL Shift arithmetic left/Shift logical left Flags x X
Operands ) Clocks | Transfers* | Bytes Coding Example
register, 1 . 2(2) — 2 SALAL, 1
register, CL 8+4/ — 2 SAL DI, CL
bit(5 + 1/bit)
memory, 1 15(15)+EA| 2 2-4 | SAL [BX], OVERDRAW, 1
memory, CL ‘ 20+4/ 2 2-4 | SAL STORE__COUNT, CL
bit(17 +
1/bit)+ EA .
register, n (5+ 1/bit) — 3 SAL AH, 5
memory, n (17 + 1/bit) 2 3-5 | SALALPHA,5
SAR destination, source ODITSZAPC
SAR Shift arithmetic right Flags y X X U X X
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 : 2(2) — 2 SAR DX, 1
register, CL 8+4/ - 2 SARDI, CL
: bit(5 + 1/bit)
memory, 1 15(15)+ EA 2 2-4 | SAR N__BLOCKS, 1
memory CL 20+ 4/ 2 2-4 | SARN__BLOCKS, CL
bit(17 +
1/bit)+ EA
register, n (5+ 1/bit) — 3 SAR DX, 5
memory, n (17 + 1/bit) 2 3-5 | SARDGLTH, 5
SBB destination, source ODITSZAPC
SBB Subtract with borrow ) Flags X XX XXX
Operands Clocks | Transfers® | Bytes Coding Example
register, register 3(3) — 2 SBB BX, CX
register, memory 9(10)+EA 1 2-4 | SBB DI, [BX], PAYMENT
memory, register 16(10)+EA 2 2-4 | SBB BALANCE, AX
accumulator, immediate 4(3-4) — 2-3 | SBBAX, 2
register, immediate 4(4) — 34 |SBBCL,1
memory, immediate 17(16)+EA 2 3-6 | SBB COUNT, [SI], 10
SCAS dest-string ODITSZAPC
SCAS Scan string Flags X X X X X
Operands Clocks | Transfers* | Bytes Coding Example
dest-string 15(15) 1 1. | SCAS INPUT__LINE
(repeat) dest-string 9+ 15/rep 1/rep 1 REPNE SCAS BUFFER
(5+ 15/rep)

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word
transfer. ' '
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Table 1-16 Instruction Set Reference Data (continued)

SEGMENT override prefix ODITSZAPC
SEGMENTT Override to specified segment Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2(2) — 1 MOV SS:PARAMETER AX
SHR destination, count ODITSZAPC
SHR Shift logical right Flags X
Operands Clocks | Transfers* | Bytes Coding Example
register, 1 2(2) — 2 SHR SI, 1
register, CL 8+4/ — 2 SHR S|, CL
bit(5 + 1/bit)
memory, 1 15(15)+ EA 2 2-4 | SHRID_BYTE[SI] [BX], 1
memory CL 20+4/ 2 2-4 | SHRINPUT_WORD, CL
bit(17 +
1/bit)+ EA
register, n (5+ 1/bit) — 3 SHR S|, 5
memory, n (17 + 1/bit) 2 3-5 | SHRALPHA, 5
SINGLE STEP (Trap flag interrupt) ODITSZAPC
SINGLE STEPT Interrupt if TF=1 Flags (o) e}
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 50 5 N/A | NA
STC (no operands) ODITSZAPC
STC Set carry flag Flags c
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2(2) — 1 STC
STD (no operands) ODITSZAPC
STD Set direction flag Flags ~
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2(2) — 1 STD
STI (no operands) ODITSZAPC
STI Set interrupt enable flag Flags 1
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 2(2) — 1 STI

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word

transfer.

+ASM-86 incorporates the segment override prefix into the operand specification and not as a separate instruction. SEGMENT is included in table

1-16 only for timing information.

1SINGLE STEP is not an instruction, it is included in table 1-16 only for timing information.
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Table 1-16 Instruction Set Reference Data (continued)

STOS dest-string ODITSZAPC
STOS Store byte or word string Flags
Operands Clocks | Transfers* | Bytes Coding Example
| dest-string 11(10) 1 1 STOS PRINT__LINE
(repeat) dest-string 9+ 10/rep) 1/rep 1 REP STOS DISPLAY
(6+9/rep)
SUB destination, source ODITSZAPC
SuB Subtraction Flags x X X X X X
Operands’ Clocks | Transfers* | Bytes Coding Example
register, register 3(3) — 2 SUB CX, BX
register, memory 9(10)+EA 1 2-4 | SUB DX, MATH__TOTAL [S1]
memory, register 16(10)+EA 2 2-4 | SUB[BP+2],CL
accumulator, immediate 4(3-4) — 2-3 | SUBAL, 10
register, immediate 4(4) — 3-4 | SUB SI, 5280
memory, immediate 17(16)+EA 2 3-6 | SUB [BP], BALANCE, 1000
TEST destination, source ODITSZAPC
TEST Test or non-destructive logical and Flags (0] XXUXO
Operands Clocks | Transfers* | Bytes Coding Example
register, register 3(3) — 2 TEST SI, DI
register, memory 9(10) +EA 1 2-4 | TEST S|, END_COUNT
accumulator, immediate 4(3-4) — 2-3 | TEST AL, 001000008
register, immediate 5(4) — 3-4 | TEST BX, 0CC4H
memory, immediate 11(10)+EA — 3-6 | TEST RETURN__COUNT, 01H
WAIT (no operands) ODITSZAPC
WAIT Wait while TEST pin not asserted Flags
Operands Clocks | Transfers* | Bytes Coding Example
(no operands) 4+5(6)n — 1 WAIT
XCHG destination, source ODITSZAPC
XCHG Exchange Flags
Operands Clocks | Transfers* | Bytes Coding Example
accumulator, reg 16 3(3) —_ 1 XCHG AX, BX
memory, register 17(17)+EA 2 2-4 | XCHG SEMAPHORE, AX
register, register 4(4) — 2 XCHG AL, BL
XLAT source-table ODITSZAPC
XLAT Translate Flags :
Operands Clocks | Transfers* | Bytes Coding Example
source-table 11(11) 1 1 XLAT ASCII_TAB

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For’the 8088 (80188) add four clocks for each 16-bit word

transfer.
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Table 1-16 Instruction Set Reference Data (continued)

XOR destination, source ODITSZAPC

XOR Logical exclusive or Flags XXUXO

Operands Clocks Transfers* | Bytes Coding Example
register, register 3(3) — 2 XOR CX, BX
register, memory 9(10)+EA 1 2-4 | XOR CL, MASK_BYTE
memory, register 16(10)+EA 2 2-4 | XOR ALPHA [SI], DX
accumulator, immediate 4(3-4) - 2-:3 | XOR AL, 010000108
register, immediate 4(4) — 3-4 | XOR SI, 00C2H
memory, immediate 17(16)+EA 2 3-6 | XOR RETURN__CODE, 0D2H

*For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word

transfer.

directly affects bus activity. As an example of the encod-
ing and decoding process, consider writing a MOV in-
struction in ASM-86 in the form:

MOV destination,source

This will cause the assembler to generate 1 of 28 possible
forms of the MOV machine instruction. A programmer
rarely needs to know the details of machine instruction
formats or encoding. An exception may occur during de-
bugging when it may be necessary to monitor instructions
fetched on the bus, read unformatted memory dumps, etc.
This section provides the information necessary to trans-
late or decode an 8086 or 8088 machine instruction.

To pack instructions into memory as densely as possible,
the 8086 and 8088 CPUs utilize an efficient coding tech-
nique. Machine instructions vary from one to six bytes in
length. One-byte instructions, which generally operate on
single registers or flags, are simple to identify; the keys to
decoding longer instructions are in the first two bytes.
The format of these bytes can vary, but most instructions
follow the format shown in Figure 1-28.

The first six bits of a multibyte instruction generally con-

ADD, XOR, etc. The following bit, called the D field,
generally specifies the ““direction’ of the operation: 1 =
the REG field in the second byte identifies the destination
operand, 0 = the REG field identifies the source oper-
and. The W field distinguishes between byte and word
operations: 0 = byte, 1 = word.

One of three additional single-bit fields, S, V or Z, ap-
pears in some instruction formats (refer to Table 1-17). S,
in conjunction with W, indicates the sign extension of im-
mediate fields in arithmetic instructions. V distinguishes
between single-and variable-bit shifts and rotates. Z is a
compare bit with the zero flag in conditional repeat and
loop instructions.

The second byte of the instruction usually identifies the
instruction’s operands. The MOD (mode) field indicates
whether one of the operands is in memory or whether
both operands are registers (refer to Table 1-18). The
REG (register) field identifies a register that is one of the
instruction operands (refer to Table 1-19). In a number of
instructions, particularly the immediate-to-memory vari-
ety, REG is used as an extension of the opcode to identify
the type of operation. The encoding of the R/M
(register/memory) field (refer to Table 1-20) depends on

tain an opcode that identifies the basic instruction type: how the mode field is set. If MOD=11
BYTE1 BYTE 2 BYTE 3 BYTE4 BYTES BYTE6
_______________________ )
| | I |
LOW DISP/DATA | HIGHDISP/DATA| ~ LOWDATA | HIGHDATA |
OPCODE (D OD{ REG | R/M | | |
____________ S |

REGISTER OPERAND/EXTENSION OF OPCODE

REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH
WORD/BYTE OPERATION

DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER
OPERATION (INSTRUCTION) CODE

Figure 1-28 Typical 8086/88 Machine Instruction Format
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Table 1-17 Single-Bit Field Encoding

Field ‘Value Function
S 0 No sign extension
1 Sign extend 8-bit immediate data to 16 bits if W=1
0 Instruction operates on byte data
W .
1 Instruction operates on word data
D 0 Instruction source is specified in REG field
1 Instruction destination is specified in REG field
v 0 Shift/rotate countis one
1 Shift/rotate countis specified in CL register
z 0 Repeat/loop while zero flag is clear
1 Repeat/loop while zero flag is set

(register-to-register mode), then R/M identifies the sec-
ond register operand. If MOD selects memory mode,
then R/M indicates how the effective address of the mem-
ory operand is to be calculated.

Table 1-18 Mode (MOD) Field Encoding

CODE EXPLANATION

00 Memory Mode, no displacement
follows*

01 Memory Mode, 8-bit
displacement follows

10 Memory Mode, 16-bit
displacement follows

1 Register Mode (no
displacement)

*Except when R/M =110, then 16-bit
displacement follows

Table 1-19 REG (Register) Field Encoding

REG W=0 W=1
000 AL AX
001 CL CX
010 DL DX
011 BL BX
100 AH SP
101 CH BP
110 DH Si
11 BH DI

Bytes 3 through 6 of an instruction are optional fields that
usually contain the displacement value of a memory oper-
and and/or the actual value of an immediate constant
operand.

The displacement value may contain one or two bytes; the
language translators generate one byte whenever possible.
The MOD field indicates how many displacement bytes
are present. Following Intel convention, if the displace-
ment is two bytes, the most-significant byte is stored sec-
ond in the instruction. If the displacement is only a single
byte, the 8086 or 8088 automatically sign-extends this
quantity to 16-bits before using the information in further
address calculations. Immediate values always follow any
displacement values that may be present. The second byte
of a two-byte immediate value is the most significant.

Table 1-22 lists the instruction encodings for all
8086/8088 instructions. This table can be used to predict
the machine encoding of any ASM-86 instruction. Table
1-23 lists the 8086/8088 machine instructions in order by
the binary value of their first byte. This table can be used
to decode any machine instruction from its binary
representation. Table 1-21 is a key to the abbreviations
used in Tables 1-22 and 1-23. Figure 1-29 is a more com-
pact instruction decoding guide.

1.3 DEVICE PIN DEFINITIONS

The following paragraphs present functional descriptions
of all input/output signals and electrical descriptions of all
of the input/output pins on the 8086 and 8088 40-pin
DIP’s.
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Table 1-20 Register/Memory Field Encoding

MOD =11 EFFECTIVE ADDRESS CALCULATION
R/M W=0 W=1 R/M MOD =00 MOD =01 MOD =10
000 AL AX 000 | (BX)+(SI) (BX)+(Sh+D8 (BX)+(Sl)+ D16
001 CL CX 001 | (BX)+(DI) (BX)+(D1)+ D8 (BX) +(Dl) + D16
010 DL DX 010 | (BP)+(Sl) (BP)+(SI)+ D8 (BP) +(Sl)+ D16
011 BL BX 011 | (BP)+(DI) (BP)+(D1)+ D8 (BP)+(Dl) + D16
100 AH SP 100 | (SI) (Shy+D8 (S)+ D16
101 CH BP 101 | (DI) (D) + D8 (D) + D16
110 DH Si 110 | DIRECT ADDRESS (BP)+ D8 (BP)+D16
m BH DI 111 | (BX) (BX)+D8 (BX)+D16

1.3.1 Functional Description of All Signals

Figure 1-30 shows the 8086/8088 DIP pin assignments
and Table 1-24 provides a complete functional description
of each device pin signal and correlates the description to
the pin number and associated signal symbol.

1.3.2 Electrical Description of Pins

The absolute maximum ratings for the 8086/8088 device
are as follows.

ABSOLUTE MAXIMUM RATINGS

Ambient Temperature Under Bias 0°C to 70°C

Storage Temperature —65°Cto
+150°C

Voltage on Any Pin with Respect to —1.0to +7V

GND

Power Dissipation 2.5 Watt

Stresses above those listed above may cause permanent
damage to the device. These values present stress ratings
only and functional operation of the device at these or
any other conditions above those indicated in the opera-
tional sections of the device specifications is not implied.
Exposure to absolute maximum conditions for extended
periods of time may affect the device reliability.

Table 1-25 presents the D.C. voltage characteristics of the
8086/8088 CPU’s. Table 1-26 lists the A.C. characteris-
tics timing requirements and timing responses for mini-
mum complexity systems, and Table 1-27 lists the A.C.
characteristics timing requirements and timing responses
for maximum complexity systems (using 8288 bus
controller). Figure 1-31 and Figure 1-32 presents wave-
forms for the minimum mode and maximum mode
operation related to the preceding A.C. characteristics
tables.
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1.3.3 OPERATING MODES

One of the unique features the 8086 and 8088 CPU’s al-
low the user is the ability to select between two functional
definitions of a subset of the 8086/8088 outputs. This en-
ables the user to tailor the intended CPU system environ-
ment. This “system tailoring” is accomplished by
strapping the CPU’s MN/MX* (minimum/maximum) in-
put pin. Table 1-28 defines the 8086 and 8088 pin assign-
ments for both the minimum and maximum modes of
operation.

In the minimum mode, the CPU’s support small systems
by strapping the MN/MX* pin to + 5V. In this mode of
operation, the 8086/8088 CPU generates all bus control
signals (DT/R*, DEN*, ALE and either M/IO* or
I0/M*) and the command output signals (RD*, WR* or
INTA*). The CPU also provides a mechanism for re-
questing bus access (HOLD/HLDA) that is compatible
with bus master type controllers (e.g., the Intel 8237A
DMA Controller).

When a bus master requires bus access in the minimum
mode, it activates the HOLD input to the CPU through its
request logic. In response to the “hold” request, The
CPU activates HLDA as an acknowledgement to the bus
master, requesting the bus, and simultaneously floats the
system bus and control lines. Since a bus request is asyn-
chronous, the CPU samples the HOLD input on the posi-
tive transition of each CLK signal and activates HLDA at
the end of either the current bus cycle (if a bus cycle is in
progress) or idle clock period. The CPU maintains the
hold state until the bus master inactivates the HOLD in-
put. At that time the CPU regains control of the system
bus. Note that during a “hold” state, the CPU continues
to execute instructions until a bus cycle is required.

In the minimum mode, the I/O-memory control line for
the 8088 CPU is the reverse of the corresponding control
line for the 8086 CPU (M/IO* on the 8086 and IO/M* on
the 8088). Since the 8088 CPU is an 8-bit device, this
conditioning provides compatibility with existing
MCS® -85 systems specific MCS-85 family devices (e.g.,
the Intel 8155/56).
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Lo )
Hi 0 1 2 3 4 5 ] 7 8 9 A [} 4 0 E F
0 ADD ADD ADD ADD ADD ADD PUSH POP OR OR OR OR OR OR PUSH
bfr/m |whr/m| btr/m| wtrim | b.ia w.ia ES ES [btr/m [wihr/m | btr/m | wtr/im b.i w.i CS
1 ADC ADC ADC ADC ADC ADC | PUSH POP $B8 SBB' | SBB sBB $BB SBB | PUSH POP
bir/m | whr/m | btr/m]| wtr/m b.i w.i SS SS |bfr/m [wir/m | btr/m | wtr/m b.i w.i 0S 0S
2| AND AND AND AND AND AND SEG pAan | SUB suB sus RUL] SuB SuB SEG DAS
bir/m |whr/m|{btr/m| wtr/m b.i Wi =ES bir/m | wihr/m]btr/m| wtr/m b.i w.i CS
3| XOR XOR XOR XOR XOR XOR SEG AAA | CMP CMP CMP CMP CMP CMP SEG AAS
bir/m |whr/m|btr/m| wtr/m b.i w.i 8§ bir/m [ whr/m | btr/m | wtr/m b.i w.i . DS
4 INC INC INC INC INC INC INC | INC DEC DEC DEC DEC DEC DEC DEC DEC
AX CX 0X BX SP BP S| 0! AX CX 0X BX SP B8P Sl DI
§| PUSH | PUSH | PUSH | PUSH | PUSH | PUSH | PUSH | PUSH | POP POP POP POP POP POP POP POP
AX CX DX BX SP BP S ] AX cX DX BX SP [:14 S| oI
]
7 40 INO JB/ JNB/ JE/ JINE/ | JBE/ | UNBE/ | o NS JP/ JNP/ JL/ INL/ JLE/ | UNLE/
JNAE JAE JZ JINZ JNA JA JPE JPO JINGE JGE JNG JG
8 | Immed | Immed | Immed | Immed | TEST TEST | XCHG | XCHG | MoV MoV MOV MOV MoV LEA MoV POP
br/m | wr/m | br/m ise/m { be/m | we/m | bo/m | wr/m [bfe/m {whe/m | bte/m | wir/m | srhrim srtrim| r/m
9| XCHG | XCHG | XCHG | XCHG | XCHG | XCHG | XCHG | XCHG CALL
AX ex DX BX sp 8P ) ) cBw CWD d WAIT | PUSHF | POPF | SAHF | LAHF
Al MoV MoV MoV MoV TEST | TEST
m = AL|m — AX|AL — m| AX — m MOVS | MOVS | CMPS | CMPS bla wla | STOS STOS | LODS | LODS | SCAS | SCAS
B Mov Mov MoV MoV MoV MoV MoV MOV | MOV MOV MoV MoV MoV MoV MOV MOV
i- AL |i-CLji-DL|{i-BL |i~AH|i—~CH|i—~DH|i—~BH|i—~AX|i—-CX|i~-DX|i—=BX|i—~SP|i-BP| i~SI |i~D
[ RET, MoV MoV RET, RET INT INT
B (o5 | RET | LES | DS | i | wirim LS| 1 | Typed | cany) | 'NTO | IRET
0| Shift Shift | Shift Shift ESC ESC ESC ESC ESC ESC ESC ESC
b w | by | wy |AAM ] AAD XLAT | 79 1 2 3 4 5 6 7
E [LOOPNZ/1 LOOPZ/ |\ 00p | yoxz IN IN OUT | OUT | CALL JMP JMP JMP IN IN out | our
LOOPNE | LOOPE b w b w d d I.d si.d v,b W v.b W
F REP Grpt | Grpt Grp2 | Grp2
LOCK REP 2 HLT cme bom | weim | CLC STC 4] STl CLD S0} rm | we/m
where:
mod[Jr/m | 000 001 010 o1t 100 101 110 m
Immed ADD OR ADC_ | SBB | AND | SUB | XOR | CMP
Shift ROL | ROR [ RCL | RCR [ SHL/SAL [ SHR - SAR
Grp 1 TEST - NOT | NEG | MuL  fiMuL | o 101V
Grp2 INC DEC | CALL | CALL| JMP | JMP | PUSH | —
id Lid id Lid
b = byte operation m = memory
d = direct r/m = EA is second byte
t = from CPU reg si = short intrasegment
i = immediate Sr = segment register
ia = immed. to accum. t = to CPU reg
id = indirect v = variable
is = immed. byte, sign ext. w = word operation
| = long ie. intersegment 2 = z2ero0

Figure 1-29 Machine Instruction Encoding Matrix

In the maximum mode (MN/MX* pin strapped to
ground), the Intel 8288 Bus controller is added to provide
sophisticated bus control functions and compatibility with
the MULTIBUS architecture. (Combining an Intel 8289
Arbiter with the 8288 permits the CPU to support multi-
ple processors on the system bus.) The bus controller, in-
stead of the CPU (see Figure 1-33), provides all bus
control and command outputs. This allows the pins previ-
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ously delegated to these functions to be redefined to sup-
port multiprocessing functions.

1.3.4 Minimum Mode System
Overview/Description

The minimum mode 8086 (see Figure 1-34) is optimized
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Table 1-21 Key to Machine Instruction Encoding and Decoding

IDENTIFIER EXPLANATION

MOD Mode field; described in this chapter.

REG Register field; described in this chapter.

R/M Register/Memory field; described in this chapter.

SR Segment register code: 00=ES, 01=CS, 10=SS, 11=DS.

W,S8,D,V,Z Single-bit instruction fields; described in this chapter.

DATA-8 8-bit immediate constant.

DATA-SX 8-bit immediate value that is automatically sign-extended to 16-bits
before use.

DATA-LO Low-order byte of 16-bitimmediate constant.

DATA-HI High-order byte of 16-bit immediate constant.

(DISP-LO) Low-order byte of optional 8- or 16-bit unsigned displacement; MOD
indicates if present.

(DISP-HI) High-order byte of optional 16-bit unsigned displacement; MOD
indicates if present.

IP-LO Low-order byte of new IP value.

IP-HI High-order byte of new IP value

Cs-LO Low-order byte of new CS value.

CS-HI High-order byte of new CS value.

IP-INC8 8-bit signed increment to instruction pointer.

IP-INC-LO Low-order byte of signed 16-bit instruction pointer increment.

IP-INC-HI High-order byte of signed 16-bit instruction pointer increment.

ADDR-LO Low-order byte of direct address (offset) of memory operand; EA not
calculated.

ADDR-HI High-order byte of direct address (offset) of memory operand; EA not
calculated.

—_— Bits may contain any value.

XXX First 3 bits of ESC opcode.

YYY Second 3 bits of ESC opcode.

REG8 8-bit general register operand.

REG16 16-bit general register operand.

MEM8 8-bit memory operand (any addressing mode).
MEM16 16-bit memory operand (any addressing mode).
IMMEDS8 8-bit immediate operand.

IMMED16 16-bit immediate operand.

SEGREG Segment register operand.

DEST-STR8 Byte string addressed by DI.
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Table 1-21 Key to Machine Instruction Encoding and Decoding (continued)

IDENTIFIER EXPLANATION
SRC-STR8 Byte string addressed by Sl.

DEST-STR16 Word string addressed by Di.

SRC-STR16 Word string addressed by SI.
SHORT-LABEL Label within 127 bytes of instruction.
NEAR-PROC Procedure in current code segment.
FAR-PROC Procedure in another code segment.
NEAR-LABEL Label in current code segment but farther than —128 to +127 bytes

from instruction.

FAR-LABEL Label in another code segment.
SOURCE-TABLE XLAT translation table addressed by BX.
OPCODE ESC opcode operand.
SOURCE‘ ESC register or memory operand.

for small to medium (one or two boards), single CPU sys-
tems. Minimum mode system architecture is directed at
satisfying requirements of the lower to middle segment of
high performance 16-bit applications. The CPU maintains

the full megabyte memory space, 64K-byte 1/O space and
16-bit data path. The CPU directly provides all bus con-
trol (DT/R*, DEN*, ALE, M/IO*), commands (RD*,
WR*, INTA*) and a simple CPU preemption mechanism

Table 1-22 8086/88 Instruction Encoding

1-46

DATA TRANSFER
MOV = Move: >16543210 76543210 ;6543210 76543210 76543210 76543210
Registevlmemoryto(lrom register 100010dw|mod reg rim (DISP-LO) (DISP-HI)
Immediate to reg;sler/memory 1100011w|mod 000 r/im (DISP-LO) (DISP-HI) data dataifw=1 l
Immediate to register 1011 wreg data dataifw=1
Memory to accumulator 1010000w addr-lo addr-hi
Accumulator to memory 1010001 w addr-lo addr-hi
Register/memory to segment register 10001110 |mod 0 SR rim (DISP-LO) (DISP-HI)
Segment register to register/memory 10001100 |mod 0 SR-rim (DISP-LO) (DISP-HI)
PUSH = Push:
Register/memory 11111111 |mod 110 r/m (DISP-LO) (DISP-HI) ]
Régisler 01010 reg
. Segment register 000reg110
POP = Pop:
Register/memory 10001111 Imod 000 rim (DISP-LO) (DISP-HI) ]
Register 01011 reg
Segment register 000reg 111
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DATA TRANSFER (Cont'd.)
XCHG = Exchange:
Register/memory with register

Register with accumulator

IN = Input from:
Fixed port

Variable port

OUT = Output to:

Fixed port

Variable port

XLAT = Translate byte to AL
LEA = Load EA toregister
LDS = Load pointer to DS
LES = Load pointer to ES
LAHF = Load AH with flags
SAHF = Store AH into flags
PUSHF = Push flags

POPF = Pop flags

ARITHMETIC

ADD = Add:

Reg/memory with register to either
Immediate to register/memory

Immediate to accumulator

ADC = Add with carry:
Reg/memory with register to either
Immediate to register/memory

Immediate to accumulator

INC = Increment:
Register/memory
Register

AAA = ASCIl adjust for add

DAA = Decimal adjust for add

Table 1-22 8086/88 Instruction Encoding (continued)

76543210 76543210 76543210 76543210 76543210 76543210
100001tw| mod reg r/m (DISP-LO) (DISP-HI)

10010 reg

1110010w DATA-8

1110110w

1110011 w DATA-8

11101 11w

11010111

10001101 | mod reg rim (DISP-LO) (DISP-HI)

11000101 | mod reg r/m (DISP-LO) (DISP-HI)

11000100| mod reg r/m (DISP-LO) (DISP-HI)

10011111

10011110

10011100

10011101

000000dw | mod reg rim (DISP-LO) (DISP-HI)

100000swj|mod 000 rim (DISP-LO) (DISP-HI) data dataif s: w=01
0000010w data data if w=1

000100dw | mod reg rim (DISP-LO) (DISP-HI)

100000sw|mod 010 r/m (DISP-LO) (DISP-HI) data | da(ails:w=01J
0001010w data data if w=1

1111111w ] mod 000 r/m (DISP-LO) (DISP-HI)

01000 reg

00110111

00100111
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ARITHMETIC (Cont’d.)

SUB = Subtract:
Reg/memory and register to either
Immediate from register/memory

Immediate from accumulator

SBB = Subtract with borrow:
Reg/memory and register to either
Immediate from register/memory

Immediate from accumulator

DEC Decrement:
Register/memory
Register

NEG Change sign

CMP = Compare:
Register/memory and register
Immediate with register/memory
Immediate with accumulator
AAS ASClHl adjust for subtract
DAS Decimal adjust for subtract
MUL Multiply (unsigned)

IMUL Integer multiply (signed)
AAM ASCHl adjust for multiply
DIV Divide (unsigned)

IDIV Integer divide (signed)
AAD ASCHi adjust for divide
CBW Convert byte to word

CWD Convert word to double word

LOGIC

NOT Invert

SHL/SAL Shift logical/arithmetic left
SHR Shift logical right

SAR Shift arithmetic right

ROL Rotate left

Table 1-22 8086/88 Instruction Encoding (continued)

76543210 76543210 76543210 76543210 76543210 76543210
001010dw | mod reg -rim (DISP-LO) (DISP-HI)
100000sw | mod 1 0 1 rim (DISP-LO) - (DISP-HI) data I data if's: w=01
0010110w data data if w=1
000110dw | mod reg r/m (DISP-LO) (DISP-HI)
100000sw |mod 011 r/m (DISP-LO) (DISP-HI) data dataif s: w=01 1
0001110w data data if w=1
1111111w/|mod 001 r/ml (DISP-LO) (DISP-HI)
01001 reg
111101 1w |[mod 011 r/rﬁ\l 1DISP-L0). L (DISP-HI) —|
001110dw | mod reg r/m (DISP-LO) (DISP-HI)
100000sw | mod 111 rim (DISP-LO) (DISP-H1) data data if s:w=1
0011110w data
00111111
00101111
1111011w/|mod 100 r/m (DISP-LO) (DISP-HI)
1111011w/}lmod 101 r/im (DISP-LO) (DISP-HI)
11010100]00001010 (DISP-LO) (DISP-HI)
1111011 wfmod 110 r/m (DISP-LO) (DISP-HI)
1111011 w]|mod 111 rim (DISP-LO) (DISP-HI)
11010101}100001010 (DISP-LO) (DISP-HI)
10011000
10011001
111101 1w |mod 010 r/im (DISP-LO) (DISP-HI)
110100vw |mod 100 rim (DISP-LO) (DISP-HI)
110100vw |[mod 101 rim (DISP-LO) (DISP-HI)
110100vw [mod 111 r/m (DISP-LO) (DISP-HI)
110100vw |{mod 000 rim (DISP-LO) v(DISP-H‘I)
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LOGIC (Cont'd.)

ROR Rotate right
RCL Rotate through carry flag left

RCR Rotate through carry right

AND = And:
Reg/memory with register to either
Immediate to register/memory

immediate to accumulator

TEST = And function to flags no result:

Register/memory and register
Immediate data and register/memory

Immediate data and accumulator

OR = Or:
Reg/memory and register to either
Immediate to register/memory

Immediate to accumulator

XOR = Exclusive or:
Reg/memory and register to either
Immediate to register/memory

Immediate to accumulator

STRING MANIPULATION
REP =Repeat

MOVS =Move byte/word

CMPS =Compare byte/word
SCAS = Scan byte/word
LODS = Load byte/wd to AL/AX

STDS = Stor byte/wd from AL/A

Table 1-22 8086/88 Instruction Encoding (continued)

76543210 76543210 76543210 76543210 76543210 76543210
110100vw (mod 001 r/im (DISP-LO) (DISP-HI)

110100vw |{mod 010 r/m (DISP-LO) (DISP-HI)

110100vw |[mod 011 r/m (DISP-LO) (DISP-HI)

001000dw |mod reg rim (DISP-LO) (DISP-HI)

1000000w {mod 100 r/m (DISP-LO) (DISP-HI) data l dataif w=1 J
0010010w data data if w=1

000100dw |mod reg r/m (DISP-LO) (DISP-HI)

1111011 w |mod 000 rim (DISP-LO) (DISP-HI) data T dataif w=1 |
1010100w data

000010dw {mod reg r/m (DISP-LO) (DISP-HI)

1000000w |mod 001 rim (DISP-LO) (DISP-HI) data data if w=1 J
0000110w data dataif w=1

001100dw |mod reg rim (DISP-LO) (DISP-H1)

0011010w data (DISP-LO) (DISP-HI) data | dataif w=1
0011010w data data if w=1

1110012

010010w

010011 w

010111w

010110w

010101 w
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Table 1-22 8086/88 Instruction Encoding (continued)

CONTROL TRANSFER

CALL = Call: 76543210 76543290 76543210 76543210 76543210 76543210
Direct within segment 11101000 IP-INC-LO 1P-INC-HI

Indirect within segment 11111111 fmod 010 rim (DISP-LO) (DISP-HI) I

Direct intersegment 10011010 IP-io IP-hi

CS-lo CS-hi

Indirect intersegment |1 1111111 |mod 011 rim (DISP-LO) (DISP-HI) I

JMP = Unconditional Jump:

Direct within segment 11101001 IP-INC-LO IP-INC-HI ]
Direct within segment-short 11101011 IP-INC8
Indirect within segment 11111111 {mod 100 r/m (DISP-LO) (DISP-H1) ]
Direct intersegment 11101010 IP-lo 1P-hi
CS-lo CS-hi
Indirect intersegment [\ 1111111 mod 101 rim (DISP-LO) (DISP-HI) —|

RET = Return from CALL:

Within segment 11000011

Within seg adding immed to SP 11000010 data-lo data-hi ]
Intersegment 11001011

Intersegment adding immediate to SP 11001010 data-lo data-hi J
JE/JZ=Jump on equal/zero 01110100 IP-INC8

JL/INGE = Jump on less/not greater or equal 01111100 IP-INC8

JLE/JNG =Jump on less or equal/not greater 01111110 1P-INC8

JB/JNAE =Jump on below/notaboveorequal |01 110010 1P-INC8
JBE/JNA=Jump on below or equal/notabove |0 1110110 IP-INC8

JP/JPE=Jump on parity/parity even 01111010 IP-INC8

JO =Jump on overflow 01110000 IP-INC8

JS =Jump on sign 01111000 IP-INC8

JNE/JINZ = Jump on not equal/not zer0 01110101 IP-INC8

JNL/JGE =Jump on not less/greater or equal 01111101 IP-INC8

JNLE/JG =Jump on not iess or equal/greater 01111111 IP-INC8

JNB/JAE =Jump on not below/aboveorequal |0 1110011 IP-INC8
JNBE/JA=Jump on not below orequal/above [0 1110111 IP-INC8

JNP/JPO =Jump on not par/par odd 01111011 1P-INC8

JNO =Jump on not overflow 01110001 IP-INC8
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Table 1-22 8086/88 Instruction Encoding (continued)

CONTROL TRANSFER (Cont’d.)

RET = Return from CALL: 76543210 76543210 76543210 76543210 76543210 76543210
JNS =Jump on not sign 01111001 IP-INC8
LOOP=Loop CX times 11100010 IP-INC8B
LOOPZ/LOOPE = Loop while zero/equal 11100001 IP-INC8
LOOPNZ/LOOPNE =Loop while not zero/equal| 1 11 000 0 0 IP-INC8
JCXZ=Jump on CX zero 11100011 1P-INC8
INT = Interrupt:

Type specified 11001101 DATA-8
Type3 11001100

INTO =Interrupt on overflow 11001110

IRET =Interrupt return 11001111

PROCESSOR CONTROL

CLC=Clearcarry 11111000

CMC =Complement carry 11110101
STC=Setcarry 11111001

CLD =Clear direction 11111100

STD = Set direction 11111101

CLI=Clear interrupt 11111010

STi=Set interrupt 11111011

HLT =Halt 11110100

WAIT =Wait 10011011

ESC =Escape (to external device) 11011 xxx |modyyyr/m (DISP-LO) [ (DISP-HI)
LOCK =Bus lock prefix 11110000
SEGMENT = Override prefix 001reg110
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(HOLD, HLDA) compatible with existing DMA control-
lers (e.g., 8259A Interrupt Controller).

In the minimum mode the 8088 CPU provides an SSO
status output. This output is equivalent to SO in the maxi-
mum mode and can be decoded with DT/R*
and —IO/M*, which are equivalent to S1* and S2* re-
spectively, to provide the same CPU cycle status informa-
tion (see Table 1-29). This type of decoding could be used
in a minimum mode 8088-based system to allow dynamic
RAM refresh during passive CPU cycle.

1.3.5 Maximum Mode System
Overview/Description

The maximum mode (see Figure 1-35) extends the system
architecture to support multiprocessor configurations and
local instruction set extension processors (COprocessors).
By adding the 8288 bipolar bus controller, the 8086 out-
puts assigned to bus control and commands in the mini-
mum mode are redefined to allow these extensions and
enhance general system performance. Specifically, (1)
two prioritized levels of processor preemption
(RQ*/GT0*, RQ*/GT1%*) allow multiple processors to re-
side on the 8086’s local bus and share its interface to the
system bus, (2) Queue status (QS0, QS1) is available to
allow external devices like ICETM-86 or special instruc-
tion set extension co-processors (such as the 8087 Nu-
meric Co-processor) to track the CPU instruction
execution, (3) access control to shared resources in multi-
processor systems is supported by a hardware bus lock
mechanism and (4) system command and configuration
options are expanded via devices like the 8288 bus con-
troller and 8289 bus arbiter.

QUEUE STATUS

The queue status indicates what information is being re-
moved from the internal queue and when the queue is be-
ing reset due to a transfer of control (Table 1-30). By
monitoring the SO*, S1*, S2* status lines for instructions
entering the 8086 (1, 0, 0 indicates code access while A0

and BHE* indicate word or byte) and QSO0, QS1 for in-
structions leaving the 8086’s internal queue, it is possible
to track the instruction execution. Since instructions are
executed from the 8086’s internal queue, the queue status
is presented each CPU clock cycle and is not related to the
bus cycle activity. This mechanism (1) allows a
co-processor to detect execution of an ESCAPE instruc-
tion which directs the co-processor to perform a specific
task and (2) allows ICETM-86 to trap execution of a spe-
cific memory location.

An example of a circuit used by ICE is given in Figure
1-36. The first up down counter tracks the depth of the
queue while the second captures the queue depth on a
match. The second counter decrements on further fetches
from the queue until the queue is flushed or the count goes
to zero indicating execution of the match address. The
first counter decrements on fetch from the queue (QSO =
1) and increments on code fetches into the queue. Note
that a normal code fetch will transfer two bytes into the
queue so two clock increments are given to the counter
(T201 and T301) unless a single byte is loaded over the
upper half of the bus (AO-P is high). Since the execution
unit (EU) is not synchronized to the bus interface unit
(BIU), a fetch from the queue can occur simultaneously
with a transfer into the queue. The Exclusive-OR gate
driving the ENP input of the first counter allows these
simultaneous operations to cancel each other and not
modify the queue depth.

HARDWARE LOCK

To address the problem of controlling access to shared
resources, the maximum mode 8086 provides a hardware
LOCK* output. The LOCK* output is activated through
the instruction stream by execution of the LOCK prefix
instruction. The LOCK* output goes active in the first
CPU clock cycle following execution of the prefix and
remains active until the clock following the completion of
the instruction following the LOCK prefix. To provide
bus access control in multiprocessor systems, the LOCK*
signal should be incorporated into the system bus arbitra-
tion logic resident to the CPU.

Table 1-23 Machine Instruction Decoding Guide

1STBYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
00 0000 0000 | MOD REG R/M | (DISP-LO),(DISP-HI) ADD REG8/MEMS8,REGS
01 0000 0001 { MOD REG R/M | (DISP-LO),(DISP-HI) ADD REG16/MEM16,REG16
02 0000 0010 | MOD REG R/M | (DISP-LO),(DISP-HI) ADD REG8,REG8/MEMS8
03 0000 0011 | MOD REG R/M | (DISP-LO),(DISP-HI) ADD REG16,REG16/MEM16
04 0000 0100 | DATA-8 ADD AL,IMMED8
05 0000 0101 | DATA-LO DATA-HI ADD AX,IMMED16
06 0000 0110 PUSH ES
07 0000 0111 POP ES
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Table 1-23 Machine Instruction Decoding Guide (continued)

1ST BYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT

08 0000 1000 | MOD REG R/M | (DISP-LO),(DISP-HI) OR REG8/MEM8,REG8

09 0000 1001 | MOD REG R/M | (DISP-LO),(DISP-HI) OR REG16/MEM16,REG16

0A [ 0000 1010 | MOD REG R/M | (DISP-LO),(DISP-HI) OR REG8,REG8/MEM8

0B | 0000 1011 [ MOD REG R/M | (DISP-LO),(DISP-HI) OR REG16,REG16/MEM16

0C | 0000 1100 | DATA-8 OR AL,IMMED8

0D | 0000 1101 | DATA-LO DATA-HI OR AX,IMMED16

OE 0000 1110 PUSH Cs

OF 0000 1111 (not used)

10 0001 0000 | MOD REG R/M | (DISP-LO),(DISP-HI) ADC REG8/MEM8,REG8

1 0001 0001 [ MOD REG R/M | (DISP-LO),(DISP-HI) ADC REG16/MEM16,REG16

12 0001 0010 | MOD REG R/M | (DISP-LO),(DISP-HI) ADC REG8,REG8/MEM8

13 0001 0011 [ MOD REG R/M |( (DISP-LO),(DISP-HI) ADC REG16,REG16/MEM16

14 0001 0100 { DATA-8 ADC AL,IMMED8

15 0001 0101 | DATA-LO DATA-HI ADC AX,IMMED16

16 0001 0110 PUSH SS

17 0001 0111 POP SS

18 0001 1000 { MOD REG R/M | (DISP-LO),(DISP-HI) SBB REG8/MEM8,REG8

19 0001 1001 | MOD REG R/M | (DISP-LO),(DISP-HI) SBB REG16/MEM16,REG16

1A | 0001 1010 [ MOD REG R/M | (DISP-LO),(DISP-HI) SBB REG8,REG8/MEMS

1B | 0001 1011 [ MOD REG R/M | (DISP-LO),(DISP-HI) SBB REG16,REG16/MEM16

1iC 0001 1100 | DATA-8 SBB AL,IMMEDS8

1D 0001 1101 [ DATA-LO DATA-HI SBB AX,IMMED16

1E 0001 1110 PUSH DS

1F 0001 1111 POP DS

20 0010 0000 | MOD REG R/M | (DISP-LO),(DISP-HI) AND REG8/MEMS8,REG8

21 0010 0001 | MOD REG R/M | (DISP-LO),(DISP-HI) AND REG16/MEM16,REG16

22 0010 0010 | MOD REG R/M | (DISP-LO),(DISP-HI) AND REG8,REG8/MEM8

23 0010 0011 | MOD REG R/M | (DISP-LO),(DISP-HI) AND REG16,REG16/MEM16

24 0010 0100 | DATA-8 AND AL,IMMEDS8

25 0010 0101 | DATA-LO DATA-HI AND AX,IMMED16

26 0010 0110 ES: (segment override
prefix)

27 0010 0111 DAA

28 0010 1000 | MOD REG R/M | (DISP-LO),(DISP-HI) suB REG8/MEM8,REGS8

29 0010 1001 { MOD REG R/M | (DISP-LO),(DISP-HI) suB REG16/MEM16,REG16

2A 0010 1010 | MOD REG R/M | (DISP-LO),(DISP-HI) SuB REG8,REG8/MEMS8

2B | 0010 1011 | MOD REG R/M | (DISP-LO,(DISP-HI) suB REG16,REG16/MEM16

2C 0010 1100 | DATA-8 suB AL,IMMEDS8

2D 0010 1101 | DATA-LO DATA-HI suB AX,JMMED16

2E 0010 1110 CS: (segment override
prefix)

2F 0010 1111 DAS

30 0011 0000 | MOD REG R/M | (DISP-LO),(DISP-HI) XOR REG8/MEMS8,REG8

3 0011 0001 | MOD REG R/M | (DISP-LO),(DISP-HI) XOR REG16/MEM16,REG16

32 0011 0010 | MOD REG R/M | (DISP-LO),(DISP-HI) XOR REG8,REG8/MEMS8

33 0011 0011 | MOD REG R/M | (DISP-LO),(DISP-HI) XOR REG16,REG16/MEM16

34 [ 0011 0100 | DATA-8 XOR AL,IMMEDS8

35 0011 0101 [ DATA-LO DATA-HI XOR AX,IMMED16

36 0011 0110 SS: (segment override
prefix)
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Table 1-23 Machine Instruction Decoding Guide (continued)

1STBYTE

HEX BINARY 1- 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
37 0011 0110 AAA
38 0011 1000 [ MOD REG R/M |{ (DISP-LO),(DISP-HI) CMP REG8/MEM8,REGS8
39 0011 1001 | MOD REG R/M | (DISP-LO),(DISP-HI) CMP REG16/MEM16,REG16
3A 0011 1010 | MOD REG R/M | (DISP-LO),(DISP-HI) CMP REG8,REG8/MEMS8
3B 0011 1011 | MOD REG R/M | (DISP-LO),(DISP-HI) CMP REG16,REG16/MEM16
3C 0011 1100 | DATA-8 . CMP AL,IMMEDS8
3D 0011 1101 | DATA-LO DATA-HI CMP AX,IMMED16
3E 0011 1110 DS: (segment override
prefix)
3F 0011 1111 AAS
40 0100 0000 INC AX
41 0100 0001 INC CX
42 0100 0010 INC DX
43 0100 0011 INC BX
44 0100 0100 INC SP
45 0100 0101 INC BP
46 0100 0110 INC Si
47 0100 0111 INC DI
48 0100 1000 DEC AX
49 0100 1001 DEC CX
4A 0100 1010 DEC DX
4B 0100 1011 DEC BX
4C 0100 1100 DEC SP
4D 0100 1101 DEC BP
4E 0100 1110 DEC SI
4F 0100 1111 DEC DI
50 0101 0000 PUSH AX
51 0101 0001 PUSH CX
52 0101 0010 PUSH DX
53 0101 0011 PUSH BX
54 0101 0100 PUSH SP
55 0101 0101 PUSH BP
56 0101 0110 PUSH Si
57 0101 0111 PUSH DI
58 0101 1000 POP AX
59 0101 1001 POP CX
5A 0101 1010 POP DX
58 0101 1011 POP BX
5C 0101 1100 POP SP
5D 0101 1101 POP BP
5E 0101 1110 POP Sl
5F 0101 1111 POP DI
60 0110 0000 (not used)
61 0110 0001 (not used)
62 0110 0010 (not used)
63 0110 0011 (not used)
64 0110 0100 (not used)
65 0110 0101 (not used)
66 0110 0110 (not used)
67 0110 0111 (not used)
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Table 1-23 Machine Instruction Decoding Guide (continued)

1ST BYTE

HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT

68 0110 1000 (not used)

69 0110 1001 (not used)

6A 0110 1010 (not used)

68 0110 1011 (not used)

6C 0110 1100 (not used)

6D 0110 1101 (not used)

6E 0110 1110 (not used)

6F 0110 1111 (not used)

70 0111 0000 [IP-INC8 JO SHORT-LABEL

7 0111 0001 [IP-INC8 JNO SHORT-LABEL

72 0111 0010 |IP-INC8 JB/JNAE/ SHORT-LABEL

JcC
73 0111 0011 |IP-INC8 JNB/JAE/ SHORT-LABEL
JNC

74 0111 0100 | IP-INC8 JEIJZ SHORT-LABEL

75 0111 0101 [IP-INC8 JNE/JNZ SHORT-LABEL

76 0111 0110 | IP-INC8 JBE/JNA SHORT-LABEL

77 0111 0111 |IP-INC8 JNBE/JA SHORT-LABEL

78 0111 1000 {IP-INC8 Js SHORT-LABEL

79 0111 1001 | IP-INC8 JNS SHORT-LABEL

7A 0111 1010 [ IP-INC8 JP/JPE  SHORT-LABEL

78 0111 1011 |IP-INC8 JNP/JPO SHORT-LABEL

7C 0111 1100 | IP-INC8 JL/JNGE SHORT-LABEL

70 0111 1101 | IP-INC8 JNL/JGE SHORT-LABEL

7E 0111 1110 | IP-INC8 JLE/UNG SHORT-LABEL

7F 0111 1111 [ IP-INC8 JNLE/JG SHORT-LABEL

80 1000 0000 | MOD 000 R/M | (DISP-LO),(DISP-HI), ADD REG8/MEMS8,IMMEDS
DATA-8

80 1000 0000 | MOD 001 R/M | (DISP-LO),(DISP-HI), OR REG8/MEMS8,IMMEDS
DATA-8

80 1000 0000 | MOD010R/M | (DISP-LO),(DISP-HI), ADC REG8/MEMS8,IMMEDS
DATA-8

80 1000 0000 | MOD 011 R/M | (DISP-LO),(DISP-HI), SBB REG8/MEMS8,IMMEDS
DATA-8

80 1000 0000 | MOD 100 R/M | (DISP-LO),(DISP-HI), AND REG8/MEMS8,IMMEDS8
DATA-8

80 1000 0000 { MOD 101 R/M | (DISP-LO),(DISP-HI), SuB REG8/MEMS8,IMMED8
DATA-8

80 1000 0000 | MOD110R/M | (DISP-LO),(DISP-HI), XOR REG8/MEMS8,IMMEDS
DATA-8

80 1000 0000 | MOD 111 R/M | (DISP-LO),(DISP-HI), CMP REG8/MEM8,IMMEDS
DATA-8

81 1000 0001 | MODO00R/M | (DISP-LO),(DISP-HI), ADD REG16/MEM16,IMMED16
DATA-LO,DATA-HI

81 1000 0001 | MOD 001 R/M | (DISP-LO),(DISP-HI), OR REG16/MEM16,IMMED16
DATA-LO,DATA-HI

81 1000 0001 | MOD 010 R/M | (DISP-LO),(DISP-HI), ADC REG16/MEM16,IMMED16
DATA-LO,DATA-HI

81 1000 0001 | MOD 011 R/M | (DISP-LO),(DISP-HI), SBB REG16/MEM16,IMMED16
DATA-LO,DATA-HI
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Table 1-23 Machine Instruction Decoding Guide (continued)

1STBYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
81 1000 0001 { MOD100R/M | (DISP-LO),(DISP-HI), AND REG16/MEM16,IMMED16
DATA-LO,DATA-HI
81 1000 0001 | MOD 101 R/M | (DISP-LO),(DISP-HI), suB REG16/MEM16,IMMED16
DATA-LO,DATA-HI
81 1000 0001 { MOD110R/M | (DISP-LO),(DISP-HI), XOR REG16/MEM16,IMMED16
DATA-LO,DATA-HI
81 1000 0001 {MOD 111 R/M | (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMED16
DATA-LO,DATA-HI
82 1000 0010 | MOD 000 R/M | (DISP-LO),(DISP-HI), ADD REG8/MEMS8,IMMEDS8
DATA-8
82 1000 0010 | MOD 001 R/M (not used) ‘
82 1000 0010 { MODO010R/M | (DISP-LO),(DISP-HI), ADC REG8/MEMS8,IMMED8
DATA-8
82 1000 0010 | MOD 011 R/M | (DISP-LO),(DISP-HI), SBB REG8/MEMS,IMMEDS8
DATA-8
82 1000 0010 | MOD100R/M (not used)
82 1000 0010 | MOD 101 R/M | (DISP-LO),(DISP-HI), SuB REG8/MEMS8,IMMEDS8
DATA-8
82 1000 0010 | MOD 110 R/M (not used)
82 1000 0010 { MOD 111 R/M | (DISP-LO),(DISP-HI), CMP REG8/MEMS8,IMMEDS8
DATA-8
83 1000 0011 | MOD 000 R/M | (DISP-LO),(DISP-HI), ADD REG16/MEM16, IMMEDS
: ~ DATA-SX
83 1000 0011 | MOD 001 R/M (not used)
83 1000 0011 [ MODO10R/M [ (DISP-LO), (DISP-HI), ADC REG16/MEM16,IMMEDS8
DATA-SX
83 1000 0011 | MOD 011 R/M | (DISP-LO),(DISP-HI), SBB REG16/MEM16,IMMEDS8
DATA-SX
83 1000 0011 { MOD100R/M (not used)
83 1000 0011 | MOD 101 R/M | (DISP-LO),(DISP-HI), suB REG16/MEM16,IMMEDS8
DATA-SX
83 1000 0011 | MOD 110 R/M (not used)
83 1000 0011 | MOD 111 R/M | (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMED8
' DATA-SX
84 1000 0100 | MOD REG R/M | (DISP-LO),(DISP-HI) TEST REG8/MEM8,REGS
85 1000 0101 | MOD REG R/M | (DISP-LO),(DISP-HI) TEST REG16/MEM16,REG16
86 1000 0110 { MOD REG R/M | (DISP-LO),(DISP-HI) XCHG REG8,REG8/MEMS
87 1000 0111 [ MOD REG R/M | (DISP-LO),(DISP-HI) XCHG REG16,REG16/MEM16
88 1000 1000 [ MOD REG R/M | (DISP-LO),(DISP-HI) MOV REG8/MEMS8,REGS8
89 1000 1001 | MOD REG R/M | (DISP-LO),(DISP-HI) MOV REG16/MEM16/REG16
8A 1000 1010 | MOD REG R/M | (DISP-LO),(DISP-HI) MOV REGS8,REG8/MEMS8
8B 1000 1011 | MOD REG R/M | (DISP-LO),(DISP-HI) MOV REG16,REG16/MEM16
8C 1000 1100 [ MODOSRR/M | (DISP-LO),(DISP-HI) MOV REG16/MEM16,SEGREG
8C 1000 1100 | MOD 1--R/M (not used)
8D 1000 1101 { MOD REG R/M | (DISP-LO),(DISP-HI) LEA REG16,MEM16
8E 1000 1110 [ MODOSRR/M | (DISP-LO),(DISP-HI) MOV SEGREG,REG16/MEM16
8E 1000 1110 | MOD 1--R/M (not used) :
8F 1000 1111 | MOD 000 R/M | (DISP-LO),(DISP-HI) POP REG16/MEM16
8F 1000 1111 | MOD 001 R/M (not used)
8F 1000 1111 | MOD 010 R/M (not used)
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Table 1-23 Machine Instruction Decoding Guide (continued)

1ST BYTE
HEX | BINARY | 2NDBYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
8F [1000 1111 [MOD 011 R/M (not used)
8F [1000 1111 |MOD100R/M (not used)
8F |1000 1111 [MOD 101 R/M (not used)
8F 1000 1111 [MOD110R/M (not used)
8F |1000 1111 [MOD 111 R/M (not used)
90 1001 0000 NOP (exchange AX,AX)
91 [1001 0001 XCHG  AX,CX
92 [1001 0010 XCHG  AX,DX
93 |1001 0011 XCHG  AX,BX
94 [1001 0100 XCHG  AX,SP
95 (1001 0101 XCHG  AX,BP
96 |1001 0110 XCHG  AX,SI
97 |1001 o111 XCHG  AX,DI
98 {1001 1000 CcBW
99 1001 1001 CWD
9A |1001 1010 | DISP-LO DISP-HI,SEG-LO, CALL FAR__PROC
SEG-HI
98  |1001 1011 WAIT
9C (1001 1100 PUSHF
9D |1001 1101 POPF
9E  [1001 1110 SAHF
9F |1001 1111 LAHF
A0 [1010 0000 | ADDR-LO ADDR-HI MoV AL,MEM8
A1 [1010 0001 | ADDR-LO ADDR-HI MOV AX,MEM16
A2 |1010 0010 [ ADDR-LO ADDR-HI MOV MEMS,AL
A3 |1010 0011 [ ADDR-LO ADDR-HI MOV MEM16,AL
A4 1010 0100 MOVS  DEST-STR8,SRC-STRS
A5 1010 0101 MOVS  DEST-STR16,SRC-STR16
A6 [1010 0110 : CMPS  DEST-STR8,SRC-STRS
A7 1010 0111 CMPS  DEST-STR16,SRC-STR16
A8 1010 1000 | DATA-8 TEST AL,IMMEDS
A9 {1010 1001 | DATA-LO DATA-HI TEST AX,IMMED16
AA [1010 1010 STOS DEST-STRS
AB [1010 1011 STOS DEST-STR16
AC [1010 1100 LODS  SRC-STR8
AD [1010 1101 LODS  SRC-STR16
AE (1010 1110 SCAS  DEST-STR8
AF |1010 1111 SCAS  DEST-STR16
B0 [1011 0000 | DATA-8 MOV AL,IMMEDS
B1 [1011 0001 |DATA-8 MOV CL,IMMEDS8
B2 (1011 0010 | DATA-8 MOV DL,IMMEDS
B3 [1011 1011 |DATA-8 MOV BL,IMMEDS
B4 |1011 0100 | DATA-8 MOV AH,IMMEDS8
B5 [1011 0101 |DATA-8 MOV CH,IMMEDS
B6 [1011 0110 [DATA-8 MOV DH,IMMEDS8
B7 [1011 0111 |DATA-8 MOV BH,IMMEDS
B8 [1011 1000 [ DATA-LO DATA-HI MOV AX,IMMED16
B9 |1011 1001 [DATA-LO DATA-HI MOV CX,IMMED16
BA [1011 1010 | DATA-LO DATA-HI MOV DX,IMMED16
BB [1011 1011 | DATA-LO DATA-HI MOV BX,IMMED16
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Table 1-23 Machine Instruction Decoding Guide (continued)

1STBYTE

HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
BC 1011 1100 | DATA-LO DATA-HI MOV SP,IMMED16

BD 1011 1101 | DATA-LO DATA-HI MOV BP,IMMED16

BE 1011 1110 | DATA-LO DATA-HI MOV SI,IMMED16

BF 1011 1111 | DATA-LO DATA-HI MOV DI,IMMED16

CO0 | 1100 0000 (not used)

C1 1100 0001 (not used)

C2 1100 0010 | DATA-LO DATA-HI RET IMMED16 (intraseg)
C3 | 1100 0011 RET (intrasegment)
C4 1100 0100 | MOD REG R/M | (DISP-LO),(DISP-HI) LES REG16,MEM16
C5 1100 0101 [MOD REG R/M | (DISP-LO),(DISP-HI) LDS REG16,MEM16
C6 1100 0110 { MOD 000 R/M (DISP-LO),(DISP-HI), MOV MEMS8,IMMEDS8

. DATA-8

Cé 1100 0110 | MOD 001 R/M (not used)

Cé 1100 0110 [MOD 010 R/M (not used)

Cé 1100 0110 |MOD 011 R/M (not used)

C6 1100 0110 | MOD 100 R/M (not used)

C6 1100 0110 {MOD 101 R/M (not used)

Cé 1100 0110 | MOD110R/M (not used)

C6 1100 0110 |[MOD 111 R/M (not used)

c7 1100 0111 | MOD 000 R/M (DISP-LO),(DISP-HI), MOV MEM16,IMMED16

DATA-LO,DATA-HI

Cc7 1100 0111 |MOD 001 R/M (not used)

c7 1100 0111 |MOD 010 R/M (not used)

Cc7 1100 0111 |MOD 011 R/M (not used)

C7 | 1100 0111 | MOD 100 R/M (not used)

Cc7 7100 0111 {MOD 101 R/M (not used)

C7 | 1100 0111 [MOD110R/M (not used)

c7 1100 0111 |[MOD 111 R/M (not used

C8 1100 1000 (not used)

Cc9 1100 1001 (not used)

CA 1100 1010 | DATA-LO DATA-HI RET IMMED16 (intersegment)
CcB 1100 1011 RET (intersegment)
CC 1100 1100 INT 3

CD 1100 1101 | DATA-8 INT IMMEDS8

CE 1100 1110 INTO

CF 1100 1111 IRET

DO 1101 0000 { MOD 000 R/M (DISP-LO),(DISP-HI) ROL REG8/MEMS,1
DO 1101 0000 | MOD 001 R/M (DISP-LO),(DISP-HI) ROR REG8/MEMS,1
DO 1101 0000 | MOD 010 R/M (DISP-LO),(DISP-HI) RCL REG8/MEMS,1
DO | 1101 0000 (MODO011 R/M | (DISP-LO),(DISP-HI) RCR REG8/MEMS,1
DO 1101 0000 [ MOD 100 R/M (DISP-LO),(DISP-HI) SAL/SHL REG8/MEMS,1
DO 1101 0000 { MOD 101 R/M (DISP-LO),(DISP-HI) SHR REG8/MEMS,1
DO 1101 0000 [ MOD 110 R/M (not used)

DO 1101 0000 | MOD 111 R/M (DISP-LO),(DISP-HI) SAR REG8/MEMS,1
D1 1101 0001 | MOD 000 R/M (DISP-LO),(DISP-HI) ROL REG16/MEM16,1
D1 1101 0001 | MOD 001 R/M (DISP-LO),(DISP-HI) ROR REG16/MEM16,1
D1 1101 0001 [MOD 010 R/M | (DISP-LO),(DISP-HI) RCL REG16/MEM16,1
D1 1101 0001 [MOD 011 R/M (DISP-LO),(DISP-HI) RCR REG16/MEM16,1
D1 1101 0001 | MOD 100 R/M | (DISP-LO),(DISP-HI) SAL/SHL REG16/MEM16,1
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Table 1-23 Machine Instruction Decoding Guide (continued)

1STBYTE

HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
D1 1101 0001 |MOD 101 R/M | (DISP-LO),(DISP-HI) SHR REG16/MEM16,1
D1 1101 0001 |MOD 110 R/M (not used)

D1 1101 0001 {MOD 111 R/M | (DISP-LO),(DISP-HI) SAR REG16/MEM16,1
D2 1101 0010 | MOD 000 R/M | (DISP-LO),(DISP-HI) ROL REG8/MEMS8,CL
D2 1101 0010 { MOD 001 R/M | (DISP-LO),(DISP-HI) ROR REG8/MEMS8,CL
D2 1101 0010 |MOD 010 R/M | (DISP-LO),(DISP-HI) RCL REG8/MEMS8,CL
D2 1101 0010 | MOD 011 R/M | (DISP-LO),(DISP-HI) RCR REG8/MEMS8,CL
D2 1101 0010 | MOD 100 R/M | (DISP-LO),(DISP-HI) SAL/SHL REG8/MEMS,CL
D2 1101 0010 |MOD 101 R/M | (DISP-LO),(DISP-HI) SHR REG8/MEMS8,CL
D2 1101 0010 |MOD 110 R/M (not used)
D2 1101 0010 {MOD 111 R/M | (DISP-LO),(DISP-HI) SAR REG8/MEMS,CL
D3 1101 0011 |MOD 000 R/M | (DISP-LO),(DISP-HI) ROL REG16/MEM16,CL
D3 1101 0011 {MOD 001 R/M | (DISP-LO),(DISP-HI) ROR REG16/MEM16,CL
D3 1101 0011 |MOD 010 R/M | (DISP-LO),(DISP-HI) RCL REG16/MEM16,CL
D3 1101 0011 |MOD 011 R/M | (DISP-LO),(DISP-HI) RCR REG16/MEM16,CL
D3 1101 0011 |MOD 100 R/M | (DISP-LO),(DISP-HI) SAL/SHL REG16/MEM16,CL
D3 1101 0011 |MOD 101 R/M | (DISP-LO),(DISP-HI) SHR REG16/MEM16,CL
D3 1101 0011 | MOD 110 R/M (not used)
D3 1101 0011 {MOD 111 R/M | (DISP-LO),(DISP-HI) SAR REG16/MEM16,CL
D4 1101 0100 | 00001010 AAM
D5 1101 0101 | 00001010 AAD
D6 1101 0110 (not used)
D7 1101 0111 XLAT SOURCE-TABLE
D8 1101 1000 { MOD 000 R/M

1XXX | MOD YYY R/M | (DISP-LO), (DISP-HI) ESC OPCODE,SOURCE
DF 1101 1111 |MOD 111 R/M
EO 1110 0000 [ IP-INC-8 LOOPNE/ SHORT-LABEL

LOOPNZ
E1 1110 0001 | IP-INC-8 LOOPE/ SHORT-LABEL
LOOPZ

E2 1110 0010 {IP-INC-8 LOOP SHORT-LABEL
E3 1110 0011 [IP-INC-8 JCXZ SHORT-LABEL
E4 1110 0100 | DATA-8 IN AL,IMMEDS8
ES 1110 0101 | DATA-8 IN AX,IMMEDS8
E6 1110 0110 | DATA-8 ouT AL,IMMEDS8
E7 1110 0111 | DATA-8 ouT AX,IMMEDS8
E8 1110 1000 | IP-INC-LO IP-INC-HI CALL NEAR-PROC
E9 1110 1001 | IP-INC-LO IP-INC-HI JMP NEAR-LABEL
EA 1110 1010 {IP-LO IP-HI,CS-LO,CS-HI JMP FAR-LABEL
EB 1110 1011 [IP-INC8 JMP SHORT-LABEL
EC 1110 1100 IN AL,DX
ED 1110 1101 IN AX,DX
EE 1110 1110 ouT AL,DX
EF 1110 1111 ouT AX,DX
FO 1111 0000 LOCK (prefix)
F1 1111 0001 (not used)
F2 1111 0010 REPNE/REPNZ
F3 1111 0011 REP/REPE/REPZ
F4 1111 0100 HLT
F5 11110101 CMC
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Table 1-23 Machine Instruction Decoding Guide (continued)

1ST BYTE
HEX BINARY 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT
F6 1111 0110 |[MOD 000 R/M | (DISP-LO),(DISP-HI), TEST REG8/MEMS8,IMMEDS8
DATA-8

F6 1111 0110 { MOD 001 R/M (not used)

F6 1111 0110 [ MOD 010 R/M | (DISP-LO),(DISP-HI) NOT REG8/MEM8

F6 1111 0110 |MOD 011 R/M | (DISP-LO),(DISP-HI) NEG REG8/MEMS8

F6 1111 0110 |[MOD 100 R/M | (DISP-LO),(DISP-HI) MUL REG8/MEM8

F6 1111 0110 { MOD 101 R/M | (DISP-LO),(DISP-HI) IMUL REG8/MEMS8

F6 1111 0110 [MOD 110 R/M | (DISP-LO),(DISP-HI) DIV REG8/MEM8

F6 1111 0110 |MOD 111 R/M | (DISP-LO),(DISP-HI) IDIV REG8/MEMS8

F7 1111 0111 |[MOD 000 R/M | (DISP-LO),(DISP-HI), TEST REG16/MEM16,IMMED16

DATA-LO,DATA-HI

F7 1111 0111 {MOD 001 R/M (not used)

F7 1111 0111 |[MODO010R/M | (DISP-LO),(DISP-HI) NOT REG16/MEM16

F7 1111 0111 |MOD 011 R/M | (DISP-LO),(DISP-HI) NEG REG16/MEM16

F7 1111 0111 |[MOD 100 R/M | (DISP-LO),(DISP-HI) MUL REG16/MEM16

F7 1111 0111 |[MOD 101 R/M | (DISP-LO),(DISP-HI) IMUL REG16/MEM16

F7 1111 0111 |[MOD110R/M | (DISP-LO),(DISP-HI) DIV REG16/MEM16

F7 1111 0111 [MOD 111 R/M | (DISP-LO),(DISP-HI) IDIV REG16/MEM16

F8 1111 1000 CLC

F9 1111 1001 STC

FA 11111010 CLI

FB 1111 1011 STI

FC 1111 1100 CLD

FD 1111 1101 STD

FE 1111 1110 {[MOD 000 R/M | (DISP-LO),(DISP-HI) INC REG8/MEM8

FE 1111 1110 [MOD 001 R/M | (DISP-LO),(DISP-HI) DEC REG8/MEMS8

FE 1111 1110 |MOD 010 R/M (not used)

FE 1111 1110 {MOD 011 R/M (not used)

FE 1111 1110 {MOD 100 R/M (not used)

FE 1111 1110 |MOD 101 R/M (not used)

FE 1111 1110 [MOD 110 R/M (not used)

FE 1111 1110 |MOD 111 R/M (not used)

FF 1111 1111 | MOD 000 R/M | (DISP-LO),(DISP-HI) INC MEM16

FF 1111 1111 {MOD 001 R/M | (DISP-LO),(DISP-HI) DEC MEM16

FF 1111 1111 [MOD 010 R/M | (DISP-LO),(DISP-HI) CALL REG16/MEM16 (intra)
FF 1111 1111 |MOD 011 R/M (DISP-LO),(DISP-HI) CALL MEM16 (intersegment)
FF 1111 1111 |[MOD 100 R/M | (DISP-LO),(DISP-HI) JMP REG16/MEM16 (intra)
FF 1111 1111 [MOD101 R/M | (DISP-LO),(DISP-HI) JMP MEM16 (intersegment)
FF 1111 1111 [MOD 110 R/M | (DISP-LO),(DISP-HI) PUSH MEM16

FF 1111 1111 |MOD 111 R/M (not used)
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Table 1-24 8086/8088 Device Pin Descriptions

The following pin function descriptions are for iAPX 86 systems in either minimum or maximum mode. The “Local
Bus"” in these descriptions is the direct multiplexed bus interface connection to the 8086 (without regard to additional

bus buffers).

Symbol | Pin No. | Type Name and Function

AD45-ADg| 2-16,39 | /O | Address Data Bus: These lines constitute the time multiplexed memory/IO address (T+)
and data (T, T3, Tw, T4) bus. Ag is analogous to BHE for the lower byte of the data bus,
pins D7-Dg. It is LOW during T, when a byte is to be transferred on the lower portion of
the bus in memory or /O operations. Eight-bit oriented devices tied to the lower half
would normally use Ag to condition chip select functions. (See BHE.) These lines are
active HIGH and float to 3-state OFF during interrupt acknowledge and local bus “hold
acknowledge.”

A19/Se, 35-38 O | Address/Status: During T4 these are the four most signi-

A4g/Ss, ficant address lines for memory operations. During /O

A47/S4, operations these lines are LOW. During memory and /O

A1g/S3 operations, status information is available on these A17iSq_| Mg/Sa | Chanctoristics
lines during Ty, T3, Tw, and T4. The status of the interrupt 0(Low) 0 | Alternate Data
enable FLAG bit (Ss) is updated at the beginning of each | i | o | coc or None
CLK cycle. A47/S4 and A4¢/S3 are encoded as shown. 1 1 Data
This information indicates which relocation register is S?Lgvs)
presently being used for data accessing.

These lines float to 3-state OFF during local bus ‘“hold
acknowledge.”

BHE/S; 34 O | Bus High Enable/Status: During T1 the bus high enable
signal (BHE) should be used to enable data onto the
most significant half of the data bus, pins D45-Dg. Eight- BHE | Ag| Characteristics
bit oriented devices_tie;d to the upper half of the bus o o | whole word
would normally use BHE to condition chip select func- 0 1| upperbyte froms
tions. BHE is LOW during T, for read, write, and inter- to odd address
rupt acknowledge cycles when a byte is to be transfer- 1 0 | Lowerbyte from/
red on the high portion of the bus. The S; status informa- , , :’;":" address
tion is available during T, T3, and T4. The signal is active
LOW, and floats to 3-state OFF in “hold.” It is LOW dur-
ing T4 for the first interrupt acknowledge cycle.

RD 32 O | Read: Read strobe indicates that the processor is performing a memory of I/O read cy-
cle, depending on the state of the S, pin. This signal is used to read devices which
reside on the 8086 local bus. RD is active LOW during T,, T3 and Ty, of any read cycle,
and is guaranteed to remain HIGH in T, until the 8086 local bus has floated.

This signal floats to 3-state OFF in “hold acknowledge.”

READY 22 | READY: is the acknowledgement from the addressed memory or /O device that it will
complete the data transfer. The READY signal from memory/IO is synchronized by the
8284A Clock Generator to form READY. This signal is active HIGH. The 8086 READY in-
put is not synchronized. Correct operation is not guaranteed if the setup and hold
times are not met.

INTR 18 | Interrupt Request: is a level triggered input which is sampled during the last clock cy-
cle of each instruction to determine if the processor should enter into an interrupt
acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table
located in system memory. It can be internally masked by software resetting the inter-
rupt enable bit. INTR is internally synchronized. This signal is active HIGH.

TEST 23 | TEST: input is examined by the “Wait” instruction. If the TEST input is LOW execution
continues, otherwise the processor waits in an “Idle” state. This input is synchronized
internally during each clock cycle on the leading edge of CLK.
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Table 1-24 8086/8088 Device Pin Descriptions (continued)

Symbol | Pin No. | Type Name and Function

NMI 17 | Non-maskable interrupt: an edge triggered input which causes a type 2 interrupt. A
subroutine is vectored to via an interrupt vector lookup table located in system
memory. NMI is not maskable internally by software. A transition from a LOW to HIGH
initiates the interrupt at the end of the current instruction. This input is internally syn-
chronized.

RESET 21 | Reset: causes the processor to immediately terminate its present activity. The signal
must be active HIGH for at least four clock cycles. It restarts execution, as described in
the Instruction Set description, when RESET returns LOW. RESET is internally syn-

chronized.

CLK 19 I Clock: provides the basic timing for the processor and bus controller. it is asymmetric
with a 33% duty cycle to provide optimized internal timing.

Vee 40 Vee: + 5V power supply pin.

GND 1,20 Ground

MN/MX 33 | Minimum/Maximum: indicates what mode the processor is to operate in. The two

modes are discussed in the following sections.

The following pin function descriptions are for the 8086/8288 system in maximum mode (i.e., MN/MX = Vsg). Only the
pin functions which are unique to maximum mode are described; all other pin functions are as described above.

- 52,51, 50| 2628 O | Status: active during T4, Ty, and T, and is returned to the

passive state (1,1,1) during T3 or during Ty when READY Sz [Si[So| Characteristics
is HIGH. This status is used by the 8288 Bus Controller owow) | oo interrupt
to generate all memory and I/O access control signals. Acknowledge
Any change by S5, 53, or § during Ty is used to indicate | ¢ Sla | fagiopon
the beginning of a bus cycle, and the return to the pas- 0 1 1] Han
sive state in Ty or Ty is used to indicate the end of a bus T(HIGH) 10 ] 0 | Code Access

1 0|1 Read Memory
cycle. 1 1 10| write Memory
These signals float to 3-state OFF in “hold acknowl- | ' V|| Passie

edge.” These status lines are encoded as shown.

RQ/GT,, 30, 31 I/0 | Request/Grant: pins are used by other local bus masters to force the processor to
RQ/GT, release the local bus at the end of the processor's current bus cycle. Each pin is
bidirectional with RQ/GT, having higher priority than RQ/GT,. RQ/GT has an internal
pull-up resistor so may be left unconnected. The request/grant sequence is as follows

(see Figure 9):

1. A pulse of 1 CLK wide from another local bus master indicates a local bus request
(“hold”) to the 8086 (pulse 1).

2. DuringaT4orT, clock cycle, apulse 1 CLK wide from the 8086 to the requesting master
(pulse 2), indicates that the 8086 has allowed the local bus to float and that it will enter
the “hold acknowledge’ state at the next CLK. The CPU'’s bus interface unit is discon-
nected logically from the local bus during “hold acknowledge.”

3. A puise 1 CLK wide from the requesting master indicates to the 8086 (pulse 3) that
the “hold” request is about to end and that the 8086 can reclaim the local bus at the
next CLK.

Each master-master exchang‘e of the local bus is a sequence of 3 pulses. There must
be one dead CLK cycle after each bus exchange. Pulses are active LOW.

If the request is made while the CPU is performing a memory cycle, it will release the local
bus during T, of tne cycle when all the following conditions are met:

1. Request occurs on or before T,.

2. Current cycle is not the low byte of a word (on an odd address).

3. Current cycle is not the first acknowledge of an interrupt acknowledge sequence.
4. A locked instruction is not currently executing.
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Table 1-24 8086/8088 Device Pin Descriptions (continued)

Symbol | Pin No. | Type Name and Function
If the local bus is idle when the request is made the two possible events will follow:
1. Local bus will be released during the next clock.
2. A memory cycle will start within 3 clocks. Now the four rules for a currently active
memory cycle apply with condition number 1 already satisfied.

TOCK 29 O | LOCK: output indicates that other system bus masters are not to gain control of the
system bus while LOCK is active LOW. The LOCK signal is activated by the “LOCK"
prefix instruction and remains active until the completion of the next instruction. This
signal is active LOW, and floats to 3-state OFF in “hold acknowledge.”

QS4,QSp | 24,25 (o}

Queue Status: The queue status | QS,; |QS, CHARACTERISTICS

is valid during the CLK cycle o (LoW) [ 0 |No Operation

after which the queue operation |g 1 |First Byte of Op Code from Queu
is performed. 1 (HIGH)| 0 |Empty the Queue

QS, and QS provide status to |1 1 | Subsequent Byte from Queue
allow external tracking of the
internal 8086 instruction queue.

The following pin function des
are unique to minimum mode

criptions are for the 8086 in minimum mode (i.e., MN/MX = Ve )- Only the pin functions which
are described; all other pin functions are as described above.

Mo

28

(o]

Status line: logically equivalent to S, in the maximum mode. It is used to distinguish a
memory access from an /O access. M/IO becomes valid in the T4 preceding a bus cycle
and remains valid until the final T4 of the cycle (M= HIGH, |0 = LOW). M/O floats to
3-state OFF in local bus “hold acknowledge.”

|

29

Write: indicates that the processor is performing a write memory or write 1/O cycle,
depending on the state of the M/I0 signal. WR is active for T,, T3 and Ty of any write cy-
cle. It is active LOW, and floats to 3-state OFF in local bus “hold acknowledge.”

Z
>

24

INTA is used as a read strobe for interrupt acknowledge cycles. It is active LOW during
Ta, T3 and Ty of each interrupt acknowledge cycle.

ALE

25

Address Latch Enable: provided by the processor to latch the address into the 8282/
8283 address latch. It is a HIGH pulse active during T of any bus cycle. Note that ALE
is never floated.

DT/IR

27

Data Transmit/Receive: needed in minimum system that desires to use an 8286/8287
data bus transceiver. It is used to control the direction of data flow through the
transceiver. Logically DT/R is equivalent to Sy in the maximum mode, and its timing is
the same as for M/IO. (T = HIGH, R= LOW.) This signal floats to 3-state OFF in local bus
“hold acknowledge.”

Data Enable: provided as an output enable for the 8286/8287 in a minimum system
which uses the transceiver. DEN is active LOW during each memory and l/O access and
for INTA cycles. For a read or INTA cycle it is active from the middle of T, until the mid-
dle of T4, while for a write cycle it is active from the beginning of T, until the middle of
T, DEN floats to 3-state OFF in local bus “hold acknowledge.”

HOLD,
HLDA

31,30

1o

HOLD: indicates that another master is requesting a local bus “hold.” To be acknowl-
edged, HOLD must be active HIGH. The processor receiving the “hold” request will
issue HLDA (HIGH) as an acknowledgement in the middle of a T, clock cycle. Simul-
taneous with the issuance of HLDA the processor will fioat the local bus and control
lines. After HOLD is detected as being LOW, the processor will LOWer the HLDA, and
when t'hle processor needs to run another cycle, it will again drive the local bus and
control lines. -

The same rules as for RQIGT apply regarding when the local bus will be released.

HOLD is not an asynchronous input. External synchronization should be provided if the
system cannot otherwise guarantee the setup.time.
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During normal multiprocessor system operation, priority
of the shared system bus is determined by the arbitration
circuits on a cycle by cycle basis. As each CPU requires a
transfer over the system bus, it request access to the bus
via its resident bus arbitration logic. When the CPU gains
priority (determined by the system bus arbitration scheme
and any associated logic), it takes control of the bus, per-
forms its bus cycle and either maintains bus control, vol-

untarily releases the bus or is forced off the bus by the

loss of priority. The lock mechanism prevents the CPU
from losing bus control (either voluntarily or by force)
and guarantees a CPU the ability to execute multiple bus
cycles (during execution of the locked instruction) with-
out intervention and possible corruption of the data by
another CPU. A classic use of the mechanism is the
"TEST and SET semaphore’ during which a CPU must
read from a shared memory location and return data to the
location without allowing another CPU to reference the
same location between the TEST operation (read) and the
SET operation (write). In the 8086 this is accomplished
with a locked exchange instruction (see Figure 1-37).

LOCK XCHG reg, MEMORY; reg is any register .
; MEMORY is the address
of the
; semaphore

Another application of LOCK* for multiprocessor sys-
tems consists of a locked block move which allows high
speed message transfer from one CPU’s message buffer
to another.

During the locked instruction, a request for processor
preemption (RQ*/GT*) is recorded but not acknowledged
until completion of the locked instruction. The LOCK*
has no direct affect on interrupts. As an ¢xample, a locked
HALT instruction will cause HOLD (or RQ*/GT*) re-
quests to be ignored but will allow the CPU to exit the
HALT state on an interrupt. In general, prefix bytes are
considered extensions of the instructions they preceded.
Therefore, interrupts that occur during execution of a pre-
fix are not acknowledged (assuming interrupts are en-
abled) until completion of the instruction following the
prefix (except for instructions which are servicing inter-
rupts during their execution, i.e., HALT, WAIT and re-
peated string primitive). Note that multiple prefix bytes
may precede an instruction. Another example is a *string
primitive’ preceded by the repetition prefix (REP) which
is interruptible after each execution of the string primi-
tive. This holds even if the REP prefix is combined with
the LOCK prefix. This prevents interrupts from being
locked out during a block move or other repeated string
operation. As long as the operation.is not interrupted,
LOCK* remains active. Further information on the oper-
ation of an interrupted string operation with multiple pre-
fixes is presented in the section dealing with the 8086
interrupt structure.

1.3.6 General Design Considerations

Since the minimum mode 8086 has common read and
write commands for memory and I/0, if the memory and
1/0 address spaces overlap, the chip selects must be quali-
fied by M/IO* to determine which address space the de-
vices are assigned. This restriction on chip select
decoding can be removed if the I/O and memory ad-
dresses in the system do not overlap and are properly de-
coded, all I/O is memory mapped, or RD*, WR* and
M/IO* are decoded to provide separate memory and I/O
read/write commands (see Figure 1-38). The 8288 bus
controller in the maximum mode 8086 system generates
separate I/0 and memory commands in place of a M/IO*
signal. An 1/O device is assigned to the 1/0 space or
memory space (memory mapped 1/0O) by connection of
either 1/O or memory command lines to the command in-
puts of the device. To allow overlap of the memory and
I/O address space, the device must not respond to chip
select alone but must require a combination of chip select

‘and a read or a write command.

Linear select techniques (see Figure. 1-39) for I/0 devices
can only be used with devices that either reside in the I/O
address space or require more than one active chip select
(at least one low active and one high active). Devices with
a single chip select input cannot use linear select if they
are memory mapped because memory address space
FFFFOH-FFFFFH is assigned to reset startup and mem-
ory space 00O0OH-O03FFH is assigned to interrupt
vectors.

1.4 BUS OPERATION

In order to understand the operation of a time-multiplexed
bus, the BIU’s bus cycle must be understood. A bus cycle
is an asynchronous event that presents the address of an
1/0 peripheral or memory location. The address is fol-
lowed by either a read control signal to capture or read
data from the addressed device, or a write control signal
and the associated data to transmit or write the data to the
addressed device. The selected device (memory or I/O
peripheral) accepts the data on the bus during a write cy-

. cle or places the requested data on the bus during a read

cycle. On termination of the specified cycle, the device
latches the data written or removes the data read.

1.4.1 Multiplexed Address and Data Bus

The 8086/88 has a combined address and data bus com-
monly referred to as a time multiplexed bus. Time multi-
plexing makes the most efficient use of pins on the
processor while permitting the use of a standard 40-pin
package. This “local bus” can be buffered directly and
used throughout the system with address latching pro-
vided on memory and I/O modules. In addition, the bus
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ano [ V a0 vee
ap1a []2 39l ] AD15
ap13 []s 38[] A16/53
ap12 [Ja 37[] A17/s4
ap11 []s 36 ] ate/ss
apto []e 3s[] at9/s6
aps 7 34|] BRE/s?
ans []s 33 mn/iix
ap7 o 32[] /D
AD6 g 10 %O:S 31 J HOoLD  (RG/GTO
ADs 11 30[ ] HLDA  (RG/GTT
apa []12 29[ ] WR (LOCK)
Ap3 [J13 28] ] msio ()]
ap2 [J1a 27 ] oT/R 1)
apt s 26 t] DEN (50)
apo []1e 25[ ] ALE (@s0)
i (17 24[] iNTA (@s1)
INTR []18 23] TEST
ck e 22[ ] READY
GND [] 20 21 Fl RESET

MAXIMUM MODE PIN FUNCTlONS(e 9.,LOCK)
ARE SHOWN IN PARENTHESES

eND[]1 \/ w[Jvce

a1a]2 39 a1s

a13[]a 38| ] atess3

a12[Ja 37[] A17/s4

a11[]s 36 [ ] A18/s5

a0[]s 3sf ] at9/s6

a7 3] sso (HIGH)

as[]s 33 [ MN/NIX
ao7[]e 32[ ] RD
aps [ 10 %OPBS s1i[JHOLD  (RG/GTO)
aps [ 30 JHLDA  (RG/GTY)
aba[]12 2] wr (LOCK)
AD3[]13 2 Jio/m (82
AD2[J14 z[Jo/R @)
ap1[J1s 26 ] DEN (50)
ano[J1s 25 ] aLE (Qs0)
Nmi[]17 24[]INTA  (@s1)
INTR[ 18 23] TEST
cLk [t 22[ ] reapny
GND[] 20 21 ] RESET

Figure 1-30 8086/8088 DIP Pin Assignments

can also be demultiplexed at the processor with a single
set of address latches if a standard non-multiplexed bus is
desired for the system.

1.4.2 Bus Cycle Definition

The 8086 is a true 16-bit microprocessor with 16-bit in-
ternal and external data paths, one megabyte of memory
address space (2%0) and a separate 64K byte (2!6) 1/0 ad-
dress space. The CPU communicates with its external en-
vironment via a twenty-bit time multiplexed address,
status and data bus and a command bus. To transfer data
or fetch instructions, the CPU executes a bus cycle (see
Figure 1-40). The minimum bus cycle consists of four
CPU clock cycles (“T”) states. During the first T state
(T1), the CPU asserts an address on the twenty-bit multi-
plexed address/data/ status bus. For the second T state
(T2), the CPU removes the address from the bus and ei-
ther tri-states its outputs on the lower sixteen bus lines in
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preparation for a ready cycle or asserts write data. Data
bus transceivers are enabled in either T1 or T2 depending
on the 8086 system configuration and the direction of the
transfer (into or out of the CPU). Read, write or interrupt
acknowledge commands are always enabled in T2. The
maximum mode 8086 configuration also provides a write
command enabled in T3 to guarantee time for data setup
prior to command activation.

During T2, the upper four multiplexed bus lines switch
from address (A19-A16) to bus cycle status (S6, S5, S4,
S3). The status information (see Table 1-31) is available
primarily for diagnostic monitoring. However, a decode
of S3 and S4 could be used to select one of four banks of
memory, one assigned to each segment register. This tech-
nique allows partitioning the memory by segment to ex-
pand the memory addressing beyond one megabyte. It
also provides a degree of protection by preventing errone-
ous write operations to one segment from overlapping
into, and destroying information, in another segment.
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Table 1-25 D.C. Characteristics
(8086: Ta = 0°C to 70°C, Vcc = 5V = 10%)
(8086-1: Ty = 0°C to 70°C, V¢ = 5V + 5%)
(8086-2: T = 0°C to 70°C, Voc = 5V = 5%)

Symbol Parameter Min. Max. Units Test Conditions
viL Input Low Voltage -05 +0.38 v
Vin Input High Voltage 20 Vec+0.5 Vv
Vou Output Low Voltage 0.45 v lor=2.5 mA
Vo Output High Voltage 24 v low= — 400 uA
lee Power Supply Current: 8086 340
8086-1 360 mA Tao=25°C
8086-2 350
Iy Input Leakage Current +10 uA 0V < Viy < Ve
lo Output Leakage Current +10 uA 0.45V < Vo € Ve
Voo Clock Input Low Voltage -05 +0.6
Ve Clock Input High Voltage 3.9 Vee+1.0
Capacitance of Input Buffer
Cin (All'input except 15 pF fc=1MHz
ADg - ADys5, RQIGT)
Capacitance of I/0 Buffer _
Cio (ADg— ADyg, ﬁﬁlc-f) 15 pF fc=1MHz

The CPU continues to provide status information on the
upper four bus lines during T3 and will either continue to
assert write data or sample read data on the lower sixteen
bus lines. If the selected memory or I/O device is not
capable of transferring data at the maximum CPU transfer
rate, the device must signal the CPU “not ready” and
force the CPU. to insert additional clock cycles (Wait
states, TW) after T3. The ’not ready’ indication must be
presented to the CPU by the start of T3. Bus activity dur-
ing TW is the same as T3. In a “normally not ready”
system, when the selected device has had sufficient time
to complete the transfer, it asserts “Ready”” and allows the
CPU to continue from the TW states. The CPU will latch
the data on the bus during the last wait state or during T3
if no wait states are requested. The bus cycle is terminated
in T4 (command lines are disabled and the selected exter-
nal device releases the bus). To devices in the system, the
bus cycle appears as an asynchronous event consisting of
an address to select the device followed by a read strobe
or data and a write strobe. The selected device accepts
bus data during a write cycle and drives the desired data
onto the bus during a read cycle. On termination of the
command, the device latches write data or disables its bus
drives. The only way the device controls the bus cycle is
by inserting wait cycles.

The 8086 CPU only executes a bus cycle when instruc-
tions or operands must be transferred to or from memory
or I/O devices. When not executing a bus cycle, the bus
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interface executes idle cycles (T1). During the idle cy-
cles, the CPU continues to drive status information from
the previous bus cycle on the upper address lines. If the
previous bus cycle was a write, the CPU continues to
drive the write data onto the multiplexed bus until the start
of the next bus cycle. If the CPU executes idle cycles
following a ready cycle, the CPU will not drive the lower
16 bus lines until the next bus cycle is required.

Since the CPU prefetches up to six bytes of the instruction
stream for storage and execution from an internal instruc-
tion queue, the relationship may be skewed in time and
separated by additional instruction fetch bus cycles. In
general, if the BIU fetches an instruction into the 8086’s
internal instruction queue, it may also fetch several addi-
tional instructions before the EU removes the instruction
from the queue and executes it. If the EU executes a jump
or other control transfer instruction from the queue, it
ignores any instructions remaining in the queue; the CPU
discards these instructions with no effect on operation.
The bus activity observed during execution of a specific
instruction depends on the preceding instructions; the ac-
tivity, however, may always be determined within a spe-
cific sequence. '

1.4.3 Address and Data Bus Concepts

The programmer views the 8086 memory address space
as a sequence of one million bytes in which any byte may
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contain an eight bit data element and any two consecutive
bytes may contain a 16-bit data element. There is no con-
straint on byte or word addresses (i.e., boundaries). The
address space is physically implemented on a 16-bit data
bus by dividing the address space into two banks of up to
512K bytes (see Figure 1-41). One bank connects to the
lower half of the 16-bit data bus (D7-0) and contains even
addressed bytes (A0 =0). The other bank connects to the
upper half of the data bus (D15-8) and contains odd ad-
dressed bytes (AO=1). Address lines A19-Al select a
specific byte within each bank. To perform byte transfers
to even addresses (Figure 1-42), the information is trans-
ferred over the lower half of the data bus (D7-0). AO (ac-
tive low) enables the bank connected to the lower half of

the data bus to participate in the transfer. Another 8086
signal, Bus High Enable (BHE*), disables the bank on the
upper half of the data bus to prevent its participation in the
transfer. This action prevents a write operation to the
lower bank from destroying data in the upper bank. De-
vice pin 34 (refer to paragraph 1.3) is multiplexed be-
tween BHE* during T1 and S7 during T2 through T4.
The current implementation of the 8086 equates BHE* to
S7. That is, if BHE* is high during T1 then S7 will like-
wise be high during T2 through T4. Since BHE* is a mul-
tiplexed signal with timing identical to the A19-A16
address lines, it also should be latched during T1 with
ALE to provide a stable signal during the bus cycle. To
perform byte transfers to odd addresses (see Figure 1-42),

Table 1-26 A.C. Timing Requirements for Minimum Complexity System

(8086:

Ta = 0°C to 70°C, Ve = 5V + 10%)

(8086-1: Ta = 0°C to 70°C, Vg = 5V = 5%)
(8086-2: Ty = 0°C to 70°C, Vo = 5V * 5%)

MINIMUM COMPLEXITY SYSTEM
TIMING REQUIREMENTS

Test
Symbol Parameter 8086 8086-1 (Preliminary) 8086-2 Units Conditions
Min. Max. Min. Max. Min. Max.
TCLCL CLK Cycle Period 200 500 100 500 125 500 ns
TCLCH CLK Low Time 118 53 68 ns
TCHCL CLK High Time 69 39 44 ns
TCH1CH2 CLK Rise Time 10 10 10 ns From 1.0V to
3.5V
TCL2CL1 CLK Fall Time 10 10 10 ns From 3.5V to
1.0v
TOVCL Data in Setup Time 30 5 20 ns
TCLDX Data in Hold Time 10 10 10 ns
TR1VCL RDY Setup Time 35 35 35 ns
into 8284A (See
Notes 1, 2)
TCLR1X RDY Hold Time 0 0 0 ns
into 8284A (See
Notes 1, 2)
TRYHCH READY Setup 118 53 68 ns
Time into 8086
TCHRYX READY Hold Time 30 20 20 ns
into 8086
TRYLCL READY Inactive to -8 -10 -8 ns
CLK (See Note 3)
THVCH HOLD Setup Time 35 20 20 ns
TINVCH INTR, NMI, TEST 30 15 15 ns
Setup Time (See
Note 2)
TILIH Input Rise Time 20 20 20 ns From 0.8V to
(Except CLK) 2.0V
TIHIL Input Fall Time 12 12 12 ns From 2.0V to
(Except CLK) 0.8v
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Table 1-26 A.C. Timing Requirements for Minimum Complexity System (continued)

TIMING RESPONSES
Test
Symbol Parameter 8086 8086-1 (Preliminary) 8086-2 Units Conditions
Min. Max. Min. Max. Min. Max.
TCLAV Address Valid Delay 10 110 10 50 10 60 ns
TCLAX Address Hold Time 10 10 10 ns
TCLAZ Address Float TCLAX 80 10 40 TCLAX 50 ns
Delay
TLHLL ALE Width TCLCH-20 TCLCH-10 TCLCH-10 ns
TCLLH ALE Active Delay 80 40 50 ns
TCHLL ALE Inactive Delay 85 45 55 ns
TLLAX Address Hold Time TCHCL-10 TCHCL-10 TCHCL-10 ns
to ALE Inactive
TCLDV Data Valid Delay 10 110 10 50 10 60 ns *CL = 20-100 pF
TCHDX Data Hold Time 10 10 10 ns | forall 8086 Out-
puts (In addi-
TWHDX Data Hold Time TCLCH-30 TCLCH-25 TCLCH-30 ns | tion to 8086 selt-
After WR load)
TCVCTV Control Active 10 110 10 50 10 70 ns
Delay 1
TCHCTV Control Active 10 110 10 45 10 60 ns
Delay 2
TCVCTX Control Inactive 10 110 10 50 10 70 ns
Delay
TAZRL Address Float to 0 0 0 ns
READ Active
TCLRL RD Active Delay 10 165 10 70 10 100 ns
TCLRH 'RD Inactive Delay 10 150 10 60 10 80 ns
TRHAV RD Inactive to Next TCLCL-45 TCLCL-35 TCLCL-40 ns
Address Active
TCLHAV HLDA Valid Delay 10 160 10 60 10 100 ns
TRLRH RD Width 2TCLCL-75 2TCLCL-40 2TCLCL-50 ns
TWLWH WR Width 2TCLCL-60 2TCLCL-35 2TCLCL-40 ns
TAVAL Address Valid to TCLCH-60 TCLCH-35 TCLCH-40 ns
ALE Low
TOLOH Output Rise Time 20 20 20 ns | .From0.8Vto.
20v
TOHOL Output Fall Time 12 12 12 ns From 2.0V to
0.8v
NOTES:

1. Signal at 8284A shown for reference only.

2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.

3. Applies only to T2 state. (8 ns into T3).

the information is transferred over the upper half of the
data bus (D15-D8). BHE* (active low) will enable the
upper bank and AO will disable the lower bank. Directing
the data transfer to the appropriate half of the data bus and
activation of S7 (BHE*) and AO is performed by the
8086, transparent to the programmer. For example, con-
sider loading a byte of data into the CX register (lower
half of the CX register) from an odd addressed memory
location (referenced over the upper half of the 16-bit data
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bus). The data is transferred into the 8086 over the upper
8 bits of the data bus, automatically redirected to the
lower half of the 8086 internal 16-bit data path and stored
in the CX register. This capability also allows byte I/O
transfers with the AL register to be directed to I/O devices
connected to either the upper or lower half of the 16-bit
data bus.
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To access even addressed 16-bit words (two consecutive
bytes with the least significant byte at an even byte ad-
dress), A19-Al select the appiopriate byte within each
bank and AO and BHE* (active low) enable both banks
simultaneously (see Figure 1-43). To access an odd ad-
dressed 16-bit word (see Figure 1-43), the least signifi-
cant byte (addressed by A19-A1l) is first transferred over
the upper half of the bus (odd addressed byte, upper bank,
BHE* low active and AO-1). The most significant byte is

accessed by incrementing the address (A19-A0) which al-
lows A19-A1 to address the next physical word location
(recall that AO was high which indicates a word refer-
enced from an odd byte boundary). A second bus cycle is
then executed to perform the transfer of the most signifi-
cant byte with the lower bank (A0 is now low and BHE* is
high). The sequence is automatically executed by the
8086 whenever a word transfer is executed to an odd ad-
dress. Directing the upper and lower bytes of the 8086’s

Table 1-27 A.C. Timing Requirements for Maximum Complexity System
MAX MODE SYSTEM (USING 8288 BUS CONTROLLER)

TIMING REQUIREMENTS
Test
Symbol Parameter 8086 8086-1 (Preliminary) 8086-2 (Preliminary) Units Conditions
Min. Max. Min. Max. Min. Max.
TCLCL CLK Cycle Period 200 500 100 500 125 500 ns
TCLCH CLK Low Time 118 53 68 ns
TCHCL CLK High Time 69 39 44 ns
TCH1CH2 CLK Rise Time 10 10 10 ns From 1.0V to
3.5V
TCL2CL1 CLK Fall Time 10 10 10 ns From 3.5V to
1.0v
TOVCL Data in Setup Time 30 5 20 ns
TCLDX Data In Hold Time 10 10 10 ns
TR1VCL RDY Setup Time 35 35 35 ns
into 8284A (See
Notes 1, 2)
TCLR1X RDY Hold Time 0 0 0 ns
into 8284A (See
Notes 1, 2)
TRYHCH READY Setup Time 118 53 68 ns
into 8086
TCHRYX READY Hold Time 30 20 20 ns
into 8086
TRYLCL READY Inactive to -8 -10 -8 ns
CLK (See Note 4)
TINVCH Setup Time for 30 15 15 ns
Recognition (INTR,
NMI, TEST) (See
Note 2)
TGVCH RQ/GT Setup Time 30 12 15 ns
TCHGX RQ Hold Time into 40 20 30 ns
8086
TILIH Input Rise Time 20 20 20 ns From 0.8V to
(Except CLK) 20V
TIHIL Input Fall Time 12 12 12 ns From 2.0V to
(Except CLK) 0.8v
NOTES:
1. Signal at 8284A or 8288 shown for reference only.
2. Setup requirement for asynchronous signal only to guarantee recognition at next CLK.
3. Applies only to T3 and wait states.
4. Applies only to T2 state (8 ns into T3).
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Table 1-27 A.C. Timing Requirements for Maximum Complexity System (continued)

TIMING RESPONSES
Test
Symbol Parameter 8086 8086-1 (Preliminary) 8086-2 (Preliminary) Units Conditions
Min. Max. Min. Max. Min. Max.
TCLML Command Active 10 35 10 35 10 35 ns
Delay (See Note 1).
TCLMH Command inactive 10 35 10 35 10 35 ns
Delay (See Note 1)
TRYHSH READY Active to 110 45 65 ns
Status Passive (See
Note 3)
TCHSV Status Active Delay 10 110 10 45 10 60 ns
TCLSH Status Inactive 10 130 10 55 10 70 ns
Delay
TCLAV Address Valid 10 110 10 50 10 60 ns
Delay
TCLAX Address Hold Time 10 10 10 ns
TCLAZ Address Float Delay TCLAX 80 10 40 TCLAX 50 ns
TSVLH Status Valid to ALE 15 15 15 ns
High (See Note 1)
TSVMCH Status Valid to 15 15 15 ns
MCE High (See
Note 1)
TCLLH CLK Low to ALE 15 15 15 ns
Valid (See Note 1)
TCLMCH CLK Low to MCE 15 15 15 ns
High (See Note 1)
TCHLL ALE Inactive Delay 15 15 15 ns Cp = 20-100 pF
(See Note 1) for all 8086 Out-
TCLM MCE Inactive Del 1 15 15 s | Puts(naddi-
cLmeL (S:f Nr:;:t:)e oy s " tion to 8086 self-
load)
TCLDV Data Valid Delay 10 110 10 50 10 60 ns
TCHDX Data Hold Time 10 10 10 ns
TCVNV Control Active 5 45 5 45 5 45 ns
Delay (See Note 1)
TCVNX Control Inactive 10 45 10 45 10 45 ns
Delay (See Note 1)
TAZRL Address Float to 0 0 0 ns
Read Active
TCLRL RD Active Delay 10 165 10 70 10 100 ns
TCLRH RD Inactive Delay 10 150 10 60 10 80 ns
TRHAV RD Inactive to TCLCL-45 TCLCL-35 TCLCL-40 ns
Next Address Active
TCHDTL Direction Control 50 50 50 ns
Active Delay (See
Note 1)
TCHDTH Direction Control 30 30 30 ns
Inactive Delay (See
Note 1)
TCLGL GT Active Delay 0 85 0 45 0 50 ns
TCLGH GT Inactive Delay 0 85 ] 45 0 50 ns
TRLRH RD Width 2TCLCL-75 2TCLCL-40 2TCLCL-50 ns
TOLOH Output Rise Time 20 20 20 ns From 0.8V to
20V
TOHOL Output Fall Time 12 12 12 ns | From20Vto
0.8V
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Table 1-28 Minimum/Maximum Mode Pin Assignments

internal 16-bit registers to the appropriate halves of the
data bus is also performed automatically by the 8086 and
is transparent to the programmer.

During a byte read, the CPU floats the entire 16-bit data
bus even though data is only expected on the upper or
lower half of the data bus. As will be demonstrated later,
this action simplifies the chip select decoding require-
ments for read only devices (ROM, EPROM). During a
byte write operation, the 8086 will drive the entire 16-bit

8086 8088
Mode Mode
Pin Pin
Minimum Maximum Minimum Maximum
31 HOLD RQ/GTO 31 HOLD RQ/GTO0
30 HLDA RQ/GT1 30 HLDA RQ/GT1
29 WR LOCK 29 WR_ LOCK
28 M/1I0 S2 28 I0/M S2
27 DT/R §i 27 DT/R si
26 DEN SO 26 DEN S0
25 ALE QS0 25 ALE Qso
24 INTA Qs1 24 INTA Qst
34 SSO0 High State
Table 1-29 Status Bit Decoding
Status Inputs
_ — — CPU Cycle 8288 Command
S2 S1 SO
0 0 0 Interrupt Acknowledge INTA
0 0 1 Read /0 Port I0RC
0 1 0 Write /0 Port IOWC, AIOWC
0 1 1 Halt None
1 0 0 Instruction Fetch MRDC
1 0 1 Read Memory MRDC
1 1 0 Write Memory MWTC, AMWC
1 1 1 Passive None
Table 1-30 Status Line Decoders data bus. The information on the half of the data bus not
— — — transferring data is indeterminate. These concepts also
S2 $4 So apply to the I/O address space. Specific examples of 1/0
0 (LOW) 0 0 Interrupt Acknowledge f\nd memory interfacing are considered in the correspond-
0 0 1 Read /O Port Ing sections.
0 1 0 Write 1/0 Port
0 1 1 Halt
1(HIGH) 0 0 Code Access 1.4.4 Memory and /O Peripherals Interface
1 0 1 Read Memory
1 1 0 Write Memory The 8086 and 8088 CPUs have a 20-bit address bus and
1 1 1 Passive are capable of accessing one megabyte of memory ad-

dress space. The memory is organized as a linear array of
up to 1 million bytes, addressed as 00000(H) to FFF-
FF(H). The memory is logically divided into code, data,
extra data, and stack segments of up to 64 K bytes each,
with each segment falling on 16-byte boundaries (see Fig-
ure 1-44).

All memory references are made relative to base ad-
dresses contained in high speed segment registers. The
segment types were chosen based on the addressing needs
of programs. The segment register to be selected is auto-
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MINIMUM MODE
T T2 Ta  Tw Ta
ToLCL TCHICH2 Towzen
Ven
cxemmomn £ K f N Cox N\
“tlreHerv TCHCL le— TCLCH —=|
e X
| TcLoV]
» TCLAV-»| = | reax TCHDX —
BRES?, AwiSe-Aw'So \( BHE, Avg-Ase $1-4
/| |
TCLLH -~ H TLHLL— TLLAX
ALE 4
A
—=| TAVAL [T
TCHLL—=I —F - TRIVCL
Vi et
ROY (82844 Input) ,
SEE NOTE 4 —
Vi —~ T=FcLrix
TRYLCL—=|  |=—
' |
READY (8086 input) l . o TcHRYX
TAVAL et TRYHCH—> .
TLLAX—+| — |
TCLAV—»| ! leTCLAZ TDVCL ——=|e—TCLDX—+|
— le-TCLAX
- Ar5-ADo DATA IN
Ab1s-ADo " FLOAT FLOAT
TA‘ZRL—b -— TCLRH—| TRHAV

_ T

RD ) ;
READ CYCLE

— TCHCTV TCLAL le—— ot —TRLRH—— «—TCHCTV
(NOTE 1)
(WR, INTA = Vou) oTR
' TCVCTV—| TCVCTX —|
DEN

Figure 1-31 Minimum Mode Waveforms
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WAVEFORMS (Continued)

MINIMUM MODE (Continued)

| T T2 Ta
Ven j+—— TCLCL ——={TCH1CH2 rcn.zcu
CLK (8284A Output) vj/_ —\K_f—\\ / J\ jf \
= remery TCHCL e TCLCH =
WG I x
TCLAV-] oo 160 TcHDX -
BHESS7, A1p/Se-Are/S3 BHE, Arp-Are $7-S3
A
t
TCLLH—~] TLLAX i
e
ALE
TCHLL—~]
TCLAV~ ;gt::: TcHoX
T
ADss-ADo ADys-AD, DATA OUT
atadie
TAVAL i~ TWHDX
TeveTv. [
WRITE CYCLE - TLLAX — CVCTX
(NOTE 1) BEN
m‘ﬁ
=Von) VeV
Tovev— = TWLWH
" X i
’ ToveTX—>| |
— TcLAz
I;:mvct———
AD;5-ADg > —— POINTER
— t-TeneTv
INTA CYCLE oA
(NOTES 14 3)
B, Wh=Vox TCVCTV—=l o
BRE = vou)
INTA
TCVCTV—+| TeveTX—
DEN
SOFTWARE HALT— -
RD, WR, INTA = Vou INVALID ADDRESS SOFTWARE HALT
, WR, INTA =
=

DT/R = INDETERMINATE TCLAV —=

NOTES:

1. All signals switch between Vo and Vg, unless otherwise specified.

2. RDY is sampled near the end of T, T3, Ty to determine if Ty machines states are to be inserted.

3. Two INTA cycles run back-to-back. The 8086 LOCAL ADCR/DATA BUS is floating during both INTA cycles. Control signals shown
for second INTA cycle.

4. Signals at 8284A are shown for reference only.

5. All timing measurements are made at 1.5V unless otherwise noted.

Figure 1-31 Minimum Mode Waveforms (continued)
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WAVEFORMS

MAXIMUM MODE

T \ T2, Ta Ta
roLet TCH1CH2 TeLcl g,
ok VeH a
wtd S X £ S £ \
TCLAV~] TCHCL le—TCLCH —»]
XXX C
TCHSV —=|  JeTCLSH
< ——————
§2.57.50 (EXCEPT HALT) K / //(sss NOTE 8 \
| VT,
] oy TCLOV TCHDX |
JCLAX
BHE/S;, A1p/Se-A1e/S3 BHE, A1g-A1s Sr-S3
TSVLH—+]
ToLire] — TCHLL
——
ALE (8288 OUTPUT) /
— S A
SEE NOTE § le—TR1VCL
—
RDY (8284A INPUT) - \T \ \\
——— ) "
| l~TCLRIX
TRYLCL. —
READY (8086 INPUT) l — <— TCHRYX
l L
—»{TCLAX
—
READ CYCLE TCLAV—] —(TCLAZ |+ TDVCL ———{+ TCLOX —=
- i A15-AD
AD15-ADg 15-ADo TG DATA IN ) T
TAZRL—| o TCLRH TRHAY ——]
" X {
— TRLRH )
TCHDTL —~| | TCLAL X Prcnom
DTR \J'L \
TCLML—~| TCLMH—] -
8288 OUTPUTS | Lo e
SEE NOTES 5,6
TCVNV—s| |le—
DEN
TCVNX —| ~—

Figure 1-32 Maximum Mode Waveforms
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WAVEFORMS (Continued)

MAXIMUM MODE (Continued)

§2.51.50 (EXCEPT HALT)
WRITE CYCLE

AD15-ADg

DEN

8288 OUTPUTS

SEENOTES 5.6 | AWMWC OR ATOWC

MWTC OR iOWC

INTA CYCLE

AD15-ADo
(SEE NOTES 3 & 9)

AD15-ADp

MCE/

DT/R

8288 OUTPUTS

SEE NOTES 5.6 ) INTA

DEN
SOFTWARE HALT —

AD15-ADg

52515

(DEN = Vo ;AD,MRDC JORC, MWTC,AMWC,IOWC,ATOWC,INTA, = Vo)

Ty T2 Ta Ta
Tw
VCH m F—\ ’-\
veu N/ N/
TCHSY le—rcLsn
Y/ ///////// ~(see note 8 A
/ | O
TCLAV J—-TCI.DV TCHDX —|
—lretan-—
AD15-ADo X DATA
TCVNV-= JP TCVNX | [:
— {—rmm TCLMH —|
Etcwl —|  |e—TcLMH
Foat|  / FOR \ ¢
CASCADE ADDR FLOAT FLOAT \
— \!-tcuz \ Tciox
)2 POINTER —(
/ " "FLoAT /"\_____ FLOAT
| TCLMCL-=.  |=— i
TSYMCH-— !

TCLMCH—~| |«  —] - TCHDTL
e e——
)

F—TCHOTH

TCLML *‘1 M

— \ ~— TCUNV e

TCLAV

o/

T INVALID ADDRESS

- TCLMH

TCVNX *) o

NOTES:

1. All signals switch between Vo and Vo unless otherwise specified.

2. RDY is sampled near the end of T, T3, Tw to determine if Tw machines states are to be inserted.

3. Cascade address is valid between first and second INTA cycle.

4. Two INTA cycles run back-to-back. The 8086 LOCAL ADDR/DATA BUS is floating during both INTA cycles. Control for pointer
address is shown for second INTA cycle.

o

. Signals at 8284A or 8288 are shown for reference only.

6. The issuance of the 8288 command and control signals (MRDC, MWTC, AMWC, IORC, IOWC, AIOWC, iNTA and DEN) lags the

active high 8288 CEN.

o™~

. Al timing measurements are made at 1.5V unless otherwise noted.
. Status inactive in state just prior to Ty4.

Figure 1-32 Maximum Mode Waveforms
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= CLK BUS
i CONTROLLER
CLK 5o »1 50 INTA
READY 5 5 MROC
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DEN
= ot ORC
ALE OWT
8088
cPU
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8282 ADDRESS BUS

- R TR
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- DATA DATA
DATA BUS
8286
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8287

Figure 1-33 Elementary Maximum Mode System

matically chosen according to the rules of the following
table. All information in one segment type share the same
logical attributes (e.g., code or data). By structuring
memory into relocatable areas of similar characteristics
and by automatically selecting segment registers, pro-
grams are shorter, faster, and more structured.

Word (16-bit) operands can be located on even or odd
address boundaries and are thus not constrained to even
boundaries as is the case in many 16-bit computers. For
address and data operands, the least significant byte of the
word is stored in the lower valued address location and the
most significant byte in the next higher address location.
The BIU automatically performs the proper number of
memory accesses, one if the word operand is on an even
byte boundary and two if it is on an odd byte boundary.
Except for the performance penalty, this double access is
transparent to the software. This performance penalty
does not occur for instruction fetches, only word operands.

Physically, the memory is organized as a high bank
(D15-D8) and a low bank (D7-D0) of 512K 8-bit bytes
addressed in parallel by the processor’s address lines
A19-Al. Byte data with even addresses is transferred on
the D7-DO bus lines while odd addressed byte data (AO
HIGH) is transferred on the D15-D8 bus lines. The proc-
essor provides two enable signals, BHE* and AO, to se-

lectively allow reading from or writing into either an odd
byte location, even byte location, or both. The instruction
stream is fetched from memory as words and is addressed
internally by the processor to the byte level as necessary.

In referencing word data the BIU requires one or two
memory cycles depending on whether or not the starting
byte of the word is on an even or add address, respec-
tively. Consequently, in referencing word operands per-
formance can be optimized by locating data on even
address boundaries. This is an especially useful technique
for using the stack, since odd address references to the
stack may adversely affect the context switching time for
interrupt processing or task multiplexing.

Certain locations in memory are reserved for specific
CPU operations (see Figure 1-45). Locations from ad-
dress FFFFOH through FFFFFH are reserved for opera-
tions including a jump to the initial program loading
routine. Following RESET, the CPU will always begin
execution at location FFFFOH where the jump must be.
Locations 00000H through 003FFH are reserved for in-
terrupt operations. Each of the 256 possible interrupt
types has its service routine pointed to by a 4-byte pointer
element consisting of a 16-bit segment address and a
16-bit offset address. The pointer elements are assumed to

210912-001



8086/8088 CPU

Vee |—'m I
8284 CLOCK MNIMX Vee
GENERATOR | CLK MiT0
AES L>-|READY  iNTA COMMAND
> | RESET [T BUS
1- RDY WA
GND t
TR f- ———1
BENf —— |
| ————
8086 CPU |
||
ALE B sTB
eNn—r—'—> OE
6262 ! 1 MEGABYTE
ADo-ADss ADDRIDATA ‘EAJ:'; | ADDRESS BUS
Atg-Arg 1 N
o
| L ——— |
8286
16-BIT
rnANnglvsa —
OPTIONAL |
FOR INCREASED
pataBusoRvE | _ |
Figure 1-34 8086/88 Minimum Mode System
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Figure 1-35 8086/88 Maximum Mode System
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clk QA

N b [
s acf?
c aofl
o mipltS
ent OB

LOAD
745169
UP/DOWN

ENP

MHBYTE AND 1 — MATCH CONDITIONS
CLKA — CPU CLOCK
Qs1, aso — CPU QUEUE STATUS

1301, T201 — T STATES T3 and T2 (CLOCK LOW TIME = 01)

SOLH-S2LH - CPU STATUS $0-S2

C ACCESS — CODE ACCESS

Qacro — QUEUE MATCH

AO0-P ~— SINGLE BYTE ON UPPER HALF OF THE BUS
C ACCESS

Figure 1-36 8086/88 Queue Tracking Circuit

have been stored at the respective places in reserved mem- MEMORY INTERFACE

ory prior to occurrence of interrupts. The basic characteristics of 8086/8088 memory organiza-

tion (see Figure 1-46) are partitioning of the 16-bit word
memory into high and low 8-bit banks on the upper and
lower halves of the data bus and inclusion of BHE* and

gt

aso LOCK NOP INST
LOCK
LOCK NOP BYTE NEXT LOCK LOCKED INSTRUCTION
PREFIX FROM THE PREFIX FROM
BYTE FROM QUEUE THE QUEUE
QUEUE {LOCKED NOP)

-

QUEUE STATUS INDICATES FIRST BYTE OF OPCODE FROM THE QUEUE.
2 THE LOCK OUTPUT WILL GO INACTIVE BETWEEN SEPARATE LOCKED INSTRUCTIONS.

3 TWO CLOCKS ARE REQUIRED FOR DECODE OF THE LOCK PREFIX AND
ACTIVATION OF THE LOCK SIGNAL.

SINCE QUEUE STATUS REFLECTS THE QUEUE OPERATION IN THE PREVIOUS CLOCK
CYCLE, THE LOCK OUTPUT ACTUALLY GOES ACTIVE COINCIDENT WITH THE START
OF THE NEXT INSTRUCTION AND REMAINS ACTIVE FOR ONE CLOCK CYCLE
FOLLOWING THE INSTRUCTION.

FS

§ |F THE INSTRUCTION FOLLOWING THE LOCK PREFIX IS NOT IN THE QUEUE, THE
LOCK OUTPUT STILL GOES ACTIVE AS SHOWN WHILE THE INSTRUCTION IS BEING
FETCHED.

6 THE BIU WILL STILL PERFORM INSTRUCTION FETCH CYCLES DURING EXECUTION
OF A LOCKED INSTRUCTION. THE LOCK MERELY LOCKS THE BUS TO THIS CPU FOR
WHATEVER BUS CYCLES THE CPU PERFORMS DURING THE LOCKED INSTRUCTION.

Figure 1-37 8086/88 Lock Activity
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AO in selection of the banks. Specific implementations
depend on the type of memory and system configuration.

ROM and EPROM

ROM'’s and EPROM’s are the easiest devices to interface
to the 8086/8088 system (see Figure 1-47). The byte for-
mat of these devices provides a simple bus interface and,
since they are read only devices, AO and BHE* do not
need to be included in their chip enable/select decoding.
(Chip enable is similar to chip select and also determines
if the device is in active or standby power mode.) The
address lines connected to the devices start with Al and
continue up to the maximum number of address lines the
device can accept. The remaining address lines are used
for chip enable/ select decoding. To connect the devices
directly to the multiplexed bus, they must have output en-
ables. The output enable is also necessary to avoid bus
contention in other configurations. No special decode
techniques are required for generating chip
enable/selects. Each valid decode selects one device on
the upper and lower halves of bus to allow byte and word
access. Byte access is achieved by reading the full word
onto the bus with the 8086 only accepting the desired
byte. If RD*, WR* and M/IO* are not decoded to form
separate commands for memory and I/O in a minimum
mode 8086, M/IO* (high active) must be a condition of
chip enable/select decode. This is also true if the I/O
space overlaps the memory space assigned to the
EPROM/ROM. The output enable is controlled by the
system memory read signal.

Four parameters must be evaluated when determining the
compatibility of static ROM’s and PROM’s to an
8086/8088 system. The parameters, equations and evalua-
tion techniques given in the I/O section are also applicable
to these devices. The relationship of parameters is given
in Table 1-32. TACC and TCE are related to the same
equation and differ only by the delay associated with the
chip enable/select decoder. The following example shows
a 2716 EPROM memory residing on the multiplexed bus
of a minimum mode 8086 configuration:

TACC =3TCLCL — 140 — address buffer delay =
430 ns (8282 =30 ns max delay)

TCE = TACC —decoder delay =412 ns (8205
decoder delay = 18 ns)

TOE =2TCLCL — 195 =205 ns
TDF = =155

The results of the calculations in the previous example
represent the times a minimum mode configuration re-
quires from the component for full speed compatibility
with the system.

74LS02 7415368

—1 >
wR DA:?@— iow
wio —<>-Do——__D°_

USER
DEFINED ENABLE

NOTE: IF IT IS NOT NECESSARY TO THREE-STATE THE COMMAND LINES, A
DECODER (8205 OR 74S138) COULD BE USED. THE 74LS257 IS NOT
RECOMMENDED SINCE THE OUTPUTS MAY EXPERIENCE VOLTAGE
SPIKES WHEN ENTERING OR LEAVING THREE-STATE.

Figure 1-38 Decoding Memory and I/O RD*
and WR* Commands

Static RAM

Several new memory design requirements are introduced
when interfacing static RAM’s to the system. To begin
with, A0 and BHE* must be included in the chip
select/chip enable decoding of the devices and write tim-
ing must be considered in the compatibility analysis.

Data bus connections must be restricted to either the up-
per half or the lower half of the data bus for each device.
Also, devices must not straddle the upper and lower
halves of the data bus. In order to select either the upper
byte, lower byte or the full 16-bit word for a write opera-
tion, BHE* must be a condition of decode for selecting
the upper byte and AO must be a condition of decode for
selecting the lower byte. Several selection techniques for

ADDRESS __ O
LINE &
BT —o

D 110 DEVICE
owWe —o WR

(a) SEPARATE /0 COMMANDS

ADDRESS | ]
LINES] —O]

AD —O
WR. —

110 DEVICE

gaasg

(b) MULTIPLE CHIP SELECTS

Figure 1-39 Linear Select for 1/0
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e Ty — Ta— TYTw TQ—‘J
CLK Y/ \ / \ 4 \ / \
— N 7 \ 7 N A x
A19/S6,A16/S3
ADDR X STATUS
READY x
ADy5-ADp X ADDRESS As-Ao \ FLOAT DATA IN Dys-Do FLOAT
—
0 /
READ
CYCLE
DTR \
DEN AN
ADys5-ADg ADDRESS DATA OU x
w /
WRITE
CYCLE
o \
ovm | /
Figure 1-40 Basic 8086/88 Bus Cycles
devices with single chip selects and no output enables are
A LOGICAL ADDRESS SPACE (8) PHYSICAL IMPLEMENTATION OF THE illustrated in Figure 1-48 and Figure 1-49 illustrates se-
sax syTes s1ax ByTES lection techniques for devices with chip selects and output
FFFFF FFFFF FFFFE
FFFFE FFFFD FFFFC enables.
FFFFD
FFFFC
2 : In the first examples (see Figure 1-48) AO and BHE*
1 ] must be included to decode or enable the chip selects.
Since these memories do not have output enables, read
and write are used as enables for chip select generation to
T prevent bus contention. If read and write are not used to
$ ~ | e enable the chip selects, devices with common
1 ”

Are-Ay D1s-Dg BHE

0
1 MEGABYTE

Figure 1-41 8086 Memory

input/output pins will be subjected to severe bus conten-
tion between chip select and write active. For devices with
separate input/output lines, the outputs can be externally
buffered with the buffer enable controlled by read. This
solution will only allow bus contention between memory
devices in the array during chip select transition periods.
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For devices with output enables (see Figure 1-49), write
may be gated with BHE* and A0 to provide upper and
lower bank write strobes. This simplifies chip select de-
coding by eliminating BHE* and AO as a condition of
decode. Although both devices are selected during a byte
write operation, only one will receive a write strobe. No
bus contention will exist during the write since a read
command must be issued to enable the memory output
drivers.

If multiple chip selects are available at the device, BHE*
and AO may directly control device selection. This allows
normal chip select decoding of the address space and di-
rect connection of the read and write commands to the
devices. Alternately, the multiple chip select inputs of the
device could directly decode the address space (linear se-
lect) and be combined with the separate write strobe tech-
nique to minimize the control circuits needed to generate
chip selects.

As with the EPROM’s and ROM’s, if separate commands
are not provided for memory and I/O in the minimum
mode 8086 and the address spaces overlap, M/IO* (high
active) must be a condition of chip select decode. Also,
the address lines connected to the memory devices must
start with A1 rather than AQ.

The write timing parameters listed in Table 1-33 may also
need to be considered to analyze RAM compatibility (de-
pending on the RAM device being considered). CPU
clock relative timing is listed in Table 1-34. The equations
specify the device requirements at the CPU and provide a
base for determining device requirements in other config-
urations. For example, consider the write timing require-
ments of a 2148 in a maximum mode buffered 8086
system (see Figure 1-50). The write parameters of the
2148 that must be analyzed are TWP write pulse width,
TWR write recovery time, TDW data valid at end of
write, and TDH data hold from write time.

TWA =2TCLCL — TCLMLmax + TCLMHmin
=375 ns.

TWR =2TCLCL — TCLMHmax + TCLLHmin
+ TSHOVmin = 170ns.

TDW =2TCLCL — TCDLVmax + TCLMHmin
—TIVOVmax =265ns.

TDH = TCLCH — TCLMHmax + TCHDXmin
+ TIVOVmin = 95ns.

A comparison of these results with the 2148 family indi-
cates the standard 2148 write timing is fully compatible
with this 8086 configuration. The read timing must also
be analyzed to determine the complete compatibility of
the devices.

Dynamic RAM

A dynamic RAM is one of the most complex devices to
design into an 8086 system. In order to help the Design

8086 Memory

TRANSFER X

Y+1
X+1

A
]

4>

Avg-Ay Dy5-D  BHE (HIGH)

Arg-Ar Dys-Dy  BHE (LOW) D7-Do
0Odd Addressed Byte Transter

A (HIGH)

Figure 1-42 Memory Even and Odd
Data Byte Transfers

Engineer and simplify the design task somewhat, Intel
provides the 8202, 8203, 8207, and 8208 dynamic RAM
controllers as part of the 8086 family of peripheral de-
vices. The following paragraphs describe the use of the
8202 with the 8086 in designing a dynamic memory sys-
tem for an 8086 system.

For example, a standard interconnection for an 8202 in an
8086 system (see Figure 1-51) accommodates 64K words
(128 bytes) of dynamic RAM which is addressable as
words or bytes. To access the RAM, the 8086 must initiate
a bus cycle with an address that selects the 8202 (via
PCS*) and the appropriate transfer command (MRDC* or
MWTCH*). If the 8202 is not performing a refresh cycle,
the access starts immediately, otherwise, the 8086 must
wait for completion of the refresh. XACK* from the 8202
is connected to the 8284 RDY input to force the CPU to
wait until the RAM cycle is completed before the CPU
can terminate the bus cycle. This effectively synchronizes
the asynchronous events of refresh and CPU bus cycles.
The normal write command (MWTC¥) is used rather than
the advanced command (AMWC¥) to guarantee that data
is valid at the dynamic RAMs before the write command
is issued. Gating WE* with-AO and BHE* provides selec-
tive write strobes to the upper and lower banks of memory
to allow byte and word write operations. The logic which
generates the strobe for the data latches allows read data
to propagate to the system as soon as the data is available
and latches the data on the trailing edge of CAS*.
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Table 1-31 Status Information

TRANSFER X +1, X
S3 S4
0 0 Alternate (relative to the ES segment)
1 0 Stack (relative to the SS segment)
0 1 Code/None (relative to the CS seg-
ment or a default of zero) )
1 1 Data (relative to the DS segment)
5 . S5 = IF (interrupt enable flag)
Ays-Ay Dys-Ds  BHE (LOW) 7-Do Ao (LOW) S6 = 0 (indicates the 8086 is on the bus)
Even Addressed Word Transter :
FIRST BUS CYCLE Table 1-32 EPROM/ROM Parameters
(7 TOE — Output Enable to Valid Data = TRLDV
X i TACC — Address to Valid Data = TAVDV
/ TCE — Chip Enable to Valid Data = TSLDV
TDF — Output Enable High to Output Float = TRHDZ
N a. Read Cycle
Arg-Ay Dis-Dy  BHE (LOW) 07-0o Ao (HIGH)
SECOND BUS CYCLE For no wait state operation, the 8086 requires data to be
] valid from MRDC* in:
_j Yol AN
X+1 [ x -]
- - 2TCLCL —TCLML —TDVCL —buffer delays = 291
ns.
Since the 8202 is CAS* access limited, only CAS* access
N time needs to be examined. The 8202/2118 guarantees
Ay onoe  BHE miGH) el AokOW) data valid from 8202 RD* low to be:
(tph + 3tp + 100 ns) 8202 TCC delay + TCAC for the
Figure 1-43 Memory Even and Odd 2118
Data Word Transfers
A 25 MHz 8202 and 2118-3 provide only 297 ns, which is
; P insufficient for no wait state operation. If only 64K bytes
_ 3 2 are accessed, the 8202 requires only (tph+ 3tp= 85 ns)
giving 282 ns access and no wait states required (see Fig-
64 KB CODE SEGMENT ures 1-52 and 1-53). Refer to the devices respective data
| 4 xxxom sheets for additional information.
l STACK SEGMENT RESET BOOTSTRAP FEREEN
P ' PROGRAM JUMP FFFFOM
_‘L 5 ol 1
T T
SEGMENT l
REGISTER FILE DATA SEGMENT INTERRUPT POINTER 3FFH
cs ' FOR TYPE 256
SS 3FCH
——1 1 4 . L
7H
EXTRA DATA SEGMENT "‘""32"7',,:2'." TER -
INTERRUPT POINTER | 2
J 3 FOR TYPE 0
T 00000H o
Figure 1-44 8086/8088 Memory Organization - Figure 1-45 Reserved Memory Locations
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WR E:
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DATA ¢ BHE AE o
Mii0 OR _ 8205 | ::> CW SELECTS
ADDITIONAL -ofE2 07
ADDRESS
> LOW Es
BANK
®
SELECT LOW } b
BANK (Ag) P r—:D°_ LOW BANK
b CHIP SELECT
b
HIGH BANK
Figure 1-46 8086/8088 Memory Array : CHIP SELECT
o
a. Write Cycle
®)
An important consideration for dynamic RAM write cy-
cles is to guarantee data to the RAM is valid when both
CAS* and WE* are active. For the 2118, if WE* is valid wnness:>
prior to CAS*, the data setup is to CAS* and if CAS* is - A +5
valid before WE* (as would occur during a read modify BHE ———————
write cycle) the data setup time is to WE*. Ay 00 e seLEcTs
RD
| o g el A My
For the 8202, the WR* to CAS* delay is analyzed to de- M0 ~———————— cs4
termine the data setup time to CAS* inherently provided cst
by the 8202 command to RAS*/CAS* timing. The mini- cs2
mum delay from WR* to CAS* is: =
(©
+5
CHIP SELECT CE
—— cs3
Da1s Oo 2 csa Cwp SELECTS
Az Aot Ag —— -0 CS1
— — -d cs2
b O
L "
= 3604A
oE —
» J4A
M —
; e wio csa Cwip SELECTS
Do7 Oo7 BHE ——————————dlcs1
CE _\_—O cs2
NOTE Aq AND BHE ARE NOT USED. @
Figure 1-48 Chip Select Generation for Devices
Figure 1-47 EPROM/ROM Bus Interface Without Output Enables
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(c) LINEAR CHIP SELECT USED WITH HIGH
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Figure 1-49 Chip Selection for Devices
With Output Enables

Table 1-33 Typical Static RAM Write
Timing Parameters

TW — Write Pulse Width

TWR — Write Release (Address Hold From End of Write)
TDW — Data and Write Puise Overlap

TOH — Data Hold From End of Write

TAW — Address Valid to End of Write

TCW ~— Chip Select to End of Write

TASW — Address Valid to Beginning of Write

CLK LK

»
!Hsl
2118

F Soz Y 8288

DY/R DEN!

8284

| [ ADDRESS

8286
XCVR

Figure 1-50 Sample Compafibility Analysis
Configuration

TCCmin= tph+ 2tp+ 25= 127 ns @ 25 MHz

Subtracting buffer delays and data setup at the 2118, we
have 83 ns to generate valid data after the write command
is issued by the CPU (in this case the 8288). Since the
8086 will not guarantee valid data until TCLAVmax — T
CLMLmin= 100 ns from the advanced write signal, the

Table 1-34 Cycle Dependent Write Parameters

for RAM Memories

(a) Minimum Mode

TW=TWLWH=2TCLCL-60=2340 ns
TWR=TCLCL- TCVCTXmax + TCLLHmin=90 ns
TDW = 2TCLCL - TCLDVmax + TCVCTXmin = 300 ns
TOH=TWHDX =88 ns

TAW =3TCLCL - TCLAVmax + TCVCTXmin = 500 ns
TCW = TAW - Chip Select Decode

TASW = TCLCL ~ TCLAVmax + TCVCTXmin = 100 ns

(b) Maximum Mode

TW=TCLCL - TCLMLmax + TCLMHmin=175 ns
TWR=TCLCL~ TCLMHmax + TCLLHmin= 165 ns
TOW=TW=175ns

TOH = TCLCHmin - TCLMHmax + TCHDXmin =983 ns
TAW =3TCLCL - TCLAVmax + TCLMHmin = 500 ns
TCW = TAW - Chip Select Decode

TASW = 2TCLCL - TCLAVmax + TCLMLmin = 300 ns
TWA*=TW+ TCLCL=375 ns

TDWA* = 2TCLCL - TCLDVmax + TCLMHmin = 300 ns
TASWA* = TASW - TCLCL =100 ns

*Relative to Advanced Write.
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Figure 1-51 5 MHz 8086 System Using an 8202 Dynamic RAM Controller

normal write signal is used. The normal writt MWTC*
guarantees data is valid 100 ns before it is active. The
worst case write pulse width is approximately 175 ns
which is sufficient for all 2118’s.

¢. Synchronization

To force the 8086 to wait during refresh the XACK* or
SACK* lines must be returned to the 8284A ready input.
The maximum delay from RD* to SACK* (if the 8202 is
not performing refresh) is TAC= tp+ 40= 80 ns. To
prevent a wait state at the 8086, RDY must be valid at the
8284A TCLCHmin—TCLMLmax —TR1VCLmax = 48
ns after the command is active. This implies that under
worst case conditions, one wait state will be inserted for
every read cycle. Since MWTC* does not occur until one
clock later, two wait states may be inserted for writes.

The XACK* from command delay will assert RDY
TCC+ TCX = (tph+ 3tp+ 100)+ (Stp+ 20) = 460 ns
after the command. This will typically insert one or two
wait states.

1-85

Unless 2118-3’s are used in 64K byte or less memories,
SACK* must not be used since it does not guarantee a wait
state. From the previous access time analysis we saw that
other configurations required a wait state.

1/0 PERIPHERAL INTERFACE

The 8086 can interface with 8-and 16-bit I/0O devices us-
ing either 1/O instructions or memory mapped I/O. The
1/0 instructions allow the I/O devices to reside in a sepa-
rate I/O address space while memory mapped I/O allows
the full power of the instruction set to be used for I/O
operations. Up to 64K bytes of I/O mapped I/O may be
defined in an 8086 system. To the programmer, the sepa-
rate I/O address space is only accessible with INPUT and
OUTPUT commands which transfer data between 1/0 de-
vices and the AX (for 16-bit data transfers) or AL (for
8-bit data transfers) register. The first 256 bytes of the I/O
space (0 to 255) are directly addressable by the I/O in-
structions while the entire 64K is accessible via register
indirect addressing through the DX register. The latter
technique is particularly desirable for service procedures
that handle more than one device by allowing the desired
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Figure 1-52 8202 Timing Information

device address to be passed to the procedure as a parame-
ter. I/O devices may be connected to the local CPU bus or
the buffered system bus.

Eight-Bit 1/0

Eight-bit I/0 devices may be connected to either the upper
or lower half of the data bus. Assigning an equal number
of devices to the upper and lower halves of the bus will
distribute the bus loading. If a device is connected to the
upper half of the data bus, all I/O addresses assigned to
the device must be odd (AO= 1). If the device is on the
lower half of the bus, its addresses must be even (A0 = 0).
The address assignment directs the 8-bit transfer to the
upper (odd byte address) or lower (even byte address) half
of the 16-bit data bus. Since A0 will always be a one or
zero for a specific device, AQ cannot be used as an ad-
dress input to select registers within a specific device. If a
device on the upper half of the bus and one on the lower
half are assigned addresses that differ only in AO (adja-

1-86

cent odd and even addresses), AO and BHE* must be con-
ditions of chip select decode to prevent a write to one
device from erroneously performing a write to the other.

One technique for generating I/O device chip selects uses
separate 8205’s to generate chip selects for odd and even
addressed byte peripherals (see Figure 1-54). If a word
transfer is performed to an even addressed device, the
adjacent odd addressed I/O device is also selected. This
allows accessing the devices individually with byte trans-
fers or simultaneously as a 16-bit device with word trans-
fers. Another technique restricts the chip selects to byte
transfers, however a word transfer to an odd address will
cause the 8086 to run two byte transfers that the decode
technique will not detect. A third technique simply uses a
single 8205 to generate odd and even device selects for
byte transfers and will only select the even addressed 8-bit
device on a word transfer to an even address.

One last technique for interfacing with 8-bit peripherals
(see Figure 1-55) multiplexes the 16-bit data bus onto an

210912-001



8086/8088 CPU

READ CYCLE \
s \ .
Vin ._._ﬁ
L \ 2 —
Vo
® h"___‘ LI - tesn - o
. taco tas)
— 0 teas
=/ NN /
i @
—=| tasn jot- b
tasc tcan
Row COLUMN
ADDRESSES & ADDRESS K X ADORESS K
i
—0]'»: [~ tacH—e1 l-— @
v
= 7 N
vie ®
teac
thac Fo—— topF ——]
v
on MIGH IMPEDANCE ® 4 VALID ®
Dour " N DATA OUT
o ®
WRITE CYCLE ac
thas L ne
Vin _—_F /—_1
w Ne _
Vi
tesn tcon
@ hid _.1 1 taco tnsn
Vin
— cas
s —/ ® \\ ® /
i
—of tASh ot b
o tnan —| tasc r—~ toan ———
Vin )
ROW COLUMN
ADDResses >< @ | aooness )K ADDRESS X
in
tawe
towt
Vin fo— twes —=| twen
WE twp /
in @ A
twen
le—(®) tos —| on @
Vin @
o X K
Vi ®
tonr
v
on HIGH IMPEDANCE
Dour
Vou
NOTES: 12. Vi e AND Vi wax ARE REFERENCE LEVELS FOR MEASURING TIMING OF
L
34, ;‘;" in AND VoL max ARE REFERENCE LEVELS FOR MEASURING TIMING
5. tore 18 MEASURED 0 lour < flov
o, 194 AND ton ARE REFERENGED TO CAS OR WE, WHICHEVER OCCURS LAST.
$. tacy IS REFERENCED TO THE TRAILING EDGE OF CAS OR RAS, WHICHEVER
OCCURS FIRST.
- tone REGUIREMENT 15 ONLY APPLICABLE FOR RADICAS CYCLES
PRECEDED BY ONLY CYCLE (1., FOR SYSTEMS WHERE CAS HAS
NOT BEEN DECODED WiTH 3).

8-bit bus to accommodate byte oriented DMA or block
transfers to memory mapped 8-bit I/O. Devices connected
to this interface may be assigned a sequence of odd and
even addresses rather than all odd or even.

Figure 1-53 2118 Family Timing

1-87

If greater than 256 bytes of the I/O space or memory
mapped I/O is used, additional decoding beyond these
sample techniques may be necessary. This decoding can
be done with additional TTL, 8205’s or bipolar PROMs.
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Figure 1-54 1/0 Device Chip Select Techniques

The bipolar PROMs are slightly slower than multiple lev-
els of TTL (50 ns versus 30 to 40 ns for TTL) but provide
full decoding in a single package and allow inserting a
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Figure 1-56 Bipolar PROM Decoder .

new PROM to reconfigure the system I/O map without
circuit board or wiring modifications (see Figure 1-56).

Sixteen-Bit I/0

Sixteen-bit I/0 devices should be assigned even addresses
for reasons of efficient bus utilization and simplicity of
device selection. To guarantee the device is selected only
for word operations, AO and BHE* should be conditions
of chip select code (see Figure 1-57).

1/0 DEVICE COMPATIBILITY

Compatibility of an I/O device with a microprocessor is
always a system design consideration. This section
presents a set of A.C. characteristics which represent the
timing of the asynchronous bus interface of the 8086. The
included equations are expressed in terms of the CPU
clock (when applicable). These equations are derived for
minimum and maximum modes of the 8086 and they rep-
resent the bus characteristics at the CPU. The results can
be used to determine 1/0 device requirements for opera-
tion on a single CPU local bus or buffered system bus.

NOTE

These values are not applicable to a MULTI-
BUS system bus interface. The requirements
for a MULTIBUS system bus are available in
the MULTIBUS interface specification.

Table 1-35 presents a list of bus parameters, their defini-
tion and how they relate to the A.C. characteristics of

ADDRESS N Aoz 0o

Ao o & s205 :$ EVEN ADDRESSED
BHE e WORD PERIPHERALS
1 E; 07

Figure 1;55 16-bit to 8-bit B,Lis Conversion

Figure 1-57 16-bit I/0 Decode
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Table 1-35 Peripheral Compatibility Parameters

TAVRL — Address stable before RD leading edge (TAR)
TRHAX — Address hold after RD trailing edge (TRA)
TRLRH — Read pulse width (TRR)
TRLDV — Read to data valid delay (TRD)
TRHDZ — Read trailing edge to data floating (TDF)
TAVDV — Address to valid data delay (TAD)
TRLRL — Read cycle time (TRCYC)
TAVWL — Address valid before write leading edge TAW)
TAVWLA — Address valid before advanced write (TAW)
TWHAX — Address hold after write trailing edge (TWA)
TWLWH — Write pulse width (TWW)
TWLWHA — Advanced write puise width TWW)
TDVWH — Data set up to write trailing edge (TOW)
TWHDX — Data hold from write trailing edge (TWD)
TWLCL — Write recovery time (TRV)
TWLCLA — Advanced write recovery time (TRV)
TSVARL — Chip select stable before RD leading edge (TAR)
TRHSX — Chip select hold after RD trailing edge (TRA)
TSLDV — Chip select to data valid delay (TRD)
TSVWL — Chip select stable before WR leading edge (TAW)
TWHSX — Chip select hold after WR trailing edge (TWA)
TSVWLA — Chip select stable before advanced write (TAW)
Symbols in parentheses are equivalent parameters specified for
Intel peripherals.

Intel peripherals. Table 1-36 presents Cycle dependent
values of the parameters. For each equation, if more than
one signal path is involved, the equation reflects the worst
case path. For example:

TAVRL (address valid before read active) =
(1) Address from CPU to RD* active
(2) ALE (to enable the address through the address
latches) to RD* active

The worst case delay path is (1).

For maximum mode 8086 configurations, TAVWLA,
TWLWHA and TWLCLA relate to the advanced write
signal while TAVWL, TWLWH and TWLCL relate to the
normal write signal.

In the given list of equations, TWHDXB represents the
data hold time from the trailing edge of write for the mini-
mum mode with a buffered data bus. For this equation,
TCVCTX cannot be a minimum for data hold and a maxi-
mum for write inactive. The maximum difference is 50 ns
giving the result TCLCH-50. If the reader wishes to ver-
ify the equations or derive others, refer to the index under
“Bus Timing” for assistance with interpreting the 8086
bus timing diagrams.

Figure 1-58 shows four representative configurations and
the compatible Intel peripherals (including wait states if
required) for each configuration given in Table 1-37.
Configuration 1 and 2 consist of minimum mode demulti-
plexed bus 8086 systems without (1) and with (2) data bus
transceivers. Configurations 3 and 4 consist of maximum
mode systems with one (3) and two (4) levels of address
and data buffering. The last configuration is characteristic
of a multi-board system with bus buffers on each board.
The 5 MHz parameter values for these configurations (re-

Table 1-36 Peripherals Cycle Dependent
Parameter Requirements

(a) Minimum Mode

TAVRL=TCLCL + TCLRLmin - TCLAVmax = TCLCL - 100

TRHAX = TCLCL - TCLRHmax + TCLLHmin = TCLCL - 150

TRLRH =2TCLCL - 60=2TCLCL - 60

TRLDV = 2TCLCL — TCLRLmax — TDVCLmin=2TCLCL - 195

TRHDZ = TRHAVmin = 155 ns

TAVDV = 3TCLCL - TDVCLmin - TCLAVmax = 3TCLCL - 140

TRLRL=4TCLCL=4TCLCL

TAVWL =TCLCL + TCVCTVmin - TCLAVmax = TCLCL - 100

TWHAX = TCLCL 4+ TCLLHmIin - TCVCTXmax = TCLCL - 110

TWLWH = 2TCLCL - 40=2TCLCL - 40

TDVWH = 2TCLCL + TCVCTXmin - TCLDVmax = 2TCLCL - 100

TWHDX = TWHDZmin = 89

TWLCL = 4TCLCL = 4TCLCL

TWHDXB=TCLCHmin+ (- TCVCTXmax+ TCVCTXmin)=
TCLCHmin-50

Note: Delays relative to chip select are a function of the chip select
decode technique used and are equal to: equivalent delay
from address — chip select decode delay.

(b) Maximum Mode

TAVRL=TCLCL + TCLMLmin - TCLAVmax = TCLCL - 100
TRHAX = TCLCL - TCLMHmax + TCLLHmin=TCLCL - 40
TRLRH = 2TCLCL — TCLMLmax + TCLMHmin = 2TCLCL - 25
TRLDV = 2TCLCL — TCLMLmax — TDVCLmin=2TCLCL - 65
TRHDZ = TRHAVmin = 155

TAVDV = 3TCLCL — TDVCLmin - TCLAVmax = 3TCLCL - 140
TRLRL=4TCLCL=4TCLCL

TAVWLA =TAVRL=TCLCL - 100

TAVWL =TAVRL + TCLCL = 2TCLCL - 100

TWHAX = TRHAX = TCLCL - 40

TWLWHA = TRLRH = 2TCLCL - 25

TWLWH = TRLRH - TCLCL=TCLCL - 25

TDVWH = 2TCLCL + TCLMHmin —~ TCLDVmax = 2TCLCL - 100
TWHDX = TCLCHmin — TCLMHmax + TCHDZmin = TCLCHmin - 30
TWLCL=3TCLCL=3TCLCL

TWLCLA =4TCLCL =4TCLCL

fer to Table 1-38) demonstrate the relaxed device require-
ments for even a large complex configuration. The
analysis assumes all components are exhibiting the speci-
fied worst case parameter values under the corresponding
temperature, voltage and capacitive load conditions. If the
capacitive loading on the 8282/83 or 8286/87 is less than
the maximum, refer to the graphs of delay versus capaci-
tive loading in the respective data sheets to determine the
appropriate delay values.

To determine peripheral compatibility, modify the equa-
tions given for the CPU to account for additional delays
from address latches and data transceivers in the configu-
ration. Once the system configuration is selected, deter-
mine the system requirements at the peripheral interface
and use the results to evaluate compatibility of the periph-
eral to the system. During this process, consider: (1) can
the device operate at maximum bus bandwidth and if not,
how many wait states are required, and (2) are there any
problems that cannot be resolved by wait states.

Examples of the first consideration include TRLRH (read
pulse width) and TRLDV (read access or RD* active to
output data valid). Consider address access time (valid
address to valid data) for the maximum mode fully buf-
fered configuration:
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Figure 1-58 8086 System Configurations

TAVDV = 3TCYC-—-140 ns—address latch delay-
—address buffer delay —chip select decode de-
lay —2 transceiver delays

Table 1-37 Compatible Peripherals

for a 5 MHz 8086/88
Conflg
Minimum Mode M Mode
m d | Buifered | Fully Buftered

8251A v 1w v v
8253-5 v 1w v 4
8255A-5 v w v v
82675 v 1w v v
8259A v v v v
8271 v 1w v v
8273 v 1w v v
8275 v 1w v v
8279-5 v 1w v v
8041A° v w v v
8741A v 1w v v
8291 v v I v

*Includes other Intel peripherals based on the 8041A (i.e., 6292. 8594.
8295).

» implies full operation with no wait states.
W implies the number of wait states required.

1-90

Assuming inverting latches, buffers and transceivers with
22 ns max delays (8283, 8287) and a bipolar PROM de-
code with 50 ns delay, the result is:

TAVDV = 322 ns @ 5 MHz

This result gives the address to data valid delay required
at the peripheral (in this configuration) to satisfy zero wait
state CPU access time. If the maximum delay specified
for the peripheral is less than the result, this parameter is
compatible with zero wait state CPU operation. If not,
wait states must be inserted until TAVDV + n * TCYC (n
is the number of wait states) is greater than the peripherals
maximum delay. If several parameters require wait states,
either the largest number required should always be used
or different transfer cycles can insert the maximum num-
ber required for that cycle.

The second consideration includes TAVRL (address set up
to read) and TWHDX (data hold after write). Incompati-
bilities in this area cannot be resolved by the insertion of
wait states and may require either additional hardware,
slowing down the CPU (if the parameter is related to the
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Table 1-38 Peripheral Requirements for
Full Speed Operation with
a5 MHz 8086/88

Configuration
Minimum Mode Maximum Mode
T Bt Rott Fully "

TAVRL 70 72 70 58
TRHAX 57 27 169 141
TRLRH 340 320 375 347
TRLDV 205 150 305 261
TRHDZ 155 158 382 360
TAVDV 430 400 400 372
TRLRL 800 770 800 772
TAVWL 70 72 270 258
TAVWLA - - 70 58
TWHAX 97 67 169 141
TWLWH 360 340 175 147
TWLWHA - - 375 347
TOVWH 300 339 270 258
TWHDX 88 15 95 13
TWLCL 800 772 600 572
TWLCLA - — 800 772
TSVRL 52 54 52 40
TRHSX 50 50 m 143
TSLDV 412 382 382 354
TSVWL 52 54 252 240
TWHSX 90 90 171 143
TSVWLA - — 52 40
— Not applicable.

clock) or not using the device. As an example, consider
address valid prior to advanced write lower (TAVWLA)
for the maximum mode fully buffered:

TAVWLA = TCYC-—100 ns—address latch delay-
—address buffer delay —chip select decode de-
lay + write buffer delay (minimum)

Assuming inverting latches and buffers with 22 ns delay
(8283/8287) and an 8205 address decoder with 18 ns de-
lay:

TAVWLA = 38 ns which is the time a 5 MHz 8086
system provides.

Multiple Communications Lines Example

Consider an interrupt drive procedure for handling multi-
ple communications lines. On receiving an interrupt from
one of the lines, the invoked procedure polls the lines
(reading the status of each) to determine which line to
service. The procedure does not enable lines but simply
services input and output requests until the associated out-
put buffer is empty (for output requests) or until an input
line is terminated (for the example, only EOT is consid-
ered). On detection of the terminate condition, the routine
will disable the line. It is assumed that other routines will
fill a lines output buffer and enable the device to request
output or empty the input buffer and enable the device to
input additional characters.

DEVICE 1 DEVICE 3
8251A 8251A

P
RPET

EVICE 0 DEVICE 2
8251A 8251A

DEVICES ARE CONNECTED TO THE UPPER AND
LOWER HALVES OF THE DATA BUS.

ADDRESS
0 DEVICE 0 DATA
1 DEVICE 1 DATA
2 DEVICE 0 CONTROLISTATUS
3 DEVICE 1 CONTROLISTATUS
4 DEVICE 2 DATA
5 DEVICE 3 DATA
(] DEVICE 2 CONTROL/STATUS
7 DEVICE 3 CONTROL/STATUS
ETC. " "

Figure 1-59 Device Assignment

The routine begins operation by loading CX with a count
of the number of lines in the system and DX with the I/O
address of the first line. The 1/O addresses are designed
with 8251°s as the I/O devices (see Figure 1-59). The sta-
tus of each line is read to determine if it needs service. If
yes, the appropriate routine is called to input or output a
character. After servicing the line or if no service is
needed, CX is decremented and DX is incremented to test
the next line. After all lines have been tested and serviced,
the routine terminates. If all interrupts from the lines are
OR’d together, only one interrupt is used for all lines. If
the interrupt is input to the CPU through an 8259A inter-
rupt controller, the 8259A should be programmed in the
level triggered mode to guarantee all line interrupts are
serviced.

To service either an input or an output request (see Figure
1-60), the called routine transfers DX to BX, and shifts
BX to form the offset for this device into the table of input
or output buffers. The first entry in the buffer is an index
to the next character position in the buffer and is loaded
into the SI register. By specifying the base address of the
table of buffers as a displacement into the data segment,
the base + index + displacement addressing mode allows
direct access to the appropriate memory location.

Memory — /0 Block Transfers Example
The memory mapped I/O and the 8086 string primitive

instructions may be used to perform block transfers be-
tween memory and I/0. By assigning a block of the
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1 THIS CODE DEMONSTRATES TESTING DEVICE

; STATUS FOR SERVICE, CONSTRUCTING THE

; APPROPRIATE LINE BUFFER ADDRESS FOR INPUT
s AND OUTPUT AND SERVICING AN INPUT

s REQUEST

MASK EQU OFFFDH

CHECK_STATUS: INPUT AL, DX : GET 8251A STATUS.
MOV AH, AL
TEST  AH, READ_OR_WRITE_STATUS
i NEXT_IO
CALL ADDRESS
TEST  AH, READ STATUS
9z WRITE_SERVICE
CALL READ
TEST  AH, WRITE STATUS
Jz NEXT_I0
WRITE_SERVICE: CALL WRITE
NEXT_IO: DEC  CX i TEST IF DONE.
JNC  EXIT i YES, RESTORE & RETURN.
AND DX, MASK ; REMOVE A1 AND
ADD DX, 3 i INCREMENT ADDRESS.
OR DX, 2 i SELECT STATUS FOR
JMP  CHECK__STATUS NEXT INPUT.
ADDRESS: AND DX, MASK 1 SELECT DATA,
MOV BM, DL ; CONSTRUCT BUFFER
INC BH ; DISPLACEMENT FOR
SHR  BH i THIS DEVICE.
:0: BL, BL 3 BX I8 THE DISPLACEMENT.
E
READ: INPUT AL, DX i READ CHARACTER.
MOV 8I, READ_BUFFERS [8)X] i GET CHARACTER POINTER.
MOV READ_BUFFERS [BX + 81, AL ; STORE CHARACTER.

INC READ_BUFFERS (B:

X) 3 INCR CHARACTER POINTER.
CMP AL, EOT ; END OF

3605 1/0 CHIP SELECT

—

RD

W —»

TRANSFER 256 BYTE BLOCKS TO THE I/0 DEVICE
THE ADDRESS SPACE ASSIGNED TO THE /0 DEVICE IS

A1
DECODE

BIPOLAR
PROM

18-
8IT

A As | A7 Ao
FROM BASE ADDRESS - 0's
THRU BASE ADDRESS 1's

MEMORY DATA NEED NOT BE ALIGNED TO EVEN ADDRESS BOUNDARIES
/O TRANSFERS MUST BE WORD TRANSFERS TO EVEN ADDRESS BOUNDARIES

JNZ CONT_READ
CALL DISABLE READ
CONT_READ: RET

i YES, DISABLE RECEIVER.
i SEND MESSAGE THAT INPUT
118 READY.

Figure 1-60 1/0 Input Request Code Example

memory address space (equivalent in size to the maximum
block to be transferred to the I/O device) and decoding
this address space to generate the I/0 device’s chip select,
the block transfer capability is easily implemented. Fig-
ure 1-61 gives an interconnect for 16-bit I/O devices
while Figure 1-62 incorporates the 16-bit bus to 8-bit bus
multiplexing scheme to support 8-bit I/O devices. A code
example to perform such a transfer is shown in Figure
1-63.

1.4.5 System Design Alternatives

Two implementation alternatives must be considered
when referring to the system data bus: 1) the multiplexed
address/data bus (see Figure 1-64); and 2) a data bus buf-
fered from the multiplexed bus by transceivers (see Fig-
ure 1-65).

If memory or I/O devices are connected directly to the
multiplexed bus, the designer must guarantee the devices
do not corrupt the address on the bus during T1. To avoid
this, device output drivers should not be enabled by the
device chip select. They should have an output enable
controlled by the system read signal (see Figure 1-66).
The 8086 timing guarantees that read is not valid until the
address is latched by ALE (see Figure 1-67). All Intel
peripherals, EPROM products, and RAM’s for micropro-
cessors provide output enable or read inputs to allow con-
nection to the multiplexed bus.

1-92

Figure 1-61 Block Transfer to 16-bit /0
Using 8086/88 String Primitives

There are several techniques available for interfacing de-
vices without output enables to the multiplexed bus. Note
that each of these techniques introduces other restrictions
or limitations. Consider the case of chip select gated with
read and write (see Figure 1-68). Two problems exist with
this technique. First, the chip select access time is re-
duced to the read access time, and may require a faster

R e
CHIP SELECT
8286
OR
Diss 8287
cs
BHE —D— e 7 8BIT
C DATA VO
72 DEVICE
8286 —_
OR RD WR
D70 8287
T
Ao OE
RD
WR

ADDRESS ASSIGNMENT SAME AS PREVIOUS EXAMPLE. 16-BIT BUS IS
MULTIPLEXED ONTO AN 8-BIT PERIPHERAL BUS.

Figure 1-62 Block Transfer to 8-bit I/O
Using 8086/88 String
Primitives
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i+ DEFINE THE /O ADDRESS SPACE
/0 SEGMENT
ORG BLOCK_ADDRESS
DW 128 DUP (?)
110 ENDS

; ASSUME THE DATA IS FROM THE CURRENT
+ DATA SEGMENT

CLD
LES DI, 1/O_BLOCK_ADDRESS

1/0_BLOCK:

; DOF = FORWARD

i 110 BLOCK ADDRESS

; CONTAINS THE ADDRESS
3 OF /0 BLOCK

MOV CX, BLOCK__LENGTH
MOV S|, SOURCE__ADDRESS
MOVS 1/0 BLOCK + PERFORM WORD TRANSFERS
+ END CODE EXAMPLE

NOTE THE CODE IS CAPABLE OF PERFORMING BYTE TRANSFERS BY
CHANGING THE |/0 BLOCK DEFINITION FROM 128 WORD TO 256 BYTES

Figure 1-63 Code For Block Transfers

device if maximum system performance (i.e., no wait
states) is to be achieved (see Figure 1-69). Second, the
designer must verify that the chip select-to-write setup
and hold times for the device are not violated (see Figure
1-70). Alternate techniques can be extracted from the bus
interfacing techniques, also described in this chapter, but
are subject to the associated restrictions. In general, for
best results, use devices with output enables.

To guarantee the specified A.C. characteristics, the 8086’s
drive capability of 2.0 mA and capacitive loading of 100
PF subsequently limits the fan out of the multiplexed bus.
Assuming capacitive loads of 20 pF per 1/0 device, 12 pF
per address latch and 5-12 pF per memory device, a sys-
tem mix of three peripherals and two to four memory de-
vices (per bus line) approach the loading limit.

MULTIPLEXED DATA BUS

BHE
BHE
8282
A19-Asg :
8086
ALE ADDRESS
A1s-As
: 8282

Ar-Ag :

MULTIPLEXED
A TA

Figure 1-64 Multiplexed Data Bus

1-93

BUFFERED DATA BUS

BHE

Avg-A1g :
A1s-Ag :

Ar-Ag C
:Dls-Do[

]
m

8086

ADDRESS

8282

=

8282

SYSTEM
BUS

A
8286/8287

ER 8

DT/R T

DATA

EN
8286/8287
T

D7-Do
: : :

A

T THC ]

Figure 1-65 Buffered Data Bus

The data bus must be buffered using inverting or
non-inverting octal buffers to satisfy the capacitive load-
ing and drive requirements of larger systems. To enable
and control the direction of the transceivers, the 8086 pro-
vides Data Enable (DEN) and Data Transmit/Receive
(DT/R¥) signals (see Figure 1-65). These signals provide
the appropriate timing to guarantee isolation of the multi-
plexed bus from the system during T1 and elimination of

8282's
ALE———— »|STB

Atg-Arg, BHE A1g-Ag, BHE

Do ADDRESS BUS

AD15-ADg

MULTIPLEXED
BUS

Figure 1-66 Devices With Output Enable
on the Multiplexed Bus
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ALE

m™ T2

T3 T4

\

Figure 1-67 Relationship of ALE to READ

Ayp-Ag, BHE
) ADDRESS
CHIP SELECT
DECODE

> MULTIPLEXED BUS

DATA

Figure 1-68 Devices Without Output Enable
on the Multiplexed Bus
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3l
’I

DATA

d
|

—
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1 ACCESS TIME FOR CS GENERATED FROM ADDRESS DECODE.

2 ACCESS TIME IF C!

'S IS GATED WITH RD/WR.

Figure 1-69

Access Time: CS Gated
with AD*/WR*
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bus contention with the CPU during read and write (see
Figure 1-71). Although the memory and peripheral de-
vices are isolated from the CPU (see Figure 1-72), bus
contention may still exist in the system if the devices do
not have an output enable control other than chip select.
As an example, bus contention will exist during transition
from one chip select to another (the newly selected device
begins driving the bus before the previous device has dis-
abled its drivers). Another, more severe case exists during
a write cycle: from chip select to write active, a device
whose outputs are controlled only by chip select, will
drive the bus simultaneously with write data being driven
through the transceivers by the CPU (see Figure 1-73).
The same technique given for circumventing these prob-
lems on the multiplexed bus can be applied here with the
same limitations.

Since the majority of system memories and peripherals
require a stable address for the duration of the bus cycle,
the address on the multiplexed address/data bus during T1
should be latched and the latched address used to select
the desired peripheral or memory location. Since the
8086 has a 16-bit data bus, the multiplexed bus compo-
nents of the 8085 family are not applicable to the 8086 (a
device on address/data bus lines 8-15 will not be able to
receive the byte selection address on lines 0-7). To de-
multiplex the bus (see Figure 1-74), the 8086 system pro-
vides an Address Latch Enable signal (ALE) to capture
the address in transparent D-type latches. The latches

1 CS IS NOT VALID PRIOR TO WRITE AND BECOMES ACTIVE ONE OR TWO GATE
DELAYS LATER.

2 CS REMAINS VALID AFTER WRITE ONE OR TWO GATE DELAYS.

Figure 1-70 CE to WR* Setup and Hole
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' READ
CYCLE

2 wRiTE
CYCLE

ADq " . "
AD15-ADo X ADD!RESS Ais-Ao  IFLOAT -__]X DATAIN | Dys-Do x_szév— _____
() \
o |\ aum
DEN
ADy5:ADg X aoomess X DATA OUT T Floar t

1 DEN IS ENABLED AFTER THE 8086 HAS FLOATED THE MULTIPLEXED BUS

2 DEN ENABLES THE TRANSCEIVERS EARLY IN THE CYCLE, BUT DT/R GUARANTEES
THE TRANSCEIVERS ARE IN TRANSMIT RATHER THAN RECEIVE MODE AND WILL

NOT DRIVE AGAINST THE CPU.

Figure 1-71 Bus Transceiver Control

may be either inverting or non-inverting. These devices
propagate the address through to the outputs while ALE is
high and latch the address on the falling edge of ALE.

Arg-Ao, BRE

ADDR

JP

|1

ovk  /

BHE
Atg-Ats
8282
ALE
83088
e—
AD15-ADg 8202
e—
BEN 2288
ovR

DECODE

W DATA T8

Figure 1-72 Devices With Output Enable
on the System Bus
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DEVICE ORIVES
THE BUS

TRANSCEIVERS
DRIVE THE BUS

i
7

Figure 1-73 CS*/Bus Driving Device Timing
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ALE

sTB  OE
8282183 A
Ayp-A16/Se-S3 )| DI D0 [ A1p-Ats

STB  OE jo—
8262183
Ol DO[Ass-As BUS

sTB  OE jo—

8282183
DI DO[Ar-Ag )
J

Figure 1-74 De-multiplexing Address and Data
From the Processor Bus

This timing delays address access and chip select decod-
ing by only the propagation delay of the latch. The out-
puts are enabled through the low active OE* input. The
demultiplexing of the multiplexed address/data bus
(latchings of the address from the multiplexed bus), can
be done locally at appropriate points in the system or at
the CPU with a separate address bus distributing the ad-
dress throughout the system (see Figure 1-75). For opti-
mum system performance and compatibility with
multiprocessor and MULTIBUS configurations, the latter
technique is strongly recommended over the first.

ALE

8282

OR

8283 ADDRESS BUS
8086

CPU

DATA BUS

SEPARATE ADDRESS AND DATA BUSSES

H [
18w i
H

CPU

TA

Figure 1-75 Multiplexed Bus With Local
Address Demultiplexing

NOTE

Throughout this chapter consider the multi-
plexed bus as the local CPU bus and the de-
multiplexed address and buffered data bus as
the system bus.

MULTIPLEXED ADDRESS AND DATA BUS

An additional extension to bus implementation is a second
level of buffering to reduce the total load seen by devices
on the system bus (see Figure 1-76). This technique is
typically used for multiboard systems and for isolation of
memory arrays. The concerns with this configuration are
the additional delay for access and, more important, con-
trol of the second transceiver in relationship to the system
bus and the device being interfaced to the system bus. One
technique for controlling the transceiver (see Figure 1-77)
simply distributes DEN and DT/R* throughout the sys-
tem. DT/R* is inverted to provide proper direction con-
trol for the second level transceivers. Another technique
(see Figure 1-78) provides control for devices with output
enables. RD* is used to normally direct data from the

- system bus to the peripheral. The buffer is selected when-

ever a device on the local bus is chip selected. Bus conten-
tion is possible on the device’s local bus during a read as
the read simultaneously enables the device output and
changes the transceiver direction. Contention may also
occur as the read is terminated.

For devices without output enables, the same technique
can be applied (see Figure 1-79) if the chip select to the
device is conditioned by read or write. Controlling the
chip select with read/write prevents the device from driv-
ing against the transceiver prior to the command being
received. Using this technique, read/write time and
CS-to-write setup and hold times limit access to the de-
vices.

Using an alternate technique applicable to devices with
and without output enables, (see Figure 1-80). RD* con-
trols the direction of the transceiver but it is not enabled
until a command and chip select are active. The possibil-
ity for bus contention still exists but is reduced to varia-
tions in output enable versus direction change time for the
transceiver. Full access time from chip select is now avail-
able, but data will not be valid prior to write and will only
be held valid after write by the delay to disable the trans-
ceiver. .

In the last example of a technique for devices with sepa-
rate inputs and outputs (see Figure 1-81) separate bus re-
ceivers and drivers are provided rather than a single
transceiver. The receiver is always enabled while the bus
driver is controlled by RD* and chip select. The only pos-
sibility for bus contention in this system occurs as multi-
ple devices during chip selection changes.
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Ag-Ate
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8287

DEN

8287
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CPU LOCAL
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8287
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DATA

ADDR
cs

SYSTEM
BUS

MEMORY/IO
LOCAL BUS

1.4.6 Multiprocessor/Coprocessor

Applications

Figure 1-76 Fully Buffered System

The 8086 architecture supports multiprocessor systems
based on the concept of a shared system bus (see Figure
1-82). All CPU’s in the system communicate with each
other and share resources using the system bus. The bus
may be either the Intel MULTIBUS system bus or an ex-
tension of the system bus. Arbitration logic consists of the
major addition required to the demultiplexed system bus

VR

S
>

SYSTEM
DATA

LOCAL
DATA

<

)

BUS

82887

-

8US

) MEMORY/I/O DEVICES

Figure 1-77 Controlling System Transceivers

with DEN and DT/R*

SYSTEM
DATA
Bus

MEMORY/I/IO
DEVICE

Figure 1-78 Buffering Devices with OE*/RD*

SYSTEM

DATA
8uUsS

MEMORY/IO
DEVICE

Figure 1-79 Buffering Devices Without

OE*/RD* and With Common
or Separate Input/Output

>0
Wﬁ—T—Do‘

LOCAL [Cs

DATA
BUS

SYSTEM DATA BUS

o

¢

MEMORY/IIO
DEVICE

Figure 1-80 Buffering Devices Without OE*/RD*
and With Common or Separate
Input/Output
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74504
OR
745240

SYSTEM LOCAL WRITE B
e C E BUS
BUS

MEMORY/IO
o& LOCAL READ Bus _ DEVICE

745240

Figure 1-81 Buffering Devices Without OE*/RD*
and With Separate
Input/Output

to control access to the system bus. As each CPU asyn-
chronously requests access to the shared bus, the arbitra-
tion logic resolves priorities and grants bus access to the
highest priority CPU. Having gained access to the bus,
the CPU completes its transfer and will either relinquish
the bus or wait to be forced to relinquish the bus. For
discussion on MULTIBUS arbitration techniques, refer to
Application Note AP-28A, Intel MULTIBUS Interfacing.

To support a multi-master interface to the MULTIBUS
system bus for the 8086 family, the 8289 bus arbiter is
included as part of the family. The 8289 is compatible
with the 8086’s local bus and in conjunction with the 8288
bus controller, implements the MULTIBUS protocol for
bus arbitration. The 8289 provides a variety of arbitration
and prioritization techniques to allow optimization of bus
availability, throughput, and utilization of shared re-
sources. Additional features (implemented through strap-
ping options) extend the configuration options beyond a
pure CPU interface to the multi-master system bus for

COMPUTE
MODULE
1
SHARED
MEMORY
COMPUTE
MODULE
2
|
! (N eemus
COMPUTE
MODULE
N
SHARED
SYSTEM
BUS

Figure 1-82 8086 Family Multiprocessor System

access to shared resources to include concurrent support
of alocal CPU bus for private resources. For specific con-
figurations and additional information on the 8289, refer
to paragraph 1.8.3.

LOCK*

The LOCK* output is used in conjunction with an Intel
8289 Bus Arbiter to guarantee exclusive access of a
shared system bus for the duration of an instruction. This
output is software controlled and is effected by preceding
the instruction with a one byte ““lock” prefix (see instruc-
tion set description earlier in this chapter).

When the lock prefix is decoded by the EU, the EU in-
forms the BIU to activate the LOCK* output during the
next clock cycle. This signal remains active until one
clock cycle after the execution of the associated instruc-
tion is concluded.

Qso, as1

The QS1 and QSO (Queue Status) outputs permit external
monitoring of the CPU’s internal instruction queue to al-
low instruction set extension processing by a coprocessor.
(The corresponding Intel ICE modules use these status
bits during “trace” operations.) The encoding of the QS1
and QSO bits is shown in Table 1-39.

1.4.7 Interpreting The 8086/8088 Bus
Timing Diagrams

The 8086/8088 bus timing diagrams are a powerful tool
for determining system requirements. The timing dia-
grams for both the minimum and maximum modes (Fig-
ures 1-83 and 1-84) may be divided into six sections: (1)
address and ALE; (2) read cycle timing; (3) write cycle
timing; (4) interrupt acknowledge timing; (5) ready tim-
ing; and (6) HOLD/HLDA or RQ*/GT* timing. Since the
A.C. characteristics of the signals are specified relative to
the CPU clock, the relationship between the majority of
the signals can be reduced by simply determining the
clock cycles between the clock edges the signals are rela-
tive to and adding or subtracting the appropriate minimum
or maximum parameter values. One aspect of system tim-
ing not compensated for in this approach is the worst case
relationship between the minimum and maximum param-
eter values (also known as tracking relationships). As an
example, consider a signal which has specified minimum
and maximum turn on and turn off delays. Depending on
device characteristics, it may not be possible for the com-
ponent to simultaneously demonstrate a maximum turn on
and a minimum turn off delay even though worst case
analysis might imply the possibility. This argument is
characteristic of MOS devices and is therefore applicable
to the 8086 A.C. characteristics. Therefore, the designer
should assume that in worst case analysis mixing mini-
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Table 1-39 Queue Status Bit Decoding

Qs1 |QSo Queue Status

0 (low) 0 |No Operation. During the last
clock cycle, nothing was taken
from the queue.

0 1 |First Byte. The byte taken from the
queue was the first byte of the
instruction.

1(high) | 0 |Queue Empty. The queue has
been reinitialized as a result of the
execution of a transfer instruction.

1 1 |Subsequent Byte. The byte taken

from the queue was a subsequent
byte of the instruction.

The queue status is valid during the CLK cycle after which the
queue operation is performed.

mum and maximum delay parameters will typically ex-
ceed the worst case obtainable and should therefore
receive further subjective degradation to obtain
worst-worst case values. This following paragraphs pro-
vide guidelines for specific areas of 8086 timing sensitive
to tracking relationships.

MINIMUM MODE BUS TIMING

The minimum mode address and ALE timing relationship
determines the ability to capture a valid address from the
multiplexed bus. Since the D-type latches capture the ad-
dress on the trailing edge of ALE, the critical timing in-
volves the state of the address lines when ALE terminates.
If the address valid delay is assumed to be maximum
TCLAV and ALE terminates at TCHLLmin, its earliest
point (assuming zero minimum delay), the address would
be valid only if TCLCHmin-TCLAVmax = 8 ns prior to
ALE termination. This result is unrealistic in the assump-
tion of maximum TCLAV and minimum TCHLL. To pro-
vide an accurate measure of the true worst case, a
separate parameter specifies the minimum time for ad-
dress valid prior to the end of ALE (TAVAL). TAVAL =
TCLCH-60 ns overrides the clock related timings and
guarantees 58 ns of address setup to ALE termination for
a 5 MHz 8086. The address is guaranteed to remain valid
beyond the end of ALE by the TLLAX parameter. This
specification overrides the relationship between TCHLL
and TCLAX which might seem to imply the address may
not be valid by the end of the latest possible ALE.
TLLAX holds for the entire address bus. The TCLAXmin
specification on the address indicates the earliest the bus
will go invalid if not restrained by a slow ALE. TLLAX

and TCLAX apply to the entire multiplexed bus for both
read and write cycles. AD15-0 is tri-stated for read cycles
and immediately switched to write data during write cy-
cles. AD19-16 immediately switch from address to status
for both read and write cycles. TLHLLmin, which takes
precedence over the value obtained by relating
TCLLHmax and TCHLLmin, guarantees the minimum
ALE pulse width.

To determine the worst case delay-to-valid address on a
demultiplexed address bus, two paths are considered: (1)
delay of valid address and (2) delay to ALE. Since the
D-type latches are flow through devices, a valid address is
not transmitted to the address bus until ALE is active. A
comparison of address valid delay TCLAVmax with ALE
active, delay TCLLHmax indicates TCLAVmax is the
worst case. Subtracting the latch propagation delay gives
the worst case address bus valid delay from the start of the
bus cycle.

Minimum Mode Read Cycle Timing

Read timing consists of conditioning the bus, activating
the read command and establishing the data transceiver
enable and direction controls. DT/R* is established early
in the bus cycle and requires no further consideration.
During read, the DEN* signal must allow the transceivers
to propagate data to the CPU with the appropriate data
setup time and continue to do so until the required data
hold time. The DEN* turn on delay allows TCLCL +
TCHCLmin—TCVCTV max—TDVCL = 127 ns trans-
ceiver enable time prior to valid data required by the
CPU. Since the CPU data hold time TCLDXmin and min-
imum DEN* turnoff delay TCVCTXmin are both 10 ns
relative to the same clock edge, the hold time is guaran-
teed. Additionally, DEN* must disable the transceivers
prior to the CPU, redriving the bus with the address for
the next bus cycle. The maximum DEN* turn off delay
(TCVCTXmax), compared with the minimum delay for
addresses out of the 8086 (TCLCL + TCLAVmin), indi-
cates the transceivers are disabled at least 105 ns before
the CPU drives the address onto the multiplexed bus.

If memory or I/O devices are connected directly to the
multiplexed address and data bus, the TAZRL parameter
guarantees the CPU will float the bus before activating
read, allowing the selected device to drive the bus. At the
end of the bus cycle, the TRHAV parameter specifies the
bus float delay the device being deselected must satisfy to
avoid contention with the CPU driving the address for the
next bus cycle. The next bus cycle may start as soon as
the cycle following T4 or any number of clock cycles
later.

The minimum delay from read active to valid data at the
CPU is 2TCLCL — TCLRLmax —TDVCL = 205 ns. The
minimum pulse width is 2TCLCL —75 ns = 325 ns. This
specification (TRLRH) overrides the result which could
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Figure 1-83 8086 Bus Timing — Minimum Mode System
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Figure 1-83 8086 Bus Timing — Minimum Mode System (continued)
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Figure 1-84 8086 Bus Timing — Maximum Mode System (Using 8288)
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Figure 1-84 8086 Bus Timing — Maximum Mode System (continued)
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be derived from the clock relative delays 2TCLCL —T-
'CLRLmax + TCLRHmin).

Minimum Mode Write Cycle Timing

The write cycle provides write data to the system, gener-
ates the write command and controls data bus transceiv-
ers. The transceiver direction control signal DT/R* is
conditioned to transmit at the end of each ready cycle and
does not change during a write cycle. This process allows
the transceiver enable signal DEN* to be active early in
the cycle (while addresses are valid) without corrupting
the address on the multiplexed bus. The leading edge of
T2 enables both the write data and write command. A
comparison of minimum WR* active delay TCVCTVmin
with the maximum write data delay TCLDV indicates that
write data may be not valid until 100 ns after write is
active. The devices in the system should capture data on
the trailing edge of the write command rather than the
leading edge to guarantee valid data. The data from the
8086 is valid a minimum of 2TCLCL —TCLDVmax +
TCVCTXmin = 300 ns before the trailing edge of write.
The minimum write pulse width is. TWLWH =
2TCLCL—60 ns= 340 ns. The CPU maintains valid
write data TWHDX ns after write. The TWHDZ specifi-
cation overrides the result derived by relating TCLCHmin
and TCHDZmin which implies write data may only be
valid 18 ns after WR*. Normally the CPU simply
switches the output drivers from data to address at the
beginning of the next bus cycle. If forced off the bus by a
HOLD or RQ* input, the 8086 floats the bus after write.
As with the read cycle, the next bus cycle may start in the
clock cycle following T4 or any clock cycle later.

The CPU disables DEN* a minimum of TCLCHmin +
TCVCTXmin—TCVCTXmax= 18 ns after write to
guarantee data hold time to the selected device. Again
comparing TCVCTXmin with TCVCTXmax, the real
minimum delay from the end of write to transceiver dis-
able equals approximately 60 ns.

Minimum Mode Interrupt Acknowledge Timing

The interrupt acknowledge sequence consists of two inter-
rupt acknowledge timing cycles as previously described.
The detailed timing of each cycle is identical to the read
cycle timing with two exceptions: command timing and
“address/data bus timing.

The multiplexed address/data bus floats from the begin-
ning (T1) of the INTA* cycle (within TCLAZ ns). The
upper four multiplexed address/status lines do not
three-state. The address value on A19-A16 is indetermi-
‘ nate, but the status information will be valid (S3=0,
S4=0, S5=1IF, S6 =0, S7=BHE* =0). The multiplexed
address/ data lines will remain in three-state until the cy-
cle after T4 of the INTA* cycle. This sequence occurs for
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each of the INTA* bus cycles. The interrupt type number
read by the 8086 on the second INTA* bus cycle must
satisfy the same setup and hold times required for data
during a read cycle.

The DEN* and DT/R* signals are enabled for each
INTA* cycle and do not remain active between the two
cycles. Their timing for each cycle is identical to the read
cycle.

The INTA* command has the same timing as the write
command. It is active within 110ns of the start of T2 pro-
viding 260ns of access time from command to data valid
at the 8086. The command is active a minimum of
TCVCTXmin = 10ns into T4 to satisfy the data hold time

_of the 8086. This provides minimum INTA* pulse width
~ of 300ns, however, taking signal delay tracking into con-

sideration gives a minimum pulse width of 340ns. Since
the maximum inactive delay of INTA* is TCVCTX-
max = 110ns and the CPU will not drive the bus until 15ns
(TCLAVmin) into the next clock cycle, 105ns are availa-
ble for interrupt devices on the local bus to float their
outputs. If the data bus is buffered, DEN* provides the
same amount of time for local bus transceivers the
three-state the outputs.

Minimum Mode Ready Timing

The CPU typically generates the system ready signal from
either the address decode of the selected device or the
address decode and the command (RD*, WR*, INTA*.
For a system which is normally not ready, the time to
generate ready from a valid address and not insert a wait
state, requires 2TCLCL — TCLAVmax — TR1VCLmax =
255 ns. This time is available for buffered delays and ad-
dress decoding to determine if the selected device does
not require a wait state and drive the RDY line high. If
wait cycles are required, the user hardware must provide
the appropriate ready delay. Since the address will not
change until the next ALE, RDY will remain valid

throughout the cycle. If the system is normally ready, se-

lected devices requiring wait states also have 255 ns to
disable the RDY line. The user circuits must delay
re-enabling RDY by the appropriate number of wait
states.

If the RD* command is used to enable the RDY signal,
TCLCL —~ TCLRLmax — TRIVCLmax = 15 ns are availa-
ble for external logic. If the WR* command is used, TCL-
CL—-TCVCTVmax —TRIVCLmax = 55 ns is available.
Comparison of RDY control by address or command indi-
cates that address decoding provides the best timing. If
the system is normally not ready, address decode alone
could be used to provide RDY for devices not requiring
wait states while devices requiring wait states may use a
combination of address decode and command to activate a

- wait state generator. If the system-is normally ready, de-

vices not requiring wait states do-nothing to RDY while
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devices needing wait states should disable RDY via the
address decode and use a combination of address decode
and command to activate a delay to re-enable RDY.

If the system requires no wait states for memory and a
fixed number of wait states for RD* and WR* to all I/O
devices, the M/IO* signal can be used as an early indica-
tion of the need for wait cycles. This techniques allows a
common circuit to control ready timing for the entire sys-
tem without feedback of address decodes.

Minimum Mode TEST* Timing

The TEST* input is sampled by the 8086 only during exe-
cution of the WAIT instruction. The TEST* signal should
be active for a minimum of 6 clock cycles during the
WAIT instruction to guarantee detection.

MAXIMUM MODE BUS TIMING

The maximum mode 8086 bus operations are logically
equivalent to the minimum mode operation. Detailed tim-
ing analysis now involves signals generated by the CPU
and the 8288 bus controller. The 8288 also provides addi-
tional control and command signals which expand the
flexibility of the system.

Maximum Mode Address and ALE Timing

In the maximum mode, the address information continues
to.come from the CPU while the ALE strobe is generated
by the 8288. To determine the worst case relationships
between ALE and the address, we first must determine
8288 ALE activation relative to the SO*-S2* status from
the CPU. The maximum mode timing diagram specifies
two possible delay paths to generate ALE. The first is
TCHSV + TSVLH measured from the rising edge of the
clock cycle preceding T1. The second path is TCLLH
measured from the start of T1. Since the 8288 initiates a
bus cycle from the states lines leaving the passive states
(S0* —S2* = 1), if the 8086 is late in issuing the status
(TCHSVmax) while the clock high time is a minimum
(TCHCLmin), the status will not have changed by the
start of T1 and ALE is issued TSVLH ns after the status
changes. If the status changes prior to the beginning of
T1, the 8288 will not issue the ALE until TCLLH ns after
the start of T1. The resulting worst case delay to enable
ALE (relative ‘to the start of T1) is TCHSVmax +
TSVLHmax — TCHCLmin = 58 ns. Note, when calculat-
ing signal relationships, be sure to use the proper maxi-
mum mode values rather than equivalent minimum mode
values.

The trailing edge of ALE is triggered in the 8288 by the
positive clock edge in T1 regardless of the delay to enable
ALE. The resulting minimum ALE pulse width is
TCLCHmax —58 ns= 75 ns assuming the TCHLL = 0.

1-105

TCLCHmax must be used since TCHCLmin was assumed
to derive the 58 ns ALE enable delay. The address is guar-
anteed to be valid TCLCHmin + TCHLLmin—TCLAV-
max = 8 ns prior to the trailing edge of ALE to capture
the address in the latches. Again we have assumed a very
conservative TCHLL = 0. Note, since the address of ALE
are driven by separate devices, no tracking of A.C. char-
acteristics can be assumed.

The address hold time to the latches is guaranteed by the
address remaining valid until the end of T1 while ALE is
disabled a maximum of 15 ns from the positive clock tran-
sition in T1 (TCHCLmin —TCHLLmax = 52 ns address
hold time). The multiplexed bus transitions from address
to status and write data or tri-state (for read) are identical
to the minimum mode timing. Also, since the address
valid delay (TCLAV) remains the critical path in establish-
ing a valid address, the address access times to valid data
and ready are the same as the minimum mode system.

Maximum Mode Read Cycle Timing

The maximum mode system offers read signals generated
by both the 8086 and the 8288. The 8086 RD* output
signal timing is identical to the minimum mode system.
Since the A.C. characteristics of the read commands gen-
erated by the 8288 are significantly better than the 8086
output, access to devices on the demultiplexed buffered
system bus should use the 8288 commands. The 8086
RD* signal is available for devices which reside directly
on the multiplexed bus. The following evaluations for
read, write and interrupt acknowledge only consider the
8288 command timing.

The 8288 provides separate memory and I/O read signals
which conform to the same A.C. characteristics. The
commands are issued TCLML ns after the start of T2 and
terminate TCLMH ns after the start of T4. The minimum
command length is 2TCLCL—TCLMLmax +
TCLMLmin = 375 ns. The access time to valid data at the
CPU is 2TCLCL — TCLMLmax — TDVCLmax = 335 ns.
Since the 8288 was designed for systems with buffered
data busses, the commands are enabled before the CPU
has tri-stated the multiplexed bus and should not be used
with devices which reside directly on the multiplexed bus
(to do so could result in bus contention during 8086 bus
float and device turn-on).

The direction control for data bus transceivers is estab-
lished in T1 while the transceivers are not enabled by
DEN until the positive clock transition of T2. This pro-
vides TCLCH + TCVNVmin = 123 ns for 8086 bus float
delay and TCHCLmin + TCLCL —TCVNVmax —TDV-
CLmax = 187 ns of transceiver active to data valid at the
CPU. since both DEN and command are valid a minimum
of 10 ns into T4, the CPU data hold time TCLDX is guar-
anteed. A maximum DEN disable of 45 ns (TCVNXmax)
guarantees the transceivers are disabled by the start of the
next 8086 bus cycle (215 ns minimum from the same
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clock edge). On the positive clock transition of T4,
DT/R* is returned to transmit in preparation for a possi-
ble write operation on the next bus cycle. Since the sys-
tem memory and I/O devices reside on a buffered system
bus, they must tri-state their outputs before the device for
the next bus cycle is selected (approximately 2TCLCL) or
the transceivers drive write data onto the bus (approxi-
mately 2TCLCL).

Maximum Mode Write Cycle Timing

In the maximum mode, the 8288 provides normal and ad-
vanced write commands for memory and I/0. The ad-
vanced write commands are active a full clock cycle ahead
of the normal write commands and have timing identical
to the read commands. The advanced write pulse width is
2TCLCL—TCLMLmax + TCLMHmin= 375 ns while
the normal write pulse width is TCLCL — TCLMLmax +
TCLMHmin= 175 ns. Write data setup time to the se-
lected device is a function of either the data valid delay
from the 8086 (TCLDV) or the transceiver enable delay
TCVNV. The worst case delay to valid write data is
TCLDV = 110 ns minus transceiver propagation delays.
This implies the data may not be valid until 100 ns after
the advanced write command but will be valid approxi-
mately TCLCL—-TCLDVmax+ TCLMLmin 100 ns
prior to the leading edge of the normal write command.
Data will be valid 2TCLCL-TCLDVmax+
TCLMHmin = 300 ns before the trailing edge of either
write command. The data and command overlap for the
advanced command is 300 ns while the overlap with the
normal write command is 175 ns. The transceivers are
disabled a minimum of TCLCHmin—TCLMHmax +
TCVNXmin= 85 ns after the write command while the
CPU provides valid data a minimum of TCLCHmin —T-
CLMHmax+ TCHDZmin= 85 ns. This guarantees
write data hold of 85 ns after the write command. The
transceivers are disabled TCLCL — TCVNXmax + TCH-
DTLmin= 155 ns (assuming TCHDTL = 0) prior to
transceiver direction change for a subsequent read cycle.

Maximum Mode Interrupt Acknowledge Timing

The maximum mode INTA* sequence is logically identi-
cal to the minimum mode sequence. The transceiver con-
trol (DEN and DT/R*) and INTA* command timing of
each interrupt acknowledge cycle is identical to the read
cycle. As in the minimum mode system, the multiplexed
address/data bus will float from the leading edge of T1 for
each INTA* bus cycle and not be drive by the CPU until
after T4 of each INTA* cycle. The setup and hold times
on the vector number for the second cycle are the same as
data setup and hold for the read. If the device providing
the interrupt vector number is connected to the local bus,
TCLCL —TCLAZmax + TCLMLmin= 130 ns are avail-
able from 8086 bus float to INTA* command active. The
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selected device on the local bus must disable the system
data bus transceivers since DEN is still generated by the
8288.

If the 8288 is not in the IOB (I/O Bus) mode, the 8288
MCE/PDEN* output becomes the MCE output. This out-
put is active during each INTA* cycle and overlaps the
ALE signal during T1. The MCE is available for gating
cascade addresses from a master 8259A onto three of the
upper AD15-ADS lines and allowing ALE to latch the
cascade address into the address latches. The address
lines may then be used to provide CAS and address selec-
tion to slave 8259A’s located on the system bus (see Figure
1-85). MCE is active within 15 ns of status or the start of
T1 for each INTA* cycle. MCE should not enable the
CAS lines onto the multiplexed bus during the first cycle
since the CPU does not guarantee to float the bus until 80
ns into the first INTA* cycle. The first MCE can be inhib-
ited by gating MCE with LOCK*. The 8086 LOCK* out-
put is activated during T2 of the first cycle and disabled
during T2 of the first cycle and disabled during T2 of the
second cycle. The overlap of LOCK* with MCE allows
the first MCE to be masked and the second MCE to gate
the cascade address onto the local bus. Since the 8259A
will not provide a cascade address until the second cycle,
no information is lost. As with ALE, MCE is guaranteed
valid within 58 ns of the start of T1 to allow 75 ns CAS
address setup to'the trailing edge of ALE. MCE remains
active TCHCLmin—TCHLLmax + TCLMCLmin= 52
ns after ALE to provide data hold time to the latches.

If the 8288 is strapped in the IOB mode, the MCE output
becomes PDEN* and all I/O references are assumed to be
devices on the local bus rather than the demultiplexed sys-
tem bus. Since INTA* cycles are considered 1/0 cycles,
all interrupts are assumed to come from the local system
and cascade addresses are not gated onto the system ad-
dress bus. Additionally, the DEN signal is not enabled
since no I/0 transfers occur on the system bus. If the local
I/O bus is also buffered by transceivers, the PDEN* sig-
nal is used to enable those transceivers. PDEN* A.C.
characteristics are identical to DEN with PDEN* enabled
for 1/O references and DEN enabled for instruction or
memory data references.

Maximum Mode Ready Timing

Ready timing based on address valid timing is the same
for maximum and minimum mode systems. The delay
from 8288 command valid to RDY valid at the 8284 is
TCLCL —TCLMLmax —TRIVCLmin= 130 ns. This
time is available for external circuits to determine the
need to insert wait states and disable RDY or enable RDY
to avoid wait states. INTA*, all read commands and ad-
vanced write commands provide this timing. The normal
write command is not valid until after the RDY signal
must be valid. Since both normal and advanced write
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Figure 1-85 Max Mode 8086 with Master 8259A on the Local Bus and Slave 8259A’s on the System Bus

commands are generated by the 8288 for all write cycles,
the advanced write may be used to generate a RDY indica-
tion even though the selected device uses the normal write
command.

Since separate commands are provided for memory and
1/0, no M/IO* signal is specifically available as in the
minimum mode to allow-an early ‘wait state required’ in-
dication for I/O devices. The S2* status line, however is
logically equivalent to the M/IO* signal and can be used
for this purpose.

Other Maximum Mode Considerations

The RQ*/GT* timing is covered in the Bus Exchange
Mechanisms section paragraph 1.6.2 Maximum Mode
(RQ*/GT¥) later in this chapter and will not be duplicated
here. The only additional signals to be considered in the
maximum mode of operation are the queue status line
QS0 and QS1. These signals are changed on the leading
edge of each clock cycle (high to low transition) including
idle and wait cycles (the queue status independent of bus
activity). External logic may sample the lines on the low
to high transition of each clock cycle. When sampled, the
signals indicate the queue activity in the previous clock
cycle and therefore lag the CPU’s activity by one cycle.
The TEST* input requirements are identical to those
stated for the minimum mode.

To inform the 8288 of HALT status when a HALT instruc-
tion is executed, the 8086 will initiate a status transition

from passive to HALT status. The status change will
cause the 8288 to emit an ALE pulse with an indetermi-
nate address. Since no bus cycle is initiated (no command
is issued), the results of the address will not affect the
CPU operation (i.e., no response such as READY is ex-
pected from the system). This external hardware to latch
and decode all transitions in system status.

1.4.8 Wait State Insertion

The ready signal is used in the system to accommodate
memory and I/0 devices that cannot transfer information
at the maximum CPU bus bandwidth. Ready is also used
in multiprocessor systems to force the CPU to wait for
access to the system bus or MULTIBUS system bus. To
insert a wait state in the bus cycle, the READY signal to
the CPU must be inactivate (low) by the end of T2. To
avoid insertion of a wait state, READY must be active
(high) within a specified setup time prior to the positive
transition during T3. Depending on the size and charac-
teristics of the system, ready implementation may take
one of two approaches.

The classical ready implementation is to have the system
‘normally not ready’. When the selected device receives
the command (RD*/WR*/INTA¥*) and has had sufficient
time to complete the command, it activates READY to the
CPU, allowing the CPU to terminate the bus cycle. This
implementation is characteristic of large multiprocessor,
MULTIBUS systems or systems where propagation de-
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lays, bus access delays and device characteristics inher-
ently slow down the system. for maximum system
performance, devices that can run with no wait states
must return ‘READY’ within the previously described
limit. Failure to respond in time will only result in the
insertion of one or more wait cycles.

An alternate technique is to have the system ‘normally
ready’. All devices are assumed to operate at the maxi-
mum CPU bus bandwidth. Devices that do not meet the
requirement must disable READY by the end of T2 to
guarantee the insertion of wait cycles. This implementa-
tion is typically applied to small single CPU systems and
reduces the logic required to control the ready signal.
Since the failure of a device requiring wait states to dis-
able READY by the end of T2 will result in premature
termination of the bus cycle, the system timing must be
carefully analyzed when using this approach.

The 8086 has two different timing requirements on
READY depending on the system implementation. for a
‘normally ready’ system to insert a wait state, the READY
must be disabled within 8 ns (TRYLCL) after the end of
T2 (start of T3) (see Figure 1-86). To guarantee proper
operation of the 8086, the READY input must not change
from ready to not ready during the clock low time of T3.
For a ‘normally not ready’ system to avoid wait states,
READY must be active within 119 ns (TRYHCH) of the
positive clock transition during T3 (see Figure 1-87). For
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both cases, READY must satisfy a hold time of 30 ns
(TCHRYX) from the T3 or TW positive clock transition.

To generate a stable READY signal which satisfies the
previous setup and hold times, the 8284 provides two sep-
arate system ready inputs (RDY1, RDY2) and a single
synchronized ready output (READY) for the CPU. The
RDY inputs are qualified with separate access enables
(AEN1*, AEN2*, low active) to allow selecting one of
the two ready signals (see Figure 1-88). The gated signals
are logically OR’ed and sampled at the beginning of each
CLK cycle to generate READY to the CPU (see Figure
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Figure 1-88 Ready Inputs to the 8284
and Output to the 8086/88
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1-89). The sampled READY signal is valid within 8 ns
(TRYLCL) after CLK to satisfy the CPU timing require-
ments on ‘not ready’ and ready. Since READY cannot
change until the next CLK, the hold time requirements
are also satisfied. The system ready inputs to the 8284
(RDY1, RDY2) must be valid 35 ns (TRIVCL) before T3
and AEN* must be valid 60 ns before T3. For a system
using only one RDY input, the associated AEN* is tied to
ground while the other AEN* is connected to 5 volts
through approximately 1K ohms (see Figure 1-90). If the
system generates a low active ready signal, it can be con-
nected to the 8284 AEN* input if the additional setup time
required by the 8284 AEN* input is satisfied. In this case,
the associated RDY input would be tied high (see Figure
1-91).

1.4.9 8086/8088 Instruction Sequence

Figure 1-92 illustrates the internal operation and bus ac-
tivity that occur as an 8086 CPU executes a sequence of
instructions. This figure presents the signals and timing
relationships that help illustrate 8086 operation. The fol-
lowing discussion interprets the figure.

Figure 1-92 shows the repeated execution of an instruc-
tion loop. This loop is defined in both machine code and
assembly language by Figure 1-93. The loop demon-
strates both the effects of a program jump on the queue
and makes the instruction sequence easy to follow. The
program sequence consists of seven instructions and 16
bytes, and is typical of the tight loops found in many ap-
plication programs. This particular sequence contains
several sort, fast-executing instructions that demonstrate
both the effect of the queue on CPU performance and the
interaction between the execution unit (EU) fetching code
from the queue and the bus interface unit (BIU) filling the
queue and performing the requested bus cycles. For the
purpose of this discussion, code, stack, and memory data
references are aligned on even word boundaries. The en-
tire sequence of instructions has taken 55 clock cycles.
Eighteen opcode bytes were fetched, one word memory
read occurred, and one word stack write was performed.

Consider that the loop starts in clock cycle 1 with the
queue reinitialization that occurs as part of the JMP in-
struction. The EU completes JMP instruction execution.
‘While the BIU performs an opcode fetch to begin refilling
the queue.

In clock cycle 8, the queue status lines indicate that the
first byte of the MOV immediate instruction has been re-
moved from the queue (one clock cycle after it was placed
there by the BIU fetch) and that execution of this instruc-
tion has begun. The second byte of this instruction is
taken from the queue in clock cycle 10 and then, during
clock cycle 12, the EU pauses to wait one clock cycle for
the second BIU opcode fetch to complete and for the third
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byte of the MOV immediate instruction to be come availa-
ble for execution (recall that the queue status lines indi-
cate queue activity that has occurred in the previous
clock).

Clock cycle 13 begins the execution of the PUSH AX
instruction, and during clock cycle 15, the BIU begins the
fourth opcode fetch. The BIU finishes the fourth fetch in
clock cycle 18 and prepares for another fetch when it re-
ceives a request from the EU for a memory write (the
stack push). Instead of completing the opcode fetch and
forcing the EU to wait for additional clock cycles, the BIU
immediately aborts the fetch cycle (resulting in two idle
clock cycles, TI, in clock cycles 19 and 20) and performs
the required memory write. This interaction between the
EU and BIU results in a single clock extension to the exe-
cution time of the PUSH AX instruction, the maximum
delay that can occur in response to an EU bus cycle re-
quest.

Execution continues during clock cycle 24 with the exe-
cution of sequential register-to-register MOV instruc-
tions. The first of these instructions takes full advantage
of the prefetched opcode to complete this operation in two
clock cycles. The second MOV instruction, however, de-
pletes the queue and requires two additional clock cycles
(28 and 29).

During clock cycle 30, the ADD memory indirect to AX
instruction begins. In the time required to execute this
instruction, the BIU completes two opcode fetch cycles
and a memory read, then begins a fourth opcode fetch
cycle. Note that in the case of the memory read, the EU’s
request for a bus cycle occurs at a point in the BIUJ fetch
cycle where it can be incorporated directly (idle states are
not required and no EU delay is imposed).

During clock cycle 44, the EU begins the ADD immedi-
ate instruction, taking four bytes from the queue and com-
pleting instruction execution in four clock cycles. Also
during this time, the BIU senses a full queue during clock
cycle 45 and enters a series of bus idle states (five or six
bytes constitute a full queue in the 8086; the BIU waits
until it can fetch a full word or opcode before accessing
the bus).

At clock cycle 47, the BIU again begins a bus cycle se-
quence, one that becomes an “‘overfetch” since the EU is
executing a JMP instruction. As part of the JMP instruc-
tion, the queue reinitialization (which began the instruc-
tion sequence) occurs.

The example can be easily extended to incorporate wait
states in the bus access cycles. In the case of a single wait
state, each bus cycle would be lengthened to five clock
cycles with a wait state (TW) inserted between every T3
and T4 state of the bus cycle. As a first approximation,
the instruction sequence execution time would appear to
be lengthened by 10 clock cycles, one cycle for each use-
ful read or write bus cycle that occurs. Actually, this ap-
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proximation for the number of wait states inserted is
incorrect since the queue can compensate for wait states
by making use of previously idle bus time. For the exam-
ple code sequence, this compensation reduced the actual
execution time by one wait state, and the sequence was
completed in 64 clock cycles, one less than the approxi-
mated 65 clock cycles.

This example is, deliberately, partially bus limited and in-
dicates the types of EU and BIU interaction that can occur
in this type of situation. Most application code sequences,
however, use a high proportion of more complex,
longer-executing instructions and addressing modes, and
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therefore tend to be execution limited. In this case, less
BIU-EU interaction is required, the queue more often is
full, and more idle states occur on the bus.

1.5 BUS EXCHANGE MECHANISMS

The 8086 supports protocols for transferring control of
the local bus between itself and other devices capable of
acting as bus masters. The minimum mode configuration
offers a signal level handshake similar to the 8080 and
8085 systems. The maximum mode provides an enhanced
pulse sequence protocol designed to optimize utilization
of CPU pins while extending the system configurations to
two prioritized levels of alternate bus masters. These pro-
tocols are simply techniques for arbitration of control of
the CPU’s local bus and should not be confused with the
need for arbitration of the system bus.

1.5.1 Minimum Mode (HOLD/HLDA)

The minimum mode 8086 system uses a hold request in-
put (HOLD) to the CPU and a hold acknowledge (HLDA)
output from the CPU. To gain control of the bus, a device
must assert HOLD to the CPU and wait for the HLDA
before driving the bus. When the 8086 can relinquish the
bus, it floats the RD*, WR*, INTA* and M/IO* com-
mand lines, the DEN* and DT/R* bus control lines and
the multiplexed address/data/status lines. The ALE signal
is not tri-stated. The CPU acknowledges the request with
HLDA to allow the requestor to take control of the bus.
The requestor must maintain the HOLD request active un-
til it no longer requires the bus. The HOLD request to the
8086 directly affects the execution unit. The CPU will
continue to execute from its internal queue until either
more instructions are needed or an operand transfer is
required. This allows a high degree of overlap between
CPU and auxiliary bus master operation. When the re-
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Figure 1-92 Representative Instruction Execution Sequence

questor drops the HOLD signal, the 8086 will respond by
dropping HLDA. The CPU will not re-drive the bus,
command and control signals from tri-state until it needs
to perform a bus transfer. Since the 8086 may still be

ing to sample HOLD, float the bus, and enable/disable
HLDA relative to the CPU clock.

To guarantee valid system operation, the designer must

executing from its internal queue when HOLD device is
driving the bus. To prevent the command lines from drift-
ing below the minimum VIH level during the transition of
bus control, 22K ohm pull up resistors should be con-
nected to the bus command lines. The timing diagram in
Figure 1-94 shows the handshake sequence and 8086 tim-

ASSEMBLY LANGUAGE MACHINE CODE

MOV AX, 0F802H B802F8
PUSH AX 50

MOV CX, BX 8BCB
MOV DX, CX 8BD1
ADD AX, [S]] 0304
ADD Si, 8086H 81C68680
JMP § -14 EBFO

Figure 1-93 Instruction Loop Sequence
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assure that the requesting device does not assert control of
the bus prior to the 8086 relinquishing control and that the
device relinquishes control of the bus prior to the 8086
driving the bus. The HOLD request into the 8086 must be
stable THVCH ns prior to the CPU’s low to high clock
transition. Since this input is not synchronized by the
CPU, signals driving the HOLD input should be synchro-
nized with the CPU clock to guarantee the setup time is
not violated. Either clock edge may be used. The maxi-
mum delay between HLDA and the 8086 floating the bus
is TCLAZmax — TCLHAVmin — 70 ns. If the system can-
not tolerate the 70 ns overlap, HLDA active from the 8086
should be delayed to the device. The minimum delay for
the CPU to drive the control bus from HOLD inactive is
THVCHmin+ 3TCLCL= 635 ns and THVCHmin +
3TCLCL+ TCHCL= 701 ns to drive the multiplexed
bus. If the device does not satisfy these requirements,
HOLD inactive to the 8086 should be delayed. The delay
from HLDA inactive to driving the busses is TCLCL +
TCLCHmin —TCHAVmax = 158 ns for the control bus
and 2TCLCL — TCLHAVmax = 240 ns for the data bus.
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Figure 1-94 HOLD/HLDA Sequence Timing Diagram

LATENCY OF HLDA TO HOLD

The decision to respond to a HOLD request is made in the
bus interface unit. The major factors that influence the
decision are the current bus activity, the state of the
LOCK* signal internal to the CPU (d by the software
LOCK prefix) and interrupts.

If the LOCK* is not active, an interrupt acknowledge cy-
cle is not in progress and the Bus Interface Unit (BIU) is
executing a T4 or T1 when the HOLD request is received,
the minimum latency to HLDA is:

35ns " THVCH min (Hold setup)
65 ns TCHCL min

200 ns TCLCL (bus float delay)

10 ns TCLHAV min (HLDA delay)
310 ns @ 5 MHz

The maximum delay under these conditions is:

34 ns (just missed setup time)

200 ns delay to next sample

82 ns TCHCL max

200 ns TCLCL (bus float delay)

160 ns TCLHAV max (HLDA delay)
677 ns @ 5 MHz

If the BIU just initiated a bus cycle when the HOLD re-
quest was received, the worst case response time is:

34 ns THVCH (just missed)

82 ns TCHCL max

7*200 bus cycle execution

N*200 N wait states/bus cycle

160 ns TCLHAV max (HLDA delay)

1.676 microseconds @ S MHz, no wait states

Note, the 200 ns delay for just missing is included in the
delay for bus cycle execution. If the operand transfer is a
word transfer to an odd byte boundary, two bus cycles are
executed to perform the transfer. The BIU will not ac-
knowledge a HOLD request between the two bus cycles.
This type of transfer would extend the above maximum
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latency by four additional clocks plus N additional wait
states. With no wait states in the bus cycle, the maximum
would be 2.476 microseconds.

Although the minimum mode 8086 does not have a hard-
ware LOCK* output, the software LOCK prefix may still
be included in the instruction stream. The CPU internally
reacts to the LOCK prefix as would the maximum mode
8086. Therefore, the LOCK does not allow a HOLD re-
quest to be honored until completion of the instruction
following the prefix. This allows an instruction which
performs more than one memory reference (example
ADD [BX], CX; which adds CX to [BX]) to execute with-
out another bus master gaining control of the bus between
memory references. Since the LOCK signal is active for
once clock longer than the instruction execution, the max-
imum latency to HLDA is:

34 ns THVC (just missed)

200 ns delay to next sample

82 ns TCHCL max

(M+ 1)*200 ns LOCK instruction execution
200 ns set up HLDA (internal)

160 ns TCLHAV max (HLDA delay)
(M*200 ns) + 876 ns @ SMHz

If the HOLD request is made at the beginning of an inter-
rupt acknowledge sequence, the maximum latency to
HLDA is:

34 ns THVCH (just missed)

82 ns TCHCL max i
2600 ns 13 clock cycles for INTA
160 ns TCLHAV max

2.876 microseconds @ S MHz

MINIMUM MODE DMA CONFIGURATION
A typical use of the HOLD/HLDA signals in the mini-

mum mode 8086 system is bus control exchange with
DMA devices like the Intel 8257-5 or 8237 DMA control-
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lers. Figure 1-95 illustrates a general interconnect for this
type of configuration using the 8237-2. The DMA con-
troller resides on the upper half of the 8086’s local bus
and shares the A8-A15 demultiplexing address latch of
the 8086. All registers in the 8237-2 must be assigned odd
addresses to allow initialization and interrogation by the
CPU over the upper half of the data bus. The 8086
RD*/WR* commands must be demultiplexed to provide
separate 1/0 and memory commands which are compati-
ble with the 8237-2 commands. The AEN control from
the 8237-2 must disable the 8086 commands from the
command bus, disable the address latches from the lower
(A0-A7) and upper (A19-A16) address bus and select the
8237-2 address strobe (ADSTB) to the A8-A15 address
latch. If the data bus is buffered, a pull-up resistor on the
DEN line will keep the buffers disabled. The DMA con-
troller will only transfer bytes between memory and 1/0
and requires the 1/0 devices to reside on an 8-bit bus de-
rived from the 16-bit to 8-bit bus multiplex circuit given
in Section 4. Address lines A7-A0 are drive directly by
the 8237 and BHE* is generated by inverting AO. If
A19-A16 are used, they must be provided by an addi-
tional port with either a fixed value or initialized by soft-
ware and enabled onto the address bus by AEN.

Figure 1-96 gives an interconnection for placing the 8257
on the system bus. By using a separate latch to hold the
upper address from the 8257-5 and connecting the outputs
to the address bus as shown, 16-bit DMA transfers are
provided. In this configuration, AEN simultaneously en-
ables A0 and BHE* to allow word transfers. AEN still
disables the CPU interface to the command and address
busses.

RQ*/GT* TO HOLD/HLDA CONVERSION

Consider a circuit for translating a HOLD/HLDA hand-
shake sequence into a RQ*/GT* pulse sequence (see Fig-
ures 1-97 and 1-98). After receiving the grant pulse, the
HLDA is enabled TCHCLmin ns before the CPU has
tri-stated the bus. If the requesting circuit drives the bus
within 20 ns of HLDA, it may be desirable to delay the
acknowledge one clock period. The HLDA is dropped not
later than one clock period after HOLD is disabled. The
HLDA also drops at the beginning of the release pulse to
provide 2TCLCL + TCLCH for the requestor to relin-
quish control of the status lines and 3TCLCL to float the
remaining signals.

1.5.2 Maximum Mode (RQ*/GT*)

The maximum mode 8086 configuration supports a sig-
nificantly different protocol for transferring bus control.
‘When viewed with respect to the HOLD/HLDA sequence
of the minimum mode, the protocol appears difficult to
implement externally. However, it is necessary to under-
stand the intent of the protocol and its purpose within the
system architecture.

1-113

The maximum mode RQ*/GT* sequence is intended to
transfer control of the CPU local bus between the CPU
and alternate bus masters which reside totally on the local
bus and share the complete CPU interface to the system
bus. The complete interface includes the address latches,
data transceivers, 8288 bus controller and 8289
multi-master bus arbiter. If the alternate bus masters in the
system do not reside directly on the 8086 local bus, sys-
tem bus arbitration is required rather than local CPU bus
arbitration. To satisfy the need for multi-master system
bus arbitration at each CPU’s system interface, the 8289
bus arbiter should be used rather than the CPU RQ*/GT*
logic.

RQ*/GT* USAGE

The RQ*/GT* protocol was developed to allow up to two
instruction set extension processor (Co-processors) or
other special function processors (like the 8089 1/0 proc-
essor in local mode) to reside directly on the 8086 local
bus. Each RQ*/GT* pin of the 8086 supports the full pro-
tocol for exchange of bus control. The sequence consists
of a request from the alternate bus master to gain control
of the system bus, a grant from the CPU to indicate the
bus has been relinquished and a release pulse from the
alternate master when done. The two RQ*/GT* pins
(RQ*/GTO* and RQ*/GT1*) are prioritized with
RQ*/GTO* having the highest priority. The prioritization
only occurs if requests have been received on both pins
before a response has been given to either. For example,
if a request is received on RQ*/GT1* followed by a re-
quest on RQ*/GTO* prior to a grant on RQ*/GT1%,
RQ*/GTO* will gain priority over RQ*/GT1*. However,
if RQ*/GT1* had already received a grant, a request on
RQ*/GTO* must wait until a release pulse is received on
RQ*/GT1*.

The request/grant sequence interaction with the bus inter-
face unit is similar to HOLD/HLDA. The CPU continues
to execute until a bus transfer for additional instructions
or data is required. If the release pulse is received before
the CPU needs the bus, it will not drive the bus until a
transfer is required.

Upon receipt of a request pulse, the 8086 floats the multi-
plexed address, data and status bus, the SO*, S1*, and S2*
status lines, the LOCK* pin and RD*. This action does
not disable the 8288 command outputs from driving the
command bus and does not disable the address latches
from driving the address bus. The 8288 contains internal
pull-up resistors on the SO*, S1*, and S2* status lines to
maintain the passive state while the 8086 outputs are
tri-state. The passive state prevents the 8288 from initiat-
ing any commands or activating DEN to enable the trans-
ceivers buffering the data bus. If the device issuing the
RQ* does not use the 8288, it must disable the 8288 com-
mand outputs by disabling the 8288 AEN* input. Also,
address latches not used by the requesting device must be
disabled.
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RQ*/GT* OPERATION implies the circuits which generates the request pulse

must guarantee the request is removed in time to detect a
To request a transfer of bus control via the RQ*/GT* lines grant from the CPU. After receiving the grant pulse, the
(see Figure 1-99), the device must drive the line low for requesting device may drive the local bus. Since the 8086
no more than one CPU clock interval to generate a request does not float the address and data bus, LOCK* or RD*
pulse. The pulse must be synchronized with the CPU uptll the high to.lgw clock transition following the low to
clock to guarantee the appropriate setup and hold times to ~ 1igh clock transition the requestor uses to sample for the
the clock edge which samples the RQ*/GT* lines in the ~ 8rant, the requestor should wait the float delay of the
CPU. After issuing a request pulse, the device must begin 5086 (TCLAZ) before driving the local bus. This precau-
sampling for a grant pulse with the next low to high clock tion prevents bus contention during the access of bus con-
edge. Since the 8086 can respond with a grant pulse inthe ~ tr0l DY the requestor.
clock cycle immediately following the request, the ‘
RQ*/GT* line may not return to the positive level be- To return control of the bus to the 8086, the alternate bus
tween the request and grant pulses. Therefore edge trig- master relinquishes bus control and issues a release pulse
gered logic is not valid for capturing a grant pulse. It also on the same RQ*/GT* line. The 8086 may drive the
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Figure 1-96 8086/88 Minimum System, 8257 on System Bus 16-bit Transfers

S0*-S2* status lines, RD* and LOCK*, three clock cy-
cles after detecting the release pulse and the address/data
bus TCHCLmin ns (clock high time) after the status lines.
The alternate bus master should be tri-stated off the local
bus and have other 8086 interface circuits (8288 and ad-
dress latches) re-enabled within the 8086 delay to regain
control of the bus.

RQ*/GT* LATENCY

The RQ* to GT* latency for a single RQ*/GT* line is
similar to the HOLD to HLDA latency. The cases given
for the minimum mode 8086 also apply to the maximum
mode. For each case the delay from RQ* detection by the
CPU to GT* detection by the requestor is: (HOLD to
HLDA delay) —(THVCH + TCHCL + TCLHAV)

This gives a clock cycle maximum delay for an idle bus
interface. All other cases are the minimum mode result
minus 476 ns. If the 8086 has previously issued a grant on
one of the RQ*/GT* lines, a request on the other
RQ*/GT* line will not receive a grant until the first de-
vice releases the interface with a release pulse on its
RQ*/GT* line. The delay from release on one RQ*/GT*
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line to a grant on the other is typically one clock period
(see Figure 1-100). Occasionally the delay from a release
on RQ*/GT* to a grant on RQ*/GT* will take two clock
cycles and is a function of a pending request for transfer
of control from the execution unit. The latency from re-
quest to grant when the interface is under control of a bus
master on the other RQ*/GT* line is a function of the
other bus master. The protocol embodies no mechanism
for the CPU to force an alternate bus master off the bus. A
watchdog timer should be used to prevent an errant alter-
nate bus master from ‘hanging’ the system.

HOLD/HLDA INTERFACE TO MAXIMUM MODE
SYSTEMS

To allow a device with a simple HOLD/HLDA protocol to
gain control of a single CPU system bus, the circuit in
Figure 1-101 could be used. The design is effectively a
simple bus arbiter which isolates the CPU from the sys-
tem bus when an alternate bus master issues a HOLD re-
quest. The output of the circuit, Address ENable (AEN¥),
disables the 8288 and 8284 when the 8086 indicates idle
status (SO*, S1*, S2* = 1), LOCK* is not active and a
HOLD request is active. With AEN* inactive, the 8288
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tri-states the command outputs and disables DEN which
tri-states the data bus transceivers. AEN* must also
tri-state the address latch outputs. These actions remove
the 8086 from the system bus and allow the requesting
device to drive the system bus. The AEN* signal to the
8284 disables the ready input and forces a bus cycle initi-
ated by the 8086 to wait until the 8086 regains control of

the system bus. The CPU may actively drive its local mul-
tiplexed bus during this interval.

The requesting device will not gain control of the bus
during an 8086 initiated bus cycle, a locked instruction or
an interrupt acknowledge cycle. The LOCK* signal from
the 8086 is active between INTA* cycles to guarantee the
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Figure 1-99 Request/Grant Sequence Timing

CPU maintains control of the bus. Unlike the minimum
mode 8086 HOLD response, this arbitration circuit al-
lows the requestor to gain control of the bus between con-
secutive bus cycles which transfer a word operand on an
odd address boundary and are not locked. Depending on
the characteristics of the requesting device, any of the
74LS74 outputs can be used to generate a HLDA to the
device.

Upon completion of its bus operations, the alternate bus
master must relinquish control of the system bus and drop
the HOLD request. After AEN* goes inactive, the ad-
dress latches and data transceivers are enabled but, if a
CPU initiated bus cycle is pending, the 8288 will not
drive the command bus until a minimum of 105 ns or
maximum of 275 ns later. If the system is normally not
ready, the 8284 AEN* input may immediately be enabled
with ready returning to the CPU when the selected device
completes the transfer. If the system is normally ready,
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Figure 1-100 Channel Transfer Delay Timing
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the 8284 AEN* input must be delayed long enough to
provide access time equivalent to a normal bus cycle. The
74LS74 latches in the design provide a minimum of
TCLCHmin for the alternate device to float the system
bus after releasing HOLD. They also provide 2TCLCL ns
address access and 2TCLCL — TAEVCHmax ns (8288
command enable delay) command access prior to ena-
bling 8284 ready detection. If HLDA is generated as
shown in Figure 1-101, TCLCL ns are available for the
8086 to release the bus prior to issuing HLDA while
HLDA is dropped almost immediately upon loss of
HOLD.

A circuit configuration for an 8257-5 using the technique
to interface with a maximum mode 8086 can be derived
from Figure 1-96. The 8257-5 has its own address latch
for buffering the address lines A15-A8 and uses its AEN*
output to enable the latch onto the address bus. The maxi-
mum latency from HOLD to HLDA for this circuit is de-
pendent on the state of the system when the HOLD is
issued. For an idle system the maximum delay is propaga-
tion delay through the NAND gate and R/S flip-flop
(TD1) plus 2TCLCL plus TCLCHmax plus propagation
delay of the 74LS74 and 74LS02 (TD2). For a locked
instruction it becomes: TD1+ TD2+ (M+2)
*TCLCL + TCLCHmax where M is the number of clocks
required for execution of the locked instruction. For the
interrupt acknowledge cycle the latency is TD1 + TD2 +
9 *TCLCL + TCLCHmax.

1.6 RESET

The 8086/8088 RESET line provides an orderly way to
start or restart an iAPX 8086/8088 system. When the
processor detects the positive-going edge of a pulse on
RESET, it terminates all activities until he signal goes
LOW, at which time the internal CPU registers are initial-
ized to the reset condition (see Figure 1-102).
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Upon RESET, the code segment register and the instruc-
tion pointer are initialized to FFFFH and O respectively.
Therefore, the 8086 executes its first instruction follow-
ing system reset from absolute memory location FF-
FFOH. This location normally contains an intersegment
direct JMP instruction whose target is the actual begin-
ning of the system program.

As external (maskable) interrupts are disabled by system
reset, the system software should re-enable interrupts as
soon as the system is initialized.

The 8086/8088 requires a high active reset with minimum
pulse width of four CPU clocks except after power on
which requires a 50 microsecond reset pulse. Since the
CPU internally synchronizes reset with the clock, the re-
set is internally active for up to one clock period after the
external reset. Non-Maskable Interrupts (NMI) or hold
requests on RQ*/GT* which occur during the internal re-
set, are not acknowledged. A minimum mode hold re-
quest or maximum mode RQ* pulses active immediately
after the internal reset will be honored before the first
instruction fetch.

1.6.1 Reset Bus Conditioning

From reset, the 8086/8088 will condition the bus (refer to
Table 1-40). The multiplexed bus will tri-state upon detec-
tion of reset by the CPU. Other signals which tri-state will
be driven to the inactive state for one clock low interval
prior to entering tri-state (see Figure 1-102). In the mini-
mum mode, ALE and HLDA are drive inactive and are
not tri-stated. In the maximum mode, RQ*/GT* lines are
held inactive and the queue status indicates no activity.
The queue status will not indicate a reset of the queue so
any user defined external circuits monitoring the queue
should also be reset by the system reset. 22K ohm pull-up
resistors should be connected to the CPU command and
bus control lines to guarantee the inactive state of these
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Table 1-40 Condition of 8086/88 Bus and
Output Signal Pins during Reset

Signals Condition

ADss59 Three-State
A1g1¢/Se3 Three-State

BHE/S; Three-State
§2/Mmno) Driven to “1” then three-state
S1/(DT/IR) Driven to ‘1" then three-state
SO/DEN__ Driven to “1” then three-state
LOCK/WR Driven to 1" then three-state
RD _ Driven to ““1” then three-state
INTA Driven to ”1” then three-state
ALE 0

HLDA 0

RQIGTO 1

RQIGTT 1

Qso 0

Qs1 0

Table 1-41 8288 Outputs During Passive Modes

ALE 0
DEN 0
DT/R 1
MCE/PDEN on
COMMANDS 1

lines in systems where leakage currents or bus capaci-
tance may cause the voltage levels to settle below the min-
imum high voltage of devices in the system. In maximum
mode systems, the 8288 contains internal pull-ups on the
SO0*-S2* inputs to maintain the inactive state for these
lines when the CPU floats the bus. The high state of the
status lines during reset causes the 8288 to treat the reset
sequence as a passive state (refer to Table 1-41). If the
reset occurs during a bus cycle, the return of the status
lines to the passive state will terminate the bus cycle and
return the command lines to the inactive state.
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NOTE

The 8288 does not tri-state the command out-
puts based on the passive state of the status
lines.

If the CPU needs to be tri-stated off the bus during reset in
a single CPU system, connect the reset signal to the
8288’s AEN* input and output enable of the address
latches (see Figure 1-103). This connection forces the
command and address bus interface to tri-state while the
inactive state of DEN from the 8288 tri-states the trans-
ceivers on the data bus.

1.6.2 Multiple Processor Considerations

For multiple processor systems using arbitration of a
multi-master bus, the system reset should be connected to
the INIT* input of the 8289 bus arbiter in addition to the
8284 reset input (see Figure 1-104). The low active INIT*
input forces all 8289 outputs to their inactive state. The
inactive state of the 8289 AEN* output will force the 8288
to tri-state the command outputs and the address latches to
tri-state the address bus interface. DEN inactive from the

AEN

8284 1 8282
RESET RESET

OF
8286

Figure 1-103 Reset Disable for Max Mode
8086/8088 Bus Interface
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Figure 1-104 Reset Disable for Max Mode
8086/88 Bus Interface in
Multi CPU System

8288 will tri-state the data bus interface. For the
multi-master CPU configuration, the reset should be com-
mon to all CPU’s (8289’s and 8284’s) and satisfy the max-
imum of either the CPU reset requirements or 3 TBLBL
(3 8289 bus clock times) + 3 TCLCL (3 8086 clock cycle
times) to satisfy 8289 reset requirements. If the 8288
command outputs are tri-stated during reset, the com-
mand lines should be pulled up to V,, through 2.2K ohm
resistors.

1.7 INTERRUPTS

CPU interrupts can be software or hardware initiated.
Software interrupts originate directly from program exe-
cution (i.e., execution of a breakpointed instruction) or
indirectly through program logic (i.e., attempting to di-
vide by zero). Hardware interrupts originate from exter-
nal logic and are classified as either non-maskable or
maskable. All interrupts, whether software or hardware
initiated, result in the transfer of control to a new program
location. A 256-entry vector table (see Figure 1-105),
which contains address pointers to the interrupt routines,
resides in absolute locations O through 3FFH. Each entry
in this table consists of two 16-bit address values (four
bytes) that are loaded into the code segment (CS) and the
instruction pointer (IP) registers as the interrupt routine
address when an interrupt is accepted.

The first five interrupt vectors (see Figure 1-105) are as-
sociated with the software-initiated interrupts and the
hardware non-maskable interrupt (NMI). The next 27 in-
terrupt vectors are reserved by Intel and should not be
used to ensure compatibility with future Intel products.
The remaining interrupt vectors (vectors 32 through 255)
are available for user interrupt routines.
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Memory Table Vector
Address Entry Detinition
3IFE cs 255 h
Vector 25519
3FC 1P 255
| |
1 1 > User Available
82 €S 32
Vector 3219
80 P32 J
7€ cs31 N\
Vector 311¢
7C P31
I | } A
1 I leserved
16 Ccss
Vector 5§ )
14 IP5
12 cs4
Vector 4 — Overflow
10 P4
OE cs3
Vector 3 — Breakpoint
oc P3
0A cs2
Vector 2 — NMI
08 P2
06 cs1
Vector 1 — Single-Step
04 P1
02 CS Value — Vector 0(CS 0)
Vector 0 — Divide Error
00 1P Value — Vector 0 (IP 0)
2 Bytes

Figure 1-105 Interrupt Vector Table

1.7.1 Classes of Interrupts

The four classes of interrupts are prioritized with
software-initiated interrupts having the highest priority
and with maskable and single step interrupts sharing the
lower priority (refer to iAPX 86/88,186/188 User’s Man-
ual Programmer’s Reference). Since the CPU disables
maskable and single step interrupts when acknowledging
any interrupt, if recognition of maskable interrupts or sin-
gle step operation is required as part of the interrupt rou-
tine, the routine first must set the mask bits.

Refer to Table 1-42 for the processing times for the vari-
ous classes of interrupts.

To determine interrupt latency (the time interval between
the posting of the interrupt request and the execution of
“useful” instructions within the interrupt routine), addi-
tional time must be included for the completion on an
instruction being executed when the interrupt is posted
(interrupts are generally processed only at instruction
boundaries), for saving the contents of any additional reg-
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Table 1-42 Interrupt Processing Timing

Interrupt Class Processing Time

External Maskable Interrupt

(INTR) 61 clocks
Non-Maskable Interrupt (NMI) 50 clocks
INT (with vector) 51 clocks
INT Type 3 52 clocks
INTO 53 clocks
Single Step 50 clocks

isters prior to interrupt processing (interrupts automati-
cally save only CS, IP and Flags) and for any wait states
that may be incurred during interrupt processing.

The predefined interrupt types in the 8086 are listed be-
low and a brief description of how each is involved is
included in this section. When invoked, the CPU will
transfer control to the memory location specified by the
vector associated with the specific type. The user must
provide the interrupt service routine and initialize the in-
terrupt vector table with the appropriate service routine
address. The user may additionally invoke these inter-
rupts through hardware or software. If the preassigned
function is not used in the system, the user may assign
some other function to the associated type. However, for
compatibility with future Intel hardware and software
products for the 8086 family, interrupt types 0-31 should
not be assigned as user defined interrupts. Interrupt
classes include the following:

Type 0 — Divide Error

Type 1 — Single Step

Type 2 — Non-Maskable Interrupt
Type 3 — One Byte Interrupt
Type 4 — Interrupt On Overflow
User Defined Software Interrupt
User Defined Hardware Interrupt

1.7.2 Divide Error — Type 0

Type O interrupts are invoked whenever a division opera-
tion is attempted during which the quotient exceeds the
maximum value (e.g., division by zero). The interrupt is
non-maskable and is entered as part of the execution of
the divide instruction. If interrupts are not re-enabled by
the divide error interrupt service routine, the service rou-
tine execution time should be included in the worst case
divide instruction execution time (primarily when consid-
ering the longest instruction execution time and its effect
on latency to servicing hardware interrupts).
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1.7.3 Single Step — Type 1

This interrupt type occurs one instruction after the TF
(Trap Flag) is set in the flag register. It is used to allow
software single stepping through a sequence of code. Sin-
gle stepping is initiated by copying the flags onto the
stack, setting the TF bit on the stack and popping the
flags. The interrupt routine should be the single step rou-
tine itself. The interrupt sequence saves the flag and pro-
gram counter, then resets the TF flag to allow the single
step routine to execute normally. To return to the routine
under test, an interrupt return restores the IP, CS and flags
with TF set. This allows the execution of the next instruc-
tion in the program under test before trapping back to the
single step routine. Single Step is not masked by the IF
(Interrupt Flag) bit in the flag register.

1.7.4 Non-Maskable Interrupt — Type 2

Interrupt Type 2 is the highest priority hardware interrupt
and is non-maskable. The input is edge triggered but is
synchronized with the CPU clock and must be active for
two clock cycles to guarantee recognition. The interrupt
signal may be removed prior to entry to the service rou-
tine. Since the input must make a low to high transition to
generate an interrupt, spurious transitions on the input
should be suppressed. If the input is normally high, the
NMI must be two CPU clock times to guarantee trigger-
ing. This input is typically reserved for catastrophic fail-
ures like power failure or timeout of a system watchdog
timer.

1.7.5 One Byte Interrupt — Type 3

A special form of the software interrupt instruction which
requires a single byte of code space involves Type 3 inter-
rupts. It is primarily used as a breakpoint interrupt for
software debug. With full representation within a single
byte, the instruction can map into the smallest instruction
for absolute resolution in setting breakpoints. This inter-
rupt is not maskable.

1.7.6 Interrupt on Overflow — Type 4

This non-maskable interrupt occurs if the overflow flag
(OF) is set in the flag register and the INTO instruction is
executed. The instruction allows trapping to an overflow
error service routine.

Interrupt types O and 2 can occur without specific action
by the programmer (except for performing a divide for
Type 0) while types 1, 3, and 4 require a conscious act by
the programmer to generate these interrupt types. All but
type 2 are invoked through software activity and are di-
rectly associated with a specific instruction.
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1.7.7 User-Defined Software Interrupts

The user can generate an interrupt through the software
with a two byte interrupt instruction INT nn. The first
byte is the INT opcode while the second byte (nn) con-
tains the top number of the interrupt to be performed. The
INT instruction is not maskable by the interrupt enable
flag. This instruction can be used to transfer control to
routines that are dynamically relocatable and whose loca-
tion in memory is not known by the calling program. This
technique also saves the flags of the calling program on
the stack prior to transferring control. The called proce-
dure must return control with an interrupt return (IRET)
instruction to remove the flags from the stack and fully
restore the state of the calling program.

All interrupts invoked through software (all interrupts dis-
cussed thus far with the exception of NMI) are not maska-
ble with the IF flag and initiate the transfer of control at
the end of the instruction in which they occur. They do
not initiate interrupt acknowledge bus cycles and will dis-
able subsequent maskable interrupts by resetting the IF
and TF flags. The interrupt vector for these interrupt
types is either implied or specified in the instruction.
Since the NMI is an asynchronous event to the CPU, the
point of recognition and initiation of the transfer of con-
trol is similar to the maskable hardware interrupts.

1.7.8 User-Defined Hardware Interrupts

The maskable interrupts initiated by the system hardware
are activated through the INTA pin of the 8086 and are
masked by the IF bit of the status register (interrupt flag).
During the last clock cycle of each instruction, the state of
the INTA pin is sampled. The 8086 deviates from this rule
when the instruction is MOV or POP to a segment regis-
ter. For this case, the interrupts are not sampled until
completion of the following instruction. This delay allows
a 32-bit pointer to be loaded to the stack pointer registers
SS and SP without the danger of an interrupt occurring
between the two loads. An uninterruptable instruction se-
quence follows:

MOV SS, NEWS$STACK$SEGMENT
MOV SP, NEWS$SSTACKS$POINTER

Another exception includes the WAIT instruction which
waits for a low active input on the TEST* pin. This in-
struction also continuously samples the interrupt request
during its execution and allows servicing interrupts dur-
ing the wait. When an interrupt is detected, the WAIT
instruction is again fetched prior to servicing the interrupt
to guarantee the interrupt routine will return to the WAIT
instruction.

Also, since prefixes are considered part of the instruction
they precede, the 8086 will not sample the interrupt line
until completion of the instruction the prefix(es) pre-
cede(s). Other than HALT or WAIT, the string primitives
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preceded by the repeat (REP) prefix deviate from this
rule. The repeated string operations will sample the inter-
rupt line at the completion of each repetition. This in-
cludes repeat string operations which include the lock
prefix. If multiple prefixes precede a repeated string oper-
ation, and the instruction is interrupted, only the prefix
immediately preceding the string primitive is restored. To
allow correct resumption of the operation, use the follow-
ing or a similar programming technique:

LOCKED$BLOCK$MOVE:
LOCK REP MOVS DEST, CS:SOURCE
ANDCX, CX
JNZ LOCKED$BLOCK$MOVE

The code bytes generated by the 8086 assembler for the
MOVS instruction are (in descending order): LOCK pre-
fix, REP prefix, Segment Override prefix and MOVS.
Upon return from the interrupt, the segment override pre-
fix is restored to guarantee that one additional transfer is
performed between the correct memory locations. The in-
structions following the Move operation test the repetition
count value to determine if the move was completed and
return if not.

If the INTR pin is high when sampled and the IF bit is set
to enable interrupts, the 8086 executes an interrupt ac-
knowledge sequence. To guarantee the interrupt will be
acknowledged, the INTR input must be held active until
the interrupt acknowledge is issued by the CPU. If the
BIU is running a bus cycle when the interrupt condition is
detected (as would occur if the BIU is fetching an instruc-
tion when the current instruction completes), the interrupt
must be valid at the 8086 two clock cycles prior to T4 of
the bus cycle if the next cycle is to be an interrupt ac-
knowledge cycle. If the two clock setup is not satisfied,
another pending bus cycle will be executed before the in-
terrupt acknowledge is issued. If a hold request is also
pending (this might occur if an interrupt and hold request
are made during execution of locked instruction), the in-
terrupt is serviced after the hold request is serviced.

1.7.9 Interrupt Acknowledge

The interrupt acknowledge sequence (see Figure 1-106) is
only generated in response to an interrupt request (INTR)
on the 8086 INTR input. The CPU provides a single
INTR that can be software masked by clearing the inter-
rupt enable bit in the flags register through the execution
of a CLI instruction. The INTR input is level triggered
and synchronized internally to the positive transition of
the CLK signal. In order to be accepted before the next
instruction, INTR must be active during the clock period
preceding the end of the current instruction (and the inter-
rupt enable bit must be set). When a maskable interrupt is
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Figure 1-106 Interrupt Acknowledge Timihg

acknowledged, the CPU executes two interrupt acknowl-
edge (INTA*) bus cycles. The two INTA* bus cycles are
typically separated by two idle clock cycles.

During the bus cycles the INTA* command is issued
rather than read. No address is provided by the 8086 dur-
ing either bus cycle (BHE* and status are valid). How-
ever, ALE is still generated and will load the address
latches with indeterminate information. This condition re-
quires that devices in the system do not drive their outputs
without being qualified by the Read Command. The ALE
is useful in maximum mode systems with multiple 8259A
priority interrupt controllers. During the INTA* bus cy-
cle, DT/R* and DEN are conditioned to allow the 8086 to
receive a one byte interrupt type number from the inter-
rupt system.

The first INTA* bus cycle signals an interrupt acknowl-
edge cycle is in progress and allows the system to prepare
to present the interrupt type number on the next INTA*
bus cycle. The CPU does not capture information on the
bus during the first cycle. During the first bus cycle, the
CPU floats the address/data bus and activates the INTA*
(Interrupt Acknowledge) command output during states
T2 and T4.

During the second bus cycle, the CPU again activates its
INTA* command output. In response to the second
INTA*, the external interrupt system (e.g., an Intel
8259A Programmable Interrupt Controller) places a byte
on the data bus that identifies the source of the interrupt
(the vector number or vector “type”). This byte is read by
the CPU and then multiplied by four and the resultant
value used as a pointer into the interrupt vector table. Be-
fore calling the corresponding interrupt routine, the CPU
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saves the machine status by pushing the current contents
of the flags register onto the stack. The CU then clears the
interrupt enable and trap bits in the flags register to pre-
vent subsequent maskable and single step interrupts, and
establishes the interrupt routine return linkage by pushing
the current CS and IP register contents onto the stack be-
fore loading the new CS and IP register values from the
vector table.

In the minimum mode, the CPU will not recognize a hold
request from another bus master until the full interrupt
acknowledge sequence is completed. In the maximum
mode, the CPU activates the LOCK* output from state T2
of the first bus cycle until state T2 of the second bus cycle
to signal all 8289 Bus Arbiters in the system that the bus
should not be accessed by any other processor.

The type number must be transferred to the 8086 on the
lower half of the 16-bit data bus during the second cycle.
This implies that devices which present interrupt type
numbers to the 8086 must be located on the lower half of
the 16-bit data bus. The timing of the INTA* bus cycles
(with exception of address timing) is similar to read cycle
timing.

NOTE

For readers familiar with the 8080 and the
8085, the 8086 interrupt acknowledge se-
quence deviates from the form used on 8080
and 8085 in that no instruction is issued as part
of the sequence. The 8080 and 8085 required
either a restart or call instruction be issued to
affect the transfer of control.
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NMI ACKNOWLEDGE

The non-maskable interrupt (NMI) occurs as a result of a
positive transition at the CPU’s NMI input pin. This input
is asynchronous and, in order to ensure that it is recog-
nized, is required to have a minimum duration of two
clock cycles. NMI is typically used with power fail cir-
cuits, error correction memory or bus parity detection
logic to allow fast response to these fault conditions.
When NMI is activated, control is transferred to the inter-
rupt service routine pointed to by vector 2 following exe-
cution of the current instruction. When a non-maskable
interrupt is acknowledged, the current contents of the
flags register are pushed onto the stack (the stack pointer
is decremented by two), the interrupt enable and trap bits
in the flags register are cleared (disabling maskable and
single step interrupts), and the vector CS and IP address
pointers are loaded into the CS and IP registers as the
interrupt service routine address.

MINIMUM MODE SYSTEM INTERRUPT

In the minimum mode system, the M/IO* signal will be
low indicating I/O during the INTA* bus cycles. The 8086
internal LOCK* signal will be active from T2 of the first
bus cycle until T2 of the second to prevent the BIU from
honoring a hold request between the two INTA* cycles.

MAXIMUM MODE SYSTEM INTERRUPT

In the maximum mode, the status lines SO*-S2* will re-
quest the 8288 to activate the INTA* output for each cy-
cle. The LOCK* output of the 8086 will be active from
T2 of the first cycle until T2 of the second to prevent the
8086 from honoring a hold request on either RQ*/GT*
input and to prevent bus arbitration logic from relinquish-
ing the bus between INTA*’s in multi-master systems.
The consequences of READY are identical to those for
READ and WRITE cycles.

INTERRUPT TYPE PROCESSING

Once the 8086 has the interrupt type number (from the
bus for hardware interrupts, from the instruction stream
for software interrupts or from the predefined condition),
the type number is multiplied by four to form the dis-
placement to the corresponding interrupt vector in the in-
terrupt vector table. The four bytes of the interrupt vector
include:

1. Least significant byte of the instruction pointer
2. Most significant byte of the instruction pointer.
3. Least significant byte of the code segment register.
4. Most significant byte of the code segment register.
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During the transfer of control, the CPU pushes the
flags and current code segment register and instruc-
tion pointer onto the stack. The new code segment and
instruction pointer values are loaded and the single
step and interrupt flags are reset. Resetting the inter-
rupt flag disables response to further hardware inter-
rupts in the service routine unless the flags are
specifically re-enabled by the service routine. The CS
and IP values are read from the interrupt vector table
with data read cycles. No segment registers are used
when referring to the vector table during the interrupt
context switch. The vector displacement is added to
zero to form the 20-bit address and S4, S3 = 10 indi-
cating no segment register selection.

BUS ACTIVITY DURING A HARDWARE
INTERRUPT

The hardware interrupt acknowledge sequence bus activ-
ity includes: Two interrupt acknowledge bus cycles, read
new IP from the interrupt vector table, read new CS from
the interrupt vector table, Push flags, Push old CS, Op-
code fetch of the first instruction of the interrupt service
routine, and Push old IP. After saving the old IP, the BIU
will resume normal operation of prefetching instructions
into the queue and servicing EU requests for operands. S5
(interrupt enable flag status) will go inactive in the second
clock cycle following reading the new CS.

The elapsed time from the end of the instruction during
which the interrupt occurred to the start of interrupt rou-
tine execution consists of 61 clock cycles. For software
generated interrupts, the sequence of bus cycles is the
same except no interrupt acknowledge bus cycles are exe-
cuted. This reduces the delay to service routine execution
to 51 clocks for INT nn and single step, to 52 clocks for
INTS3 and to 53 clocks for INTO. The same interrupt setup
requirements with respect to the BIU that were stated for
the hardware interrupts also apply to the software inter-
rupts. If wait states are inserted by either the memories or
the device supplying the interrupt type number, the given
clock times will increase accordingly.

INTERRUPT PRECEDENCE

When considering the precedence of interrupts for multi-
ple simultaneous interrupts, the apply following guide-
lines:

1. INTR is the only maskable interrupt and if detected
simulta neously with other interrupts, resetting of IF
by the other interrupts will mask INTR. This causes
INTR to be the lowest priority interrupt serviced after
all other interrupts unless the other interrupt service
routines re-enable interrupts.

2. Of the non-maskable interrupts (NMI, single step and
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software generated), in general, single step has the
highest priority (will be serviced first) followed by
NMLI, followed by the software interrupts.

This priority implies that a simultaneous NMI and single
step trap will cause the NMI service routine to follow sin-
gle step; a simultaneous software trap and single step trap
will cause the software interrupt service routine to follow
single step and simultaneous NMI and software trap will
cause the NMI service routine to be executed followed by
the software interrupt service routine. An exception to
this priority structure occurs if all three interrupts are
pending. For this case, transfer of control to the software
interrupt service routine followed by the NMI trap will
cause both the NMI and software interrupt service rou-
tines to be executed without single stepping. Single step-
ping resumes upon execution of the instruction following
the instruction causing the software interrupt (the next in-
struction in the routine being single stepped).

If the user does not wish to single step before INTR serv-
ice routines, the single step routine need only disable in-
terrupts during execution of the program being single
stepped and re-enable interrupts on entry to the single step
routine. Disabling the interrupts during the program un-
der test prevents entry into the interrupt service routine
while single step (TF= 1) is active. To prevent single
stepping before NMI service routines, the single step rou-
tine must check the return address on the stack for the
NMI service routines address and return control to that
routine without single step enabled. As examples, con-
sider Figures 1-107 and 1-108. In Figure 1-107 single
step and NMI occur simultaneously while in Figure
1-108, NMI, INTR and a divide error all occur during a
divide instruction being single stepped.

1.8 SUPPORT COMPONENTS

The following paragraphs provide descriptions of the var-
ious unique support components used in systems to sup-
port the 8086/88 CPU’s. These components include the
8284 A Clock Generator/Driver, the 8288 Bus Controller,
the 8289 Bus Arbiter, the 8259A Programmable Interrupt
Controller and the 8237A Programmable DMA Control-
ler. These components may be used when designing both
minimum and maximum mode applications for the
8086/8088 Microprocessors. The following paragraphs
present detailed design information on the various support
circuits and describe the benefits of each. The circuit de-
signer should also refer to the Intel Microsystems Compo-
nents Handbook (No. 230843-002) for detailed data
sheets on each of the devices.

1.8.1 8284A Clock Generator and Driver

The 8284A Clock Generator/Driver is an integral part of
the 8086 family that Intel offers to satisfy the 8086 re-
quirement for an external clock signal. In addition to pro-
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TF,IF=1

INSTRUCTION

NMI TRAP (TF, IF = 1)

PUSH FLAGS, CS, IP
CLRIF & TF
TRANSFER CONTROL

l SINGLE STEP TRAP (TF, IF = 0)

PUSH FLAGS, CS, IP
CLRIF&TF
TRANSFER CONTROL

1

EXECUTE SINGLE STEP
ROUTINE

(TF, IF = 0) RETURN

EXECUTE NMI
SERVICE ROUTINE

(TF, IF = 1) RETURN

EXECUTE NEXT
INSTRUCTION

SINGLE STEP TRAP

i

PUSH FLAGS, CS, IP NORMAL SINGLE STEP
CLRIF & TF OPERATION
TRANSFER CONTROL

!

EXECUTE SINGLE
STEP ROUTINE

(TF, IF = 1) RETURN

Figure 1-107 NMI During Single Stepping and
Normal Single Step Operation

viding the primary (system) clock signal, this device
provides both the hardware reset interface and the mecha-
nism for the insertion of wait states in the bus cycle. An
optimum 33 % duty cycle clock with the required voltage
levels and transition times can be obtained with the 8284A
clock generator (see Figure 1-109). Either an external fre-
quency source or a series resonant crystal may drive the
8284A.

CLOCK GENERATION

The 8086 requires a clock signal with fast rise and fall
times (10 ns max) between low and high voltages of —0.5
to+0.6 low and 3.9 to VCC+ 1.0 high (see Figure
1-110). The maximum clock frequency of the 8086 is 5
MHz, 8 MHz for the 8086-2 and 10 MHz for the 8086-1.
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DIVIDE ERROR TRAP

PUSH FLAGS, CS, IP
CLEARS IF & TF
TRANSFER CONTROL

NMI (IF, TF =0)

PUSH FLAGS, CS, IP
CLEARIF & TF
TRANSFER CONTROL

{

EXECUTE NMI

(IF, TF = 0) RETURN I

EXECUTE DIVIDE
ERROR ROUTINE

(IF, TF = 1) RETURN

EXECUTE NEXTINSTR_|  INTR
RECOGNIZE INTR ACTIVE

L_mm_}

PUSH FLAGS, CS, IP
CLEARIF & TF
TRANSFER CONTROL

SINGLE STEP (IF, TF = 0)

1

PUSH FLAGS, CS, IP
CLEARIF & TF
TRANSFER CONTROL

-

EXECUTE SINGLE
STEP

(IF, TF =0) RETURN

(IF, TF = 1) RETURN

CONTINUE TO SINGLE STEP
THE PROGRAM

Figure 1-108 NMI, INTR, Single Step and
Divide Error Simultaneous
Interrupts

Since the design of the 8086 incorporates dynamic cells, a
minimum frequency of 2 MHz is required to retain the
state of the machine. Due to the minimum frequency re-
quirement, single stepping or cycling of the CPU may not
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be accomplished by disabling the clock. In general, for
frequencies below the maximum, the CPU clock need not
satisfy the frequency dependent pulse width limitations
stated in the 8086 data sheet. The values specified only
reflect the minimum values which must be satisfied and
are stated in terms of the maximum clock frequency. As
the clock frequency approaches the maximum frequency
of the CPU, the clock must conform to a 33% duty cycle
to satisfy the CPU minimum clock low and high time

_specifications.

CRYSTAL CLOCK REFERENCE

The selected clock crystal must oscillate at 3X the desired
CPU frequency. To select the crystal inputs of the 8284A
as the frequency source for clock generation, the F/C*
input to the 8284 A must be strapped to ground. The strap-
ping option allows selecting either the crystal or the exter-
nal frequency input as the source for clock generation.
Fundamental mode crystals are recommended for a more
accurate and stable frequency generation. When selecting
a crystal for use with the 8284A, the series resistance
should be as low as possible. Since the other circuit com-
ponents will tend to shift the operating frequency from
resonance, the operating impedance will typically be
higher than the specified series resistance. If the attenua-
tion of the oscillator’s feedback circuit reduces the loop
gain to less than one, the oscillator will fail. A recom-
mended crystal configuration is shown in Figure 1-111.

EXTERNAL FREQUENCY CLOCK REFERENCE

If a high accuracy frequency source, externally variable
frequency source or a common source for driving multi-
ple 8284A’s is desired, the External Frequency Input
(EFI) of the 8284A can be selected by strapping the F/C*
input to 5 volts through approximately 1K ohms (see Fig-
ure 1-112). The external frequency source should be TTL
compatible, have a 50% duty cycle and oscillate at three
times the desired CPU operating frequency. The maxi-
mum EFI frequency the 8284A can accept is slightly
above 24 MHz with minimum clock low and high times of
13 ns. Although no minimum EFI frequency is specified,
it should not violate the CPU minimum clock rate. If a
common frequency source is used to drive multiple
8284A’s distributed throughout the system, each 8284A
should be drive by its own line from the source. To mini-
mize noise in the system, each line should be a twisted
pair driven by a buffer like the 74L.S04 with the ground of
the twisted pair connecting the ground of the source and
receiver. To minimize clock skew, the lines to all 8284A’s
should be of equal length. A simple technique for generat-
ing a master frequency source for additional 8284A’s is
shown in Figure 1-113 where an 8284A with a crystal is
used to generate the desired frequency. The oscillator out-
put of the 8284A (OSC) equals the crystal frequency and
is used to drive the external frequency to all other 8284A’s
in the system.
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Figure 1-109 8284A Clock Generator/Driver Block Diagram
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alx
The oscillator output is inverted from the oscillator signal AL :: :':‘: ok |2 L) P
used to drive the CPU clock generator circuit. Because of SOURCE
this inversion, the oscillator output of one 8284A should 8284 sose
not drive the EFI input of a second 8284A if both are e
driving clock inputs of separate CPU’s that are to be syn-
chronized. The variation on EFI to CLK delay over a
range of 8284A’s may approach 35 to 45 ns. If, however, Figure 1-112 8284A Interfaced to an 8086/88
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Figure 1-113 External Frequency for
Multiple 8284’s

all 8284A’s are the same package type, have the same rela-
tive supply voltage and operate in the same temperative
environment, the variation will be reduced to between 15
and 25 ns.

8284A OUTPUTS

There are three frequency outputs from the 8284A, the
oscillator (OSC) mentioned above, the system clock
(CLK) which drives the CPU, and a peripheral clock
(PCLK) that runs at one half the CPU clock frequency
(see Figure 1-114). The oscillator output is only driven by
the crystal and is not affected by the F/C* strapping op-
tion. If a crystal is not connected to the 8284A when the
external frequency input is used, the oscillator output is
indeterminate. The CPU clock is derived from the se-
lected frequency source by an internal divide by three
counter. The counter generates the 33% duty cycle clock
which is optimum for the CPU at maximum frequency.
The peripheral clock has a 50% duty cycle and is derived
from the CPU clock. The maximum skew is 20 ns be-
tween OSC and CLK, and 22 ns between CLK and
PCLK.

+5
®
EXTERNAL l 10
SYNC b a D al—cswe
CONDITION 700874 7as7a | INPUT
EXTERNAL N
FREQUENCY LK B

T0
EFI
INPUT

Figure 1-115 Synchronizing CSYNC With EFI

Since the state of the 8284A divide by three counter is
indeterminate at system initialization (power on), an ex-
ternal sync to the counter (CSYNC) provides synchroni-
zation of the CPU clock to an external event. When
CSYNC is brought high, the CLK and PCLK outputs are
forced high. When CSYNC returns low, the next positive
clock from the frequency source starts clock generation.
CSYNC must be active for a minimum of two periods of
the frequency source. If CSYNC is asynchronous to the
frequency source, use the circuit in Figure 1-115 for syn-
chronization. The two latches minimize the probability of
a meta-stable state in the latch driving CSYNC. The
latches are clocked with the inverse of the frequency
source to guarantee the 8284A setup and hold time of
CSYNC to the frequency source (see Figure 1-116). If a
single 8284A is to be synchronized to an external event

| 17.5ns
MIN

/ \/

*MAX IS SPEC'ED TO GUARANTEE MAX 8086 CLOCK FREQUENCY

Figure 1-116 CSYNC Setup and Hold to EFI

[
N

Figure 1-114 Oscillator to CLK and CLK to PCLK Timing Relationships
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Figure 1-117 EFI From 8284A Oscillator

and an external frequency source is-not used, the oscilla-
tor output of the 8284A may be used to synchronize
CSYNC (see Figure 1-117). Since the oscillator output is
inverted from the internal oscillator signal, the inverter in
the previous example is not required. If multiple 8284A’s
are to be synchronized, an external frequency source
must drive all 8284A’s and a single CSYNC synchroniza-
tion circuit must drive the CSYNC input of all 8284A’s
(see Figure 1-118). Since activation of CSYNC may
cause violation of CPU minimum clock low time, it
should only be enabled during reset or CPU clock high.
CSYNC must also be disabled a minimum of four CPU
clocks before the end of reset to guarantee proper CPU
reset.

Due to the fast transitions and high drive (5 mA) of the
8284A CLK output, it may be necessary to put a 10 to 100
ohm resistor in series with the clock line to eliminate ring-
ing (resistor value depending on the amount of drive re-
quired). If multiple sources of CLK are needed with
minimum skew, CLK can be buffered by a high drive de-
vice (74S241) with outputs tied to 5 volts through 100
ohms to guarantee VOH = 3.9 min (8086 minimum clock

Figure 1-119 Buffering the 8284 CLK Output

input high voltage) (see Figure 1-119). A single 8284A
should not be used to generate the CLK for multiple
CPU’s that do not share a common local (multiplexed)
bus since the 8284A synchronizes ready to the CPU and
can only accommodate ready for single CPU. If multiple
CPU’s share a local bus, they should be driven with the
same clock to optimize transfer of bus control. Under
these circumstances, only one CPU will be using the bus
for a particular bus cycle which allows sharing a common
READY signal (see Figure 1-120).

THE 8284A RESET FUNCTION

The reset signal to the 8086 can be generated by the
8284A; the 8284A has a Schmitt trigger input (RES*) for
generating reset from a low active external reset. The hys-
teresis specified in the 8284A data sheet implies that at
least 0.25 volts will separate the 0 and 1 switching point
of the 8284A reset input. Inputs without hysteresis will
switch from low to high and high to low at approximately
the same voltage threshold. The inputs are guaranteed to
switch at specified low and high voltages (VIL and VIH)
but the actual switching point is anywhere in-between.
Since VIL min is specified at 0.8 volts, the hysteresis
guarantees that the reset will be active until the input

SYNC o Q- o o

74LS74 74LST4

T 7

088
CLK RQ/GT
8284 MULTIPLEXED BUS
READY .
RQ/GT
co-
PROCESSOR

Figure 1-118 Synchronizing Multiple 8284As
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Figure 1-120 8086 and Coprocessor on the
Local Bus Share
a Common 8284
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reaches at least 1.05 volts. A reset will not be recognized
until the input drops at least 0.25 volts below the reset
inputs VIH of 2.6 volts.

POWER UP RESET

To guarantee reset from power up, the reset input must
remain below 1.05 volts for 50 microseconds after V., has
reached the minimum supply voltage of 4.5 volts. The
hysteresis allows the reset input to be drive by a simple
RC circuit (see Figure 1-121). The calculated RC value
does not include time for the power supply to reach 4.5
volts or the charge accumulated during this interval.
Without the hysteresis, the reset output might oscillate as
the input voltage passes through the switching voltage of
the input. The calculated RC value provides the minimum
required reset period of 50 microseconds for 8284A’s that
switch at the 1.05 volt level and a reset period of approxi-
mately 162 microseconds for 8284A’s that switch at the
2.6 volt level. If tighter tolerance between the minimum
and maximum reset times is necessary, the reset circuit
shown in Figure 1-122 might be used rather than the sim-
ple RC circuit. This circuit provides a constant current
source and a linear charge rate on the capacitor rather
than the inverse exponential charge rate of the RC circuit.
This implementation generates a maximum reset period
of 124 microseconds.

The 8284A synchronizes the reset input with the CPU
clock to generate the RESET signal to the CPU (see Fig-
ure 1-123). The output is also available as a general reset
to the entire system. The reset has no effect on any clock
circuits in the 8284A.

1.8.2 8288 Bus Controller

The 8288 Bus Controller (Figure 1-124) uses the S2*,
S1* and SO* status bit outputs from the CPU (and the
8089 IOP) to generate all bus control and command out-
put signals required for a bus cycle. The status bit outputs
are decoded as outlined in Table 1-43. For a detailed de-
scription of the operation of the 8288 Bus Controller, re-
fer to the Microsystems Component Handbook (Intel
Order No. 230843-002).

The three status lines (SO*, S1*, S2¥) are defined to pro-
vide communications with the 8288 and 8289. The status
lines tell the 8288 when to initiate a bus cycle, what type
of command to issue and when to terminate the bus cycle.
The 8288 samples the status lines at the beginning of each
CPU clock (CLK). To initiate a bus cycle, the CPU drives
the status lines from the passive state (S0*, S1*, S2* = 1)
to one of the seven possible command codes (see Table
1-43). This occurs on the rising edge of the clock during
T4 of the previous bus cycle or a TI (idle cycle, no cur-
rent bus activity). The 8288 detects the status change by
sampling the status lines on the high to low transition of
each clock cycle. The 8288 starts a bus cycle by generat-

1-130
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Figure 1-121 8284A Reset Circuit
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Figure 1-124 8288 Bus Controller Block Diagram

ing ALE and appropriate buffer direction control of the
clock cycle immediately following detection of the status
change (T1). The bus transceivers and the selected com-
mand are enabled in the next clock cycle (T2) (or T3 for
normal write commands). When the status returns to the
passive state, the 8288 will terminate the command (see
Figure 1-125). Since the CPU will not return the status to
the passive state until the ‘ready’ indication is received,
the 8288 maintains active command and bus control for
any number of wait cycles. The status lines may also be
used by other processors on the 8086’s local bus to moni-
tor bus activity and control the 8288 if they gain control
of the local bus.

The 8288 provides the bus control (DEN, DT/R*, ALE)
and commands (INTA*, MRDC*, IORC*, MWTC*,
AMWC*, IOWC*, AIOWC*) removed from the CPU.
The command structure has separate read and write com-
mands for memory and I/O to provide compatibility with
the MULTIBUS command structure.

The advanced write commands are enabled one clock per-
iod earlier than the normal write to accommodate the
wider write pulse widths often required by peripherals

Table 1-43 Status Line Decode Chart

S; §; Sg| Processor State 8288C; d
0 0 0] InterruptAcknowledge | TNTA

0 0 1 ]Readl/OPort IORC

0 1 0 ]|Writel/OPort IOWC,AIOWC
0 1 1[Halt None

1 0 0 ]CodeAccess MRDC

1 0 1 ]ReadMemory MRDC

1 1 0 |Write Memory MWTC,AMWC
1 1 1 |Passive None

1-131

and static RAMs. The normal write provides data setup
prior to write to accommodate dynamic RAM memories
and 1/0 devices which strobe data on the leading edge of
write. The advanced write commands do not guarantee
that data is valid prior to the leading edge of the com-
mand. The DEN signal in the maximum mode is inverted
from the minimum mode to extend transceiver control by
allowing logical conjunction of DEN with other signals.
While not appearing to be a significant benefit of interrupt
control and various system configurations will demon-
strate the usefulness of qualifying DEN. Figure 1-126
compares the timing of the minimum and maximum mode
bus transfer commands. Although the maximum mode
configuration is designed for multiprocessor environ-
ments, large single CPU designs (either MULTIBUS sys-
tems or greater than two PC boards) should also use the
maximum mode. Since the 8288 is a bipolar dedicated
controller device, its output drive for the commands (32
mA) and tolerances on A.C. characteristics (timing pa-
rameters and worse case delays) provide better large sys-
tem performance than the minimum mode 8086.

In addition to assuming the functions removed from the
CPU, the 8288 provides additional strapping options and
controls to support multiprocessor configurations and pe-
ripheral devices on the CPU local bus. These capabilities
allow assigning resources (memory or I/O) as shared
(available on the MULTIBUS system bus) or private (ac-
cessible only by this CPU) to reduce contention for access
to the MULTIBUS system bus and improve multi-CPU
system performance. The following paragraphs describe
these strapping options.
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Figure 1-127 8289 Bus Arbiter Block Diagram

1/0 BUS MODE

Strapping the IOB pin HIGH puts the 8288 in the I/O Bus
mode of operation. In the I/O Bus mode all command
lines (IORC*, IOWC*, AIOWC*, INTA*) are always en-
abled and not dependent on AEN*. When an I/O com-
mand is issued by the processor, the 8288 immediately
activates the command lines using PDEN* and DT/R* to
control the I/O bus transceiver. In this configuration the
I/0 command lines should not be used to control the sys-
tem bus because there is no arbitration present. In this
mode one 8288 can handle two external busses. No wait-
ing is involved when the CPU wants to gain access to the
1/0 bus. Normal memory access requires a “Bus Ready”
signal (AEN* LOW) before it will proceed. The IOB
mode of operation is especially advantageous in a
multi-processor system where there are I/O or peripherals
are dedicated to only one processor.

SYSTEM BUS MODE

When the IOB pin is strapped LOW the 8288 is in the
System Bus Mode of operation. No commands are issued
in this mode until 115ns after the AEN* line is activated
(LOW). The System Bus Mode assumes arbitration logic
will inform the bus controller (on the AEN* line) when
the bus is free for use. Both memory and I/O commands
wait for arbitration. This mode is used when only one bus
exists. In this case, both I/O and memory are shared by
more than one processor.

1.8.3 8289 Bus Arbiter

The 8289 Bus Arbiter (see Figure 1-127) operates in con-
junction with the 8288 Bus Controller to interface an
8086, 8088, or 8089 processor to a multi-master system
bus (the 8289 is used as a general bus arbitration unit).

1-133

The processor is unaware of the arbiter’s existence and
issues commands as though it has exclusive use of the
system bus. If the processor does not have the use of the
multi-master system bus, the bus arbiter prevents the bus
controller, the data transceivers and the address latches
from accessing the system bus (i.e., all bus driver outputs
are forced into the high impedance state). Since the com-
mand was not issued, a transfer acknowledge (XACK)
will not be returned and the processor will enter into wait
states. Transfer acknowledges are signals returned from
the addressed resource to indicate to the processor that the
transfer is complete. This signal is typically used to con-
trol the ready inputs of the clock generator. The processor
will remain in a wait state until the bus arbiter acquires the
use of the multi-master system bus. At that time the bus
arbiter will allow the bus controller, the data transceivers
and the address latches to access the system bus. The
8089 uses the LOCK* output to guarantee exclusive ac-
cess of a shared system bus for the duration of an instruc-
tion. LOCK* is software controlled and must be preceded
by the instruction requiring exclusive access with a one
byte “lock” prefix. When the lock prefix is decoded by
the EU, the EU informs the BIU to activate the LOCK*
output during the next clock signal. This signal remains
active until one clock cycle after the execution of the asso-
ciated data transfer is concluded. Once the command has
been issued and a data transfer has taken place, a transfer
acknowledge (XACK) is returned to the processor. The
processor then completes its transfer cycle. In this way,
the arbiter serves to multiplex a processor (or bus master)
onto a multi-master system bus and avoid contention prob-
lems between bus masters.

Since there can be many bus masters on a multi-master
system bus, some means of resolving priority between bus
masters simutaneously requesting the bus must be pro-
vided. The 8289 provides several resolving techniques.
These techniques are based on a priority concept that at
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any given time one bus master will have priority over the
rest. Two of the techniques, parallel and serial priority
resolving techniques, are discussed in the following para-
graphs.

The parallel priority resolving technique uses a separate
bus request line (BREQ*) for each arbiter on the
multi-master bus system (see Figure '1-128). Each
BREQ#* line enters into a priority encoder which gener-
ates the binary address of the highest priority BREQ* line
which is active. The binary address is decoded by a de-
coder to select the corresponding BPRN* (Bus Priority
In) line to be returned to the highest priority requesting
arbiter. The arbiter receiving priority (BPRN* true) then
allows its associated bus master onto the multi-master sys-
tem bus as soon as it becomes available. When one bus
arbiter gains priority over another arbiter it cannot imme-
diately seize the bus, it must wait until the present bus
transaction is complete. Upon completing its transaction
the present bus occupant recognizes that it no longer has
priority and surrenders the bus by releasing BUSY*.
BUSY* is an active low “OR” tied signal line which goes
to every bus arbiter on the system bus. When BUSY*
goes inactive (high), the arbiter which presently has bus
priority (BPRN* true) then seizes the bus and pulls
BUSY* low to keep other arbiters off the bus. Refer to
Figure 1-129. Multi-master system bus transactions are
synchronized to the bus clock (BCLK). This allows the
parallel priority resolving circuits or any other priority
resolving scheme to settle.

The serial priority resolving technique eliminates the need
for the priority encoder-decoder arrangement by
daisy-chaining the bus arbiters together, connecting the
higher priority bus arbiter’s BPRO* (Bus Priority. Out)
output to the BPRN* of the next lower priority. (See Fig-
ure 1-130). .

There are two types of processors in the 8086 family —-an
I/0 processor (the 8089 IOP) and a non-I/O processor
(the 8086 and 8088 CPU’s). Consequently, there are two
basic operating modes in the 8289 Bus Arbiter. One, the
1/0 Peripheral Bus (IOB) mode, permits the processor ac-
cess to both an I/O peripheral bus and a multi-master sys-
tem bus. The second, the Resident Bus (RESB) mode,
permits the processor to communicate over both a resi-
dent bus and a multi-master system bus. Even though it is
intended for the arbiter to be configured in the IOB mode
when interfacing to an I/O processor and for it to be in the
RESB mode when interfacing to a non-I/O processor, it is
quite possible for the reverse to be true. That is, it is pos-
sible for a non-I/O processor to have access to an I/O
peripheral bus or for an I/O processor to have access to a
resident bus as well as access to a multi-master system
bus. The IOB strapping option configures the 8289 Bus
Arbiter into the IOB mode and RESB strapping optires it
into the resident bus mode. If both strapping options are
strapped false, a third mode of operation is created, the
single bus mode, in which the arbiter interfaces the proc-
essor to a multi-master system bus only. See Figure

1-134

1-131. With both options strapped true, the arbiter inter-
faces the processor to a multi-master system bus, a resi-
dent bus and an 1/O bus.

1.8.4 8259A Programmable Interrupt
Controller

The 8259A is a programmable interrupt controller (PIC)
designed to accommodate the INTA* protocol of maska-
ble hardware interrupts. This component is programma-
ble to operate in both 8080/8085 systems and 8086
systems. The 8259A manages eight levels of interrupts
and has built-in features for expansion. The devices are
cascadable in master/slave arrangements to allow up to 64
interrupt levels in the system with additional 8259A’s.

Figures 1-132 and 1-133 are examples of 8259A’s in mini-
mum and maximum mode 8086 systems. The minimum
mode configuration (a) shows an 8259A connected to the
CPU’s multiplexed bus. Configuration (b) illustrates an
8259A connected to a demultiplexed bus system. These
interconnects are also applicable to maximum mode sys-
tems. The configuration given for a maximum mode sys-

" tem shows a master 8259A on the CPU’s multiplexed bus

witave 8259A’s out on the buffered system bus. This con-
figuration demonstrates several unique features of the
maximum mode system interface. If the master 8259A
receives interrupts from a mix of slave 8259A’s and regu-
lar idevices, the slaves must provide the type number for
devices connected to them while the master provides the
type number for devices directly attached to its interrupt
inputs. The master 8259A is programmable to determine
if an interrupt is from a direct input or a slave 8259A and
will use this information to enable or disable the data bus
transceivers (via the NAND function of DEN and EN*),
If the master must provide the type number, it will disable
the data bus transceivers. If the slave provides the type
number, the master will enable the data bus transceivers.
The EN* output is normally high to allow the 8086/8288
to control the bus transceivers. To select the proper slave
when servicing a slave interrupt, the master must provide
a cascade address to the slave. If the 8288 is not strapped
in the I/0 bus mode (the 8288 IOB input connected to
ground), the MCE/PDEN* output becomes a MCE or
Master Cascade Enable output. This signal is only active
during INTA* cycles (see Figure 1-134) and enables the
master 8259A’s cascade address onto the 8086’s local bus
during ALE. This allows the address latches to capture
the cascade address with ALE and allows use of the dress
bus for selecting the proper slave 8259A. The MCE is
gated with LOCK* to minimize local bus contention be-
tween the 8086 tri-stating its bus outputs and the cascade
address being enabled onto the bus. The first INTA* bus
cycle allows the master to resolve internal priorities and
output a cascade address to be transmitted to the slaves on
the subsequent INTA* bus cycle.
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Figure 1-128 Resolving Technique

The following paragraphs provide a more detailed de-
scription of interrupt vectoring, the interrupt priority
scheme, the edge and level triggering modes and interrupt
cascading. For additional information on the 8259A, refer
to Intel Application Note AP-59.

INTERRUPT VECTORING

Each IR input of the 8259A has an individual interrupt
vector address in memory associated with it. Designation
of each address depends upon the initial programming of
the 8259A. The 8259A must be programmed in the

MCS-86/88 mode of operation to insure correct interrupt
vectoring when used in an 8086/8088 system.

When programmed in the MCS-86/88 mode, the 8259A
should only be used with an MCS-86 or MCS-88 system.
In this mode, the 8086/8088 will handle interrupts in the
format described in the 8259A — 8086/8088 Overview.

Upon interrupt in the MCS-86/88 mode, the 8259A will
output a single interrupt-vector byte to the data bus. This
is in response to only two INTA* pulses issued by the
8086/8088 after the 8259A has raised INT high.

™ @‘< AN\

:@ _/?\ SN\
\

#USY ®

LOWER PRIORITY BUS ARBITER RELEASES BUSY.

HIGHER PRIORITY BUS ARBITER REQUESTS THE MULTI-MASTER SYSTEM BUS.
ATTAINS PRIORITY.
HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PULLS BUSY DOWN.

@

Figure 1-129 Higher Priority Arbiter Obtaining the Bus from a Lower Priority Arbiter
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Figure 1-130 Serial Priority Resolving.

The first INTA* pulse is used only for set-up purposes
internal to the 8259A. As in the MCS-80/85 mode, this
setup includes priority resolution and cascade mode oper-
ations which will be covered later. Unlike the MCS-80/85
mode, no CALL opcode is placed on the data bus.

The second INTA* pulse is used to enable the single
interrupt-vector byte to select one of 256 interrupt
“types” in the 8086/8088 memory. Interrupt type selec-
tion for all eight IR levels is made when initially program-
ming the 8259A. However, reference to only one interrupt
is needed for programming. The upper 5 bits of the inter-

rupt vector byte are user definable. The lower 3 bits are
automatically inserted by the 8259A depending on the IR
level.

Contents of the interrupt-vector byte for 8086/8088 type
selection is put on the data bus during the second INTA*
pulse and shown in Figure 1-135.

INTERRUPT PRIORITIES

A variety of modes and commands are available for con-
trolling the interrupt varieties of the 8259A. All of them
are programmable, i.e., they may be changed dynami-
cally under software control. With these modes and com-
mands, many possibilities are conceivable, giving the
user enough versatility for almost any interrupt controlled
application.

Fully Nested Mode

The fully nested mode is a general purpose priority mode.
This mode supports a multilevel-interrupt structure in
which priority order of all eight IR inputs are arranged
from highest to lowest.

Unless otherwise programmed, the fully nested mode is
entered by default upon initialization. At this time, IR0 is
assigned the highest priority through IR7 the lowest. The
fully nested mode, however, is not confined to this IR
structure alone. Once past initialization, other IR inputs
can be assigned highest priority also, keeping the
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multilevel-interrupt structure of the fully nested mode.
Figure 1-136 shows some variations of the priority struc-
tures in the fully nested mode.

In general, when an interrupt is acknowledged, the high-
est priority request is determined from the IRR (Interrupt
Request Register). The interrupt vector is then placed on
the data bus. In addition, the corresponding bit in the ISR
(In-Service Register) is set to designate the routine in
service. This ISR bit remains set until an EOI
(End-Of-Interrupt) command is issued to the 8259A.
EOI’s will be explained in greater detail shortly.

In the fully nested mode, while an ISR bit is set, all fur-
ther requests of the same or lower priority are inhibited
from generating an interrupt to the microprocessor. A

higher priority request, though, can generate an interrupt,
thus vectoring program execution to its service routine.
Interrupts are only acknowledged, however, if the micro-
processor has previously executed an*‘Enable Interrupts”
instruction. This is because the interrupt request pin on
the microprocessor gets disabled automatically after ac-
knowledgement of any interrupt. The assembly language
instruction used to enable interrupts is “STI”’. Interrupts
can be disable by using the instruction “CLI”. When a
routine is completed a “return” instruction “IRET” is
executed.

A single 8259A is essentially always in the fully nested
mode unless certain programming conditions disturb it.
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8259A to go out of the high to low priority structure of the
fully nested mode. °

e The special mask mode
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Additional details on these interrupt modes can be
found in Intel Application Note AP-59. These modes
are mentioned here so that the designer will be aware
of them. As long as these program conditions are not
enacted, the fully nested mode remains undisturbed.

End of Interrupt (EOI)

Upon completion of an interrupt service the 8259A must
be informed so that its ISR can be updated. This is done to
keep track of which interrupt levels are in the process of
being serviced and their relative priorities. Three differ-
ent End-Of-Interrupt (EOI) formats are available to the
designer. These are: 1) non-specific EOI command; 2)
specific EOI command; and, 3) automatic EOI command.
Selection of which EOI to use is dependent on the inter-
rupt operation the designer wishes to perform.

a. Non-Specific EOI Command

The microprocessor sends a non-specific EOI command
to let the 8259A know when a service routine has been
completed. This command does not specify the the exact
interrupt level. The 8259A automatically determines the
interrupt level and resets the correct bit in the ISR.

To use the non-specific EOI command the 8259A must be
in a mode of operation where it can predetermine
in-service routine levels. For this reason the non-specific
EOI command should only be used when the most recent
level acknowledged and serviced is always the highest pri-
ority level. When the 8259A receives a non-specific EOI

IR LEVELS [IR7 IR6 IR5 IRA IR3 IR2 IR1 IRO

PRIORITY [ 7 6 5

IR LEVELS |IR7 IR6 IR5 IR4 IR3 IRZ IR1 IRO
PRIORITY | 4 3 2 1 0 6

B

IR LEVELS [TR7 IR6 IR5 Iﬁd lﬁa Iﬁi |ﬁ ﬁﬁ
PRIORITY [1 0 7

C

Figure 1-136 Priority Structure Variations —
Fully Nested Mode
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command, it resets the highest priority ISR bit. This con-
firms to the 8259A that the highest priority routine of the
routines in service is finished. :

b. Specific EOI Command

A specific EOI command is sent from the microprocessor
to let the 8259A know when a service routine of a particu-
lar interrupt level is completed. Unlike the non-specific
EOI command which automatically resets the highest pri-
ority ISR bit, a specific EOI command specifies an exact
ISR bit to be reset. One of the eight IR levels of the 8259A
can be specified in this command. The purpose of the
specific EOI command is to reset the ISR bit of a com-
pleted service routine whenever the 8259A cannot auto-
matically determine the completion.

c. Automatic EOI Mode

When programmed in the automatic EOI mode the micro-
processor does not need to issue a command to notify the
8259A of a completed interrupt routine. The 8259A ac-
complishes this by performing a non-specific EOI auto-
matically at the trailing edge of the last INTA* pulse
(second pulse). The advantage of automatic EOI over the
other EOI commands is that no command has to be is-
sued. This simplifies programming and lowers code re-
quirements within interrupt routines. However, special
consideration must be taken when deciding to use the au-
tomatic EOI mode because it disturbs the fully nested
mode.

Automatic Rotation — Equal Priority

Automatic rotation of priorities is used in applications
where interrupting devices are of equal priority, such as
communications channels. The concept is that once a pe-
ripheral is serviced, all other equal priority peripherals
should be given a chance to be serviced before the origi-
nal peripheral is serviced again. This is accomplished by
automatically assigning a peripheral the lowest priority
after it has been serviced. Therefore, worst case, the de-
vice would have to wait until all other devices have been
serviced before being serviced again.

There are two methods of accomplishing automatic rota-
tion. One is the “rotate on non-specific EOI command”
which is used with the non-specific EOI command. The
other is the “‘rotate in automatic EOI mode” which is used
with the automatic EOI mode.

a. Rotate On Non-Specific EOI Command

When the rotate on non-specific EOI command is issued,
the highest ISR bit is reset as in a normal non-specific
EOI command. However, after the ISR bit is reset the
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corresponding IR level is assigned the lowest priority.
Other IR priorities rotate to conform to the fully nested
mode based on the newly assigned low priority.

b. Rotate On Automatic EOI Mode

The rotate in automatic EOI mode operates similar to the
non-specific EOI command. The main difference is that
priority is done automatically after the last INTA* pulse
of an interrupt request. To enter or exit this mode a
rotate-in-automatic-EOI  set command and a
rotate-in-automatic-EOI clear command is provided. Af-
ter these two commands, no other commands are needed,
as in the automatic EOI mode. However, when using any
form of the automatic EOI mode, special consideration
since the guideline for the automatic EOI mode also
stands for the rotate in automatic EOI mode.

Specific Rotation — Specific Priority

The specific rotation mode provides the designer with
versatile capabilities in interrupt controlled operations.
This priority mode is very useful in applications where a
specific device’s interrupt priority must be altered. Unlike
automatic rotation, which automatically sets priorities,
specific rotation is completely user controlled. The user
selects which interrupt level is to receive lowest or highest
priority. This can be done during the main program or
within interrupt routines. Two specific rotation com-
mands are available to the user, the “set priority com-
mand” and the “rotate on specific EOI command”.

a. Set Priority Command

The set priority command allows the programmer to as-
sign an IR level to the lowest priority. All other interrupt
levels will conform to the fully nested mode based on the
newly assigned low priority.

b. Rotate On Specific EOI Command

The rotate on specific EOI command is a combination of
the set priority and the specific EOI command. As in the
set priority command, a specified IR level is assigned
lowest priority. As in the specific EOI command, a speci-
fied level will be reset in the ISR. Therefore, the rotate on
specific EOI command accomplishes both tasks in only
one command.

INTERRUPT TRIGGERING

There are two basic ways of sensing an active interrupt
request. One is a level sensitive input and the other is an
edge sensitive input. The 8259A provides the edge trig-
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gered mode and the level triggered mode to allow the user
the capability of either method. Selection of one of these
methods is done during the programmed initialization of
the 8259A.

Level Triggered Mode

When the 8259A is in the level triggered mode it will
recognize any active (high) level on the IR input as an
interrupt request. If the IR input remains active after an
EOI command has been issued, resetting its ISR bit, an-
other interrupt will be generated. This assumes the proc-
essor INT pin is enabled. Unless repetitious interrupt
generation is desired, The IR input must be brought to an
inactive state before an EOl command is issued in its
service routine. However, necessary timing requirements
must be obeyed (see Figure 1-137). Note that the request
on the IR line must remain until after the falling edge of
the first INTA* pulse. On any IR input, if the request goes
inactive before the first INTA* pulse, the 8259A will re-
spond as if IR7 was active. In any design where there is a
possibility of this happening, the IR7 default feature can
be used as a safeguard. This can be accomplished by us-
ing the IR7 routine as a ‘“‘cleanup routine” which might
check the 8259A status or merely return program executi
to its pre-interrupt location.

Edge Triggered Mode

In the edge triggered mode the 8259A will only recognize
interrupts if generated by an inactive (low) to active (high)
transition on the IR input. The edge triggered mode incor-
porates an edge lockout method of operation. This means
that after the rising edge of an interrupt request and the
acknowledge of the request, the positive level of the IR
input will not generate further interrupts on this level. The
user does not neeto worry about quickly removing the re-
quest to avoid generating further interrupts. Before an-
other interrupt can be generated the IR input must return
to the inactive state.

Timing requirements for the edge triggered mode are
shown Figure 1-137. As in the level triggered mode, the
request on the IR input must remain active until after the
falling edge of the first INTA* pulse in the edge triggered
mode. Unlike the level triggered mode, after the interrupt
request is acknowledged its IRR latch is disarmed. Only
after the IR input goes inactive will the IRR latch again
become armed making it ready to receive another inter-
rupt request (in the level triggered mode the IR latch is
always armed). Note that the IR7 default discussed in the
level triggered mode also works in the edge triggered
mode.

INTERRUPT CASCADING

More than one 8259A can be used to expand the priority
interrupt scheme to up to 64 levels without additional
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hardware. This method for expanded interrupt capability
is called cascading. The 8259A supports cascading opera-
tions with the cascade mode. Additionally, the specially
fully nested mode and the buffered mode are available for
increased flexibility when cascading 8259A's under cer-
tain applications.

Cascade Mode

In the cascade mode, basic operation consists of one
8259A acting as a master to the others which are acting as
slaves. A specific hardware set-up is required to establish
operation in the cascade mode (see Figure 1-138). Figure

1-138 shows a typical system containing a master and two
slaves, providing 22 interrupt levels. Note that the master
is designated by a high on the SP*/EN* pin, while the
SP*/EN* pins on the slaves are grounded (this can also be
done by software, see the buffered mode). Also the INT
output pin of each slave is connected to the an IR input pin
on the master. The CASO-2 pins on all 8259A’s are paral-
leled. These pins, which act as outputs when the 8259A is
a master and inputs for the slaves, serve as a private
8259A bus. They control which slave has control of the
system bus for interrupt vectoring operation with the
processor. All other pins are connected as in normal oper-
ation (each receives an INTA pulse).

r ADDRESS BUS (16] §
( CONTROL BUS
[ TT L || L e
{ DATA BUS (8) )
—_— 4 | =+ —_—
== == =k=
. » Q. v v [
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Figure 1-138 Cascaded 8259A’s 22 Interrupt Levels
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In addition to the hardware set-up requirements, all
8259A’s must be software programmed to work in the cas-
cade mode. Programming the cascade mode is done dur-
ing the initialization of each 8259A. The 8259A that is
selected as master must receive specification during its
initialization as to which of its IR inputs are connected to
a slave’s INT pin. Each slave must be designated during its
initialization with an ID (0 — 7) corresponding to which of
the master’s IR inputs its INT pin is connected to. This is
necessary so the master’s CAS0-2 pins will be able to ad-
dress each individual slave. Note that as in normal opera-
tion, each 8259A must also be initialized to give its IR
inputs a unique interrupt vector.

Specially Fully Nested Mode

Depending on the application, changes in the nested
structure of the cascade mode may be desired. This is
because the nested structure of a slave 8259A differs from
that of the normal fully nested mode. In the cascade
mode, if a slave receives a higher priority interrupt re-
quest than the one in service (through the same slave), it
will not be recognized by the master. This is because the
master’s ISR bit is set, ignoring all requests of equal or
lower priority. In this case, the higher priority slave inter-
rupt will not be serviced until after the master’s ISR bit is
reset by an EOI command. This will normally be after
completion of the lower priority routine.

If the user wishes to have a truly fully nested structure
within a slave 8259A, the specially fully nested mode
should be used. The specially fully nested mode is pro-
grammed in the master only. This is done the master’s
initialization. In this mode the master will ignore only
those interrupt requests of lower priority than the set ISR
bit and will respond to all requests of equal or higher pri-
ority. Therefore, if a slave receives a higher priority re-
quest than the one in service, it will be recognized. To
ensure proper interrupt operation when using the special
fully nested mode, the software must determine if any
other slave interrupts are still in service before issuing an
EOI command to the master. This done by resetting the
appropriate slave ISR bit with an EOI and then reading it’s
ISR. If the ISR contains all zeros, there aren’t any other
interrupts from the slave in service and an EOI command
can be sent to the master. If the ISR isn’t all zeros, an EOI
command should not be sent to the master. Clearing the
master’s ISR bit with an EOI command while there are
still slave interrupts in service would allow lower priority
interrupts to be recognized at the master.

Buffered Mode

The buffered mode is useful in large systems where buf-
fering is required on the data bus. Although not limited to
cascading, the buffered mode is most. pertinent for this
use. In the buffered mode, whenever the 8259A’s data bus
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output is enabled, its SP*/EN* pin will go low. This sig-
nal can be used to enable data transfer through a buffer
transceiver in the required direction.

A conceptual diagram of three 8259A’s in cascade is show
in Figure 1-139. Each slave is controlling an individual
8286 8-bit bidirectional bus driver by means of the buf-
fered mode. Note the pull-up on the SP*/EN* line. This
pull-up is used to enable data transfer to the 8259A for its
initial programming. When data transfer is to go from the
8259A to the processor, SP*/EN* will go low, otherwise
it will be high.

1.8.5 8237A Programmable DMA
Controller

When configured in minimum mode, the 8086 and 8088
provide HOLD (hold) and HLDA (hold acknowledge) sig-
nals that are compatible with the 8237A DMA controller.
The 8237A can request use of the bus for direct transfer
of data between an I/0 device and memory by activating
HOLD. The CPU will complete the current bus cycle, if
one is in progress, and the issue HLDA, granting the bus
to the DMA controller. The CPU will not attempt to use
the bus until HOLD goes inactive.

The 8086 addresses memory that is physically organized
in two separate banks, one containing even-addressed
bytes and one containing odd-addressed bytes. An 8-bit
DMA controller must alternately select these banks to ac-
cess logically adjacent bytes in memory. Used as a maxi-
mum mode DMA controller, the 8089 provides a simple
way to interface a high-speed 8-bit device to an
8086-based system (refer to Chapter 4).

The 8237A Multimode Direct Memory Access (DMA)
Controller (see Figure 1-140) is a peripheral interface cir-
cuit designed to improve system performance by allowing
external devices to directly transfer information from the
system memory. Memory-to-memory transfer capability
is also provided. The 8237A offers a wide variety of pro-
grammable control features to enhance data throughput
and system optimization and to allow dynamic reconfi-
guration under program control. The 8237A is designed
to be used in conjunction with an external 8-bit address
register such as the 8282. It contains four independent
channels and may be expanded to any number of channels
by cascading additional controller chips. The three basic
transfer modes allow programmability of the types of
DMA service by the user. Each channel can be individu-
ally programmed to Autoinitialize to its original condition
following an End of Process (EOP).

DMA OPERATION

The 8237A operates in two major cycles, the Idle cycle
and the Active cycle. Both device cycles are made up of
several states. The 8237A can assume seven different
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states, each composed of one or more complete clock cy-
cles. State I (SI) is the inactive state. This state is entered
when the 8237A has no valid DMA requests pending. In
the SI state, the DMA controller is inactive, but may be in
the Program Condition, being programmed by the proc-
essor. State SO (SO) is the first state of a DMA service. At
this point the 8237A has requested a hold, but the proces-
sor has not yet returned an acknowledge. The 8237 may
still be programmed until it receives HLDA from the

CPU. An acknowledge from the CPU signals that DMA
transfers can begin. S1, S2, S3 and S4 are working the
states of the DMA service. If more time is needed to com-
plete a transfer than is available with normal timing, wait
states (SW) can be inserted between S2 or S3 and S4 by
use of the Ready line on the 8237A. Note that the data
transferred directly from the I/O device-to-memory (or
visa versa) with JIOR* and MEMW* (or MEMR* and
IOW#*) being active at the same time. The data is not read
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into or driven out of the 8237A in I/O-to-memory or
memory-to-I/O DMA transfers.

Memory-to-memory transfers require a read-from and a
write-to-memory to complete each transfer. The states,
which resemble the normal working states, use two digit
numbers for identification. Eight states are required for a
single transfer. The first four states (S11, S12, S13, S14)
are used for the read-from-memory half and the last four
states (S21, S22, S23, S24) for the write-to-memory half
of the transfer.

Idle Cycle

When no channel is requesting service, the 8237A will
enter the Idle cycle and perform SI states. In this cycle the
8237A will sample the DREQ lines every clock cycle to
determine if any channel is requesting a DMA service.
The device will also sample CS*, looking for an attempt
by the microprocessor to write or read the internal regis-
ters. When CS* is low and HLDA is low, the 8237A en-
ters the Program condition. The CPU can now establish,
change or inspect the internal definition of the part by
reading from or writing to the internal registers. Address
lines AO-A3 are inputs to the device and select which reg-
isters will be read or written. The IOR* and IOW* lines
are used to select and time reads or writes. An internal
flip-flop is used to generate an additional bit of address
due to the number and size of the internal registers. This
bit is used to determine the upper or lower byte of the
16-bit Address and Word Count registers. The flip-flop is
reset by Master Clear or Reset. A separate software com-
mand can also reset this flip-flop.

Special software commands can be executed by the
8237A in the Program Condition. These commands are
decoded as sets of addresses with the CS* and IOW*. The
commands do not make use of the data bus. Instructions
include Clear First/Last Flip-Flop and Master Clear.

Active Cycle

When the 8237A is in the Idle cycle and a non-masked
channel requests a DMA service, the device will output
an HRQ to the microprocessor and enter the Active cycle.
In this cycle the DMA service will take place. The DMA
service takes place in one of four modes: 1) single trans-
fer mode; 2) block transfer mode; 3) demand transfer
mode; and 4) cascade mode.

a. Single Transfer Mode

In the Single Transfer mode the 8237A is programmed to
make one transfer only. The word count will be decre-
mented and the address decremented of incremented fol-
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lowing each transfer. When the word count “rolls over”
from zero to FFFFH, a Terminal Count (TC) will cause
an Autoinitialization if the channel has been programmed
to do so.

DREQ must be held active until DACK becomes active in
order to be recognized. If DREQ is held active throughout
the single transfer, HRQ will go inactive and release the
bus to the system. HRQ will again go active and another
single transfer will occur upon receipt of a new HLDA.
This ensures one full machine cycle execution between
DMA transfers.

b. Block Transfer Mode

In the Block Transfer Mode the device is activated by
DREQ to continue making transfers during service until a
TC, caused by word count going to FFFFH, or an external
End of Process (EOP*) is encountered. DREQ should be
held active until DACK becomes active. Autoinitialization
will occur at the end of the service if the channel is pre-
programmed for it.

c. Demand Transfer Mode

In this mode the device is programmed to continue mak-
ing transfers until a TC of external EOP* is encountered,
or until DREQ goes inactive. Therefore, transfers may
continue until the I/O device has exhausted its data capac-
ity. After the I/O device has had a chance to catch up, the
DMA service is re-established by means of a DREQ.
During the time between services when the microproces-
sor is allowed to operate, the intermediate values of ad-
dress and word count are stored in the 8237A Current
Address and Current Word Count registers. Only EOP*
can cause an Autoinitialize at the end of the service.
EOP* is generated by TC or by an external signal.

d. Cascade Mode

This mode is used to cascade more than one 8237A to-
gether for simple system expansion. The HRQ and HLDA
signals from the additional 8237A are connected to the
DREQ and DACK signals of a channel of the initial
8237A. This allow the DMA requests of the additional
device to propagate through the priority network circuits
of the preceding device. The priority chain is preserved
and the new device must wait for its turn to acknowledge
requests. Since the cascade channel of the initial 8237A is
used only for prioritizing the additional device, it does not
output any address or control signals of its own. The
8237A will respond to DREQ and DACK but all other
outputs except HRQ will be disabled.

Two additional 8237A devices cascaded into an initial de-

vice using two of the previous channels are shown in Fig-
ure 1-141. This forms a two level DMA system. More
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8237As could be added at the second level by using the
remaining channels of the first level. Additional devices
can also be added by cascading into the channels of the
second level devices, forming a third level.

TRANSFER TYPES

Each of the three active transfer modes can perform three
different types of transfers. These are Read, Write, and
Verify. Write transfers move data from an I/O device to
the memory by activating MEMW#* and IQR*. Read
transfers move data from memory to an I/0O device by
activating MEMR* and IOW*. Verify transfers are
pseudo transfers. The 8237A operates as in Read or Write
transfers generating addresses, and responding to EOP,
however, the memory and I/O control lines all remain in-
active. Verify mode is not permitted during memory to
memory operation.

Memory-to-Memory Transfers

The 8237A includes a memory-to-memory transfer fea-
ture to perform block moves of data from one memory
address space to another with a minimum of program
space and effort. (See Figure 1-142 for timing.) Channels
0 and 1 are selected to operate in the memory-to-memory
mode by programming a bit in the Command register. A
transfer is initiated by setting the software DREQ for
channel 0. The 8237A requests a DMA service in the nor-
mal manner. After HLDA is true, the device reads data
from the memory using eight-state transfers in the Block
Transfer mode. The channel O Current Address register is
the source for the address used and is decremented or
incremented in the normal manner. The data byte read
from the memory is stored in the 8237A internal Tempo-
rary register. Channel 1 then writes the data from the
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Temporary register to memory using the address in its
Current Address register and incrementing or decrement-
ing it in the normal manner. The channel 1 Current Count
is decremented. When the word count of the channel goes
to FFFFH, a TC is generated causing an EOP* output
terminating the service. To allow a single word to be writ-
ten to a block of memory Channel 0 may be programmed
to retain the same address for all transfers.

The 8237A will respond to external EOP* signals during
memory-to-memory transfers. Data comparators in block
schemes may use this input to terminate the service when
a match is found. Memory-to-memory operations can be
detected as an active AEN with no DACK outputs.

DMA REGISTERS

The 8237A contains 344 bits of internal memory in the
form of registers. Table 1-44 lists the registers by name
and shows the size of each. The following paragraphs pro-
vide a detailed description of each register and their func-
tions.

Current Address Register

Each channel has a 16-bit Current Address register. This
register holds the value of the address used during DMA
transfers. The address is automatically incremented or de-
cremented after each transfer and the intermediate values
of the address are stored in the Current Address register
during the transfer. This register is written or read by the
microprocessor in successive 8-bit bytes. The register
may also be reinitialized back to its original value by an
‘Autoinitialize. Autoinitialize takes place after EOP*.

Current Word Register

Each channel has a 16-bit Current Word Register. This
register determines the number of transfers to be per-
formed. The actual number of transfers will be one more
than the number programmed in the Current Word regis-
ter (programming a count of 100 will result in 101 trans-
fers, etc.). The word count is decremented after each
transfer. The immediate value of the word count is stored
in the register during the transfer. When the value in the
register goes from zero to FFFFH, a TC will be gener-
ated. This register is loaded or read in successive 8-bit
bytes by the microprocessor in the Program Condition.
Following the end of a DMA service it may also be reiniti-
lized by an Autoinitialization back to its original value.
Autoinitialize can occur only when EOP* occurs. If it is
not Autoinitialized, this register will have a count of FF-

FFH after TC.
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Figure 1-142 Memory-To-Memory Transfer Timing
Base Address and Base Word Count Registers written simultaneously with their corresponding current

register in 8-bit bytes in the Program Condition by the
Each channel has a pair of Base Address and Base Word microprocessor. These registers cannot be read by the mi-
Count Registers. These 16-bit registers store the original CTOProcessor.
value of their associated current registers. During Au-
toinitialize these values are used to restore the current reg-

isters to their original values. The base registers are Command Register

The 8-bit Command register controls the operation of the
Table 1-4 A n ister: & P
ble 1-44 8237A Internal Registers 8237A (see Figure 1-143). This register is programmed

Name Size Number by the microprocessor in the Program Condition and is
Base Address Registers 16 bits 4 cleared by Reset or a Master Clear instruction. Figure
Base Word Count Registers 16bits 4 1-143 lists the function of each of the command bits. Fig-
Current Address Registers 16 bits 4 1-144 sh the addre: odin
Current Word Count Registers 16 bits 4 ure 1-144 shows the address coding.
Temporary Address Regl 16 bits 1
Temporary Word Count Register 16 bits 1
Status Register 8 bits 1
Command Register 8bits 1 Mode Register
Temporary Register 8 bits- 1
Mode Registers 6 bits 4 . . .
Mask Register 4bits 1 Each channel has a 6-bit Mode register associated with it
Request Register 4 bits ! (see Figure 1-145). When the register is being written to
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7 6 5 4 3 2 1 0 -«——Bit Number

( 0 Memory-to-memory disable
1 Memory-to-memory enable

0 Channel 0 address hold disable
1 Channel 0 address hold enable
X Ifbit0=0

Controller enable
Controller disable

- o

Normal timing
Pl timing
i bit0=1

X = O

Fixed priority
Rotating priority

- o

Late write selection
write
If bit3=1

x = o

DREQ sense active high
DREQ sense active low

0 DACK sense active low
1 DACK sense active high

H;_Li

Figure 1-143 Command Register

by the microprocessor in the Program condition, bits 0
and 1 determine which channel Mode register is to be
written.

Request Register

The 8237A can respond to requests for DMA service
which are initiated by software as well as by a DREQ.
Each channel has a request bit associated with it in the
4-bit Request register (see Figure 1-146). These are
non-maskable and subject to prioritization by the Priority
Encoder network. Each register bit is set or reset sepa-
rately under software control or is cleared upon genera-
tion of a TC or external EOP*. The entire register is

7 6 5 4 3 2 1 0 <«— Bit Number

01 Channel 1 select
10 Channel 2 select
11 Channel 3 select

T,—' T (00 Channel 0 select

00 Verify transfer

01 Write transfer

10 Read transfer

11 llegal

XX 1f bits 6 and 7 =11

{0 initiali disable
U1 Autoinitialization enable

‘ 0 Address increment select
1 Address decrement select
00 Demand mode select

01 Single mode select

10 Block mode select
11 Cascade mode select

Figure 1-145 Mode Register

the proper form of the word. See Table 1-45 for register
address coding. In order to make a software request, the
channel must be in Block Mode.

Mask Register

Each channel has a mask bit (see Figure 1-147) which can
be set to disable the incoming DREQ. Each mask bit is set
when its associated channel produces an EOP* if the
channel is not programmed for Autoinitialize. Each bit of
the 4-bit Mask register (see Figure 1-148) may also be set
or cleared separately under software control. The entire
register is also set by a Reset. This disables all DMA
requests until a clear Mask register instruction allows

Table 1-45 Definition of Register Codes

cleared by a Reset. To set or reset a bit, the software loads Rogister | Operation Signals
CS IOR IOW A3 A2 A1 A0
Signals Command | Write 0 1 0 1 0 0 0
— Mode Write 0 1 0 10 1 1
A3 A2 A1 A0 | IOR | IOW Operation Request Write 0 1 0 1 0 0 1
1 0 0 0 0 1 | Read Status Register Mask Set/Reset | 0 1 0 10 1 0
o Write G Regist Mask Write 0 1 0 1 1 1 1
1 0 [ 4] 1 rite Command Register Temporary | Read 0 0 1 1 1 0 1
1 0 ] ! 0 1| Wegal Status Read 0 0 1 1 0 0 O
1 [ 0 1 1 [ Write Request Register
1 0 1 0 o 1 Illegal
1 [ 1 [J 1 [ Write Single Mask Register Bit
1 0 1 1 0 1+ | Wegal
1 0 1 1 1 0 Write Mode Register 7 6 5 4 3 2 1 0 -w-—BitNumber
1 1 0 0 0 1 Illegal
1 1 0 0 1 0 Clear Byte Pointer Flip/Fl " 00 Select channel 0
I — Don’t Care 01" Select channel 1
1 1 0 1 0 1 Read Temporary Register 10 Select channel 2
1 1 [¢] 1 1 [¢] Master Clear 11 Select channel 3
1 1 1 0 [N 1 llegal N
{ 0 Reset request bit
1 1 1 [ 1 0 Clear Mask Register 1 Set request bit
1 1 1 1 0 1 egal
' 1 1 1 ' 0 | Write All Mask Register Bits
Figure 1-144 Software Command Codes Figure 1-146 Request Register
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7 6 5 4 3 2 1 0-«—— BitNumber

LI T LTI
——

00 Select channel 0 mask bit
01 Select channel 1 mask bit
10 Select channel 2 mask bit
11 Select channel 3 mask bit

L 0 Clear mask bit
1 Set mask bit

Don’t Care

Figure 1-147 Mask Bits

7 6 5§ 4 3 2 1 0--«—BitNumber

LI T TTTT]
S—— |__{ 0 Clear channel 0 mask bit
Don't Care 1 Set channel 0 mask bit

0 Clear channel 1 mask bit
1 Set channel 1 mask bit

Clear channel 2 mask bit
Set channel 2 mask bit

Clear channel 3 mask bit
Set channel 3 mask bit

0
1
0
1

_<{
—
—

Figure 1-148 Mask Register

them to occur. The instruction to separately set or clear
the mask bits is similar in form to that used with the Re-
quest register. See Table 1-45 for instruction addressing.

Status Register

The Status register (see Figure 1-149) is available to be
read out of the 8237A by the microprocessor. This regis-
ter contains information about the status of the devices at
this point. This information includes which channels have
reached a terminal count and which channels have pend-

7 6 5 4 3.2 1 0« Bit Number

LITTTTTT]

[ =

Channel 0 has reached TC
Channel 1 has reached TC
Channel 2 has reached TC
Channel 3 has reached TC

-

Channel 0 request
Channel 1 request
Channel 2 request
Channel 3 request

-

Figure 1-149 Status Register
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ing DMA requests. Bits 0-3 are set every time a TC is
reached by that channel or an external EOP* is applied.
These bits are cleared upon Reset and on each Status
Read. Bits 4-7 are set whenever their corresponding chan-
nel is requesting service.

Temporary Register

The Temporary register is used to hold data during
memory-to-memory transfers. Following the completion
of the transfers, the last word moved can be read by the
microprocessor in the Program Condition. The Tempo-
rary register always contains the last byte transferred in
the last memory-to-memory operation, unless cleared by
a Reset.

Software Commands

The software commands are additional special software
commands which can be executed in the Program Condi-
tion (see Figure 1-144). The commands do not depend on
any specific bit pattern on the data bus. The software
command are Clear First/Last Flip-Flop, Master Clear
and Clear Mask Register. Figure 1-144 lists the address
codes for the software commands.

a. Clear First/Last Flip/Flop

This command is executed prior to writing or reading new
address or word count information to the 8237A. This
initializes the flip-flop to a known state so that subsequent
accesses to register contents by the microprocessor will
address upper and lower bytes in the correct sequence.

b. Master Clear

This software instruction has the same effect as the hard-
ware Reset. The Command, Status, Request, Temporary,
and Internal First/Last Flip-Flop registers are cleared and
the Mask register is set. The 8237A will enter the Idle
cycle.

c. Clear Mask Register

This command clears the mask bits of all four channels,
enabling them to accept DMA requests.
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CHAPTER 2
80186/80188 CPU

2.1 INTRODUCTION—THE HIGH
INTEGRATION CONCEPT

This chapter presents hardware design data for the 80186/
80188 CPU’s and describes the features that distinguish
them from the 8086/8088. The 80186/80188 are upward
compatible from the 8086/8088. In compatible modes of
operation the 80186/188 operate virtually the same as the
8086/88. This chapter also describes the use of the 80186/
188 with various input/output peripheral and memory de-
vices. As the reader will discover, the integrated devices
of the iAPX186 (a DMA unit, timer, interrupt controller,
bus controller, chip select logic, and ready generation
logic all integrated onto the chip) greatly simplify system
configuration.

The iAPX86/88 family consists of two devices: the 80186
processor with a 16-bit external bus and the 80188 proc-
essor with an 8-bit external bus. Internally, both devices
use the same processor with the same integrated compo-
nents. Except where noted, all references to the 80186 in
this chapter apply equally to the 80188. Also, all paramet-
ric values in this chapter are from the iAPX186 Advance
Information Data Sheet and pertain to 8 MHz devices.

2.2 COMPONENT OVERVIEW

The 80186 and 80188 microprocessors each contain a
number of the most common iAPX system components
integrated onto a single chip (see Figure 2-1). These on-
board devices include:

® Clock generator

* Two, independent, high speed DMA channels

¢ Programmable Interrupt Controller

® Three programmable 16-bit timers

® Programmable memory and peripheral chip select
logic

¢ Programmable wait state generator

® Local bus controller.

This high scale integration doubles the throughput of the
standard 5 MHz 8086. The 80186/88 instruction set is
completely upward compatible with iAPX86 object code
and contains only ten new instructions in addition to the
complete 8086 instruction set. Device compatibility ex-
tends to 8086 bus support components that include:

e 8282 and 8283 Octal Latches

e 8286 and 8287 Bus Transceivers

e 8288 Bus Controller for the iAPX86/88
® 8289 Bus Arbiter

In addition, the 80186 may be interfaced to the 8087 Nu-
meric Data Co-Processor to make use of the “number
crunching” capabilities of that device.

2.2.1 Architectural Overview

The 80186/188 device architecture consists of the same
Bus Interface Unit (BIU) and Execution Unit (EU) as the
8086/88 (see Figure 2-1). The 80186 and 80188 CPUs
have the same basic register set, memory organization,
and addressing modes as the 8086 and 8088. The differ-
ences between the 80186 and 80188 are the same as the
differences between the 8086 and 8088: the 80186 has a
16-bit architecture and a 16-bit bus interface; the 80188
has a 16-bit internal architecture, but an 8-bit data bus
interface; the 80186 has a 6-byte prefetch queue and the
80188 has a 4-byte prefetch queue. The execution times
of the two processors differ accordingly. For each non-
immediate 16-bit read/write instruction, 4 additional
clock cycles are required by the 80188. In addition, the
80186/188 contain a programmable interrupt controller,
three 16-bit programmable timers, a chip select unit, and
a two channel programmable direct memory access
(DMA) unit.

EXECUTION UNIT AND BUS INTERFACE UNIT

As in the 8086/88, the EU is responsible for the execution
of all instructions, for providing data and addresses to the
BIU, and for manipulating the general registers and the
flag register. Except for a few control pins, the EU is
completely isolated from the “outside” world. The BIU
executes all external bus cycles and consists of the seg-
ment and communications registers, the instruction
pointer and the instruction object code queue. The BIU
combines segment and offset values in its dedicated hard-
ware adder to derive 20-bit addresses, transfers data to
and from the EU on the Arithmetic Logic Unit (ALU)
data bus and loads “pre-fetched” instructions into the
queue from which they are fetched by the EU.

When the EU is ready to execute an instruction, it fetches
the instruction object code byte from the BIU’s instruction
queue and then executes the instruction. If the queue is
empty when the EU is ready to fetch an instruction byte,
the EU waits for the instruction byte to be fetched. If a
memory location or I/O port must be accessed during in-
struction execution, the EU requests the BIU to perform
the required bus cycle.

The two processing sections of the CPU operate indepen-

dently. In the 80186 CPU, when two or more bytes of the
6-byte instruction queue are empty and the EU does not
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Figure 2-1 80186/80188 Functional Block Diagrams
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require the BIU to perform a bus cycle, the BIU executes
instruction fetch cycles to refill the queue. In the 80188
- CPU, when one byte of the 4-byte instruction queue is
empty, the BIU executes an instruction fetch cycle. Note
that since the 80186 CPU has a 16-bit data bus, it can
access two instruction object code bytes in a single bus
cycle. The 80188 CPU, since it has an 8-bit data bus, can
access only one instruction object code byte per bus cy-
cle. If the EU issues a request for bus access while the
BIU is in the process of an instruction fetch bus cycle, the
BIU completes the cycle before honoring the EU’s
request.

CLOCK GENERATOR

The 80186/188 integrated circuits include a clock genera-
tor and crystal oscillator. The crystal oscillator can be
used with a parallel resonant, fundamental mode crystal
at 2X the desired CPU clock speed (i.e., 16 MHz for an 8
MHz 80186), or with an external oscillator also at 2X the
CPU clock. The output of the oscillator is internally di-
vided by two to provide the 50% duty cycle CPU clock
that initiates all 80186 system timing. The CPU clock is
externally available, and all timing parameters are refer-
enced to this externally available signal. The clock gener-
ator also provides ready synchronization for the
processor.

PROGRAMMABLE INTERRUPT CONTROLLER

The integrated 80186 interrupt controller arbitrates inter-
rupt requests between all internal and external sources.
The integrated interrupt controller has two major modes
of operation, non-iRMX™ 86 mode (called master
mode) and iRMX 86 mode. In the master mode, the inte-
grated controller acts as the master interrupt controller for
the system. It can be directly cascaded as the master sys-
tem interrupt controller for up to two slave external
8259A interrupt controllers to allow up to 128 interrupts.
In the iRMX 86 mode the integrated interrupt controller
can be configured as a slave controller to an external mas-
ter system interrupt controller. This provides complete
compatibility with an 80130, 80150, and the iRMX 86
operating system. Some of the interrupt controller regis-
ters and interrupt controller pins change definition be-
tween the two modes, but the basic function of the
integrated interrupt controller remains basically the same.

PROGRAMMABLE TIMERS

The integrated timer unit contains three independent pro-
grammable 16-bit timer/counters. Two of these timers can
be used to count external events, to provide waveforms
derived from either the CPU clock or an external clock of
any duty cycle, or to interrupt the CPU after a specified
number of timer “events”. The third timer counts only
CPU clocks and can be used to interrupt the CPU after a

programmable number of CPU clocks, to give a count
pulse to either or both of the other two timers after a pro-
grammable number of CPU clocks, or to give a DMA
request pulse to the integrated DMA unit after a program-
mable number of CPU clocks.

CHIP SELECT AND READY GENERATION UNIT

The 80186 integrated chip select logic is used to enable
memory or peripheral devices. Memory addressing uses
six output lines and peripheral addressing uses seven out-
put lines. The memory chip select lines are split into 3
groups in order to separately address the three major
memory areas in a typical 80186 system. These major
memory areas are upper memory for reset ROM, lower
memory for interrupt vectors and mid-range memory for
programs. The size of each of these areas is user pro-
grammable. The starting location of lower memory is
00000H and the ending location for upper memory is
FFFFFH. Starting and ending locations for mid-range
memory is user programmable.

The seven peripheral select lines each address one of
seven contiguous 128 byte blocks above a user program-
mable base address. The base address for each of these
blocks can be located in either memory or I/O space so
that the peripheral devices may be either memory or 1/0
mapped.

Each of the programmed chip select areas has a set of
programmable ready bits. These ready bits control an in-
tegrated wait state generator. This allows a programmable
number of wait states (from O to 3) to be inserted when-
ever an access is made to the area of memory associated
with the chip select area. Each set of ready bits also con-
tains a bit which determines whether the external ready
signals (ARDY and SRDY) will be used or ignored (i.e., a
bus cycle will terminate even though a ready has not been
returned on the external pins). A total of 5 sets of ready
bits allow independent ready generation for each of upper
memory, lower memory, mid-range memory, peripheral
devices 0-3 and peripheral devices 4-6.

PROGRAMMABLE DIRECT MEMORY
ACCESS UNIT

The 80186/188 contain an integrated programmable Di-
rect Memory Access (DMA) Unit which contains two
high speed DMA channels. This DMA unit performs
transfers to or from any combination of I/O space and
memory space in either byte or word units. Each DMA
cycle requires from two to four bus cycles: one or two
cycles to fetch the data to an internal register; and one or
two cycles to deposit the data. This operation allows word
data to be located on odd boundaries, or byte data to be
moved from odd locations to even locations. (Locating
word data on odd boundaries and moving bytes from odd
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to even locations is normally difficult, since odd bytes are
transferred on the upper 8 data bits of the 16-bit data bus,
while even data bytes are transferred on the lower 8 data
bits of the data bus.)

Each DMA channel maintains a set of independent 20-bit
source and destination pointers which are used to access
the source and destination of the data transferred. Each of
these pointers may independently address either 1/O or
memory space. After each DMA cycle, the pointers may
be independently incremented, decremented, or main-
tained constant. Each DMA channel also keeps a transfer
count which may be used to terminate a series of DMA
transfers after a pre-programmed number of transfers.

INTERNAL PERIPHERAL INTERFACE

The 80186 CPU uses 16-bit registers, contained within an
internal 256-byte control block, to control all integrated
peripherals. This control block may be mapped into either
memory or I/O space. Internal logic recognizes the ad-
dress and responds to the bus cycle. During bus cycles to
the internal registers, the bus controller signals the opera-
tion externally (i.e., the RD*, WR* status, address, data,
etc., lines will be driven as in a normal bus cycle), and
ignores D15-0, SRDY and ARDY. The base address of the
control block must be on an even 256-byte boundary (i.e.,
the lower 8 bits of the base address are all zeros). The
80186 CPU may read from or write to all of the defined
registers within this control block at any time. The cur-
rent base address of the control block determines the loca-
tion of any register contained within the 256-byte control
block. Refer to Volume I of this manual for a description
of control block programming.

The integrated iAPX 80186 peripherals operate semi-
autonomously from the CPU. Access to them is, for the
most part, through software read/write of the control and
data locations in the control block. Most of these registers
can be both read from and written to. A few dedicated
lines, such as interrupts and DMA requests, provide real-
time communication between the CPU and peripherals
similar to the more conventional system that uses discrete
peripheral blocks. The overall interaction and function of
the peripheral blocks has not substantially changed.

CPU ENHANCEMENTS

The 80186 and 80188 are highly integrated microproces-
sors. They effectively combine 15 to 20 of the most com-
mon iAPX86 system components on a single chip (see
Figure 2-1). The 80186 and 80188 provide higher per-
formance and more highly integrated solutions to the total
system problem of the microprocessor user. The higher
performance results from the enhancements made to both
the general and specific areas of CPU operation. These
include faster effective address calculation, improvements
in the execution speed of many instructions, and the addi-

tion of new instructions designed to improve the existing
code, or to produce optimum 80186/188 code. Increased
integration simplifies system construction, which results
in lower part count, therefore, a substantial reduction in
system cost for the user.

The 80186/188 have the same basic instruction set, mem-
ory organization, and addressing modes as the 8086/88.
The differences between the 80186 and 80188 are the
same as the differences between the 8086 and 8088: the
80186 has a 16-bit architecture and a 16-bit bus interface;
the 80188 has a 16-bit internal architecture, but an 8-bit
data bus interface. The instruction execution times of the
two processors differ accordingly. For each non-
immediate 16-bit data read/write instruction four addi-
tional clock cycles are required for the 80188.

CPU Execution Speed

Because of 80186/188 hardware enhancements in both the
bus interface unit and the execution unit, most instruc-
tions require fewer clock cycles to execute than on the
8086/88. Execution speed is gained by performing the
effective address calculations (base + displacement +
index) with a dedicated hardware adder, which takes only
4 clock cycles in the 80186/188 bus interface unit, rather
than with a microcode routine (used by the 8086/88). This
results in an execution speed which is three to six times
faster than the 8 MHz 8086/88.

In addition, the execution speed of specific instructions
has been enhanced. All multiple-bit shift and rotate in-
structions execute 1.5 to 2.5 times faster than the 8 MHz
8086/88. Multiply and divide instructions execute three
times faster. String move instructions run at bus band-
width (i.e., data is transferred onto the bus in each con-
secutive CPU clock cycle), allowing transfers at 2
Megabytes per second (80186),and 1 Megabyte per sec-
ond (80188), which is about twice the speed of the 8 MHz
8086 or 8088, respectively. Overall, the 80186/188
CPU’s are 30-percent faster than the 8 MHz 8086/88
CPU’s, and 50-percent faster than the 5 MHz 8086/88

'CPU’s.

2.2.2 Software Overview

The following paragraphs describe the functions of the
new instructions and interrupts provided by the 80186/
80188 CPU’s. A description of the overall instruction set
by category is also provided. In addition, a complete in-
struction set summary is provided in tabular form which
recaps each device instruction by category, and provides
timing cycles for each instruction.

NEW 80186/80188 INSTRUCTIONS

The 80186/188 CPU’s add ten new instructions to those in
the basic 8086/88 instruction set. These instructions are
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designed to simplify assembly language programming,
enhance the performance of high-level language imple-
mentations, and reduce the size of object code for the
80186/188. The new instructions appear shaded in the in-
structions set summary at the back of the 80186 data
sheet. The following paragraphs explain the operation of
these new instructions. In order to use these new instruc-
tions with the 8086/80186 assembler, the “$mod186”
switch must be given to the assembler. This can be done
by placing the line: “$mod186” at the beginning of the
assembly language file.

Push Immediate (PUSHI) Instruction

The PUSHI instruction allows immediate data to be
pushed onto the processor stack. This data can be either
an immediate byte (sign extended 8-bit value) or an imme-
diate word (16-bit value). If the data is a byte, it will be
sign extended to a word before it is pushed onto the stack
(since all track operations are word operations).

Push All/Pop All (PUSHA, POPA) Instructions

These two instructions allow all of the eight of the 80186
general purpose registers to be saved onto the stack, or
restored from the stack. The registers saved by this in-
struction (in the order they are pushed onto the stack) are
AX, CX, DX, BX, SP, BP, SI and DI. The SP value
pushed onto the stack is the value of the register before the
first PUSH (AX) is performed; the value popped for the
SP register is ignored.

PUSHA and POPA do not save any of the segment regis-
ters (CS, DS, SS, ES), the instruction pointer (IP), the
flag register, or any of the integrated peripheral registers.

Integer Immediate Multiply (IMUL)

The IMUL instruction allows a value to be multiplied by
an immediate value. The result of this operation is 16 bits
long. One operand for this instruction is obtained using
one of the 80186 addressing modes (meaning it can be in
a register or in memory). The immediate value can be
either a byte or a word, but will be sign extended if it is a
byte. The 16-bit result of the multiplication can be placed
in any of the 80186 general purpose or pointer registers.

IMUL requires three operands: the register in which the
result is to be placed, the immediate, and the second oper-
and. The second operand can be any of the 80186 general
purpose register or a specified memory location.

Shifts/Rotates By An Immediate Value

The 80186 can perform multiple bit shifts or rotates
where the number of bits to be shifted is specified by an
immediate value. This is different from the 8086, where

only a single bit shift can be performed, or a multiple shift
can be performed where the number of bits to be shifted is
specified in the CL register.

All of the shift/rotate instructions of the 80186 allow the
number of bits shifted to be specified by an immediate
value. Like all multiple bit shift operations performed by
the 80186, the number of bits shifted is the number of bits
specified modulus 32 (i.e., the maximum number of bits
shifted by the 80186 multiple bit shifts is 31).

These instructions require two operands: the operand to
be shifted (which may be a register or a memory location
specified by any of the 80186 addressing modes) and the
number of bits to be shifted.

Block Input/Output (INS/OUTS) Instructions

The two new 80186 input/output instructions (INS and
OUTS) perform block input or output operations similar
to the string move instructions of the processor.

The INS instruction performs block input from an I/O
port to memory. The I/O address is specified by the DX
register and the memory location is pointed to by the DI
register. After the operation is performed, the DI register
is adjusted by 1 (if a byte input is specified) or by 2 (if a
word input is specified). The adjustment is either an in-
crement or a decrement, as determined by the Direction
bit in the flag register of the processor. The ES segment
register is used for memory addressing, and cannot be
overridden. When preceeded by a Repeat (REP) prefix,
this instruction allows blocks of data to be moved from an
1/0 address to a block of memory. The I/0 address in the
DX register is not modified by this operation.

The OUTS instruction performs block output from mem-
ory to an I/O port. The I/O address is specified by the DX
register and the memory location is pointed to by the SI
register. After the operation is performed, the SI register
is adjusted by 1 (if a byte output is specified) or by 2 (if a
word output is specified). The adjustment is either an in-
crement or a decrement, as determined by the Direction
bit in the flag register of the processor. The DS segment
register is used for memory addressing, but can be over-
ridden by using the segment override prefix. When pre-
ceeded by a Repeat (REP) prefix, this instruction allows
blocks of data to be moved from a block of memory to an
I/0 address. The I/O address in the DX register is not
modified by this operation.

Like the string move instructions, these two instructions
require two operands to specify whether word or byte op-
erations are to take place. Additionally, this determination
can be supplied by the mnemonic itself by adding a “B”
or “W” to the basic mnemonic. For example:

INSB
REPOUTSW

;perform byte- input
;perform word block output
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Array Bounds (BOUND) Instruction

The 80186 supplies the BOUND instruction to facilitate
bound checking of arrays. In this instruction, the calcu-
lated index into the arrays is placed in one of the general
purpose registers of the 80186. Located in two adjacent
word memory locations are the lower and upper bounds
for the array index. The BOUND instruction compares
the register contents to the memory locations, and if the
value in the register is not between the values in the mem-
ory locations, an interrupt type 5 is generated. The com-
parisons performed are SIGNED comparisons. A register
value equal to the upper bound or the lower bound will not
cause an interrupt. This instruction requires two argu-
ments: the register in which the calculated array index is
placed, and the word memory location which contains the
lower bound of the array which can be specified by any of
the 80186 memory addressing modes). The location con-
taining the upper bound of the array must follow immedi-
ately the memory location containing the lower bound of
the array.

ENTER And LEAVE Instructions

The 80186 contains two instructions which are used to
build and tear down stack frames of the higher level,
block structured languages. The instruction used to build
these stack frames is the ENTER instruction. The al-
gorithm for this instruction is:

PUSHBP /*save the previous frame
pointer*/
if level=0then
BP:=SP3
else templ:=SP3 /*save current frame pointer*/

temp2:=level-13

dowhile temp2>0 /*copy down previous level

frame*/
BP:=BP-23% /*pointers*/
PUSH [BP13
BP:=templs
PUSH BP3 /*put current level frame pointer*/

/*in the save area*/

SP:=SP-disps /*create space on the stack for*/

/*local variables*/

Figure 2-2 shows the layout of the stack before and after
this operation.

This instruction requires two operands. The first value
(disp) specifies the number of bytes the local variables of
this routine require. This is an unsigned value and can be
as large as 65536. The second value (level) is an unsigned
value which specifies the level of the procedure and can
be as great as 255.

The 80186 includes the LEAVE instructions to tear down
stack frames built by the ENTER instruction. As can be
seen from the layout of the stack left by the ENTER in-

2-6

struction, this involves only moving the contents of the BP
register to the SP register, and popping the old BP value
from the stack.

Neither the ENTER nor the LEAVE instructions save any
of the 80186 general purpose registers. If they must be
saved, this must be done in addition to the ENTER and the
LEAVE. In addition, the LEAVE instruction does not per-
form a return from a subroutine. If this is desired, the
LEAVE instruction must be explicitly followed by the
RET instruction.

ADDITIONAL INTERRUPTS

The 80186/80188 include two additional interrupts to de-
tect program execution errors and escape opcodes. These
two new interrupts are the Unused Opcode and Escape
Opcode. The following paragraphs describe these new
interrupts.

Unused Opcode

When opcodes OFH, 63H -67H, F1H and FFFFH are ex-
ecuted an interrupt type 6 is generated. This interrupt is
useful in detecting programs errors (e.g., the execution of
data), and provides a set of opcodes which the user may
define for specific purposes, emulating the action of the
instruction in software.

Escape Opcode

The 80186/188 CPU’s may be programmed to cause an
interrupt type 7 when an escape opcode' (D8H-DFH) is
encountered. This provides a straightfoward method of
giving instructions to coprocessors, e.g., the 8087. The
programming is done by a bit in the relocation register. It
is programmed not to cause a interrupt on reset.

80186/80188 INSTRUCTION SET

The 80186 and 80188 execute exactly the same instruc-
tions. This instruction set includes equivalents to the in-
structions typically found in previous microprocessors,
such as the 8080/8085. Significant new operations
include:

® Multiplication and division of signed and unsigned bi-

nary numbers as well as unpacked decimal numbers,

move, scan and compare operations for strings up to
64k bytes in length,

non-destructive bit testing,
byte translation from one code to another,
® software generated interrupts,

a group of instructions that can help coordinate the
activities of multiprocessing systems.
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In addition to these improvements, the 80186/80188
CPU’s provide ten new instructions that are used to
streamline existing code and produce optimum new iAPX
186 code (refer to the paragraphs on “NEW 80186/80188
INSTRUCTIONS” in paragraph 2.2.2).

The 80186/80188 instructions treat different types of op-
erands uniformly. Nearly every instruction can operate on
either byte or word data. Register, memory, and immedi-
ate operands may be specified interchangeably in most
instructions. The exception is that immediate values serve
as source and not destination operands. In particular,
memory variables may be added to, subtracted from,
shifted, compared, and so on, in place, without moving
them in and out of registers. This saves instructions, reg-
isters, and execution time in assembly language pro-
grams. In high-level languages, where most variables are
memory based, compilers can produce faster and shorter
object programs.

The 80186/80188 instruction set basically exists on two
levels. One is the assembly level and the other is the ma-
chine level. To the assembly language programmer, the
80186 appears to have a repertoire of about 100 instruc-
tions. One MOV (move) instruction, for example, trans-
fers a byte or a word from a register or a memory location
or an immediate value to either a register or a memory
location. The CPU’s, however, recognize 28 different
MOV machine instructions (‘“‘move byte register to mem-
ory”, “move word immediate to register”, etc.).

The two levels of instruction set address two different re-
quirements: efficiency and simplicity. The approximately
300 forms of machine-level instructions make very effi-
cient use of storage. For example, the machine instruc-
tions that increments a memory operand is three or four
bytes long because the address of the operand must be

27

encoded in the instruction. To increment a register, how-
ever, does not require as much information, so the in-
struction can be shorter. The 80186/188 have eight
different machine-level instructions that increment a dif-
ferent 16-bit register. Each of these instructions are only
one byte long.

The 80186/188 instruction set is divided into seven func-
tional groups. These are data transfer, arithmetic, bit ma-
nipulation, string manipulation, control transfer, high
level and processor control instructions. The following
paragraphs provide a functional description of the
assembly-level instructions.

Data Transfer Instructions

Data transfer instructions move single bytes and words
between memory and registers. These instructions also
move single bytes and words between the AL or AX reg-
isters and I/O ports. Table 2-1 lists the four types of data
transfer instructions and their functions. The data transfer
instructions are categorized in four types: general pur-
pose; input/output; address object; and flag transfer. The
stack manipulation instructions, the instructions for trans-
ferring flag contents and the instructions for loading seg-
ment registers are included in this group. Figure 2-3
shows the flag storage formats primarily used by the
LAHF instruction when converting 8080/8085 assembly
language programs to run on the 80186 or 80188. The
address object instructions manipulate the addresses of
variables instead of the contents of values of the variables.
This is useful for list processing, based variable and string
operations.
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Table 2-1 Data Transfer Instructions

Table 2-2 Arithmetic Instructions

GENERAL PURPOSE
MoV Move byte or word
PUSH Push word onto stack
POP Pop word off stack
XCHG Exchange byte or word
XLAT Translate byte
INPUT/OUTPUT
IN Input word or byte
ouT Output word or byte
ADDRESS OBJECT
LEA Load effective address
LDS Load pointer using DS
LES Load pointer using ES
FLAG TRANSFER
LAHF Load AH register from flags
SAHF Store AH register in flags
PUSHF Push flags onto stack
POPF Pop flags off stack

Arithmetic Instructions

Arithmetic operations (see Table 2-2) may be performed
on four types of numbers: unsigned binary, signed binary
(integers), unsigned packed decimal and unsigned un-
packed decimal (see Table 2-3). Binary numbers may be 8
or 16 bits long. Decimal numbers are stored in bytes, two
digits per byte for packed decimal and one digit per byte
for unpacked decimal. The processor always assumes that

LAHF,

SAHF $,Z, U A U P U, C
| 7 6 5 432 10 |
1—8080/8085 FLAGS —»=1|
1 |

| |
PUSHF,
pope Lujuvu 000,171y 5,2,0,8,0,p,u,C]
© 15141312 1110 9 8 7 6 5 4 3 2 1 0

UNDEFINED: VALUE IS INDETERMINATE
OVERFLOW FLAG
DIRECTION FLAG
INTERRUPT ENABLE FLAG
AP FLAG

u
S = SIGN FLAG

Z = ZEROFLAG

A = AUXILIARY CARRY FLAG
P = PARITY FLAG

C = CARRY FLAG

o=
D
T

Figure 2-3 Flag Store Formats

ADDITION

ADD Add byte or word

ADC Add byte or word with carry
INC Increment byte or word by 1
AAA ASCII adjust for addition
DAA Decimal adjust for addition

SUBTRACTION
SuB Subtract byte or word
SBB Subtract byte or word with
borrow

DEC Decrement byte or word by 1
NEG Negate byte or word

CMP Compare byte or word

AAS ASCII adjust for subtraction
DAS Decimal adjust for subtraction

MULTIPLICATION
MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCII adjust for multiply
DIVISION

DIV Divide byte or word unsigned
IDIV Integer divide byte or word
AAD ASCIl adjust for division
cBw Convert byte to word

CWD Convert word to doubleword

the operands specified in arithmetic instructions contain
data that represents valid numbers for the type of instruc-
tion being performed. Invalid data may produce unpre-
dictable results.

Bit Manipulation Instructions

The 80186 and 80188 CPU’s provide three groups of in-
structions for manipulating bits within both bytes and
words. These three groups are logicals, shifts and rotates.
Table 2-4 lists the three groups of bit manipulation in-
structions with their functions.

a. Logical

The logical instructions include the boolean operators
“not”, “and”, ““inclusive or”, and “exclusive or”. A
TEST instruction that sets the flags, but does not alter
either of its operands is also included.

b. Shifts

The bits in bytes and words may be shifted arithmetically
or logically. Up to 255 shifts may be performed, accord-
ing to the value of the count operand coded in the instruc-
tion. The count may be specified -as a constant 1, or
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Table 2-3 Arithmetic Interpretation of 8-Bit Numbers

vex | omearrem | oo [ saeo | uescreo | proren
07 00000111 7 +7 7 7

89 10001001 137 -119 invalid 89

C5 11000101 197 -59 invalid invalid

register CL, allowing the shift count to be a variable sup-
plied at execution time. Also, the number of shifts may be
specified as an immediate value in the instruction. This
eliminates the need for a MOV immediate to the CL regis-
ter if the number of shifts is known at assembly time.
Before the 80186/80188 perform a shift or rotate, they
AND the value to be shifted with 1FH. This limits the
number of shifts occurring to 32 bits. Arithmetic shifts
may be used to multiply and divide binary numbers by
powers of two. Logical shifts can be used to isolate bits in
bytes or words.

¢. Rotates

Bits in bytes and words can also be rotated. Bits rotated
out of an operand are not lost as in a shift, but are “cir-
cled” back into the other “‘end” of the operand. As in the
shift instructions, the number of bits to be rotated is taken
from the count operand, which may specify either a con-
stant of 1, or the CL register. The carry flag may act as an

Table 2-4 Bit Manipulation Instructions

LOGICALS
NOT ‘“‘Not’’ byte or word
AND ‘*And’’ byte or word
OR “‘Inclusive or’’ byte or word
XOR “‘Exclusive or’’ byte or word
TEST ‘‘Test’’ byte or word
SHIFTS
SHL/SAL [ Shiftlogical/arithmetic left
byte or word
SHR Shift logical right byte or word
SAR Shift arithmetic right byte or
word
ROTATES
ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry left byte
or word
RCR Rotate through carry right byte
or word

extension of the operand in two of the rotate instructions,
allowing a bit to be isolated in CF and then tested by a JC
(jump if carry) or JNC (jump if not carry) instruction.

String Instructions

The string instructions, also called primitives, allow
strings of bytes or words to be operated on, one element
(byte or word) at a time. Strings of up to 128k bytes may
be manipulated with these instructions. Instructions are
available to move, compare and scan for a value, as well
as moving string elements to and from the accumulator
and I/O ports. Table 2-5 lists the string instructions. These
basic operations may be preceded by a special one-byte
prefix that causes the instruction to be repeated by the
hardware, allowing long strings to be processed much
faster than would be possible with a software loop. The
repetitions can be terminated by a variety of conditions,
and a repeated operation may be interrupted and resumed.

Program Transfer Instructions

The instruction execution sequence for the 80816/80188
is determined by the content of the code segment register
(CS) and the instruction pointer (IP). The CS register con-
tains the base address of the current code segment (i.e.,
the 64k memory area where instructions are currently be-
ing fetched). The IP points to the memory address where
the next instruction to be fetched is located. In most oper-
ating conditions, the next instruction to be executed will
have already been fetched and will be waiting in the CPU
instruction queue. The program transfer instructions op-
erate on the instruction pointer and on the CS register.
Changing the content of these causes normal sequential
operation to be altered. When a program transfer occurs,
the queue no longer contains the correct instruction.
When the BIU obtains the next instruction from memory
using the new IP and CS values, it passes the instruction
directly to the EU and then begins refilling the queue
from the new location.

Four groups of program transfers are available with the
80186/188 CPU’s (see Table 2-6). These are uncondi-
tional transfers, conditional transfers, iteration control in-
structions, and interrupt-related instructions.
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Table 2-5 String Instructions

Table 2-6 Program Transfer Instructions

REP Repeat

REPE/REPZ Repeat while equal/zero

REPNE/REPNZ Repeat while not
equal/not zero

MOVS Move byte or word string

MOVSB/MOVSW Move byte or word string

CMPS Compare byte or word
string

SCAS Scan byte or word string

LODS Load byte or word string

STOS Store byte or word string

a. Unconditional Transfers

The unconditional transfer instructions may transfer con-
trol to a target instruction within the current code segment
(intrasegment transfer) or to a different code segment (in-
tersegment transfer). The ASM-86 Assembler terms an
intrasegment transfer NEAR and an intersegment transfer
FAR. The transfer is made unconditionally any time the
instruction is executed.

b. Conditional Transfers

The conditional transfer instructions are jumps that may
or may not transfer control depending on the state of the
CPU flags at the time the instruction is executed. These
18 instructions (see Table 2-7) each test a different combi-
nation of flags for a condition. If the condition is ““true”
then control is transferred to the target specified in the
instruction. If the condition is “false” then control passes
to the instruction that follows the conditional jump. All
conditional jumps are SHORT, that is, the target must be
in the current code segment and within —128 to + 127
bytes of the first byte of the next instruction (JMP 00H
jumps to the first byte of the next instruction). Since
jumps are made by adding the relative displacement of the
target to the instruction pointer, all conditional jumps are
self-relative and are appropriate for position-independent
routines.

c. Iteration Control

The iteration control instructions can be used to regulate
the repetition of software loops. These instructions use the
CX register as a counter. Like the conditional transfers,

UNCONDITIONAL TRANSFERS
CALL Call procedure
RET Return from procedure
JMP Jump
CONDITIONAL TRANSFERS
JA/JNBE Jump if above/not below
nor equal
JAE/INB Jump if above or
equal/not below
JB/JINAE Jump if below/not above
nor equal
JBE/JNA Jump if below or
equal/not above
JC Jump if carry
JE/JZ Jump if equal/zero
JG/INLE Jump if greater/not less
nor equal
JGE/JNL Jump if greater or
equal/not less
JL/IINGE Jump if less/not greater
nor equal
JLE/JING Jump if less or equal/not
greater
JNC Jump if not carry
JNE/JINZ Jump if not equal/not
zero
JNO Jump if not overflow
JNP/JPO Jump if not parity/parity
odd
JNS Jump if not sign
Jo Jump if overflow
JP/JPE Jump if parity/parity
even
Js Jump if sign
ITERATION CONTROLS
LOOP Loop
LOOPE/LOOPZ Loop if equal/zero
LOOPNE/LOOPNZ | Loop if not equal/not
zero
JCXZ Jump if register CX =0
INTERRUPTS
INT Interrupt
INTO Interrupt if overfiow
IRET Interrupt return
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Table 2-7 Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED “JUMPIF ...

JA/JNBE (CF or 2F)=0 above/not below nor equal
JAE/JNB CF=0 above or equal/not below
JB/JINAE CF=1 below/not above nor equal
JBE/JNA (CF OR ZF)=1 below or equal/not above
JC CF=1 carry

JE/JZ 2F=1 equal/zero

JG/JNLE ((SF xor OF) or ZF)=0 greater/not less nor equal
JGE/JNL (SF xoRr OF)=0 greater or equal/not less
JL/INGE (SF xoR OF )=1 less/not greater nor equal
JLE/ING ((SF xor OF) oR ZF)=1 less or equal/not greater
JNC CF=0 not carry

JNE/JINZ ZF=0 not equal/not zero

JNO OF=0 not overflow

JNP/JPO PF=0 not parity/parity odd

JNS SF=0 not sign

Jo OF=1 overflow

JPIJPE PF=1 parity/parity equal

Js SF=1 sign

Note: ‘‘above’’ and ‘‘below’’ refer to the relationship of two unsigned values;
‘‘greater’’ and ‘‘less’’ refer to the relationship of two signed values.

the iteration control instructions are self-relative and may
only transfer to targets that are within —128 to +127
bytes of themselves, i.e., they are SHORT transfers.

d. Interrupt Instructions

Interrupt instructions allow interrupt service routines to
be activated by programs as well as by external hardware
devices. The effect of software interrupts is similar to
hardware-initiated interrupts. However, the processor
does not execute an interrupt acknowledge bus cycle if the
interrupt originates in software or with an NMI.

High-Level Instructions

The 80186/188 CPU’s have two instructions used with
high-level languages. These are ENTER and LEAVE. De-
tailed descriptions of the operation of these two instruc-
tions are contained in the paragraphs on “NEW 80186/
80188 INSTRUCTIONS” in paragraph 2.2.2.

Processor Control Instructions

The processor control instructions allow programs to con-
trol various CPU functions. Table 2-8 lists the groups of
processor control instructions and their functions. One
group of instructions updates flags, and another group is
used primarily for synchronizing the processor with ex-

ternal events. A final instruction causes the CPU to do
nothing. Except for the flag operations, none of the proc-
essor control instructions affect the flags.

Table 2-8 Processor Control Instructions

FLAG OPERATIONS

STC Set carry flag

CLC Clear carry flag

CMC Complement carry flag
STD Set direction flag

CLD Clear direction flag

STI Setinterrupt enable flag
CLi Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION

HLT Halt until interrupt or reset

WAIT Wait for TEST pin active

ESC Escape to external processor

LOCK Lock bus during next
instruction

NO OPERATION

NOP No operation
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INSTRUCTION SET SUMMARY

Table 2-9 presents a reference data table of the complete
80186/80188 instruction set with timing cycles for each
instruction. The instruction timings represent the mini-
mum execution time in clock cycles for each instruction.
The timings are based on the following assumptions:

® The opcode, along with any data or displacement re-
quired for execution of a particular instruction, has
been prefetched and resides in the queue at the time it
is needed.

® No wait states or bus HOLDS occur.

e All word-data is located on even-address boundaries.

All jumps and calls include the time required to fetch the
opcode of the next instruction at the destination address.
Any instructions which involve memory references can
require one (and in some cases, two) additional clocks
above the minimum timings shown. This is due to the
asynchronous nature of the handshake between the BIU
and EU.

2.3 DEVICE PIN DEFINITIONS

The following paragraphs present functional descriptions
of all input/output signals and electrical descriptions of all
of the input/output pins on the 80186 and 80188 40-pin
DIP’s.

2.3.1 Functional Description of All Signals

Figure 2-4 shows the 80186/80188 DIP pin assignments
and Table 2-10 provides a complete functional description
of each device pin signal and correlates the description to
the pin number and associated signal symbol.

2.3.2 Electrical Description of Pins

The absolute maximum ratings for the 8086/8088 device
are as follows.

Absolute Maximum Ratings
Ambient Temperature

Under Bias 0°C to 70°C
Storage Temperature —-65°Cto +150°C
Voltage on Any Pin with

Respect to GND —1.0to +7V
Power Dissipation 3.0 Watt

Stresses above those listed above may cause permanent
damage to the device. These values present stress ratings
only and functional operation of the device at these or any
other conditions above those indicated in the operational

sections of the device specifications is not implied. Expo-
sure to absolute maximum conditions for extended peri-
ods of time may affect the device reliability.

Table 2-11 presents the D.C. voltage characteristics of the
80186/188 CPU’s. Tables 2-12 through 2-16 list the vari-
ous A.C. characteristics timing requirements and timing
responses for the 80186/188 CPU’s. Figure 2-5 presents
the major cycle timing waveforms for the 80186/80188
CPU’s related to the preceding A.C. characteristics
tables.

2.4 OPERATING MODES

The following paragraphs present the various operating
modes of the 80186/188 CPU’s and compare these to
those of the 8086/88 CPU’s described in Chapter 1. Refer
to the 8086/88 operating mode discussion in paragraph
1.4.

2.4.1 8086/88-80186/188 Operating Mode
Comparisons

The 80186/188 multiplexed address/data bus simultane-
ously supports both the 8086/88 minimum mode local bus
and the maximum mode system bus. The 80186/188 pro-
vides both local bus controller outputs (RD*, WR*, ALE,
DEN* and DT/R*) and the system status outputs (SO*,
S1* and S2*) for use with the 8288 bus controller. This is
different from the 8086/88 where local bus controller out-
puts (generated only in the minimum mode) are not avail-
able if the status outputs (generated only in the maximum
mode) are required.

Because the 80186/188 simultaneously provides both lo-
cal bus control signals and status outputs, many systems
supporting both a system bus (MULTIBUS) and a local
bus will not require two separate external bus controllers.
The bus control signals may be used to control the local
bus while the status signals are concurrently connected to
the 8288 bus controller to drive the system bus control
signals. The 80186/188 CPU’s require an 8288 and an
8289 to interface with the MULTIBUS.

2.4.2 Queue Status Mode of Operation

When the RD* line is externally grounded during reset
and remains grounded during processor operation, causes
the 80186 to enter “‘queue status” mode. In this mode, the
WR* and ALE signals become queue status outputs, re-
flecting the status of the internal pre-fetch queue during
each clock cycle. These signals allow a processor exten-
sion (such as the Intel 8087 numeric data processor) to
track execution of instructions within the 80186. The in-
terpretation of QSO (ALE) and QS1 (WR¥) are given in
Table 2-17. These signals change on the high-to-low clock
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Table 2-9 Instruction Set Summary

000reg110

W

POP = Pop:

Memory [T0001 11 1] modo00 wm ]
Register

Segment register 000regi111 (reg#01)

XCHG = Exchange:
Register/memory with register

[1 000011 w| modreg rm |

Register with accumulator 10010 reg

IN=Input from:

Fixed port [T 110010w] port |
Variable port 1110110w

OUT = Output to:

Fixed port 110011 w] port ]
Variable port 11101 11w

XLAT = Transiate byte to AL 11010111

LEA = Load EA to register [f000110 1] modreg vm |

LDS = Load pointer to DS [ 100010 1] modreg rm 1 (mod + 11)
LES = Load pointer to ES [T 100070 0] modreg vm |  (mod + 11)
LAHF = Load AH with flags

SAHF - Store AH 1nto flags

PUSHF ~ Push flags

POPF - Pop flags

SEGMENT = Segment Override:

o

™

ns

i

20
10

DedIN©

@ o wN

NN

Clock

FUNCTION FORMAT Cycles Comments
| DATA TRANSFER

MOV = Move:

Register to Register'Memory [tooo0100w] modreg vm | 212

Register memory to register [foo0101 w[ modreg vm | 2/9

Immediate to register memory [T700011 w] mod000 ©vm | data [ dataitw-1_} 12-13 8/16-bit

Immediate to register [Lottw reg T data [ dawitw=1 ] 3-4 8/16-bit

Memory to accumulator [fo010000w] addlow |  addrhigh | 9

Accumulator to memory [to10001w] addrlow [  addr-high | 8

Register:memory to segment register  [1 000111 0] modOreg rm | 2/9

Segment register to register'memory {1 000110 0] modOreg rm | 2/11

PUSH = Push:

Memory 11111171 med110 wm | 16

Register 01010 reg 10

Segment register 9

Shaded areas indicate instructions not available iniAPX 86, 88 microsystems.

2-13

210912-001




80186/80188 CPU

Table 2-9 Instruction Set Summary (continued)

Memory-Word

Clock

FUNCTION FORMAT - Cycles Comments
ARITHMETIC
ADD = Ad:
Reg/memory with register to either [o00000dw] modreg rm | 3/10
Immediate to register/memory [{00000sw] mod000 wm | data [ “dataitsw=01 | 4/16
Immediate to accumulator [ooooot1ow] data T dataitw=1"_] 3/4 8/16-bit
ADC = Add with carry:
Reg/memory with register to either [000100dw] modreg vm | 3/10
Immediate to register/memory [f00000sw[ mod010 rm | data T dataifsw=01_] 4/16
Immediate to accumulator [0o001010w] data [ dataifw=1_} 3/4 8/16-bit
INC = Increment:
Register/memory [ 111111 w] mod000 wm |} 3/15
Register 01000 reg 3
SUB = Subtract:
Reg/memory and register to either [001010dw] modreg vm | 3/10
Immediate from register/memory [t 00000sw[ mod101 wm | data [ dataifsw=01 ] 4/16
Immediate from | [0oTot10w] data T dataitw=1_] 3/4 8/16-bit
$BB = Subtract with borrow:
Reg/memory and register to either [0o00110dw] modreg ©rm | 3/10
Immediate from register/memory [{00000s w] mod01t m [ data | dataifsw=01] 4/16

from I [ooo1110w] data [ dataifw=1_] 3/4 8/16-bit
DEC = Decrement:
Register/memory [ 1171711 w][ moed001 rm | 3/15
Register 01001 reg 3
CMP = Compare:
Register/memory with register [001 1701 w] modreg m | 3/10
Register with register/memory [0011100w[ modreg rm | 3/10
Immediate with register/memory [fo0000sw[ modT11 wm | data [ dataitsw=01] 3/10
Immediate with fPor1i10w] data [ dataifw=1_] 3/4 8/16-bit
NEG = Change sign (1111011 w] modo11 wm | 3
AAA = ASCIl adjust for add 001710111 8
DAA = Decimal adjust for add 00100111 4
AAS = ASCII adjust for subtract 7
DAS = Decimal adjust for subtract 4
MUL = Multiply (unsigned): [T 111011 w] modT00 wm |
Register-Byte 26-28
Register-Word 35-37
Memory-Byte 32-34
Memory-Word 41-43
IMUL = Integer multiply (signed): (111011 w] mod101 vm |
Register-Byte 25-28
Register-Word 34-37
Memory-Byte 31-34

40-43

DIV = Divide (unsigned): [T111011w] medii0vm |

Register-Byte 29
Register-Word 38
Memory-Byte 35
Memory-Word 44

Shaded areasindicate instructions not available iniAPX 86, 88 microsystems.
2-14
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Table 2-9 Instruction Set Summary (continued)

STOS = Stor byte/wd from AUA

TTT Instruction

000 ROL

001 ROR

010 RCL

011 RCR

100 SHUSAL

101 SHR

111 SAR
AND = And:
Reg/memory and register to either [001000dw][ modreg vm | 3/10
Immediate to register/memory [1000000w[ mod100 rm [ data | dataifw=1 ] 4/16
Immediate to accumulator [0010010w] data [ dataitw=1_| 3/4
TEST = And function to flags, no result:
Register/memory and register [1000010w] modreg rm | 3/10
Immediate data and register, y [1 111011 w] mod000 vm | data ] dataitw=1 ] 4/10
Immediate data and [fo10100w] data | dataifw=1_| 3/4
OR=0r:
Reg/memory and register to either [o0o0010dw] modreg vm | 3/10
Immediate to register/memory [1000000w][] modo0t om | data T dataitw=1 "] 4/16
Immediate to accumulator [0000110w] data 1 dataitw=1_] 3/4
XOR = Exclusive or:
Reg/memory and register to either [0Co1100dw][ modreg rm | 3/10
Immediate to register/memory [1000000w] mod110 vm | data [ daaitw=1_] 4/16
Immediate to accumulator [00110710w] data [ dataifw=1 ] 3/4
NOT = Invert register/memory [ 111011 w[ mod010 rm ] 3
STRING MANIPULATION:
MOVS = Move byte/word 1010010w 14
CMPS = Compare byte/word 1010011 w 22
SCAS = Scan byte/word 1010111 w 15
LODS = Load byte/wd to ALAX 1T010110w 12

E

Clock
FUNCTION FORMAT Cycles Comments
ARITHMETIC (Continued):
1DIV = Integer divide (signed): [[1r11011w] mdt11 wm | 44-52
Register-Byte
Register-Word 53-61
Memory-Byte 50-58
Memory-Word . 59-67
AAM = ASCII adjust for multiply [f1oto100fo0001010] 19
AAD = ASCIl adjust for divide [f1or1o0101Jooo0o01010) 15
CBW = Convert byte to word 10011000 2
CWD = Convert word to double word 10011001 4
LOGIC
Shift/Rotate Instructions:
Register/Memory by 1 [f101000w[ mod TTTrm | 2/15
Register/Memory by CL [ 101001 w[ mod TTTm | 5+n/17+n

8/16-bit

8/16-bit

8/16-bit

8/16-bit

Shaded areas indicate instructions not available iniAPX 86, 88 microsystems.
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Table 2-9 Instruction Set Summary (continued)

Clock
FUNCTION : FORMAT Cycles Comments
STRING MANIPULATION (Continued):
Repeated by count in CX
MOVS - Move string 1110010101001 0w] 8+8n
CMPS - Compare string 111001 z2Jr010011w] 5+22n
SCAS - Scan string 111001 zJro10111w] 5+15n
LODS - Load string [(Fito0o01ofio10110w} : 6+11n.
STOS - Store string [T111001 01010101 w| 6+9n

CONTROL TRANSFER

CALL = Call:
Direct within segment . [T 1101000] dsplow- | disp-high | 15
Register memory (111711171 modoi0rm | 13/19
indirect within segment
Direct intersegment foot1o1o0] segment offset ] 23
[ segment selector ]
Indirect intersegment 1117111 ] modottrm | (mod = 11) 38
JMP = Unconditional jump:
Short/long [Tr1o0101 1] disp-low | 14
Direct within segment 11010017 disp-low | disp-high ] 14
Register‘memory indirect withinsegment[1 111111 1] mod100 rm | ‘ 1117
Direct intersegment 110101 0] segment offset ] 14
[ segment selector ]
Indirect intersegment [T 71171 modi0trm |  (mod = 11) 26
RET = Return from CALL:
Within segment 1100001 1 16
Within seg adding immed to SP [Thoo000710] data-low | data-high | 18
Intersegment 22
Intersegment adding immediatetoSP [1 100 101 0 | datalow | data-high | 25

Shaded areas indicate instructions not available iniAPX 86, 88 microsystems.
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Table 2-9 Instruction Set Summary (continued)

Clock
FUNCTION FORMAT Cycles Comments
CONTROL TRANSFER (Continued):
JE/3 = Jump on equalizer [or110100] disp ] 4/13 13 if JMP
JUL/INGE = Jump on lessinot greater or equal [o1111100] disp ] 413 4155?\2';
JLE/JNG = Jump on less or equai/not greater IEEEEEEREE disp ] 4/13 not taken
JB/JINAE = Jump on belowingt above or equal 0111001 0] disp ] 4/13
JBE/INA = Jumponbelow orequainotaboe [0 1110 11 0 [ disp ] 4113
JP/JPE = Jump on pariy parity even [ori11o010] disp ] 4/13
J0 = Jump on overfiow [01110000( disp ] 4/13
J8 = Jump onsign [01111000 [‘ disp ] 413
JINE/INZ = Jump on notequaliat zero IEEEXEERE disp | 413
JNL/JGE = Jump on notlessgreater or equal [IEEEEELER| disp ] 4/13
JNLE/JG = Jump on notess or equal/greater LEEEEEERER| disp | 4/13
JINB/JAE = Jumponnotbelowaboveorequal (0.1 1 1001 1] disp | 413
JNBE/JA = Jump on not below or equaliabove [LEEEEERER| disp | 413
JNP/JPO = Jump on not par par odd [o111101 1] disp ] 4/13
JINO = Jump on not overiow [01110001] disp ] 4113
JINS = Jumpon notsign IEEEENTER] disp | 5/15
JCXZ = Jump on CX 0 [f110001 1]  disp ] 6/16
LOOP = Loop CXtimes 110001 0] disp ] 6/16
LOOPZ/LOOPE = Loop while zeo/equa [[11000071] disp ] 16 JMP taken/
LOOPNZ/LOOPNE = Loopwhilenotzerorequal  [1 110000 0 | disp ] 5 JMP not taken

INT=Interrupt:
Type specified

Type 3
INTO = Interrupt on overfiow

IRET = Interrupt return

[T1001101] type |

11001100
11001110

11001111

47
45
48/4

28

if INT. taken/
if INT. not
taken
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Table 2-9 Instruction Set Summary (continued)

Clock

FUNCTION FORMAT Cycles Comments
PROCESSOR CONTROL
CLC = Clear carry 2
CMC = Complement carry 2
STC = Set carry 2
CLD = Clear direction 2
STD = Set direction 2
CLI = Clear interrupt 2
STI =Setinterrupt 2
W 2
WAIT = Wait 6 if fest = 0
LOCK =Bus lock prefix 2
ESC = Processor Extension Escape 1011 TTT] mod LLL vm ] 6

(TTT LLL are opcode to processor extension)

Shaded areas indicate instructions not available iniAPX 86, 88 microsystems.

FOOTNOTES

The effective Address (EA) of the memory operand is
computed according to the mod and r/m fields:

ifmod = 11 then r/m s treated as a REG field
ifmod = 00 then DISP = 0*, disp-low and disp-high
are absent

if mod = 01then DISP = disp-low sign-extended to
16-bits, disp-high is absent

ifmod = 10 then DISP = disp-high: disp-low

ifr/m = 000 then EA = (BX) + (Sl) + DISP
ifr/m = 001 then EA = (BX) + (DI) + DISP
ifr/m = 010then EA = (BP) + (SI) + DISP
ifr/m = 011 then EA = (BP) + (DI) + DISP
ifr/m = 100 then EA = (SI) + DISP

ifr/m = 101 then EA = (DI) + DISP

ifr/m = 110then EA = (BP) + DISP*

ifr/m = 111then EA = (BX) + DISP

~ ~

L

DISP follows 2nd byte of instruction (before data if
required)

“exceptifmod = 00 and r/m = 110 then EA = disp-high: disp-low.

EA CALCULATION TIME IS 4 CLOCK CYCLES FOR ALL MODES, AND IS INCLU|
IN THE EXECUTION TIMES GIVEN WHENEVER APPROPRIATE. LUDED

SEGMENT OVERRIDE PREFIX

001reg110

2-18

regis assigned according to the following:

Segment
reg Register
00 ES
01 Cs
10 SS
! DS

REG is assigned according to the following table:

16-Bit(w = 1)  8-Bit(w = 0)
000 AX 000 AL
001 CX 001 CL
010 DX 010 DL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 DI 111 BH

The physical addresses of all operands addressed by
the BP register are computed using the SS segment
register. The physical addresses of the destination op-
erands of the string primitive operations (those ad-
dressed by the DI register) are computed using the ES
segment, which may not be overridden.
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TOP

INT3/INTA1

INT2/INTAO

Figure 2-4 80186/80188 DIP Pin Assignments

transition, one clock phase earlier than on the 8086. Note
that since execution unit operation is independent of bus
interface unit operation, queue status lines may change in
any T state.

Since the ALE, RD*, and WR* signals are not directly
available from the 80186 when it is configured in queue
status mode, these signals must be derived from the status
lines SO*-S2* using an external 8288 bus controller. To
prevent the 80186 from accidentally entering queue status
mode during reset, the RD* line is internally provided
with a weak pullup device. RD* is the ONLY tri-state or
input pin on the 80186 which is pulled up (neither pullups
nor pulldowns are used for any other 80186 tri-state or
input pin).

2.4.3 Interrupt Controller Operating Modes

The integrated interrupt controller has two major modes
of operation. These are the non-iRMX 86 mode (referred
to as master mode) and the iRMX 86 mode. In master
mode the integrated interrupt controller acts as the master
interrupt controller for the system.

In iRMX 86 mode the controller operates as a slave to an
external interrupt controller which operates as the master
system interrupt controller. Some of the interrupt control-
ler registers and interrupt controller pins change defini-

tions between the two modes, but the basic function of the
interrupt controller remains basically the same. The main
difference between the two modes is that when in the mas-
ter mode, the interrupt controller presents its input di-
rectly to the 80186 CPU and in the iRMX 86 mode the
interrupt controller presents its interrupt input to an exter-
nal controller. The external interrupt controller then
presents the interrupt inputs to the CPU.

Placing the interrupt controller in the iRMX 86 mode is
done by setting the iRMX mode bit in the peripheral con-
trol block relocation register. A description of the opera-
tion of the integrated interrupt controller in the iRMX 86
and non-iRMX 86 modes of operation is contained in par-
agraph 2.8.3.

2.5 BUS OPERATION

Bus operation in the 80186/188 and 8086/88 CPU’s is
basically the same. Before proceeding with this section
review the 8086 Bus Operation discussion in paragraph
1.5.

In the 80186, bus cycles occur sequentially, but do not
necessarily follow one after another; that is, the bus may
remain idle for several T states (Ti) between each bus
access initiated by the 80186. A bus idle occurs whenever
the 80186 internal queue is full and no read/write cycles
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Table 2-10 80186/80188 Device Pin Descriptions

Symbol Pin No. Type Name and Function

Vee: Vee 9,43 | System Power: + 5 volt power supply.

Vss: Vss 26,60 | System Ground.

RESET 57 (o] Reset Output indicates that the 80186 CPU i being reset, and can be used as a system

reset. It is active HIGH, synchronized with the processor clock, and lasts an integer
number of clock periods corresponding to the length of the RES signal.

X1, X2 59,58 | Crystal Inputs, X1 and X2, provide an external connection for a fundamental mode
parallel resonant crystal for the internal crystal oscillator. X1 can interface to an
external clock instead of a crystal. in this case, minimize the capacitance on X2 or
drive X2 with complemented X1. The input or oscillator frequency is internally divided
by two to generate the clock signal (CLKOUT).

CLKOUT 56 [0} Clock Output provides the system with a 50% duty cycle waveform. All device pin
timings are specified relative to CLKOUT. CLKOUT has sufficient MOS drive capabilities
for the 8087 Numeric Processor Extension.

RES 24 | System Reset causes the 80186 to immediately terminate its present activity, clear the
internal logic, and enter a dormant state. This signal may be asynchronous to the
80186 clock. The 80186 begins fetching instructions approximately 7 clock cycles
after RES is returned HIGH. RES is required to be LOW for greater than 4 clock
cycles and is internally synchronized. For proper initialization, the LOW-to-HIGH transi-
tion of RES must occur no sooner than 50 microseconds after power up. This input
is provided with a Schmitt-trigger to facilitate power-on RES generation via an RC
network. When RES occurs, the 80186 will drive the status lines to an inactive level
for one clock, and then tri-state them.

TEST 47 N TEST is examined by the WAIT instruction. If the TEST input is HIGH when
“WAIT” execution begins, instruction execution will suspend. TEST will be
resampled until it goes LOW, at which time execution will resume. If interrupts
are enabled while the 80186 is waiting for TEST, interrupts will be serviced. This
input is synchronized internally.

TMRIN O, 20 | Timer Inputs are used either as clock or control signals, depending upon the

TMRIN 1 21 | programmed timer mode. These inputs are active HIGH (of LOW-to-HIGH
transitions are counted) and internally synchronized.

TMR OUT 0, 22 (o] Timer outputs are used to provide single pulse or continuous waveform gener-

TMR OUT 1 23 (9} ation, depending upon the timer mode selected.

.DRQO 18 | DMA Request is driven HIGH by an external device when it desires that a

DRQ1 19 | DMA channel (Channel 0 or 1) perform a transfer. These signals are active
HIGH, level-triggered, and internally synchronized.

NMI 46 | Non-Maskable Interrupt is an edge-triggered input which causes a type 2
interrupt. NMi is not maskable internally. A transition from a LOW to HIGH
initiates the interrupt at the next instruction boundary. NMl is latched inter-
nally. An NMi duration of one clock or more will guarantee service. This input is
internally synchronized.

INTO, INTH, 45,44 1 Maskable Interrupt Requests can be requested by strobing one of these pins.

INT2/INTAOD 42 /0 When configured as inputs, these pins are active HIGH. Interrupt Requests are

INT3/INTA1 41 110 synchronized internally. INT2 and INT3 may be configured via software to
provide active-LOW interrupt-acknowledge output signals. All interrupt inputs
may be configured via software to be either edge- or ievel-triggered. To ensure
recognition, all interrupt requests must remain active until the interrupt is
acknowleged. When iRMX mode is selected, the function of these pins
changes (see Interrupt Controller section of this data sheet).

A19/S6, 65 (0] Address Bus Outputs (16-19) and Bus Cycle Status (3-6) reflect the four most

A18/S5, 66 o significant address bits during T1. These signals are active HIGH. During T,

A17/S4, 67 (o] T3, Tw, and T4, status information is available on these lines as encoded

A16/S3 68 [0} below:

Low High
S6 Processor Cycle DMA Cycle
S3,54, and S5 are defined as LOW during To-T4.
AD15-ADO - 10-17, e} Address/Data Bus (0-15) signals constitute the time mutiplexed memory or /O
1-8 address (T1) and data (T, T3, Tw, and T4) bus. The bus is active HIGH. Ag is
analogous to BHE for the lower byte of the data bus, pins D7 through Dg. Itis
LOW during Ty when a byte is to be transferred onto the lower portion of the
bus in memory or |/O operations.

2-20 210912-001



80186/80188 CPU

Table 2-10 80186/80188 Device Pin Descriptions (continued)

Pin
Symbol No. Type Name and Function

BHE/S7 64 (o] During Tq the Bus High Enable signal should be used to determine if data is to
be enabled onto the most significant half of the data bus, pins D15-Dg. BHE is
LOW during T4 for read, write, and interrupt acknowledge cycles when a byte is
to be transferred on the higher half of the bus. The S7 status information is
available during Tp, T3, and T4. S7 is logically equivalent to BHE. The signal is
active LOW, and is tristated OFF during bus HOLD.

BHE and AQ Encodings

HE A0 Value Function

Value

0 0 Word Transfer
0

1

1

1 Byte Transfer on upper half of data bus (D15-D8)
0 Byte Transfer on lower half of data bus (D7-Dg)
1 Reserved

ALE/QS0 61 (o} Address Latch Enable/Queue Status 0 is provided by the 80186 to latch the
address into the 8282/8283 address latches. ALE is active HIGH. Addresses are

“guaranteed to be valid on the trailing edge of ALE. The ALE rising edge is
generated off the rising edge of the CLKOUT immediately preceding T¢ of the
associated bus cycle, effectively one-half clock cycle earlier than in the stan-
dard 8086. The trailing edge is generated off the CLKOUT rising edge in Ty as
in the 8086. Note that ALE is never floated.

WR/QS1 63 (o} Write Strobe/Queue Status 1 indicates that the data on the bus is to be written
into a memory or an 1/O device. WR is active for T, T3, and Ty of any write
cycle. Itis active LOW, and floats during “HOLD.” It is driven HIGH for one clock
during Reset, and then floated. When the 80186 is in queue status mode, the
ALE/QS0 and WR/QS1 pins provide information about processor/instruction
queue interaction.

QS1 QS0 Queue Operation
0 0 No queue operation
0 1 First opcode byte fetched from the queue
1 1 Subsequent byte fetched from the queue
1 0 Empty the queue
RD/QSMD 62 o Read Strobe indicates that the 80186 is performing a memory or I/0 read cycle.

RD is active LOW for Tz, T3, and Tw of any read cycle. It is guaranteed notto go
LOW in T until_after the Address Bus is floated. RD is active LOW, and floats
during “HOLD.” RD is driven HIGH for one clock during Reset, and then the output
driver is floated. A weak internal pull-up mechanism on the RD line holds it HIGH
when the line is not driven. During RESET the pin is sampled to determine
whether the 80186 should provide ALE, WR and RD, or if the Queue-Status should
be provided. RD should be connected to GND to provide Queue-Status data.

ARDY 55 | Asynchronous Ready informs the 80186 that the addressed memory space or /O
device will complete a data transfer. The ARDY input pin will accept an
asynchronous input, and is active HIGH. Only the rising edge is internally
synchronized by the 80186. This means that the falling edge of ARDY must be
synchronized to the 80186 clock. If connected to V¢, no WAIT states are inserted.
Asynchronous ready (ARDY) or synchronous ready (SRDY) must be active to
terminate a bus cycle. If unused, this line should be tied LOW.

SRDY 49 | Synchronous Ready must be synchronized externally to the 80186. The use of
SRDY provides a relaxed system-timing specification on the Ready input. This is
accomplished by eliminating the one-half clock cycle which is required for
internally resolving the signal level when using the ARDY input. This lineis active
HIGH. If this line is connected to V¢, no WAIT states are inserted. Asynchronous
ready (ARDY) or synchronous ready (SRDY) must be active before a bus cycle is
terminated. If unused, this line should be tied LOW.

LOCK 48 (o] LOCK output indicates that other system bus masters are not to gain control of
the system bus while LOCK is active LOW. The LOCK signal is requested by the
LOCK prefix instruction and is activated at the beginning of the first data cycle
associated with the instruction following the LOCK prefix. It remains active
until the completion of the instruction following the LOCK prefix. No pre-
fetches will occur while LOCK is asserted. LOCK is active LOW, is driven HIGH
for one clock during RESET, and then floated.
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Table 2-10 80186/80188 Device Pin Descriptions (continued)

Pin
Symbol No. Type Name and Function
$0,51,52 52-54 O | Bus cycle status 50-52 are encoded to provide bus-transaction information:
80186 Bus Cycle Status Information
S2 Si S0 Bus Cycle Initiated
0 0 0 Interrupt Acknowledge
0 0 1 Read I/O
0 1 0 Write I/O
0 1 1 Halt
1 0 0 Instruction Fetch
1 0 1 Read Data from Memory
1 1 Write Data to Memory
1 1 1 Passive (no bus cycle)
The status pins. float during “HOLD.”
§2 may be used as a logical M/IO indicator, and S1 as a DT/R indicator.
The status lines are driven HIGH for one clock during Reset, and then floated
ntil a bus cycle begins.
HOLD (input) 50 | HOLD Indicates that another bus master Is requesting the local bus. The

HLDA (output) 51 o} HOLD input Is active HIGH. HOLD may be asynchronous with respect to the
80186 clock. The 80186 will issue a HLDA (HIGH) in response to a HOLD
request at the end of T4 or T1. Simultaneous with the issuance of HLDA, the
80186 will float the local bus and control lines. After HOLD Is detected as
being LOW, the 80186 will lower HLDA. When the 80186 needs to run
another bus cycle, it will again drive the local bus and control lines.

ucs 34 (o] Upper Memory Chip Select is an active LOW output whenever a memory
reference is made to the defined upper portion (1K-256K block) of memory.
This line is not floated during bus HOLD. The address range activating UCS is
software programmable.

LCS 33 (o] Lower Memory Chip Select is active LOW whenever a memory reference is
made to the defined lower portion (1K-256K) of memory. This line is not
floated during bus HOLD. The address range activating LCS is software
programmable.

MCS0-3 38,37,36,35 (o] Mid-Range Memory Chip Select signals are active LOW when a memory
reference is made to the defined\mid-range portion of memory (8K-512K).
These lines are not floated during bus HOLD. The address ranges activating
MCS0-3 are software programmable.

PCS0 25 (o} Peripheral Chip Select signals 0-4 are active LOW when a reference is made to
the defined peripheral area (64K byte I/O space). These lines are not floated

PCSi-4 27,28,29,30 O | during bus HOLD. The address ranges activating PCS0-4 are software
programmable.

PCS5/A1 . 31 ] Peripheral Chip Select 5 or Latched A1 may be programmed to provide a sixth

peripheral chip select, or to provide an internally latched A1 signal. The
address range activating PCS5 is software programmable. When programmed
to provide latched A1, rather than PCS5, this pin will retain the previously
latched value of A1 during a bus HOLD. A1 is active HIGH.

PCS6/A2 32 (o] Peripheral Chip Select 6 or Latched A2 may be programmed to provide a
seventh peripheral chip select, or to provide an internally latched A2 signal.
The address range activating PCS6 is software programmable. When pro-
grammed to provide latched A2, rather than PCS6, this pin will retain the
previously latched value of A2 during a bus HOLD. A2 is active HIGH.

DT/R 40 o Data Transmit/Receive controls the direction of data flow through the external
8286/8287 data bus transceiver. When LOW, data is transferred to the 80186.
When HIGH the 80186 places write data on the data bus.

O
m
Z

39 (o} Data Enable is provided as an 8286/8287 data bus transceiver output enable.
DEN is active LOW during each memory and I/0 access. DEN is HIGH whenever
DT/R changes state.
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Table 2-11 D.C. Characteristics
D.C. CHARACTERISTICS (T3, =0°-70°, Vo =5V +10%)

,Symbol Parameter Min. Max. Units Test Conditions
Vi Input Low Voltage -05 +08 Volts
Viu Input High Voltage 20 Ve + 0.5 Volts
. (All except X1 and (RES)
Vit Input High Voltage (RES) Vec + 0.5 Volts
Vo Output Low Voltage 3.0 0.45 Volts l, = 2.5 mA for. 50-52

I, = 2.0 mA for all other outputs
Von Output High Voltage 24 Volts log = —400 pA

— 0°

lec Power Supply Current %g'g mA Max measured at Ti ; 5,) C
Iy Input Leakage Current +10 pA OV < Viy < Ve
ho Output Leakage Current +10 7. 0.45V < Vour < Vo
Veo Clock Output Low 0.6 Volts I = 40 mA
VeHo Clock Output High 4.0 Volts loa = —200 pA
Veu Clock Input Low Voltage -0.5 0.6 Volts
Ven Clock Input High Voltage 39 Vec +1.0 Volts
Cin Input Capacitance 10 pF
Co 1/O Capacitance 20 pF

are being requested by the execution unit or integrated
DMA unit. Recall that the bus interface unit fetches op-
codes (including immediate data) from memory, while the
execution unit actually executes the pre-fetched instruc-
tions. The number of clock cycles required to execute an
80186 instruction vary from 2 clock cycles for a register
to register move to 67 clock cycles for an integer divide.

If a program contains many long instructions, program
execution will be CPU limited, that is, the instruction
queue will be constantly filled. Thus, the execution unit
does not need to wait for an instruction to be fetched. If a
program contains mainly short instructions or data move
instructions, the execution will be bus limited. Here, the
execution unit will be required to wait often for an in-
struction to be fetched before it continues its operation.

Although the amount of bus usage (i.e., the percentage of
bus time used by the 80186 for instruction fetching and
execution required for top performance) will vary consid-
erably from one program to another, a typical instruction
mix on the 80186 will require greater bus usage than the
8086. This is greater usage caused by the higher perform-
ance execution unit requiring instructions from the pre-

fetch queue at a greater rate. This usage also means that
the effect of wait states is more pronounced in an 80186
system than in an 8086 system. In all but a few cases,
however, the performance degradation incurred by adding
a wait state is less than might be expected because instruc-
tion fetching and execution are performed by separate
units.

2.5.1 HALT Bus Cycle

The 80186 uses a HALT bus cycle to signal external cir-
cuits that the CPU has executed a HLT instruction. This
bus cycle differs from a normal bus cycle in two impor-
tant ways. First, since the processor is entering a halted
state, none of the control lines (RD* or WR*) will be
driven active. Address and data information will not be
driven by the processor, and no data will be returned.
Second, the SO*-S2* status lines go to their passive state
(all high) during T2 of the bus cycle, well before they go
to their passive state during a normal bus cycle. RD*,
WR*, INTA*, DEN* will all go high (Voy) and DT/R*
will go low (V). Like a normal bus cycle, ALE is driven
active. Since no valid address information is present, the

2-23 210912-001



© 80186/80188 CPU

Table 2-12 A.C. Characteristics Timing Requirements

A.C. CHARACTERISTICS (T4 = 0°-70°C, Vcc = 5V = 10%)
80186 Timing Requirements. All Timings Measured At 1.5 Volts Unless Otherwise Noted.

Applicable to 80186 (8 MHz) and 80186-6 (6 MHz)

Symbol Parameter Min. Max. Units Test Conditions
TDVCL Data in Setup (A/D) 20 ns
TCLDX |Datain Hold (A/D) . 10 ns
TARYCHL | Asynchronous Ready
) inactive hold time 15 ns

TARYHCH | Asynchronous Ready

(AREADY) active setup

time* 20 - ns
TARYLCL | AREADY inactive setup

time 35 ns
TCHARYX| AREADY hold time 15 ns
TSRYCL |Synchronous Ready

(SREADY) transition setup

time 20 ns
TCLSRY |SREADY transition hold

time 15 ns
THVCL HOLD Setup* 25 ns
TINVCH | INTR, NMI, TEST, TIMERIN,

Setup* 25 ns
TINVCL |DRQO, DRQ1, Setup* 25 ns

*To guarantee recognition at next clock.

information strobed into the address latches should be ig-
nored. However, this ALE pulse can be used to latch the
HALT status from the SO*-S2* status lines.

Halting the processor does not interfere with the opera-
tion of any of the 80186 integrated peripheral units.
Therefore, if a DMA transfer is pending while the proces-
sor is halted, the bus cycles associated with- the DMA
transfer will run. In fact, DMA latency time will improve
while the processor is halted because the DMA unit will
not be contending with the processor for access to the
80186 bus.

2.5.2 8086/80186 Bus Operation
Differences

The 80186 bus was designed to be upward compatible
with the 8086 bus. As a result, the 8086 bus interface
components (the 8288 bus controller and the 8289 bus
arbiter) may be used directly with the 80186. There are a
few differences between the two processors, however,
which must be considered. These are described in the fol-
lowing paragraphs.

CPU DUTY CYCLE AND CLOCK GENERATOR

The 80186 contains an integfated clock generator which
provides a 50% duty cycle CPU clock. The 8086 differs
by using an external clock generator (the 8284A) with a
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339% duty cycle CPU clock (one-third of the time it is
high, the other two-thirds of the time, it is low). These
differences manifest themselves as follows:

1. No oscillator output is available from the 80186, as it
is available from the 8284A clock generator.

2. The 80186 does not provide a PCLK (50% duty cy-
cle, one-half CPU clock frequency) output as does the
8284A.

3. The clock low phase of the 80186 is narrower, and the
clock high phase is wider than on the same speed
8086. -

4. The 80186 does not internally factor AEN with RDY.
Therefore, if both RDY inputs (ARDY and SRDY) are
used, external logic must be used to prevent the RDY
not connected to a certain device from being driven
active during an access to this device (remember,
only one RDY input needs to be active to terminate a
bus cycle).

5. The 80186 concurrently provides both a single asyn-
chronous ready input and a single synchronous ready
input, while the 8284A provides either two synchro-
nous ready inputs or two asynchronous ready inputs as
a user-strapable option.

6. The CLOCKOUT (CPU clock output signal) drive ca-
pacity of the 80186 is less than the CPU clock drive
capacity. of the 8284A. Therefore, not as many high
speed.devices (e.g., Schottky TTL flip-flops) may be
connected to this signal as can be used with the 8284A
clock output.
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Table 2-13 A.C. Characteristics Master Interface Timing Responses

80188 (8 MHz) 80188-6 (6 MH2)

Symbol Parameters Min. Max. Min. Max. Units Test Conditions
Tewv Address Valid Delay 5 55 5 63 ns C, = 20-200 pF all outputs
Towax Address Hold 10 10 ns
Tewz Address Float Delay Teux 35 Toiax 44 ns
Tenez Command Lines Float Delay 45 56 ns
TcHev Command Lines Valid Delay

(after float) 55 76 ns
Tua ALE Width TeicLas TeieL-as ns
Tenn ALE Active Delay 35 44 ns
Tenw ALE Inactive Delay 35 44 ns
Tuax Address Hold to ALE Inactive | TeoucL2s TeneL-30 ns
Tewov Data Valid Delay 10 44 10 55 ns
Tewoox Data Hold Time 10 10 ns
Twhox Data Hold after WR TeweL-40 TeweL-s0 ns
Teverv Control Active Delay 1 5 70 5 87 ns
Teuerv Control. Active Delay 2 10 55 10 76 ns
Teverx Control Inactive Delay 5 55 5 76 ns
Tevoex DEN Inactive Delay

(Non-Write Cycle) 10 70 10 87 ns
TazaL Address Float to RD Active 0 0 ns
Tolae RD Active Delay 10 70 10 87 ns
TeLrn RD Inactive Delay 10 55 10 TeLeH ns
Trrav RD Inactive to Address Active | Tcici.a0 Terer-s0 ns
TewHav HLDA Valid Delay 5 50 5 67 ns
TrurH RD Width 2TcicL-50 2Teici-50 ns
Twiwe WR Width 2Teici40 2TcioL40 ns
TavaL Address Valid to ALE Low TeeH-25 Tcich-4s ns
Tehsv Status Active Delay 10 55 10 TeHoL ns
TeLsH Status Inactive Delay 10 65 10 TeweH ns
T Timer Output Delay 60 75 ns 100 pF max
Tero Reset Delay 60 75 ns
TcHasv Queue Status Delay 35 44 ns
TcHDX Status Hold Time 10 10 ns
TavcH Address Valid to Clock High 10 10 ns

. The crystal or external oscillator used by the 80186 is
twice the CPU clock frequency, while the crystal or

external oscillator used with the 8284 A is three times
the CPU clock frequency.

LOCAL BUS CONTROLLER AND CONTROL
SIGNALS

The 80186 simultaneously provides both local bus con-
troller outputs (RD*, WR*, ALE, DEN*, and DT/R*)

Table 2-14 A.C. Characteristics Chip-Select Timing Requirements

Symbol Parameter Min. Max. Min. Max. Units Test Conditions
Tercsv Chip-Select Active Delay ‘ 66 80 ns
Texesx Chip-Selct Hold from
Command Inactive 35 35 ns
TcHesx Chip-Select Inactive Delay 5 35 10 47 ns
2-25 210912-001
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Table 2-15 A.C. Characteristics CLKIN Requirements

80186 CLKIN Requirements

) 80186 (8 MHz) |80186-6 (6 MH2)
Symbol Parameter Min. Max. Min. Max. | Units Test Conditions
TCKIN CLKIN Period 625 250 83 250 ns
TCKHL CLKIN Fall Time 10 10 ns 35 to 1.0 volts
TCKLH | CLKIN Rise Time 10 10 ns | 1.0 to 35 volts
TCLCK CLKIN Low Time 25 33 ns 1.5 volts
TCHCK | CLKIN High Time ) 25 33 ns | 15 volts

and status outputs (SO*, S1*, S2*) for use with the 8288
bus controller. This is different from the 8086 where the
local bus controller outputs (generated only in minimum
mode) are sacrificed if status outputs (generated only in
maximum mode) are desired. These differences will man-
ifest themselves in 8086 systems and 80186 systems as
follows:

1. Because the 80186 can simultaneously provide local
bus control signals and status outputs, many systems
supporting both a system bus (e.g., a MULTIBUS)
and a local bus will not require two separate external
bus controllers, that is, the 80186 bus control signals
may be used to control the local bus while the 80186
status signals are concurrently connected to the 8288
bus controller to drive the control signals of the sys-
tem bus.

2. The ALE signal of the 80186 goes active a clock
phase earlier on the 80186 then on the 8086 or the
8288. This timing minimizes address propagation
time through the address latches, since typically the
delay time through these latches from inputs valid is
less than the propagation delay from the strobe input
active.

3. The 80186 RD* input must be tied low to provide
queue status outputs from the 80186 (see Figure 2-6).
When so strapped into “queue status mode”, the
ALE and WR* outputs provide queue status informa-
tion. Notice that this queue status information is avail-
able one clock phase earlier from the 80186 than from
the 8086. See Figure 2-7.

HOLD/HLDA VERSUS RQ*/GT*

The 80186 uses a HOLD/HLDA type of protocol for ex-
changing bus mastership (like the 8086 in minimum
mode) rather than the RQ*/GT* protocol used by the
8086 in maximum mode. This allows compatibility with
Intel’s new generation of bus master peripheral devices
(for example the 82586 Ethernet controller or 82730 CRT
controller).

STATUS INFORMATION

The 80186 does not provide $3-S5 status information. On
the 8086, S3 and S4 provide information regarding the
segment register used to generate the physical address of
the currently executing bus cycle. S5 provides informa-
tion concerning the state of the interrupt enable flip-flop.
These status bits are always low on the 80186.

Status signal S6 is used to indicate whether the current
bus cycle is initiated by either the CPU or a DMA device;
subsequently, S6 is always low on the 8086. On the
80186, it is low whenever the current bus cycle is initiated
by the 80186 CPU, and is high when the current bus cycle
is initiated by the 80186 integrated DMA unit.

BUS DRIVE

The 80186 output drivers will drive 200pF loads. This is
double that of the 8086 (100pF). This allows larger sys-
tems to be constructed without the need for bus buffers. It

Table 2-16 A.C. Characteristics CLKOUT Requirements

80186 CLKOUT Timing (200 pF load)

2-26

Symbol Parameter Min. Max. Min. Max. | Units Test Conditions
TCICO | CLKIN to CLKOUT Skew 50 625 | ns

TCLCL | CLKOUT Period 125 | 500 167 500 | ns

TCLCH CLKOUT Low Time 2 TCLCL-75 2 TCLCL-75 ns 1.5 volts

TCHCL CLKOUT High Time /2 TCLCL-7.5 2 TCLCL-75) ns 15 volts

TCH1CH2| CLKOUT Rise Time 15 15 ns | 1.0 to 35 volts
'TCL2CL1 | CLKOUT Fall Time 15 15 ns | 35to1. volts
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Figure 2-5 Major Cycle Timing Waveforms

also means that good grounds must be provided to the READ/WRITE SIGNALS

80186, since its large drivers can discharge its outputs

very quic.kly causing large current transients on the 80186 The 80186 does not provide early and late write signals,

ground pins. as does the 8288 bus controller. The WR* signal gener-
ated by the 80186 corresponds to the early write signal of
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1. Following a Write cycle, the Local Bus is floated by the 80186 only when the
80186 enters a “Hold Acknowledge” state.
2. INTA occurs one clock later in RMX-mode.
3. Status inactive just prior to T,
Figure 2-5 Major Cycle Timing Waveforms (continued)
Table 2-17 80186 Queue Status
01
Qs1 | QS0 Interpretation 80186
QS0 ——] ALE
0 0 no operation ast WR
0 first byte of instruction taken B
from queue ‘ D
1 0 queue was reinitialized =
1 1 subsequent byte of instruction
taken from queue Figure 2-6 Generating Queue Status Information
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Figure 2-7 80186 and 8086 Queue Status Generation

the 8288. This means that data is not stable on the
address/data bus when this signal is driven active.

The 80186 also does not provide differentiated I/0 and
memory ready and write command signals. If these sig-
nals are desired, an external 8288 bus controller may be
used, or the S2* signal may be used to synthesize differ-
entiated commands.

2.5.3 Multiplexed Address/Data Bus
(186, 188)

Because of the bus drive capabilities of the 80186 (200pF,
sinking 2mA, sourcing 400uA, roughly twice that of the
8086), this bus may not require additional buffering in
many small systems. If data buffers are not used in the
system, take steps to prevent bus contention between the
80186 and the devices directly connected to the 80186
data bus. Since the 80186 floats the address/data bus be-
fore activating any command lines, the only requirement
on a directly connected device is that it floats its output
drivers after a read BEFORE the 80186 begins to drive
address information for the next bus cycle (consider the
minimum time from RD* inactive until addresses active
for the next bus cycle (tgyay) Which has a minimum value
of 85ns). If the memory or peripheral device cannot dis-
able its output drivers in time, data buffers will be re-
quired to prevent both the 80186 and the peripheral or
memory device from driving these lines concurrently.
Note, this parameter is unaffected by the addition of wait
states. Data buffers solve this problem because their out-
put float times are typically much faster than the 80186
required minimum.

If buffers are required, the 80186 provides DEN* (Data
ENable) and DT/R* (Data Transmit/Receive) signals to
simplify buffer interfacing. The DEN* and DT/R* signals
are activated during all bus cycles, whether or not the
cycle addresses buffered devices. The DEN* signal is
driven low whenever the processor is either ready to re-
ceive data (during a read) or when the processor is ready
to send data (during a write); that is, any time during an
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active bus cycle when address information is not being
generated on the address/data pins. In most systems, the
DEN* signal should NOT be directly connected to the
OE* input of buffers, since unbuffered devices (or other
buffers) may be directly connected to the processor’s
address/data pins. If DEN* were directly connected to
several buffers, contention would occur during read cy-
cles, as many devices attempt to drive the processor bus.
Rather, DEN* should be a factor (along with the chip se-
lects for buffered devices) in generating the output enable
input of a bi-directional buffer.

The DT/R* signal determines the direction of data propa-
gation through the bi-directional bus buffers. It is high
when ever data is being driven out from the processor,
and is low whenever data is being read into the processor.
Unlike the DEN* signal, DT/R* may be directly con-
nected to bus buffers, since this signal does not usually
directly enable the output drives of the buffer. See Figure
2-8 for an example data bus subsystem supporting both
buffered and unbuffered devices. Observe the A side of
the 8286 buffer is connected to the 80186, the B side to
the external device. The B side of the buffer has greater
drive capacity than the A side (since it is meant to drive
much greater loads). The DT/R* signal can directly drive
the T (transmit) signal of the buffer, since it has the cor-
rect polarity for this configuration.

CONTROL SIGNALS

The 80186 directly provides the control signals RD#*,
WR*, LOCK*, and TEST*. In addition, the 80186 pro-
vides the status signals SO*-S2* and S6 from which all
other required bus control signals can be generated.

RD* AND WR*

The RD* and WR* signals strobe data to or from memory
or I/O space. The RD* signal is driven low off the begin-
ning of T2, and is driven high off the beginning of T4
during all memory and 1/0 reads (see Figure 2-9). RD*
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Figure 2-8 Example 80186 Buffered/Unbuffered Data Bus

will not become active until the 80186 has ceased driving
address information on the address/data bus. Data is sam-
pled into the processor at the beginning of T4. RD* will
not go inactive until the processor’s data hold time (10ns)
has been satisfied.

Note that the 80186 does not provide separate 1/0 and
memory RD* signals. If separate 1/O read and memory
read signals are required, they can be synthesized using
the S2* signal (which is low for all I/O operations and
high for all memory operations) and the RD* signal (see

Figure 2-10). If this approach is used, the S2* signal will
required latching, since the S2* signal (like SO* and S1*)
goes to a passive state well before the beginning of T4
(where RD* goes inactive). If S2* was directly used for
this purpose, the type of read command (I/O or memory)
could change just before T4 as S2* goes to the passive
state (high). The status signals may be latched using ALE
in an identical fashion as is used to latch the address sig-
nals (often using the spare bits in the address latches).

CLOCK
ouT

ADO-
AD15

ADDRESS

ns min*

DATA FROM MEMORY -/
. OR I/0

1. to az: Clock low until address float=35 ns max
2. to gL Clock low until RD active =
. tazrL: Address float until RD active = 0 ns min
. tover: Data valid until-clock low (data input set-up time) = 20 ns min*
. teLpx: Clock low until data invalid (data input hold time from clock) =

70 ns max

6. ‘cmn Clock low until RD high = 10 ns min

7. tauav: RD high until addresses valid = 85 ns min

8. tnuox Read high until data invalid (data input hold from RD) = 0 ns min*
* Input requirements of 80186, all others are output characteristics

Figure 2-9 Read Cycle Timing
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Figure 2-10 Generating I/O and Memory Read Signals

Often the lack of separate I/O and memory RD* signal is
not important in an 80186 system. Each of the 80186 chip
select signals will respond on only one of memory or I/O
accesses (the memory chip selects respond only accesses
to memory space; the peripheral chip selects can respond
to accesses to either I/O or memory space, at programmer
option). Therefore, the chip select signal enables the ex-
ternal device only during accesses to the proper address in
the proper space.

The WR* signal is also driven low off the beginning of T2
and driven high off the beginning of T4. Like the RD*
signal, the WR* signal is active for all memory and 1/0
writes, and also like the RD* signal, separate 1/O and
memory writes may be generated using the latched S2*
signal along with the WR* signal (see Figure 2-11). More
importantly, however, is the active going edge of write. At
the time WR* makes its active (high to low) transition,
valid write data is NOT present on the data bus. When
using this signal as a write enable signal for DRAMs and
iRAM:s consider that both of these devices require that the
write data be stable on the data bus at the time of the
inactive to active transition of the WE* signal. In DRAM

applications, a DRAM controller (such as the Intel 8207
or 8203) solves this problem while with iRAMs this prob-
lem may be solved by placing cross-coupled NAND gates
(S-R latch) between the CPU and the iRAMs on the WR*
line (see Figure 2-12). This S-R latch will delay the active
going edge of the WR* signal to the iRAMs by a clock
phase, allowing valid data to be driven onto the data bus.

STATUS LINES

The 80186 provides three status outputs which are used to
that indicate the type of bus cycle currently being exe-
cuted. These signals go from an inactive state (all high) to
one of seven possible active states during the T state im-
mediately preceding T1 of a bus cycle (see Figure 2-13).
The possible status line encodings and their interpreta-
tions are given in Table 2-18. The status lines are driven
to their inactive state in the T state (T3 or Tw) immedi-
ately preceding T4 of the current bus cycle.

The status lines may be directly connected to an 8288 bus
controller, which can be used to provide local bus control

I T,

CLKOUT

e

|
L

\L._

|
L
ADO- ADDRESS | WRI | qADDﬂESS
AD15 INFO | i pral INFO
— T T 1 |
WR @\ | | @l / i
| | T
| | ] @ |
| + + |
I

. toLpy: Clock low until data valid = 44 ns max
toycTy: Clock low until WR active = 70 ns max

- tovetx: Clock low until WR inactive = 55 ns max
. tcLpox: Clock high until data invalid = 10 ns max

SN SE AN I

. WR inactive until data invalid = tg, ¢, Min — toycrx * toLoox
=125—55+10
=80ns

Figure 2-11 Write Cycle Timing

2-31 210912-001



80186/80188 CPU

>

CLKouT

DELAYED

WRITE
(DATAVALID
ON LEADING EDGE)

Figure 2-12 Synthesizing

Delayed Write from the 80186

T3 or
T | Ts

|
I ]
Decision: No bus activity required,
| idle bus cycles will be inserted
|

T

|

|
|
[ |

aock ___| | L1 L
out ] ] |
1 ] l
ACTIVE | | |
STATUS _ STATUS | / I NACTIE
INFO ! Tyor : :

| Tw | Ta | Ty
| Decision: Another bus cycle immediately |
| required—no me. bus cycles ]

cLock [ r I [

out

1 [ 1

ACTIVE | Q [ ™ ACTIVE
1 INACTIVE l

STATUS STATUS STATUS , _STATUS
LINES 1 1 1

Figure 2-13 Active-Inactive Status Transitions

Table 2-18 80186 Status Line Interpretation

§2 | S1 | SO Operation

0 0 0 interrupt acknowledge
0 0 1 read I/O

0 1 0 write I/O

0 1 1 halt

1 0 0 instruction fetch

1 0 1 read memory

1 1 0 write memory

1 1 1 passive

signals or MULTIBUS control signals (see Figure 2-14).
Use of the 8288 bus controller does not preclude the use
of the 80186 generated RD*, WR* and ALE signals,
however. The 80186 directly generated signals may be
used to provide local bus control signals, while an 8288
provides MULTIBUS control signals, for example.

3 8288
§0-52 |-—4—| S0-52

BUS CONTROL
SIGNALS

CLK

Figure 2-14 80186/8288 Bus Controller
Interconnection

The 80186 provides two additional status signals: S6 and
S7. 87 is equivalent to BHE* (refer to Volume I of this
User’s Guide) and appears on the same pin as BHE*.
BHE*/S7 changes state, reflecting the bus cycle about to
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be run, in the middle of the T state (T4 or Ti) immediately
preceding T1 of the bus cycle. This timing means that
BHE*/S7 does not need to be latched, i.e., it may be used
directly as the BHE* signal. S6 provides information con-
cerning the unit generating the bus cycle. It is time multi-
plexed with A19, and is available during T2, T3, T4, and
Tw. In the 8086 family, all central processors (e.g., the
8086, 8088, and 8087) drive this line low, while all I/O
processors (e.g., 8089) drive this line high during their
respective bus cycles. Following this scheme, the 80186
drives this line low whenever the bus cycle is generated by
the 80186 CPU, but drives it high when the bus cycle is
generated by the integrated 80186 DMA unit. This proc-
ess allows external devices to distinguish between bus cy-
cles fetching data for the CPU from those transferring
data for the DMA unit.

The three other status signals, S3, S4, and S5, available
on the 8086 are not provided on the 80186. Together, S3
and S4 indicate the segment register from which the cur-
rent physical address derives. S5 indicates the state of the
interrupt flip-flop. On the 80186, these signals will al-
ways be low.

TEST* AND LOCK*

The 80186 provides a TEST* input and a LOCK* output.
The TEST* input is used in conjunction with the proces-
sor WAIT instruction. TEST* is typically driven by a
processor extension (like the 8087) to indicate whether it
is busy. Then, by executing the WAIT (or FWAIT) in-
struction, the central processors may be forced to tempo-
rarily suspend program execution until the processor
extension indicates that it is idle by driving the TEST*
line low.

The CPU drives LOCK* output low whenever the data
cycles of a LOCKED instruction are executed. A
LOCKED instruction is generated whenever the LOCK
prefix occurs immediately before an instruction. The
LOCK prefix is active for the single instruction immedi-
ately following the LOCK prefix. This signal indicates to
a bus arbiter (e.g., the 8289) that a series of locked data
transfers is occurring. The bus arbiter should not release
the bus while locked transfers are occurring. The 80186
will not recognize a bus HOLD, nor will it allow DMA
cycles to be run by the integrated DMA controller during
locked data transfers. Locked transfers are used in multi-
processor systems to access memory based semaphore
variables which control access to shared system resources
(refer to Intel Application Note AP-106, ‘‘Multiprogram-
ming with the iAPX88 and iAPX86 Microsystems,” by
George Alexy, September 1980).

On the 80186, the LOCK* signal goes active during T1 of
the first DATA cycle of the locked transfer. It is driven
inactive three T states after the beginning of the last DATA
cycle of the locked transfer. On the 8086, the LOCK*
signal is activated immediately after the LOCK prefix is

Figure 2-15 Circuit Holding LOCK* Active
Until Ready is Returned

executed. The LOCK prefix may be executed well before
the processor is prepared to perform the locked data
transfer. This process activates the LOCK* signal before
the first LOCKED data cycle is performed. Since LOCK*
is active before the processor requires the bus for the data
transfer, opcode pre-fetching can be LOCKED. However,
since the 80186 does not activate the LOCK* signal until
the processor is ready to actually perform the locked
transfer, locked pre-fetching will not occur with the
80186.

The LOCK* signal does not remain active until the end of
the last data cycle of the locked transfer; this may cause
problems in some systems if, for example, the processor
requests memory access from a dual ported RAM array
and is denied immediate access (because of a DRAM re-
fresh cycle, for example). When the processor finally
gains access to the RAM array, it may have already
dropped its LOCK* signal. This allows the dual port con-
troller to give the other port access to the RAM array
instead. Figure 2-15 illustrates an example circuit which
can be used to hold LOCK* active until a RDY has been
received by the 80186.

MULTIBUS® APPLICATIONS

The 8288 and 8289 are the bus controlled and multi-
master bus arbitration devices used with the 8086 and
8088. Because the 80186 bus is similar to the 8086 bus,
they can be directly used with the 80186 (see Figure
2-16).

The 8288 bus controller generates control signals (RD*,
WR*, ALE, DT/R*, DEN, etc.) for an 8086 maximum
mode system. It derives its information by decoding status
lines SO*-S2* of the processor. Because the 80186 and the
8086 drive the same status information on these lines, the
80186 can connect directly to the 8288 just as in an 8086
system. Using the 8288 with the 80186 does not prevent
using the 80186 control signals directly. Many systems
require both local bus control signals and system bus con-
trol signals. In this type of system, the 80186 lines could
be used as the local signals, with the 8288 lines used as
the system signals.
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Figure 2-16 80186/8288/8289
Interconnection

NOTE

In an 80186 system, the 8288-generated ALE
pulse occurs later than that of the 80186 itself.

In multi-master bus systems, use the 8288 ALE pulse to
strobe the addresses into the system bus address latches to
insure that the address hold times are met.

The 8289 bus arbiter arbitrates the use of a multi-master
system bus among various devices each of which can be-
come the bus master. This component also decodes status
lines SO*-S2* of the processor directly to determine when
the system bus is required. When the system bus is re-
quired, the 8289 forces the processor to wait until it has
acquired control of the bus, then it allows the processor to
drive address, data and control information onto the sys-
tem bus. The system determines when it requires system
bus resources by an address decode. Whenever the ad-
dress being driven coincides with the address of an
on-board resource, the system bus is not required and
thus will not be requested. The circuit shown in Figure
2-16 factors the 80186 chip select lines to determine when
the system bus should be required, or when the 80186
request can be satisfied using a local resource.

2.5.4 Data Transfer

During clock cycles T2, T3, Tw, and T4 of a bus cycle the
multiplexed address/data bus becomes a 16-bit data bus.
Data transfers on this bus may be either in bytes or in
words. All memory is byte addressable. This means that

the upper and lower byte of a 16-bit word each have a
unique byte address by which they may be individually
accessed, even though they share a common word address
(see Figure 2-17).

All bytes with even addresses (A0 = 0) reside on the lower
8 bits of the data bus, and all bytes with odd addresses
(A0 = 1) reside in the upper 8 bits of the data bus. When-
ever an access is made to only an even byte, A0 is driven
low, BHE* is driven high, and the data transfer occurs on
DO0-D7 of the data bus. Whenever an access is made to
only an odd byte, BHE* is driven low, AQ is driven high,
and the data transfer takes place on D8-D16 of the data
bus. If a word access is performed to an even address,
both A0 and BHE* are driven low and the data transfer
takes place over the entire 16-bit data bus (D0-D15).

Word accesses are made to the addressed byte and the
next higher numbered byte. Two byte accesses must be
performed if a word access is performed to an odd ad-
dress, the first to access the odd byte at the first word
address on D8-D15, and the second to access the even
byte at the next sequential word address on DO-D7. For
example, byte 0 and byte 1 can be individually accessed
(read or written) in two separate bus cycles (byte ac-
cesses) to byte addresses 0 and 1 at word address O (see
Figure 2-17). They may also be accessed together in a
single bus cycle (word access) to word address 0. How-
ever, two word access bus cycles are required to address
1. The first cycle accesses byte 1 at word address O (note
byte 0 will not be accessed), and the second cycle ac-
cesses byte 2 at word address 2 (note byte 3 will not be
accessed). Therefore, to maximize processor perform-
ance, all data should be located at even addresses.

When byte reads are made, the data returned on the half
of the data bus not being accessed is ignored. When byte
writes are made, the data driven on the half of the data bus
not being written is indeterminate.

2.5.5 Memory and I/O Peripherals Interface

The 80186 uses the same techniques for interfacing mem-
ory (i.e., static RAM, dynamic RAM, EPROM, and
ROM) as used for the 8086. Before continuing with this
section, review the discussions regarding memory inter-
face in paragraphs 1.5.4.

MEMORY INTERFACE

The 80186 includes a chip select unit that generates hard-
ware chip select signals for memory and I/O accesses
generated by the 80186 CPU and DMA units. This-unit is
programmable to fulfill the chip select requirements (in
terms of memory device or bank size and speed) of most
small and medium sized 80186 systems.
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Figure 2-17 Physical Memory Byte/Word Addressing

Chip selects are driven for internally generated bus cycles
only. Any cycles generated by an external unit (e.g., an
external DMA controller) will not cause the chip selects
to go active. Therefore, any external bus masters must be
responsible for their own chip select generation. Also,
during a bus HOLD, the 80186 does not float (i.e., tri-
state) the chip-select lines. Therefore, logic must be in-
cluded to enable the devices to which the external bus
master wishes to access (see Figure 2-18).

ROM and EPROM Interface

The Intel 2764 EPROM provides one of the simplest
memory interfaces to implement with the 80186. The ad-
dress is latched using the address generation circuit (see
Figure 2-19). The AO line of each EPROM is connected

to the Al address line from the 80186, NOT to the AO
line. Also, AO signals a data transfer on only the lower 8
bits of the 16-bit data bus. The EPROM outputs are con-
nected directly to the address/data inputs of the 80186,
and the 80186 RD* signal is used as the OE* for the
EPROMs.

The chip select output of the 80186 drives the chip enable
of the EPROM directly. For this configuration, access
time for the EPROMs is calculated as follows:

Time from address:

terav + (3 + N)*tor o — tvov(8282) — tpyer
=375+ (N * 125)—-44-30-20

=281+ (N *125) ns

80186 CHIP SELECT
EXTERNALLY GENERATED CHIP SELECT

MEMORY or I/0
:Do'—nswcs CHIP SELECT

Figure 2-18 80186/External Chip Select/Device Chip Select Generation

2764 2764
ucs CE L CE
s 13 13 | A12 3 | a2
R 7 A0 7 A0
RD OE —| OE
00-07 00-07
8
ADO-AD7 v
8
AD8-AD15 -

Figure 2-19 Example 2764/80186 Interface
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Time from chip select:

(3 +N)*tere ~teresy —tover
=375+ (N * 125)—-66—20
=289+ (N * 125) ns

Time from RD* (OE*):

(2 +N)tor oL —torre —tover
=250+ (N * 125)-70-20
=160+ (N * 125) ns

where:

teeav = time from clock low in T1 until address are
valid

teeee = clock period of processor

tyoy = time from input valid of 8282 until output valid
of 8282

tover = 186 data valid input setup time until clock low
time of T4

tecsy = time from clock low in T1 until chip selects are
valid

tcere = time from clock low in T2 until RD* goes low

N = number of wait states inserted

As indicated in the preceding calculations, 250ns
EPROMs must be used for zero wait state operation. The
only significant parameter not included in the preceding
calculations is tgy,y. This is the time from RD* inactive
(high) until the 80186 begins driving address information.
This parameter is typically 85ns to meet the 2764-25
(250ns speed selection) output float time requirement
(85ns). If slower EPROMs are used, a discrete data buffer
MUST be inserted between the EPROM data lines and the
address/data bus. This is required since these devices may
continue to drive data information on the multiplexed
address/data bus when the 80186 begins to drive address
information for the next bus cycle.

RAM Interface

Randon access memory (RAM) devices are interfaced to
the 80186 very much as they are interfaced to the 8086.
The Intel 2186 iRAM is a memory device ideally suited
for 80186 applications (see Figure 2-20). This RAM de-
vice incorporates many requisite system features, includ-
ing low power dissipation, automatic initialization,
extended cycle operation, and two-line bus control to
eliminate bus contention. The 2186 almost ideally
matches the 80186 because of its large scale integration
and the fact that it does not require address latching.

The 2186 is internally a dynamic RAM integrated with
refresh and control circuits. It operates in two modes:
pulse mode and late cycle mode. Pulse mode is entered if
the CE* input signal to the device is low for a maximum
of 130ns, and requires the command input (RD* or WE*)
to go active within 90ns after CE*. Because of these re-
quirements, interfacing the 80186 to the 2186 in pulse
mode would be difficult. Instead, the late cycle mode is

used to afford a much simpler interface with no loss of
performance. The iRAM automatically selects between
these modes by the nature of the control signals.

The 2186 is a leading edge triggered device, therefore,
address and data information are strobed into the device
on the active going (high to low) transition of the com-
mand signal. This action requires that both CE* and WR*
be delayed until the address and data driven by the 80186
are guaranteed stable. Figure 2-20 shows a simple circuit
which can be used to perform this function. ALE CAN-
NOT be used to delay CE* if addresses are not latched
externally. This would violate the address hold time re-
quired by the 2186 (30ns).

Since the 2186 devices are RAMs, data bus enables BHE*
and AO MUST be used to factor either the chip enables or
write enables of the lower and upper bytes of the 16-bit
RAM memory system. If this is not done, all memory
writes, including single byte writes, will write to both the
upper and lower bytes of the memory system. The exam-
ple system shown in Figure 2-20 uses BHE* and AOQ as
factors to the 2186 CE* because both of these signals (AQ
and BHE*) are valid when the address information is
valid from the 80186.

The 2186 requires a certain amount of recovery time be-
tween the time chip enable goes inactive and the chip en-
able going active to insure proper operation. For a
“normal” cycle (a read or write), this time is tgyg =40
ns. The 80186 chip select lines go inactive soon enough at
the end of a bus cycle to provide the required recovery
time even if two consecutive accesses are made to the
iRAMs. If the 2186 *CE is asserted without a command
signal (WE* or OE*), a false memory cycle (FMC) is
generated. Whenever an FMC is generated, the recover
time is much longer; another memory cycle must not be
initiated for 200ns. As a result, if the memory system will
generate FMCs, CE* must be taken away in the middle of
the T state (T3 or Tw) immediately preceding T4 to insure
that two consecutive cycles to the iRAM will not violate
this parameter. Status going passive (all high) can be used
for this purpose. These lines will all go high during the
first phase of the next to last T state (either T3 or Tw) of a
bus cycle.

Since the 2186 is a dynamic device, it requires refresh
cycles to maintain data integrity. The circuits that gener-
ate these refresh cycles are integrated within the 2186. To
support the required refresh cycles the 2186 has a ready
line which is used to suspend processor operation if a
processor RAM access coincides with an internally gener-
ated refresh cycle. The ready line is an open collector
output, allowing many devices to be wire OR’ed together,
since more than one device may be accessed at a time.
These lines are also normally ready, which means that
they will be high whenever the 2186 is not being ac-
cessed, i.e., they will only be driven low if a processor
request coincides with an internal refresh cycle. There-
fore, the ready lines from the iRAM must be factored into
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Figure 2-20 Example 2186/80186 Interface
the 80186 RDY circuit only during accesses to the iRAM 3 * tor oL — toresy — (TTL delay) — tpyer
itself. Since the 2186 refresh logic operates asynchron- =375—-66—30—20ns
ously to the 80186, this RDY line must be synchronized =258 ns
for proper operation with the 80186, either by the inte-
grated ready synchronizer or by an external circuit. The where:
example circuit uses the integrated synchronizer associ- tec. = CPU clock cycle time
ated with the ARDY processor input. teresy = time from clock low in T1 until chip selects are
valid
tovee = 80186 data in setup time before clock low in T4

The 2186 ready lines are active unless a processor access
coincides with an internal refresh cycle. These lines must
go inactive after a cycle is requested in time to insert wait
states into the data cycle. The 2186 drives this line low
within 50ns after CE* is received, which is early enough
to force the 80186 to insert wait states if they are required.
Of primary concern in this case is that the ARDY line be
driven not active before its setup time in the middle of T2.
This setup time is required by the nature of the 80186
asynchronous ready synchronization circuits. Since the
2186 RDY pulse may be as narrow as 50ns, if ready was
returned after the first stage of the synchronizer, and sub-
sequently changed states within the ready setup and hold
time of the high to low going edge of the CPU clock at the
end of T2, improper operation may occur.

The example interface shown in Figure 2-20 has a zero
wait state RAM read access tie from CE* of:

2-37

The data valid from OE* active is less than 100ns, and is
therefore not an access time limiter in this interface. Ad-
ditionally, the 2186 data float time from RD* inactive is
less than the 85ns 80186 imposed maximum. The CE*
generation circuit shown in Figure 2-20 provides an ad-
dress setup time of at least 11ns, and an address hold time
of at least 35ns (assuming a maximum two level TTL de-
lay of less than 30ns).

Write cycle address setup and hold times are identical to
the read cycle times. This circuit shown provides at least
11ns write data setup and 100ns data hold time from
WE*, easily meeting the Ons setup and 40ns hold times
required by the 2186.

For more information concerning 2186 timing and inter-
facing refer to the 2186 data sheet in the Memory Compo-
nents Handbook (Intel Order Number: 210830-004, or
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Figure 2-21 Example 8203/DRAM/80186 Interface

the Intel Application Note AP-132, “Designing Memory
systems with the 8Kx8 iRAM” by John Fallin and
William Righter (June 1982).

8203 Dynamic RAM Interface

The Intel 8203 Dynamic RAM Controller is designed spe-
cifically to provide all of the signals necessary (i.e., con-
trol, address multiplexing, and refresh generation) to use
2164, 2117 or 2118 dynamic RAMs in microcomputer
systems. As such, it is ideally suited to 80186 applica-
tions. For an application example of an 80186 used with
the 8203 and interfaced with 64K dynamic RAMs (see
Figure 2-21).

All 8203 cycles are generated from control signals (RD*
and WR*) provided by the 80186. These signals will not
go active until T2 of the bus cycle. In addition, since the
8203 clock (generated by the internal crystal oscillator of
the 8203) is asynchronous to the 80186 clock, all memory
requests by the 80186 must be synchronized to the 8203
before the cycle will be run. To minimize this synchroni-

zation time, the 8203 should be used with the highest
speed crystal that will maintain DRAM compatibility.
Even if a 25 MHz crystal is used (the maximum allowed
by the 8203), two wait states will be required by the ex-
ample circuit when using 150ns DRAMs with an 8 MHz
80186, three wait states if 200ns DRAMs are used (see
Figure 2-22).

The entire RAM array controlled by the 8203 can be se-
lected by one or a group of the 80186 provided chip se-
lects. These chip selects can also be used to insert the wait
states required by the interface.

Since the 8203 is operating asynchronously to the 80186,
the RDY output of the 8203 (used to suspend processor
operation when a processor DRAM request coincides
with a DRAM refresh cycle) must be synchronized to the
80186 (the 80186 ARDY line provides the necessary
ready synchronization). The 8203 ready outputs operate
in a normally not ready mode, that is, they are only driven
active when an 8203 cycle is being executed, and a re-
fresh cycle is not being run. This process differs funda-
mentally from the normally ready mode used by the 2186
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Figure 2-22 8203/2164A-15 Access Time Calculation

iRAMs. The 8203 SACK* signal is presented to the
80186 only when the DRAM is being accessed. Notice
that the SACK* output of the 8203 is used, rather than the
XACK* output. Since the 80186 will insert at least one
full CPU clock cycle between the time RDY is sampled
active, and the time data must be present on the data bus,
using the XACK* signal would insert unnecessary addi-
tional wait states, since it does not indicate ready until
valid data is available from the memory. (For more infor-
mation about 8203/DRAM interfacing and timing, refer
to the 8203 data sheet, or Intel Application Note AP97A,
“Interfacing Dynamic RAM to iAPX86/88 Systems Us-
ing the Intel 8202A and 8203”" by Brad May, April 1982).

8208 Dynamic RAM Interface

The Intel 8208 Dynamic RAM Controller is designed to
address, refresh and directly drive 64K and 256K Dy-
namic RAM’s in iAPX 186 and iAPX 188 systems. The
8208 contains the control circuits capable of supporting
one of several possible interface bus structures (see Fig-
ure 2-23). It may be programmed to run synchronous or
asynchrouous to the processor clock. The 8208 has been
optimized to run synchronously with the 80186/188 and

2-39

when programmed to run asynchronously it inserts the
necessary synchronization circuits for RD*, WR*, PE*,
and PCTL inputs.

The 8208 is capable of addressing 64K and 256K dynamic
RAMs. It directly supports the 2164A RAM family or
any RAM with similar timing requirements. Figure 2-24
shows the connection of the processor address bus to the
8208 using the different RAMs.

The 8208 divides memory into two banks with each bank
having its own Row Address Strobe (RAS*) pair and
Column Address Strobe (CAS*) pair. This organization
permits RAM cycle interleaving. RAM cycle interleaving
overlaps the start of the next RAM cycle with the RAM
precharge period of the previous RAM cycle. Hiding the
precharge period of one RAM cycle behind the data ac-
cess period of the next RAM cycle optimizes memory
bandwidth and is effective as long as successive RAM
cycles occur in the alternate banks. Successive data ac-
cesses to the same bank cause the 8208 to wait for the
precharge time of the previous RAM cycle. The excep-
tion to this is when the 8208 is programmed in an iAPX
186 synchronous configuration consecutive read cycles to
the same bank do not result in additional wait states, zero
wait state reads result.
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Figure 2-23 8208 Dynamic RAM Controller Interfaces

If all of the RAM banks are not occupied, the 8208 reas-
signs the RAS* and CAS* strobes to allow wider data
words without increasing the loading on the RAS* and
CAS* drivers. Table 2-19 shows the bank selection decod-
ing and the horizontal word expansion, including RAS*
and CAS* assignments. For example, if only one RAM
bank is occupied, the two RAS* and CAS* strobes are
activated with the same timing. Program bit RB is not
used to check the bank select input BS. System design
must protect from “illegal”, non-existent banks of mem-
ory by deactivating the PE input when addressing an “il-
legal”, non-existent bank of memory. The 8208 adjusts
and optimizes either the fast or slow RAMS as
programmed.

a. 8208 Memory Initialization

After programming is complete, the 8208 performs eight
RAM ““wake-up” cycles to prepare the dynamic RAM for
proper device operation. During the “warm-up” some of
the RAM interface parameters may not be met, but this
should not harm the dynamic RAM array.

b. Refresh

The 8208 provides an internal refresh interval counter and
a refresh address counter to allow the 8208 to refresh
memory. It will refresh 128 rows every 2 milliseconds or
256 rows every 4 milliseconds. This allow RAM refresh
options to be supported. Also, the 8208 has the ability to
refresh 256 row address locations every 2 milliseconds
via the Refresh Period programming option. the 8208
may be programmed for any of five refresh options.
These are:

1. Internal refresh only;

2. External refresh with failsafe protection;

3. External refresh without failsafe protection;
4. Burst Refresh modes;

5. No Refresh.

The refresh time interval may be decreased by 10%, 20%
or 30%. This option allows the 8208 to compensate for
reduced clock frequencies. An additional 5% interval
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Figure 2-24 8208 Processor Address Interfaces

shortening is built-in in all refresh interval options to com-
pensate for lock variations and non-immediate response to
the internally generated refresh request.

c. External Refresh Requests After RESET

External refresh requests are not recognized by the 8208
until after it is finished programming and preparing mem-
ory for access. Memory preparation includes 8 RAM cy-
cles to prepare and ensure proper dynamic RAM
operation. The time it takes for the 8208 to recognize a
request is shown as follows.

Table 2-19 Bank Selection Decoding and Word

Expansion
Program | Bank

Bit Input 8208

RB BS RAS/CAS Pair Allocation
0 0 R'KSO‘ 4 CTSO‘ ,to Bank 0
0 1 Illegal
1 0 'FTKSO, CAS) to Bank 0
1 1 RAS,, CAS, to Bank 1

TRESP = PROG + TPREP

where:
TPROG = (40)(TCLCL) which is programming time
TPREP = (8)(32)(TCLCL) which is RAM warm-up

time
if TCLCL = 125 nsec then TRESP =37 usec

d. Reset

The 8208 uses the falling edge of the asynchronous RE-
SET input to directly sample the logic levels of the PCTL,
RFRQ, and PDI inputs. The internally synchronized fall-
ing edge of reset is used to begin programming operations
(shifting the contents of the external shift register, if
needed, into the PDI input).

The 8208 will register but not respond to command and
status inputs until programming is completed. A simple
means of preventing commands or status from occurring
this period is to differentiate the system reset pulse to ob-
tain a smaller reset pulse for the 8208. The total time of
the 8208 reset pulse and the 8208 programming time must
be less than the time before the first command the CPU
issues in systems that alter default port synchronization
programming bit (default is synchronous interface). Dif-
ferentiated reset is unnecessary when the default synchro-
nization programming is used.

The differentiated reset pulse would be shorter than the
system reset pulse by at least the programming period re-
quired by the 8208. The differentiated reset pulse first
resets the 8208, and system reset would reset the rest of
the system. While the rest of the system is still in reset,
the 8208 completes its programming. Figure 2-25 illus-
trates a circuit to accomplish this task. Within four clocks
after RESET goes active, all the 8208 outputs will go
high, except for AO0-2, which will go low.

2.5.6 Interpreting the 80186/80188 Bus
Timing Diagrams

The 80186 bus and the 8086 bus are very similar in struc-
ture. Both include a multiplexed address/data bus, along
with various control and status lines. Table 2-20 lists the
80186 bus signals by function and name. Each bus cycle
requires a minimum of 4 CPU clock cycles along with
any number of wait states required to accommodate the
speed access limitations of external memory or peripheral
devices. The bus cycles initiated by the 80186 CPU are
identical to those initiated by the 80186 integrated DMA
unit. The following paragraphs describe the 80186 bus
timing with all timing values given for an SMHz 80186.
Any future speed selections for the 80186 may have dif-
ferent values for the various parameters.
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Figure 2-25 8208 Differentiated Reset Circuit

Each 80186 clock cycle (called “T* states) are numbered
sequentially T;, T,, T, T, and T,. Additional idle T
states (T;) can occur between T, and T, when the proces-
sor requires no bus activity (instructions fetches, memory
writes, I/O reads, etc.). The ready signals control the
number of wait states (T,,) inserted in each bus cycle. This
number can vary from zero to positive infinity.

The beginning of the T state is signaled by a high to low
transition of the CPU clock. Each T state is divided into
two phases, phase 1 (or the low phase) and phase two (or
the high phase) which occur during the low and high lev-
els of the CPU clock, respectively (see Figure 2-26).

Different types of bus activity occur during all of the
T-states (see Figure 2-27). Address generation informa-
tion occurs during T,, data generation during T,, T,, T,,
and T,. The beginning of a bus cycle is signaled by the
status lines of the processor going from a passive state (all
high) to an active state in the middle of the T-state imme-

CLOCKOUT

I o o2 |
| wow | (GH |
| PHASE) | PHASE) |
I l

Figure 2-26 Single T-State

diately before T, (either T, or T;). Because information
concerning an upcoming bus cycle occurs during the
T-state immediately before the first T-state of the actual
bus cycle, two different types of T, and T; can be gener-
ated. One where the T-state is immediately followed by a
bus cycle and one where the T-state is immediately fol-
lowed by an idle T state.

During the first type of T, or T;, status information con-
cerning the upcoming bus cycle is generated. This infor-
mation will be available no later than tcygy (55 ns) after
the low-to-high transition of the 80186 clock in the middle
of the T state. During the second type of T, or T;, the
status outputs remain inactive (high), since no bus cycle is
to be started. This means that the decision per the nature
of a T, or T; state (i.e., whether it is immediately followed
by a T; or a T)) is decided at the beginning of the T-state
immediately preceding the T, or T; (see Figure 2-13).
This has consequences for the bus latency time.

Physical addresses are generated by the 80186 during T,
of the bus cycle. Since the address and data lines are mul-
tiplexed on the same set of pins, addresses must be
latched during T, if they are required to remain stable for
the duration of the bus cycle. To facilitate latching of the
physical address, the 80186 generates an active high ALE
(Address Latch Enable) signal which can be directly con-
nected to a transparent latch’s strobe input.

Table 2-20 80186 Bus Signals

Function Signal Name
address/data ADO-AD15 _
address/status A16/S3-A19-S6,BHE/S7
co-processor control TEST )
local bus arbitration HOLDHLDA
local bus control ALE,RD,WR,DT/R,DEN
multi-master bus LOCK
ready (wait) interface SRDY,ARDY
status information S0-S2
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Figure 2-27 Example 80186 Bus Cycle

Addresses are guaranteed valid for no more than tq; 5y (44
ns) after the beginning of T,, and will remain valid at least
teax (10 ns) after the end of T,. See Figure 2-28 for
80186 physical address generation parameters. The ALE
signal is driven high in the middle of the T state (either T,
or T;) immediately preceding T, and is driven low in the
middle of T}, no sooner than t,y,;, (30 ns) after addresses
become valid. This parameter (t,y,,) is required to satisfy
the address latch set-up times of address valid until strobe
inactive. Addresses remain stable on the address/data bus
at least t;; ox (30 ns) after ALE goes inactive to satisfy
address latch hold times of strobe inactive to address
invalid.

Because ALE goes high long before addresses become
valid, the delay through the address latches will be mainly

the propagation delay through the latch rather than the
delay from the latch strobe, which is typically longer than
the propagation delay. For the Intel 8282 latch, this pa-
rameter is tjyoy, the input valid to output valid delay when
strobe is held active (high). Note that the 80186 drives
ALE high one full clock phase earlier than either the 8086
or 8288 bus controller. The 80186 also keeps ALE high
throughout the 8086 or 8288 ALE high time (i.e., the
80186 ALE pulse is wider).

A typical circuit for latching physical addresses (see Fig-
ure 2-29) uses three 8282 transparent octal non-inverting
latches to demultiplex all 20 address bits provided by the
80186. Typically, the upper 4 address bits are used only to
select among various memory components and subsys-
tems, so when the integrated chip selects (see paragraph

min

T,0R
T oo
cLocK
o o |
1
|
ALE |
|
' YVALID
A0-A19 ; ADDRESS
I -
NOTES:

1. toyn: Clock high to ALE high=35 ns max

2. to av: Clock low to address valid=44 ns max

3. tgy: Clock high to ALE low=35 ns max

4.t 5y Clock low to address invalid (address hold from clock low)=10 ns

5. t, ax: ALE low to address invalid (address hold from ALE)=30 ns min
6. t,ya : Address valid to ALE low (address setup to ALE)=30 ns min

Figure 2-28 80186 Address Generation Timing
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Figure 2-29 Demultiplexing the 80186 Address Bus

2.8.4) are used, these upper bits do not need to be
latched. The worst case address generation time from the
beginning of T, (including address latch propagation time
tivov of the Intel 8282) for the circuit is:

teoav (44 ns) + tyoy (30 ns) =74 ns

Many memory and peripheral devices may not require
addresses to remain stable throughout data transfer. Ex-
amples of these are the 80130 and 80150 operating system
firmware chips, and the 2186 8K x 8 iRAM. If a system is
entirely constructed of these types of devices, addresses
do not need to be latched. In addition, two of the periph-
eral chip select outputs from the 80186 may be configured
to provide latched A1 and A2 outputs for peripheral regis-
ter selects in a system which does not demultiplex the
address/data bus.

One additional signal is generated by the 80186 to address
memory. This is BHE* (Bus High Enable). This signal,
along with AO, is used to enable byte devices connected to
either or both halves (bytes) of the 16-bit data bus. Be-
cause AO is used only to enable devices onto the lower
half of the data bus, memory chip address inputs are usu-
ally driven by address bits A1-A19, NOT A0-A19. This
provides 512K unique word addresses, or 1M unique
BYTE addresses. BHE* is not present on the 8-bit 80188.
All data transfers occur on the eight bits of the data bus.
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2.5.7 Wait State Generator

The 80186 provides two ready lines, a synchronous ready
(SRDY) line and an asynchronous ready (ARDY) line.
These lines signal the processor to insert wait states (Tw)
into a CPU bus cycle. Wait states allow slower devices to
respond to CPU service requests (reads or writes). They
are only inserted when both ARDY and SRDY are low
(i.e., only one of ARDY or SRDY need be active to termi-
nate a bus cycle). Any number of wait states may be in-
serted into a bus cycle. The 80186 will ignore the RDY
inputs during an access to the integrated peripheral regis-
ters, and to any area where the chip select ready bits indi-
cate that the external ready should be ignored.

Since the timing between the two ready lines is different,
asynchronous ready inputs to the ARDY line are inter-
nally synchronized to the CPU clock before being pre-
sented to the processor (see Figure 2-30). Figure 2-31
illustrates an ARDY synchronization circuit. The first
flip-flop to “resolves” the asynchronous transition of the
ARDY line. It will achieve a definite high or low level
before the second flip-flop latches its output for presenta-
tion to the CPU. When latched high, it allows the level
present on the ARDY line to pass directly to the CPU;
when latched low, it forces not ready to be presented to
the CPU.

With this scheme, only the active going edge of the
ARDY signal is synchronized. Once the synchronization
flip-flop has sampled high, the ARDY input directly
drives the RDY flip-flop. Since inputs to this RDY
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1. No set-up or hold times required
2. to apyx: Clock low to ARDY inactive (ARDY active hold time) = 15 ns min
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2. taryncn: ARDY high to clock high (ARDY active set-up time) = 20 ns min
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(i.e. to guarantee synchronizing FLIP-FLOP will sample ARDY
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Figure 2-30 Valid/Invalid ARDY Transitions

flip-flop must satisfy certain setup and hold times, these
setup and hold times (tygyicp =35ns and toyapyx = 15ns
respectively) must be satisfied by any inactive going tran-
sition of the ARDY line. Used in this manner, ARDY al-
lows a slow device the greatest amount of time to respond
with a not ready after it has been selected. In a normally
ready system, a slow device must respond with a not
ready quickly after it has been selected to prevent the
processor from continuing and accessing invalid data
from the slow device. By implementing ARDY in the
above manner, the slow device has an additional clock
phase to respond with a not ready.

If RDY is sampled active into the RDY flip-flop at the
beginning of T3 or Tw (meaning that ARDY was sampled
high into the synchronization flip-flop in the middle of a T
state, and has remained high until the beginning of the
next T state), that T state will be immediately followed by
T4. If RDY is sampled low into the RDY flip-flop at the
beginning of T3 or T2 (meaning that either ARDY was
sampled low into the synchronization flip-flop OR that
ARDY was sampled high into the synchronization
flip-flop, but has subsequently changed to low before the
ARDY setup time) that T state will be immediately fol-
lowed by a wait state (Tw). Any asynchronous transition
on the ARDY line not occurring during the above times,
that is, when the processor is not “looking at” the ready
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2. Ready Latch Flip Flop

ARDY
INPUT T T T T T T T ge18 -
G- |
! L L ® |

TOBUS
| > a2 D a}-|- NTERFACE
| | uniT
l c c ||
I cpu |
| cLock |
_______________ —
FROM SYNCHRONOUS
READY

NOTE: The second flip-flop is not actually in the circuit. Itis drawn here only
to show the functional equivalent of the interface to the BIU.

Figure 2-31 Asynchronous Ready Circuits for the 80186

lines, will not cause CPU malfunction. Again, for ARDY
to force wait states to be inserted, SRDY must be tied low,
since they are internally ORed together to form the proc-
essor RDY signal.

The synchronous ready (SRDY) line requires that ALL
transitions on this line during T2, T3 or Tw satisfy a cer-
tain setup and hold time (tsgycr =35 ns and te;gry = 15 ns
respectively). If these requirements are not met, the CPU
will not function properly (see Figure 2-32). The proces-
sor looks at this line at the beginning of each T3 and Tw.
If the line is sampled active at the beginning of either of
these two cycles, that cycle will be immediately followed
by T4. If, however, the line is sampled inactive at the
beginning of either of these two cycles, that cycle will be
followed by a Tw. Any asynchronous transition on the
SRDY line not occurring at the beginning of T3 or Tw,
that is, when the processor is not “looking at” the ready
lines will not cause CPU malfunction.

2.5.8 80186 Synchronization

Many input signals to the 80186 are asynchronous, that is,
a specified set up or hold time is not required to insure
proper functioning of the device. Associated with each of
these inputs is a synchronizer which samples this external
asynchronous signal, and synchronizes it to the interal
80186 clock.

SYNCHRONIZER REQUIREMENTS

Every data latch requires a certain set up and hold time in
order to operate properly. At a certain window within the
specified set up and hold time, the latch will try to latch
the data. If the input makes a transition within this win-
dow, the output cannot attain a stable state within the
given output delay time. The size of this sampling

4. toLsmy:

15 ns min

1. Decision: Not ready, T-state will be followed by a wait state

2. Decision: Ready, T-state will not be followed by a wait state

3. tsrycL: Synchronous ready stable until clock low (SRDY set-up
time) = 35 ns min

Clock low until synchronous ready transition (SRDY hold time) =

Figure 2-32 Valid SRDY Transitions on the 80186
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Figure 2-33 Valid & Invalid Latch Input
Transitions & Responses

window is typically much smaller than the actual window
specified by the data sheet specifications, however, part to
part variation can move this actual window around within
the specified window.

Even if the input to a data latch makes a transition while a
data latch is attempting to latch this input, the output of
the latch will attain a stable state after a certain amount of
time—typically much longer than the normal strobe to
output delay time (see Figure 2-33). Therefore, in order
to synchronize an asynchronous signal, sample the signal
into one data latch, wait a certain amount of time, then
latch it into a second data latch. Since the time between
the strobe into the first data latch and the strobe into the
second data latch allows the first data latch to attain a
steady state (or to resolve the asynchronous signal), the
second data latch will be presented with an input signal
which satisfies any set up and hold time requirements it
may have. The output of this second latch is a synchro-
nous signal with respect to its strobe input.

A synchronization failure can occur if the synchronizer
fails to resolve the asynchronous transition within the
time between the two latch’s strobe signals. The rate of
failure is determined by the actual size of the sampling
window of the data latch, and by the amount of time be-
tween the strobe signals of the two latches. Obviously, as
the sampling window gets smaller, the number of times an
asynchronous transition will occur during the sampling
window will drop. In addition, however, a smaller sam-
pling window is also indicative of a faster resolution time
for an input transition which manages to fall within the
sampling window.

80186 SYNCHRONIZERS

The 80186 contains synchronizers on the RES*, TEST*,
TmrIn0-1, DRQO-1, NMI, INTO-3, ARDY, and HOLD
input lines. Each of these synchronizers use the two stage
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Figure 2-34 Signal Float/HLDA Timing

synchronization technique described above (with some
minor modifications for the ARDY line, refer to para-
graph 2.5.1). The sampling window of the latches is de-
signed to be in the tens of pico-seconds, and should allow
operation of the synchronizers with a mean time between
failures of over 30 years assuming continuous operation.

2.6 BUS EXCHANGE MECHANISMS

The 80186 uses a HOLD/HLDA bus exchange protocol.
This protocol allows other asynchronous bus master de-
vices (i.e., ones which drive address, data, and control
information on the bus) to gain control of the bus to per-
form bus cycles (memory or I/O reads or writes).

2.6.1 HOLD Response

In the HOLD/HLDA protocol, a device requiring bus
control (e.g., an external DMA device) raises the HOLD
line. In response to this HOLD request, the 80186 will
raise its HLDA line after it has finished its current bus
activity. When the external device is finished with the bus,
it drops its bus HOLD request. The 80186 responds by
dropping its HLDA line and resuming bus operation.

When the 80186 recognizes a bus hold by driving HLDA
high, it will float many of its signals (see Figure 2-34).
ADO-AD15 (address/data 0-15) and DEN* (data enable)
are floated within tc; 57 (35 ns) after the same clock edge
that caused HLDA to be driven active. A16-A19 (address
16-19), RD*, WR*, BHE* (Bus High Enable), DT/R*
(Data Transmit/Receive*) and SO-S2 (status 0-2) are
floated within teyez (45 ns) after the clock edge immedi-
ately before the clock edge on which HLDA becomes
active.

Only the signals described in the previous paragraph float

during bus HOLD. Signals that do not float during
bus HOLD are mainly associated with peripheral
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Figure 2-35 80186 Idle Bus HOLD/HLDA Timing

functionality or control bus devices, either directly or in-
directly. These signals include TmrOut, ALE (Address
Latch Enable) and the chip select lines (UCS*, LCS*,
MCSO0-3*, and PCS0-6%). The designer should be aware
that the chip select circuits do not look at externally gen-
erated addresses. Discrete chip select and ready genera-
tion logic must be used for memory or peripheral devices
that are addresses by external bus master devices.

2.6.2 HOLD/HLDA Timing and Bus Latency

The time required between HOLD going active and the
80186 driving HLDA active is known as bus latency.
Many factors affect this latency, including synchroniza-
tion delays, bus cycle times, locked transfer times and
interrupt acknowledge cycles. Since the HOLD request
line is internally synchronized by the 80186, and it may
be an asynchronous signal. To guarantee recognition on a
certain clock edge, it must satisfy a certain setup and hold
time to the falling edge of the CPU clock. A full CPU
clock cycle is required for this synchronization, that is,
the internal HOLD signal is not presented to the internal
bus arbitration circuits until one full clock cycle after it is
latched from the HOLD input. If the bus is idle, HLDA
will follow HOLD by two CPU clock cycles plus a small
amount of setup and propagation delay time. The first
clock cycle synchronizes the input and the second clock
cycle signals the internal circuits to initiate a bus hold.
(See Figure 2-35.)

Many factors influence the number of clock cycles be-
tween a HOLD request and a HLDA. These factors may
make the latency longer than the best case shown above.
One of the most important factors is that the 80186 will
not relinquish the local bus until the bus is idle. An idle
bus occurs whenever the 80186 is not performing any bus
transfers. When the bus is idle the 80186 generates idle
T-states. The bus can become idle only at the end of a bus
cycle. Therefore, the 80186 can recognize HOLD only
after the end of the current bus cycle. The 80186 will

normally insert no T; states between T, and T, of the next
bus cycle if it requires any bus activity (e.g., instruction
fetches or I/O reads). However, the 80186 may not have
an immediate need for the bus after a bus cycle, and will
insert T; states independent of the HOLD input.

When the HOLD request is active, the 80186 will be
forced to proceed from T, to T; so that the bus may be
relinquished. See Figure 2-36. HOLD must go active 3
T-states before the end of a bus cycle to force the 80186 to
insert idle T-states after T, (and to synchronize the re-
quest, and one to signal the 80186 that T, of the bus cycle
will be followed by idle T-states). After the bus cycle has
ended, the bus hold will be immediately acknowledged. If
the 80186 has already determined that an idle T-state will
follow T, of the current bus cycle, HOLD only needs to
go active two T-states before the end of the bus cycle to
force the 80186 to relinquish the bus at the end of the
current bus cycle. This is because the external HOLD re-
quest is not required to force the generation of idle
T-states.

An external HOLD has a higher priority than both the
80186 CPU or the integrated DMA unit. However, an ex-
ternal HOLD will not separate the two cycles needed to
perform a word access to an odd memory location. Also,
an external HOLD will not separate the two-to-four bus
cycle required to perform a DMA transfer using the inte-
grated controller. Each of these factors will add additional
bus cycle times to the bus latency of the 80186.

Another factor influencing bus latency is locked transfers.
Whenever a locked transfer is occurring, the 80186 will
not recognize external HOLDs. The 80186 will also not
recognize internal DMA bus requests. Locked transfers
are programmed by preceding an instruction with the
LOCK prefix. Any transfers generated by such a prefixed
instruction will be locked, and will not be separated by
any external bus requesting device. String instructions
may be locked. Since string transfers may require thou-
sands of bus cycles, bus latency will suffer if they are
locked.

The final factor affecting bus latency time is interrupt ac-
knowledge cycles. When an external interrupt controller
is used, or if the integrated interrupt controller is used in
the iRMX86 mode the 80186 will run two interrupt ac-
knowledge cycles back to back. These cycles are automat-
ically “locked” and will never be separated by any bus
HOLD, either internal or external.

2.6.3 End of HOLD Timing

After the 80186 recognizes that the HOLD input has gone
inactive, it will drop its HLDA line in a single clock cy-
cle. Figure 2-37 shows this timing. The 80186 will insert
only two T; after HLDA has gone inactive, assuming that
the 80186 has internal bus cycles to run. During the last
T;, status information will go active concerning the bus
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cycle about to be run. If the 80186 has no pending bus
activity, it will maintain all lines floating (high impe-
dance) until the last T; before it begins the first bus cycle
after the HOLD.

2.7 INTERRUPTS

Interrupts fall into three classes: hardware initiated inter-
rupts; INT instructions; and instruction exceptions. Hard-
ware initiated interrupts usually occur in response to some
external input and are classified as non-maskable or
maskable. Software programs cause an interrupt with an
INT instruction. Interrupt exceptions usually occur when
some unusual circumstance, that prevents further instruc-
tion processing, occurs while attempting to process
instructions.

The 80186/188 CPU receives interrupts from both inter-

nal and external sources. Internal interrupt sources such '

as the timers and DMA channels can be disabled by their
own control registers or by mask bits in the integral inter-
rupt controller. The 80186/188 integral interrupt control-
ler has its own control registers that set the mode of
operation for the controller.

The integral interrupt controller operates in two major
modes (refer to paragraph 2.4). These two modes of oper-
ation are the master (non-iRMX 86) mode and the iRMX
86 mode.

In the master mode the integral interrupt controller acts as
the system master interrupt controller. Five pins (NMI
and INTO-INT3) are provided in this interrupt mode for
external interrupt sources. Each external interrupt source
has a pre-assigned vector type and priority. (See Table
2-21.) Vector types point to address information for inter-
rupt service routines. The user can program the interrupt
sources into any of eight different priority by placing a
3-bit priority level (0-7) in the control register of the in-
terrupt source. Vectors generated in the master mode are
fixed and cannot be changed.

In addition, the integral interrupt controller will generate
interrupt vectors for the the integrated DMA channels and
the integrated timers. Interrupt vectors for the external
interrupt lines will also be generated by the integral inter-
rupt controller if the external interrupt lines are not confi-
gured in the cascade or special fully nested modes.

In the iRMX 86 mode the integral interrupt controller op-
erates as a slave to an external interrupt controller which
is the master system interrupt controller. Vector genera-
tion in this mode of operation is exactly like the operation
of an 8259A slave. The interrupt generates an 8-bit vector
which the CPU multiplies by four and uses as an address
into a vector table. The significant five bits of the vector
are user programmable while the lower three bits are gen-
erated by the priority logic. These bits represent the en-
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Table 2-21 80186/188 Interrupt Vectors

Vector | Default Related
Interrupt Name Type |Priority| Instructions

Divide Error 0 "1 DIV, IDIV

Exception
Single Step 1 12°°2 All

Interrupt
NMI 2 1 All ;
Breakpoint 3 ‘1 INT

Interrupt

1INTO Detected 4 “1 INTO

Overflow

Exception
Array Bounds 5 “1 BOUND

Exception
Unused-Opcode 6 “1 Undefined

Exception Opcodes |
ESC Opcode 7 b A ESC Opcodes '

Exception :
Timer 0 interrupt 8 2A"" :
Timer 1 Interrupt 18 2B i
Timer 2 Interrupt 19 2C
Reserved 9 3 |
DMA 0 Interrupt 10 4 |
DMA 1 Interrupt " 5 |
INTO Interrupt 12 6 !
INT1 Interrupt 13 7 ’
INT2 interrupt 14 8 |
INT3 Interrupt 15 9 |

NOTES:
*1. These are generated as the result of an instruction
execution.
**2. This is handled as in the 8086.

****3. All three timers constitute one source of request to
the interrupt controller. The Timer interrupts all have
the same default priority level with respect to all
other interrupt sources. However, they have a de-
fined priority ordering amongst themselves. (Priority
2A is higher priority than 2B.) Each Timer interrupt
has a separate vector type number.

. Default priorities for the interrupt sources are used
only if the user does not program each source into a
unique priority level.

An escape opcode will cause a trap only if the
proper bit is set in the peripheral control block relo-
cation register.

*rxg

coding of the priority level requesting service. The
significant five bits of the vector are programmed by writ-
ing to the Interrupt Vector at offset 20H.

For a detailed description of the operation of the integral
interrupt controller in the various interrupts modes, and
vector generation in these modes (refer to paragraph
2.8.4).

2.8 SUPPORT CIRCUITS

The following paragraphs describe the various integral
support circuits that are use to support the 80186/188
CPU’s. These integral circuits are the Direct Memory
Access (DMA) Unit, the Timer Unit, the Interrupt
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Controller Unit, the Chip Select Unit and the Clock Gen-
erator Unit. Paragraph 2.2.1 provides an overview of
these integral circuits.

2.8.1 Direct Memory Access (DMA) Unit

The 80186 contains an integrated DMA unit with two in-
dependent high speed DMA channels. These channels op-
erate independently of the CPU, and drive all integrated
bus interface components (bus controller, chip selects,
etc.) exactly as the CPU (see Figure 2-38). Therefore,
bus cycles initiated by the DMA unit are exactly the same
as bus cycles initiated by the CPU (except that S6 = 1 dur-
ing all DMA initiated cycles, refer to paragraph 2.5).
Therefore, interfacing with the DMA unit itself is very
simple, since, except for the addition of the DMA request
connection, it is exactly the same as interfacing to the
CPU.

Data transfers can occur between memory and 1/O spaces
(e.g., Memory to I/O) or within the same space (e.g.,
Memory to Memory or 1/0O to 1/0). Data can be transfer-
red either in bytes (8 bits) or in words (16 bits) to or from
even or odd addresses. Each DMA channel maintains
both a 20-bit source and destination pointer which can be
optionally incremented or decremented after each data
transfer (by one or two depending on byte or word trans-
fers). Each data transfer consumes two bus cycles (a mini-
mum of eight clocks), one cycle to fetch data and the
other to store data. This provides a maximum data trans-
fer rate of one MW/sec (megaword/second) or two
MBytes/sec.

PROGRAMMING THE DMA UNIT

Each of the two DMA channels contains several registers
which are used to control the channel operations. These
registers are included in the 80186 integrated peripheral
control block. Registers included are the source and desti-
nation pointer registers, the transfer count register, and
the control register. Layout and bit interpretations for
these registers are shown in Figure 2-39.

The 20-bit source and destination pointers allow access to
the complete 1 Mbyte address space of the 80186. All 20
bits are affected by the auto-increment or auto-decrement
unit of the DMA (i.e., the DMA channels address the full
1 Mbyte address space of the 80186 as a flat, linear array
without segments). When addressing I/0 space, the upper
4 bits of the DMA pointer registers should be pro-
grammed to be 0. If these upper 4 bits are not pro-
grammed to 0, the programmed value (greater than 64K
in 1/0 space) will be driven onto the address bus where it
is not accessable to the CPU. However, the data transfer
will take place correctly.

EXTERNAL ADDRESS/DATA,
CONTROL, CHIP SELECTS,
ETC.
BUS INTERFACE
&
CHIP SELECT CIRCUITRY
INTERNAL BUS
80186 DMA co‘:::m
cPU REGISTERS CLEMENT
DMA
REQUESTS

Figure 2-38 80186 CPU/DMA Channel
Internal Model

After every DMA transfer the 16-bit DMA transfer count
register is decremented by 1, whether a byte transfer or a
word transfer has occurred. If'the TC bit in the DMA
control register is set, the DMA ST/STOP* bit (discussed
later) will be cleared when this register goes to zero, caus-
ing DMA activity to cease. A transfer count of zero al-
lows 65536 (216) transfers.

The DMA control register contains bits which control
various channel characteristics. (See Figure 2-40.) This
includes control bits for each of the data source and desti-
nation whether the pointer points to memory or I/O space,
or whether the pointer will be incremented/decremented/
left alone after each DMA transfer. The control register
also contains a bit which selects between byte or word
transfers. Two synchronization bits are used to determine
the source of the DMA requests. The TC bit determines
whether DMA activity will cease after a programmed
number of DMA transfers. The INT bit is used to enable
interrupts to the processor when this has occurred.

NOTE

An Interrupt will not be generated to the CPU
when the count reaches zero unless both the
INT bit and the TC bit are set.

The control register also contains a start/stop (ST/STOP*)
bit. This bit is used to enable DMA transfers. Whenever
this bit is set, the channel is ““armed” and a DMA transfer
will occur whenever a DMA request is made to the chan-
nel. If this bit is cleared, no DMA transfers will be per-
formed by the channel. A companion bit, the CHG/
NOCHGH* bit, allows the contents of the DMA register to
be changed without modifying the state of the start/stop
bit. The ST/STOP* will only be modified if the CHG/
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Figure 2-39 80186 DMA Register Layout

NOCHGH* bit is also set during the write to the DMA
control register. The CHG/NOCHG* bit is write only.
This bit will always be read back as a ‘0’. Because DMA
transfers could occur immediately after the ST/STOP* bit
is set, this bit should only be set after all other DMA
control registers have been programmed. This bit is auto-
matically cleared when the transfer count reaches zero
and the TC bit in the DMA control register is set. This bit
is also cleared when the transfer count register reaches
zero and unsynchronized DMA transfers are programmed
(regardless of the state of the TC bit).

All DMA unit programming registers are directly access-
able by the CPU. This means the CPU can, for example,
modify the DMA source pointer register after 137 DMA
transfers have occurred, and have the new pointer value
used for the 138th DMA transfer. If more than one regis-
ter in the DMA channel is being modified during the time
when a DMA request may be generated, and the DMA
channel is enabled (ST/STOP* bit set), the register pro-

gramming values should be placed into memory locations
and moved into the DMA registers using a locked string
move instruction. This will prevent a DMA transfer from
occurring after only half of the register values have
changed. This also holds true if a read/modify/write type
of operation is being performed (e.g., ANDing off bits in
a pointer register in a single AND instruction to a pointer
register mapped into memory space.

DMA TRANSFERS

Every DMA transfer in the 80186 consists of two inde-
pendent bus cycles, the fetch cycle and the deposit cycle
(see Figure 2-41). During the fetch cycle, the byte or
word data is accessed from memory or I/O space using
the address in the source pointer register. The data ac-
cessed is placed in an internal temporary register, which
is not accessible by the CPU. During the deposit cycle,
the byte or word data in this internal register is placed in

15 0
l’f/"—° DEC mc]M/Wa DECING | Tc | NT| sYN P ITDRQ| X ST 15,
! 4 |stop| 'W
CHG/
DESTINATION SOURCE NOCHG

Figure 2-40 DMA Control Register
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3. Destination address
4. Destination data
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NOTE: Wait states are inserted by the bus condition during the bus cycle, not by the DMA controller

Figure 2-41 Example DMA Transfer Cycle

memory or I/O space using the address in the destination
pointer register. These two bus cycles will not be sepa-
rated by bus HOLD or by the other DMA channel, and
one will never be run without the other except when the
CPU is RESET. Notice that the bus cycles run by the
DMA unit are exactly the same as memory or I/O bus
cycles run by the CPU. The only difference between the
two is the state of the S6 status line (which is multiplexed
on the A19 line): on all CPU initiated bus cycles, this
status line will be driven low; on all DMA initiated bus
cycles, this status line will be driven high.

DMA REQUESTS

Each DMA channel has a single DMA request line by
which an external device may request a DMA transfer.
The synchronization bits in the DMA control register de-
termine whether this line is interpreted to be connected to
the source of the DMA data or the destination of the
DMA data. All transfer requests on this line are synchro-
nized to the CPU clock before being presented to internal
DMA logic. Any asynchronous transitions of the DMA
request line will not cause the DMA channel to malfunc-
tion. In addition to external requests, DMA requests may
be generated whenever the internal Timer 2 times out, or
continuously by programming the synchronization bits in
the DMA control register to call for unsynchronized
DMA transfers.

The 80186 DMA controller handles two types of inter-
nally synchronized DMA transfers: the first Timer 2 gen-
erates the DMA request, and the second where the DMA
channel itself generates the DMA request. The DMA
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channel can be programmed to generate a DMA request
whenever Timer 2 reaches its maximum count. Setting
the TDRQ bit in the DMA channel control register selects
this feature. A DMA request generated in this manner
will be latched in the DMA controller, so that once the
timer request has been generated, it cannot be cleared ex-
cept by running the DMA cycle or by clearing the TDRQ
bits in both DMA control registers. Before any DMA re-
quests are generated in this mode, Timer 2 must be initi-
ated and enabled.

A timer requested DMA cycle being run by either DMA
channel will reset the timer request. Thus, if both chan-
nels are using the timer to request a DMA cycle, only one
DMA channel will execute a transfer for every timeout of
Timer 2. Another implication of having a single bit timer
DMA request latch in the DMA controller is that if an-
other Timer 2 timeout occurs before a DMA channel has
a chance to run a DMA transfer, the first request will be
lost (i.e., only a single DMA transfer will occur, even
though the timer has timed out twice).

The DMA channel can also be programmed to provide its
own DMA requests. In this mode, DMA transfer cycles
will be run continuously at the maximum bus bandwidth,
one after the other until the preprogrammed number of
DMA transfers (in the DMA transfer count register) have
occurred. This mode is selected by programming the syn-
chronization bits in the DMA control register for unsyn-
chronized transfers. In this mode, the DMA controller
monopolizes the CPU bus (i.e., the CPU will not be able
to perform opcode fetching, memory operations, etc.,
while the DMA transfers are occurring). Also, the DMA
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will only perform the number of transfers indicated in the
maximum count register regardless of the state of the TC
bit in the DMA control register.

DMA REQUEST TIMING AND LATENCY

Before any DMA request can be generated, the 80186
internal bus must be granted to the DMA unit. A certain
amount of time is required for the CPU to grant this inter-
nal bus to the DMA unit. The time between a DMA re-
quest being issued and the DMA transfer being run is
known as DMA latency. Many of the issues concerning
DMA latency are the same as those concerning bus la-
tency (refer to the paragraphs on Bus Exchange Mecha-
nisms). Consider the important difference that external
HOLD always has bus priority over an internal DMA
transfer. Thus, the latency time of an internal DMA cycle
will suffer during an external bus HOLD.

Each DMA channel has a programmed priority relative to
the other DMA channel. Both channels may be pro-
grammed to be the same priority, or one may be pro-
grammed to be of higher priority than the other channel.
If both channels are active, DMA latency will suffer on
the lower priority channel. If both channels are active and
both channels are of the same programmed priority, DMA
transfer cycles will alternate between the two channels
(i.e., the first channel will perform a fetch and deposit,
followed by a fetch and deposit by the second channel,
etc).

The DMA request (DRQ) is sampled four clock cycles
before the beginning of a bus cycle to determine if any
DMA activity will be required. A minimum of four CPU
clock cycles must occur between the time DRQ goes ac-
tive and the beginning of the first DMA cycle (see Figure
2-42). It takes at least four clock cycles for the request to
propagate through the logic circuits (see Figure 2-43).
This time is independent of the number of wait states in-
serted in the bus cycle. The maximum DMA latency is a
function of other processor activity.

If DRQ is sampled active at point 1 in Figure 2-42, the
DMA cycle will be executed, even if the DMA request
goes inactive before the beginning of the first DMA cy-
cle. If the BIU is busy and cannot run the cycle when
DRQ goes active, DRQ must remain active for a mini-
mum of four clock cycles before the time that it is possi-
ble to run the requested cycle. DMA requests are not
permanently stored, therefore, if DRQ goes inactive after
one clock, a zero will be propagated through the logic and
no DMA cycles will be run.

DMA ACKNOWLEDGE

The 80186 does not generate an explicit DMA acknowl-
edge signal. Instead, a read or write directly to the DMA
requesting device is performed. A DMA acknowledge

signal can be generated, if required, by decoding an ad-
dress, or by using one of the PCS* lines (see Figure
2-44).

NOTE

ALE must be used to factor the DACK because
addresses are not guaranteed stable when chip
selects go active. The use of ALE is required
because if the address is not stable when the
PCS goes active, glitches can occur at the out-
put of the DACK generation circuits as the ad-
dress lines change state. Once ALE has gone
low, the addresses are guaranteed to have been
stable for at least t,y,; (30ns).

EXTERNALLY SYNCHRONIZED DMA
TRANSFERS

The 80186 DMA controller is capable of two types of
externally synchronized DMA transfers (requested exter-
nally rather than by integrated Timer 2 or by the DMA
channel itself (in unsynchronized transfers). These trans-
fers are source synchronized and destination synchro-
nized transfers and are selected by programming the
synchronization bits in the DMA channel control register.
Source synchronized and destination synchronized trans-
fer differ in the time at which the DMA request pin is
sampled to determine if another DMA transfer is immedi-
ately required after the currently executing DMA trans-
fer. For source synchronized transfers, the DMA request
is sampled such that two source synchronized DMA trans-
fers may occur one immediately after the other. For desti-
nation synchronized transfers a certain amount of idle
time is automatically inserted between two DMA transfers
to allow time for the DMA requesting device to drive its
DMA request inactive.

Source Synchronized DMA Transfers

In a source synchronized DMA transfer, the source of the
DMA data requests the DMA cycle (for example, a
floppy disk read from the disk to main memory). In this
type of transfer, the device requesting the transfer is read
during the fetch cycle of the DMA transfer. Since four
CPU clock cycles elapse from the time DMA request is
sampled to the time the DMA transfer is actually begun,
and a bus cycle takes a minimum of four clock cycles, the
earliest time the DMA request pin will be sampled for
another DMA transfer will be at the beginning of the de-
posit cycle of a DMA transfer. This allows over three
CPU clock cycles between the time the DMA requesting
device receives an acknowledge to its DMA request
(around the beginning of T2 of the DMA fetch cycle), and
the time it must drive this request inactive (assuming no
wait states) to insure that another DMA transfer is not
performed if it is not desired (see Figure 2-45).
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Figure 2-42 DMA Request Timing
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Figure 2-43 DMA Request Logic
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Figure 2-44 DMA Acknowledge Synthesis
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Figure 2-45 Source & Destination Synchronized DMA Request Timing

Destination Synchronized DMA Transfers

In destination synchronized DMA transfers, the destina-
tion of the DMA data requests the DMA transfer (for ex-
ample a floppy disk write from main memory to the disk).
In this type of transfer, the device requesting the transfer
is written during the deposit cycle of the DMA transfer.
This transfer causes a problem since the DMA requesting
device will not receive notification of the DMA cycle be-
ing run until three clock cycles before the end of the
DMA transfer (if no wait states are being inserted into the
deposit cycle of the DMA transfer) and four clock cycles
elapse before the DMA controller can determine whether
another DMA cycle should be run immediately following
the current DMA transfer. To avoid this problem, the
DMA unit will relinquish the CPU bus after each destina-
tion synchronized DMA transfer for at least two CPU
clock cycles. This action allows the DMA requesting de-
vice time to drop its DMA request if it does not immedi-
ately desire another immediate DMA transfer.

When the DMA unit relinquishes the bus, the CPU may
resume bus operation (e.g., instruction fetching, memory
or I/O reads or writes, etc.). Typically, a CPU initiated
bus cycle will be inserted between each destination syn-
chronized DMA transfer. If no CPU bus activity is re-
quired, however (and none can be guaranteed), the DMA
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unit will insert only two CPU clock cycles between the
deposit cycle of one DMA transfer and the fetch cycle of
the next DMA transfer. The DMA destination requesting
device must drop its DMA request at least two clock cy-
cles before the end of the deposit cycle regardless of the
number of wait states inserted into the bus cycle. Figure
2-45 shows the DMA request ending too late to prevent
the immediate generation of another DMA transfer. Any
wait states inserted in the deposit cycle of the DMA trans-
fer will lengthen the amount of time from the beginning of
the deposit cycle to the time DMA will be sampled for
another DMA transfer. Therefore, if the amount of time a
device requires to drop its DMA request after receiving a
DMA acknowledge from the 80186 is longer than the 0
wait state SMHz 80186 maximum (100ns) from the start
of T2, wait states can be inserted into the DMA cycle to
lengthen the amount of time the device has to drop its
DMA request after receiving the DMA acknowledge. Ta-
ble 2-22 lists the amount of time between the beginning of
T2 and the time DMA request is sampled as wait states
are inserted in the DMA deposit cycle.

2.8.2 Timer Unit

The 80186 contains three internal 16-bit programmable
timers (see Figure 2-46) two of which are connected to
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Table 2-22 DMA Request Inactive Timing
WAIT MAXIMUM TIME (ns)
STATES 6MHz 8MHZ
0 141 100
1 308 225
2 475 350
3 641 475

Table 2-23 Timer Control Block Format

‘Register Offset
Register Name Tmr. 0| Tmr. 1 Tmr. 2
Mode/Control Word 56H S5EH 66H
Max Count B 54H 5CH | not present
Max Count A 52H 5AH 62H
Count Register 50H 58H 60H

four external pins (two pins per timer). These timers
(Timers 0 and 1) can be used to count external events,
time external events, generate non-repetitive waveforms,
etc. The third timer is not directly accessible through ded-
icated pins. This timer is useful for real-time coding and
time delay applications and may be used to prescale the
other two timers (refer to Volume I of this User’s Guide).

The timers are controlled by 11 16-bit registers in the
internal peripheral control block (refer to Table 2-23).
The count register contains the current value of the timer
and it can be read or written at any time independent of
whether the timer is running or not. The value of this
register will be incremented for each timer event. Each of
the timers contains a MAX COUNT register, which de-
fines the maximum count the timer will reach. After

reaching the MAX COUNT register value, the timer
count value will reset to zero during that same clock (i.e.,
the maximum count value is never stored in the count reg-
ister itself). Timers O and 1 contain, in addition, a second
MAX COUNT register, which enables the timers to alter-
nate their count between two different MAX COUNT val-
ues programmed by the user. If a single MAX COUNT
register is used, the timer output pin switches LOW for a
single clock, one clock after the maximum count value
has been reached. In the dual MAX COUNT register
mode, the output pin indicates which MAX COUNT reg-
ister is currently in use, thus allowing nearly complete
freedom in selecting waveform duty cycles. For the timers
with two MAX COUNT registers, the RIU bit in the con-
trol register determines which is used for the comparison.

Each timer gets serviced every fourth CPU-clock cycle.
Therefore, the timers, whether clocked internally or ex-
ternally can only operate at speeds up to one-quarter the
internal clock frequency (one-eighth the crystal rate).
This will be 2 MHz for an 8 MHz CPU clock. Due to
internal synchronization and pipelining of the timer cir-
cuits, a timer output may take up to six clocks to respond
to any individual clock or gate input. Since the count reg-
isters and the maximum count registers are all 16 bits
wide, 16 bits of resolution are provided. However, any
read or write access to the Timers will add one wait state
to the minimum four-clock bus cycle. This is needed to
synchronize and coordinate the internal data flows be-
tween the internal timers and the internal bus.

TIMER INPUT PIN OPERATION

Timers 0 and 1 each have individual timer input pins.
All low-to-high transitions on these input pins are

()5 wfes —
D] N IN UY, REQ.
T0 m T2
INT. > INT. INT.
REQ. REQ. REQ.
T20UT
TIMER 0" ) TIMER 1
— —
WAX COUNT VALUE [ MAX COUNT VALUE TIMER 2
A A
MAX COUNT VALUE| CLOCK [WAX COUNT VALUE MAX COUNT VALUE
8 B
MODE/CONTROL MODE/CONTROL MODE/CONTROL
WORD WORD WORD
INTERNAL ADDRESS/DATA BUS T
ALL 16 BIT REGISTERS

Figure 2-46 Timer Block Diagram

2-57

210912-001



80186/80188 CPU

synchronized, latched, and presented to the counter ele-
ment when the particular timer is being serviced by the
counter element.

Signals on this input affect timer operation in three differ-
ent ways. The way the pin signals are used is determined
by the external (EXT) and retrigger (RTG) bits in the
timer control register. If the EXT bit is set, transitions on
the input pin cause the timer count value to increment if
the timer is enabled (the timer control register enable bit
is set). Thus, the timer counts external events. If the EXT
bit is cleared, all timer increments are caused by either
the CPU clock or by Timer 2 timing out. In this mode, the
RTG bit determines whether the input pin will enable
timer operation, or whether it will retrigger timer
operation.

If the EXT bit is low and the RTG bit is also low, the timer
will count internal timer events only when the timer input
pin is high and the enable (EN) bit in the timer control
register is set.

In this mode, the pin is level sensitive, not edge sensitive.
A low-to-high transition on the timer input pin is not re-
quired to enable timer operation. If the input is tied high,
the timer will be continually enabled. The time enable
input signal is completely independent of the EN bit in the
timer control register: both must be high for the timer to
count. Example uses for the timer in this mode would be a
real time clock or a baud rate generator.

If the EXT bit is low and the RTG bit is high, the timer
will act as a digital one-shot. In this mode, every
low-to-high transition on the timer input pin will cause the
timer to reset to zero. If the timer is enabled (i.e., the EN
bit in the timer control register is set) timer operation will
begin and the timer will count CPU clock transitions or
Timer 2 timeouts. Timer operation will cease at the end of
a timer cycle, that is, when the value in the maximum
count register A is reached and the timer count value re-
sets to zero (in single maximum count register mode, re-
member that the maximum count value is never stored in
the timer count register) or when the value in maximum
count register B is reached and the timer count value re-
sets to zero (in dual maximum count register mode). If
another low-to-high transition occurs on the input pin be-
fore the end of the timer cycle, the timer will reset to zero
and begin the timing cycle again regardless of the state of
the continuous (CONT) bit in the timer control register. If
the CONT bit in the timer control register is cleared, the
timer EN bit will automatically be cleared at the end of
the timer cycle. This means that any additional transitions
on the input pin will be ignored by the timer. If the CONT
bit in the timer control register is set, the timer will reset
to zero and begin another timing cycle for every
low-to-high transition on the input pin, regardless of
whether the timer had reached the end of a timer cycle,
because the timer EN bit would not have been cleared at
the end of the timing cycle. An example use of the timer
is this mode is an alarm clock time out signal or interrupt.
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TIMER OUTPUT PIN OPERATION

Timers 0 and 1 each contain a single timer output pin.
This pin can perform two functions at programmer op-
tion. The first is a single pulse indicating the end of a
timing cycle. The second is a level indicating the maxi-
mum count register currently being used. The timer out-
puts operate as outlined below whether internal or
external clocking of the timer is used. If external clocking
is used, however, the user should remember that the time
between an external transition on the timer input pin and
the time this transition is reflected in the timer out pin will
vary depending on when the input transition occurs rela-
tive to the timer’s being serviced by the counter element.

When the timer is in single maximum count register mode
(timer control register ALT bit cleared) the timer output
pin goes low for a single CPU clock the clock after the
timer is serviced by the counter element where maximum
count is reached (see Figure 2-47). This mode is useful
when using the timer as a baud rate generator.

When the timer is programmed in dual maximum count
register mode (timer control register ALT bit set), the
timer output pin indicates which maximum count register
is being used. The pin is low if maximum count register B
is being used for the current count, high if maximum
count register A is being used. If the timer is programmed
in continuous mode (the CONTinuous bit in the timer
control register is set), this pin could generate a waveform
of any duty cycle. For example, if maximum count regis-
ter A contained 10 and maximum count register B con-
tained 20, a 33% duty cycle waveform would be
generated.

TIMER APPLICATIONS

The 80186 timers can be used for almost any application
for which a discrete timer circuit would be used. These
include real time clocks, baud rate generators, or event
counters.

Real Time Clock

The sample program (see Figure 2-48) shows the 80186
timer being used with the 80186 CPU to form a real time
clock (see Figure 2-49). In this implementation, Timer 2
is programmed to provide an interrupt to the CPU every
millisecond. The CPU then increments memory based
clock variables.

Baud Rate Generator

The 80186 timers can be used as baud rate generators for
serial communication controllers (e.g., the 8274). Figure
2-50 shows this simple connection and Figure 2-48 lists
the code to program the timer as a baud rate generator.
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Figure 2-47 80186 Timer Out Signal

Event Counter

The 81086 timer can be used to count events. Figure 2-51
shows a hypothetical application in which the 80186 timer
will count the interruptions in a light source. The number
of interruptions can be read directly from the count regis-
ter of the timer, since the timer counts up (i.e., each inter-
ruption in the light source will cause the timer count value
to increase). Figure 2-48 lists the code to set up the 80186
timer in this mode.

2.8.3 Interrupt Controller

The 80186 integrated interrupt controller performs the
tasks of an 8259A type interrupt controller in a typical
microprocessor system. Figure 2-52 shows a block dia-
gram of the integrated interrupt controller. These tasks
include synchronizing and prioritizing interrupt requests,
and request type vectoring in response to a CPU interrupt
acknowledge. Nesting is provided so interrupt service
routines for lower priority interrupts may themselves be
interrupted by higher priority interrupts. The integrated
controller has two major modes of operation, the
iRMX-86 mode and the non-iRMX 86 (master) mode. In
the master mode the integrated interrupt controller can be
" the master controller for up to two external Intel 8259A
interrupt controllers allowing up to 128 interrupts. In the
iRMX 86 mode it can be the slave to an external interrupt
controller to allow compatibility with the iRMX86 operat-
ing system and the 80130/80150 operating system copro-
cessors (refer to Volume I of this User’s Manual).

The 80186 can receive interrupts from a number of
sources, both internal and external. The internal interrupt
controller merges these requests on a priority basis, for
individual service by the CPU.

Internal interrupt sources (Timers and DMA channels)
are disabled by their own control registers or by mask bits
within the interrupt controller. The 80186 interrupt con-
troller has its own control registers that set the controller
mode of operation.
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The interrupt controller resolves priority among simulta-
neous requests. Nesting is provided so interrupt service
routines for lower priority interrupts may themselves be
interrupted by higher priority interrupts.

iRMX™ 86 MODE OPERATION

The iAPX186/188 integrated interrupt controllers have a
special iRMX compatibility mode of operation that allows
the use of the 80186/188 within the iRMX 86 operating
system interrupt structure. To use this mode of operation,
bit 14 in the peripheral control block relocation register
must be set and special initilization software must be
provided.

‘When the iRMX mode is used, the internal interrupt con-
troller is used as a slave controller to an external interrupt
controller. The internal 80186/188 resources are moni-
tored through the internal interrupt controller, and the ex-
ternal interrupt controller functions as the system master
interrupt controller. When an external interrupt controller
(such as an 8259A) is used it requires additional control
pins from the 80186. Therefore, some of the external in-
terrupt pins are no longer used for external interrupt in-
puts. Since the external interrupt registers are no longer
required, the unused registers can now be used by the
timers. There are enough of these unused registers to ded-
icate one to each timer. Previously all of the timers shared
one register. In this mode of operation each timer inter-
rupt source has its own mask bit, IS bit and control word.

The iRMX 86 operating system requires peripherals to be
assigned fixed priority levels. This is incompatible with
the normal operation of the 80186/188 interrupt control-
ler. Therefore the initialization software must program the
proper priority for each source. The required priority lev-
els for the internal interrupt sources in the iRMX 86 mode
are shown in Table 2-24. These priority level assignments
must remain fixed in the iRMX mode of operation.

The iRMX 86 mode of operation allows nesting of inter-
rupt requests. The configuration of the 80186/188 with

respect to an external 8259A master is shown in Figure
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$mod186
name example.80186_timer_.code

this file contains example 80186 timer routines. The first routine
H sets up the timer and interrupt controller to cause the timer
H to generate an interrupt every 10 milliseconds, and to service
; interrupt to implement a real time clock. Timer 2 is used in
; this example because no input or output signals are required.
H The code example assumes that the peripheral control block has
H not been moved from its reset location (FF00-FFFF in I/O space).

argl equ word ptr [BP + 4]
arg2 equ word ptr [BP + 6]
arg3 equ word ptr [BP + 8]
timer.2int equ 19 ; timer 2 has vector type 19
timer_2control equ O0FF66h
timer.2maxctl equ 0FF62h
timer.int_ctl equ 0FF32h ; interrupt controller regs
eoi.register equ 0FF22h
interrupt.stat equ O0FF30h
data segment public ‘data’
public hour._,minute._,second.,msec_
msec_ db ?
hour_ db ?
minute_ db ?
second_ db ?
data ends
cgroup group code
dgroup . group data
code segment public ‘code’

public set_time.
assume  cs:code,ds:dgroup

;  set.time(hour,minute,second) sets the time variables, initializes the

; 80186 timer2 to provide interrupts every 10 milliseconds, and
H programs the interrupt vector for timer 2
s

et_time. proc near

enter 0,0 ;  set stack addressability

push AX ; save registers used

push DX

push SI

push DS

xor AX,AX ; set the interrupt vector
the timers have unique
interrupt

vectors even though they share
the same control register

mov DS,AX

mov S1,4 * timer2.int

Figure 2-48 Example Timer Interface Code (Sheet 1 of 4)
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set_time.

timer2.interrupt.routine

bump_second:

bump_minute:

mov
inc
inc
mov
pop

mov
mov
mov
mov
mov
mov
mov

mov
mov

out
mov
mov

out

mov
mov

out
sti

pop
pop
pop
leave
ret
endp

proc
push
push

cmp
jae
inc
jmp

mov
cmp
jae
inc
jmp

mov
cmp
jae
inc
jmp

DS:[SI],offset timer.2.interrupt.routine

SI

SI
DS:[SI],CS
DS

AX,argl
hour_, AL
AX,arg2
minute, AL
AX,arg3
second., AL
msec.,0

DX, timer2.max_ctl
AX,20000

DX,AX
DX, timer2.control
AX,1110000000000001b

DX,AX

DX, timer.int.ctl
AX,0000b

DX,AX

SI
DX
AX

far
AX
DX

msec.,99
bump.second
msec.
reset_int_ctl

msec.,0
second.,59
bump.minute
second.
reset.int.ctl

second.,0
minute_,59
bump.hour
minute.
reset.int.ctl

set the time values

set the max count value
10 ms / 500 ns (timer 2 counts
at 1/4 the CPU clock rate)

set the control word
enable counting

generate interrupts on TC
continuous counting

set up the interrupt controller
unmask interrupts
highest priority interrupt

enable processor interrupts

see if one second has passed
if above or equal...

reset millisecond
see if one minute has passed

see if one hour has passed

Figure 2-48 Example Timer Interface Code (Sheet 2 of 4)

2-61

210912-001



80186/80188 CPU

bump_hour:

mov minute.,0

cmp hour,,12

jae reset.hour

inc hour.

jmp reset.int_ctl
reset_hour:

mov hour.,1
reset.int_ctl:

mov DX,eoi_register

mov AX,8000h

out DX,AX

pop DX

pop AX

iret
timer2.interrupt.routine endp
code ends

end
$mod186
name example.80186_baud.code

;  this file contains example 80186 timer routines. The second routine

; sets up the timer as a baud rate generator. In this mode,

H Timer 1 is used to continually output pulses with a period of

H 6.5 usec for use with a serial controller at 9600 baud

H programmed in divide by 16 mode (the actual period required
H for 9600 baud is 6.51 usec). This assumes that the 80186 is

; running at 8 MHz. The code example also assumes that the

H peripheral control block has not been moved from its reset

; location (FF00-FFFF in I/O space).

timer1.control equ

OFFSEh
timerl.max_cnt equ OFF5Ah
code segment

assume  csicode

set.baud() initializes the 80186 timer!l as a baud rate generator for
a serial port running at 9600 baud

5
H
H
5
S

et.baud. proc near
push AX
push DX
mov DX, timerl.max.cnt
mov AX,13
out DX,AX
mov DX, timer1_control

mov AX,1100000000000001b

out DX,AX

’

see if 12 hours have passed

non-specific end of interrupt

public ‘code’

save registers used

set the max count value
500ns * 13 = 6.5 usec

set the control word
enable counting

no interrupt on TC
continuous counting
single max count register

Figure 2-48 Example Timer Interface Code (Sheet 3 of 4)
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pop DX
pop AX
ret
set_baud. endp
code ends
end
$mod186
name example_.80186.count_code

)

; this file contains example 80186 timer routines. The third routine
; sets up the timer as an external event counter. In this mode,

timer1.control equ
timer1.max.cnt equ
timerl.cnt.reg equ
code segment
assume

)

Timer 1 is used to count transitions on its input pin. After
the timer has been set up by the routine, the number of
events counted can be directly read from the timer count
register at location FFS8H in I/O space. The timer will
count a maximum of 65535 timer events before wrapping
around to zero. This code example also assumes that the
peripheral control block has not been moved from its reset
location (FFOO-FFFF in I/O space).

OFFSEh
OFFSAh
OFF58H

cs:code

;  set.count() initializes the 80186 timerl as an event counter

set.count. proc
push
push

mov
mov

out
mov
mov

out

Xxor
mov
out

pop
pop
ret

set.count. endp
code ends
end

near
AX
DX

DX, timerl.max.cnt
AX,0

DX,AX
DX, timer1_control
AX,1100000000000101b

DX,AX

AX,AX
DX,umerl.cnt.reg
DX,AX

DX
AX

public ‘code’

save registers used

set the max count value
allows the timer to count
all the way to FFFFH

set the control word
enable counting

no interrupt on TC
continuous counting
single max count register
external clocking

zero AX
and zero the count in the timer
count register

Figure 2-48 Example Timer Interface Code (Sheet 4 of 4)
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80186
TIMER

2

+5V

TIMER TMR IN 11

1

TMR OUT 1

TIMER

] TMRINO

Figure 2-49 80186 Real Time Clock

2-53. The INTO input is used as the 80186 CPU interrupt
input. INT3 functions as an output to send the 80186
slave-interrupt-requests to one of the 8 master-PIC-inputs.

Correct master-slave interface requires decoding of the
slave addresses (CAS0-2). Because of pin limitations, the
80186 slave address will have to be decoded externally.
INT1* is used as a slave-select input. In this configuration
the slave vector address is transferred internally, but the
READY input must be supplied externally. INT2* is used
as an acknowledge output, suitable to drive the INTA*
input of an 8259A.

NON-iRMX™ 80 MODE

When configured in the non-iRMX 86 mode, the internal
interrupt controller operates in one of three basic modes:
the fully nested mode, the cascade mode, and the special

80186
+5V
TMRINO
TIMER
° TMR OUT 0 TxC ] SERIAL
RxC | CONTROLLER

Figure 2-50 80186 Baud Rate Generator

fully nested modes of operation. Five pins are provided
for external interrupt sources. One of these pins is dedi-
cated to NMI. The other four (INTO-INT3) may be confi-
gured in three ways. The response to internal interrupts is
identical in all three modes, but the function of the four
external interrupt pins differs in each mode. The interrupt
controller is set to one of these modes by programming
the correct bits in the INTO and INT1 control registers.

In the fully nested mode of operation, the four pins are
configured as four interrupt input lines with internally
generated interrupt vectors. In both the cascade and the
special fully nested modes of operation the four interrupt
input pins can be configured as either three interrupt input
lines and interrupt acknowledge output, or two interrupt
inputs lines and two dedicated interrupt acknowledge out-
put lines. In the cascade mode of operation, when two
interrupts are received from the same interrupt controller,
one after the other, the internal controller will wait until
the service routine for the first is complete before ac-
knowledging the second internal interrupt. When this oc-
curs in the special fully nested mode, the second interrupt
from the same cascaded interrupt controller is assumed to
be of higher priority and will be acknowledged before the
first interrupt service routind is completed. These four
interrupt inputs can be programmed in either edge-or
level-trigger mode, as specified by the LTM bit in the
source’s control register.

The interrupt controller will generate interrupt vectors for
the integrated DMA channels and the integrated timers. In
addition, interrupt vectors for the external interrupt lines
will be generated if they are not configured in cascade, or
special fully nested mode.

Each interrupt source has a preassigned vector type (see
Table 2-21). Vector types point to address information for
interrupt service routines. The vectors generated are fixed
and cannot be changed.

The user can program the interrupt sources into any of
eight different priority levels. Programming is done by
placing a 3-bit priority level (0-7) in the control register of
each interrupt source. (A source priority of 4 has higher
priority over all priority levels from 5-7. Priority registers
containing values lower than 4 have higher priority.) All
interrupt sources have preprogrammed default priority
levels.

If two requests with the same programmed priority level
are pending at once, the priority ordering scheme indi-
cated in Table 2-21 is used. If the serviced interrupt rou-
tine reenables interrupts it allows other requests to be
serviced.

CONTROL REGISTERS

The interrupt controller contains registers that control its
operation (see Figure 2-54). Certain registers change
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Figure 2-51 80186 Event Counter

Table 2-24 Internal Source Priority Level

Priority Level Interrupt Source

Timer 0
(reserved)
DMA O
DMA 1
Timer 1
Timer 2

nesEwNnN-—-0

their modes of operation between the two major modes of
the interrupt controller: master mode and iRMX86 mode.
These control registers include the Timer Register, two
DMA registers, and four external input registers. The
Timer and the DMA registers are used for interrupt con-
troller interaction with the internal DMA and Timer units
of the processor. Refer to Volume I of this User’s Manual
for full descriptions of these registers. The external input
registers are of the greatest concern to the hardware
designer.

The external input registers contain the control words for
the four external interrupt input pins. See Figures 2-55
and 2-56. Figure 2-55 illustrates the format of the INTO

and the INT1 control registers; Figure 2-56 shows the for-
mat of the INT2 and INT3 registers. In cascade mode or
special fully nested mode, the control words in the INT2
and INT3 registers are not used.

INTERRUPT SOURCES

The 80186 interrupt controller receives and arbitrates
among many different interrupt request sources, both in-
ternal and external. Each interrupt source may be pro-
grammed to be a different priority level in the interrupt
controller. Figure 2-57 shows an interrupt request genera-
tion flow chart. Such a flowchart would be followed inde-
pendently by each interrupt source.

Internal Interrupt Sources

The 80186 internal interrupt sources include three timers
and the two DMA channels. These sources operate inde-
pendently of external devices as regards to interrupts to

TIMER TIMER TIMER DMA DMA

[ 1 2 0 1 INTO INT1 INT2
Y

INT3 NMI

LELLL

TIMER INTERRUPT
CONTROL REG. REQUEST REG
DMA 0 INTERRUPT
CONTROL REG. MASK REG
DMA 1 IN-SERVICE
CONTROL REG S REG
EXTINPUTO | vl PRIOR. LEV.
CONTROL REG. eOTER MASK REG.
EXT. INPUT 1 INTERRUPT
CONTROL REG. STATUS REG.
EXT.INPUT 2 vEcToR
CONTROL REG GENERA
EXT INPUT 3 TION
CONTROL REG LOGIC
INTERRUPT
REQUEST TO

PROCESSOR
INTERNAL ADDRESS DATA BUS p

Figure 2-52 Interrupt Controller Block Diagram
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8259A
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80188 INT. IN INT
IR?
20186 CA80-2
- =
Wn STAVE SELECT CASCADE
ADDRESS DECODER
T2 |—
INT3 80186 SLAVE INTERRUPT OUTPUT ]

Figure 2-53 iRMX™™ 86 Interrupt Controller interconnection

MASTER MODE OFFSET ADDRESS {RMX86™ Mode
INT3 CONTROL REGISTER 3EH ®

"~ T T TINT2 CONTROL REGISTER ach | T 7T o
T —IN‘TTQ__OFR_OL— R:EEET_EE ______ 3AH | . TTIMER 2 CONTROL REGISTER

T 77 INTO CONTROL REGISTER 38H | TIMER1CONTROLREGISTER
T 7 " DMA1CONTROL REGISTER 36H DMA1 CONTROL REGISTER
T " DMAO CONTROL REGISTER 3aH | DMAO CONTROL REGISTER
T 77 T TIMER CONTROL REGISTER sH | TIMER 0 CONTROL REGISTER
" INTERRUPT CONTROLLER STATUS REGISTER | 30H | INTERRUPT CONTROLLER STATUS REGISTER
T 7T INTERRUPT REQUESTREGISTER | 2EH |  INTERRUPT REQUEST REGISTER
T T IN-SERVICEREGISTER 2cH | INSERVICEREGISTER

T 7 " PRIORITY MASK REGISTER 2aH | PRIORITY MASK REGISTER
TTTTTTTR MASK REGISTER 1 | T Ty MASK REGISTER _
T POLL STATUS REGISTER 4 | ol -
________ POLLREGISTER (24 | @ 7777
________EOIREGISTER ___ """ "| 22H | ___ _SPECIFICEOIREGISTER _

® 20H INTERRUPT VECTOR REGISTER

1. Unsupported in this mode: values written may or may not be stored

Figure 2-54 80186 Interrupt Controller Registers

7 6 5 4 3 2 1 0

15 14
17 - -~ - - -

] o |sFNM| c | tvm [ Msk | Pr2 | PR1 | PRO |

Figure 2-55 INTO/INT1 Control Register Formats

the 80186. Refer to Volume I of this User’s Manual for
detailed information regarding the operation of interrupts
from these sources.

2-66

External Interrupt Sources

The 80186 provides five dedicated pins for external inter-
rupt sources. One of these pins is dedicated to non-
maskable interrupt, (NMI). NMI is typically used for
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Figure 2-56 INT2/INT3 Control Register Format

power-fail interrupts, etc. The other four pins may func-
tion either as four interrupt input lines with internally
generated interrupt vectors, as an interrupt line and an
interrupt acknowledge line (called the “cascade mode™)
along with two other input lines with internally generated
interrupt vectors, or as two interrupt input lines and two
dedicated interrupt acknowledge output lines.

When programmed in master mode, the 80186 interrupt
controller accepts external interrupt requests only. In this

mode, the external pins associated with the interrupt con-
troller may serve either as direct interrupt inputs, or as
cascaded interrupt inputs from other interrupt controllers
as a programmed option. These options are selected by
programming the C and SFNM bits in the INTO and INT1
control registers (see Figure 2-58).

When the interrupt lines are configured in cascade mode,
the 80186 interrupt controller will not generate internal
interrupt vectors for external sources. The interrupt

INTERRUPT
RECEIVED

i

SET INTERRUPT
REQUEST BIT

HIGHER

PRIORITY THAN

PRIORITY MASK

REGISTER
?

HIGHEST
PRIORITY

INTERRUPT
?

IN-
SERVICE BIT
SET

MAN
BITCLEARED D>NO

SPECIAL
FULLY RESTED
MODE
?

PRESENT INTERRUPT
REQUEST TO
EXTERNAL CONTROLLER

REQUEST TO CPU

PRESENT INTERRUPT

Figure 2-57 80186 Interrupt Sequencing
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FULLY
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BIT(2) |MODE(3)

Vel [ : ;
A
TRIG. PRIORITY BITS
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1. This bit present only in INTO-INT3 control registers
2. These bits present only in INTO-INT1 control register

Figure 2-58 Interrupt Controller Control Register

controller will generate interrupt vectors for internal
sources. External sources in the cascade mode use exter-
nally generated interrupt vectors. When an interrupt is ac-
knowledged, the controller initiates two INTA* cycles and
reads the vector into the 80186 on the second cycle.
Therefore, the capability to interface to external 8259A
programmable interrupt controllers is provided when the
inputs are configured in cascade mode.

The basic modes of operation on the interrupt controller
in master mode are similar to the 8259A. The interrupt
controller responds identically to internal interrupts in all
three modes: the modes differ only in the interpretation of
function of the four external interrupt pins. Programming
the correct bits in the INTO and INT1 control registers
sets.

When the four interrupt inputs are programmed as direct
inputs, each is controlled by an individual interrupt con-
trol register. These registers each contain three bits to se-
lect the interrupt priority level and a single bit to enable
the processor interrupt source. In addition, each control
register contains a bit which selects either the edge or
level triggered interrupt input mode. When edge triggered
mode is selected, a low-to-high transition must occur on
the interrupt input before an interrupt is generated. In
level triggered mode, only a high level needs to be main-
tained to generate an interrupt. In both modes, the inter-
rupt level must remain high until the interrupt is
acknowledged (i.e., the interrupt request is not latched in
the interrupt controller). The status of the interrupt input
can be shown by reading the interrupt request register.
Each of the external pins has a bit in this register which
indicates an interrupt request on the corresponding pin.

NOTE

Since interrupt requests on these inputs are not
latched by the interrupt controller, if the exter-
nal input goes inactive, the interrupt request
(and also the bit in the interrupt request regis-
ter) will also go inactive (low). Also, if the in-
ter rupt input is in edge triggered mode, a
low-to-high transition on the input pin must oc-
cur before the interrupt request bit will be set
in the interrupt request register.

2-68

If the C (Cascade) bits in the INTO or INT1 control regis-
ters are set, the interrupt input is cascaded to an external
interrupt controller. Whenever the interrupt presented to
the INTO or INT1 line is acknowledged in this mode, the
integrated interrupt controller will not provide the inter-
rupt type for the interrupt. Instead, two INTA bus cycles
will be run, with the INT2 and INT3 lines providing the
interrupt acknowledge pulses for the INTO and the INT1
interrupt requests respectively. INTO/INT2 and
INT1/INT3 may be individually programmed into cas-
cade and special fully nested modes. This allows 128 indi-
vidually vectored interrupt sources if two banks of nine
external interrupt controllers each are used.

iRMX™ Mode Sources

When the interrupt controller is configured in iRMX
mode, the integrated interrupt controller accepts interrupt
requests only from the integrated peripherals. Any exter-
nal interrupt requests must go through an external inter-
rupt controller. This external interrupt controller requests
interrupt service directly from the 80186 CPU through
the INTO line on the 80186. In this mode, the function of
this line is not affected by the integrated interrupt control-
ler. In addition, in iRMX 86 mode the integrated interrupt
controller must request interrupt service through this ex-
ternal interrupt controller; this interrupt request is made
on the INT3 line.

EXTERNAL INTERFACE

The four 80186 interrupt signals can be programmably
configured into three major options. These options are
direct interrupt inputs (with the integrated controller pro-
viding the interrupt vector), cascaded (with an external
interrupt controller providing the interrupt vector), or
iRMX 86 mode. In all these modes, any interrupt pre-
sented to the external lines must remain set until the inter-
rupt is acknowledged.

Direct Input Mode

Clearing cascade mode bits configures the interrupt input
lines as direct interrupt input lines (see Figure 2-59). In
this mode an interrupt source (e.g., an 8272 floppy disk

210912-001



80186/80188 CPU

80186

——=| INTO

INTERRUPT | — ] INT1
SOURCES | —— ] INT2

————] INT3

Figure 2-59 80186 Non-Cascaded
Interrupt Connection

controller) may be directly connected to the interrupt in-
put line. Whenever an interrupt is received on the input
line, the integrated controller will do nothing unless the
interrupt is enabled, and it is the highest priority pending
interrupt. At this time, the interrupt controller will
present the interrupt to the CPU and wait for an interrupt
acknowledge. When the acknowledge occurs, it will
present the interrupt vector address to the CPU. In this
mode, the CPU will not run any interrupt acknowledge
cycles. Also, in this mode, the SFNM bit in the interrupt
control register is ignored.

Cascade Input Mode

Setting the cascade mode bit and clearing the SFNM bit
configures the interrupt input lines in cascade mode. In
this mode, the interrupt input line pairs with an interrupt
acknowledge line. The INT2/INTAQO* and INT3/INTA1*
lines are dual purpose; they can function as direct input
lines, or they can function as interrupt acknowledge out-
puts. INT2/INTAO* provides the interrupt acknowledge
for an INTO input, and INT3/INTA1* provides the inter-
rupt acknowledge for an INT1 input (see Figure 2-60).

When programmed in this mode, in response to an inter-
rupt request on the INTO line, the 80186 will provide two
interrupt acknowledge pulses. These pulses will be pro-

8259A 80186
INT INTO
INTA INT2
8259A
INT INT1
INTA INT3

Figure 2-60 Cascade and Special Fully
Nested Mode Interface

vided on the INT2/INTAO* line, and will also be reflected
by interrupt acknowledge status being generated on the
SO0*-S2* status lines. On the second pulse, the interrupt
type will be read in.

INTO/INT2/INTAO* and INT1/INT3/INTA1* may be in-
dividually programmed into interrupt request/
acknowledge pairs, or programmed as direct inputs.
Therefore, INTO/INT2/INTAO* may be programmed as
an interrupt/acknowledge pair, while INT1 and INT3/
INTA1* each provide separate internally vectored inter-
rupt inputs.

When an interrupt is received on a cascaded interrupt, the
priority mask bits and the in-service bits in the particular
interrupt control register are set into the interrupt control-
ler’s mask and priority mask registers. This action pre-
vents the controller from generating an 80186 CPU
interrupt request from a lower priority interrupt.

As an example of the cascade mode, consider the 80186
interface to an 8259A (see Figure 2-61). The INTO and
the INT2 lines are used as direct interrupt input lines.
(Figure 2-62 lists assembly code that may be used to ini-
tialize the 80186 interrupt controller.) This configuration
provides ten external interrupt lines: two provided by the
80186 interrupt controller and eight from the 8259A. The
8259A, configured as the master controller, will only re-
ceive interrupt acknowledge pulses in response to an in-
terrupt it has generated. It may be cascaded again with up
to eight additional 8259A’s (each configured as slaves).

NOTE

An interrupt ready signal must be returned to
the 80186 to prevent the generation of unde-
sired wait states in response to the interrupt
acknowledge cycles.

Special Fully Nested Mode

When both the cascade mode bit and the SFNM bit are
set, the interrupt input lines are configured in the Special
Fully Nested Mode. In this mode the external interface is
identical to the Cascade Mode. The Special Fully Nested
Mode differs only in the conditions that allow an interrupt
sent from the external interrupt controller to the inte-
grated interrupt controller to interrupt the 80186 CPU.

‘When an interrupt is received from a Special Fully Nested
Mode interrupt line, it will interrupt the 80186 CPU if it
is the highest priority interrupt pending, regardless of the
state of the in-service bit for the interrupt source in the
interrupt controller. When an interrupt is acknowledged
from a Special Fully Nested Mode interrupt line, in-serve
bits in the particular interrupt control register will be set
into the interrupt controller’s in-service register. This will
prevent the interrupt controller from generating an 80186
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Figure 2-61 80186/8258A Interrupt Cascading

CPU interrupt request from a lower priority interrupt.
Unlike cascade mode, however, the interrupt controller
will not prevent additional interrupt requests generated by
the same external interrupt controller from interrupting
the 80186 CPU. If the external (cascaded) interrupt con-
troller receives a higher priority interrupt request on one
of its interrupt request lines and presents it to the inte-
grated controller’s interrupt request line, it may cause an
interrupt to be generated to the 80186 CPU, regardless of
the state of the in-service bit for the interrupt line.

If the SFNM mode bit is set, but the cascade mode bit is
not set, the controller provides internal interrupt vector-
ing. The controller also ignores the state of the in-service
bit in determining whether to present an interrupt request
to the CPU. In other words, it uses the SFNM conditions
of interrupt generation with an internally vectored inter-
rupt response (i.e., if the interrupt pending is the highest
priority type pending, it will cause a CPU interrupt re-
gardless of the state of the in-service bit for the interrupt).

iRMX Mode

When the RMX bit in the peripheral relocation register is
set, the interrupt controller is set into iRMX 86 mode. In
this mode, all four interrupt controller input lines are used
to perform the necessary handshaking with the external
master interrupt controller (see Figure 2-63).

Because the integrated interrupt controller is a slave con-
troller, it must be able to generate an interrupt input for an
external interrupt controller. It also must be signaled
when it has the highest priority pending interrupt to know
when to place its interrupt vector on the bus. The INT3/
Slave Interrupt Output and INT1/Slave Select* lines, re-

spectively supply these two signals. The external master
interrupt controller must be able to interrupt the 80186
CPU, and needs to know when the interrupt request is
acknowledged. The INTO and INT2/INTAO* lines pro-
vide these functions.

In the iRMX86 mode (see Figure 2-64), the 80130 inter-
rupt controller is the master interrupt controller of the
system. The 80186 generates an interrupt request to the
80130 interrupt controller when one of the 80186 inte-
grated peripherals has created an interrupt condition, and
that condition is sufficient to generate an interrupt from
the 80186 integrated interrupt controller. The 80130 de-
codes the interrupt acknowledge status directly from the
80186 status lines; thus, the INT2/INTAO* line of the
80186 need not be connected to the 81030. The circuit
illustrated by Figure 2-64 uses this interrupt acknowledge
signal to enable the cascade address decoder. The 80130
drives the cascade address on AD8-AD10 during T1 of
the second interrupt acknowledge cycle. This cascade ad-
dress is latched into the system address latches, and if the
proper cascade address is decoded by the 8205 decoder,
the 80186 INT1/SLAVE SELECT* line will be driven ac-
tive, enabling the 80186 integrated interrupt controller to
place its interrupt vector on the internal bus. (See Figure
2-62 for the code to configure the 80186 into iRMX 86
mode.)

Interrupt Latency

Interrupt latency time is the period of time between the
time the 80186 receives the interrupt to the time it begins
to respond to the interrupt. Interrupt latency differs from
interrupt response time, which is the time from when the
processor actually begins processing the interrupt to when
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$mod186
name example_80186.interrupt.code

;  This routine configures the 80186 interrupt controller to provide

; two cascaded interrupt inputs (through an external 8259A

; interrupt controller on pins INT0/INT2) and two direct

; interrupt inputs (on pins INT1 and INT3). The default priority
; levels are used. Because of this, the priority level programmed

; into the control register is set the 111, the level all

H interrupts are programmed to at reset.

intO_.control equ OFF38H
int.mask equ OFF28H
code segment public ‘code’
assume CS:code
set.int proc near
push DX
push AX
mov AX,0100111B ; cascade mode
; interrupt unmasked
mov DX, int0O.control
out DX,AX
mov AX,01001101B ;  now unmask the other external
; interrupts
mov DX, int.mask
out DX,AX
pop AX
pop DX
ret
set.int. endp
code ends
end
$mod186
example.80186.interrupt.code

name

;  This routine configures the 80186 interrupt controller into iRMX 86
; mode. This code does not initialize any of the 80186

; integrated peripheral control registers, nor does it initialize

H the external 8259A or 80130 interrupt controller.
r

elocation.reg equ OFFFEH

code segment public ‘code’
assume CS:code

set.rmx. proc near
push DX
push AX
mov DX, relocation_reg
in AX,DX ; read old contents of register
or AX,0100000000000000B ;  set the RMX mode bit
out DX,AX

Figure 2-62 Example Interrupt Controller Interface Code
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Figure 2-63 80186 iRMX™ 86 Mode Interface

it actually executes the first instruction of the interrupt
service routine. The factors affecting interrupt latency are
the instruction being executed and the state of the inter-
rupt enable flip-flop. Interrupts will be acknowledged
only if the interrupt enable flip-flop in the CPU is set.
Therefore, interrupt latency will be very long indeed if
interrupts are never enabled by the processor!

When interrupts are enabled in the CPU, the interrupt la-
tency is a function of the instructions being executed.
Only repeated instructions will be interrupted before be-
ing completed, and those only between their respective
iterations. Therefore, the interrupt latency time could be
as long as 69 CPU clocks—the time it takes the processor
to execute an integer divide instruction (with a segment
override prefix) the longest single instruction on the
80186.

Other factors can affect interrupt latency. An interrupt
will not be accepted between the execution of a prefix
(such as segment override prefixes and lock prefixes) and
the instruction. In addition, an interrupt will not be ac-
cepted between an instruction which modifies any of the
segment registers and the instruction immediately follow-
ing the instruction. This interrupt denial is required to
allow the stack to be changed. If the interrupt were ac-
cepted, the return address from the interrupt would be
placed on a stack which was not valid (the Stack Segment
register would have been modified but the Stack Pointer
register would not have been). Finally, an interrupt will
not be accepted between the execution of the WAIT in-
struction and the instruction immediately following it if
the TEST* input is active. If the WAIT sees the TEST*
input inactive, however, the interrupt will be accepted,
and the WAIT will be re-executed after the interrupt

80186
ALE ADDR AO-A15
LATCH
" 50730 |3 AB-at0
ADO-AD15 {1 AD0-AD15 7]
cLK CLK
MMCS2 MEMCS 8 /7 INTERRUPT
_ IRO-
$3 1OCS IR7 7 7 REQUESTS
N /3 —
0-S2 7 §0-52
BHE BHE
INT
INTO J
INT3
+5
8205 I
E2 E3
INT2 E1
INT1 7

Figure 2-64 80186/80130 iRMX™T 86 Mode Interface
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Table 2-25 80186 Interrupt Vector Types

Interrupt Vector Default
Name Type Priority
timer 0 8 Oa
timer 1 18 0b
timer 2 19 Oc
DMA 0 10 2
DMA 1 11 3
INTO 12 4
INT 1 13 5
INT 2 14 6
INT 3 15 7

return. Re-executing WAIT is required, since the WAIT is
used to prevent execution by the 80186 of an 8087 in-
struction while the 8087 is busy.

INTERRUPT RESPONSE TIMING

The 80186 can respond to an interrupt in two different
ways. The first will occur if the internal controller is pro-
viding the interrupt vector information with the controller
in master mode. The second will occur if the CPU reads
interrupt type information from an external interrupt con-
troller or if the interrupt is in the iRMX 86 mode. In both
of these instances the interrupt vector information driven
by the 80186 integrated interrupt controller is not availa-
ble outside the 80186 microprocessor.

In each interrupt mode the interrupt controller will auto-
matically set the in-service bit when the integrated inter-
rupt controller receives an interrupt response, and reset
the interrupt request bit in the integrated controller. The
priority mask bits are set by writing to the register only
(except on RESET when they are set to 7). The priority
mask bits will remain one value and prevent lower priority
interrupts from occurring until the programmer resets or
changes the register.

In addition, unless the interrupt control for the interrupt is
set in Special Fully Nested Mode, the interrupt controller
will prevent any interrupts from occurring from the same
interrupt line until the in-service bit for that line has been
cleared.

Internal Vectoring, Master Mode

In the master mode of operation, the interrupt types asso-
ciated with all interrupt sources are fixed and unalterable
(see Table 2-25). In response to an internal CPU interrupt
acknowledge the interrupt controller will generate the
vector address instead of the interrupt type. On the 80186,
as with the 8086, the interrupt vector address is the inter-
rupt type multiplied by 4. This speeds up the interrupt
response time.
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In master mode, the integrated interrupt controller is the
master system interrupt controller. Therefore, no external
interrupt controller needs to be informed when the inte-
grated controller is providing an interrupt vector or when
interrupt acknowledge is taking place. As a result, no in-
terrupt acknowledge bus cycles will be generated. The
first external indication that an interrupt has been ac-
knowledged will be the processor reading the interrupt
vector from the interrupt vector table to low memory.

Since the two interrupt acknowledge are not run, and the
interrupt vector address does not need to be calculated,
interrupt to an internally vectored interrupt is 42 clocks
cycles, which is faster than the interrupt response when
external vectoring is required, or the interrupt controller
is run in the iRMX 86 mode.

If two interrupts of the same programmed priority occur,
the default priority scheme (see Table 2-25) is used.

Internal Vectoring, iRMX™ 86 Mode

In the iRMX mode of operation the interrupt types associ-
ated with the various interrupt sources can be changed.
The upper 5 most significant bits are taken from the inter-
rupt vector register, and the lower 3 significant bits are
taken from the priority level of the device causing the
interrupt. Since the interrupt type, instead of the interrupt
vector address, is given by the interrupt controller in this
mode the interrupt vector address must be calculated by
the CPU before servicing the interrupt.

In this mode of operation the integrated interrupt control-
ler will present the interrupt type to the CPU in response
to the two interrupt acknowledge bus cycles run by the
processor. During the first interrupt acknowledge cycle,
the external master interrupt controller determines which
slave interrupt controller will be allowed to place its inter-
rupt vector on the microprocessor bus. During the second
interrupt acknowledge cycle, the processor reads the in-
terrupt vector from its bus. Therefore, these two interrupt
acknowledge cycles must be run since the integrated con-
troller will present the interrupt type information only
when the external interrupt controller signal the inte-
grated controller that it has the highest pending interrupt
request (see Figure 2-65). The 80186 samples the SLAVE
SELECT* line during the falling edge of the clock at the
beginning of T of the second interrupt acknowledge cy-
cle. This input must be stable 20ns before and 10ns after
this edge.

These two interrupt acknowledge cycles will be run back
to back, and will be LOCKED with the LOCK* (see para-
graph 2.5.3) output active (meaning that DMA requests
and HOLD requests will not be honored until both cycles
have been run). Note that the two interrupt acknowledge
cycles will always be separated by two idle T state, and
that the wait states will be inserted into the interrupt ac-
knowledge cycle if a ready is not returned by the
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Figure 2-65 80186 iRMXT™ 86 Mode Interrupt Acknowledge Timing

processor bus interface. The two idle T states are inserted
to allow compatibility with the timing requirements of an
external 8259A interrupt controller.

Because the interrupt acknowledge cycles must be run in
iRMX 86 mode, even for internally generated vectors,
and the integrated controller presents an interrupt type
rather than a vector address, the interrupt response time
here is the same as if an externally vectored interrupt was
required, in other words 55 clocks.

External Vectoring

External interrupt vectoring occurs whenever the 80186
interrupt controller is placed in the cascade mode, special
fully nested mode, or iRMX 86 mode (and the integrated
controller is not enabled by the external master interrupt
controller). In this mode, the 80186 generates two inter-
rupt acknowledge cycles, reading the interrupt type off
the lower 8 bits of the address/data bus on the second
interrupt acknowledge cycle (see Figure 2-66). This inter-
rupt response is exactly the same as the 8086, so that the
8259A interrupt controller can be used exactly as it would
in an 8086 system. Notice that the two interrupt acknowl-
edge cycles are LOCKED, and that two idle T-states are
always inserted between the two interrupt acknowledge
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bus cycles, and that wait states will be inserted in the in-
terrupt acknowledge cycle if a ready is not returned to the
processor. Also notice that the 80186 provides two inter-
rupt acknowledge signal, one for interrupts signaled by
the INTO line, and one for interrupts signaled by the INT1
line (on INT2/INTAO* and INT3/INTA1* lines, respec-
tively). These two interrupt acknowledge signals are mu-
tually exclusive. Interrupt acknowledge status will be
driven on the status lines (SO*-S2*) when either INT2/
INTAO* or INT3/INTA1* signal an interrupt
acknowledge.

2.8.4 Chip Select/Wait State Generation
Unit

The 80186/188 CPU contains an integrated chip select
unit which provides programmable chip-select generation
logic for both the memories and peripherals. This unit can
also be programmed to provide WAIT state (READY)
generation and can provide latched address bits Al and
A2. The chip select lines are active for all memory and
1/0 cycles in their programmed areas, whether the cycles
are generated by the CPU of the integrated DMA unit.
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MEMORY CHIP SELECTS chip select may also be selected. Only one chip select may

The 80186 provides six discrete chip select lines which
connect to memory components in an iAPX186 system.
These lines (see Figure 2-67) output signals for three
memory areas: upper memory (UCS*), lower memory
(LCS*), and mid-range memory (MCS0-3%).

The range for each chip select is user-programmable and
can be set to 2K, 4K, 8K, 16K, 32K, 64K, 128K (plus 1K
and 256K for upper and lower chip selects). In addition,
the beginning or base address of the mid-range memory

be programmed to be active for any memory location at a
time. All chip select sizes are in bytes, whereas iAPX 186
memory is arranged in words. For example, if 16 64K x 1
memories are used, the memory block size will be 128K,
not 64K. The upper limit of UCS* and the lower limit of
LCS* are fixed at FFFFFH and OH in memory space,
respectively. The other limit of these is set by the memory
size programmed into the control register for the chip se-
lect line. Mid-range memory allows both the base address
and the block size of the memory area to be programmed.
The only limitation is that the base address must be pro-
grammed to be an integer multiple of the total block size.

FFFFF
ucs STARTUP
ROM
MCS3 {
([ procram |
MCS 2
MEMORY
- — — —
MCS1 {
MCS0 {
INTERRUPT
— VECTOR
LCs
TABLE
0

For example, if the block size was 128K bytes (four 32K
byte blocks) the base address could be 0 or 20000H, but
not 10000H.

Four registers in the peripheral control block (see Figure
2-68) control the memory chip selects. These selects in-
clude one each for UCS* and LCS*, the values of which
determine the size of the memory blocks addressed by
these two lines. The other two registers control the size
and base address of the mid-range memory block.

On reset, only UCS* is active. Reset programs it to be
active for the top 1K memory block, to insert three wait
states to all memory fetches, and to factor external ready
for every memory fetch. All other chip select registers
assume indeterminate states after reset, but none of the
other chip select lines will be active until all necessary
registers for a chip select have been accessed (not neces-
sarily written, a read to an uninitialized register will en-
able the chip select function controlled by that register).

Generally, the chip selects of the 80186 should not be pro-

Figure 2-67 80186 Memory Areas and Chip
Selects

grammed such that any two areas overlap. In addition,
none of the programmed chip select areas should overlap
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OFFSET:
AOH | UPPER MEMORY SIZE @ | umcs
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ABH | MID-RANGE MEMORY SIZE ] £ ﬂ ® | mecs
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1. Upper memory ready bits

2. Lower memory ready bits

3. PCS0-PCS3 ready bits
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EX:1 =7 PCS lines
0 = PCS5 = A1, PCS6 = A2

Not all bits of every field are used

Figure 2-68 80186 Chip Select Control Registers

any of the locations of the integrated 256-byte control reg-
ister block. If such an overlap condition exists, whenever
two chip select lines are programmed to respond to the
same area, both will become active during any access to
that area. When programmed as such, the ready bits for
both areas must be programmed to the same value. If not
programmed in this manner, the processor response to an
access in this area is indeterminate. If any of the chip
select areas overlap the integrated 256-byte control regis-
ter block, the timing on the chip select line is altered. As
always, the CPU ignores any values returned on the exter-
nal bus from this access.

Upper Memory CS*

The 80186 provides a chip select, called UCS*, for the
top of memory. The top of memory is usually used as the
system memory because, after reset, the 80186 begins ex-
ecuting at memory location FFFFOH.

The upper limit of memory defined by this chip select is
always FFFFFH, while the lower limit is programmable.
By programming the lower limit, the size of the select
block is also defined. Table 2-26 shows the relationship
between the base address selected and the size of the
memory block obtained.

The lower limit of this memory block is defined in the
UMCS register (see Figure 2-69). This register is at offset
AOQH in the internal control block. The legal values for
bits 6-13 and the resulting starting address and memory
block sizes are given in Table 2-26. Any combination of
bits 6-13 not shown in Table 2-26 will result in undefined
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Table 2-26 UMCS Programming Values

Starting

Address Memory UMCS Value
(Base Block (Assuming

Address) Size RO=R1=R2=0)
FFC00 1K FFF8H
FF800 2K FFB8H
FF000 4K FF38H
FEO000 8K FE38H
FC000 16K FC38H
F8000 32K F838H
F0000 64K FO38H
E0000 128K EO38H
C0000 256K: CO038H

operation. After reset, the UMCS register is programmed
for a 1K area. It must be reprogrammed if a larger upper
memory area is desired.

Any internally generated 20-bit address whose upper 16
bits are greater than or equal to UMCS (with bits 0-5
““0””) will cause UCS to be activated. UMCS bits R2-R0
are used to specify READY mode for the area of memory
defined by this chip-select register.

Lower Memory CS*

The 80186 provides a chip select for low memory called
LCS*. The bottom of memory contains the interrupt vec-
tor table, starting at location 00000H.

The lower limit of memory defined by this chip select is
always Oh, while the upper limit is programmable. By
programming the upper limit, the size of the memory
block is also defined. Table 2-27 shows the relationship
between the upper address selected and the size of the
memory block obtained.

The upper limit of this memory block is defined in the
LMCS register (see Figure 2-70). This register is at offset
A2H in the internal control block. The legal values for
bits 6-15 and the resulting upper address and memory
block sizes are given in Table 2-27. Any combination of
bits 6-15 not shown in Table 2-27 will result in undefined
operation. After reset, the LMCS register value is unde-
fined. However, the LCS* line will not become active un-
til the LMCS register is accessed.

Any internally generated 20-bit address whose upper 16
bits are less than or equal to LMCS (with bits 0-5 “1”)
will cause LCS* to be active. LMCS register bits R2-R0
are used to specify the READY mode for the area of
memory defined by this chip-select register.

Mid-Range CS*

The 80186 provides four MCS® * lines which are active
within a user-locatable memory block. This block can be
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Figure 2-71 MPCS Register

located anywhere within the iAPX 186 1M byte memory
address space exclusive of the areas defined by UCS* and
LCS*. Both the base address and size of this memory
block are programmable.

The size of the memory block defined by the mid-range

select lines (refer to Table 2-28), is determined by bits
8-14 of the MPCS register (see Figure 2-71).

Table 2-27 LMCS Programming Values

Memory LMCS Value
Upper Block (Assuming
Address Size RO=R1=R2=0)
003FFH 1K 0038H
007FFH 2K 0078H
00FFFH 4K O00F8H
01FFFH 8K 01F8H
03FFFH 16K 03F8H
07FFFH 32K 07F8H
OFFFFH 64K OFF8H
1FFFFH 128K 1FF8H
3FFFFH 256K 3FF8H

Table 2-28 MPCS Programming Values

Total Block Individual MPCS Bits

Size Select Size 14-8

8K 2K 0000001B

16K 4K 0000010B

32K 8K 00001008

64K 16K 00010008

128K 32K 00100008

256K 64K 01000008

512K 128K 10000008

NOTE

This register is located at A8H in the internal
control block. Only one of bits 8-14 must be
set at a time or unpredict able operation of the
MCS* lines will otherwise occur.

Each of the four chip-select lines is active for one of the
four equal contiguous divisions of the mid-range block.
Therefore, if the total block size is 32K, each chip select
is active for 8K of memory with MCSO0* being active for
the first range and MCS3* being active for the last range.

The base address of the mid-range memory block is de-
fined 15-9 of the MMCS register (see Figure 2-72) lo-
cated at offset A6H in the internal control block. These
bits correspond to bits A19-A13 of the 20-bit memory
address. Bits A12-A0 of the base address are always 0.
The base address may be set at any integer multiple of the
size of the total memory block selected. For example, if
the mid-range block size is 32K (or the size of the block
for which each MCS* line is active is 8K), the block
could ocated at 10000H or 18000H, but not at 14000H,
since the first few integer multiples of a 32K memory
block are OH, 8000H, 10000H, 18000H, etc. After reset,
the contents of both of these registers is undefined. How-
ever, none of the MCS* lines will be active until both the
MMCS and MPCS registers are accessed.

MMCS bits R2-RO specify READY mode of operation for
all mid-range chip selects. All devices in mid-range mem-
ory must use the same number of WAIT states.

The 512K block size for the mid-range memory chip se-
lects is a special case. When using 512K, the base address
would have to be at either locations OH or 80000H. If it
were to be programmed at OH when the LCS* line was
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programmed, there would be an internal conflict between
the LCS* ready generation logic and the MCS* ready
generation logic. Likewise, if the base address were pro-
grammed at 80000H, there would be a conflict with the
UCS* ready generation logic. Since the LCS* chip-select
line does not become active until programmed, while the
UCS* line is active at reset the memory base can be set
only at OH. If this base address is selected, however, the
LCS* range must not be programmed.

INPUT/OUTPUT PERIPHERAL CHIP SELECTS

Since 80186 memory interfacing is similar to the 8086,
the two processors are also similar when interfacing to
1/0 peripherals. The 80186 contains integral interfacing
logic that provides seven discrete chip select lines
(PCS0-6*). These seven chip select lines are intended for
connection to I/O peripherals in an iAPX86 system. The
signals on these lines, PCS0-6*, go active for one of
seven contiguous 128-byte areas in memory or I/O space
above a programmed base address.

Two registers in the internal peripheral control block (see
Figure 2-68) control the peripheral chip selects. These
registers allow the base address of the peripherals to be
set, and allow the peripherals to be mapped into memory
or I/O space. Both registers must be accessed before any
of the peripheral chip selects become active.

A bit in the memory/peripheral chip select (MPCS) regis-
ter allows PCS5* and PCS6* to become latched when out-
puts Al and A2 occur. When this option is selected,
PCS5* and PCS6* indicate the state of Al and A2
throughout the bus cycle. These outputs provide for exter-
nal peripheral register selection in a system where the ad-
dress is not latched. On reset, these lines are driven high
and only indicate the state of Al and A2 after both PACS
and MPCS have been accessed (and are programmed to
provide Al and A2—refer to Volume I of this User’s
Guide).

READY/WAIT STATE GENERATION

The 80186/188 generates an internal READY signal for
each of the memory or peripheral chip select (CS*) lines.
From 0 to 3 WAIT states may be inserted by the internal
ready generation unit for each access to any memory or
1/O areas to which the chip select circuits respond. Table
2-29 shows how the ready control bits should be pro-
grammed to provide this. In addition, the READY genera-
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tion circuit may be programmed to ignore external
READY signals (i.e., only the internal ready circuit will
be used) or to factor the external READY signal (i.e., a
ready will be returned to the processor only after both the
internal ready circuit has gone ready and the external
ready has gone ready). Also, when a memory access oc-
curs where there is no programmed chip select, ARDY
and SRDY may be used to insert wait states as in the 8086
system.

A circuit must be included, however, to generate an exter-
nal ready since, at reset, the READY generator is pro-
grammed to factor external READY to all accesses to the
top 1K byte memory block. If a READY was not returned
on one of the external ready lines (ARDY or SRDY) the
processor would wait indefinitely to fetch the first
instruction.

READY control consists of 3 bits for each CS* line or
group of lines. This allows independent ready generation
for each of upper memory, lower memory, mid-range
memory, peripheral devices 0-3 and peripheral devices
4-6. The ready bits control an integrated WAIT State Gen-
erator that allows a programmable number of WAIT states
to be automatically inserted whenever an access is made
to the area of memory associated with a chip select area.
Each set of ready bits includes a bit which determines
whether the internal ready signals (ARDY or SRDY) are
used or ignored (i.e., the bus cycle terminates even
though a ready has not been returned on the external

pins).

When the externally generated READY is used (R2 =0),
the internal ready generator operates in parallel with the
external READY. For example, if the internal ready gen-
erator is set to insert two Wait states, but activity on the
external READY lines inserts four WAIT states, only four
WAIT states will be inserted by the processor. This is be-
cause the two WAIT states generated by the internal

Table 2-29 80186 WAIT State Programming
R2

0
-

RO| Number of Wait States

0 + external ready
1 + external ready
2 + external ready
3 + external ready
0 (no external ready required)
1 (no external ready required)
2 (no external ready required)
3 (no external ready required)

—_————0 O O O
—_—0 O = - OO
—_ O — O~ O — O
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Figure 2-73 Clock In/Clock Out Timing

generator overlapped the first two WAIT states generated
by the external READY signal. The external ARDY and
SRDY lines are always ignored during cycles accessing
internal peripherals.

~

2.8.5 Clock Generator/Reset/Ready

The 80186 clock generator produces the main clock sig-
nal (see Figure 2-73) for all 80186 integrated compo-
nents, and all CPU synchronous devices in. the 80186
system (see Figure 2-74). This clock generator includes a
crystal oscillator, a divide-by-two counter, reset circuits,
and ready generation logic.

The clock generator generates the 50% duty cycle proces-
sor clock for the iAPX 186 by dividing the output of a
crystal oscillator by two to form the symmetrical clock
signal. If an external oscillator is used, the state of the
clock generator will change on the falling edge of the os-
cillator signal. The CLKOUT pin provides the processor

clock signal for use outside the iAPX 186 and may be
used to drive other system components. All timings are
referenced to the output clock.

CRYSTAL CLOCK REFERENCE

The 80186 oscillator circuit is designed to be used with a
parallel resonant fundamental mode crystal (see Figure
2-75) as the time base. The crystal frequency selected
should be double the intended CPU clock frequency. Do
not use an LC or RC circuit with this oscillator. If an
external oscillator is used, connect it directly to input pin
X1 in lieu of a crystal (input pin X2 may be left to float).
The output of the oscillator is not directly available out-
side the 80186.

The crystal oscillator is a parallel resonant, Pierce oscilla-
tor designed to be used as shown in Figure 2-76 (the ca-
pacitor values shown are approximate). As the crystal

X, —— CRYsTAL CPU CLOCK &
+2
X osC. . CLOCKOUT
ARDY READY cPU
SRDY GENERATION READY
- RESET CPU RESET
ClRCUT  }——n &
RESET OUTPUT

Figure 2-74 80186 Clock Generator Block Diagram
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frequency drops, the de-coupling capacitor values should
be increased, (e.g., at the 4 MHz minimum crystal fre-
quency supported by the 80186 these capacitors should be
30pF).

EXTERNAL FREQUENCY CLOCK REFERENCE

The 80186 can use an external clock frequency standard
(similar to the 8086 when used in conjunction with the
8284A). The external frequency input (EFI) signal con-
nects directly to the X1 input of the oscillator (X2 is left
open). This oscillator input drives an internal divide-by-
two counter to generate the CPU clock. The external fre-
quency reference can thus be virtually any duty cycle, as
long as the minimum high and low times for the signal are
consistent with those specified for the 80186 (refer to the
Intel iAPX186 data sheet).

READY SYNCHRONIZATION

The 80186 provides both synchronous and asynchronous
ready inputs. Asynchronous ready synchronization is ac-
complished by circuits which samples ARDY in the mid-
dle of T2, T3, and again in the middle of each Tw until
ARDY is sampled HIGH. One-half CLKOUT cycle of
resolution time is used and full synchronization is per-
formed only on the rising edge of ARDY (i.e., the falling
edge of ARDY must be synchronized to the CLKOUT

signal if it will occur during T2, T3, or Tw).
High-to-LOW transitions of ARDY must be performed
synchronously to the CPU clock.

A second ready input (SRDY) is provided to interface
with externally synchronized ready signals. This input is
sampled at the end of T2, T3, and again at the end of each
Tw until it is sampled HIGH. By using this input rather
than the asynchronous ready input, the half-clock cycle
resolution time penalty is eliminated. This input must sat-
isfy set-up and hold times to guarantee proper operation
of the circuit.

Ready synchronization is discussed in more detail in para-
graph 2.5.7. Refer to that discussion and the timing dia-
gram contained in paragraph 2.5.7 for additional detail.

RESET

The 80186 provides both a RES* input pin and a synchro-
nized RESET output pin for use with other system com-
ponents. The RES* input pin is provided with hysteresis
to allow a power-on reset signal generated from an RC
network. RES* is required to be low for greater than four
clock cycles and must occur no sooner than 50 microsec-
onds after power-up. RESET is guaranteed to remain ac-
tive for at least five clocks, given a RES* input lasting at
least six clocks. RESET may be delayed from RES* up to
2.5 clocks.

The reset input signal also resets the divide-by-two
counter. A one clock cycle internal clear pulse is gener-
ated when the RES* input signal first goes active. This
clear pulse goes active beginning on the first low-to-high
transition of the X1 input after RES* goes active, and
goes inactive on the next low-to-high transition of the X1
input. In order to insure that the clear pulse is generated
on the next EFI cycle, the RES* input signal must satisfy
a 25ns setup time to the high-to-low EFI input signal (see
Figure 2-77). During this clear, clockout will be high. On
the next high-to-low transition of X1, clockout will go
low, and will change state on every subsequent
high-to-low transition of EFI.

80186
X,

it —

X,

OpF

"HrL!ﬂF

Crystal Choice Recommendations:

Frequency & Tolerance:

Temperature Range: 0to 70°C
ESR (Equivalent Series

Resistance): 30 ohms max
Co (Shunt Capacitance): 7 pf max
C, (Load Capacitance): 20 pf =+ 2pf
Drive Level: 1 mw max

Determined by System
Requirements

Figure 2-76 80186 Crystal Connection
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Figure 2-77 80186 Clock Generator Reset

The high-to-low transition of the clockout signal of the
80186 synchronizes the reset signal presented to the rest
of the 80186, and also the signal present on the RESET
output pin of the 80186. This signal remains active as
long as the RES* input also remains active. After the
RES* input goes inactive, the 80186 will begin to fetch its
first instruction (at memory location FFFFOH) after six
and a half CPU clock cycles (i.e., T1 of the first fetch will
occur six and a half clock cycles later). To insure that the
RESET output will go inactive on the next CPU clock
cycle, the inactive going edge of the RES* input must
satisfy certain hold and setup times to the low-to-high
edge of the clockout signal of the 80186 (see Figure
2-78).

Initialization and Processor Reset

Processor initialization or startup is accomplished by
driving the RES* input pin LOW. RES* forces the 80186
to terminate all execution and local bus activity. No in-
struction or bus activity will occur as long as RES* is
active. After RES* becomes inactive and an internal proc-
essing interval elapses, the 80186 begins execution with
the instruction at physical location FFFFOH. RES* also
sets some registers to predefined values (see Table 2-30).

Local Bus Controller and Reset

Upon receipt of a RESET pulse from the RES* input, the
local bus controller will perform the following actions:

® Drive DEN*, RD*, and WR* HIGH for one clock
cycle, then float.

NOTE

RD* is also provided with an internal pull-up
device to prevent the processor from inadver-
tently entering Queue Status mode during re-
set.

® Drive SO* —S2* to the passive state (all HIGH) and
then float.

® Drive LOCK* HIGH and then float.

2-81

Table 2-30 80186 Initial Register State After

RESET
Status Word FOO02(H)
Instruction Pointer 0000(H)
Code Segment FFFF(H)
Data Segment 0000(H)
Extra Segment 0000(H)
Stack Segment 0000(H)
Relocation Register 20FF(H)
UMCS FFFB(H)

e Tristate ADO—15, A16 — 19, BHE*, DT/T*.
e Drive ALE LOW (ALE is never floated).
e Drive HLDA LOW.

Chip Select/Ready Logic and Reset

Upon reset, the Chip-Select/Ready logic will perform the
following actions:

e All chip-select outputs will be driven high.

e Upon leaving RESET, the UCS* line will be pro-
grammed to provide chip select to a 1k block with the
accompanying READY control bits set at 011 to allow
the maximum number of internal wait states in con-
junction with external Ready consideration (i.e.,
UMCS resets to FFFBH).

® No other chip select or READY control registers have
any predefined values after RESET. They will not be-
come active until the CPU accesses their control regis-
ters. Both the PACS and MPCS registers must be
accessed before the PCS* lines will become active.

CLKOUT I I
@i

RESET

L

|

Figure 2-78 Coming Out of Reset
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DMA Channels and Reset

Upon RESET, the DMA channels will perform the fol-
lowing actions:

® The Start/Stop bit for each channel will be reset to
STOP.

® Any transfer in progress is aborted.

Timers and Reset

Upon RESET, the Timers will perform the following
actions:

e All EN (Enable) bits are reset preventing timer
counting.

11 SEL (Select) bits are reset to zero. This selects
MAX COUNT register A, resulting in the Timer Out
pins going HIGH upon RESET.

2-82

Interrupt Controller and Reset

Upon RESET, the interrupt controller will perform the
following actions:

All SFNM bits reset to 0, implying Fully Nested
Mode.

All PR bits in the various control registers set to 1.
This places all sources at lowest priority (level 111).

All LTM bits reset to 0, resulting in edge-sense mode.
All Interrupt Service bits reset to 0.

All Interrupt Request bits reset to 0.

All MSK (Interrupt Mask) bits are set to 1 (mask).
All C (Cascade) bits reset to 0 (non-cascade).

All PRM (Priority Mask) bits set to 1, implying no
levels masked.

Initialized to non-iRMX 86 mode.
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CHAPTER 3
8087 NUMERIC PROCESSOR EXTENSION

3.1 INTRODUCTION

This chapter provides specific hardware design informa-
tion on the operation and functions of INTEL’s 8087 Nu-
meric Processor Extension (NPX). General information
on the NPX coprocessor and its applications is presented,
along with a component overview of the architectural and
software considerations, and individual device pin func-
tional signal definitions. Detailed descriptions of the NPX
operating modes, general operation with the iAPX 86/186
host CPU’s, and bus operation ard timing are also pre-
sented. In addition, an explanation of the protocols sup-
porting local bus transfers to the host CPU’s, and a
description of interrupt operation are also provided. For
more specific information of any of the 8086 family sup-
port circuits, refer to the Microsystem Component Hand-
book (Order Number: 230843-002).

3.1.1 iAPX 86, 88, 186, 188 Base

The 8087 Numeric Processor Extension (NPX) is based
on the iAPX86/ 88/186/188 family of microprocessors.
These microprocessors are general purpose devices, de-
signed for general data processing applications that re-
quire fast, efficient data movement and control
instructions. The actual arithmetic performed on data val-
ues is fairly simple in data applications. The iAPX 86
family of microprocessors fills this need in an effective,
low cost manner. However, some applications require
more powerful arithmetic instructions and data types than
provided by a general purpose data processor. Since the
real world deals in fractional values and requires
arithmetic operations like square root, sine and loga-
rithms, integer data types and their operations may not
meet the needed accuracy, speed, and ease of use require-
ments.

These advanced functions are not simple to implement
and are not inexpensive. General data processors do not
provide these features because of their cost to other
less-complex applications that do not require such sophis-
ticated features. Therefore a special, easy to use proces-
sor which has a high level of hardware and software
support is required to implement these functions.

The 8087 (NPX) provides these features and supports the
data types and operations needed. The NPX allows use of
all of the current hardware and software support that is
available for the iAPX 86/10, iAPX 88/10, iAPX 186/10
and iAPX 188/10 microprocessors. The following para-
graphs present some typical applications for microproces-
sors using the NPX. In addition, a discussion of the use of
the special hardware component, the 8087 NPX, and its

software based 8087 emulator is also included. Both the
component and the software emulator add extra data types
and operations to the iAPX 86/10 family of microproces-
sors. The hardware component and the software emulator
are completely compatible.

NUMERIC PROCESSOR EXTENSION
APPLICATIONS

The versatility and performance of the 8087 NPX make it
appropriate for a broad array of numerically-oriented ap-
plications. Generally, any application that exhibits the fol-
lowing characteristics will benefit by implementing
numeric processing on the 8087:

1. Numeric data vary over a wide range of values or in-
clude non- integral values; non-integral values;

Algorithms produce very large or very small interme-
diate resulits;

3. Computations must be very precise, i.e., a large num-
ber of significant digits must be maintained;

Performance requirements exceed the capacity of tra-
ditional microprocessors;

5. Consistently safe, reliable results must be delivered
using a programming staff that is not expert in nu-
meric techniques.

The 8087 can also reduce software development costs and
improve the performance of systems that do not use real
numbers, but operate on multi-precision binary or deci-
mal integer values.

A few examples, which show how the 8087 might be used
in specific numerics applications, are described in the fol-
lowing list. In the past, these types of systems have typi-
cally been implemented with minicomputers. The advent
of the 8087 brings the size and cost savings of micropro-
cessor technology to these applications for the first time.

1. Business data processing — The NPX’s ability to ac-
cept decimal operands and produce exact decimal
results up to 18 digits greatly simplifies accounting
programming. Financial calculations which use power
functions can take advantage of the 8087’s exponen-
tiation and logarithmic instructions.

Process control — the 8087 solves dynamic range
problems auto matically, and its extended precision
allows control functions to be fine-tuned for more ac-
curate and efficient performance. Control algorithms
implemented with the NPX also contribute to im-
proved reliability and safety, while the 8087’s speed
can be exploited in real-time operations.
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3. Numeric control — The 8087 can move and position
machine tool heads with extreme accuracy. Axis posi-
tioning also benefits from the hardware trigonometric.
support provided by the 8087.

4. Robotics — Coupling small size and modest power
- requirements with powerful computational abilities,
the NPX is ideal for on-board six-axis positioning.

5. Navigation — Very small, light weight, and accurate
inertial guidance systems can be implemented with the
8087. Its built-in trigonometric functions can speed
and simplify the calculation of position from bearing
data.

6. Graphics terminals — The 8087 can be used in graph-
ics terminals to locally perform many functions which
normally demand the attention of a main computer;
these include rotation, scaling, and interpolation. By
also including an 8089 Input/Output Processor to per-
form high speed data transfers, very powerful and
highly self-sufficient terminals can be built from a rel-
atively small number of 8086/88 family components.

7. Data acquistion — The 8087 can be used to scan, scale
and reduce large quantities of data as it is collected.
This lowers the storage requirements as well as the
time required to process the data for analysis.

These examples are all oriented toward the “traditional”
numerics applications. There are, however, many other
types of systems that do not appear to the end user as
‘“‘computational” , but can employ the 8087 to advantage.
The 8087 presents the imaginative system designer with
an opportunity similar to that created by the introduction
of the microprocessor itself. Many applications can be
viewed as numerically-based if sufficient computational
power is available to support this view. This is analogous
to the thousands of successful products that have been
built around“‘buried” microprocessors, even though the
products themselves bear little resemblance to computers.

8087 EMULATOR VERSUS COMPONENT USE

Two basic implementations of the Numeric Data Proces-
sor Extension (NPX) are available. One is using the 8087
component and the other is with its software emulator
(E8087). Whether the emulator or the component is used
has no effect on programs at the source level. All instruc-
tions, data types and features are used in the same way at
the source level.

All numeric instruction opcodes must be replaced with an
interrupt instruction when the emulator is used. This re-
placement is performed by the LINK86 program. Inter-
rupt vectors in the hosts interrupt vector table will point to
numeric instruction emulation routines in the 8087 soft-
ware emulator.

/ 3-2

8087 BASED LINK/LOCATE COMMANDS

LINK86 :F1:PROG.OBJ, !0.LIB, 8087.LIB TO
:F1:PROG.LNK
LOC86 :F1:PROG.LNK TO :F1:PROG

SOFTWARE EMULATOR BASED
LINK/LOCATE COMMANDS

LINK86 :F1:PROG.OBJ, 10.LIB, E8087.LIB,
E8087 TO :F1:PROG.LNK -
LOC86 :F1:PROG.LNK TO :F1:PROG

Figure 3-1 Submit file Example

When the emulator is used, the linker changes all the
2-byte wait-escape, nop-escape, wait-segment override,
or nop-segment override sequences generated by an as-
sembler or compiler for the 8087 component with a
2-byte interrupt instruction. Any remaining bytes of the
numeric instruction are left unchanged.

The host executes software interrupt instructions formed
by the linker when it encounters numeric and emulated
instructions. The interrupt vector table directs the host to
the proper entry point in the 8087 emulator. The host then
decodes any remaining part of the numeric instruction us-
ing the interrupt return address and CPU register set, per-
forms the indicated operation, and returns to the next
instruction following the emulated numeric instruction.
One copy of the 8087 emulator can be shared by all pro-
grams in the host.

The decision to use the 8087 or the software emulator is
made at link time, when all software modules are brought
together. Depending on whether an 8087 or its software
emulator is used, a different group of library modules are
included for linking with the program.

If the 8087 component is used, the libraries do not add
any code to the program, they just satisfy external refer-
ences made by the assembler or compiler. Using the emu-
lator will not increase the size of individual modules,
however, other modules requiring about 16K bytes that
implement the emulator will be automatically added.

Selecting between the emulator or the 8087 can be very
easy. Different versions of submit files performing the
link operation can be used to specify the different set of
library modules needed. See Figure 3-1 for an example of
the two different submit files for the same program using
the NPX with an 8087 or the 8087 emulator.

3.1.2 8087 Mobility In Any iAPX 86, 88,
186 Design

The design of any maximum mode iAPX 86/1X, 88/1X,
186/1X or 188/1X system can be easily upgraded with an
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Figure 3-2 8087 Numeric Data Processor
Pin Diagram

8087. Such a system would then be designated an 86/2X,
88/2X, 186/2X or 188/2X. See Figure 3-2 for 8087 DIP
pin assignments, Figure 3-3 for local bus interconnections
of a typical iAPX 86/20 (or iAPX 88/20) system, and
Figure 3-4 for local bus interconnects of a typical iAPX
186/2X (or iAPX 188/2X) system. The 8087 shares the
maximum mode host’s multiplexed address/data bus, sta-
tus signals, queue status signals, ready status signals,
clock and reset signal. Two dedicated signals, BUSY and
INT, are used to inform the host of the 8087’s status. To
ensure that the host will always see a ““not busy” status if
an 8087 is not installed, a 10K pull-down resistor should
be installed on the BUSY signal line.

Adding the 8087 to an iAPX 86/88/186/188 design has a
minor effect on the system timing. Installing the 8087
adds 15 pF to the total capacitive loading on the shared
address/data and status signals. The 8087 can drive a total
capacitive load of 100 pF above its own self load and sink
2.0 mA of DC current on its pins. This AC and DC drive
is sufficient for an iAPX 86/21 system consisting of two
sets of data transceivers, address latches, and bus control-
lers for two separate busses, an on-board bus and an
off-board MULTIBUS using the 8289 bus arbiter. Refer
to paragraphs 3.8 and 3.7 in this chapter for additional
information on connecting the 8087 INT and RQ/GT
pins.

A prewired 40-pin socket for the 8087 component can be
left on a CPU board. Then, adding the 8087 to such a
system would be as easy as plugging in the device. In this
case, if a program attempts to execute any numeric in-
structions when the 8087 is not installed, the instruction
will be treated as a NOP instruction by the host. Software

can test for the existence of the 8087 by initializing it and
then storing the control word. A program segment that
illustrates this technique is shown in Figure 3-5.

When no CPU board space has been left for the 8087
component (or memory space for its software emulator),
a maximum mode iAPX 86/1X system can be upgraded to
a numeric processor using the iSBC 337 MULTIMO-
DULE. The iSBC 337 MULTIMODULE is designed for
just such a function. The iSBC 337 provides a socket for
the host microprocessor and an 8087. A 40-pin plug is
provided on the underside of the 337 to plug into the orig-
inal host’s socket (see Figure 3-6). Two other pins on the
underside of the MULTIMODULE allow easy connection
to the 8087 INT and RQ/GT1 pins.

3.2 COMPONENT OVERVIEW

The 8087 Numeric Data Processor Extension (NPX) pro-
vides arithmetic and logical instruction support for a vari-
ety of numeric data types in iAPX 86/20, 88/20 systems.
The 8087 executes instructions as a coprocessor to a max-
imum mode 8086 or 8088 and effectively extends the reg-
ister and instruction set of (including the addition of
several new data types) an iAPX 86/10 or 88/10 based
system. The 8087 is an extension to the iAPX 86/10 or
88/10 that provides enhanced register, data types, control,
and instruction capabilities at the hardwar= level.

The 8087 extends the capability of an iAPX186/188 sys-
tem when interfaced to an 80186 or 80188 through the
Intel 82188 Integrated Bus Controller. When interfaced to
the 80186/88, the combination of components form an
1APX186(188)/20 system.

3.2.1 Architecture Overview

The 8087 is internally comprised of two processing ele-
ments (see Figure 3-7), the Control Unit and the Numeric
Execution Unit. The numeric execution unit executes all
numeric instructions, while the control unit receives and
decodes instructions, reads and writes memory operands
and executes NPX control instructions. These two ele-
ments operate independently of one another; this allows
the control unit to maintain synchronization with the CPU
while the numeric execution unit is busy processing nu-
meric instructions.

CONTROL UNIT

The control unit keeps the 8087 synchronized with its host
CPU. 8087 instructions intermix with host CPU instruc-
tions in a single instruction stream (the CPU fetches all
instructions from memory). By monitoring the status sig-
nals (S0*-S2*, S6) of the CPU, the NPX control unit de-
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Figure 3-3 Typical iAPX 86/2X Family System Diagram
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3
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ESC 28, bx ; FNINIT if 8087 is present . The contents of bx is irrelevant
; These two instructions insert delay while the 8087 initializes itself
; Clear intial control word value

XOR ax, ax ;
ESC 15, control : FNSTCW if 8087 is present

MOV control, ax

OR ax, control
Jz no_8087

Test for the existence of an 8087 in the system. This code will always recognize an 8087
; independent of the TEST pin usage on the host. No deadlock is possible. Using the 8087
emulator will not change the function of this code since ESC instructions are used. The word
variable control is used for communication between the 8087 and the host. Note: if an 8087 is
present, it will be initialized. Register ax is not transparent across this code.

; Control = 03fth if 8087 present
; Jump if no 8087 is present

Figure 3-5 Test for the Existence of an 8087

iSBC 337™ MULTIMODULE™ BOARN

8087 INT
CONNECTOR

e |

=

SN e=n]
| I

T T

HOST BOARD

OPTIONAL SOLDER
(iISBC 86/12A™) MOUNT

Figure 3-6 iSBC® 337 MULTIMODULE
Mounting Scheme

termines when an 8086 instruction is being fetched. At
the same time, the control unit monitors the Data bus in
parallel with the host CPU to obtain instructions that per-
tain to the 8087.

The CPU maintains an instruction queue that is identical
to the queue in the host CPU. By monitoring the BHE*/S7
line, the control unit automatically determines if the CPU
is an 8086 or an 8088 immediately after reset and matches
its queue length accordingly. Also, by monitoring the
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Figure 3-7 8087 Numeric Processor Extension Block Diagram
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CPU'’s queue status lines (QS0, QS1), the control unit ob-
tains and decodes instructions from the queue synchro-
nously with the CPU.

A numeric instruction for the 8087 appears as an ES-
CAPE instruction to the 8086 or 8088 CPU; both the
CPU and the NPX decode and execute the ESCAPE in-
struction together. Only the 8087, however, recognizes
the numeric instructions. The start of a numeric operation
begins when the CPU executes the ESCAPE instruction
(the instruction may or may not identify a memory oper-
and).

The CPU does, however, distinguish between ESCAPE
instructions that refer to memory operands and those that
do not. If the instruction refers to a memory operand, the
CPU calculates the operand’s address using any one of its
available addressing modes, and then performs a ““dummy
read” of the word at that location. (Any location with the
1M byte address space is allowed.) This read cycle is nor-
mal except that the CPU ignores the data it receives. If the
ESCAPE instruction does not contain a memory refer-
ence (e.g., an 8087 stack operation), the CPU simply pro-
ceeds to the next instruction.

An 8087 instruction can have one of three memory refer-
ence options:

1. not reference memory;
2. load an operand word from memory into the 8087;

3. store an operand word from the 8087 into memory.

If the 8087 requires no memory reference, the numeric
execution unit simply executes its instruction. If the 8087
does require a memory reference, the control unit uses
the “dummy read” cycle initiated by the host CPU to cap-
ture and save the address that the CPU places on the bus.
If the instruction specifies a register load, the control unit
also captures the data word when it becomes available on
the local data bus. If the 8087 requires data longer than
one word, the control unit immediately obtains the bus
from the CPU using the request/grant protocol and reads
in the rest of the information in consecutive bus cycles. In
a store operation, the control unit captures and saves the
store address as in a register load operation, and ignores
the data word that follows in the ‘“‘dummy read” cycle.
When the 8087 is ready to perform the store, the control
unit obtains the bus from the CPU and writes the operand
starting at the specified address.

NUMERIC EXECUTION UNIT

The 8087 executes all instructions that involve the nu-
meric register stack. These instructions include
arithmetic, logical, transcendental, constant and data
transfer operations. The numeric execution unit in the
NPX has a 80-bit wide data path (64 fraction bits, 15 ex-
ponent bits and a sign bit) that allows internal operand
transfers to be performed at very high speeds.

MOD
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Figure 3-8 Non-Memory Reference Escape
Instruction Form

When the numeric execution unit begins executing an in-
struction, it activates the 8087 BUSY signal. This signal
can be used in conjunction with the CPU WAIT instruc-
tion to resynchronize both processors when the numeric
execution unit has completed its current instruction.

3.2.2 Software Overview

The following paragraphs discuss the ESCAPE instruc-
tion format and discuss the use of the ESCAPE instruc-
tion with custom coprocessors. The constraints which the
designer must exercise when designing this type of circuit
are also discussed.

ESCAPE INSTRUCTION FORMAT

There are two basic forms of the ESCAPE instructions.
These are the non-memory form (see Figure 3-8) and the
memory reference form (see Figure 3-9). All ESCAPE
instructions start with the high order 5-bits of the instruc-
tion being 11011. The non-memory form of the ESCAPE
instruction initiates some activity in the coprocessor using
the nine available bits of the ESCAPE instruction to indi-
cate which action to perform.

The memory reference forms of the ESCAPE instruction
allow the host to point out a memory operand to the
coprocessor using any host memory addressing mode. Six
bits are available in this form to identify what to do with
the memory operand. Note that the coprocessor may not
recognize all possible ESCAPE instructions. In this case
the coprocessor ignores the unrecognized ESCAPE in-
structions.

In the memory reference forms of the ESCAPE instruc-
tions bits 7 and 6 of the byte follow the ESCAPE opcode.
These two bits are the MOD field of the 8086 or 8088
effective address calculation. Together with R/M field
bits 2 through O, bits 7 and 6 determine the addressing
mode and how many subsequent bytes still remain in the
instruction.

The 8086 or 8088 ESCAPE instructions provide 64 mem-
ory reference opcodes and 512 non-memory reference
opcodes. The 8087 only uses 57 of the memory reference
opcodes and 406 of the non-memory reference opcodes.
Refer to Figure 3-10 for a list of the ESCAPE instructions
not used by the 8087.
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MOD RIM 16-bit direct displacement
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MOD RIM 16-bit displacement
RN LI I I T Y Y T Y O O O A
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MOD R/M 8-bit displacement
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Y45 4a M3 42 411 ho o '8 'l 16 s 14 I3 12 Yy lg Dy Dg D5 Dy D3 Dy Dy Dp

MOD R/IM
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Figure 3-9 Memory Reference Escape Instruction Form

USING THE 8087 WITH CUSTOM

COPROCESSORS
RN LIRN AN AN AEEN B

1+
s Ma M3 M2 M1 Mo le 8 7l ls la 3 12 W Mo

holg I3

When designing numeric processors with custom copro-
Available codes cessors, the designer should limit the use of ESCAPE in-

1 structions to only those not used by the 8087. Using only
the unused ESCAPE instructions with custom coproces-
sors is necessary to prevent ambiguity as to whether any
specific ESCAPE instruction is intended for the numeric
or custom coprocessor. Note that using any escape in-
struction for a custom coprocessor may conflict with op-
codes chosen for future Intel coprocessors.

&
=3
&

NN AN

Using the 8087 together with other custom coprocessors
under the following constraints:

1. All 8087 errors are masked. The 8087 will update its
opcode and instruction address registers for the un-
used opcodes. Unused memory references
instructions will also update the operand address
value. These changes make software-defined error
handling in the 8087 impossible.
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105 total
Available Non-Memory R Escape Instr

2. If the coprocessors provide a BUSY signal, they must
be ORed together for connection to the host TEST
MoD RIM pin. When the host executes a WAIT instruction, it
R EL I L L N N Y Y does not know which coproces sor will be effected by
hs el 2ol T el ol b the following ESCAPE instruction. Typically, all co-
l4olg Ig 15 15 I3 processors must be idle before executing the ESCAPE

1 instruction.

3.3 DEVICE PIN ASSIGNMENTS

- a0000
- OO === 0O
[P G
Q= Ow-00
0OO0O0O-=+000
- -0

A complete functional description of each device pin sig-
nal is provided Table 3-1. This table correlates the de-
scription to the pin number and associated signal symbol.

Avai Memory Escape

Figure 3-10 ESCAPE Instructions Not Used
By the 8087 NPX 3.4 OPERATING MODES

The following paragraphs describe the operation of the
8087 NPX in conjunction with the 8086(88) and
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Table 3-1 8087 Device Pin Descriptions

Symbol Type Name and Function

AD15-ADO | I/O |Address Data: These lines constitute the time multiplexed memory address (T4) and data (T2,
T3, Tw, T4) bus. A0 is analogous to BHE for the lower byte of the data bus, pins D7-D0. It is
LOW during T1 when a byte is to be transferred on the lower portion of the bus in memory
operations. Eight-bit oriented devices tied to the lower half of the bus would normally use AQ
to condition chip select functions. These lines are active HIGH. They are input/output lines for
8087 driven bus cycles and are inputs which the 8087 monitors when the 8086/8088 is in
control of the bus. A15-A8 do not require an address latch in an iAPX 88/20. The 8087 will
supply an address for the T1-T4 period.

A19/S6, /O | Address Memory: During Tq these are the four most significant address lines
A18/S5, for memory operations. During memory operations, status information is available on
A17/S4, these lines during Ta, T3, Tw, and T4. For 8087 controlled bus cycles, S6, S4, and S3
A16/S3 are reserved and currently one (HIGH), while S5 is always LOW. These lines are inputs which

the 8087 monitors when the 8086/8088 is in control of the bus.

BHE/S7 I/O | Bus High Enable: During T4 the bus high enable signal (BHE) should be used to enable data
onto the most significant half of the data bus, pins D15-D8. Eight-bit oriented devices tied to
the upper half of the bus would normally use BHE to condition chip select functions. BHE is
LOW during T4 for read and write cycles when a byte is to be transferred on the high portion of
the bus. The S7 status information is available during T, T3, Tw, and T4. The signal is active
LOW. S7 is an input which the 8087 monitors during 8086/8088 controlled bus cycles.

$2,51,50 | /O | Status: For 8087 driven bus cycles, these status lines are encoded as follows:

S2 s1 S0
0 (LOW) X X  Unused
1 (HIGH) 0 0 Unused
1 0 1 Read Memory
1 1 0  Write Memory
1 1 1 Passive

Status is driven active during T4, remains valid during Ty and T, and is returned to the
passive state (1, 1, 1) during T3 or during Ty when READY is HIGH. This status is used by the
8288 Bus Controller to generate all memory access control signals. Any change in $2, 51, or
SO0 during T4 is used to indicate the beginning of a bus cycle, and the return to the passive
state in T3 or Ty is used to indicate the end of a bus cycle. These signals are monitored by the
8087 when the 8086/8088 is in control of the bus.

RQ/GTO /O | Request/Grant: This request/grant pin is used by the NPX to gain control of the local bus from

the CPU for operand transfers or on behalif of another bus master. It must be connected to one

of the two processor request/grant pins. The request grant sequence on this pinis as follows:

1. A pulse one clock wide is passed to the CPU to indicate a local bus request by either the
8087 or the master connected to the 8087 RQ/GT1 pin.

2. The 8087 waits for the grant pulse and when it is received will either initiate bus transfer
activity in the clock cycle following the grant or pass the grant out on the RQ/GT1 pinin this
clock if the initial request was for another bus master. .

3. The 8087 will generate a release pulse to the CPU one clock cycle after the completion of
the last 8087 bus cycle or on receipt of the release pulse from the bus master on RQ/GT1.

39 210912-001




8087 NUMERIC PROCESSOR EXTENSION

Table 3-1 8087 Device Pin Descriptions (continued)

Symbol Type Name and Function

RQ/GT1 /O | Request/Grant: This request/grant pin is used by another local bus master-to force the 8087 to
request the local bus. If the 8087 is not in control of the bus when the request is made the
request/grant sequence is passed through the 8087 on the RQ/GTO pin one cycle later.
Subsequent grant and release pulses are also passed through the 8087 with a two and one
clock delay, respectively, for resynchronization. RQ/GT1 has has an internal pullup resistor,
and so may be left unconnected. If the 8087 has control of the bus the request/grant sequence
is as follows:

1. A pulse 1 CLK wide from another local bus master indicates a local bus request to the 8087
(pulse 1).

2. During the 8087's next T4 or T; a pulse 1 CLK wide from the 8087 to the requesting master
(pulse 2) indicates that the 8087 has allowed the local bus to float and that it will enter the
“RQ/GT acknowledge” state at the next CLK. The 8087's control unit is disconnected
logically from the local bus during “RQ/GT acknowledge.”

3. A pulse 1 CLK wide from the requesting master indicates to the 8087 (pulse 3) that the
“RQ/GT" request is about to end and that the 8087 can reclaim the local bus at the next
CLK.

Each master-master exchange of the local bus is a sequence of 3 pulses. There must be one

dead CLK cycle after each bus exchange. Pulses are active LOW.

Qs1, | |QS1, @S0: QS1 and QSO provide the 8087 with status to allow tracking of the CPU
Qso instruction queue.
Qs1 Qso
0 (LOW) 0 No Operation
0 1 First Byte of Op Code from Queue

1 (HIGH) 0 Empty the Queue
1 1 Subsequent Byte from Queue

INT (o] Interrupt: This line is used to indicate that an unmasked exception has occurred during
numeric instruction execution when 8087 interrupts are enabled. This signal is typically
routed to an 8259A. INT is active HIGH.

BUSY O |Busy: This signal indicates that the 8087 NEU is executing a numeric instruction. It is con-
nected to the CPU's TEST pin to provide synchronization. In the case of an unmasked
exception BUSY remains active until the exception is cleared. BUSY is active HIGH.

READY | Ready: READY is the acknowledgment from the addressed memory device that it will
complete the data transfer. The RDY signal from memory is synchronized by the 8284A Clock
Generator to form READY. This signal is active HIGH.

RESET | Reset: RESET causes the processor to immediately terminate its present activity. The signal
must be active HIGH for at least four clock cycles. RESET is internally synchronized.
CLK | Clock: The clock provides the basic timing for the processor and bus controller. It is asym-
metric with a 33% duty cycle to provide optimized internal timing.
Vee Power: Vo is the +5V power supply pin.
GND Ground: GND are the ground pins.
NOTE:

For the pin descriptions of the 8086 and 8088 CPU's reference those respective data sheets (iAPX 86/10, iAPX 88/10).
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Figure 3-11 8087 NPX — 8086/88 CPU System Configuration

80186(188) microprocessors, describe the overall electri-
cal interface and present design considerations relate to
the interface.

3.4.1 8087/8086(88) Interface

‘When installed as a coprocessor to the 8086 or 8088, the
8087 connects in parallel with the CPU (see Figure 3-11).
The CPU’s status lines (S0*-S2*) and queue status lines
(QS0-QS1) allow the 8087 to monitor and decode instruc-
tions in synchronization with the CPU and without any
CPU overhead. The 8087 can process instructions in par-
allel with and independent of the host CPU. For resyn-
chronization, the NPX’s BUSY signal informs the CPU
that the 8087 is executing an instruction; the CPU WAIT
instruction tests this signal to insure that the NPX is ready
to execute subsequent instructions. The NPX can inter-
rupt the CPU when it detects an error or exception. The
8087’s interrupt request line is typically routed to the
CPU through an 8259A Programmable Interrupt Control-
ler (see Figure 3-2) for 8087 pinout information.

The 8087 uses one of the request/grant lines of the
iAPX86 architecture to obtain control of the local bus for
data transfers. The other request/grant line is available for
general system use (e.g., an I/O processor in LOCAL
mode). A bus master can also be connected to the 8087’s

bus with the 8087 on a first come first serve basis, and the
second master will be guaranteed to be higher in priority
than the 8087. All processors use the same clock genera-
tor and system bus interface components (bus controller,
latches, transceivers, and bus arbiter — see Figure 3-11).

3.4.2 8087/80186(88) Interface

The iAPX186/20 system operates similar to the
iAPX86/20. The 80186 contains integral controller de-
vices (refer to Chapter 2) which result in device pin as-
signments and functions that differ from the 8086. To
simplify iAPX186/20 system configuration, Intel pro-
vides the 82188 Integrated Bus Controller which enables
communication between the 80186 and the 8087 without
the need for random logic (see Figure 3-12).

The 82188 converts the ARDY and SRDY signals of the
80186 to RDY for the 8087; similarly, it converts
HOLD/HLDA of the 80186 to RQ/GTO0,1 for the 8087.
When configured into an iAPX186/20 system, RD* (pin
62) of the 80186 must be grounded. The 82188 supplies
the command and control signals to the devices on the
system bus that the 80186 would otherwise provide.
These signals include:

RQ*/GT1* line. In this configuration the 8087 will pass ARDY DEN*
the request/grant handshake signals between the CPU and SRDY DT/R*
the attached master when the 8087 is in control. There- RD* CS OUT*
fore, two additional masters can be configured in an iAPX WR* HOLD .
86/20 or an 88/20 system; one master will share the 8086 ALE HLDA

3-11
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Figure 3-12 8087 NPX — 80186/188 CPU System Configuration

3.5 8086 (80186)/8087 OPERATION

The following paragraphs describe 8087 NPX escape se-
quence (ESCAPE) operation, and also describe the opera-
tional sequence where 8087 controls the bus.

3.5.1 Decoding Escape Instructions

The coprocessor must examine all instructions executed
by the host to recognize ESCAPE instructions. When the
host fetches. an instruction byte from its internal queue,
the coprocessor must also fetch an instruction byte.

The queue status state, fetch opcode byte, identifies when
an opcode byte is being examined by the host. At the
same time, the coprocessor will check if the byte fetched
from its internal instruction queue is an ESCAPE opcode.
If the instruction is not an ESCAPE, the coprocessor will
ignore it. The queue status signals for fetch subsequent
byte and flush queue let the coprocessor track the host’s
queue without knowledge of the length and function of
host instructions and addressing modes.

HOST ESCAPE INSTRUCTION PROCESSING

The host performs one of two possible actions when an
ESCAPE instruction occurs. The host may either do noth-
ing or read a word value beginning at that address.. The
host ignores the value of the word read. ESCAPE instruc-
tions change none of the registers in the host except for
advancing IP. Therefore, the ESCAPE instruction will ef-
fectively be a NOP to the host if no coprocessor exists, or
the coprocessor ignores the ESCAPE instruction. Except
for calculating a memory address and reading a word of
memory, the host makes no other assumptions regarding
Coprocessor activity.

Memory reference ESCAPE instructions have two pur-
poses. One identifies a memory operand and the other is,
for certain instructions, to transfer a word from memory
to the coprocessor.

COPROCESSOR INTERFACE TO MEMORY

Coprocessor design is greatly simplified if only the read-
ing of memory values of 16 bits or less is required. The
host can perform all the reads with the coprocessor latch-
ing the value as it appears on the data bus at the end of T3
during the memory read cycle. The coprocessor does not

.need to become a local bus master to read or write addi-

tional information.

If the coprocessor must write information to memory, or
deal with data values longer than one word, it must save
the memory address and be able to become the local bus
master. The read operation performed by the host when
executing the ESCAPE instruction places the 20-bit phys-
ical address of the operand on the address/data pins dur-
ing T1 of the memory cycle. The coprocessor can latch
the address at this time. If the coprocessor instruction also
requires reading a value, it will appear on the data bus
during T3 of the memory read. All other memory bytes
are addressed relative to this starting physical address.

Whether the coprocessor becomes a bus master or not, it
must be able to identify the memory read performed by
the host in the course of executing an ESCAPE instruc-
tion if it has memory reference instruction forms. Identi-
fying the memory read requires the following conditions
be met:

1. A MOD value of 00, 01 or 10 in the second byte of the
ESCAPE instruction executed by the host.

2. This action must be the first data read memory cycle
performed by the host after it encountered the ES-
CAPE instruction (i.e., S2-SO will be 101 and S6 will
be 0).

The coprocessor must continue to track the host’s instruc-
tion queue while it calculates the memory address and
reads the memory value. This simply requires following
the fetch subsequent byte status commands that occur on
the queue status pins.
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The coprocessor must be aware of the host bus character-
istics that determine how the host will read the word oper-
and of a memory reference ESCAPE instruction. An
8088 host will always perform two byte reads at sequen-
tial addresses, but an 8086 can perform either single word
read or two byte reads to sequential addresses. The 8086
places no restrictions on the alignment of word operands
in memory. It will automatically perform two byte opera-
tions for word operands at an odd address. These two op-
erations are necessary because the two bytes of operand
exist in two different memory words. The coprocessor
must be able to accept the two possible methods of read-
ing a word value on the 8086.

The coprocessor determines whether an 8086 performs
one or two memory cycles as a part of the current ES-
CAPE instruction execution. During T1 of the first mem-
ory read by the host, the ADO pin tells the coprocessor if
this is the only read to be performed as part of the ES-
CAPE instruction. If ADO is a 1 during T1 of the memory
cycle, the 8086 immediately follows this memory read
cycle with another one at the next byte address.

3.5.2 Concurrent Execution of Host and
Coprocessor

After the coprocessor has started its operation, the host
may continue on with the program, executing it in parallel
while the coprocessor performs the function started ear-
lier. The parallel operation of the coprocessor does not
normally affect that of the host unless the coprocessor
must reference memory or I/0-based operands. When the
host releases the local bus to the coprocessor, the host
may continue to execute from its internal instruction
queue. However, the host must stop when it also needs the
local bus currently in use by the coprocessor. Except for
the stolen memory cycle, the operation of the coprocessor
is transparent to the host.

This parallel operation of the host and coprocessor is

called concurrent execution. Concurrent execution of in-

structions requires less total time than a strictly sequential
execution would. System performance will be higher with
concurrent execution of instructions between the host and
COProcessor.

SYNCHRONIZATION

In exchange for the higher system performance made
available by concurrent execution, programs must syn-
chronize the coprocessor with the host. Synchronization
is necessary whenever the host and coprocessor must use
information available from the other. Synchronization in-
volves either the host or coprocessor waiting for the other
to finish an operation currently in progress. Since the host
executes the program, and has program control instruc-
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tions like jumps, it is given the responsibility for synchro-
nization. To meet this need, a special host instruction
exists to synchronization host operation with a coproces-
SOT.

A more detailed discussion of the effects of instruction
execution synchronization between the host CPU and the
8087 coprocessor is contained in the following paragraphs
under “Instruction Synchronization”.

COPROCESSOR CONTROL

The host has the responsibility for overall program con-
trol. Coprocessor operation is initiated by special “ES-
CAPE” instructions encountered by the host. When the
host encounters an ESCAPE instruction, the coprocessor
is expected to perform the action indicated by the instruc-
tion.

The host’s coprocessor interface requires the coprocessor
to recognize when the host has encountered an ESCAPE
instruction. Whenever the host begins executing a new
instruction, the coprocessor must look to see if it is an
ESCAPE instruction. Since only the host fetches instruc-
tions and executes them, the coprocessor must monitor
the instructions being executed by the host.

3.5.3 Instruction Synchronization

Instruction synchronization is required because the 8087
can only perform one numeric operation at a time. Before
any numeric operation is started, the 8087 must have
completed all activity from previous instructions. When
executing a typical NPX instruction, the CPU will com-
plete the ESC long before the 8087 finishes interpretation
of the same machine instruction. Upon completion of the
ESC, the CPU will decode and execute the next instruc-
tion, and the NPX’s control unit, tracking the CPU, will
do the same. (The NPX “executes” a CPU instruction by
ignoring it.) If the CPU has work to do that does not effect
the NPX, it can proceed with a series of instructions while
the NPX is executing in parallel. The NPX’s control unit
will ignore these CPU-only instructions as they do not
contain the 8087 escape code. This asynchronous execu-
tion of the processors can substantially improve the per-
formance of systems that can be designed to exploit it.

Two cases, however, make it necessary to synchronize the
execution of the CPU to the NPX:

1. An NPX instruction that is executed by the numeric
execution unit must not be started if the execution unit

is still busy executing a previous instruction.

The CPU should not execute an instruction that ac-
cesses a memory operand being referenced by the
NPX until the NPX has actually accessed the location.
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The host coprocessor synchronization instruction (WAIT)
uses the TEST pin of the host. The coprocessor can signal
that it is still busy to the host via this pin. Whenever the
host executes a wait instruction, it will stop program exe-
cution while the TEST input is active. When the TEST
pin becomes inactive, the host will resume program exe-
cution with the next instruction following the WAIT.
While waiting on the TEST pin, the host can be inter-
rupted at 5 clock intervals; however, after the TEST pin
becomes inactive, the host will immediately execute the
next instruction, ignoring any pending interrupts between
the WAIT and the following instruction.

The WAIT instruction allows software to synchronize the
CPU to the NPX so that the CPU will not execute the
following instruction until the NPX is finished with its
current (if any) instruction.

Whenever the 8087 is executing an instruction, it activates
its BUSY line. This signal is wired to the CPU’s TEST*
input as shown in Figure 3-11. The NPX ignores the
WAIT instruction, and the CPU executes it. The CPU in-
terprets the WAIT instruction as “wait while TEST* is
active.” The CPU examines the TEST* pin every 5
clocks. If TEST* is inactive, execution proceeds with the
instruction following the WAIT. If TEST* is active, the
CPU examines the pin again. Therefore, the effective ex-
ecution time of a WAIT can stretch from 3 clocks (3
clocks are required for decoding and setup) to infinity, as
long as TEST* remains active. The purpose of the WAIT
instruction is to prevent the CPU from decoding the next
instruction until the 8087 is not busy. The instruction fol-
lowing a WAIT is decoded simultaneously by both proces-
sors.

To satisfy the first synchronization case, every 8087 in-
struction that affects the numeric execution unit should be
preceded by a WAIT to ensure that the execution unit is
ready. All instructions except the processor control class
affect the numeric execution unit. To simplify program-
ming, the 8086 family language translators provide the
WAIT automatically, therefore, when an assembly lan-
guage programmer codes:

FMUL
FDIV

;(multiply)
;(divide)

The assembler produces four machine instructions, as if
the programmer had written:

WAIT

FMUL ;(multiply)
WAIT

FDIV ;(divide)

This ensures that the multiply runs to completion before
the CPU and the 8087 control unit decode the divide.

To satisfy the second synchronization case, the program-
mer must explicitly code the FWAIT instruction immedi-
ately before a CPU instruction that accesses a memory
operand read or written by a previous 8087 instruction.
This will ensure that the 8087 has read or written the
memory operand before the CPU attempts to use it. (The
FWAIT mnemonic causes the assembler to create a CPU
WAIT instruction that can be eliminated at link time if the
program is run on an 8087 emulator.)

A typical sequence of instructions that illustrates the ef-
fect of the WAIT instruction and parallel execution of the
NPX with a CPU is shown in Figure 3-13). The first two
instructions in the sequence (FMUL and FSQRT) are
8087 instructions that illustrate the ASM-86 assembler’s
automatic generation of a preceding WAIT, and the effect
of the WAIT when the NPX is, and is not, busy.

Since the NPX is not busy when the first WAIT is encoun-
tered, the CPU executes it and immediately proceeds to
the next instruction, and the NPX ignores the WAIT. The
next instruction is decoded simultaneously by both proc-
essors. The NPX starts the multiplication and raises its
BUSY line. The CPU executes the ESC and then the sec-
ond WAIT. Since TEST* is active (it is tied to BUSY), the
CPU effectively stretches execution of the multiply by
lowering BUSY. The next instruction is interpreted as a
square root by the NPX and another escape by the CPU.
The CPU finishes the ESC well before the NPX comple-
tes the FSQRT. This time, instead of waiting, the CPU
executes three instructions (CMP, JG and MOV) while the
8087 is working on the FSQRT. The 8087 ignores these
CPU-only instructions. The CPU then encounters the
third WAIT, generated by the assembler immediately pre-
ceding the FIST (store stack top into integer word). When
the NPX finished the FSQRT, both processors proceed to
the next instruction, FIST to the NPX and ESC to the
CPU. The CPU completes the escape quickly and then
executes an explicit programmer-coded FWAIT to ensure
that the 8087 has updated BETA before it moves BETA’s
new value to the register AX (refer to Figure 3-13).

The 8087 control unit can execute most processor control
instructions by itself regardless of what the numeric exe-
cution unit is doing. Therefore, in these cases the 8087
can potentially execute two instruction at once. The
ASM-86 assembler provides separate‘‘wait” and ‘“‘no
wait” mnemonics for these instructions. For example, the
instruction that sets the 8087 interrupt enable mask, and
therefore disables interrupts, can be coded as FDISI or
FNDISI. The assembler does not generate a WAIT if the
second form is coded, so that the interrupts can be dis-
abled while the numeric execution unit is busy with a pre-
vious instruction. The no-wait forms are principally used
in exception handlers and operating systems.
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;ASSUME 8087 RE
; NEU IS
: AND THA
: INTEGER
FMUL

FSQRT

CMP ALPHA,1
J6 CONTINU
MOV ALPHA, 1

CONTINUE: FIST BETA

FWAIT

MOV AX,BETA

GISTER STACK IS LOADED WITH OPERANDS,
NOT BUSY,
T "ALPHA' AND 'BETA' ARE WORD

S.

;MULTIPLY TOP STACK
;ELEMENTS
;SQUARE ROOT OF PRODUCT

00 SALPHA > 1007
E ;YES, LEAVE UNALTERED
00 ;NO, SET TO 100

;STORE ROOT AS INTEGER WORD
JWAIT FOR 8087 TO COMPLETE
;STORE OF BETA

;PROCEED TO PROCESS BETA

NDP:

| emue |1

FSQRT FIST

Iy |

BUSY -TEST: ——/ \-—/

A2

[esc] [cwmr] [mov] Twair] [esc] [warr] [mov]

A e [ frrysa |
cpu: [warT) [Esc] [WarT]
NOTES:
r—
WA,

= Assembler-generated instruction.

* Instruction execution times are not drawn to scale.

Figure 3-13 Synchronizing Execution With WAIT

3.6 BUS OPERATION

Connecting the 8087 in tandem with an 8086
(1APX86/20) or with an 80186 (i1APX186/20), does not
change system bus operation from the normal operation
of the bus in a iAPX86/10 or iAPX186/10 system. How-
ever, some minor differences exist between the
iAPX86/20 and the iAPX186/20 systems, primarily due
the requirement for a 82188 Interface chip in the
iAPX186/20 system. For additional information on the
82188 Integrated Bus Controller refer to the Preliminary
Data Sheet Revision 1.2. The following paragraphs de-
scribe the operation and timing of the bus in the various
configurations.

3.6.1 iAPX86/20 Bus Operation

Operation and timing for the 8087 bus structure are iden-
tical to all other processors in the maximum mode config-
uration iAPX 86, 88 series and the iAPX 186, 188 series.
The address time-multiplexes with the data on the first
16/8 lines of the address/data bus. A16 through A19 are
time-multiplex with four status lines S3-S6. Lines S3, S4,
and S6 are always high (logical 1) for 8087 driven bus
cycles while S5 is always low (logical 0). When the 8087
is monitoring CPU bus cycles (passive mode), the 8087
monitors S6 to discriminate between 8086/8088 activity
and that of a local I/O processor or any other local bus
master.

NOTE

The 8086/8088 must be the only processor on
the local bus to drive S6 low.

Line S7 multiplexes with BHE* and has the same value as
BHE* for all 8087 bus cycles. When an 8288 Bus Con-
troller is used, status lines SO*-S2* are used to determine
the type of bus cycle being run, as shown in the following

list:
S2*  S1*  SO*
0 X X  Unused
1 0 0 Unused
1 0 1 Memory Data Read
1 1 0 Memory Data Write
1 1 1 Passive (no bus cycle)

3.6.2 iAPX186/20 Bus Operation

The 82188 Interface chip provides a local bus arbitration
function for an 80186 system consisting of an 80186, an
8087 and a third processor with a HOLD-HLDA type bus
exchange protocol. The 82188 also provides the bus con-
trol signals otherwise supplied to the system by the 80186
and contains ARDY and SRDY signals to its own integral
Ready circuit (refer to paragraph 3.4.2).

The 82188 also has an integral queue status circuit which
inserts a one-phase delay on the queue status signals to
meet the 8087 Queue-Status timing requirements (refer to
paragraph 3.4.2).
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BUS ARBITRATION

The 82188 defines the priorities for access to the system
bus for multiprocessor systems that include an 80186 and
an 8087. As indicated in Figure 3-14), HOLD output
from the 80186 and HLDA input to the 80186 intercon-
nect directly to the 82188. The 82188 then exchanges its
own HOLD output and the HLDA input with the system.
In this configuration, the 82188 assigns the highest sys-
tem bus access priority to the system (third processor in
Figure 3-14), second priority to the 8087, and default to
the 80186.

When the 8087 has control of the bus, and the third proc-
essor needs the bus, the 82188 asserts RQ*/GT1* to take
control of the bus from the 8087 and pass control to the
third processor. If the 8087 does not have control of the
bus, the 82188 passes control directly to the third proces-
sor without exercising the 8087 RQ*/GT1* protocol. The
80186 will not regain control of the bus from the 82188
until both the third processor and the 8087 are finished
with the bus.

The third processor uses the system HOLD and HLDA
(SYSHOLD and SYSHLDA) lines to request bus access
from the 82188. Similarly, the 82188 uses the 80186
HOLD and HLDA lines to gain bus control from and re-
turn bus control to the 80186. The 82188 also uses the
RQ*/GTO* lines from the 8087 for NPX bus control.

NOTE

The 82188 contains weak pull-up devices to
set both RQ*/GT1* and RQ*/GT0* high if the
82188 is configured in a system with out an
8087.

BUS CONTROL SIGNALS

Status line outputs from the 80186 and the 8087 (see Fig-
ure 3-12) are sent to the 82188. The 82188 decodes these
signal lines and generates bus control signals that would
otherwise be generated and output directly by an 80186.
The signals decoded by the 82188 include:

ALE
RD*
WR*
DT/R*
DEN*

The 82188 also contains the AEN* input which enables
the system command lines. This signal provides the hard-
ware designer with the ability to tri-state RD*, WR*, and
DEN* by asserting AEN* high SO*, S1* and S2* decode
exactly the same as for the 8086 and the 80186.

READY CIRCUIT

The system ARDY and SRDY signals are applied to the
82188 inputs for these signals. The 82188 samples SRDY
on the rising edge of the clock. Since ARDY is asyn-
chronous, the 82188 contains a one-phase synchronizer at
its ARDY input. Using this synchronizer, the 82188 syn-
chronizes only the leading edge of ARDY (the 82188 pre-
sumes the trailing edge of ARDY falls on the CLK edge).
From the ARDY and SRDY inputs, the 82188 produces a
single synchronized Ready signal SRO. The SRO is ap-
plied to the 8087 READY input and the 80186 SRDY in-
put (note that the 80186 ARDY input should be tied low).

The inherent 82188 propagation delays cause
iAPX186/20 system timing to differ from that of a
iAPX186/10 system. The 82188 samples ARDY one
clock phase earlier than in a non-iAPX186/20 system.
Also, SRDY setup time to the CLK falling edge is 30ns
longer than the 80186 requirements (the 82188 changes
SRO only when CLK is high).

The 82188 inserts three Wait states, by using SRO, in the
first 256 80186 bus cycles after a Reset. (This feature is
for programmer use to re-program the 80186 Wait State
generator to 0 Wait states.)

3.7 BUS EXCHANGE MECHANISM

Two basic decisions must be made when connecting the
8087 to a system: 1.) interconnection of the RQ/GT sig-
nals of all of the local bus masters; and 2.) connecting the
Interrupt (INT) signal pin. The decision on where to con-
nect the RQ/GT signal that is made at this point affects the
response time needed to service local bus requests from
other local bus masters, such as an 8089 IOP or other
coprocessor. The interrupt connection affects the re-
sponse time to service an interrupt request and how
user-interrupt handlers are written. The implications of
how these pins are connected concern both the hardware
designer and programmer and must be understood by
both. The following paragraphs provide information on
making the decision where to connect the RQ/GT signal.
Refer to paragraph 3.8 for the discussion on interconnec-
tion of the Interrupt (INT) signal.

3.7.1 8087 RQ/GT Function

The presence of the 8087 in the RQ/GT path from the IOP
to the host has little effect on the maximum wait time seen
by the IOP when requesting the local bus. The 8087 adds
two clocks of delay to the basic time required by the host.
This low delay is achieved due to a preemptive protocol
implemented by the 8087 on RQ/GT1.

The 8087 always gives higher priority to a request for the
local bus from a device attached to its RQ/GT1 pin than to
a request generated internally by the 8087. If the 8087
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80186 82188 8087
HOLD HOLD
RQ/GTO RQ/GTO
HLDA HLDA
3°° pROC
HLDA SYSHLDA
RQ/GT1 RQ/GT4
HOLD SYSHOLD
231051-3

Figure 3-14 Three Processor System Bus Signal Connections

currently owns the local bus and a request is made to its
RQ/GT1 pin, the 8087 will finish the current memory
cycle and release the local bus to the requestor. If the
request from the devices arrives when the 8087 does not
own the local bus, the 8087 will then pass the request on
to the host via its RQ/GTO pin.

The RQ/GT issue can be broken into three general cata-
gories depending on system configuration: 86/20 or
88/20, 86/21 or 88/21, and 86/22 or 88/22. Remote oper-
ation of an IOP is not effected by the 8087 RQ/GT con-
nection.

iAPX 86/20, 88/20 SYSTEM CONFIGURATION

For an 86/20, 88/20 just connect the RQ/GTO of the 8087
to RQ/GTO (1) of the host (see Figure 3-3).

iAPX 86/21, 88/21 SYSTEM CONFIGURATION

For an 86/21 or 88/21, connect RQ/GTO of the 8087 to
RQ/GTO(1) of the host and connect RQ/GT of the 8089 to
RQ/GT1 of the 8087 (see Figure 3-15).

The RQ/GT1 pin of the 8087 exists to provide one 1/O
processor with a low maximum wait time for the local
bus. The maximum wait times to gain control of the local
bus for a device attached to RQ/GT1 of an 8087 for an
8086 or 8088 host are shown in Table 3-2. These numbers
are all dependent on when the host will release the local
bus to the 8087.

Three factors determine when the host will release the
local bus (see Table 3-2):

1. Type of host;
2. Current instruction being executed;
3. Use of the lock prefix.

An 8086 host will not release the local bus between the
two consecutive byte operations performed for
odd-aligned word operands. In contrast, the 8088 will
never release the local bus between two bytes of a word
transfer, independent of its byte alignment. Host opera-
tions such as acknowledging an interrupt will not release
the local bus for several bus cycles. Using a lock prefix in
front of a host instruction prevents the host from releasing
the local during the execution of that instruction.

iAPX 86/22, 88/22 SYSTEM CONFIGURATION

An 86/22 system offers two alternatives in regards to
which IOP to connect to an I/O device. Each IOP will
offer a different maximum delay time to service an I/O
request. (See Figure 3-16.)

The second 8089 (IOPA) must use the RQ/GTO pin of the
host. When using two IOP’s the designer must decide
which IOP services which I/O devices. This decision is
determined by the maximum wait time allowed between
the time an I/O device requests IOP service and when the
IOP can respond. Since the maximum service delay times
of the two IOP’s can be very different, it makes very little
difference which of the two host RQ/GT pins are used.

The different wait times are due to the non-preemptive
nature of bus grants between the two host RQ/GT pins.
IOPA and the 8087/IOPB combination cannot communi-
cate about the need to use the local bus. Any request for
the local bus by the IOPA must wait (worst case) for the
host, the 8087, and the IOPB to finish their longest se-
quence of memory cycles. IOPB must wait in the worst
case for the host and JOPA to finish their longest sequence
of memory cycles. The 8087 has little effect on the maxi-
mum wait time of IOPB.

3.7.2 Delay Effects of the 8087

The delay effects of the 8087 on IOPA can be significant.
When executing special instructions (FSAVE, FNSAVE,
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Figure 3-15 iAPX 88/21 System Configuration
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Table 3-2 Worst Case Local Bus Request Wait Times In Clocks

System No Locked Only Locked Other Locked
Configuration Instructions Exchange Instructions
iAPX 86/21
even aligned words 15, 35, max (15,, *)
iAPX 86/21
odd aligned words 15, 43, max (43,, *)
iAPX 88/21 15, 43, max (43,, *)

Notes: 1. Add two clocks for each wait state inserted per bus cycle
2. Add four clocks for each wait state inserted per bus cycle
* Execution time of longest locked instruction

FRSTOR), the 8087 can perform 50 or 96 consecutive
memory cycles with an 8086 or 8088 host, respectively.
These instructions do not affect response time to local bus
requests seen by an IOPB.

If the 8087 is performing a series of memory cycles while
executing these instructions, and IOPB requests the local
bus, the 8087 will stop its current memory activity, then
release the local bus to IOPB. The 8087 cannot release the
bus IOPA since it cannot know that IOPA wants to use the
local bus, like it can for IOPB.

3.7.3 Reducing 8087 Delay Effects

For 86/22 or 88/22 systems requiring lower maximum
wait times for IOPA, it is possible to reduce worst case
bus usage. If three 8087 instructions are never executed
(namely FSAVE, FNSAVE, or FRSTOR) the maximum
number of consecutive memory cycles performed by the
8087 is 10 or 16 for an 8086 or 8088 host respectively.
The function of these instructions can be emulated with
other 8087 instructions.

There are alternative techniques for switching the nu-
meric context without using the FSAVE/FNSAVE or
FRSTOR instructions. These alternative techniques are
slower than those using these instructions, but they reduce
the worst case continuous local bus usage of the 8087.
Only an iAPX 86/22 or iAPX 88/22 systems derive any
real benefit from these alternatives. By replacing all
FSAVE/FNSAVE instructions, the worst case local bus
usage of the 8087 will be 6 or 10 consecutive bus cycles
for the 8086 or 8088 host, respectively.

Instead of saving and loading the entire numeric context
in one long series of memory transfers, these alternative
routines use the FSTENV/FNSTENV/FLDENY instruc-
tions and separate numeric register load/store instruc-
tions. Using separate load/store instructions for the
numeric registers forces the 8087 to release the local bus
after each numeric load/save instruction. The longest se-
ries of back-to-back transfers required by these instruc-
tions are 8/12 memory cycles (8086/8088 host,

respectively). The FSAVE/FNSAVE/FRSTOR instruc-
tions, in contrast, perform 50/94 back-to-back memory
cycles for an 8086 or 8088 host.

COMPATIBILITY WITH FSAVE/FNSAVE

This technique produces a context area of the same format
produced by the FSAVE/FNSAVE instructions. Other
software modules expecting this type of format will not be
affected. All of the same interrupt and deadlock consider-
ations that apply to FSAVE and FNSAVE also apply to
FSTENYV and FNSTENV. With the exception that the nu-
meric environment is 7 words rather than the 47 words of
the numeric context, all factors concerning the use of the
FSAVE/ENSAVE also apply.

The state of the NPX registers must be saved in memory
in the same as used with the FSAVE/FNSAVE instruc-
tions. The program example (see Figure 3-17) starting at
the label SMALL__BLOCK__NPX__SAVE illustrates a
software loop that will store their contents into memory in
the same top relative order as that of FSAVE/FNSAVE.

To save the registers the FSTP instructions, the FSTP in-
structions must be tagged valid, zero, or special. This
function will force all the registers to be tagged valid,
independent of their contents or old tag, and then save
them. No problems will arise if the tag value conflicts
with the register’s content for the FSTP instruction. Sav-
ing empty registers insures compatibility with the
FSAVE/FNSAVE instructions. After saving all the nu-
meric registers, they will all be tagged empty, the same as
if an FSAVE/FNSAVE instruction had been executed.

COMPATIBILITY WITH FRSTOR

Restoring numeric context reverses the procedure de-
scribed in the preceding paragraphs. This is shown by the
code starting at SMALL__BLOCK__NPX__RESTORE
(see Figure 3-18). All eight registers are reloaded in the
reverse order. With each register load, a tag value will be
assigned to each register. The tags assigned by the register
load do not since the tag word will be overwritten when
the environment is reloaded later with FLDENV.
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Figure 3-16 iAPX 86/22 System

Two assumptions are required for the correct operation of satisfied if a matched set of pushes and pops were per-
the restore function. First, all numeric registers must be formed between saving the numeric context and reloading
empty, and second, the TOP field must be the same as that it. If these assumptions cannot be met, the code example
in the context being restored. These assumptions will be (see Figure 3-19) starting at NPX__CLEAN shows how
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Save the NPX context independent of NDP interrupt state. Avoid using the FSAVE instruction to
limit the worst case memory bus usage of the 8087. The NPX context area formed will appear the
same as if an FSAVE instruction had written into it. The variable save_area will hold the NPX
context and must be 47 words long. The registers ax, bx, and cx will not be transparent.

small_block_NPX_save:
FNSTCW save_area ; Save current IEM bit

NOP Delay while 8087 saves control register

FNDISI Disable 8087 BUSY signal

MOV ax, save_area Get original control word

MOV cx, 8 Set numeric register count

XOR bx, bx Tag field value for stamping all registers as valid
FSTENV save_area Save NPX environment

FWAIT Wait for the store to complete

XCHG save_area+ 4, bx
FLDENV save_area

Get original tag value and set new tag value
Force all register tags as valid. BUSY is still masked. No data

MOV save_ area, ax synchronization needed. Put original control word into NPX
MOV save_area+ 4, bx environment. Put original tag word into NPX environment
XOR bx, bx Set initial register index

reg__store__loop:
FSTP saved_reg [bx] ; Save register
ADD bx, type saved_reg ; Bump pointer to next register

LOOP reg__store_loop
; All done

Figure 3-17 SMALL__BLOCK__NPX__SAVE

to force all the NPX registers empty and set the TOP of restore operations. These operations appear in
field in the status word. time-critical context-switching functions of an operating

system or interrupt handler. This technique has no affect
These improvements do have a cost. This is the increased on the maximum wait time seen by IOPB or wait time

execution time of 427 or 747 additional clocks for an seen by IOPA due to IOPB.
8086 or 8088, respectively, for the equivalent save and

Restore the NPX context without using the FRSTOR instruction. Assume the NPX context is in the
same form as that created by an FSAVE/FNSAVE instruction, all the registers are empty, and that
the TOP field of the NPX matches the TOP field of the NPX context. The variable save_area must
be an NPX context save area, 47 words long. The registers bx and cx will not be transparent.

small_block_NPX__restore:

MOV cx, 8 ; Set register count

MOV bx, type saved_reg*7 ; Starting offset of ST(7)
reg__load__loop:

FLD saved_reg [bx] ; Get the register

SuUB bx, type saved__reg ; Bump pointer to next register

LOOP reg__load__loop

FLDENV save_area ; Restore NPX context

; All done

Figure 3-18 SMALL__BLOCK__NPX__RESTORE
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not be transparent.

NPX_clean:
FINIT
MOV ax, save_area+ 2
AND ax, 3800H
FSTENV temp_env

FWAIT
OR temp_env+ 2, ax
FLDENV temp_env

Force the NPX into a clean state with TOP matching the TOP field stored in the NPX context and all
numeric registers tagged empty. Save_area must be the NPX environment saved earlier.
Temp_env is a 7 word temporary area used to build a prototype NPX environment. Register ax will

Put NPX into known state

Get original status word

Mask out the top field

Format a temporary environment area with all registers
stamped empty and TOP field=0.

Wait for the store to finish.

Put in the desired TOP value.

Setup new NPX environment.

Now enter small_block_NPX_restore

Figure 3-19 NPX__CLEAN Code Example

Which IOP to connect to which I/0O device in an 86/22 or
88/22 system will depend on how quickly an I/O request
by the device must be serviced by the IOP. This maximum
time must be greater than the sum of the maximum delay
of the IOP and the maximum wait time to gain control of
the local bus by the IOP.

3.8 INTERRUPTS

One of the most important decisions to make in adding the
8087 to an 8086 or 8088 system is where to attach the
8087 Interrupt (INT) signal. The 8087 INT pin provides
an external indication of software-selected numeric er-
rors. This causes the numeric program to stop until some-
thing is done about the error. A numeric error occurs in
the NPX whenever an operation is attempted with invalid
operand or attempts to produce a result which cannot be
represented. Deciding where to connect the INT signal
can have important consequences on other interrupt han-
dlers.

3.8.1 Recommended Interrupt
Configurations

Five categories cover most of the uses of the 8087 inter-
rupt in fixed priority interrupt systems. The following
presents an interrupt configuration for each of these cate-
gories.

1. All errors on the 8087 are always masked. Numeric
interrupts are not possible. Leave the 8087 INT signal
disconnected.

2. The 8087 is the only interrupt in the system. Connect
the 8087 INT signal directly to the host’s INTR input
(see Figure 3- 20). A bus driver supplies interrupt
vector 10,4 for compatibility with Intel supplied soft-
ware.

3. The 8087 interrupt is a stop everything event. Choose
a high priority interrupt input that will terminate all
numerics related activity. This is a special case since
the interrupt handler may never return to the point of
interruption (i.e., reset the system and restart rather
than attempt to continue operation).

4. Numeric exceptions or numeric programming errors

are expected and all interrupt handlers either do not
use the 8087 or only use it with all errors masked. Use
the lowest priority interrupt input. The 8087 interrupt
handler should allow further interrupts by higher pri-
ority events. The PIC’s priority system will automati-
cally prevent the 8087 from disturbing other
interrupts without adding extra code to them.

5. Case 4 holds except that interrupt handlers may also
generate numeric interrupts. Connect the 8087 INT
signal to multiple interrupt inputs. One input would
still be the lowest priority input as in case 4. Interrupt
handlers that may generate a numeric interrupt may
require another 8087 INT connection to the next high-
est priority interrupt. Normally the higher priority nu-
meric interrupt inputs would be masked and the low
priority numeric interrupt enabled. The higher prior-
ity interrupt would be unmasked only when servicing
an interrupt which requires 8087 exception handling.

All of these configurations hide the 8087 from all inter-
rupt handlers which do not use the 8087. Only those inter-
rupt handlers that use the 8087 are required to perform
any special 8087 related interrupt control activities.

A conflict can arise between the desired PIC interrupt in-
put and the required interrupt vector of 10,4 for compati-
bility with Intel software for numeric interrupts. A simple
solution is to use more than one interrupt vector for nu-
meric interrupts, all pointing at the same 8087 interrupt
handler. Design the numeric interrupt handler so that it
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; Disable any possible numeric interrupt from the 8087. This code is safe to place in any
; procedure. If an 8087 is not present, the ESCAPE instructions will act as nops. These
; instructions are not affected by the TEST pin of the host. Using the 8087 emulator will not
; convert these instructions into interrupts. A word variable, called control, is required to hold
; the 8087 control word. Control must not be changed until it is reloaded into the 8087.

ESC 15, control ; (FNSTCW) Save current 8087 control word

NOP ; Delay while 8087 saves current control
NOP ; register value
ESC 28,cx (FNDISI) Disable any 8087 interrupts

; Set IEM bit in 8087 control register
; The contents of cx is irrelevant
; Interrupts can now be enabled
(Your Code Here)

; Reenable any pending interrupts in the 8087. This instruction does not disturb any 8087 instruction
; currently in progress since all it does is change the IEM bit in the control register.

YTEST control, 80H ; Look at |IEM bit
JNZ $+4 ; If IEM =1 skip FNENI
ESC 28,ax ; (FNENI) reenable 8087 interrupts

Figure 3-20 Inhibit/Enable 8087 Interrupts

does not need to know what the interrupt vector was (i.e.,
do not use specific EOI commands). If an interrupt sys-
tem uses rotating interrupt priorities, it does not matter
which interrupt is used.
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CHAPTER 4
8089 INPUT/OUTPUT PROCESSOR

4.1 INTRODUCTION

This chapter contains specific hardware design informa-
tion on the operations and functions of INTEL's 8089
Input/Output Processor (IOP) when used with the iAPX
86,88 and iAPX 186,188 family of microprocesssors.
The chapter contains general information on the IOP,
along with a component overview presenting architectural
and software considerations, and individual device pin
functional signal definitions. Detailed descriptions of the
IOP’s operating modes, bus operation, bus exchange
mechanisms and a description of interrupt operation are
also provided. For more specific information of any of the
8086 family support circuits, refer to the Microsystems
Components Handbook (Order Number 230843-002).

4.2 COMPONENT OVERVIEW

The 8089 Input/Output Processor (IOP) is an intelligent
DMA controller that is used with the Intel iAPX 86,88
and iAPX 186,188 family of microprocessors. The proc-
essing power of the 8089 IOP can remove I/O overhead
from the 8086, 8088, 80186 or 80188 microprocessors.
In addition, it may operate concurrently with a CPU, giv-
ing improved performance in I/O intensive applications
over an iAPX 86,88 or iAPX 186,188 system operating
without an 8089. The 8089 provides two I/O channels,
each supporting a transfer rate of up to 1.25 megabytes
per second at the standard clock frequency of 5 MHz.
Memory based communication between the IOP and CPU
enhances system flexibility and encourages software mo-
dularity for more reliable, easier to develop systems.

The 8089 IOP combines the functions of a DMA control-
ler with the processing capabilities of a microprocessor.
In addition to the normal DMA function of transferring
data, the 8089 dynamically translates and compares data
as it is transferred. The IOP also supports a number of
terminate conditions, including byte count, data compare
or miscompare, and the occurrence of an external event.
Each of the two separate DMA channels contains its own
register set. Depending on the established priorities (both
inherent and program determined), the two channels can
alternate (interleave) their respective operations.

The 8089 has transfer flexibility integrally designed into
it. It will perform routine transfers between an I/O pe-
ripheral and memory, and, in addition, transfer data be-
tween two I/O devices or between two areas of memory.
The 8089 automatically handles transfers between dissim-
ilar bus widths. When the 8089 transfers data from an
8-bit peripheral bus to a 16-bit memory bus, it reads two
bytes from the peripheral, assembles the bytes into a

16-bit word and then writes the single word to the ad-
dressed memory location. Both 8-and 16-bit peripherals
can reside on the same (16-bit) bus because the IOP trans-
fers bytes with the 8-bit peripheral,and transfers words
with the 16-bit peripheral.

4.2.1 Architectural Overview

The 8089 IOP is internally divided into the functional
units described in the following paragraphs (see Figure
4-1). These functional units are connected by a 20-bit data
path to obtain maximum internal transfer rates.

COMMON CONTROL UNIT (CCU)

IOP operations (instructions, DMA transfer cycles, chan-
nel attention responses, etc.) are composed of sequences
called internal cycles. A single bus cycle takes one inter-
nal cycle, therefore, the execution of an instruction may
require several internal cycles. There are 23 different
types of internal cycles. Each of these take from two to
eight clocks to execute, not including possible wait states
and bus arbitration resolving.

The Common Control Unit (CCU) coordinates IOP ac-
tivities by allocating internal cycles to the various proces-
sor units, i.e., the CCU determines which unit will
execute the next internal cycle. For example, when both
channels are active, the CCU determines which channel
has priority and lets that channel run; if the channels have
equal priority, the CCU “interleaves” their execution.
The CCU also initializes the processor.

ARITHMETIC/LOGIC UNIT (ALU)

The Arithmetic/Logic Unit (ALU) can perform unsigned
binary arithmetic on 8-and 16-bit binary numbers. The
results of this arithmetic may be up to 20 bits in length.
Available arithmetic instructions include addition, incre-
ment and decrement. Logical operations (‘“‘and,” “‘or”
and “not’’) may be performed on either 8-or 16-bit quan-
tities.

ASSEMBLY/DISASSEMBLY REGISTERS

All data entering the chip flows through the
Assembly/Dissassembly registers. When data is being
transferred between different width buses, the 8089 uses
the assembly/disassembly registers to effect the transfer
in the fewest possible bus cycles. During a DMA transfer
from an 8-bit peripheral to 16-bit memory, for example,
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Figure 4-1 8089 Simplified Functional Block Diagram

the IOP runs two bus cycles, picking up eight bits in each
cycle. It then assembles a 16-bit word and transfers the
word to memory in a single bus cycle. (The first and last
cycles of a transfer may be performed differently to ac-
commodate odd-addressed words; the IOP automatically
adjusts for this condition.)

INSTRUCTION FETCH UNIT

The instruction fetch unit controls instruction fetching for
the executing channel (one channel actually runs at a
time). If the bus over which the instructions are being
fetched is eight bits wide, the instructions are obtained
one byte at a time, and each fetch requires one bus cycle.
If the instructions are being fetched over a 16-bit bus, the
instruction fetch unit automatically employs a 1-byte
queue to reduce the number of bus cycles. Each channel
has its own queue, and the activity of one channel does
not affect the other’s queue.

BUS INTERFACE UNIT (BIU)

The Bus Interface Unit (BIU) controls all the bus cycles.
It transfers instructions and data between the IOP and ex-
ternal memory or peripherals. Every bus access is associ-
ated with a register tag bit. These tag bits indicate to the
BIU whether the system or I/O space is to be addressed.
The BIU outputs the type of bus cycle (instruction fetch
from I/O space, data store into system space, etc.) on sta-
tus lines SO*, S1*, and S2*. An 8288 Bus Controller de-
codes these lines and provides signals that selectively
enable one bus or the other.

The BIU also distinguishes between the physical and the
logical widths of system and I/O buses. The physical
widths of the buses are fixed. These are communicated to
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the BIU during initialization. In the local configuration,
both buses must be the same width (either 8-or 16-bits),
matching the width of the host CPU bus. In the remote
configuration, the IOP system bus must be the same phys-
ical width as the bus it shares with the CPU. The width of
the IOP’s I/O bus (local to the 8089) may be selected inde-
pendently. If any 16-bit peripherals are located in the I/O
space, a 16-bit I/O bus must be used. If only 8-bit devices
reside on the I/0 bus, either an 8-or 16-bit I/0O bus may be
selected. A 16-bit I/O bus has the advantage of easy ac-
commodation of future 16-bit devices and fewer instruc-
tion fetches if channel programs are placed in the I/0
space.

For any given DMA transfer, a channel program specifies
the logical width of the system and the I/O buses. Each
channel specifies logical bus widths independently. The
logical width of an 8-bit physical bus can only be eight
bits. However, a 16-bit physical bus can be used as either
an 8-or 16-bit logical bus. This allows both 8-and 16-bit
devices to be accessed over a single 16-bit physical bus.
The permissible physical and logical bus widths for both
locally and remotely configured IOPs are listed in Table
4-1. Logical bus width pertains to DMA transfers only.

Table 4-1 Physical/Logical Bus

Combinations
. . System Bus 1/0 Bus
Configuration Physical:Logical Physical:Logical

L | 8:8 8:8

oca 16:8/16 16:8/16
8:8 8:8

Remot 16:8/16 16:8/16
emote 16:8/16 8:8

8:8 16:8/16
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The physical bus width determines whether instructions
are fetched and operands are read and written in bytes or
words.

The BIU, in addition to performing transfers, is responsi-
ble for local bus arbitration. In the local configuration,
the BIU uses the RQ*/GT* (request/grant) line to obtain
the bus from the CPU and to return it after a transfer has
been performed. In the remote configuration, the BIU
uses RQ*/GT* to coordinate use of the local I/O bus with
another IOP or a local CPU, if present. System bus arbi-
tration in the remote configuration is performed by an
8289 Bus Arbiter that operates invisibly to the IOP. The
BIU automatically asserts the LOCK* (bus lock) signal
during execution of a TSL (test and set lock) instruction
and, if specified by the channel program, can assert the
LOCK?* signal for the duration of a DMA transfer.

CHANNELS

Although the 8089 is a single processor, it is useful to
consider it as two independent channels under most cir-
cumstances. A channel may perform DMA transfers and
execute channel programs, or it may also be idle. The
following paragraphs describe the hardware features that
support these operations.

1/0 Control

Each channel contains an I/O control section that controls
the operation of the channel during DMA transfers. If the
transfer is source (destination) synchronized, the channel
waits for a signal on the DMA request line (DRQ) before
performing the next fetch-store (store) sequence in the
transfer. If the transfer is to be terminated by an external
signal, the channel monitors its external terminate line
(EXT) and stops the transfer when this line goes active.
Between the fetch and store cycles (when the data is in the
IOP) the channel optionally counts, translates, and scans
the data, and may terminate the transfer based on the
results of these operations. Each channel also has a sys-
tem interrupt line (SINTR) that can be activated by soft-
ware to issue an interrupt request to the CPU.

Registers

Each channel has an independent set of registers (see Fig-
ure 4-2) that are not accessible to the other channel. Most
of the registers assume different roles depending whether
a channel program is being executed or a DMA transfer is
being performed. Channel programs must be careful to
save these registers in memory prior to a DMA transfer if
their values are needed following the transfer. Table 4-2
provides a brief summary of each of the channel registers.
Refer to Chapter 7 of the iAPX 86/88,186/188 User’s
Manual Programmers Reference for a detailed descrip-
tion of the channel registers.
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TBI:1G_ 19 1I5 Z 0
r 1 GENERAL PURPOSE A GA
lh‘ -I GENERAL PURPOSE B GB
I- -| GENERAL PURPOSE C GC
ll: j TASK POINTER TP
PARAMETER BLOCK POINTER | PP
INDEX X
BYTE COUNT BC
MASK/COMPARE MC
CHANNEL CONTROL cc

Figure 4-2 Channel Register Set

Task Pointer

The CCU loads the task pointer from the parameter block
when it starts or resumes a channel program. The task
pointer is used as an instruction pointer or program
counter. During program execution, the channel automat-
ically updates the task pointer to point to the next instruc-
tion to be executed. Program transfer instructions (JMP,
CALL, etc.) update the task pointer to cause nonsequen-
tial execution. A procedure (subroutine) returns to the
calling program by loading the task pointer with an ad-
dress previously saved by the CALL instruction. The task
pointer is fully accessible to channel programs and can be
used as a general register or as a base register. This is not
recommended, however, since it can make programs very
difficult to understand.

4.2.2 Software Overview

This section provides a summary of the 8089 IOP’s in-
struction set and also provides information on the
machine-level encoding and decoding of these instruc-
tions.

INSTRUCTION SET SUMMARY

The IOP’s 53 instructions are divided into five functional
categories:

1. data transfer;

2. arithmetic;

3. logic and bit manipulation;
4.
5

. processor control.

program transfer; and
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Table 4-2 Channel Register Summary

Program System '
Register | Size | A orl/O Use by Channel Programs Use in DMA Transfers
ccess .
Pointer
GA 20 Update | Either |General, base Source/destination pointer
GB 20 Update | Either |General, base Source/destination pointer
GC 20 Update | Either |General, base Translate table pointer
TP 20 Update | Either |Procedure return, Adjusted to reflect cause of
instruction pointer termination
PP 20 [Reference|System|Base N/A
IX 16 Update | N/A [General, auto-increment N/A
BC 16 Update | N/A |General Byte counter
MC 16 Update | N/A [General, masked compare Masked compare
CC 16 Update | N/A |Restricted use recommended| Defines transferoptions

The following paragraphs provide a brief functional de-
scription of each instruction category and how they are
used in channel programs. Instruction set reference data
tables list every instruction alphabetically and show the
execution time, encoded length and a sample of the
ASM-89 coding for each permissable operand combina-
tion. Additional information on the 8089 instruction set is
contained in volume 1 of this manual.

Data Transfer Instructions

Data transfer instructions move data between memory and
the channel registers. The move word variable (MOV),
move byte variable (MOVB), move word immediate
(MOVI) and move byte immediate (MOVBI) instructions
provide standard byte and word moves (including
memory-to-memory). Refer to Figure 4-3 for the effect of
these instructions on the register operands.

Two additional special instructions are provided, move
pointer (MOVP) and load pointer with doubleword
(LDP). These instructions load addresses into pointer reg-
isters and update tag bits in the process are available.

Arithmetic Instructions

Arithmetic instructions interpret all operands as unsigned
8, 16 or 20 bit binary numbers. Signed values are repre-
sented in standard two’s complement notation with the
high order bit representing the sign (0 = positive, 1 =neg-
ative). The processor has no way of detecting an overflow
into the sign bit, therefore the software must provide for
this possibility.

The 8089 performs arithmetic operations on values of up
to 20 significant bits sign-extending byte and word oper-
ands to 20 bits. To accomplish this, bit 7 of a byte operand
is propagated through bits 8-19 of an internal register.
Sign extension does not affect the magnitude of the oper-
and. The arithmetic operation is then performed and the
20-bit result is returned to the destination operand.
High-order bits are truncated as necessary to fit the result
in the available space. A carry out of, or borrow into the
high-order bit of the result is not detected. If the destina-
tion is a register that is larger than the source operand,
carries will be reflected in the upper register bits, up to
the size of the register (see Figure 4-4). )

Logical and Bit Manipulation Instructions

The logical instructions include the boolean operators
AND, OR and NOT. Two bit manipulation instructions
are provided for setting or clearing a single bit in memory
or in an I/O device register. The logical operations always
leave the upper four bits of the 20-bit destination registers
undefined (see Figure 4-5). These bits should not be as-
sumed to contain reliable values, or the same values from
one operation to the next. When a register is specified as
the destination register for a byte operation, bits 8-15 are
overwritten by bit 7 of the result. Bits 8-15 can be pre-
served in AND and OR instructions by using word opera-
tions where the upper byte of the source operand is FFH
or 00H, respectively.

Program Transfer Instructions
Register TP controls the sequence in which channel pro-

gram instructions are executed. As each instruction is ex-
ecuted, the length of the instruction is added to TP so that
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Figure 4-3 Register Operands in MOV Instructions

it points to the next sequential instruction. Program trans-
fer instructions can alter this sequential instruction execu-
tion by adding a signed displacement value to TP. The
displacement is contained in the program transfer instruc-
tion and may be either 8 or 16 bits long. The displacement
is encoded in two’s complement notation with the
high-order bit indicating the displacement sign (0 = posi-
tive, 1 =negative). The range for an 8-bit displacement

is — 128 through + 127 bytes from the end of the transfer
instruction. The range for a 16-bit displacement
is—32,768 through + 32,767 bytes from the end of the
transfer instruction. An instruction containing an 8-bit
displacement is called a short transfer, and an instruction
containing a 16-bit displacement is called a long transfer.

Each program transfer instruction has an alternate mne-
monic. The alternate mnemonic begins with an “L”. This

Register is Destination

Register is Source

Tag 19 15 7 0 Tag 19 15 7 0
Byte - ran
Operation LXJEBERJRRRRRRRRIRRRRRRHH] Jxxxxxxxxxxxxlppppppppl
Word
W o Lt rans
Operation | X} RRRR[RRRRRRRR[RRRRRRRR | X, ll(xxﬂpppppppp]ppppppppl

X = bitisignored in operation
R = bitis replaced by operation result
P = bit participates in operation

Figure 4-4 Register Operands
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in Arithmetic Instructions
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Figure 4-5 Register Operands in Logical Instructions

indicates the transfer is long and that the distance to the
transfer target is expressed as a 16-bit displacement re-
gardless of how far away the target location is located. If
the instruction mnemonic does not begin with an “L” the
ASM-89 assembler determines whether the transfer is
long or short. Refer to Volume 1 of this manual for addi-
tional information on this function.

Processor Control Instructions

The processor control instructions allow channel pro-
grams to control 8089 IOP hardware facilities such as the
LOCK* and SINTR1-2 pins, logical bus width selection
and the initiation of DMA transfers. These instructions
consist of the test and set while locked instruction (TSL),
the set logical bus widths instruction (WID), the enter
DMA transfer mode after following instruction (XFER),
the set interrupt register bit instruction (SINTR), the no
operation instruction (NOP) and the halt (HLT) instruc-
tion.

Instruction Set Reference Data

Each 8089 instruction is listed alphabetically by ASM-89
mnemonic in Table 4-3. This table shows the coding for-
mat (see Table 4-4 for an operand identifier explanation)
along with the instruction name. The instruction execu-
tion time and its length in bytes is shown for every combi-
nation of instruction type (see Table 4-5 for a key). A
coding example is also shown.

Instruction timing figures are given -as the number of
clock periods that are required to execute the instruction
with a given combination of operands. When the CPU is
operating at SMHz, one clock period is 200ns, at SMHz
one clock period is 125ns. When an instruction operates
on a memory word, two timings are provided. The first
figure indicates execution time when the word is aligned
on an even address and is accessed over a 16-bit bus. The
second figure is for odd-addressed words on 16-bit buses
and for any word accessed over an 8-bit bus.

The instruction fetch time (see Table 4-6) should be added
to the execution times to determine how long a sequence
of instructions will take to run. External delays such as
bus arbitration, wait states and activity on the other chan-
nel will increase the elapsed instruction execution times.
These delays are application dependent.

MACHINE INSTRUCTION ENCODING AND
DECODING

Normally, programs are written for the 8089 IOP using
the ASM-89 Assembly Language. However, when debug-
ging programs it may be necessary to work directly with
the machine language instructions when monitoring the
bus, reading unformatted memory dumps, etc. The fol-
lowing paragraphs provide the information required to en-
code any ASM-89 instruction into its corresponding
machine instruction (see Table 4-7), and also provides the
information necessary to “‘disassemble” any machine in-
struction back into its associated assembly language
equivalent (see Table 4-8).
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Table 4-3 Instruction Set Reference Data

ADD destination, source Add Word Variable

Operands Clocks Bytes Coding Example
register, mem16 11/15 2-3 ADD BC, [GA].LENGTH
mem16, register 16/26 2-3 ADD [GB], GC
ADDB destination, source Add Byte Variable

Operands Clocks Bytes Coding Example
register, mem8 1 2-3 ADDB GC, [GA].N_CHARS
mem8, register 16 2-3 ADDB [PP].ERRORS, MC
ADDB' destination, source Add Byte Immediate

Operands Clocks Bytes Coding Example
register, immed8 3 3 ADDBI MC,10
mem8, immed8 16 3-4 ADDBI [PP+IX+].RECORDS, 2CH
ADDI destination, source Add Word Immediate

Operands Clocks Bytes Coding Example
register, immed16 3 4 ADDI GB, 0C25BH
mem16, immed16 16/26 4-5 ADD! [GB].POINTER, 5899
AND destination, source Logical AND Word Variable

Operands Clocks Bytes Coding Example
register, mem16 11/15 2-3 AND MC, [GA].FLAG_WORD
mem16, register 16/26 2-3 AND [GC].STATUS, BC
ANDB destination, source Logical AND Byte Variable

Operands Clocks Bytes Coding Example
register, mem8 1 2-3 AND BC, [GC]
mem8, register 16 2-3 AND [GA+IX].RESULT, GA
ANDBI destination, source Logical AND Byte Immediate

Operands Clocks Bytes Coding Example
register, immeds8 3 3 GA, 011000008
mem8, immed8 16 3-4 [GC+IX], 2CH

47

210912-001




8089 INPUT/OUTPUT PROCESSOR

Table 4-3 Instruction Set Reference Data (continued)

ANDI

destination, source

Logical AND Word Immediate

Operands Clocks Bytes Coding Example
register, immed16 3 4 IX, OH
mem16, immed16 16/26 4-5 [GB+IX].TAB, 40H
CALL TPsave, target Call

Operands Clocks Bytes Coding Example
mem24, label 17/23 3-5 CALL [GC+IX].SAVE, GET__NEXT
CLR destination, bit select Clear Bit To Zero

Operands Clocks Bytes Coding Example
mem§, 0-7 16 2-3 CLR [GA],3
DEC destination Decrement Word By 1

Operands Clocks Bytes Coding Example
register 3 2
mem16 16/26 2-3 DEC [PP].RETRY
DECB destination Decrement Byte By 1

Operands Clocks Bytes Coding Example
mem38 16 2-3 DECB [GA+IX+].TAB
HLT (no operands) Halt Channel Program

Operands Clocks Bytes Coding Example
(no operands) 11 2 HLT
INC destination Increment Word by 1

Operands Clocks Bytes Coding Example
register 3 2 INC GA
mem16 16/26 2-3 INC [GA].COUNT
|NCB destination _ Increment Byte by 1

Operands Clocks Bytes Coding Example
mem8 16 2-3 INCB [GB].POINTER
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Table 4-3 Instruction Set Reference Data (continued)

J BT source, bit-select, target Jump if Bit True (1)

Operands Clocks Bytes Coding Example
mema8, 0-7, label 14 3-5 JBT [GA].RESULT_.REG, 3, DATA__VALID
JMCE source, target Jump if Masked Compare Equal

Operands Clocks Bytes Coding Example
mem8, label 14 3-5 JMCE [GB].FLAG, STOP_SEARCH
JMCNE source, target Jump if Masked Compare Not Equal

Operands Clocks Bytes Coding Example
mem8, label 14 35 JMCNE [GB+IX], NEXT_ITEM
J MP target Jump Unconditionally

Operands Clocks Bytes Coding Example
label 3 3-4 JMP READ__SECTOR
JNBT source, bit-select, target Jump if Bit Not True (0)

Operands Clocks Bytes Coding Example
mem8, 0-7, label 14 35 JNBT [GC], 3, RE_READ
JNZ source, target Jump if Word Not Zero

Operands Clocks Bytes Coding Example
register, label 5 3-4 JNZ BC, WRITE__LINE
mem16, label 12/16 3-5 JNZ [PP].NUM_CHARS, PUT_BYTE
JNZB saurce, target Jump if Byte Not Zero

Operands Clocks Bytes Coding Example
mem8, label 12 3-5 JNZB [GA], MORE__DATA
JZ  source, target Jump if Word is Zero

Operands Clocks Bytes Coding Example
register, label 5 3-4 JZ BC, NEXT__LINE
mem16, label 12/16 3-5 JZ [GC+IX].INDEX, BUF_EMPTY

4-9

210912-001



8089 INPUT/OUTPUT PROCESSOR

Table 4-3 Instruction Set Reference Data (continued)

JZB source, target

Jump if Byte Zero

Operands Clocks Bytes Coding Example
mem8, label 12 3-5 JZB [PP].LINES__LEFT, RETURN
LCALL TPsave, target Long Call

Operands Clocks Bytes Coding Example
mem24, label 17/23 4-5 LCALL [GC].RETURN__SAVE, INIT__8279
LJ BT source, bit-select, target Long Jump if Bit True (1)

Operands Clocks Bytes Coding Example
mem8, 0-7, label 14 4-5 LJBT [GA].RESULT, 1, DATA_OK
LJMC E source, target Long jump if Masked Compare Equal

Operands Clocks Bytes Coding Example
mem8, label 14 4-5 LJMCE [GB], BYTE__FOUND

LJ MCN E source, target Long jump if Masked Compare Not Equal

Operands Clocks Bytes Coding Example
mem8, label 14 4-5 LJMCNE [GC+IX+], SCAN__NEXT
LJM P target Long Jump Unconditional

Operands Clocks Bytes Coding Example
label 3 4 LJMP GET__CURSOR
LJ NBT source, bit-select, target Long Jump if Bit Not True (0)

Operands Clocks Bytes Coding Example
mem§, 0-7, label 14 4-5 LJNBT [GC], 6, CRCC_ERROR
LINZ source, target Long Jump if Word Not Zero

Operands Clocks Bytes Coding Example
register, label 5 4 LINZ BC, PARTIAL__XMIT
mem16, label 12/16 4-5 LINZ [GA+IX].N__LEFT, PUT_DATA

4-10
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Table 4-3 Instruction Set Reference Data (continued)

LJ NZB source, target Long Jump if Byte Not Zero
Operands Clocks Bytes Coding Example
mem8, label 12 4-5 LINZB [GB+IX+].ITEM, BUMP_COUNT
LJZ source, target Long Jump if Word Zero
Operands Clocks Bytes Coding Example
register, label 5 4 LJZ IX, FIRST_ELEMENT
mem16, label 12/16 4-5 LJZ [GB].XMIT_COUNT, NO__DATA
LJZB source, target Long Jump if Byte Zero
Operands Clocks Bytes Coding Example
mem§, label 12 4-5 LJZB [GA], RETURN__LINE
LPD destination, source Load Pointer With Doubleword Variable
Operands Clocks Bytes Coding Example
ptr-reg, mem32 20/28* 2-3 LPD GA, [PP].BUF_START

*20 clocks if operand is on even address; 28 if on odd address

LPD| destination, source Load Pointer With Doubleword Immediate

Operands Clocks Bytes

Coding Example

ptr-reg, immed32 12/16* 6

LPDI GB, DISK__ADDRESS

*12 clocks if instruction is on even address; 16 if on odd address

MOV destination, source Move Word

Operands Clocks Bytes Coding Example
register, mem16 8/12 2-3 MOV IX, [GC]
mem16, register 10/16 2-3 MOV [GA].COUNT, BC
mem16, mem16 18/28 4-6 MOV [GA].READING, [GB]
MOVB destination, source Move Byte

Operands Clocks Bytes Coding Example
register, mem8 8 2-3 MOVB BC, [PP].TRAN_COUNT
mem8, register 10 2-3 MOVB [PP].RETURN__CODE, GC
mem8, mem8 18 4-6 MOVB [GB+IX+], [GA+IX+]
MOVBl destination, source Move Byte Immediate

Operands Clocks Bytes Coding Example
register, immed8 3 3 MOVBI MC, ‘A’
mem8, immed8 12 3-4 MOVBI [PP].RESULT, 0

4-11
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Table 4-3 Instruction Set Reference Data (continued)

MOV| destination, source

Move Word Immediate

Operands Clocks Bytes Coding Example
register, immed16 3 4 MOVI BC, 0
mem16, immed16 12/18 4-5 MOVI [GB], OFFFFH
MOVP destination, source Move Pointer

Operands Clocks Bytes Coding Example
ptr-reg, mem24 19/27* 2-3 MOVP TP, [GC+IX]
mem?24, ptr-reg 16/22* 2-3 MOVP [GB].SAVE__ADDR, GC

*First figure is for operand on even address; second

is for odd-addressed operand.

NOP (no operands) No Operation
Operands Clocks Bytes Coding Example
(no operands) 4 2 NOP

NOT destination/destination, source Logical NOT Word

Operands Clocks Bytes Coding Example
register 3 2 NOT MC
mem16 16/26 2-3 NOT [GA].PARM
register, mem16 11/15 2-3 NOT BC, [GA+IX].LINES__LEFT
NOTB destination/destination, source Logical NOT Byte

Operands Clocks Bytes Coding Example
mem8 16 2-3 NOTB [GA].PARM__REG
register, mem8 1" 2-3 NOTB IX, [GB].STATUS
OR destination, source Logical OR Word

Operands Clocks Bytes Coding Example
register, mem16 11/15 2-3 OR MC, [GC].MASK
mem16, register 16/26 23 OR [GC], BC
ORB destination, source Logical OR Byte

Operands Clocks Bytes Coding Example
register, mem8 1 2-3 ORB IX, [PP].POINTER
mema8, register 16 2-3 ORB [GA+IX+],GB
ORB| destination, source Logical OR Byte Immediate

Operands Clocks Bytes Coding Example
register, immed8 3 3 ORBI IX, 00010001B
mem8, immed8 16 3-4 ORBI [GB].COMMAND, 0CH
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Table 4-3 Instruction Set Reference Data (continued)

ORI destination, source Logical OR Word Immediate
Operands Clocks Bytes Coding Example
register, immed16 3 4 ORI MC, 0FFODH
mem16,immed16 16/26 4-5 ORI [GA], 1000H
SETB destination, bit-select SetBitto 1
Operands Clocks Bytes Coding Example
mem§, 0-7 16 2-3 SETB [GA].PARM REG,2
SINTR (no operands) Set Interrupt Service Bit
Operands Clocks Bytes Coding Example
(no operands) 4 2 SINTR
TSL destination, set-value, target Test and Set While Locked
Operands Clocks Bytes Coding Example
mem8, immed8, short-label 14/16* 4-5 TSL [GA].FLAG, OFFH, NOT_READY
*14 clocks if destination # 0; 16 clocks if destination =0
WID source-width, dest-width Set Logical Bus Widths
Operands Clocks Bytes Coding Example
8/16,8/16 4 2 WID 8,8
XFER (no operands) Enter DMA Transfer Mode After Next Instruction
Operands Clocks Bytes Coding Example
(no operands) 4 2 XFER
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Table 4-4 Operand ldentifiers Definitions

IDENTIFIER USED IN EXPLANATION
destination data transfer, A register or memory location that may contain data operated on
arithmetic, by the instruction, and which receives (is replaced by) the result
bit manipulation of the operation.
source data transfer, A register, memory location, or immediate value that is used in
arithmetic, the operation, but is not altered by the instruction.
bit manipulation
target program transfer | Location to which control is to be transferred.
TPsave program transfer | A 24-bit memory location where the address of the next sequen-
tial instruction is to be saved.
bit-select bit manipulation Specification of a bit location within a byte; 0=least-significant
(rightmost) bit, 7=most-significant (leftmost) bit.
set-value TSL Value to which destination is setif it is found 0.
source-width wID Logical width of source bus.
dest-width WID Logical width of destination bus.
Table 4-5 Operand Type Definitions
IDENTIFIER EXPLANATION
(no operands) | Nooperands are written
register Any general register
ptr-reg A pointer register
immed8 A constant in the range 0-FFH
immed16 A constant in the range 0-FFFFH
mema3 An 8-bit memory location (byte)
mem16 A 16-bit memory location (word)
mem24 A 24-bit memory location (physical address pointer)
mem32 A 32-bit memory location (doubleword pointer)
label A label within —32,768 to +32,767 bytes of the end of the instruction
short-label A label within —128 to +127 bytes of the end of the instruction
0-7 A constant in the range: 0-7
8/16 The constant 8 or the constant 16
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Table 4-6 Instruction Fetch Timings

(Clock Periods)

BUS WIDTH
INSTRUCTION

LENGTH 8 16

(BYTES) ) @)

2 14 7 1

3 18 14 1

4 22 14 15

5 2 18 15

(1) First byte of instruction is on an even
address.

(2) First byte of instruction is on an odd address.
Add 3 clocks if first byte is not in queue (e.g.,
first instruction followirig program transfer).

Almost all 8089 machine instructions consist of from two
to five bytes (see Figure 4-6). The only exceptions to this
rule are the LPDI and memory-to-memory forms of the
MOV and MOVB instructions which are six bytes long.
The first two bytes are always present and are generally
formatted as shown in Figure 4-6. See Table 4-7 for the
exact encoding of every instruction.

The first byte of the instruction has four fields. Bits 5
through 7 comprise the R/B/P field. This field identifies a
register, bit select or pointer register (see Table 4-9).

Bits 3 and 4 are the WB field. This field indicates how
many displacement/data bytes are present in the instruc-
tion (see Table 4-10). The displacement bytes are used in
program transfers. One byte is present for short transfers,
while long transfers contain two-byte (word) displace-
ment. The displacement is stored on two’s complement
notation with the high-order bit indicating the sign. Data
bytes contain the value of an immediate constant operand.
A byte immediate instruction (MOVBI) will have one data
byte, and a word immediate instruction (ADDI) will have
two bytes (a word) of immediate data. An instruction may
contain either displacement or data bytes, but not both

(the TSL instruction is an exception and contains one byte
of displacement and one byte of data). If an offset byte is
present, the displacement/data byte(s) always follow the
offset byte.

The AA field specifies the addressing mode that the proc-
essor should use to construct the effective address of a
memory operand. Four additional address modes are
available (see Table 4-11).

The zero bit in the first instruction indicates whether the
instruction operates on a byte (W =0) or a wore (W = 1).

In the second instruction byte, bits 7 through 2 specify the
instruction opcode (see Table 4-8 for a list of every assem-
bly language instruction in hexadecimal order). The op-
code, in conjunction with the W field of the first byte,
identifies the instruction. For example, the opcode
“111011” is the decrement instruction. If W =0, the as-
sembly language instruction for this opcode would be
DECB. If W = 1, the instruction is DEC.

The MM field in the second byte (bits O and 1) indicate
which pointer (base) register should be used to construct
the effective address of a memory operand. See Table
4-12 for MM field encoding.

When the AA field value is “01” (base register + offset
addressing), the third byte of the instruction contains the
offset value. This unsigned value is added to the content
of the base register by the MM field to from the effective
address of the memory operand.

When the AA field is ““10”, the IX register value is added
to the content of the base register specified by the MM
field to provide a 64k range of effective addresses. The
upper four bits of the IX register are not signed.

When the AA field value is “11”, the IX register value is
added to the base register value to form the effective ad-
dress as described for the AA field value of “10”. In this
addressing mode the IX register value is incremented by
one after every byte accessed.

Table 4-7 8089 Instruction Encoding

DATA TRANSFER INSTRUCTIONS

MOV = Move word variable

76543210 76543210 76543210 76543210 76543210 76543210

Memory to register

Register to memory

Memory to memory

RRROOAA1 |[100000MM offset if AA=01
RRROOAA1 100001 MM offsetif AA=01
00000AA1 [100100MM offset if AA=01 00000AA1|110011MM oﬂsetilAA-MJ
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DATA TRANSFER INSTRUCTIONS (Cont’d.)

MOVB = Move byte variable
Memory to register
Register to memory

Memory to memory

MOVBI = Move byte immediate
immediate to register

Immediate to memory

MOVI = Move word immediate
Immediate to register

Immediate to memory

MOVP = Move pointer

Memory to pointer register

Pointer register to memory

LPD = Load pointer with doubleword variable

LPDI = Load pointer with doubleword immediate PPP10001 [0

ARITHMETIC INSTRUCTIONS

ADD = Add word variable
Memory to register

Register to memory

ADDB = Add byte variable
Memory to register

Register to memory

ADDI = Add word immediate
Immediate to register

Immediate to memory

Table 4-7 8089 Instruction Encoding (continued)

76543210

76543210

76543210

RRROOAAD

100000MM

offset if AA=01

RRROODAAD

100001MM

offsetif AA=01

76543210

76543210 76543210

00000AADQ

100100MM

offsetif AA=01

00000AAD0|110011MM o“se(ilAAmmJ

RRR01000

00110000

data-8

00001AA0|010011TMM offset if AA=01 data-8
RRR10001 00110000 data-lo data-hi
00010A A1 |010011MM offset if AA=01 data-lo data-hi
PPPOOAA1 [100011MM offsetif AA=01
PPPOOAAT J100110MM offset if AA=01
|PFPO0AA1—[100010MMro"se(ilAA=01
0001000 —[ offset-lo offset-hi segment-lo L segment-hi J
RRROOAA1T|101000MM offsetif AA=01
RRROOAA1T [110100MM offset if AA=01
RRROOAAO}101000MM offsetif AA=01
RRROOAAO [110100MM offsetif AA=01
RRR10001]00100000 data-lo data-hi
00010AA1T [110000MM offsetit AA=01 data-lo data-hi J

4-16

210912-001



8089 INPUT/OUTPUT PROCESSOR

ARITHMETIC INSTRUCTIONS (Cont'd.)

ADDB! = Add byte immediate
immedaite to register

Immediate to memory

INC = Increment word by 1
Register

Memory

INCB = Increment byte by 1

DEC = Decrement word by 1
Register

Memory

DECB = Decrement byte by 1

Table 4-7 8089 Instruction Encoding (continued)

76543210

76543210

76543210

76543210

LOGICAL AND BIT MANIPULATION INSTRUCTIONS

AND = AND word variable
Memory to register

Register to memory

ANDB = AND byte variable
Memory to register

Register to memory

ANDI = AND word immediate
immediate to register

Immediate to memory

ANDBI = AND byte immediate
Immediate to register

Immediate to memory

OR = OR word variable
Memory to register

Register to memory

76543210

RRRO1000fj00100000 data-8
00001AAD|110000MM offset if AA=01 data-8
RRRO000O0/00111000

00000AA1T|1T11010MM offset if AA=01 ]
00000AAO0}111010MM offset if AA=01 |
RRROO0OOO0OO0O]J0OO0O111100

00000AAT|111011TMM offset if AA=01 |

lODOOOAAO 111011 MM offset it AA=01 I
RRROOAA1T|101010MM offset if AA=01
RRROOAA1T[110110MM offset if AA=01
RRROOAAO|[101010MM offsetif AA=01
RRROOAAO|[110110MM offset if AA=01
RRR10001]100101000 data-lo data-hi .
00010AA1T}|110010MM offset it AA=01 data-lo data-hi J
RRRO1000/00101000 data-8
00001AAD|110010MM offset if AA=01 data-8
RRROOAA1T 101001 MM offset if AA=01

RRROOAA1

110101 MM

offset if AA=01
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LOGICAL AND BIT MANIPULATION INSTRUCTIONS (Cont’d.)

ORB = OR byte variable
Memory to register

Register to memory

ORI = OR word immediate
Immediate to register

Immediate to memory

ORBI = OR byte immediate
Immediate to register

Immediate to memory

NOT = NOT word variable
Register
Memory

Memory to register

NOTB = NOT byte variable

Memory

Memory to register

SETB = Setbitto1

CLR = Clear bitto 0

PROGRAM TRANSFER INSTRUCTIONS

*CALL = Call

LCALL = Longcall

*JMP = Jump unconditional

LJMP = Long jump unconditional

Table 4-7 8089 Instruction Encoding (continued)

76643210 76543210.76543210 76543210 76543210
RRROOAAOD|101001MM offset if AA=01
RRROOAAO|110101MM offset if AA=01

RRR10001 (00100100 data-lo data-hi
00010AA1T}110001MM offsetif AA=01 data-lo data-hi
RRR0O1000|00100100 data-8

00001AAD(110001MM offset if AA=01 data-8
RRRO0000)00101100

00000AA1T|[110111TMM offsetit AA=01

RRROOAAT (101011 MM offsetif AA=01

00000AAD0 110111 MM offset if AA=01

RRROOAAOD [101011MM offsetif AA=01
LBBBOOAAO|1111D|MM1 offset if AA=01
[BBBODAAO|11111OMM| offset if AA=01
IIODOiAA||100111MMIo"seilfAA=01T disp-8 I
l10010A A1 |100111MML offsetif AA=01 l disp-lo J disp-hi
||0001000|00100000| disp-8
|‘10010001|00100000|; disp-lo disp-hi ]

*The ASM-89 will

target is known to be beyond the byte-displacement range.
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Table 4-7 8089 Instruction Encoding (continued)

PROGRAM TRANSFER INSTRUCTIONS (Cont’d.)
*JZ = Jump if word is O

Label to register

Label to memory

LJZ = Long jump if word is 0

Label to register

Label to memory

*JZB = Jumpifbyteis0

LJZB = Long jump if byte is 0

*JINZ = Jump if word not 0

Label to register

Label to memory

LINZ = Long jump if word not 0

Label to register

Label to memory

*JNZB = Jump if byte not0

LINZB = Long jump if byte not 0

*JMCE = Jump if masked compare equal

LIMCE = Long jump if masked compare equal

*JMCNE = Jump if masked compare not equal

76543210 7

6543210

76543210

76543210

76543210

RRR01000|01000100 disp-8

00001AA1T|111001MM offsetif AA=01 disp-8 |
RRR10000J01000100 disp-lo disp-hi
00010AA1T|[111001TMM offsetif AA=01 disp-lo disp-hi
[00001AAOT|11001MM | offset if AA=01 l disp-8 I

00010AAD I 111001 MM | offsetif AA=01 I disp-lo I disp-hi ]
RRRO01000)J01000000 disp-8

00001AA1T|[111000MM offset if AA=01 disp-8
RRR10000j01000000 disp-lo disp-hi

00010AA1 [111000MM oftsetif AA=01 disp-lo disp-hi ]
0000|AAO|||\000MM I offset if AA=01 I disp-8 I

|000|0AAO|1

1|000MM—|

offset if AA=01 l

disp-lo |

disp-hi

LJMCNE = Long jump if masked compare not equal [0 0010AADQ l 1

*JBT = Jump if bitis1

‘The ASM-89 will ically

IOOUO\AAOI‘IO\IOOMM offset if AA=01 I disp-8 I
[0 0010AA 0] 101100MM offsetif AA=01 I disp-lo I disp-hi ]
!00001AAO[101101MMLO'(seliIAA=01 l disp-8 |

01101 MM | offset if AA=01 I disp-lo l disp-hi
|EBBOIAA011OI1I|MMLoNsetilAA=01 l disp-8 ]

target is known to be beyond the byte-displacement range.

the long form of a program
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Table 4-7 8089 Instruction Encoding (continued)
PROGRAM TRANSFER INSTRUCTIONS (Cont'd.)

76543210 76543210 76543210 76543210 76543210 76543210

LJBT = Long jump if bitis 1 F BB10AAO ] 101111 MM [ offset if AA=01 I disp-lo | disp-hi
*JNBT = Jump if bitis not 1 D BBO1AA 0] 101110MM | offset it AA=01 disp-8 ]
LINBT = Long jump if bitis not 1 [B BB10AADO I 10111 0MM | offsetif AA=01 l disp-lo [ disp-hi

PROCESSOR CONTROL INSTRUCTIONS

offset if AA=01 data-8 I disp-8

TSL = Testand set while locked I 00011 AAQ | 100101MM

WID = Setlogical bus widths [1 sSD* O 0000—‘ 00000000 I

*S=source width, D=destination width; 0=8 bits, 1=16 bits

XFER = Enter DMA mode |01|00000l0000000d
SINTR = Set interrupt service bit I 01000000 lO 00000 Dﬂ
HLT = Haltchannel program |001 00000 IO1 001 OOOJ
NOP = No operation 100000000]00000000|
*The ASM-89 will y the long form of a program transfer instruction when the

target is known to be beyond the byte-displacement range.

4.3 DEVICE PIN ASSIGNMENTS termines from them how the data buses are configured
and how access to the buses is to be controlled.

Figure 4-7 shows the 8089 IOP DIP pin assignments and

Table 4-13 provides a complete function description of After the initialization process is completed, the CPU di-

each device pin signal and correlates the description to the rects all communications to either of the IOP’s two chan-

pin number and associated signal symbol. nels. During normal operations the IOP actually appears
to be two separate devices, channel 1 and channel 2. All
CPU-to-channel communications centers on the channel

4.4 OPERATING MODES control block (CB — see Figure 4-8). The CB is located in
the CPU’s memory space, and its address is passed to the

Communication between a CPU and the 8089 IOP occurs IOP during initialization. Half of the control block is ded-

in two distinct modes: initialization and command. Initial- icated to each channel. Each channel maintains a BUSY
ization is typically performed when the system is flag to indicate whether it is in the midst of an operation
powered-up or reset. The CPU initializes the IOP by pre- or is available for a new command from the CPU. The

paring a series of linked message blocks in memory. On a CPU sets the channel command word (CCW) to indicate
signal from the CPU, the IOP reads these blocks and de- what kind of operation it wants the IOP to perform. There
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Table 4-8 8089 Machine Instruction Decoding Guide

Identifier Explanation
S Logical width of source bus; 0=8, 1=16
D Logical width of destination bus; 0=8, 1=16
PPP Pointer register encoded in R/B/P field
RRR Register encoded in R/B/P field
AA AA (addressing mode) field
BBB Bit select encoded in R/B/P field
offset-lo Low-order byte of offset word in doubleword pointer
offset-hi High-order byte of offset word in doubleword pointer
segment-lo Low-order byte of segment word in doubleword pointer
segment-hi High-order byte of segment word in doubleword pointer
data-8 8-bitimmediate constant
data-lo Low-order byte of 16-bitimmediate constant
data-hi High-order byte of 16-bit immediate constant
disp-8 8-bit signed displacement
disp-lo Low-order byte of 16-bit signed displacement
disp-hi High-order byte of 16-bit signed displacement
(offset) Optional 8-bit offset used in offset addressing

are six different commands that allow the CPU to start or

Table 4-9 R/B/P Field Encoding stop programs, remove interrupt requests, etc.
Code Register Bit Pointer When the CPU desires a specific channel to run a pro-
gram, it directs the channel to a parameter control block
000 GA 0 GA Table 4-10 WB Field Encoding
001 GB 1 GB
010 GC 2 GC Code Interpretation
011 BC 3 N/A
100 TP 4 TP 00 No displacement/data bytes
101 1X 5 N/A 01 One displacement/data byte
110 cC 6 N/A 10 Two displacement/data bytes
111 MC 7 N/A 1 TSL instruction only
BYTE 1 BYTE 2 BYTE3 BYTE4 _ | _ BYTES
T T T T - T - - _"'l'-_l
| | | | |
11 11 T T A A O A O Y i A B
i I OPCODE  |MM OFFSET | LOW DISP/DATA |HIGH DISP/DATAI
______ |

l—— BASE REGISTER FOR MEMORY OPERAND
OPERATION (INSTRUCTION) CODE

WIDTH (BYTE OR WORD OPERANDS)
MEMORY ADDRESSING MODE

NUMBER OF DISPLACEMENT/DATA BYTES
REGISTER, BIT, POINTER SELECT

Figure 4-6 Typical 8089 Machine Instruction Format
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Table 4-11 AA Field Encoding

Code Interpretation
00 Base register only
01 Base register plus offset
10 Base register plus IX
1 Base register plus IX,
auto-increment

(PB) and a task block (TB). (See Figure 4-8.) The PB is a
parameter list that contains variable data for the channel
program to use in carrying out its assignment. The PB
may also contains space for variables (results) that the
channel is to return to the CPU. Except for the first two
words, the format and size of the PB are completely open
and may be set up to exchange any type of information
between the CPU and the channel program.

A task block (TB) is a sequence of 8089 instructions that
perform an operation (i.c., a channel program). There are
no restrictions on what a channel program can do. Its
function may be as simple or as complex as a particular
application requires.

—_—
ves 1 a0l vee
Ap1a ] 2 39 (7] A15/D15
A13D13 [ 3 38 [ ateis3
Ap12 (4 377 A17IS4
Ao s 367 aiss
Atip10 ] 6 357 areise
AsiD9 [ 7 347 BHE
AsiD8 [} 8 33[7 ext1
anor [ 32[] ext2
asins ] 10 317 bRa 1
ass 11 % 3017 ora
Aapa[]12 29 ] [ocK

AuD3[]13 28[1 8
A2p2 [ 14 701§
AuD1C] 15 2678
Aoipo (] 16 2517 RGIGT
SINTR1[] 17 24[7] seL
SINTR-2[] 18 23] ca
cLk 19 22[7] READY
Vss [ 20 21[7] RESET

Figure 4-7 8089 I/0 Processor Pinout Diagram

Table 4-12 MM Field Encoding

Code Base Register
00 GA
01 GB
10 GC
" PP

The CPU links the channel program (TB) to the parameter
block (PB) before it starts the program (see Figure 4-8).
This link is accomplished using standard 8086/88 double-
word pointer variables where the lower-addressed word
contains an offset and the higher-addresses word contains
a segment base value. A system may have many different
parameter and task blocks, but only one of each can be
linked to a channel at any given time.

‘When the CPU has filled the CCW and linked the CB to a
parameter block and task block, it issues a channel atten-
tion (CA). This is accomplished by activating the IOP’s
CA and SEL pins. The state of SEL on the falling edge of
CA directs the channel attention to either channel 1 or
channel 2. If the IOP is located in the CPU'’s I/O space, it
will appear to the CPU as two consecutive 1/0 ports (one
for each channel). At this time, an OUT instruction to the
port functions as a CA. If the IOP is memory-mapped, the
channels look like two memory locations and any memory
reference instruction to these locations causes a channel
attention.

An IOP channel attention is functionally similar to a CPU
interrupt. When the channel recognizes the CA, it stops
what it is doing (it will typically be idle) and examines the
command in the CCW. If the channel is to start a pro-
gram, it loads the addresses of the parameter and task
blocks into internal registers, sets the BUSY flag and
starts executing the channel program. After issuing the
CA, the CPU is free to perform other functions. The IOP
channel can perform its function in parallel with the CPU
(subject to limitations imposed by bus configurations).

When the channel program is completed, the channel
clears its BUSY flag in the CB to notify the CPU. The
channel may also issue an interrupt request to the CPU.

Most communications between the CPU and IOP take
place through “message areas” shared in common mem-
ory (see Figure 4-9). The only direct hardware communi-
cations between the CPU and the IOP are channel
attentions and interrupt requests.

Each of the IOP channels operates independently and has
its own register set, channel attention, interrupt request,
and DMA control signals. At any given point in time a
channel may be idle, executing a program, performing a
DMA transfer, or responding to a channel attention. Al-
though only one channel actually operates at a time, the
channels can be active concurrently, alternating their op-
erations (e.g., channel 1 may execute instructions in the
periods between successive DMA transfer cycles run by
channel 2). The IOP has a built-in priority system that
allows high-priority activities on one channel to prempt
less critical operations on the other channel. The CPU is
further able to adjust priorities to handle special cases.
The CPU starts the channel, can halt the channel, suspend
channel operation, or cause the channel to resume sus-
pended operations by placing different values in the
CCW.
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Table 4-13 8089 DIP Pin Assignments

Symbol |Type Name and Function Symbol | Type Name and Function

A0-A15/ | 1/0 | Multiplexed Address and Data Bus: The LOCK O | Lock: The lock output signal indicates to the

DO-D15 function of these lines are defined by the bus controller that the bus is needed for more
state of 50, 51 and 32 lines. The pins are than one contiguous cycle. It is set via the
floated after reset and when the bus is not channel control register, and during the TSL
acquired. AB-A15 are stable on transfers to a instruction. The pin floats after reset and
physical 8-bit data bus (same bus as 8088), when the bus is not acquired. This output is
and are multiplexed with data on transfers to active low.

a 16-bit physical bus. RESET | Reset: The receipt of a reset signal causes

A16-A19/| O | Address and Status: Mulitiplexed most the IOP to suspend all its activities and enter

S3-S€E significant address lines and status in- an idle state until a channel attention is
formation. The address lines are active only received. The signal must be active for at
when addressing memory. Otherwise, the least four clock cycles.
status lines are active and are encoded as N : oy
shown below. The pins are floated after reset CLK : :':.:::,:'a'?g); '; p:::‘l;iens all timing needed for
and when the bus is not acquired. Ld .

S6 8554 S3 CA | | Channel Attention: Gets the attention of the
1 1 0 0 DMAcycle on CH1 I0OP. Upon the falling edge of this signal, the
1 1 0 1 DMAcycle on CH2 SEL input pin is examined to determine
1 1 1 0 Non-DMA cycle on CH1 Master/Slave or CH1/CH2 information. This
1 1 1 1 Non-DMA cycle on CH2 input is active high.

BHE O | Bus High Enable: The Bus High Enable is SEL | Select: The first CA received after system
used to enable data operations on the most reset informs the IOP via the SEL line, whe-
significant half of the data bus (D8-D15). The ther it is a Master or Slave (0/1 for Mas-
signal is active low when a byte is to be ter/Slave respectively) and starts the in-
transferred on the upper half of the data bus. itialization sequence. During any other CA
The pin is floated after reset and when the the SEL line signifies the selection of
bus is not acquired. BHE does not have to be CH1/CH2. (0/1 respectively,)
latched. DRQ1-2 | | Data Request: DMA request inputs which

S0,51,S2| O | Status: These are the status pins that define signal the IOP that a peripheral is ready to
the IOP activity during any given cycle. They transfer/receive data using channels 1 or 2
are encoded as shown below: respectively. The signals must be held active
528150 high until the appropriate fetch/stroke is

0 0 0 Instruction fetch; I/O space initiated.

0 0 1 Datafetch; /O space RQ/GT 110 | Request Grant: Request Grant implements
0 1 0 Datastore; l/O space the communication dialogue required to ar-
0 1 1 Notused bitrate the use of the system bus (between
1 0 0 Instruction fetch; System Memory I0P and CPU, LOCAL mode) or I/O bus when
1 0 1 Data fetch; System Memory two IOPs share_the same bus (REMOTE
1 1 0 Data store; System Memroy mode). The RQ/GT signal is active low. An
1 1 1 Passive internal pull-up permits RQ/GT to be left

The status lines are utilized by the bus floating if not used.

rbiter

z?:r:g;e;n:ngob::mam?;;;Ts:::g;:; SINTR1-2| O | Signal Interrupt: Signal Interrupt outputs
change during T4 if a new cycle is to be !rom channels 1 and 2 respectively. The
entered while the return to passive state in T3 interrupts may be sent directly to the CPU or
or Ty indicates the end of a cycle. The pins through the 82'95!.\ interrupt controller. They
are floated after system reset and when the are used to indicate to the system the
bus is not acquired. occurrence of user defined events.

READY | Ready: The ready signal received from the EXT1-2 | Fxternal Terminate: External tgrminate
addressed device indicates that the device is inputs for channels 1 and 2 respectively. The
ready for data transfer. The signal is active EXTsignals will cause the termination of the
high and is synchronized by the 8284 clock cunjent DMA transfer operation if the chan-
generator. nel is so programmed by the channel control

register. The signal must be held active high
until termination is complete.

Vee Voltage: +5 volt power input.

Vss Ground.
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CHANNEL CONTROL BLOCK (CB)
(RESERVED) 4
PARAMETER BLOCK POINTER__| 12
;‘ - ‘{ [~ (SEGMENT BASE & OFFSET) | 4o (- CHANNEL2
| BUSY [ 8
| (RESERVED) 6
| 4
|__PARAMETER BLOCK POINTER
| - '{ (SEGMENT BASE & OFFSET) | , (* CHANNEL1
|
Lo Busy | ccw 0
| 15 87 0
| -m - - = = —— = — = — = — = =
L I
1 |
CHANNEL 2 PARAMETER BLOCK (PB) ! CHANNEL 1 PARAMETER BLOCK (PB) |
|
|
l CHANNEL PROGRAM PARAMETERS \l ! I CHANNEL PROGRAM PARAMETERS l, |
€T (APPLICATION-DEFINED) T ! (APPLICATION-DEFINED) T
a | LI
| TASKBLOCK POINTER 12 | | TASKBLOCK POINTER 12
— (SEGMENT BASE & OFFSET) o (SEGMENT BASE & OFFSET) o<
|
\ 15 0 : 15 0
! CHANNEL 2 TASK BLOCK (TB) I CHANNEL 1 TASK BLOCK (TB)
! (CHANNEL PROGRAM) | (CHANNEL PROGRAM)
! |
' |
! |
! |
| 8089 | 8089
N 3 INSTRUCTIONS h h INSTRUCTIONS -
| r (APPLICATION- S | o (APPLICATION- e
. DEFINED) | W DEFINED)
| |
| |
L L

Figure 4-8 Command Communication Blocks

All channel programs (task blocks) are written in 8089
assembly language (ASM-89) using the 56 basic instruc-
tions available for these programs. The IOP instruction set
contains general purpose instructions similar to those
found in CPUs as well as instructions tailored especially
for I/O operations (see paragraph 4.4.2 for details on
these instructions). These instructions operate on bit,
byte, word and doubleword (pointer) variable types. In
addition, a 20-bit physical address type (not used by the
8086/88) can be manipulated. Data may be taken from
registers, immediate constants and memory. Four mem-
ory addressing modes allow flexible access to both mem-
ory variables and I/O devices located anywhere in either
the CPU’s megabyte memory space or in the 8089’s 64k
1/O space. Data transfer, simple arithmetic, logical and
address manipulation operations are available, as well as
unconditional jump and call instructions that allow chan-

CHANNEL ATTENTION

MESSAGES
CPU IN 0P
MEMORY

INTERRUPT

Figure 4-9 CPU/IOP Communications
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nel programs to link to each other. An individual bit may
be set or cleared with a single instruction. Conditional
jumps can test a bit and jump if it is set (or cleared), or
can test a value and jump if it is zero (or non-zero). Other
instructions are provided to initiate DMA transfers, a
locked test-and-set semaphore operation and issue an in-
terrupt request to the CPU.

4.4.1 Interfacing the 8089 to the 8086 and
80186

The 8089 IOP is functionally compatible with the iAPX
86, 88 family, and supports any combination of 8/16 bit
buses. IOP hardware and communication architecture de-
sign provides simple mechanisms for system upgrade.
Channel attention and interrupt lines handle the only di-
rect communication between the IOP and CPU. The 8089
passes status information, parameters, and task programs
through blocks of shared memory. This simplifies hard-
ware interface and encourages structured programming
(refer to Volume I of this User’s Guide).

The 8089 can be used in one of two system configura-
tions, local mode and remote mode. In the local mode the
8089 shares the system bus with an 8086/88 or 80186/188
CPU. In the remote mode the 8089 has exclusive access to
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Figure 4-10 iAPX 86/11, 88/11 Configuration with 8089 in Local Mode

its own dedicated bus as well as access to the system Bus.
In either mode, the 8089 can address a full megabyte of
system memory and 64k bytes of its own I/O space.

LOCAL MODE

In the local mode, the 8089 acts as a slave to a maximum
mode 8086 or 8088 CPU. In this configuration, the 8089
shares the system address latches, data transceivers and
bus controller with the CPU (see Figure 4-10).

Since the IOP and CPU both share the system bus, either
may have access to the bus at any one time. When one
processor is using the bus, the other processor tri-states
its address/data and control lines. Bus access between the
IOP and CPU is determined through the request/grant
function (refer to paragraph 4.6). To gain access to the
bus, the IOP requests the bus from the CPU, the CPU
grants the bus to the IOP, and the IOP relinquishes the bus
to the CPU when it completes its operation.

NOTE

The CPU cannot request the bus from the IOP
(the CPU is only capable of granting the bus

and must wait for the IOP to release the bus).

Since the request/grant pulse exchange must be synchro-
nized, both the CPU and IOP must be referenced to the
same clock signal.

When the 8089 IOP is used in the local mode, it can be
added to an 8086 or 8088 maximum mode configuration
with little affect on component count (channel attention
decoding logic used as required). It offers the benefits of
intelligent DMA (scan/match, translate, variable termina-
tion conditions), modular programming in a full mega-
byte of memory address space and a set of optimized I/O
instructions that are unavailable to the 8086 CPU. Since
the system bus is shared in the local configuration, bus
contention always exists between the CPU and IOP. Using
the bus load limit field in the channel control word can
help reduce IOP bus access during task block program
execution (bus load limiting has no affect on DMA trans-
fers). For 1/O intensive systems, the design engineer
should consider the remote mode.

REMOTE MODE

In the remote mode, the 8089 provides a multiprocessor
system with true parallel processing. In this mode, the
8089 has a separate (local) bus and memory for I/O pe-

4-25 210912-001



8089 INPUT/OUTPUT PROCESSOR

Ag FROM CPU
110 PORT
ADDRESS
oECOoE A15-A1 FROM CPU
WAIT STATE Locic 4————— 110 WRITE COMMAND
MEMORY i f P SYSTEM RESET
WRITE | e (IF WAIT STATES e ST [+ SYSTemMaE
REQUIRED) =
TRANSFER ACKNOWLEDGE
> - - READY (1.E.. XACK)
2] 1o aoDRESS AENT
DECODE A
7| “osic AENZ CLK
L Lefoa e Lk
MULTIMASTER
DACK | sev oLk L H CONTROL BUS
cs 52-%
& D wo INT 1
TOIFROM
\ v ANOTHERIOP | _ L]
-—»| RQ/GT
v
- N
& N 1o INT. A19-A1g 14
¢ Amidﬁ X WMRDC MEMORY READ COMMAND
__ WMWTC |———— MEMORY WRITE COMMAND
INTA
T .,
108 |-————VcC
GND ALE °!
| ! g
OE sT8 OF sT8
LOCAL ADDRESS BUS (A15- MULTIMASTER
¢ i 8262183 ﬂ 8202183 d AooRESS BUS
Al V' (a19-a0. BHE)
S S -
[ T o€
LOCAL DATA BUS MULTIMASTER
¢ o | ¢ '\ ﬁ DATA BUS
Al AJ 14 M 14 (015-001

Figure 4-11 Typical 8089 Remote Configuration

ripheral communications, and the system bus is com-
pletely isolated from the I/O peripheral(s). In addition,
I/O transfers between an I/O peripheral and the IOP’s lo-
cal memory can occur simultaneously with CPU opera-
tions on the system bus.

In a typical remote mode configuration, data transceivers
and address latches (see Figure 4-11) separate the IOP’s
local bus from the system bus. An 8288 Bus Controller
generates the bus control signals for both the local and
system buses and governs the operation of the
transceivers/latches. Also, an 8289 Bus Arbiter controls
access to the system bus (each processor in the system
would have an associated 8289 Bus Arbiter). To interface
the 8089 to its local bus, another set of address latches is
required (unless MCS-85 mutliplexed address compo-
nents are used exclusively) and, depending on the bus
loading demands, one (8-bit bus) or two (16-bit bus) data
transceivers would be used.

The IOP’s local bus is treated as up to 64k bytes of I/O
space in the remote mode, and the system bus is treated as
1 megabyte of memory space. The 8288 Bus Controller’s
I/O command outputs control the local (I/O) bus, and its
memory command outputs control the system (memory)

4-26

bus. The 8289 Bus Arbiter, which is operated in its I/O
peripheral bus mode, also decodes the 8289’s status out-
puts (S2*-S0%*). In this mode, the 8289 will not request
the multi-master system bus when the IOP indicates an
operation on its local bus. If the IOP’s bus arbiter cur-
rently has access to the system bus, the CPU’s arbiter (or
any other arbiter in the system) can acquire use of the
system bus at this time (a bus arbiter maintains bus access
until another arbiter requests the bus).

4.4.2 10P Initialization

IOP initialization is generally the responsibility of the
host processor. The host processor prepares the commun-
ications data structure in shared memory (refer to Volume
I of this User’s Guide). Actual IOP initialization begins
with activation of the IOP’s RESET input. This input,
which typically originates from an 8284A Clock Genera-
tor, must be held active for at least five clock cycles to
allow the 8089’s internal RESET sequence to be com-
pleted. Like the 8086 CPU, the RESET input to the IOP
must be held active for at least 50 microseconds when
power is first applied. When the reset interval is complete,
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Figure 4-12 RESET-CA Initialization Timing

the host processor signals the IOP to begin its initializa-
tion sequence by activating the 8089’s Channel Attention
(CA) input. The 8089 does not recognize a pulse at its CA
input until one clock cycle after the RESET input returns
to an inactive level.

NOTE

The minimum width for a CA pulse does not
occur prior to one clock. This pulse may go
active prior to RESET returning to an inactive
level provided that the negative-going,
trailing-edge of the CA pulse does not occur
prior to one clock cycle after RESET goes in-
active (see Figure 4-12).

The 8089 samples the Select (SEL) input from the host,
coincident with the trailing edge of the first CA pulse af-
ter RESET, to determine master/slave status for its
request/grant circuits. If SEL is inactive (low), the 8089 is
designated a “master”. If SEL is active (high), the 8089 is
designated a ‘“‘slave”. As a master, the 8089 assumes that
it has the bus initially, and it will subsequently grant the
bus to a requesting slave when the bus becomes available
(i.e., the 8089 will respond to a “‘request” pulse on its
RQ*/GT* line with a “grant” pulse). A single 8089 in the
remote configuration (or one of two 8089s in a remote
configuration) would be designated a master. As a slave,
the 8089 can only request the bus from a master processor
(i.e., the 8089 initiates the request/grant sequence by out-
putting a “request” pulse on its RQ*/GT* line). An 8089
that shares a bus with an 8086 (or one of two 8089s in a
remote configuration) would be designated a slave.

NOTE

Since the 8086 CPU can grant the bus only in
response to a request, whenever an 8086 and
an 8089 share a common bus, the 8089 must
be designated the slave. Also, when the
RQ*/GT* line is not used (i.e., a single 8089
in the remote configuration), the 8089 must be
designated a master.

The CA pulse input, in addition to determining

master/slave status, causes the 8089 to begin execution of
its internal ROM initialization sequence. The 8089 must
have access to the system bus in order to perform this
sequence, therefore, it immediately initiates a
request/grant sequence (if designated a slave) and, if re-
quired, requests the bus through the 8289 Arbiter. If the
8089 is designated a master, it requests the bus through
the 8289 Arbiter. When executing the initialization se-
quence, the 8089 first fetches the SYSBUS byte from lo-
cation FFFF6H. The W bit (bit 0) of this byte specifies
the physical bus width of the system bus. Depending on
the bus width specified, the 8089 then fetches the address
of the system configuration block (SCB) contained in lo-
cations FFFF8H through FFFFBH in either two bus cy-
cles (16-bit bus, W bit equal 1) or four bus cycles (8-bit
bus, W bit equal 0). The SCB offset segment address val-
ues fetched are combined into a 20-bit physical address
that is stored in an internal register. The 8089 uses this
address to fetch the system operation command (SOC)
byte. SOC specifies both the request/ grant operational
mode (R bit) and the physical width of the I/O bus (I bit —
refer to Volume I of this User’s Guide). After reading the
SOC byte, the 8089 fetches the channel control block
(CB) offset and segment address values. These values are
combined into a 20-bit physical address that is stored in
another internal register. To inform the host CPU that it
has completed the initialization sequence, the 8089 clears
the Channel 1 Busy flag in the channel control block by
writing data byte “‘00” into the Busy flag byte.

After the IOP has been initialized, the system configura-
tion block may be altered to initialize another IOP. When
an IOP has been initialized, its channel control block, lo-
cated in system memory, cannot be moved since the CB
address, which is internally stored by the IOP during the
initialization sequence, is automatically accessed on every
subsequent CA pulse.

Generation of the CA and SEL inputs to the IOP are the
responsibility of the host CPU. These signals typically
result from the CPU’s execution of an 1/O write instruc-
tion to one of two adjacent 1/O ports (I/O port addresses
that only differ by A0). A simple decoding circuit that
could be used to generate the CA and SEL signals is
shown in Figure 4-13. By qualifying the CA output with
IOWC#*, the SEL output, since it is latched for the entire
I/0 bus cycle, is guaranteed to be stable on the trailing
edge of the CA pulse.

4.4.3 Channel Commands

After initialization, any channel attention (CA) is inter-
preted as a command to channel 1 (SEL =1ow) or to chan-
nel 2 (SEL = high). Depending upon the activities of both
channels, the CA may not be recognized immediately.
However, the CA is latched so that it will be serviced as
soon as priorities allow.
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Figure 4-13 Channel Attention Decoding
Circuit

The channel sets its BUSY flag in the CB to FFH when it
recognizes the CA. This does not prevent the CPU from
issuing another CA, but provides status information only.
‘When the channel responds to a CA, it reads various con-
trol fields from system memory. The CPU must ensure
that the appropriate fields are properly initialized before
issuing the CA.

The channel reads its CCW from the CB after setting its
BUSY flag. It examines the command field (see Figure
4-14) and executes the command encoded there by the
CPU.

The channel’s response to each type of command is shown
in Figure 4-15. Note that if CF contains a reserved value
(010 or 100), the channel’s response is unpredictable.

The CPU can use the “update PSW” command to alter
the bus load limit and priority bits in the PSW (see Figure
4-22) without otherwise affecting the channel. This com-
mand also allows the CPU to control interrupts originat-
ing in the channel.

The two “‘start program” commands differ only in their
affect on the TP tag bit. If CF-001 is used, the channel
sets the tag to 1 to indicate that the program resides in the
1/O space. If CF-011 is used, the tag is cleared to 0, and
the program is assumed to be in the system space. The
channel converts the doubleword parameter block pointer
to a 20-bit physical address and loads this into PP. It loads
the doubleword task block (channel program) pointer into

7 0
CF COMMAND FIELD Il 'CnF .CFI
000 UPDATE PSW
001 START CHANNEL PROGRAM LOCATED IN I/0 SPACE.
010 (RESERVED) .
011 START CHANNEL PROGRAM LOCATED IN SYSTEM SPACE.
100 (RESERVED)
101 RESUME SUSPENDED CHANNEL OPERATION
110 SUSPEND CHANNEL OPERATION
111 HALT CHANNEL OPERATION
ICF INTERRUPT CONTROL FIELD
00 IGNORE,NO EFFECT ON INTERRUPTS.
01 REMOVE INTERRUPT REQUEST; INTERRUPT IS ACKNOWLEDGED.
10 ENABLE INTERRUPTS.
11 DISABLE INTERRUPTS.
B BUSLOADLIMIT
0 NOBUSLOADLIMIT
1 BUS LOAD LIMIT
P PRIORITY BIT

Figure 4-14 Channel Command Word Encoding
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Figure 4-15 Channel Commands
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TP, updates the PSW as specified by the ICF, B and P
fields of the CCW and starts the program with the instruc-
tion pointed to by TP.

The CPU may suspend a channel operation (either pro-
gram execution or DMA transfer) by setting CF to 110.
The channel saves its state (TP, its tag bit, and PSW) in
the first two words of the parameter block (see Figure
4-16 for format) and clears its BUSY flag to OH. In a
suspended operation:

® The content of the doubleword pointer to the begin-
ning of the channel program is replaced by the channel
save data. Therefore, a suspended operation may be
resumed, but cannot be started from the beginning
without recreating the doubleword pointer.

¢ TP is the only register saved by this operation. If an-
other channel program is started on this channel, the
other registers, including PP, are subject to being
overwritten. In general, suspend is used to temporar-
ily halt a channel, not to “interrupt” it with another
program.

® Suspending a DMA transfer does not affect any 1/0
devices (an I/O device will act as though the transfer is
proceeding). The CPU must provide for conditions
that may arise if, for example, a device requests a
DMA transfer, but the channel does not acknowledge
the request because it has been suspended. Similarly,
an I/0 device may be in a different condition when the
operation is resumed.

A suspended operation may be resumed by setting CF to
101. This command causes the channel to reload TP, its
tag bit, and the PSW from the first two words of PB. Re-
suming an operation that has not been suspended will give
unpredictable results since the first two words of PB will
not contain the required channel state data. A resume
command does not affect any channel registers other than
TP.

The CPU may abort a channel operation by issuing a
“halt” command (CF=111). The channel clears its
BUSY flag to OH and then idles. Again, the CPU must be
prepared for the effect aborting a DMA transfer may have
on an I/O device.

4.4.4 Direct Memory Access Transfers

The number of bytes transferred during a single DMA
cycle is determined by the source and destination logical
bus widths and the address boundary (odd or even ad-
dress). DMA transfers are performed between dissimilar
bus widths by assembling bytes or disassembling words in
the 8089’s internal assembly register file. The DMA
source and destination bus widths are defined by the exe-
cution of a WID instruction during task block (channel
command) execution (refer to Volume I of this User’s
Guide).

NOTE

The bus widths specified remain in force until
changed by a subsequent WID instruction.

Byte (B) and word (W) source/destination transfer combi-
nations are defined in Table 4-14. These definations are
based on the specified address boundary and bus widths.

The 8089 optimizes bus accesses during transfers between
dissimilar bus widths whenever possible. When either the
source or destination is a 16-bit memory bus
(auto-incrementing) that is initially aligned on an odd ad-
dress boundary (causing the first transfer cycle to be
byte-to-byte), following the first transfer cycle, the mem-
ory address will be aligned on an even address boundary,
and word transfers will subsequently occur. For example,
when performing a memory-to-port transfer from a 16-bit
bus to an 8-bit bus with the source beginning on an odd
address boundary, the first transfer cycle will be
byte-to-byte (B— B) (refer to Table 4-14), but subsequent
transfers will be word-to-byte/byte (W — B/B).

All DMA transfer cycles consist of at least two bus cy-
cles. One bus cycle is used to fetch (read) data from the
source into the IOP, and the second bus cycle stores
(writes) the data previously fetched from the IOP into the
destination. For all transfers the data passes through the
IOP to allow mask/compare and translate operations to be
optionally performed during the transfer. In addition this
allows the data to be assembled or disassembled.

DMA transfers are performed in one of three modes: un-
synchronized, source synchronized, or destination syn-
chronized. The transfer mode is specified in the channel
control register. The unsynchronized mode is used when
neither the source or destination devices provide a data
request (DRQ) signal to the IOP. An example is the case
of a memory-to-memory transfer. In the synchronized
transfer modes, the source (source synchronized) or desti-
nation (destination synchronized) device initiates the
transfer cycle by activating the IOP’s DRQI (channel 1)
or DRQ2 (channel 2) input.
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Table 4-14 DMA Assembly Register Operation

Logical Bus Width

Address Boundary (Source — Destination)
(Source — Destination)
8—8 816 16—~8 16— 16
Even — Even B—-B B/B—-W | W—B/B W-W
Even — Odd B—-B B—B W-8/B | W—>B/B
Odd — Even B—8B B/IB—>W B—B B/IB—-W
0Odd - Odd B—B B—B B—B B—B

The DRQ input is asynchronous and usually originates
from an I/O device controller instead of a memory cir-
cuit. This input is latched on the positive transition of the
clock (CLK) signal and must therefore remain active for
more than one clock period (more than 200 nanoseconds
when using a 5 MHz clock) in order to guarantee that it is
recognized.

During T1 of the associated fetch bus cycle (source syn-
chronized — see Figure 4-17) or the store bus cycle (des-
tination synchronized — see Figure 4-18), the IOP
outputs the port address of the I/O device. This address
must be decoded by external circuits to generate the DMA
acknowledge (DACK) signal to the I/O controller as the
response to the controller’s DMA request. An 1/O con-
troller typically uses DACK as a conditional input for the
removal of DRQ. (After receipt of the DACK signal, most
Intel peripheral controllers deactivate DRQ following re-
ceipt of the corresponding read or write signal.)

Table 4-15 defines the DMA transfer cycles in terms of
the number of bus and clock cycles required.

DACK latency is defined as the time required for the 8089
to acknowledge a DMA request at its DRQ input, by out-
putting the device’s corresponding port address. This re-

sponse latency depends on a number of factors that
include the transfer cycle being performed, activity on the
other channel, memory address boundaries, wait states
present in either bus cycle and bus arbitration times.

Generally, when the other channel is idle, the maximum
DACK latency is five clock cycles (1 microsecond at 5
MHz), excluding wait states and bus arbitration times. An
exception occurs when performing a word transfer to or
from an odd memory address boundary. Since two store
(source synchronized) or two fetch (destination synchro-
nized) bus cycles are required to access memory, this op-
eration has a maximum possible latency of nine clock
cycles. When the other channel is performing DMA
transfers to equal priority (“P” bits equal), interleaving
occurs at bus cycle boundaries. Therefore, the maximum
latency is either nine clock cycles when the other channel
is performing a normal 4-clock fetch or store bus cycle,
or twelve clock cycles when the other channel is perform-
ing the first fetch cycle of a memory-to-memory transfer.
If the other channel is performing “‘chained” task block
instruction execution of equal priority, maximum latency
can be as high as 12 clock cycles (channel command in-
struction execution is interrupted at machine cycle bound-
aries which range from two to eight clock cycles).

le———————————— TRANSFER cchs—ol
|~————FETCH BUS CYCLE STORE BUS CYCLE

CLK
DRQ HOLD .
FROM READ I |

DRQ* I
(FROM 1/0 DEVICE)

T“Tz;'l’a|74|

2 IDLE 4 IDLE 5IDLE
CLOCKS'

DRQ FOR NEXT TRANSFER CYCLE

[T T | Te ]

" cLocks' ™" CLOCKS'

NOTES:

ETCH CYCI
CURRENT STORE CVC LE.

DACK ’ \
(DECODED 1/0 ADDRESS) VALID 1/0 ADDRESS PRESENT

1. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE THE NEXT
TRANSFER CVCLE BEGINS IF DRQ IS RECEIVED PRIOR TO ST,
Fl LE, THE NEXT FETCH CYCLE BEGINS IIIMEDIAYELV FOLLOWING THE

2. IF_THE 8089 IS IDLE WHEN DRQ IS RECOGNIZED, FIVE IDLE CLOCK CYCLES OCCUR
BEFORE THE ASSOCIATED TRANSFER CYCLE IS INITIATED.

ATE T4 OF THE CURRENT

Figure 4-17 Source Synchronized Transfer Cycle
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Figure 4-18 Destination Synchronized Transfer Cycle

4.4.5 DMA Termination 2. Byte count expired;

A channel can exit the DMA transfer mode (and return to 3. Mask/compare match or mismatch;

task block execution) on any of the following terminate

4. External event.

conditions (refer to Volume I of this User’s Guide):

1. Single cycle transfer;

Table 4-15 DMA Transfer Cycles

Transfer Mode
Logical Bus Width -
Unsynchronized Source Synchronized Destination Synchronized
Source|Destination Bus Cycles Total Bus Cycles Total' Bus Cycles Total'
Required Clocks Required Clocks Required Clocks
8 8 2 (1fetch, 1 store)| 8 2 (1fetch, 1 store)| 8 2 (1 fetch, 1 store)| 8
8 16° 3(2fetch, 1 store)| 12 3(2fetch, 1 store)| 16¢ 3(2fetch, 1 store)| 12
16° 8 3(1fetch, 2 store)| 12 3(1fetch, 2store)] 12 3(1fetch, 2 store)| 16¢
16° 16° 2 (1 fetch, 1 store) 8 2 (1 fetch, 1 store) 8 2 (1 fetch, 1 store) 8
Notes:
1. The ‘‘Total Clocks Required’’ does not include wait states. One clock cycle per wait state must be

added to each fetch and/or store bus cycle in which a wait state is inserted. When performing a
memory-to-memory transfer, three additional clocks must be added to the total clocks required (the
first fetch cycle of any memory-to-memory transfer requires seven clock cycles).

When performing a translate operation, one additional 7-clock bus cycle must be added to the values
specified in the table.

Word transfers in the table assume an even address word boundary. Word transfers to or from odd
address boundaries are performed as indicated in table 4-18 and are subject to the bus cycle/clock
requirements for byte-to-byte transfers.

Transfer cycles that include two synchronized bus cycles (i.e., synchronous transfers between
dissimilar logical bus widths) insert four idle clock cycles between the two synchronized bus cycles
to allow additional time for the synchronzing device to remove its initial DMA request.
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Individual fields in the channel control register specify
the terminate conditions. More than one terminate condi-
tion can be specified for a transfer (e.g., a transfer can be
terminated when a specific byte count is reached —>or—
on the occurrence of an external event). When more than
one terminate condition is possible, specified displace-
ments (which are added to the task pointer register value)
cause task block execution to resume at a unique entry
point for each condition. Three re-entry points are availa-
ble: TP, TP +4, and TP +8. The time interval between
the occurrence of a terminate condition and the resump-
tion of task block execution is 12 clock cycles for re-entry
point TP and 15 clock cycles for re-entry points TP +4
and TP + 8.

4.4.6 Peripheral Interfacing

‘When the 8089 interfaces a peripheral to an 8-bit physical
data bus, only the lower half of the address/data lines
(AD7-ADO) are used for the bidirectional data bus. The
upper half of the address/data lines (AD15-AD8) are used
to maintain address information for the entire bus cycle.
With this bus configuration, only one octal latch is re-
quired since only the lower half of the address/data lines
are time-multiplexed (unless the address bus requires the
increased current drive capability and capacitive load im-
munity provided by the latch).

When a peripheral is interfaced to a 16-bit data bus, both
the lower and upper halves of the address/data lines are
time-multiplexed, and two octal latches are required.
Note that unlike the 8086 CPU, the 8089 does not
time-multiplex BHE*, this signal is valid for the entire
bus cycle. Both 8-and 16-bit peripherals can be interfaced
to a 16-bit bus. An 8-bit peripheral can be connected to
either the upper or lower half of the bus. An 8-bit periph-
eral on the lower half of the bus must use an even source/
destination address, and an 8-bit peripheral on the upper
half of the bus must use an odd source/destination ad-
dress. To take advantage of word transfers, a 16-bit pe-
ripheral must use an even source/destination address.

Command and parameter data is written to a peripheral
device’s command/status port (usually by using pointer
register GC) to prepare the device for a DMA transfer.
The additional task block instruction executed by the
8089 following execution of the XFER instruction (the
XFER instruction causes the 8089 to enter the DMA
mode) is used to access the command port of an I/O de-
vice. This I/O device immediately begins DMA operation
on receipt of the last command (the 8271 Floppy Disk
Controller begins its DMA transfer on receipt of the last
command parameter). Since a translate DMA operation
requires the use of all three pointer registers (GA and GB
specify the source and destination address; GC specifies
the base address of the translation table), when it is neces-
sary to use the last task block instruction to start the de-
vice, command port access can be accomplished relative
to one of the pointer registers or relative to the PP regis-

ter. If the device’s data port address (GA or GB) is below
the device’s command port address, either an offset or an
indexed reference can be used to access the command
port.

8089 DMA COMMUNICATION PROTOCOL

A peripheral’s (or peripheral controller’s) DMA commu-
nication protocol with the 8089 is as follows:

e The peripheral (when source or destination synchro-
nized) initiates a DMA transfer cycle by activating the
8089’s DRQ (DMA request) input.

® The 8089 acknowledges the request by placing the pe-
ripheral’s assigned data port address on the bus during
state T1 of the corresponding fetch (source synchro-
nized) or store (destination synchronized) bus cycle.
The peripheral is responsible for decoding this address
as the DMA acknowledge (DACK) to its request.

e The data is transferred between the peripheral and the
8089 during the T2 through T4 state interval of the bus
cycle. The peripheral must remove its DMA request
during this interval.

® The peripheral, when ready, requests another DMA
transfer cycle by again activating the DRQ input, and
the above sequence repeats.

® The peripheral can, as an option, end the DMA trans-
fer by activating the 8089’s EXT (external terminate)
input.

The 8089 supports multiple peripheral devices on a single
channel if only one device is in the active transfer mode at
any one time. To interface multiple devices, the DMA
request (DRQ) lines are OR’ed together. The external ter-
minate (EXT) lines are also OR’ed together. However,
unique port addresses are assigned to each device so that
an individual DMA acknowledge (DACK) returns to only
the active device. DACK can be decoded using an Intel
8205 Binary Decoder or a ROM circuit.

NOTE

The 8089 can only determine which device has
requested or terminated service by the context
of the task block program.

Most peripheral devices interfaced to the 8089 use the
decoded DMA acknowledge signal (DACK) as the chip
select input. Peripheral devices that do not follow this
convention must use DACK as a conditional input of chip
select.

8089 NON-DMA INTERRUPTS
Most interrupts associated with the 8089 are DMA re-

quests or external terminates, but non-DMA related inter-
rupts can be supported. One technique that can be used
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for an 8089 configured in local mode (or when an 8086
and an 8089 are locally connected as a remote module)
allows the CPU to accept the interrupt and then direct the
8089 to the interrupt service routine. Another technique
allows the 8089 to poll the device to determine when an
interrupt has occurred (most peripheral controllers have
an interrupt pending bit in a status word). The 8089’s bit
test instructions are ideally suited for polling.

When configured in remote mode, non-DMA related in-
terrupts can be supported by the 8089 with the addition of
an Intel 8259A Programmable Interrupt Controller. Sys-
tems that require this type of interrupt structure would
dedicate one of the 8089’s channels to interrupt servicing.
In this structure, the interrupt output from the 8259A con-
nects directly to the channel’s external terminate (EXT)
input, and the channel’s DRQ input is not used. The 8089
initially executes a task block program to perform a
source-synchronized DMA transfer (with an external ter-
minate) on the‘‘interrupt” channel to “arm” the interrupt
mechanism. Since the DRQ input is not used, when the
channel enters the DMA transfer mode, the channel idles
while waiting for the first DMA request (which never oc-
curs). Since the interrupt channel is idle, the other chan-
nel operates at maximum throughput. When an interrupt
occurs, the pseudo DMA transfer immediately termi-
nates, and task block instruction execution resumes. The
task block program would write a poll command to the
8259A’s command port and then read the 8259A's data
port to acknowledge the interrupt and to determine the
device responsible for the interrupt (the device is identi-
fied by a 3-bit binary number in the associated data byte).
The device number read would be used by the task block
program as a vector into a jump table for the device’s
interrupt service routine. Pertinent interrupt data could be
written into the associated parameter block for subsequent
examination by the host processor. Since it uses the
8089’s external terminate function, this interrupt mecha-
nism provides an extremely fast interrupt response time.

When using dynamic RAM memory with the 8089, an
Intel 8203 Dynamic RAM Controller can be used to sim-
plify the interface and to perform the RAM refresh cycle.
When maximum transfer rates are required, the RAM re-
fresh cycle can be externally initiated by the 8089. By
connecting the decoded DACK (DMA acknowledge) sig-
nal to the 8203’s REFRQ (refresh request) input, the re-
fresh cycle will occur coincident with the I/O device bus
cycle and will not impose wait states in the memory bus
cycle.

4.4.7 Status Lines

The IOP sends signals to external devices on the SO*-S2*
status lines to indicate the type of bus cycle the processor
is starting (see Table 4-16 for the signals output for each
type of cycle). These status lines are connected to an 8288
Bus Controller. The bus controller decodes these lines
and outputs the signals that control components attached

" Table 4-16 Status Signals S0-S2 .

§2/S1(So0 Type of Bus Cycle
0]07]0 |nstruciion fetch from /O space
00| 1| Datafetch from!/O space
0] 1] 0 | Datastoretol/O space
0f1]1 ] (notused)

110 | 0 | Instruction fetch from system
space

1] 0| 1| Datafetch from system space

1 0 | Data store to system space

1]1]1 | Passive; nobuscyclerun

to the bus. In the remote configuration, an 8289 Bus Arbi-
ter monitors the SO*-S2* status lines to determine when a
system bus access is required.

Status lines S3 — S6 indicate if the bus cycle is DMA or-
non-DMA, and which channel is running the cycle (see
Table 4-17). When the IOP is not running a bus cycle
(e.g., it is idle or executing an internal cycle that does not
use the bus), the status lines reflect the last bus cycle run.

4.5 BUS OPERATION

The 8089 uses the same bus structure as a maximum
mode 8086 CPU. Bus cycles are performed only on de-
mand to fetch an instruction during task block execution
or to perform a data transfer. The bus cycle itself is identi-
cal to an 8086 CPU’s. bus cycle. Each cycle consists of
four T-states and uses the same time-multiplexing tech-
nique for the address/data lines. The 8089 outputs the ad-
dress (and ALE signal) during state T1 for either a read or
write cycle (see Figures 4-19 and 4-20). Depending on
the type of cycle indicated, the 8089 tri-states the
address/data lines during state T2 for a read cycle (see
Figure 4-19) or outputs data on these lines during a write
cycle (see Figure 4-20). During state T3, the 8089 main-
tains write data or samples read data and then concludes
the busy cycle in state T4.

Table 4-17 Status Signals $3-S6
S6|S5|S4{S3

Bus Cycle

0|0 |DMAcycle on channel 1 '

0 |1 | DMAcycleonchannel 2

1] 0 | Non-DMA cycle on channel 1
111

- -
- - =

Non-DMA cycle on channel 2
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Figure 4-19 Read Bus Cycle (8-bit Bus)

The 8089 can transfer data to or from both 8-bit and
16-bit buses. Therefore, when an 8-bit physical bus is
specified during the initialization sequence, the IOP
maintains the address present on the AD15 through AD8
address/data lines for the entire bus cycle (see Figure
4-19). Unless added drive capability is required, the asso-
ciated address latch can be eliminated. An 8-bit data bus
is compatible with the 8088 CPU and with the MCS-85
multiplexed address peripherals (8155, 8185, etc.).

8089 operation is identical to the 8086 CPU with respect
to the use of the low-and high-order halves of the data bus.
Table 4-18 defines the data bus use for the various combi-
nations of bus width and address boundaries.

Status lines S2* through SO* define the bus cycle to be
performed. These status lines are used by an 8288 Bus
Controller to generate all memory and I/O command con-
trol signals (refer to Table 4-19 for signal decoding).

Since the 8288 Bus Controller decodes an input status
value of zero as an interrupt acknowledge bus cycle, the
bus controller’s INTA* output must be OR’ed with its
IORC* output to permit fetching of task block instructions
from local 8089 memory (remote configuration) or sys-
tem I/0 space (local and remote configurations).

Status lines S2* through SO* become active in state T4 if a
subsequent bus cycle is to be performed. The 8089 sets
these lines inactive (all high) in the state immediately
prior to state T4 of the current bus cycle (state T3 or Tw)
and tri-states the lines when the 8089 does not have access
to the bus.

Status lines S6 through S3 are multiplexed with the
high-order address bits (A19-A16) and, accordingly, be-
come valid in state T2 of the bus cycle. These status lines
reflect the type of bus cycle being performed on the cor-
responding channel (Table 4-20).

Status lines S6 and S5 are always high on the 8089. Since
these lines are not both high on the other processors in the
8086 family (S6 is always low on the 8086 CPU), these
status lines can be used as a “‘signature” in a multiproces-
sor system to identify the type of processor performing
the bus cycle.

The 8089 includes the same provisions for insertion of
wait states (Tw) as the 8086 CPU. Wait states are inserted
in a bus cycle when the associated memory or I/0 device
cannot respond within an allotted time interval or in the
remote mode when the 8089 must wait for access to the
system bus. An 8284A Clock Generator/ Driver controls
insertion of wait states. When required, wait states are
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Figure 4-20 Write

inserted between states T3 and T4. Deactivating one of
the 8284A’s RDY inputs, RDY1 or RDY?2, actually inserts
the wait states. When enabled by the corresponding
AEN1* or AEN2* input, either RDY1 or RDY2 can be
directly deactivated by a memory or I/O device to extend
the 8089’s bus cycle (i.e., addressed device is not ready to
present or accept data). The 8284A’s READY output (syn-
chronized to the CLK signal) connects directly to the
8089’s READY input. When the addressed device re-
quires one or more wait states to be inserted into a bus
cycle (see Figure 4-21), it deactivates the 8284A’s RDY
input prior to the end of state T2. The READY output
from the 8284A subsequently deactivates at the end of
state T2, causing the 8089 to insert wait state T3. To exit
the wait state, the device activates the 8284A’s RDY input,
causing the 8089 READY input to go active on the next
clock cycle. This allows the 8089 to enter state T4.

Periods of inactivity, or idle states (TI) can occur between
bus cycles. These idle states result from the execution of a
“long” instruction or the loss of the bus to another proc-
essor during task block instruction execution. Addition-
ally, the 8089 can experience idle states when it is in the
DMA mode and it is waiting for a DMA request from the
addressed I/O device, or when the bus load limit (BLL)
function is enabled for a channel performing task block
instruction execution and the other channel is idle.

Bus Cycle (16-bit Bus)
4.6 BUS EXCHANGE MECHANISM

The 8089 shares the multiprocessing facilities that are
common to the iAPX 86 family of processors. It has
on-chip logic for arbitrating the use of the local bus with a
CPU or other IOP. System bus arbitration is delegated to
an 8289 Bus Arbiter.

The 8089’s test and set while locked instruction (TSL)
enables it to share a resource, such as a buffer, with other
processors by means of semaphore. In addition, the 8089
can lock the system bus for the duration of a DMA trans-
fer to ensure that the transfer completes without interfer-
ence from other processors on the bus.

In the remote configuration, the 8089 is electrically com-
patible with Intel’s MULTIBUS multimaster bus design.
Therefore, the power and convience of 8089 I/O process-
ing can be used in 8085-or 8086-based systems that im-
plement the MULTIBUS protocol or a subset of it. In
addition, the JOP can access other iSBC board products
such as memory and communications controllers.
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Table 4-18 Data Bus Usage

Physical Bus Width:
Logical Address
Bus Width® Boundary 8 16
Byte Transfer Word Transfer
AD7-ADO = DATA AD7-ADO = DATA
Even (BHE not used) (BHE high) N/A
8
AD7-AD0 = DATA AD15-AD8 = DATA
Oad (BHE not used) (BHE low) NIA
Even lllegal AD7-AD0 = DATA AD15-AD0 = DATA
9 (BHE high) (BHE low)
16
AD15-AD8 = DATA
Odd Iegal (BHE low) N/A®

Notes:
1. Logical bus width is specified by the WID instruction prior to the DMA transfer.
Physical bus width is specified when the 8089 is initialized.

A word transfer to or from an odd boundary is performed as two byte transfers. The first byte trans-
ferred is the low-order byte on the high-order data bus (AD15-AD8), and the second byte is the high-
order byte on the low-order data bus (AD7-ADO0). The 8089 automatically assembles the two bytes in
their proper order.

Table 4-19 Bus Cycle Decoding

-S_tatus_Outpt:t_ Bus Cycle Indicated cBus Controller
S2 | 81| so ommand Output
0 0 0 Instruction fetch from 1/0 space INTA

0 0 1 Data read from 1/0 space ___IORC

0 1 0 Data write to I/O space IOWC, AIOWC

0 1 1 Not used None

1 0 0 Instruction fetch from system memory MRDC

1 0 1 Data read from system memory MRDC

1 1 0 Data write to system memory MWTC, AMWC

1 1 1 Passive None

Table 4-20 Type of Cycle Decoding 4.6.1 Bus Arbitration

Status Output Type of Cycle The 8089 shares its system bus with a CPU, and may also
sS4 S3 share its I/O bus with an IOP or another CPU. Only one
processor at a time may drive a bus. When two (or more)

0 0 DMA on Channel 1 processors want to use a shared bus, the system must pro-
0 1 DMA on Channel 2 vide an arbitration mechanism that will grant the bus to
1 0 Non-DMA on Channel 1 one of the processors. The following paragraphs describe
1 1 Non-DMA on Channel 2 the 8089 bus arbitration facilities and their applicability to

different IOP configurations.
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REQUEST/GRANT LINE

‘When an 8089 is directly connected to another 8089, an
8086 or an 8088, the RQ*/GT* (request/grant) lines built
into all of these processors are used to arbitrate the use of
a local bus. In the local mode, RQ*/GT* is used to con-
trol access to both the system and the I/O bus.

The CPU’s request/grant lines (RQ*/GTO* and
RQ*/GT1¥*) operate as follows:

1. An external processor sends a pulse to the CPU to
request use of the bus;

2. The CPU finishes its current bus cycle, if one is in
progress, and sends a pulse to the processor to indi-
cate that it has been granted the bus; and

3. When the external processor is finished with the bus,
it sends a final pulse to the CPU, to indicate that it is
releasing the bus.

The 8089’s request/grant circuit can operate in two
modes. The mode is selected when the IOP is initialized
(see paragraph 4.4.2). Mode O is compatible with the
8086/8088 request/grant circuit and must be specified
when the 8089’s RQ*/GT* line is connected to
RQ*/GTO* or RQ*/GT1* of one of those CPU’s. Mode 0
may be specified when RQ*/GT* of one 8089 is tied to
the RQ*/GT* of another 8089. When mode 0 is used with
a CPU, the CPU is designated the master, and the IOP is
designated a slave. When mode O is used with another
IOP, one IOP is the master, and the other is the slave.
Master/slave designation also is made at initialization time
as discussed in paragraph 4.4.2. The master has the bus
when the system is initialized and keeps the bus until it is
requested by the slave. When the slave requests the bus,
the master grants it if the master is idle. In this sense, the
CPU becomes idle at the end of current bus cycle. An IOP
master, on the other hand, does not become idle until both
channels have halted program execution or are waiting for
DMA requests. Once granted the bus, the slave (always an
IOP) uses it until both channels are idle, and then releases
it to the master. In mode 0, the master has no way of
requesting the slave to return the bus.

Mode 1 operation may only be used to arbitrate use of a
private I/O bus between two IOP’s. In this instance, one
IOP is designated the master, and the other is designated
the slave. However, the only difference between a master
and a slave running in Mode 1 is that the master has the
bus at initialization time. Both processors may request the
bus from each other at any time. The processor that has
the bus will grant it to the requestor as soon as one of the
following occurs:

1. An unchained channel program instruction is com-
pleted, or

2. A channel goes idle due to a program halt or the com-
pletion of a synchronized transfer cycle (the channel
waits for a DMA request).

Execution of a chained channel program, a DMA termi-
nation sequence, a channel attention sequence, or a syn-
chronized DMA transfer (i.e., a high-priority operation)
on either channel prevents the IOP from granting the bus
to the requesting IOP.

The handshaking sequence in Mode 1 is:
1. The requesting processor pulses once on RQ*/GT*;

2. The processor with the bus grants it by pulsing once;
and

3. If the processor granting the bus wants it back imme-
diately (for example, to fetch the next instruction), it
will pulse RQ*/GT* again, two clocks after the grant
pulse.

The fundamental difference between the two
request/grant circuit modes is the frequency with which
the bus can be switched between the two processors when
both are active. In mode 0, the processor that has the bus
will tend to keep it for relatively long periods if it is exe-
cuting a channel program. Mode 1 in effect places un-
chained channel programs at a lower priority since the
processor will give up the bus at the end of the next in-
struction. Therefore, when both processors are running
channel programs or synchronized DMA, they will share
the bus more or less equally. When a processor changes to
what would typically be considered a high-priority activ-
ity such as chained program execution or DMA termina-
tion, it will generally be able to obtain the bus quickly and
keep the bus for the duration of the more critical activity.

8289 BUS ARBITER

‘When an IOP is configured remotely, an 8289 Bus Arbiter
is used to control the IOP’s access to the shared system
bus (the CPU also has its own 8289). In a remote cluster
of two IOP’s and a CPU, one 8289 control access to the
system bus for both processors in the cluster. The 8289
has several operating modes. When used with an 8089,
the 8289 is usually strapped in its IOB (I/O Peripheral
Bus) mode.
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Table 4-21 Bus Arbitration Requirements and Options

Remote With
Local Remote Local CPU
0P —— — —
Master/ RQ/GT Master/ RQ/GT Master/ RQ/GT
Slave Mode Slave Mode Slave Mode
IOP1 Slave. 0 Master Oor1 Slave 0
Same as
10P2 Slave 0 Slave Master N/A N/A

The 8289 monitor’s the IOP’s status lines. When the status
lines indicate the IOP needs a cycle on the system bus,
and the IOP does not presently have the bus, the 8289
activates a bus request signal. This signal, along with the
bus request lines of the other 8289’s on the same bus, can
be routed to an external priority-resolving circuit. At the
end of the current bus cycle, this circuit grants the bus to
the requesting 8289 with the highest priority. Several dif-
ferent prioritizing techniques may be used. In a typical
system, an IOP would have higher bus priority than a
CPU. If the 8289 does not obtain the bus for its processor,
it makes the bus appear “not ready” as if a slow memory
were being accessed. The processor’s clock generator re-
sponds to the “not ready” condition by inserting wait
states into the IOP’s bus cycle. This will extend the cycle
until the bus is acquired.

BUS ARBITRATION FOR IOP CONFIGURATIONS

‘When the CPU initializes an IOP, it must inform the IOP
whether it is a master or a slave, and which request/grant
mode is to be used. Refer to paragraph 4.4.2 for a de-
scription of how the information is communicated at ini-
tialization time.

In the local configuration (see Table 4-21 for a summari-
zation of bus arbitration requirements and options by IOP
configuration), all bus arbitration is performed by the
request/grant lines without additional hardware. One IOP
may be connected to each of the CPU’s RQ*/GT* lines.
The IOP connected to RQ*/GTO* will obtain the bus if
both processors make simultaneous requests.

Since a single IOP in a remote configuration does not use
RQ*/GT*, its mode may be set to O or 1 without affect.
The single remote IOP, however, must be initialized as a
master. If two remote IOP’s share an I/O bus, one must be
a master and the other a slave. Both must be initialized to
use the same request/grant mode. Normally, mode 1 will
be selected for its improved responsiveness, and the des-
ignation of master will be arbitrary. If one IOP must have
the 1/0 bus when the system comes up, it should be initial-
ized as the master.

When a remote IOP shares its I/O bus with a local CPU, it
must be a slave and must use request/grant mode 0.

4.6.2 Bus Load Limit

A locally configured IOP effectively has higher bus prior-
ity than the CPU since the CPU will grant the bus upon
request from the IOP. In this instance, one or two local
IOP’s can potentially monopolize the bus at the expense
of the CPU. Of course, if the IOP activities are
time-critical, this is exactly what should happen. On the
other hand, there may be low-priority channel programs
that have less demanding performance requirements.

In these cases, the CPU sets a CCW bit called bus load
limit to constrain the channel’s use of the bus during nor-
mal (unchained) channel program execution. When this
bit is set, the channel decrements a 7-bit counter from 7F
(127) to OH with each instruction executed. Since the
counter is decremented once per clock period, the channel
waits a minimum of 128 clock cycles before it executes
the next instruction. By forcing the execution time of all
instructions to 128 clocks, the use of the bus is reduced to
between 3 and 25 percent of the available bus cycles.

Setting the bus load limit effectively enables a CPU to
slow the execution of a normal channel program, freeing
up bus cycles. This is useful in local configurations, but
may also be effective in remote configurations, particu-
larly when channel programs are executed from system
memory. Bus load limit has no effect on chained channel
programs, DMA transfers, DMA termination, or channel
attention sequences.

4.6.3 Bus Lock

The 8089 has a LOCK* (bus lock) signal, like the
8086/88 and 80186/188, which can be activated by soft-
ware. The LOCK* output is normally connected to the
LOCK* input of the 8289 Bus Arbiter. When LOCK* is
active, the bus arbiter will not release the bus to another
processor regardless of its priority. A channel automati-
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cally locks the bus during execution of the test and set
while locked (TSL) instruction and may lock the bus for
the duration of a DMA transfer.

If bit 9 of the CC register is set, the 8089 activates its
LOCK?* output during a DMA transfer on that channel. If
the transfer is synchronized, LOCK* is active from the
time that the first DRQ is recognized. If the transfer is
unsynchronized, LOCK* is active throughout the entire
transfer (there are no idle periods in an unsynchronized
transfer). LOCK* goes inactive when the channel begins
the DMA termination sequence.

A locked transfer ensures that the transfer will be com-
pleted in the shortest possible time and that the transfer-
ring channel has exclusive use of the bus. Once the
channel obtains the bus and starts a locked transfer, the
channel, in effect, becomes the highest-priority processor
on that bus.

The 8089 test and set while locked instruction (TSL) can
be used to implement a semaphore. The instruction acti-
vates LOCK* and inspects the value of a byte in memory.
If the value of the byte is OH, it is changed (set) to a value
specified in the instruction and the following instruction is
executed. If the byte does not contain OH, control is trans-
ferred to another location specified in the instruction. The
byte is locked from the time the byte is read until it is
either written or control is transferred to ensure that an-
other processor does not access the variable after TSL has
read it, but before it has updated it (i.e., between bus
cycles). The following line of code will repeatedly test a
semaphore pointed to by GA until it is found to contain
Zero:

TEST_FLAG: TSL [GA],0FFH,TEST__FLAG

When the semaphore is found to be zero, it is set to FFH
and the program continues with the next instruction.

4-40
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Figure 4-22 Program Status Word

4.7 INTERRUPTS

Each channel has a separate system interrupt line
(SINTR1 and SINTR2). A channel program may generate
a CPU interrupt request by executing a SINTR instruc-
tion. Whether this instruction actually activates the
SINTR line, however, depends upon the state of the inter-
rupt bit (bit 3 of the PSW — see Figure 4-22). If this bit is
set, interrupts from the channel are enabled, and execu-
tion of the SINTR instruction activates SINTR. If the in-
terrupt control bit is cleared, the SINTR instruction has
no effect and interrupts from the channel are disabled.

The CPU can alter a channel’s interrupt control bit by
sending any command to the channel with the value of
ICF (interrupt control field) in the CCW set to 10 (enable)
or 11 (disable). Therefore, the CPU can prevent inter-
rupts from either channel.

Once activated, SINTR remains active until the CPU
sends a channel command with ICF set to 01 (interrupt
acknowledge). When the channel receives this command,
it clears the interrupt service bit in the PSW (see Figure
4-22) and removes the interrupt request. Disabling inter-
rupts also clears the interrupt service bit and lowers
SINTR.
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CHAPTER 5
80130 OPERATING SYSTEM FIRMWARE

5.1 GENERAL INFORMATION

The 80130 is a component that is designed to work in
conjunction with the 8086, the 8088, the 80186, and the
80188 microprocessors. When the 80130 is combined
with the iAPX 86/10 (8086) microprocessor, the pair of
components is called the iAPX 86/30 Operating System
Processor. When the 80130 is combined with the iAPX
88/10 (8088) microprocessor, the pair of components is
called the iAPX 88/30 Operating System Processor. In
order to simplify nomenclature, this chapter uses the term
OSP to refer to either pair of components. You can add the
8087 Numeric Processor Extension (NPX) to either pair
of components.

5.2 80130 ARCHITECTURE

The 80130 component, shown in Figure 5-1, is internally
divided into a number of independent units. The Operat-
ing System Unit (OSU) provides the kernel control store,
while the Control Unit contains hardware facilities that
support it. Also included in the OSU are the Operating

System Timers, which are used by the OSP for scheduling

and timing intervals, the Programmable Interrupt Con-
troller (PIC), which provides seven independent interrupt
lines and one line for the system timer, and
User-Programmable Baud Rate Generator for input into a
USART.

5.3 DEVICE PIN ASSIGNMENTS

The 80130 device pin assignments are listed with the ap-
propriate description in Table 5-1. The device pin assign-
ments are shown in Figure 5-2.

5.4 OPERATING SYSTEM PRIMITIVES
SUMMARY

This section contains the calling sequences and other in-
formation about the OSP primitives. The primitives are
listed in alphabetical order in Table 5-2. the information
for each primitive is organized into the following
categories:

1. Primitive
2.

3. The condition codes that can result from using the
primitive.

A description of the effects of the primitive.

PL/M-86 and iOSP 86 data types, such as BYTE, WORD,
SELECTOR, and TOKEN are used in this section. They
are always capitalized and their definitions can be found
in Table 5-3. In addition, Table 5-4 lists the mnemonic
codes for both unavoidable and avoidable exceptions
along with the numeric values assigned to each mnemonic
exceptor. If your compiler supports the SELECTOR data
type, a TOKEN can be declared literally either SELEC-
TOR or WORD. The word‘‘token’ in lower case refers to
a value that the iOSP 86 Processor assigns to an object.
The OSP returns this value to a TOKEN (the data type)
when it creates the object.

5.5 INTERFACING WITH THE 8086/88

The iAPX 86/30 and iAPX 88/30 are two-chip micropro-
cessors offering general-purpose CPU (8086) instructions
combined with real-time operating system support. The
iAPX 86/30 consists of an iAPX 86/10 (16-bit 8086 CPU)
and an Operating System Firmware (OSF) component
(80130). The 88/30 consists of the OSF and an iAPX
88/10 (8-bit 8088 CPU). The 80130 resides on the CPU
local multiplexed bus (Figure 5-3). The main processor is
always configured for maximum mode operation. The
80130 automatically selects between its 88/30 and 86/30
operating modes. The 80130 used in the 86/30 configura-
tion, as shown in Figure 5-3 (or similar 88/30 configura-
tion), operates at both 5 and 8 Mhz without requiring
processor wait states.

5.5.1 Programming The 80130 OSP’s
Onchip Peripherals

During normal 8086/8088 and 80186/80188 system oper-
ation the 80130’s primitives control the onchip program-
mable interrupt controller (PIC) and timers. During this
operation, to ensure proper system operation, the applica-
tions software should not control the onchip peripherals.
There are, however, a few special cases when direct con-
trol of the PIC and timers is required. One case occurs
during initial hardware debugging when the systems soft-
ware is not desired or is not available. Another case is
when writing diagnostic software, either self-diagnostic
code or board/ system test software.

The information necessary to program the 80130’s PIC
and timers in these special cases is provided in the follow-
ing paragraphs. The operation and programming of the
PIC’s is similar to the 8259A programmable interrupt
controller and the operation and programming of the
three timers are similar to the 8254 programmable
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Figure 5-1 80130 Simplified Functional Block Diagram

interval timer. For additional operation and programming
information for the onchip peripherals refer to the data
sheets for the 80130, 8259A, and 8254 devices.

PROGRAMMABLE INTERRUPT CONTROLLER
(PIC)

PIC Commands

The PIC accepts two types of command words from the
CPU:

a. Initialization Command Words (ICW’s): Before
normal operation can begin, the PIC must be ini-

tialized with a sequence of 3, 4, 5 or 6 bytes.
. Operation Command Words OCW: These are

command words sent to the PIC for various forms
of operation, such as interrupt masking, end of
interrupt, and interrupt status.

The OCW'’s can be sent to the PIC anytime after initializa-
tion.

Initialization Command Word 1 (ICW1)

Whenever a command word is sent to address OH with
IOCS/=0 and D4=1 with a write I/O port bus cycle
(S2/—-S0/=010), the data is interpreted as Initialization
Command Word 1. ICW1 starts the initialization during
which the following automatically occurs:

a. The edge sense circuits are reset, which means
that following initialization an interrupt request
(IR) input must make a low-to-high transition to
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Figure 5-2 80130 OSP Pinout Diagram

generate an interrupt unless the IR input is pro-
grammed as a level sensitive input in which case a
high level will generate the interrupt.

. The interrupt mask register is cleared.
. Status read is set to interrupt request register.

. All interrupts will be acknowledged with LIR/ =1
unless ICW6 is sent.

Sending ICW1, ICW2, and ICW4 is the minimum
amount of programming needed by the PIC. ICW1 speci-
fies whether the remaining control words (ICW3, ICWS,
and ICW6) will be sent. Once ICW1 has been sent, the
following writes to I/O address 02H from the base 1/0O
address must be the sequence of ICW2, ICW3, ICW4,
ICW5 and ICW6 (with the exception of ICW3, ICWS5,
and ICW6 if not specified in ICW1). The PIC is ready to
accept interrupts after the last ICW is sent.

Bits 7-6 =00: Unused but set to 0
Bit5=0: All inputs are non-local (LIR/=1) and
ICW6 is not read
=1: ICW6 is read to specify local/non-local
inputs
Bit4=1: Indicates ICW1
Bits 3-2=00: Edge triggered interrupts; ICWS5 is not
read
=10: Level triggered interrupts; ICWS5 is not
read
= X 1: ICWS5 is read to specify interrupt trig-
gering
Bit 1=0: One or more 8259A slaves are con-
nected to IR inputs
=1: No 8259A slaves are connected to IR
inputs
Bit0=1: ICW4 is read.

Initialization Command Word 2 (ICW2)

ICW?2 contains bits 7-3 of the 8-bit vector that is sent to
the CPU during the second interrupt acknowledge cycle.
The remaining 3 bits, 2-0 are generated by the PIC de-
pending on the interrupt request input being serviced.
ICW2 is sent to I/0 address 02H with IOCS/ = 0. Bits 7-3
contain the five most significant bits of an 8-bit interrupt
type number. Bits 2-0 are unused and may be any value.

Initialization Command Word 3 (ICW3)

ICW3 is sent only when there are one or more 8259A
slaves in the system and is sent to I/O address 02H with
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Table 5-1 80130 Pin Descriptions

Symbol

Type

Name and Function

AD15-ADO

l[e]

Address Data: These pins constitute the time multiplexed memory address (T1) and data (T2,
T3, Tw, T4) bus. These lines are active HIGH. The address presented during T1 of a bus cycle
will be latched internally and interpreted as an 80130 internal address if MEMCS or IOCS is
active. These pins float whenever it is not chip selected, and are driven only during T2-T4 of a
read or INTA cycle and T1 of an INTA cycle in which a slave 8259A drives the Interrupt Pointer
during T2-T4. ADO-AD15 are latched by the 80130 on the falling edge of ALE.

BHE*/S7

Bus High Enable: The 80130 uses the BHE* and A0 signals from the processor to determine
whether to respond with data on the upper or lower data pins, or both. The BHE* signal is
active LOW. BHE* is latched by the 80130 on the trailing edge of ALE. It along with AO
controls the 80130 output data as follows:
BHE* A0

0 0 Word on AD15-ADO

0 1 Upper byte on AD15-AD8

1 0 Lower byte on AD7-ADO

1 1 Upper byte on AD7-ADO

§2*,81*,80*

Status: For the 80130, the status pins are used as inputs only. 80130 encoding is as follows:
S2 S1 S0
0 0 0 INTA

1 IORD

0 IOWR

1 Passive

0 Instruction Fetch

1  MEMRD

X Passive

- - - 0O 00
- 00 - 20

CLK

The system clock provides the basic timing for the processor and bus controller. The 80130
uses the system clock as an input to the SYSTICK and BAUD timers and to synchronize
operation with the host CPU.

INT

INT is HIGH whenever a valid interrupt request is asserted. It is normally used to interrupt the
CPU by connecting it to INTR.

IR7-IR0O

Interrupt Requests: An interrupt request can be generated by raising an IR input (LOW to
HIGH) and holding it until it is acknowledged.

ACK*

Acknowledge: This pin is LOW whenever an 80130 resource is being accessed. It is also LOW
during the first and second INTA cycles if the 80130 is supplying the interrupt vector
information. This signaling can be used as a bus-ready acknowledgement and/or bus
transceiver control.

MEMCS*

Memory Chip Select: This input must be driven LOW when a kernel primitive is being fetched
by the CPU. AD13-ADO are used to select the instruction.

10CS*

Input/Output Chip Select: When this input is LOW, during an IORD or IOWR cycle, the
80130’s kernel primitives are accessing the appropriate peripheral function was specified by
the table on the following page.
BHE* A3* A2* At1* A0
X Passive
Passive
Passive
Interrupt Controller
Interrupt Controller
Systick Timer
Delay Counter
Baud Rate Timer
Timer Control

S 2 4 aaaXXO
- 4 a2 a000X X
- 20000 = XX
-~o-no-°>]<><><
CO0OO0OO0O0O X =

@
EN
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Table 5-1 80130 Pin Descriptions (continued)

Symbol Type Name and Function

LIR* (o} Local Bus Interrupt Request: This signal is LOW when the interrupt request is for a non-slave
input or slave input programmed as being a local slave.

Vee Power: Vcce is the + 5V supply pin.

Vss Ground: Vss is the ground pin.

SYSTICK (o} System Clock Tick: Timer 0 Output. Operating System Clock Reference. SYSTICK is
normally wired to IR2 to implement operating system timing interrupt.

DELAY (o] Delay Timer: Output of timer 1. Reserved by Intel for future use.

BAUD o Baud Rate Generator: 8254 Mode 3-compatible output. Output of 80130 timer 2.

GND Ground: GND is the ground pin.

IOCS/=0. Bit 7 is the specification bit for IR7, bit for
IR6, . . ., and bit O for IRO. If no 8258A slave is con-
nected to an IR, the specification bit is 0. If a slave is
connected, the specification bit is 0. If a slave is con-
nected, the specification bit is 1.

Initialization Command Word 4 (ICW4)

ICW4 is always reguired and selects either the normally
fully nested mode or the special fully nested mode. ICW4
is sent to I/0 address 02H with IOCS/ —0.

Bits 7-5=000: Unused but set to 0

Bit4=0: Normal fully nested mode
=1: Special fully nested mode

Bit3=1: Buffered mode

Bit2=1: Master Interrupt controller

Bit 1=0: Normal end of interrupt (EOI)

Bit0=1: 8086 mode

Initialization Command Word 5 (ICW5)

ICWS is sent only if specified in ICW1 and individually
selects edge or level triggering for each IR input. ICWS is
sent to 1/0 address 02H with IOCS/ = 0. Bit 7 is the speci-
fication bit for IR7, bit 6 for IR6, . . ., and bit O for IRO.
For edge triggering the specification bit is 0 and for level
triggering the specification bit is 1.

Initialization Command Word 6 (ICW6)

ICW6 is sent if specified in ICW1 and selects IR inputs as
being either local of non-local. During an interrupt ac-
knowledge cycle, the LIR/ output is driven to zero in re-
sponse to a local IR input (non-slave input or slave on
local bus) or driven to 1 in response to a non-local IR
input (slave on system bus). The LIR/ outputs can be used
in multimaster systems to control the 8289 Bus Arbiter’s
SYSB/RESW input. ICW6 is sent to I/O address 02H
with IOCS/ =0. Bit 7 is the specification bit for IR7, bit 6

for IR6, bit 5 for IRS, . . ., and bit O for IRO. For
non-local IR input, the specification bit is 0 and for a local
IR input, the specification bit is 1.

Operation Command Word 1 (OCW1)

OCW]1 sets and clears the mask bits in the Interrupt Mask
Register (IMR) and is sent to I/O address 02H with
IOCS/=0. Bit 7 is the specification bit for IR7, bit 6 for
IR6, bit 5 for IRS5, . . ., and bit 0 for IRO. To enable
interrupts on an IR input, the specification bit is 0. To
mask or inhibit interrupts on an IR input, the specification
bit 1. Masking an IR input does not affect the operation of
the other IR inputs.

Operation Command Word 2 (OCW2)

OCW?2 is used to send an end of interrupt (EOI) command
to the PIC which resets an in-service bit in the In-service
Register (ISR). OCW?2 is sent to I/O address OH with
10CS/=0.

Bits 7-5=011: Specific end of interrupt

Bits 4-3 =00: Indicates OCW2

Bits 2-1 =000: End of Interrupt on IR0
=001: End of Interrupt on IR1
=010: End of Interrupt on IR2
=011: End of Interrupt on IR3
=100: End of Interrupt on IR4
=101: End of Interrupt on IRS
=110: End of Interrupt on IR6
=111: End of Interrupt on IR7

Operation Command Word 3 (OCW3)

OCW3 is used to read two of the PIC’s internal registers:
Interrupt Request Register (IRR) and In-service Register
(ISR). IRR is an 8-bit register that indicates which IR in-
puts are waiting to be acknowledged. ISR is an 8-bit
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Table 5-2 OSP Primitives

Primitive

Description

Condition
Codes

ACCEPT$CONTROL

CREATE$JOB

CREATE$MAILBOX

CREATE$SREGION

CREATE$SEGMENT

CREATES$TASK

DELETE$MAILBOX

DELETE$SREGION

DELETE$SEGMENT

DELETE$TASK

DISABLE

DISABLES$DELETION

ENABLE

ENABLE$DELETION

ENTERSINTERRUPT

Requests immediate access to data protected by a
region.

Creates a job containing a single task.

Creates a mailbox.

Creates a region.

Creates a segment.

Creates a task.

Deletes a mailbox.

Deletes a region.

Deletes a segment.

Deletes a task.

Disables an interrupt line.

Makes an object immune to ordinary deletion.
Enables an interrupt line.

Enables the deletion of objects that have deletion

disabled.

Used by interrupt handlers to load a previously
specified segment base address into the register.

E$OK
E$BUSY
ESEXIST
ESTYPE
E$OK
ESEXIST
ESLIMIT
ESMEM
E$PARAM
E$OK
ESLIMIT
E$MEM
E$OK
ESLIMIT
E$SMEM
E$OK
ESLIMIT
ESMEM
E$OK
ESLIMIT
E$MEM
E$PARAM
ESOK
ESEXIST
ESTYPE
E$OK
ESCONTEXT
ESEXIST
E$TYPE
E$OK
ESEXIST
ESTYPE
E$OK
ESCONTEXT
ESEXIST
E$TYPE
E$OK
ESCONTEXT
E$PARAM
E$OK
ESEXIST
ESLIMIT
ESOK
ESCONTEXT
E$PARAM
E$OK
ESCONTEXT
ESEXIST
E$OK
E$CONTEXT
E$PARAM
DS

5-6
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Table 5-2 OSP Primitives (continued)

Lo A Condition
Primitive Description Codes
EXITSINTERRUPT Used by interrupt handlers when they don't invoke E$OK
interrupt tasks. This primitive sends an ESCONTEXT
end-of-interrupt signal to the hardware. E$SPARAM
GETS$SEXCEPTION$SHANDLER | Returns information about the calling task’s E$OK
exception handler.
GETS$LEVEL Returns the number of the highest priority interrupt E$OK
line being serviced.
GET$TASK$TOKENS Returns the token requested by the calling task. E$OK
E$PARAM
GET$TYPE Returns the encoded type of an object. E$OK
ESEXIST
RECEIVE$SCONTROL Allows the calling task to gain access to data E$OK
protected by a region. ESCONTEXT
ESEXIST
ESTYPE
RECEIVE$MESSAGE Queues the calling task at a mailbox, where it can ESOK
wait for an object token to be returned. ESEXIST
ESTIME
ESTYPE
RESETSINTERRUPT Cancels the assignment of an interrupt handler to an E$SOK
interrupt line. E$SCONTEXT
E$PARAM
RESUMESTASK Decreases by one the suspension depth of a task. E$OK
ESCONTEXT
ESEXIST
E$STATE
ESTYPE
SEND$CONTROL Allows a task to surrender access to data protected E$OK
by a region. ESCONTEXT
SEND$MESSAGE Sends an object token to a mailbox. E$OK
ESEXIST
ESMEM
ESTYPE
SET$EXCEPTION$HANDLER | Assigns an exception handler to the calling task. E$OK
E$PARAM
SETS$INTERRUPT Assigns an interrupt handler to an interrupt line and, E$SOK
optionally, makes the calling task the interrupt task ESCONTEXT
for the line. E$SPARAM
SET$OSSEXTENSION Either enters the address of an entry (or function) E$OK
procedure in the Interrupt Vector Table or it deletes ESCONTEXT
such an entry. E$SPARAM
SET$PRIORITY Change the priority of a task. E$OK
ESCONTEXT
ESEXIST
ESLIMIT
ESTYPE
SIGNALSEXCEPTION Invoked by extensions of the OS Processor to signal E$OK

the occurrence of an exceptional condition.

5-7
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Table 5-2 OSP Primitives (continued)

Primitive Description

Condition
Codes

SIGNALSINTERRUPT Used by an interrupt handler to activate an interrupt

task.

SLEEP Puts the calling task to sleep.

SUSPENDS$TASK Increases by one the suspension depth of a task.

WAITSINTERRUPT Used by an interrupt task to signal its readiness to

service an interrupt.

E$OK
E$CONTEXT
ESINTERRUPT;
SATURATION
ESINTERRUPT
OVERFLOW
ESLIMIT
E$PARAM
E$OK
E$PARAM
ESOK
E$CONTEXT
ESEXIST
ESLIMIT
E$TYPE

E$OK
E$CONTEXT
E$PARAM

register that indicates which IR inputs are being serviced.

Upon receiving an EOI command, the specified bit in the
ISR is reset.. OCW3 is sent to I/O address OH (with
IOCS/ =0) and during the subsequent read from I/O ad-
dress OH, the PIC sends the contents of the specified reg-
ister to the CPU. It is not necessary to send an OCW3 for
each read register operation provided that the same regis-
ter is being read as the previous read register operation.
The PIC remembers whether IRR or ISR was previously
selected by OCW3.

Bits 7-5 =xxx: Unused and may be any value
Bits 4-3=01: Indicates OCW3

Bit0 =0: Read Interrupt Request Register
=1: Read In-service Register.
Reading the Interrupt Mask Register (IMR)

The IMR is an 8-bit register that indicates which IR inputs
are masked (interrupts are inhibited). IMR is read by
reading from I/0 address 02H with IOCS/ =0.

Differences between 80130 and 8259A

Bits 2-1 =xx: Unused and may be any value

The 80130 PIC does not provide:
Table 5-3 Data Types

Data Type Definition

BYTE An unsigned, 8-bit, binary number.

WORD An unsigned, two-byte, binary number.

INTEGER A signed, two-byte, binary number that is stored in two’s complement form.

BASE A word whose value represents a 16-byte boundary which defines a 64K-byte segment.

OFFSET A word whose value represents the distance from the base of a segment.

TOKEN A word or selector whose value identifies an object. A token can be declared literally a
WORD or SELECTOR depending upon your needs.

POINTER Two words containing the base of a segment and an offset, in the reverse order.

STRING A sequence of consecutive bytes. The first byte contains the number (not to exceed 12)
of bytes that follow it in the string.

SELECTOR A word that is useful when used as the base portion of a 32-bit address (in the form
base: offset) whose offset is zero.
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Table 5-4 Mnemonic Codes for Exceptions
Mnemonic Codes for Unavoidable Exceptions

E$OK

Exception Code Value = 0
the operation was successful

E$TIME

Exception Code Value = 1
the specified time limit expired before completion of the operations was possible

E$SMEM

Exception Code Value = 2
insufficient nucleus memory is available to satisfy the request

E$BUSY

Exception Code Value = 3
specified region is currently busy

ESLIMIT

Exception Code Value = 4
attempted violation of a job, semaphore, or system limit

E$CONTEXT

Exception Code Value = 5
the primitive was called in an illegal context (e.g., call to enable for an already enabled
interrupt)

ESEXIST

Exception Code Value = 6
atoken argument does not currently refer to any object; note that the object could have
been deleted at any time by its owner

E$STATE

Exception Code Value = 7
attempted illegal state transition by a task

E$NOT$SCONFIGURED

Exception Code Value = 8
the primitive called is not configured in this system

ESINTERRUPT$SATURATION

Exception Code Value = 9

The interrupt task on the requested level has reached its user specified saturation point
for interrupt service requests. No further interrupts will be allowed on the level until the
interrupt task executes a WAITSINTERRUPT. (This error is only returned, in line, to
interrupt handlers.)

ESINTERRUPT$OVERFLOW

Exception Code Value = 10

The interrupt task on the requested level previously reached its saturation point and
caused an ESINTERRUPT$SATURATION condition. It subsequently executed an
ENABLE allowing further interrupts to come in and has received another SIG-
NALSINTERRUPTcall, bringing it over its specified saturation point for interrupt service
requests. (This error is only returned, in line, to interrupt handlers).

Mnemonic Codes for Avoidable Exceptions

E$ZEROS$DIVIDE

Exception Code Value = 8000H
divide by zero interrupt occurred

E$OVERFLOW

Exception Code Value = 8001H
overflow interrupt occurred

ESTYPE

Exception Code Value = 8002H
a token argument referred to an object tha was not of required type

E$BOUNDS

Exception Code Value = 8003H
an offset argument is out of segment bounds

E$PARAM

Exception Code Value = 8004H
a (non-token,non-offset) argument has an illegal value

ESBADSCALL

Exception Code Value = 8005H
an entry code for which there is no corresponding primitive was passed

E$SARRAY$BOUNDS = 8006H

Hardware or Language has detected an array overflow

E$NDPSERROR

Exception Code Value = 8007H
an 8087 (Numeric data Processor) error has been detected; (the 8087 status information
is contained in a parameter to the exception handler)
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Figure 5-3 OSP Typical Configuration With An 8086

® 8080 and 8085 mode of operation;
® Slave mode of operation;

e Automatic EOI,

® Non-specific EOI;

® Rotating or programmed priorities;
® Polling;

® Special mask mode.

The 80130 PIC does provide:

e Individual IR input selection of edge or level trigger-
ing;

e Local or non-local identification for each IR input.

PROGRAMMABLE TIMERS

The 80130 contains three programmable timers, each
with 16-bits of resolution. Each timer has a fixed mode of
operation needed by the iRMX 86 nucleus. Timer O oper-
ates only in the 8284 compatible rate generator mode
(mode 2). Timer 1 operates only in the 8254 compatible
interrupt on terminal count mode (mode 0). Timer 2 oper-
ates only in the 8254 compatible square wave generator

5-10

mode (mode3). Each timer is programmable by sending
the appropriate control word followed by the least signifi-
cant byte of the count value and then the most significant
byte.

The 80130 timers are connected to the lower half of the
data bus and are addressed at even addresses. The timers
are read as two successive bytes, with the least significant
byte always followed by the most significant byte. The
most significant byte is always latched on a read operation
and remains latched until operation is complete. The OSP
uses configuration information to perform all necessary
initialization of the timers.

The Baud Rate generator is compatible with the 8254 Pro-
grammable Interval Timer in squarewave mode 3. Its out-
put, BAUD, is initially high and remains high until the
count register is loaded with a count. The first falling
edge of the clock after the count register is loaded causes
the transfer of the internal counter to the count register.
The output stays high for N/2 (or (N +1)/2 if N is odd)
counts and then goes low for N/2 (or (N—1)/2 if N is
odd) counts. The output returns to the high state when the
falling edge of the input clock is detected during the final
count for the output in low state. At this time, the contents
of the count register are transferred to the internal
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Table 5-5 Baud Rate Counter Values (16X)

8 Mhz 5 Mhz
Baud Rate Count Value Count Value

300 1667 1042
600 833 521
1200 417 260
2400 208 130
4800 104 65
9600 52 33

counter. The whole process is then repeated. Baud rate
count values for 5 and 8 Mhz input are shown in Table
5-5.

The baud rate generator’s count register is at location
OCH (12 decimal), relative to the beginning of the
80130’s I/O (designated OSF in the following example).
The timer control word is located at relative address,
OEH (14 decimal). The 1/O space chip select must be
lower (IOCS =0) in order to access the OSU timers. Tim-
ers 0 and 1 are assigned exclusively to the iOSP processor
and should not be programmed by any direct commands.

Programming is performed automatically during the
80130 Configuration Process.

The baud rate generator can be programmed. The baud
rate generator command byte is OB6H (read/write baud
rate delay value). The following example sets the baud
rate to 9600. Table 5-5 shows that a count value of 52
corresponds to 9600 baud at 8 Mhz. OSF represents the
base address of the 80130 I/O space.

MOV AL,0B6H ;Prepare to write delay to timer 3

OUT OSF +14,AL ;control word

MOV AX, 52

OUT OSF +12,AL ;Least significant byte written
first

XCHG AL,AH

OUT OSF +12,AL ;Most significant byte written af-
ter.

Initializing the Timers

The 80130 timers are initialized by sending initialization
words to the control word register at I/0 address OEH
with IOCS/=0. Due to fixed operation of the counters,
each counter has only one possible initialization word.
This initialization word must be sent prior to sending the
two bytes of the count value. The initialization words and
the meaning of the encoding is as follows:

Timer Initialization Word
0 00110100B
1 01110000B

2 10110110B
Bits 7-6=00:  Select timer 0

=01: Select timer 1

=10: Select timer 2

Bits 5-4=11:  Least significant byte first then most
significant byte
Bits 3-1=000: Mode O (timer 1 only)
=010: Mode 2 (timer O only)

=011: Mode 3 (timer 2 only)
Bit 0= O0: Binary count mode.

After each initialization word is sent, the 16-bit count
value is sent to the appropriate timer port, least significant
bit first and then most significant bit. The timer ports for
timers 0, 1, and 2 are located at I/O addresses 08H, OAH,
and OCH with IOCS/ =0, respectively.

Reading the Count Value

The count value of each counter is read by sending a latch
command to the control word register at I/0O address OEH
(with JOCS/ =0) and then reading the count value bytes
from the appropriate timer port, least significant byte first
and then the most significant byte. The timer ports for
timers 0, 1, and 2 are located at I/O addresses 08H, 0AH,
and OCH with IOCS/ =0, respectively. The latch com-
mand does not stop the timer counting but stores the cur-
rent count value to insure accurate reading of both bytes.

Timer Latch Command
0 00000000B
1 01000000B
2 10000000B

Differences Between 80130 Timers and
8253/8254

The 80130 timers do not provide:

® Programmable modes for each timer;

® Gate inputs;

® Programmable Read/Write modes;

¢ BCD count mode;

e Read-Back command (8254 only)

The 80130 timers do provide:
® 8 MHz operation;

* TO output internally connected to T1 clock input.

5.6 OSP MEMORY USAGE
The following lists the amount of memory the OSP re-
quires for object creation and memory borrowing. The

OSP obtains this memory from the calling task’s job
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memory pool when creating the specified object. The
OSP uses the following amounts of memory when it cre-
ates objects:

Object Number or 16-Byte Paragraphs
Required by the OSP
job 3 + object directory
+ 1 per entry in the object directory
task 5

+ 6 (if the task uses the 8087 NPX)
+stacksize/16 (if the OSP allocates the
stack)

mailbox 2
+ ((size of high-performance queue)/4) —1

region 2
segment 1
+ segmentsize/16

When a job borrows memory from its parent, the OSP
uses three 16-byte paragraphs in addition to the amount it
uses for object creation. The OSP obtains this memory
from the parent job.

The OSP needs:

760H bytes + (10H * the number of Root Object Di-
rectory (ROD) entries)

for operating system free space. The OSP uses different
amounts of memory, depending upon whether you include
parameter validation or not.

® With parameter validation — 6.8k.
® Without parameter vaildation — 5.5k.

5.7 INTERRUPT CONTROLLER

The 80130 Programmable Interrupt Controller, or PIC, is
another integral unit of the 80130 component. The OSP
initializes the PIC according to user-supplied configura-
tion information.

The PIC logic portion of the 80130 component provides
eight input pins for eight separately-vectored priority in-
terrupts. However, one of these pins is reserved for the
system timing function. Up to seven external 8259A slave
interrupt controllers can be used to expand the total num-
ber of OSP external interrupts to as many as 56. The de-
fault OSP configuration expects INT2 to be connected to
the SYSTICK output.

The 80130 component provides two ways of sensing an
active interrupt request:

1) alevel-sensitive input

2) an edge-sensitive input

The OSP initializes each interrupt pin to be either edge-or
level-sensitive based on user-supplied configuration in-
formation.

5.7.1 Level-Triggered Mode

‘When an IR input pin (IR0 through IR7) of the 80130 PIC
is in the level-triggered mode, the 80130 PIC recognizes
any active (high) level as an interrupt request. If the IR
input remains active after the EXITSINTERRUPT primi-
tive has been executed, another interrupt request is gener-
ated. This will be recognized only if the processor INT
pin is enabled. Unless repetitious interrupt generation is
desired, the IR input must be brought to an inactive state
before the EXITSINTERRUPT primitive has been exe-
cuted. However, it must not go-inactive so soon that it
violates necessary timing requirements. The request on
the IR input must remain until after the falling edge of the
first INTA pulse. If the request on any IR input becomes
inactive before the first INTA pulse, the 80130 PIC re-
sponds as if IR7 was active. If this is a possibility in the
design, the IR7 default feature can be used as a safeguard.
The IR7 routine is used as a “clean-up routine”, which
rechecks the status of the PIC or merely returns program
execution to its pre-interrupt location.

Depending upon the particular design and application, the
level-triggered mode has the following advantages.

1) It allows repetitious interrupt generation. This is
useful in cases when service routine needs to be
executed continually until the IR input goes inac-
tive.

2) It allows a number of interrupting devices to use
the same IR input pin. This cannot be done in the
edge-triggered mode. Note that when multiple de-
vices use the same IR input pin, the actual request-
ing device has to be ascertained by the interrupt
handler.

5.7.2 Edge-Triggered Mode

When an IR input pin (IR0 through IR7) of the 80130 PIC
is in the edge-triggered mode, it only recognizes
interrupts that are generated by an inactive (low) to active
(high) transition. The edge-triggered mode incorporates
an edge-lockout method of operation. This means that,
after acknowledgement of a request, the high level of the
IR input will not generate further interrupts until another
low-to-high transition occurs. Thus, after acknowledge-
ment, the request does not have to be removed quickly, as
might be the case in the level-triggered mode. Before an-
other interrupt can be generated, the IR input must be
returned to the inactive state.
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The edge-triggered mode, the request on the IR input
must remain active until after the falling edge of the first
INTA pulse for that particular interrupt. Because of the
way the edge-triggered mode functions, it is more con-
venient to use a positive level with a negative pulse to
trigger the IR requests. With this type of input, the trail-
ing edge of the pulse causes the interrupt, the maintained
positive level meets the necessary timing requirements
(by remaining high until after the interrupt is acknowl-
edged.) Note that the IR7 default feature mentioned in the
level-triggered mode section also works for the
edge-triggered mode.

Depending upon the particular design and application, the
edge-triggered mode has the following advantages:

1) Because of its edge-triggered operation, it is best
used in those applications where repetitious inter-
rupt generation isn’t desired.

2) It is very useful in systems where the interrupt re-
quest is a pulse (which should be in the form of a
negative pulse to the on-chip PIC).

3) It simplifies your design considerations, because
the duration of the interrupt request at a positive
level is usually not a factor.

5.7.3 Local Interrupt Requests

In addition to standard PIC functions, the 80130 PIC unit
provides an output signal (LIR/) for local bus interrupt
requests. During an interrupt acknowledge cycle, this sig-
nal indicates whether the interrupt request is from a
non-slave input or a slave on the local bus (LIR/ =0), or
from a slave on the system bus (LIR/ = 1).

The OSP programs each IR input pin (IR0 through IR7) to
produce LIR/=0 or LIR/ =1 according to user-supplied
configuration information. This signal can be used in
multimaster systems to control the 8289 Bus Arbiter’s
SYSB/RESB input and minimizes the number of system
bus accesses.

5.7.4 Interrupt Sequence

The OSP interrupt sequence is as follows:

1. One or more of the interrupts is set by a low-to-high
transition on edge-sensitive IR inputs or by a high in-
put on level-sensitive IR inputs.

2. The 80130 component evaluates these requests, and
sends an INT to the CPU, if appropriate.

3. The CPU acknowledges the INT by responding with
an interrupt acknowledge cycle that is encoded in
S2/-S0/.

4. Upon receiving the first interrupt acknowledge from
the CPU, the 80130 component sets the highest prior-
ity interrupt and resets the corresponding edge-detect

latch. The 80130 does not drive the address/data bus
during this bus cycle but does acknowledge the cycle
by setting ACK/ to 0 and LIR/ to the level of the IR
input being acknowledged.

5. The CPU then initiates a second interrupt acknowl-
edge cycle. During T1, the 80130 component either
supplies the cascade address of the interrupting
8259A slave on ADI10-AD8 or releases an 8-bit
pointer onto the local bus to be read by the CPU. If the
80130 does supply the pointer, the ACK/ will be low
for the cycle. This cycle also has the value LIR/ for
the IR input being acknowledged.

6. The in-service register (ISR) bit in the on-chip PIC
remains set until either the EXIT INTERRUPT or the
SIGNAL INTERRUPT primitive is called by the IN-
terrupt Handler to complete interrupt processing.

5.8 TIMING

System timing analysis typically presents the most diffi-
cult part of digital hardware design, although timing for
the 80130 is fairly simple. By design the 80130 is compat-
ible with the timing of the host processor. Since the 80130
interfaces directly with the CPU pins, traditional setup,
hold, and access times no longer matter.

Two areas of concern must be taken into consideration
when analyzing the timing for most OSP systems. Both of
these areas relate to the user generated chip-select signals.
Figure 5-4 illustrates the relevant timing signals of a
standard 8086 four-state Read cycle (memory or I/O),
along with the timing responses of the 80130. I/O Write
cycle timing is the same. (Full timing diagrams may be
found in the respective data sheets.)

The first area of concern is that MEMCS* and IOCS*
must be active early in a memory or I/O cycle if the 80130
is to respond during T;. In each case, the chip-select sig-
nals must be active Ty before the end of state T,. As-
suming wait states are not desired, addresses generated by
the CPU must propagate through the address latches and
be decoded during T, or T,.

By convention, T,y is the delay from the start of of T,
until address information is valid on the CPU pins; Ty
is the propagation delay through an 8282 latch; and T¢gep
is the 80130 chip-select logic propagation delay, after the
latch outputs are stable. The sum of these four delays
must be less than two system clock cycles, reduced by the
clock transition time.

Terav + Tvov + Toves + Tese = Terer + Tewel
Toves=Terer + Terer — Terav — Tvov — Tesew

=125+ 125-60—30—20 (nsec.)
<140 nsec.
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Figure 5-4 80130 OSP Timing Diagram

The propagation delay numbers used in the preceding
equation are worst-case values from the appropriate data
sheets. The CPU is an 8086-2 operating at 8 MHz. This
means the address decode logic must produce stable CS
outputs within 140 nanoseconds. Using standard, low
power Schottky TTL, it will typically not take longer than
140 nsec. to decode 6 program or 12 I/O address bits.
Even if these timing specifications are not met the 80130
will work fine, although performance would be degraded
some because wait states would be needed until the
chip-select signal became active.

The second point of concern relates to ready signal tim-
ing. The 80130’s acknowledge output signal, ACK*, can
be used to control the CPU’s ready signal. For this case,
the chip-select signal must be active early in a memory or
I/0 cycle to allow activation of ACK* early enough to
prevent wait states. There are two schemes for implement-
ing ready signals; ‘“normally ready” and ‘“‘normally not
ready”. (For more details, refer to AP-67, 8086 System
Design.”) Chip-select timing is more critical in some
“normally not ready” systems.

In a “normally not ready” design, acknowledge signals
are generated when each resource is accessed. The indi-
vidual acknowledgements are combined to form a
system-wide ready signal which is synchronized by the
8284A clock generator via the RDY and AEN inputs. The
8284A can be strapped to accept asynchronous ready sig-
nals (asynchronous operation) or to accept synchronous
ready signals (synchronous operation). Synchronous
8284A operation provides more time for address latch
propagation and chip-select decoding. In addition, invert-
ing ACK off chip produces an active-high ready signal
compatible with the 8284A RDY inputs, which have
shorter set-up requirements than AEN inputs. (Also, a
NAND gate used like this can combine ACK with the
active-low acknowledge signals from other parts of the
system.) Based on these assumptions, the time available
for address latch propagation and chip-select decoding at
8 MHz is:

Terav + Toves + Tesak + Rriver = Terer + Terer

Toves =2 Terer — Terav — Tesak — Triver
=250—-60-110-35
=45 nsec.
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Figure 5-5 High-Speed Address Decoding Circuit

A typical circuit (see Figure 5-5) which uses Schottky
TTL components leaves approximately 15 nanoseconds to
produce MEMCS* from the high order address bits, more
than enough for the 745138 one-of-eight decoders. This
type of circuit allows a minimum of time to fully decode
the I/0 bits. Also, a 12-input NAND gate on AD15-AD4
could be used. This introduces only a single propagation
delay, but forces the 1/0 register to start at OFFFOH. In-
complete decoding is also allowable; it is safe to drive
IOCS* with the (latched) AD1S5 signal directly, provided
all other ports in the system are disabled when this bit is
low. In this case, the effective address of the I/O block
(which must be specified during the system configuration
step) could be 0000H, or any other multiple of 16 be-
tween 0000H and 7FFOH.

5-15

The OSP will still operate even if the memory or I/O de-
coding is slow. The acknowledge signal returned to the
host CPU would just be delayed accordingly, so unneces-
sary wait states would be inserted in the access cycle, but
the 80130 would not malfunction. The OSP seldom ac-
cesses resources in its own I/0 space. Even if slow decode
logic were to insert several wait states into every 1/O cy-
cle, the overall effect on system performance would be
insignificant.

The designer must exercise caution, though, if the 8284A
is strapped for synchronous operation. In this case, exter-
nal circuits must guarantee that ready-input transitions do
not violate the latch set-up requirements. Also, the
chip-select signal must not remain low so long after the
address changes that the 80130 could respond to a
non-80130 access cycle.
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0Odd Address, 1-70
Bounds
Lower, 2-6
Upper, 2-6
Buffered Data Bus, 1-93
Buffered Devices, 2-30
Buffered Mode, 1-142
Buffering Devices with OE*/RD*, 1-97
Buffering Devices Without OE*/RD* And, 1-97, 1-98
Buffering the 8284 CLK Output, 1-129
Bus Access Control, 1-64
Bus Access Request, 2-1
BUS ACTIVITY DURING a HARDWARE
INTERRUPT, 1-124
BUS ARBITRATION, 3-16, 4-37
BUS ARBITRATION FOR IOP CONFIGURATIONS,
4-39
Bus Arbitration Requirements and Options, 4-39
Bus Contention, 1-96, 2-26
Bus Control and Command Outputs, 1-60
BUS CONTROL SIGNALS, 2-25, 3-16
Bus Cycle Decoding, 4-37
Bus Cycle Definition, 1-65
Bus Cycle, 2-36
Asynchronous Event, 1-65
Minimum, 1-65
Bus Cycle T2, 2-23
BUS DRIVE, 2-30
BUS EXCHANGE MECHANISMS, 1-110, 2-54, 3-16,
4-36
BUS INTERFACE UNIT, 1-3, 1-108, 1-110, 2-5
Bus Interface Unit (BIU), 2-1, 4-2
Bus Interface
16-bit, 2-1, 2-5
Bus Load Limit, 4-39
Bus Lock, 4-39
Bus Master Peripheral Devices, 2-25
Bus Master Type Controllers, 1-60
Bus Masters, 1-110
Bus Mastership, 2-25
BUS OPERATION, 1-64, 2-24, 3-15, 4-34
Bus Parity Detection Logic, 1-120
Bus Request Line (BREQ*), 1-135
Bus Time Percentage, 2-24
Bus Transceiver Control, 1-95
Bus Usage Amount, 2-24
Bus
Address, 1-65
Command, 1-65
Data, 1-65
Status, 1-65
Time-multiplexed, 1-64
Twenty-bit Time Multiplexed, 1-65
Business Data Processing, 3-1
BUSY Signal, 3-8
Byte Data, 2-7
Byte Units, 2-3
C
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Carry Flag (CF), 1-6, 1-14
Cascade and Special Fully Nested Mode Interface, 2-69
Cascade Input Mode, 2-69
Cascade Mode, 1-141, 1-144
Cascade-Buffered Mode Example, 1-143
Cascaded 8237As, 1-145
Cascaded 8259A’s 22 Interrupt Levels, 1-141
CE to WR* Setup and Hole, 1-94
Channel Attention Decoding Circuit, 4-28
Channel Command Word Encoding, 4-28
Channel Commands, 4-27, 4-29
Channel Transfer Delay Timing, 1-117
Channel Register Set, 4-3
Channel Register Summary, 4-2
Channel State Save Area, 4-30
CHANNELS, 4-3
Chip Enable/select, 1-68
Chip Enable/select Encoding, 1-68
CHIP SELECT AND READY GENERATION UNIT,
2-1
Chip Select Decoding, 1-64
Chip Select Generation For Devices Without Output ,
1-83
Chip Select, 1-97
Active, 1-64
High Active, 1-64
Low Active, 1-64
Signals, 2-30, 2-31
Chip Select/Ready Logic and Reset, 2-81
Chip Select/Wait State Generation Unit, 2-74
Chip Selection For Devices With Output Enables, 1-84
Circuit Holding LOCK* Active Until, 2-33
Circuit to Translate HOLD Into AEN Disable, 1-118
Classes of Interrupts, 1-120
Clear First/Last Flip/Flop, 1-148
CLOCK GENERATION, 1-125
CLOCK GENERATOR, 2-3
Clock Generator/Reset/Ready, 2-79
Clock High Phase, 2-24
Clock In/Clock Out Timing, 2-79
Code For Block Transfers, 1-63
Column Address Strobe (CAS*) Pair, 2-49
Coming Out of Reset, 2-81
Command Activation, 1-65
Command Communication Blocks, 4-24
Command Inputs, 1-64
Command Lines
1/0, 1-65
Memory, 1-65
Command Signals
Ready, 2-31
Write, 2-31
Command Register, 1-146, 1-147
Commands
Interrupt Acknowledge, 1-65
Read, 1-64, 1-65
Write, 1-64, 1-65
COMMON CONTROL UNIT (CCU), 4-1
Common IAPX186 System Components, 2-4
Common Word Address, 2-33
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Communication Chips, 1-2
COMPATIBILITY WITH FRSTOR, 3-19
COMPATIBILITY WITH FSAVE/FNSAVE, 3-19
Compatible Peripherals For a S MHz 8086/88, 1-90
COMPONENT OVERVIEW, 1-1, 2-1, 3-3, 4-1
Concurrent Execution of Host and Coprocessor, 3-13
Condition of 8086/88 Bus and Output Signal, 1-119
Conditional Jumps SHORT, 2-10
Conditional Transfers, 1-16, 2-10
Constant Current Power Up Reset Circuit, 1-130
CONTROL REGISTERS, 2-67, 2-68
CONTROL SIGNALS, 2-29
ALE¥*, 2-32
DEN, 2-33
DT/R¥*, 2-33
LOCK*, 2-33
RD¥*, 2-29, 2-32
TEST*, 2-33
WR*, 2-29, 2-32
CONTROL UNIT, 3-3
Controlling System Transceivers with DEN and DT/R*,
1-97
Count Register (CX), 1-14
COPROCESSOR CONTROL, 3-13
COPROCESSOR INTERFACE TO MEMORY, 3-12
Count Operand Value, 2-8
CPU Bus Bandwidth, 1-106
CPU Clock, 1-98, 2-3
50% Duty Cycle, 2-24
Duty Cycle, 2-3
Speed, 2-3
CPU DUTY CYCLE AND CLOCK GENERATOR,
2-24
CPU ENHANCEMENTS, 24
CPU Execution Speed, 2-4
CPU Local Bus, 1-88, 1-131
CPU Not Ready, 1-66
CPU Processing Sections, 2-1
CPU WAIT Instruction, 3-7
CPU/IOP Communications, 4-22
Crystal Choice Recomendations, 2-80
CRYSTAL CLOCK REFERENCE, 1-126, 2-79
Crystal Oscillator, 2-25
CS Register, 1-123, 1-124
CS*/Bus Driving Device Timing, 1-95
CSYNC Setup and Hold to EFI, 1-116
Current Address Register, 1-145
Current Code Segment, 1-5
Current Extra Segment, 1-5
Current Word Register, 1-145
Currently Addressable Segments, 1-8, 1-9
CX Register, 2-10
Cycle Dependent Write Parameters For RAM Memories,
1-84
D
D-type Latches, 1-94
D.C. Characteristics, 1-66, 2-23
Data Access Period, 2-39
Data Acquistion, 3-2
Data Buffers, 2-29
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Data Bus Interface, 8-bit, 2-1, 2-4
Data Bus Usage, 4-37
Data Bus
16-bit, 1-66, 1-67, 1-85, 1-86, 1-123, 2-1, 2-34
8-bit, 2-1
Arithmetic Logic Unit (ALU), 1-3, 2-1
DO0-D7, 2-34
D8-D16, 2-34
Lower 8 Bits, 2-34
Lower Half, 1-86
Lower Half (D7-0), 1-67
Multiplexed Address/data, 2-34
Upper 8 Bits, 2-34
Upper Half, 1-86
Upper Half (D15-8), 1-67
Data Byte, 1-13
Data Element
16-bit, 1-67
Eight Bit, 1-67
Data Hold Time, 1-106
Data Operands, 1-76
Data Path, 16-bit, 1-46
Data Paths
16-bit External, 1-65
16-bit Internal, 1-65
Data Propagation Direction, 2-29
Data Registers
16-bit, 1-4
Lower Half, 1-4
Two 8-bit, 1-4
Upper (high) Half, 1-4
Data Strobe, 1-66
Data Throughput, 1-142
Data Tranceivers, 1-117
Data Transfer, 2-34
Data Transfer Instructions, 1-13, 1-14, 4-4
Address Object, 1-13, 2-7
Flag Transfer, 1-13, 2-7
General Purpose, 1-13, 2-7
Input/output, 1-13, 2-7
Data Transfers
16-bit, 1-86
8-bit, 1-86
Data Transmit/Receive (DT/R*), 1-93
Data Word, 1-12
Data Types, 5-8
Decimal Operands, 3-1
Decoding Escape Instructions, 3-12
Delay Effects of the 8087, 3-17
Delay of Valid Address, 1-99

De-multiplexing Address and Data From the Processor

Bus, 1-96
Demultiplexing the 80186 Address Bus, 2-44
DEN¥*, 3-16

Decoding Memory and I/O RD* and WR* Commands,

1-79
Definition of Register Codes, 1-147
Demand Transfer Mode, 1-144
Demultiplexed Address Bus, 1-96, 1-99
Demultiplexed Buffered System Bus, 1-105
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Destination Index, 1-15

Destination Synchronized DMA Transfers, 2-56

Destination Synchronized Transfer Cycle, 4-32

Device Architecture, 80186/188, 2-1

Device Assignment, 1-91

Device Output Drivers, 1-92

DEVICE PIN ASSIGNMENTS, 3-8, 4-20, 5-1

DEVICE PIN DEFINITIONS, 1-42, 2-12

Device Pin Signal, 1-43, 2-12

Device Reliability, 1-43, 2-12

Device Specifications, 1-43, 2-12

Devices, 8MHz, 2-1

Devices With Output Enable On the Multiplexed Bus,
1-93

Devices With Output Enable On the System Bus, 1-95

Devices Without Output Enable On the Multiplexed B,
1-94

Differences Between 80130 and 8259A, 5-8

Differences Between 80130 Timers and 8253/8254, 5-11

Differences, 80186 and 80188, 2-1
Direct Addressing, 1-18, 1-19
Direct Input Mode, 2-68
Direct Memory Access (DMA) Unit, 2-51
Direct Memory Access Transfers, 4-30
Direction Controls, 1-99
Direction Flag (DF), 1-7, 1-15
Discrete Data Buffer, 2-36
Displacement Summing, 1-18
Displacement Value Sum, 1-18
Divide Error -Type 0, 1-121
Divide Error Interrupt Service Routine, 1-121
DMA ACKNOWLEDGE, 2-54
DMA Acknowledge Synthesis, 2-55
DMA Assembly Register Operation, 4-31
DMA Channels and Reset, 2-82
DMA Control Register, 2-51
DMA Cycle, 2-3, 2-4
DMA Latency Time, 2-24
DMA OPERATION, 1-142
DMA REGISTERS, 1-145
DMA Request Inactive Timing, 2-57
DMA Request Logic, 2-55
DMA Request Timing, 2-55
DMA REQUEST TIMING AND LATENCY, 2-54
DMA Requests, 2-4, 2-53
DMA Termination, 4-32
DMA Transfer, 2-24
DMA TRANSFERS, 2-52
DMA Transfer Cycles, 4-32
DMA Unit, 2-24
DMA Using the 8237-2, 1-114
DRAM Controller

8203, 2-31

8207, 2-31
DS Register, 1-18
DT/R¥*, 3-16
Dynamic Code Relocation, 1-11
Dynamic RAM, 1-81
Dynamic RAM Controllers

8202, 1-81
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8203, 1-81

8207, 1-81

8208, 1-81
Dynamic Reconfiguration, 1-142
DYNAMICALLY RELOCATABLE CODE, 1-10
Dynamically Relocatable Program, 1-10
E

Edge Sensitive Input, 1-140
Edge Triggered Mode, 1-140, 5-12
Effective Address Calculation Time, 1-24
EFI From 8284 A Oscillator, 1-129
Eight Bit Data Element, 1-67
Eight Levels of Interrupts, 1-134
Eight-Bit I/0, 1-86
Electrical Description of Pins, 1-43, 2-12
Element
Byte, 2-9
Word, 2-9
Elementary Maximum Mode System, 1-76
End of HOLD Timing, 2-48
End of HOLD Timing Diagram, 2-49
End of Interrupt (EOI), 1-139
End-OF-Interrupt Formats, 1-139
EOI Formats, 1-139
ENTER and LEAVE Instructions, 2-6
ENTER Instruction Algorithm, 2-6
ENTER Instruction Stack Frame, 2-7
EPROM/ROM Bus Interface, 1-83
EPROM/ROM Parameters, 1-82
ES Register, 1-18
ESCAPE Instruction, 3-7, 3-8
ESCAPE INSTRUCTION FORMAT, 3-7
ESCAPE Instructions Not Used By the 8087 NPX, 3-8
Escape Opcode, 2-6
EU, 2-1
EU Bus Request, 1-4
Even Word Boundaries, 1-109
Event Counter, 2-59
Example 2186/80186 Interface, 2-37
Example 2764/80186 Interface, 2-35
Example 80186 Buffered/Unbuffered Data Bus, 2-30
Example 80186 Bus Cycle, 2-43
Example 8203/DRAM/80186 Interface, 2-38
Example DMA Transfer Cycle, 2-53
Example Interrupt Controller Interface Code, 2-71
Example Timer Interface Code (Sheet 1 of 4), 2-60
Execution Speed Improvements, 2-4
EXECUTION UNIT, 1-3, 2-23
EXECUTION UNIT AND BUS INTERFACE UNIT, 2-1
External Bus
16-bit 80186, 2-1
8-bit 80188, 2-1
External Clock Generator, 2-24
External DMA Controller, 2-35
EXTERNAL FREQUENCY CLOCK
REFERENCE, 1-126, 2-80
External Frequency For Multiple 8284’s, 1-128
External Frequency Source, 1-125
EXTERNAL INTERFACE, 2-68
External Interrupt Controller, 2-19
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External Interrupt Sources, 2-66
External Oscillator, 2-3
External Ready Signals, 2-3
External Refresh Requests After RESET, 2-41
External Synchronization Instructions, 2-11
External Vectoring, 2-74
EXTERNALLY SYNCHRONIZED DMA
TRANSFERS, 2-54
Extra Segment, 1-8
F
F/C* Strapping Option, 1-128
Faster Effective Address Calculation, 2-4
FDILV, 3-14
Field
D, 1-41
Immediate, 1-41
MOD (mode), 141
Optional, 1-41
R/M (register/memory), 1-41
REG, 1-41
REG (register), 1-41
S, 1-41
Single-bit, 1-41
V, 141
W, 1-41
Z, 1-41
Financial Calculations, 3-1
Flag Operations, 2-11
Flag Store Formats, 2-8
Flag Storage Formats, 1-13
FLAGS, 1-5
Flags Register, 1-123, 1-124
Flags
Control, 1-3
Status, 1-3
Updates, 1-17
FMUL, 3-14
FSQRT, 3-14
Full Machine Cycle Execution, 1-144
Fully Buffered System, 1-96
Fully Nested Mode, 1-136
Functional Description of All Signals, 1-43, 2-12
FWAIT, 3-14
G
General Design Considerations, 1-64
GENERAL INFORMATION, 5-1
GENERAL REGISTERS, 1-7
Generating I/0 and Memory Read Signals, 2-30
Generating Queue Status Information, 2-28
Graphics Terminals, 3-2
H
HALT, 2-24
HALT Bus Cycle, 2-23
Hardware Chip Select Signals, 2-34
Hardware-initiated Interrupts, 2-11
HARDWARE LOCK, 1-52
Hardware-initiated Interrupts, 1-17
Hardware Trigonometric Support, 3-2
High-Level Instructions, 2-11
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High-level Languages, 2-11
High-Speed Address Decoding Circuit, 5-15
High Address, 1-7
Higher Priority Arbiter Obtaining the Bus, 1-135
HOLD Response, 2-47
HOLD/HLDA, 3-11
HOLD/HLDA INTERFACE TO MAXIMUM MODE
SYSTEMS, 1-115
HOLD/HLDA Sequence Timing Diagram, 1-112
HOLD/HLDA Timing, 1-98, 2-48
HOLD/HLDA Timing and Bus Latency, 2-47
HOLD/HLDA-to/from-RQ*/GT* Conversion Circuit,
1-116
HOLD/HLDA-to/from-RQ*/GT* Conversion Timing,
1-116
HOLD/HLDA VERSUS RQ*/GT*, 2-26
HOST ESCAPE INSTRUCTION PROCESSING, 3-12
Host TEST Pin, 3-8
Hosts Interrupt Vector Table, 3-2
I
I/O Address Space, 1-64
I/0 BUS MODE, 1-133
1/0 Control, 4-3
1/0 Device Chip Select Techniques, 1-88
1/0 DEVICE COMPATIBILITY, 1-88
1/O Devices
16-bit, 1-88
8-bit, 1-86
I/0 Input Request Code Example, 1-92
1/O Interfacing, 1-69
1/0 Modules, 1-64
/0 Peripheral Address, 1-64
1/0 PERIPHERAL INTERFACE, 1-85
I/O Port Addressing, 1-20, 1-21
1/0 Port
Access, 1-21
Memory Mapped, 1-20
I/O Read, 14
1/0 Space, 2-3, 2-4
64K-byte, 1-46
1/O Write, 1-4
I/O-intensive Data Processing Systems, 1-1
1/0-to-memory DMA Transfers, 1-143
IAPX 186/10 Microprocessors, 3-1
IAPX 188/10 Microprocessors, 3-1
IAPX186 Integrated Devices, 3-1
IAPX 86, 88, 186, 188 Base, 3-1
IAPX 86/10 Microprocessors, 3-1
IAPX 86/11, 88/11 Configuration with 8089 In Local ,
4-25
IAPX 86/20, 88/20 SYSTEM CONFIGURATION, 3-17
IAPX 86/21, 88/21 SYSTEM CONFIGURATION, 3-17
IAPX 86/22 System, 3-20
IAPX 86/22, 88/22 SYSTEM CONFIGURATION, 3-17
IAPX 88/10 Microprocessors, 3-1
IAPX 88/21 System Configuration, 3-18
IAPX186/20 Bus Operation, 3-15
IAPX186/20 System, 3-11
IAPX86/20 Bus Operation, 3-15
Idle Cycle, 1-142
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Idle Cycles (T1), 1-66

Idle Status, 1-115

Idle T States (Ti), 2-19

IF Flag, 1-122

Immediate Operand, 8-bit Port Number, 1-21
Immediate Operands, Limitations, 1-18
Implicit Use of General Registers, 1-7
IMUL, 2-5

In-Service Register (ISR), 1-137

Index Register, Content, 1-18

Inertial Guidance Systems, 3-2

Indexed Addressing, 1-19, 1-20
Inhibit/Enable 8087 Interrupts, 3-23
Initialization Command Word 1 ICW1), 5-2
Initialization Command Word 2 (ICW2), 5-3
Initialization Command Word 3 (ICW3, 5-3
Initialization Command Word 4 (ICW4), 5-5
Initialization Command Word 5 (ICW5), 5-5
Initialization Command Word 6 (ICW6), 5-5
Initial Program Loading Routine, 1-76
Initializing the Timers, 5-11

Initialization and Processor Reset, 2-81
Input/output Memory Devices, 2-1

INPUT/OUTPUT PERIPHERAL CHIP SELECTS, 2-78

Input/output Peripheral Devices, 2-1
Input Request, 1-92
Instruction Execution, 2-23

Immediate-to-memory, 1-21

Register-to-register, 1-21
Instruction Execution Times, 2-4
Instruction Fetch Bus Cycle, 1-2, 2-3
Instruction Fetch Overlap, 1-2
Instruction Fetch Timings (Clock Periods), 4-15
INSTRUCTION FETCH UNIT, 4-2
Instruction Loop Sequence, 1-111
Instruction Object Code Byte, 2-1
INSTRUCTION POINTER, 1-5, 2-1, 2-9
Instruction Queue

4-byte, 1-2

6-byte, 1-2
Instruction Set Extension, 1-98
Instruction Set Reference Data, 1-21, 1-24, 4-6
Instruction Set Summary, 1-13, 1-21, 2-12, 2-13, 4-3
Instruction Set

80186/88, 2-1

Assembly Level, 1-13

Machine Level, 1-13

Two Levels, 1-13, 2-7
Instruction Synchronization, 3-13
Instruction/function Format, 1-1
Instructions

80186, 2-23

Actual Execution Time, 1-23

ADD Immediate, 1-109

ADD Memory Indirect to AX, 1-109

Address Object, 2-7

Arithmetic, 2-7, 2-8

ASM-86, 1-42

Assembly-level, 2-7

Auto-decrement, 1-7
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Bit Manipulation, 2-7, 2-8
BOUND, 2-6

CALL, 1-18

Clock Cycles, 2-12

CLI, 1-122

Conditional, 1-16
Conditional Repeat, 1-41
Conditional Transfer, 1-16, 2-10
Control Transfer, 1-23, 2-7
Data, 1-64

Data Move, 2-23

Data Transfer, 2-7
Displacement, 1-18
Divide, 2-4

ENTER, 2-6

ENTER, 2-6

ESCAPE, 1-52

Fetch, 1-65

FWAIT, 2-33

HALT, 1-64, 1-107

High Level, 2-7

HLT, 2-23
Immediate-to-memory, 1-41
IMUL, 2-5

INGC, 1-13

INS, 2-5

INT Nn, 1-122

Interrupt, 1-17, 2-11
Interrupt On Overflow, 1-6
Interrupt-related, 1-16
INTO, 1-121

IRET, 1-122

Iteration Control, 1-17, 2-10
IC, 1-15, 29

JMP, 1-18

JMP, 1-109, 1-118

INC, 1-15,2-9

LAHE, 2-7

LDS, 1-15

LEA, 1-15

LEAVE, 2-6

LES, 1-15

LOCK* Prefix, 1-52
LOCKED, 2-33

Locked, 1-64

Locked Exchange, 1-64
Logical, 1-14, 2-8

Long, 2-23

Machine Level, 1-13, 2-7
Master Clear, 1-146 .
MOV, 1-13, 1-41, 1-109, 1-122
MOV Immediate, 1-109, 2-9
MOVS, 1-122

Multibyte, 1-41
Multiple-bit Shift, 2-4
Multiply, 2-4
Non-immediate 16-bit Read/write, 2-1
OUTS, 2-5

POP, 1-122

POPA, 2-5

Prefetched, 1-3, 1-23, 2-1, 2-23

Process Control, 1-17

Processor Control, 2-7, 2-11

Program Transfer, 2-9

PUSH AX, 1-109

PUSHA, 2-7

PUSHI, 2-7

Queue, 1-24

Reset, 1-146

RET, 2-6

Rotate, 1-14, 2-4, 2-9

Shift, 2-9

Shift/rotate, 2-5

Short, 2-23

String, 1-15, 2-9

String Manipulation, 2-7

String Move, 2-4, 2-5

Target, 1-23

TEST, 1-14, 2-8

Timing Cycles, 1-12, 2-12

Unconditional, 1-16

Unconditional Transfer, 1-16, 2-10

WAIT, 1-64, 1-105, 1-122, 2-33
INTO/INT1 Control Register Formats, 2-66
INT2/INT3 Control Register Format, 2-67
Integer Immediate Multiply (IMUL), 2-5
Integrated Circuits, 80186/188, 2-3
Integrated DMA Unit, 2-3, 2-26
Integrated Wait State Generator, 2-4
Intel Hardware Products, 1-11
Intel Software Products, 1-11 .
Intellec Microcomputer Development System, 1-2
Interfacing the 8089 to the 8086 and 80186, 4-24
INTERFACING WITH THE 8086/88, 5-1
Internal 256-byte Control Block, 2-4
Internal Architecture, 16-bit, 2-1, 2-4
Internal CPU Registers, 1-118
Internal Data Path, 1-65
Internal Interrupt Sources, 2-65
INTERNAL PERIPHERAL INTERFACE, 2-4
Internal Pre-fetch Queue, 2-12
Internal Source Priority Level, 2-65
Internal Vectoring

IRMX 86 Mode, 2-73

Master Mode, 2-73
Interpolation, 3-2
Interpretation of Conditional Transfers, 1-17, 2-11
Interpreting the 80186/80188 Bus Timing Diagrams,

2-41
Interpreting the 8086/8088 Bus Timing Diagrams, 1-98
Interrupt Acknowledge, 1-104, 1-123

Bus Cycle, 1-17, 2-11

Cycle, 1-118

Sequence, 1-112, 1-122, 1-123

Timing, 1-123

Timing Cycles, 1-104
INTERRUPT CASCADING, 1-140
Interrupt Classes, 1-120
Interrupt Controller, 2-59, 5-10
Interrupt Controller and Reset, 2-82
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Interrupt Controller Block Diagram, 2-65
Interrupt Controller Control Register, 2-68
Interrupt Controller Operating Modes, 2-19
Interrupt Controller Pins, 2-19
Interrupt Controller Registers, 2-3
Interrupt Enable Flip-flop, 2-26
Interrupt Instructions, 1-17, 2-11, 3-2
Interrupt Latency, 2-70
Interrupt On Overflow -Type 4, 1-121
INTERRUPT PRECEDENCE, 1-124
INTERRUPT PRIORITIES, 1-136
Interrupt Processing, 1-11, 1-76
Interrupt Processing Timing, 1-121
Interrupt Request Register (IRR), 1-137
Interrupt Requests

External (maskable), 1-7

External Sources, 2-3

Internal Sources, 2-3
INTERRUPT RESPONSE TIMING, 2-73
Interrupt Service Routine, 1-120, 1-124
Interrupt Sequence, 5-13
INTERRUPT SOURCES, 2-65
Interrupt-related Transfers, 2-9
INTERRUPT TRIGGERING, 1-140
INTERRUPT TYPE PROCESSING, 1-124
Interrupt Types, 1-120

256 Possible, 1-76
Interrupt Vector Byte, 1-139
Interrupt Vector Table, 1-120
INTERRUPT VECTORING, 1-135
Interrupt Vectors, 1-64, 3-2
Interrupt-enable Flag (IF), 1-7
Interrupt-related Instructions, 1-16
INTERRUPTS, 1-120, 3-22, 4-40

CPU, 1-120

Escape Opcode, 2-6

Hardware, 1-120

Hardware-initiated, 1-17, 2-11

Internal, 1-7

Internally Generated, 1-7

Maskable, 1-120

Non-maskable External, 1-7

Nonmaskable, 1-120

Response, 1-11

Single-step, 1-120

Software, 1-17, 1-120, 2-11

Software-initiated, 1-120

Unused Opcode, 2-6
Intersegment Transfer

FAR, 1-16
Intrasegment Transfer

NEAR, 1-16

SHORT, 1-16, 2-5
IOP Initialization, 4-26
IR Level, 1-139
IR Triggering Timing Requirements, 1-141
IRMX 86 Interrupt Controller Interconnection, 2-66
IRMX 86 Mode, 2-19
IRMX 86 MODE OPERATION, 2-64
IRMX Mode, 2-70

Index-9

IRMX Mode Sources, 2-68

ISBC 337 MULTIMODULE, 3-3

ISBC 337 MULTIMODULE Mounting Scheme, 3-3
ISBC 86/30 Board, 1-24

ISBC 88/25 Board, 1-24

Iteration Control, 1-17, 2-10

J

JMP Instruction, 1-109

K

Key to Flag Effects, 1-23

Key to Instruction Coding Formats, 1-22
Key to Machine Instruction Encoding, 1-45
Key to Operand Types, 1-23

L

Language Translators, 1-42
Late Write Signal, 2-27
LATENCY OF HLDA TO HOLD, 1-112
Level Triggered Mode, 1-91, 1-140, 5-12
Linear Select For 1/0, 1-79
LINK86 Program, 3-2
LMCS Programming Values, 2-77
LMCS Register, 2-77
Local Bus, 8086, 1-52
LOCAL BUS CONTROLLER AND CONTROL
SIGNALS, 2-25
Local Bus Controller and Reset, 2-81
Local Bus Controller Outputs, 2-12
Local Interrupt Requests, 5-13
LOCAL Mode, 3-11, 4-25
LOCK*, 1-98
Locked Data Transfer, 2-33
Locked Exchange Instruction, 1-64
Logical, 1-14, 2-8
Lower 8 Data Bits, 2-4
Logical Addresses, 1-8
Logical Addresses Sources, 1-10
Logical and Bit Manipulation Instructions, 4-4
Logical and Physical Addresses, 1-9
Lower Bank Write Strobe, 1-81
Lower Bounds, 2-6
Lower Memory CS*, 2-76
Lower Memory For Interrupt Vectors, 2-3
Lower Memory Starting Location, 2-3
Lowest-addressed Byte, 1-8
M
Machine Instruction Decoding Guide, 1-52
MACHINE INSTRUCTION ENCODING AND
DECODING, 1-24, 4-6
Machine Instruction Encoding Matrix, 1-44
Machine Instruction Formats, 1-24
8086, 1-41
8086/8088, 1-42
8088, 1-41
Decode, 1-12
Encode, 1-12
Length, 1-41
MOV, 2-7
Machine Language
Instruction Decoding, 1-21
Instruction Encoding, 1-21
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Major Cycle Timing Waveforms, 2-12, 2-27
Major Modes of Operation, 2-19
Mask Bits, 1-148
Mask Register, 1-147, 1-148
Master Clear, 1-148
Master System Interrupt Controller, 2-19
External, 2-3
Max Mode 8086 with Master 8259A 1-107, 1-138
Maximum and Minimum Mode Command Timing,
1-132
Maximum CPU Bus Bandwidth, 1-107
Maximum Mode (RQ*/GT¥*), 1-113
Maximum Mode Address and ALE Timing, 1-105
MAXIMUM MODE BUS TIMING, 1-105
Maximum Mode Interrupt Acknowledge Timing, 1-106
Maximum Mode Operation Waveforms, 1-43
Maximum Mode Read Cycle Timing, 1-105
Maximum Mode Ready Timing, 1-106
MAXIMUM MODE SYSTEM INTERRUPT, 1-124
Maximum Mode System Overview/Description, 1-52
Maximum Mode System Bus, 2-12
Maximum Mode Values, 1-105
Maximum Mode Waveforms, 1-74
Maximum Mode Write Cycle Timing, 1-106
Maximum Parameter Values, 1-98
Maximum Write Data Delay, 1-99
MCE Timing to Gate 8259A CAS Address, 1-138
Memory -1/0 Block Transfers Example, 1-91
Memory Address Computation, 1-19
Memory Address Space, 1-64
Memory Address, Odd, 1-23
Memory Addressing Modes, 1-18
Memory and I/O Peripherals Interface, 1-71, 2-34
Memory Chip Select Lines, 2-3
MEMORY CHIP SELECTS, 2-75
Memory Components, 1-8
Memory Device, 1-42, 2-3
Memory Even and Odd Data Byte Transfers, 1-81
Memory Even and Odd Data Word Transfers, 1-82
MEMORY INTERFACE, 1-78, 2-34
Memory Interfacing, 1-71
Memory Mapped, 1-64, 2-3
Memory Mapped 8-bit 1/0, 1-87
Memory Mode, Effective Address Calculation, 1-41
Memory Modules, 1-64
Memory Operands, 1-17, 2-7
Displacement Value, 1-41
Read, 1-18
Register Indirect Addressing, 1-21
Write, 1-18
Memory Organization, 2-4
Memory Read, 1-4
Memory Read Signals, 1-105
Memory Reference Escape Instruction Form, 3-8
Memory Reference Opcodes, 3-7
Memory Space, 2-3
8086, 1-5
8086/8088, 1-8
8088, 1-5

Index-10

Memory Writes, 1-11, 2-31

Memory
High, 1-11
Low, 1-11

Memory-based Semaphore Variables, 2-33
Memory-To-Memory Transfer Timing, 1-145
Memory-to-Memory Transfers, 1-142, 1-145, 1-148
Microprocessor Control Pins, 1-1
Microprocessors

80186, 2-1

80188, 2-1

8080/8085, 1-12
Mid-Range CS*, 2-76
Min Mode 8086 with Master 8259A, 1-137
Minimum Execution Time, 2-12
Minimum Mode, 1-1
Minimum Mode (HOLD/HLDA), 1-110
Minimum Mode 8086 Systems, 1-134
MINIMUM MODE BUS TIMING, 1-99
MINIMUM MODE DMA CONFIGURATION, 1-112
Minimum Mode Interrupt Acknowledge Timing, 1-104
Minimum Mode Operation Waveforms, 1-43
Minimum Mode Read Cycle Timing, 1-99
Minimum Mode Ready Timing, 1-104
MINIMUM MODE SYSTEM INTERRUPT, 1-124
Minimum Mode System Overview/Description, 1-44
Minimum Mode TEST* Timing, 1-105
Minimum Mode Waveforms, 1-72
Minimum Mode Write Cycle Timing, 1-104
Minimum Parameter Values, 1-98
Minimum/Maximum Mode Pin Assignments, 1-71
MM Field Encoding, 4-22
MMCS Register, 2-78
MN/MX* Input Pin, 1-43
MN/MX* Pin, 1-7
Mnemonic Codes For Exceptions, 5-9
MOD Field, 3-7
Mode (MOD) Field Encoding, 1-42
Mode Register, 1-146, 1-147
MODE SELECTION, 1-7
Mode

Addressing, 1-20

Single-step, 1-7
Modes of Operation

IRMX 86, 2-19

Non-iRMX 86, 2-19
Modes

Late Cycle, 2-36

Pulse, 2-36
Most-significant Byte, 1-41
Move Word Immediate to Register, 2-7
MOVS Instruction, 1-122
MPCS Programming Values, 2-77
MPCS Register, 2-77
Multi-CPU System Performance, 1-131
Multi-master Bus Arbitration, 1-119
Multi-master Bus System, 1-134, 2-34
MULTIBUS APPLICATIONS, 2-33
MULTIBUS Protocol, 1-98
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MULTIBUS System Bus, 1-97, 1-107
MULTIBUS Systems, 1-131
Multibyte Numbers
Add, 1-6
Subtract, 1-6
Multiple Bit Rotates, 2-5
Multiple Bit Shifts, 2-5
Multiple Communications Lines Example, 1-91
Multiple Processor Considerations, 1-119
Multiple-processor Designs, 1-1
Multiplexed Address and Data Bus, 1-64, 1-96, 1-104
Multiplexed Address/Data Bus, 2-34, 2-36
Multiplexed Address/Data Bus (186/188), 2-29
Multiplexed Address/Status Lines, 1-104
Multiplexed Bus, 1-79, 1-92
Multiplexed Bus With Local Address Demultiplexing,
1-96
Multiplexed Data Bus, 1-93
Multiprocessing Functions, 1-44
Multiprocessor Environments, 1-131
Multiprocessor/Coprocessor Applications, 1-97
N
Navigation, 3-2
NEW 80186/80188 INSTRUCTIONS, 2-4
New Instructions, 2-1
NMI ACKNOWLEDGE, 1-124
NMI During Single Stepping and Normal, 1-125
NMI, INTR, Single Step and Divide Error, 1-125
Non-existant Banks, 2-39
Non-immediate Data Read/write Instruction, 2-4
Non-integral Values, 3-1
NON-iRMX 80 MODE, 2-64
Non-iRMX 86 Mode, 2-19
Non-Maskable Interrupt -Type 2, 1-121
Non-memory Reference, 3-7
Non-Memory Reference Escape Instruction Form, 3-7
Non-Specific EOI Command, 1-139
NOP Instruction, 3-3
Normal Bus Cycle, 2-23
Normally Not Ready System Avoiding a Wait State,
1-108
Normally Ready System Inserting a Wait State, 1-108
NPX, 3-1NPX Coprocessor Application, 3-1
NPX_CLEAN Code Example, 3-22
Numeric Control, 3-2
NUMERIC EXECUTION UNIT, 3-7
Numeric Instruction Emulation, 3-2
Numeric Instruction Opcodes, 3-2
NUMERIC PROCESSOR EXTENSION
APPLICATIONS, 3-1
Numerically Based Applications, 3-1
(0]
Odd Address Boundary, 1-117
Odd Memory Address, 1-23
Offset, Memory Variable, 1-9
One Byte Interrupt — Type 3, 1-121
Opcode Fetch, 1-109
Opcode Extension
OPERAND ADDRESSING MODES, 1-18
Operand Addressing

Index-11

Immediate Mode, 1-18

Register Mode, 1-18
Operand Identifiers Definitions, 4-5
Operand Names, 1-14
Operand Type Definitions, 4-14
Operands

16-bit Memory, 1-23

Additional, 1-23

Address, 1-71

Data, 1-71

Destination, 1-15

Extension, 2-9

I/O Port, 1-17

Immediate, 1-21

Memory, 1-13, 1-18

Register, 1-13

Source, 1-15

Word, 1-21, 1-71
OPERATING MODES, 1-43, 2-12, 3-8, 4-20

Maximum, 1-1

Minimum, 1-1
OPERATING SYSTEM PRIMITIVES SUMMARY, 5-1
Operation Command Word 1 (OCW1), 5-5
Operation Command Word 2 (OCW2), 5-5
Operation Command Word 3 (OCW3), 5-5
Operations

Arithmetic, 1-4, 1-5

Block Input, 2-5

Block Output, 2-5

Byte, 1-41, 2-5

Compare, 1-12

Logic, 1-4, 1-5

Move, 1-12

Scan, 1-12

Stack, 1-5

Word, 1-24, 2-5
Oscillator

Crystal, 2-24

External, 2-24
Oscillator to CLK and CLK to PCLK Timing, 1-128
Oscillators Feedback Circuit, 1-126
OSP Primitives, 5-1
OSP MEMORY USAGE, 5-11
OSP Primitives, 5-6
OSP Typical Configuration With An 8086, 5-10
Other Maximum Mode Considerations, 1-107
Output Request, 1-91
Outputs

Local Bus Controller, 2-25

Queue Status, 2-26

Status, 2-26
Overflow Error Service Routine, 1-121
Overflow Flag (OF), 1-6
Overlapped Instruction Fetch and Execution, 1-6
P

Parallel Priority Resolving Technique, 1-135
Parity Flag (PF), 1-6

Parity, Even, 1-6

Partitioning Memory By Segment, 1-65
PCLK Output, 2-24
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Performance Penalty, 1-11
Peripheral Compatibility Parameters, 1-89
Peripheral Control Block Relocation Register, 2-19
Peripheral Devices, 2-3
8086 Family, 1-81
Peripheral Interfacing, 4-33
Peripheral Requirements For Full Speed, 1-91
Peripherals Cycle Dependent Parameter Requirements,
1-89
Physical Address, 1-8
PHYSICAL ADDRESS GENERATION, 1-8, 1-10
Physical Address, 20-bit, 1-18
Physical/Logical Bus Combinations, 4-2
Physical Memory Byte/Word Addressing, 2-35
PIC Commands, 5-2
Pin Assignments
Maximum Mode, 1-43
Minimum Mode, 1-43
Pipelined Architecture, 1-1
Pointer, 2-8, 32-bit, 1-122
POWER UP RESET, 1-130
Prefetch Queue
4-byte, 2-1
6-byte, 2-1
Prefetched Instructions, 1-1, 1-2, 2-1
Preventing Erroneous Write Operations, 1-65
Priority Resolution, 1-65
Priority Structure Variations -Fully Nested Mode, 1-139
Process Control, 3-2
Processor Control Instructions, 1-17, 1-18, 2-11, 4-6
Processor Extension, 2-19
Processor Preemption
(RQ*/GT*), 1-64
Two Prioritized Levels, 1-52
Processor Ready Synchronization, 2-3
Processor
80186, 2-1
80188, 2-1
Program Condition, 1-148
Program Counter (PC), 1-5
Program Execution Errors, 2-6
Program Status Word, 4-40
Program Transfer Instructions, 1-16, 2-9, 2-10, 4-4
Conditional Transfer, 1-16
Interrupt-related, 1-16
Iteration Control, 1-17
Unconditional Transf, 1-16
Program Transfers, Four Groups, 1-16
Programs
8086, 1-7
8088, 1-7
Disk-resident, 1-10
Dynamically Relocatable, 1-10
Inactive, 1-10
Position-independent, 1-10
Programmable 16-bit Timer/counters, 2-3
PROGRAMMABLE DIRECT MEMORY ACCESS
UNIT, 2-3
Two Channel, 2-1

Index-12

Programmable Interrupt Controller, 2-1, 2-3
PROGRAMMABLE INTERRUPT CONTROLLER
(PIC), 5-2
Programmable Ready Bits, 2-3
PROGRAMMABLE TIMERS, 2-3, 5-8
16-bit, 2-1
Programming the 80130 OSP’s Onchip Peripherals, 5-1
PROGRAMMING THE DMA UNIT, 2-51
Propagation Delay, 1-118
Protocol
HOLD/HLDA, 2-26
RQ*/GT*, 2-26
Push All/Pop All (PUSHA, POPA) Instructions, 2-5
Push Immediate (PUSHI) Instruction, 2-5

Q
QS0, QS1, 1-98
QUEUE STATUS, 1-52
Queue Status (QSO0, QS1), 1-52
Queue Status Bit Decoding, 1-99
Queue Status Lines, 2-19
Queue Status Mode, 2-12
Queue Status Mode of Operation, 2-12
Queue Status Outputs, 2-26
Queue
4-byte Instruction, 2-3
6-byte Instruction, 2-1
8086, 1-3
8088 Instruction, 1-3
CPU Instruction, 1-16, 2-9
Depth, 1-52
Instruction, 1-23, 2-1, 2-23
Instruction Object Code, 1-3, 2-1
Instruction Stream, 1-3
Internal, 1-52, 2-23
Internal Instruction, 1-66, 1-98
Internal Pre-fetch, 2-12
Pre-fetch, 2-23
Prefetch, 2-1
Sizes, 1-3
Status, 1-52
R
R/B/P Field Encoding, 4-21
R/M Field Bits, 3-7
RAM Bank, 2-40
RAM Interface, 2-36
RAM Wakeup Cycles, 2-40
RAS* Drivers, 2-40
RAS* Strobes, 2-40
RD#*, 3-11, 3-16
RD* Active to Output Device Valid TRLDV, 1-89
RD* AND WR¥*, 2-29
RD* Status, 2-4
Read Bus Cycle (8-bit Bus), 4-35
Read Command, 1-99
Read Control Signal, 1-64
Read Cycles, 1-82, 1-99
Read Cycle Times, 2-37
Read Cycle Timing, 2-29
Read Pulse Width TRLRH, 1-89
READ/WRITE SIGNALS, 2-27
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Read-from Memory, 1-143
Reading the Count Value, 5-11
Reading the Interrupt Mask Register (IMR), 5-8
Ready Bits, 2-3
Ready Input

Asynchronous, 2-24

Synchronous, 2-24
OREADY CIRCUIT, 3-16
Ready Inputs to the 8284 and Output, 1-108
READY SYNCHRONIZATION, 2-80
Ready Timing, 1-98
READY/WAIT STATE GENERATION, 2-78
Real Time Clock, 2-58
Recommended Crystal Clock Configuration, 1-127
Recommended IAPX 186 Crystal Configuration, 2-80
Recommended Interrupt Configurations, 3-22
Reducing 8087 Delay Effects, 3-19
Refresh, 2-40
Refresh and Control Circuits, 2-37
Refresh Period Programming Option, 2-40
REG (Register) Field Encoding, 1-42
Register Address Coding, 1-147
Register and Immediate Operands, 1-18
Register Indirect Addressing, 1-18, 1-19
Register Operands, 2-7
Register Operands In Arithmetic Instructions, 4-5
Register Operands In Logical Instructions, 4-6
Register Operands In MOV Instructions, 4-5
Register/Memory Field Encoding, 1-43
Registers, 4-3

16-bit, 2-4, 2-7

16-bit Address, 1-144

16-bit Base Address, 1-145

16-bit Base Word Count, 1-145

16-bit Current Address, 1-145

16-bit Current Word, 1-145

16-bit General, 1-4

4-bit Mask, 1-147

4-bit Request, 1-147

6-bit Mode, 1-146

8-bit Command, 1-146

8237A Current Address, 1-144

8237A Current Word Count, 1-144

8237A Internal Memory, 1-145

AL, 1-13, 1-67, 1-85, 2-7

AX, 1-13, 1-85, 2-5, 2-7

Base, 1-18

BP, 1-18, 1-20, 2-6

BX, 1-18, 1-91, 2-5

CL, 1-14, 1-15, 2-5, 2-9

Clear Mask, 1-148

Code Segment, 1-118

Command, 1-148

Communications, 1-3, 2-1

Count (CX), 1-16

CS, 1-5, 1-120, 1-123, 1-124, 2-9

Current Address, 1-45

Current Code Segment, 1-124

CX, 1-17, 1-68, 2-5, 2-9

Data, 1-7
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DI, 1-15, 2-5

DS, 1-5

DX, 1-21, 1-85, 1-91, 2-5, 2-6

Eight General, 1-5

ES, 1-5

Flag, 1-3, 1-121, 1-122, 1-123, 1-124, 1-125, 2-1,

2-5,2-6

General, 1-4, 1-5, 2-1

General Purpose, 2-5, 2-6

Index, 1-5, 1-18

Integrated Peripheral, 2-5

Internal, 2-4, 2-5

Internal First/Last Flip-Flop, 1-148

Internal CPU, 1-116

Interrupt Controller, 2-19

1P, 1-120, 1-123, 1-124

Mask, 1-148

P&I, 14

Pointer, 1-4

Request, 1-148

Segment, 1-4, 1-5, 1-8, 1-122, 1-124, 2-1, 2-5, 2-26,

2-33

SI, 1-15, 191, 2-5, 2-6

Single, 1-41

SP, 1-122, 2-5, 29

SS, 1-4, 1-122

Status, 1-148

Temporary, 1-145, 1-148

Word Count, 1-144
Relationship of ALE to READ, 1-94
REMOTE MODE, 4-25
Repeat (REP) Prefix, 1-122
Repeated String Operation, 1-122
Representative Instruction Execution Sequence, 1-111
Request Register, 1-147
REQUEST/GRANT LINE, 3-11, 4-38
Request/Grant Sequence Timing, 1-117
Requests

HOLD, 1-64

RQ*/GT*, 1-64
RESERVED MEMORY, 1-11
Reserved Memory and 1/0 Locations, 1-12
Reserved Memory Locations, 1-82
RESET, 1-118, 2-41, 2-80
Reset Bus Conditioning, 1-118
RESET-CA Initialization Timing, 4-27
Reset Disable For Max Mode 8086/8088 Bus, 1-119
Reset Disable For Max Mode 8086/88 Bus, 1-120
Reset Startup, 1-65
Resident Bus, 1-134
Resident Bus (RESB) Mode, 1-134
Resident Bus Arbitration Logic, 1-64
Robotics, 3-2
ROM and EPROM, 1-82
ROM and EPROM Interface, 2-35
Rotate In Automatic EOI Mode, 1-139
Rotate On Automatic EOI Mode, 1-140
Rotate On Non-Specific EOI Command, 1-139
Rotate On Specific EOI Command, 1-140
Rotates, 1-14, 2-9
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Rotation, 3-2

RQ/GTO, 1, 3-11

RQ/GT1 Pins, 3-3

RQ*/GT* LATENCY, 1-115
RQ*/GT* OPERATION, 1-114
RQ*/GT* Timing, 1-98

RQ*/GT* TO HOLD/HLDA CONVERSION, 1-113

RQ*/GT* USAGE, 1-113
S
S Field, 1-41

Sample Compatibility Analysis Configuration, 1-84

Scaling, 3-2
Schottky TTL Flip-flops, 2-26
Segment Base Value, 1-8
Segment Base Values, 1-8
Segment Locations In Physical Memory, 1-8
Segment Offset Values, 1-8
Segment Override Prefix, 1-9, 1-20
Segment Register Loading Instructions, 1-10
SEGMENT REGISTERS, 1-5, 1-71, 2-1
CS, 2-5
DS, 2-5, 2-6
ES, 2-5, 2-6
SS, 2-5
Segment Values, 2-1
SEGMENTATION, 1-7
Segments Adjacent, 1-8
Currently Addressable, 1-8
CS, 1-5
Current Code, 1-5
Current Data, 1-5, 1-15
Current Extra, 1-5, 1-15
Current Stack, 1-5
Disjoint, 1-8
Fully Overlapped, 1-8
Locations, 1-8
Logical, 1-8
Overlapping, 1-65
Partially Overlapped, 1-8
Serial Priority Resolving., 1-136
Set Priority Command, 1-139
Seven Contiguous 128 Byte Blocks, 2-3
Shared Bus Architecture, 1-1
Shared System Priority, 1-64
Shifts and Rotates
Single-bit, 1-41
Variable-bit, 1-41
Shifts, 1-14, 2-5
Arithmetic, 1-14
Logical, 1-14
Shifts/Rotates By An Immediate Value, 2-5
Sign Flag (SF), 1-6
Signal Float/HLDA Timing, 2-47
Signed Binary Numbers (integers), 1-14, 2-8
Single Step -Type 1, 1-121
Single T-State, 2-42
Single Transfer Mode, 1-144
Single-Bit Field Encoding, 1-42

Single-processor Systems, 1-1
Single-step Flags, 1-124

Single-step Mode, 1-7

Sixteen-Bit I/O, 1-88

Small 8088-Based System, 1-2
SMALL__BLOCK__NPX__RESTORE, 3-21
SMALL__ BLOCK__NPX__SAVE, 3-21
software Based 8087 Emulator, 3-1
Software Command Codes, 1-147
Software Commands, 1-148

Software Emulator, 3-1

Software Emulator (E8087), 3-2
Software Overview, 1-12, 2-4, 3-7, 4-3
Software Single Stepping, 1-121

Source & Destination Synchronized DMA, 2-56

Source Pointers, 2-4
Source String, 1-15 .
Source Synchronized DMA Transfers, 2-54
Source Synchronized Transfer Cycle, 4-31
Spare Bus Cycles, 1-1
Specially Fully Nested Mode, 1-142, 2-69
Special One-byte Prefix, 2-9
Specific EOI Command, 1-139
Specific Rotation -Specific Priority, 1-140
Specified Cycle Termination, 1-64
SRDY, 3-11, 3-16
Stack Frames
Build, 2-6
Tear Down, 2-6
STACK IMPLEMENTATION, 1-10
Stack Layout, 2-6
Stack Operation, 1-12
Stack Pointer Register (SP), 1-10
Stack Pointer Registers, 1-122
Stack Reference Point Offset, 1-20
Stack Segment’s Base Address, 1-10
Stack
Current, 1-10
Directly Addressable, 1-10
Starting Locations, 1-5
Standard 5 MHz 8086, 2-1
Static RAM, 1-79
Status Bit Decoding, 1-71
Status Bit Output
S0*, 1-130
S1%*, 1-130
S2*,1-130
Status Bits, $3-S5, 2-26
Status Bus, 1-65
Status Flags, 1-5
Status Information, 1-72, 2-26
Status Line Activation and Termination, 1-132
Status Line Decode Chart, 1-131
Status Line Decoders, 1-52
Status Line Encodings Interpretations, 2-31
STATUS LINES, 2-31, 4-34
Status Read, 1-148
Status Register, 1-148
Status Signals
S0*-S2%, 2-29, 3-3
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S0-S2, 4-34
S3-S6, 4-34
S3,2-33
S4,2-33
S5, 2-33
S6, 2-29, 2-32, 3-3
§7,2-32
String Addressing, 1-20
String Instruction Register and Flag Use, 1-15
String Instructions, 1-15, 2-10
Compare, 1-15
Destination Operand, 1-9
Move, 1-15
Scan, 1-15
String Operand Addressing, 1-21
String Operation
Interrupted, 1-64
Repeated, 1-64
String
Destination, 1-15
Source, 1-15
Strings of Bytes, 2-9
Strings of Words, 2-9
Submit File Example, 3-2
SUPPORT COMPONENTS, 1-125, 2-51
Switch, $mod186, 2-5
Synchronization, 1-85, 3-13
SYNCHRONIZER REQUIREMENTS, 2-46
Synchronizing CSYNC With EFI, 1-128
Synchronizing Execution With WAIT, 3-15
Synchronizing Multiple 8284As, 1-129
Synchronizing the 8086 Or 8088, 1-17
Synchronous Interface, 2-41
Synthesizing Delayed Write From the 80186, 2-32
System Architecture, Minimum Mode, 1-44, 1-46
System Bus Arbitration, 1-113
System Bus Control Signals, 2-12
System Bus Interface, 1-52
SYSTEM BUS MODE, 1-133
System Bus Resources, 2-34
System Cost Reduction, 2-4
System Design Alternatives, 1-92
System Reset Processing, 1-11
System Status Outputs, 2-12
System Timing, 80186, 2-3
Systems
8086-based, 1-11
Multi-tasking, 1-10
Multiprogramming, 1-10

T1, 1-65

Target Instruction Offset, 1-8

Target Location, 1-8

Target Relative Displacement, 2-10

Task Pointer, 4-3

Temporary Register, 1-148

TEST* AND LOCK*, 2-33

Test For the Existence of An 8087, 3-6
THE 8284A RESET FUNCTION, 1-129
The Effective Address, 1-18
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Third Generation Microprocessors, 1-1

Three Processor System Bus Signal Connections, 3-16
Time-multiplexed, 1-1

TIMER APPLICATIONS, 2-58

Timer Block Diagram, 2-57

Timer Control Block Format, 2-57

TIMER INPUT PIN OPERATION, 2-57

TIMER OUTPUT PIN OPERATION, 2-58

Timer Unit, 2-56

Timers, 5-10

Timers and Reset, 2-82

TIMING, 5-13

Top of Stack (TOS), 1-10

Transceiver Enable Delay, 1-106

Transfer Count, 2-4

TRANSFER TYPES, 1-145

Transfers, SHORT, 1-16

Trap Flag (TF), 1-7, 1-121

Tri-state Pin, 2-19

Type of Cycle Decoding, 4-37

Typical 8086/88 Machine Instruction Format, 1-41
Typical 8089 Machine Instruction Format, 4-21
Typical 8089 Remote Configuration, 4-26

Typical IAPX 186/2X Family System Diagram, 3-5
Typical IAPX 86/2X Family System Diagram, 3-4
Typical Medium Complexity CPU Circuit, 1-136
Typical Static RAM Write Timing Parameters, 1-84
U

UMCS Programming Values, 2-76

UMCS Register, 2-77

Unconditional Transfers, 1-16, 2-10
Unformatted Memory Dumps, 1-25

Unsigned Binary Numbers, 1-14, 2-8

Unsigned Packed Decimal Numbers, 2-8
Unsigned Unpacked Decimal Numbers, 1-14, 2-8
Unused Opcode, 2-6

Upper Address Lines, 1-66

Upper Bank Write Strobe, 1-81

Upper Byte, 2-34

Upper Memory CS*, 2-76

Upper Memory Ending Location, 2-3

User Interrupt Routines, 1-120

User Programmable Areas, 2-3

User-Defined Hardware Interrupts, 1-122
User-Defined Software Interrupts, 1-122

Using AEN1*/AEN2* to Generate Ready, 1-110

USING THE 8087 WITH CUSTOM COPROCESSORS,

3-8
Using RDY1/RDY?2 to Generate Ready, 1-110
A%
V Field, 1-41
Valid & Invalid Latch Input, 2-33
Valid Address Information, 2-23
Valid SRDY Transitions On the 80186, 2-46
Valid/Invalid ARDY Transitions, 2-45
Values

Compare, 2-9

Move, 2-9

Offset, 1-3

Scan For, 2-9
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Segment, 1-3 . Word Memory Read, 1-109
Variables, Memory Based, 1-13 . . Word Memory, 16-bit, 1-78
Vector CS Address Pointer, 1-124 : Word Operations, 2-5

Word Transfer, 1-112

Vector IP Address Pointer, 1-124 Worst Case Local Bus Request Wait Times In Clocks,

Voltage Characteristics 3-28WR*, 3-26WR* Status, 2-4
A.C.,2-24 Write Bus Cycle (16-bit Bus), 4-36
D.C.,2-23 Write Commands

w Advanced, 1-106

Normal, 1-106

WAIT, 3-14 X Write Cycle, 1-83, 1-99 .

WA.IT Instruction, 3-11 Write Cycle Address Setup Times, 2-37

Wait State Generator, 2-44 Write Cycle Address Times, 2-37

Wait State Insertion, 1-107 . Write Cycle Timing, 2-31

Wait State Timing, 4-38 Write Strobe Technique, 1-81

WB Field Encoding, 4-21 x::: timing requircments, 1-81

Wait State Required Indication, 1-107 A g

Wait States (TW), 1-66 Z field, 1-41

Word Memory Location, 2-6 Zero flag (ZF), 1-6
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