


-------_._---
.~~--~~' .------

LITERATURE 

In addition to the product line handbooks listed below, the INTEL PRODUCT GUIDE (no charge, 
Order No. 210846--003) provides an overview of Intel's complete product lines and customer services. 

Consult the INTEL LITERATURE GUIDE (Order No. 210620) for a listing of Intel literature. TO 
ORDER literature in the U.S" write or caIl the INTEL LITERATURE DEPARTM ENT, 3065 Bowers 
Avenue, Santa Clara, CA 95051, (800) 538-1876, or (800) 672-1833 (California only). TO ORDER 
literature from international locations, contact the nearest I ntel sales office or distributor(see listings in 
the back of most any Intel literature). 

Use the order blank on the facing page or caIl our TOLL FREE number listed above to order literature. 
Remember to add your local sales tax. 

1985 HANDBOOKS 

Product line handbooks contain data sheets, application notes, article reprints and other design 
information. 

QUALITY/RELIABILITY HANDBOOK (Order No. 210997-001) 
Contains technical details of both quality and reliability programs and principles. 

CHMOS HANDBOOK (Order No. 290005-001) 
Contains data sheets only on all microprocessor, peripheral. microcontroller and 
memory CHMOS components. 

MEMORY COMPONENTS HANDBOOK (Order No. 210830-004) 

TELECOMMUNICATION PRODUCTS HANDBOOK (Order No. 230730-003) 

MICRO CONTROLLER HANDBOOK (Order No. 210918-003) 

MICROSYSTEM COMPONENTS HANDBOOK (Order No. 230843-002) 
Microprocessors and peripherals-2 Volume Set 

DEVELOPMENT SYSTEMS HANDBOOK (Order No. 210940-003) 

OEM SYSTEMS HANDBOOK (Order No. 210941-003) 

SOFTWARE HANDBOOK (Order No. 230786-002) 

MILITARY HANDBOOK (Order No. 210461-003) 
Not available until June. 

COMPLETE SET OF HANDBOOKS (Order No. 231003-002) 
Get a 25% discount off the retail plice of $160. 

*V.S. Price Only 

*U.S. PRICE 
$15.00 

$12.00 

$18.00 

$12.00 

$18.00 

$25.00 

$15.00 

$18.00 

$12.00 

$15.00 

$120.00 



iAPX 86/88, 186/188 User's Manual 
Hardware Reference 

1985 



Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear 
in this document nor does it make a commitment to update the information contained herein. 

Intel retains the right to make changes to these specifications at any time, without notice. 

Contact your local sales office to obtain the latest specifications before placing your order. 

The following are trademarks of Intel Corporation and may only be used to identify Intel Products: 

BITBUS, COMMputer, CREDIT, Data Pipeline, GENIUS, do ICE, iCS, 
iDBp, iDIS, 121CE, iLBX, im, iMDDX, iMMX, Insite, Intel, intel, intelBOS, 
Intelevision, int~igent Identifier, int~igent Programming, Intellec, 
Intellink, iOSP, iPDS, iRMX, iSBC, iSBX, iSDM, iSXM, KEPROM, 
Library Manager, MCS, Megachassis, MICROMAINFRAME, 
MULTIBUS, MULTICHANNEL, MULTIMODULE, OpenNET, 
Plug-A-Bubble, PROMPT, Promware, QUEST, QueX, Ripplemode, 
RMXlSO, RUPI, Seamless, SLD, and UPI, and the combination of ICE, 
iCS, iRMX, iSBC, iSBX, MCS, or UPI and a numerical suffix. 

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of Mohawk 
Data Sciences Corporation . 

• MULTIBUS is a patented Intel bus. 

Additional copies of this manual or other Intel literature may be obtained from: 

©JNTELCORPORATJON 1985 

Intel Corporation 
Literature Department 
Mail Stop SC6-714 
3065 Bowers Avenue 
Santa Clara, CA 95051 



Chapter 1 
8086/8088 CPU 

Table of Contents 

1.1 Introduction................................................................. 1-1 
1.2 Component Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-1 
1.2.1 Architectural Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-2 
1.2.2 Software Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-12 
1.3 Device Pin Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-42 
1.3.1 Functional Description of All Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-43 
1.3.2 Electrical Description of Pins .................................................. 1-43 
1.3.3 Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-43 
1.3.4 Minimum Mode System Overview/Description .............. , ..................... 1-44 
1.3.5 Maximum Mode System Overview/Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-52 
1.3.6 General Design Considerations ................................................ 1-64 
1.4 Bus Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-64 
1.4.1 Multiplexed Address and Data Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-64 
1.4.2 Bus Cycle Definition ........................................................ 1-65 
1.4.3 Address and Data Bus Concepts ............................................... 1-66 
1.4.4 Memory and 110 Peripherals Interface ........................................... 1-71 
1.4.5 System DeSign Alternatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-92 
1.4.6 Multiprocessor/Coprocessor Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-97 
1.4.7 Interpreting The 8086/8088 Bus Timing Diagrams ................................. 1-98 
1.4.8 Wait State Insertion ......................................................... 1-107 
1.4.9 8086/8088 Instruction Sequence ............................................ , .. 1-109 
1.5 Bus Exchange Mechanisms .................................................... 1-110 
1.5.1 Minimum Mode (HOLD/HLDA) ................................................ 1-110 
1.5.2 Maximum Mode (RQ*/GT*) ................................................... 1-113 
1.6 RESET .................................................................... 1-118 
1.6.1 Reset Bus Conditioning ...................................................... 1-118 
1.6.2 Multiple Processor Considerations ............................................. 1-119 
1.7 Interrupts ................................................................... 1-120 
1 .7.1 Classes of Interrupts ........................................................ 1-120 
1.7.2 Divide Error-Type 0 ........................................................ 1-121 
1.7.3 Single Step-Type 1 ........................................................ 1-121 
1.7.4 Non-Maskable Interrupt-Type 2 ............................................... 1-121 
1.7.5 One Byte Interrupt-Type 3 ................................................... 1-121 
1.7.6 Interrupt on Overflow-Type 4 ........................................ ' ......... 1-121 
1.7.7 User-Defined Software Interrupts .............................................. 1-122 
1.7.8 User-Defined Hardware Interrupts .............................................. 1-122 
1.7.9 Interrupt Acknowledge ....................................................... 1-122 
1.8 Support Components ......................................................... 1-125 
1.8.1 8284A Clock Generator and Driver ............................................. 1-125 
1.8.2 8288 Bus Controller ......................................................... 1-130 
1.8.3 8289 Bus Arbiter ........................................................... 1-133 
1.8.4 8259A Programmable Interrupt Controller ....................................... 1-134 
1.8.5 8237 A Programmable DMA Controller .......................................... 1-142 

Chapter 2 
80186/80188 CPU 

2.1 Introduction-The High Integration Concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-1 
2.2 Component Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-1 
2.2.1 Architectural Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-1 
2.2.2 Software Overview .... '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-4 
2.3 Device Pin Definitions ......................................................... 2-12 
2.3.1 Functional Description of All Signals ............................................ 2-12 
2.3.2 Electrical Description of Pins .................................................. 2-12 

iii 



TABLE OF CONTENTS 

2.4 Operating Modes ............................................................ 2·12 
2.4.1 8086/88·80186/188 Operating Mode Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2·12 
2.4.2 Queue Status Mode of Operation ............................................. , 2·12 
2.4.3 Interrupt Controller Operating Modes ........................................... 2·19 
2.5 Bus Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2·19 
2.5.1 HALT Bus Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2·23 
2.5.2 8086/80186 Bus Operation Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2·24 
2.5.3 Multiplexed Address/Data Bus (186,188) ........................................ 2·29 
2.5.4 Data Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2·34 
2.5.5 Memory and I/O Peripherals Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2·34 
2.5.6 Interpreting the 80186/80188 Bus Timing Diagrams ................................ 2·41 
2.5.7 Wait State Generator ........................................................ 2·44 
2.5.8 80186 Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2·46 
2.6 Bus Exchange Mechanisms .................................................... 2·47 
2.6.1 HOLD Response ........................................................... 2·47 
2.6.2 HOLD/HLDA Timing and Bus Latency .......................................... 2·48 
2.6.3 End of HOLD Timing ........................................................ 2·48 
2.7 Interrupts ................................................................... 2·50 
2.8 Support Circuits ............................................................. 2·51 
2.8.1 Direct Memory Access (DMA) Unit ............................................. 2·51 
2.8.2 Timer Unit ................................................................ 2·56 
2.8.3 Interrupt Controller ......................................................... 2·59 
2.8.4 Chip Select/Wait State Generation Unit ......................................... 2·74 
2.8.5 Clock Generator/Reset/Ready ................................................. 2·79 

Chapter 3 
8087 Numeric Processor Extension 

3.1 Introduction................................................................. 3·1 
3.1.1 iAPX86,88,186,188Base ................................................... 3·1 
3.1.2 8087 Mobility In Any iAPX 86, 88, 186 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3·2 
3.2 Component Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3·3 
3.2.1 Architecture Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. 3·3 
3.2.2 Software Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3·7 
3.3 Device Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3·8 
3.4 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3·8 
3.4.1 8087/8086(88) Interface ...................................................... 3·11 
3.4.2 8087/80186(88) Interface ..................................................... 3·11 
3.5 8086 (80186)/8087 Operation ................................................... 3·12 
3.5.1 Decoding Escape Instructions ................................................. 3·12 
3.5.2 Concurrent Execution of Host and Coprocessor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3·13 
3.5.3 Instruction Synchronization ................................................... 3·13 
3.6 Bus Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3·15 
3.6.1 iAPX86/20 Bus Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3·15 
3.6.2 iAPX186/20 Bus Operation ................................................... 3·15 
3.7 Bus Exchange Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3·16 
3.7.1 8087 RQ/GT Function ....................................................... 3·16 
3.7.2 Delay Effects of the 8087 ..................................................... 3·17 
3.7.3 Reducing 8087 Delay Effects ................................................. 3·19 
3.8 Interrupts................................................................... 3·22 
3.8.1 Recommended Interrupt Configurations ......................................... 3·22 

Chapter 4 
8089 Input/Output Processor 

4.1 Introduction................................................................. 4·1 
4.2 Component Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4·1 

iv 



TABLE OF CONTENTS 

4.2.1 Architectural Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-1 
4.2.2 Software Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-3 
4.3 Device Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-20 
4.4 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-20 
4.4.1 Interfacing the SOS9 to the SOS6 and S01S6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-24 
4.4.2 lOP Initialization ............................................................ 4-26 
4.4.3 Channel Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-27 
4.4.4 Direct Memory Access Transfers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-30 
4.4.5 DMA Termination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-32 
4.4.6 Peripheral Interfacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-33 
4.4.7 Status Lines ............................................................... 4-34 
4.5 Bus Operation ............................................................... 4-34 
4.6 Bus Exchange Mechanism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-36 
4.6.1 Bus Arbitration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-37 
4.6.2 Bus Load Limit. . . . . . . . . . . . . . . . . . . . . . . . .. .................................. 4-39 
4.6.3 Bus Lock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-39 
4.7 Interrupts ................................................................... 4-40 

Chapter 5 
80130 Operating System Firmware 

5.1 General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-1 
5.2 S0130 Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-1 
5.3 Device Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-1 
5.4 Operating System Primitives Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-1 
5.5 Interfacing With the SOS6/SS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-1 
5.5.1 Programming The S0130 OSP's Onchip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-1 
5.6 OSP Memory Usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-11 
5.7 Interrupt Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 
5.7.1 Level-Triggered Mode ....................................................... 5-12 
5.7.2 Edge-Triggered Mode ....................................................... 5-12 
5.7.3 Local Interrupt Requests ..................................................... 5-13 
5.7.4 Interrupt Sequence ......................................................... 5-13 
5.S Timing ..................................................................... 5-13 

Tables 

1-1 Implicit Use of General Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-7 
1-2 Logical Addresses Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-10 
1-3 Data Transfer Instructions ......................................................... 1-13 
1-4 Arithmetic Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-14 
1-5 Arithmetic Interpretation of S-Bit Numbers ............................................ 1-14 
1-6 Bit Manipulation Instructions ....................................................... 1-15 
1-7 String Instructions ............................................................... 1-15 
1-S String Instruction Register and Flag Use .............................................. 1-15 
1-9 Program Transfer Instructions ...................................................... 1-16 
1-10 Interpretation of Conditional Transfers ................................................ 1-17 
1-11 Processor Control Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-17 
1-12 Key to Instruction Coding Formats .................................................. 1-22 
1-13 Key to Flag Effects ............................................................... 1-23 
1-14 Key to Operand Types ............................................................ 1-23 
1-15 Effective Address Calculation Time .................................................. 1-24 
1-16 Instruction Set Reference Data ..................................................... 1-24 
1-17 Single-Bit Field Encoding ......................................................... 1-42 
1-1S Mode (MOD) Field Encoding ....................................................... 1-42 
1-19 REG (Register) Field Encoding ..................................................... 1-42 

v 



TABLE OF CONTENTS 

1·20 Register/Memory Field Encoding ................................................... 1·43 
1·21 Key to Machine Instruction Encoding and Decoding ..................................... 1-45 
1·22 8086/88 Instruction Encoding ................................. : .................... 1·46 
1·23 Machine Instruction Decoding Guide ................................................ 1·52 
1·24 8086/8088 Device Pin Descriptions .................................................. 1·61 
1·25 D.C. Characteristics ............................................................. , 1·66 
1·26 A.C. Timing Requirements for Minimum .............................................. 1·67 
1·27 A.C. Timing Requirements for Maximum Complexity System .............................. 1·69 
1·28 Minimum/Maximum Mode Pin Assignments ........................................... 1·71 
1·29 Status Bit Decoding .............................................................. 1·71 
1·30 Status Line Decoders ............................................................ 1·71 
1·31 Status Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1·82 
1·32 EPROM/ROM Parameters ......................................................... 1·82 
1·33 Typical Static RAM Write Timing Parameters .......................................... 1·84 
1·34 Cycle Dependent Write Parameters for RAM Memories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1·84 
1·35 Peripheral Compatibility Parameters ................................................. 1·89 
1·36 Peripherals Cycle Dependent Parameter Requirements .................................. 1·89 
1·37 Compatible Peripherals for a 5 MHz 8086/88 .......................................... 1·90 
1·38 Peripheral Requirements for Full Speed Operation with a 5MHz 8086/88 .................... 1·91 
1·39 Queue Status Bit Decoding ........................................................ 1·99 
1·40 Condition of 8086/88 Bus and Output Signal Pins During Reset ........................... 1·119 
1-41 8288 Outputs During Passive Modes ...................... , ......................... 1·119 
1·42 Interrupt Processing Timing ....................................................... 1·121 
1·43 Status Line Decode Chart .......... , .............................................. 1·131 
1-44 8237 A Internal Registers .......................................................... 1·146 
1·45 Definition of Register Codes ....................................................... 1·147 
2·1 Data Transfer Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2·8 
2·2 Arithmetic Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2·8 
2·3 Arithmetic Interpretation of 8·Bit Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2·9 
2·4 Bit Manipulation Instructions ................................ , ........... , . . . . . . . . .. 2·9 
2·5 String Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. 2·10 
2.6 Program Transfer Instructions ............................................ , ......... 2·10 
2·7 I nterpretation of Conditional Transfers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2·11 
2·8 Processor Control Instructions .................................................... , 2·11 
2·9 Instruction Set Summary .......................................................... 2·13 
2·10 80186/80188 Device Pin Descriptions ................................................ 2·20 
2·11 D.C. Characteristics ............................................................. , 2·23 
2·12 A.C. Characteristics Timing Requirements ........................................ 0 ••• 2·24 
2·13 A.C. Characteristics Master Interface Timing Responses. 0 ••••••••• 0 ••• 0 •••••• 0 ••••• 0 •• 0 0 2·25 
2·14 A.C. Characteristics Chip·Select Timing Requirements. 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 00.0000000000. 0 00' 2·25 
2·15 A.Co Characteristics CLKIN Requirements 0 0 •••• 0 0 ••• 0 0 •• 0 • 0 • 0 0 0 0 •••••• 0 •••• 0 • 0 ••• 0 ••• 2·26 
2·16 A.C. Characteristics CLKOUT Requirements ........... 0 0 0 •••••••• 0 •••••••••••••• 0 •••• 2·26 
2·17 80186 Queue Status. 0 ••••• 0 •• 0 •••• 0 •• 0 0 ••••• 0 ••••• 0 • 0 •• 0 •••• 0 •••••• 0 •••••••••••• 2·28 
2·18 80186 Status Line Interpretation 0 ••••••••••••• 0 •••••• 0 • 0 •••• 0 • 0 ••• 0 ••• 0 ; ••••• 0 •••••• 2·32 
2·19 Bank Selection Decoding and Word Expansion .................... 0 •••••••••••••• 0 ••• 0 2·41 
2·20 80186 Bus Signals ................. 0 ••• 0 •••• 0 •••• 0 •• 0 • 0 0 ••• 0 ••• 0 ••• 0 •• 0 • 0 •••••• o' 2·42 
2·21 80186/188 Interrupt Vectors ............ 0 •••••••••••••• 0 •••• 0 •••••••••••••• 0 ••• 0 •• 0 0 2·50 
2·22 DMA Request Inactive Timing. 0 • 0 •••• 0 0 ••••••• 0 0 • 0 • 0 •••••• 0 •• 0 ••••• 0 ••• 0 ••••••••• o' 2·57 
2·23 Timer Control Block Format .... 0 0 0 •• 0 0 •••••••• 0 ••••••••• 0 • 0 •• 0 ••••• 0 ••• 0 •••••••••• , 2·57 
2·24 Internal Source Priority Level ........... 0 •••••• 0 •• 0 •••• 0 • 0 •••• 0 0 •••••• 0 • 0 ••••••• 0 •• 2·65 
2·25 80186 Interrupt Vector Types ......................... 0 •••••••••• 0 ••• 0 • 0 •••••• 0 • 0 0 •• 2·73 
2·26 UMCS Programming Values .... 0 •••••••• 0 ••••• 0 ••• 0 • 0 •••• 0 ••••••••••••••••••••••• , 2·76 
2·27 LMCS Programming Values . 0 •••••••••••••••••••••••• 0 ••••• 0 •••••••• 0 •••• 0 0 •• 0 • 0 • 0 2·77 
2·28 MPCS Programming Values. 0 0 • 0 •• 0 •• 0 ••• 0 •••• 0 • 0 ••• 0 •••••••••••••••••• 0 •••••••••• 2·77 
2·29 80186WAIT State Programming .......... 0 •••••••••••••• 0 •••••••••••••••••••••••••• 2·78 
2·30 80186 Initial Register State After RESET ............................................. 2·81 

vi 



TABLE OF CONTENTS 

3-1 8087 Device Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-9 
3-2 Worst Case Local Bus Request Wait Times In Clocks ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 
4-1 Physical/Logical Bus Combinations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-2 
4-2 Channel Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. 4-4 
4-3 Instruction Set Reference Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-7 
4-4 Operand Identifiers Definitions ..................................................... 4-14 
4-5 Operand Type Definitions ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-14 
4-6 Instruction Fetch Timings (Clock Periods) ............................................. 4-15 
4-7 8089 Instruction Encoding ......................................................... 4-15 
4-8 8089 Machine Instruction Decoding Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-21 
4-9 R/B/P Field Encoding .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-21 
4-10 WB Field Encoding .............................................................. 4-21 
4-11 AA Field Encoding ............................................................... 4-22 
4-12 MM Field Encoding .............................................................. 4-22 
4-13 8089 DIP Pin Assignments ........................................................ 4-23 
4-14 DMA Assembly Register Operation .................................................. 4-31 
4-15 DMA Transfer Cycles ............................................................. 4-32 
4-16 Status Signals SO-S2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-34 
4-17 Status Signals S3-S6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-34 
4-18 Data Bus Usage ................................................................. 4-37 
4-19 Bus Cycle Decoding ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-37 
4-20 Type of Cycle Decoding ......................................................... ;. 4-37 
4-21 Bus Arbitration Requirements and Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-39 
5-1 80130 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-4 
5-2 OSP Primitives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-6 
5-3 Data Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. 5-8 
5-4 Mnemonic Codes for Exceptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-9 
5-5 Baud Rate Counter Values (16X). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-11 

Figures 

1-1 Small 8088-Based System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-2 
1-2 8086/8088/8089 Multiprocessing System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-3 
1-3 8086 Simplified Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-4 
1-4 8088 Simplified Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-5 
1-5 Overlapped Instruction Fetch and Execution .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-6 
1-6 General Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-7 
1-7 Segment Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-7 
1-8 Status Flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-7 
1-9 Segment Locations in Physical Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-8 
1-10 Currently Addressable Segments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-8 
1-11 Logical and Physical Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-9 
1-12 Physical Address Generation ...................................................... 1-10 
1-13 Dynamic Code Relocation ........................................................ , 1-11 
1-14 Stack Operation ............................................... ; ................. 1-12 
1-15 Reserved Memory and I/O Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-12 
1-16 Flag Storage Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. 1-13 
1-17 Memory Address Computation ..................................................... 1-19 
1-18 Direct Addressing .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-19 
1-19 Register Indirect Addressing ....................................................... 1-19 
1-20 Based Addressing ............................................................... 1-19 
1-21 Accessing A Structure With Based Addressing ......................................... 1-20 
1-22 Indexed Addressing .............................................................. 1-20 
1-23 Accessing an Array with Indexed Addressing .......................................... 1-20 
1-24 Based Index Addressing ............................................... ; . . . . . . . . .. 1-20 
1-25 Accessing a Stacked Array with Based Index Addressing ................................ 1-21 

vii 



TABLE OF CONTENTS 

1-26 String Operand Addressing .......................... ; ......... , ..... : ; ........... , 1-21 
1-27 110 Port Addressing ................................................. " ........... 1-21 
1-28 Typical 8086/88 Machine Instruction Format. ...................... , ................... 1-41 
1-29 Machine Instruction Encoding Matrix ................................................ 1-44 
1-30 8086/8088 DIP Pin Assignments .................................................... 1-65 
1-31 Minimum Mode Waveforms ........................................................ 1-72 
1-32 Maximum Mode Waveforms ....................................................... 1-74 
1-33 Elementary Maximum Mode System ................................................. 1-76 
1-34 8086/88 Minimum Mode System ................................................ : ... 1-77 
1-35 8086/88 Maximum Mode System ................................................... 1-77 
1-36 8086/88 Queue Tracking Circuit .................................................... 1-78 
1-37 8086/88 Lock Activity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-78 
1-38 Decoding Memory and 110 RD" and WR" Commands ................................... 1-79 
1-39 Linear Select for 110 . ............................................................. 1-79 
1-40 Basic 8086/88 Bus Cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-80 
1-41 8086 Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-80 
1-42 Memory Even and Odd Data Byte Transfers .......................................... , 1-81 
1-43 Memory Even and Odd Data Word Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-82 
1-44 8086/8088 Memory Organization ............................. , ..................... 1-82 
1-45 Reserved Memory Locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-82 
1-46 8086/8088 Memory Array ......................................................... 1-83 
1-47 EPROMIROM Bus Interface ....................................................... 1-83 
1-48 Chip Select Generation for Devices Without Output Enables. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-83 
1-49 Chip Selection for Devices With Output Enables ....................................... 1-84 
1-50 Sample Compatibility Analysis Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-84 
1-51 5 MHz 8086 System USing an 8202 Dynamic RAM Controller ............................. 1-85 
1-52 8202 Timing Information ............................................. , ............ 1-86 
1-53 2118 Family Timing .............................................................. 1-87 
1-54 110 Device Chip Select Techniques .................................................. 1-88 
1-55 16-bit to 8-bit Bus Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-88 
1-56 Bipolar PROM Decoder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-88 
1-57 16-bit I/O Decode ................................................................ 1-88 
1-58 8086 System Configurations ...................................................... , 1-90 
1-59 Device Assignment ..................................... ; . . . . . . . . . . . . . . . . . . . . . . .. 1-91 
1-60 110 Input Request Code Example ................................ , ................. , 1-92 
1-61 Block Transfer to 16-bit 110 Using 8086/88 String Primitives ............................... 1-92 
1-62 Block Transfer to 8-bit 110 USing 8086/88 String Primitives. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 1-92 
1-63 Code For Block Transfers .......................................................... 1-93 
1-64 Multiplexed Data Bus ............................................................. 1-93 
1-65 Buffered Data Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1-93 
1-66 Devices With Output Enable on the Multiplexed Bus .................................... 1-93 
1-67 Relationship of ALE to READ ...................................................... 1-94 
1-68 Devices Without Output Enable on the Multiplexed Bus .................................. 1-94 
1-69 Access Time: CS Gated with AO"twR" .............................................. 1-94 
1-70 CE TO WR" Setup and Hold ...................................................... , 1-94 
1-71 Bus Transceiver Control. .......................................................... 1-95 
1-72 Devices With Output Enable on the System Bus ....................................... 1-95 
1-73 CS"/Bus Driving Device Timing .................................................... 1-95 
1-74 De-multiplexing Address and Data From the Processor Bus .............................. 1-96 
1-75 Multiplexed Bus With Local Address Oemultiplexing ................................... , 1-96 
1-76 Fully Buffered System ...................................................•......... 1-97 
1-77 ContrOlling System Transceivers with DEN and OT/R" ................................... 1-97 
1-78 Buffering Devices with OE"/RO" ......................................... " ..... " .. 1-97 
1-79 Buffering Devices Without OE"/RO" and With Common or Separate Input/Output. ............ 1-97 
1-80 Buffering Devices Without OE"/RO" and With Common or Separate Input/Output ............. 1-97 
1-81 Buffering Devices Without OE"/RO" and With Separate Input/Output. ...................... 1-98 

viii 



TABLE OF CONTENTS 

1-82 8086 Family Multiprocessor System ................................................. 1-98 
1-83 8086 Bus Timing-Minimum Mode System ........................................... 1-100 
1-84 8086 Bus Timing-Maximum Mode System Using 8288) ................................. 1-102 
1-85 Max Mode 8086 with Master 8259A on the local Bus and Slave 8259A's on the System Bus ..... 1-107 
1-86 Normally Ready System Inserting a Wait State ......................................... 1-108 
1-87 Normally Not Ready System Avoiding a Wait State ...................................... 1-108 
1-88 Ready I nputs to the 8284 and Output to the 8086/88 .................................... 1-108 
1-89 8284 With 8086/88 Ready Timing ................................................... 1-110 
1-90 Using RDY1/RDY2 to Generate Ready ............................................... 1-110 
1-91 Using AEN1'/AEN2' to Generate Ready ............................................. 1-110 
1-92 Representative Instruction Execution Sequence ....................................... 1-111 
1-93 Instruction loop Sequence ........................................................ 1-111 
1-94 HOlD/HlDA Sequence Timing Diagram ............................................. 1-112 
1-95 DMA Using the 8237-2 ............................................................ 1-114 
1-96 8086/88 Minimum System, 8257 on System Bus 16-Bit Transfers .......................... 1-115 
1-97 HOlD/HlDA-to/from-RQ '/GT' Conversion Circuit. ..................................... 1-116 
1-98 HOlD/HlDA-to/from-RQ'/GT' Conversion Timing ..................................... 1-116 
1-99 Request/Grant Sequence Timing ................................................... 1-117 
1-100 Channel Transfer Delay Timing ..................................................... 1-117 
1-101 Circuit to Translate HOLD into AEN Disable for Maximum Mode 8086/88 .................... 1-118 
1-102 8086/88 Bus Conditioning on Reset Timing Diagram .................................... 1-119 
1-103 Reset Disable for Max Mode 8086/8088 Bus Interface ................................... 1-119 
1-104 Reset Disable for Max Mode 8086/88 Bus Interface in Multi-CPU System .................... 1-120 
1-105 Interrupt Vector Table ............................................................. 1-120 
1-106 Interrupt Acknowledge Timing ...................................................... 1-123 
1-107 NMI During Single Stepping and Normal Single Step Operation ........................... 1-125 
1-108 NMI, INTR, Single Step and Divide Error Simultaneous Interrupts .......................... 1-126 
1-109 8284A Clock Generator/Driver Block Diagram ......................................... 1-127 
1-110 8086/88 Clock Waveform .......................................................... 1-127 
1-111 Recommended Crystal Clock Configuration ........................................... 1-127 
1-112 8284A I nterfaced to an 8086/88 ..................................................... 1-127 
1-113 External Frequency for Multiple 8284's ............................................... 1-128 
1-114 Oscillator to ClK and ClK to PClK Timing Relationships ................................ 1-128 
1-115 Synchronizing CSYNC With EFI .................................................... 1-128 
1-116 CSYNC Setup and Hold to EFI ..................................................... 1-128 
1-117 EFI From 8284A Oscillator ......................................................... 1-129 
1-118 Synchronizing Multiple 8284As ..................................................... 1-129 
1-119 Buffering the 8284 ClK Output ..................................................... 1-129 
1-120 8086 and Coprocessor on the local Bus Share a Common 8284 ........................... 1-129 
1-121 8284A Reset Circuit. ............................................................. 1-130 
1-122 Constant Current Power Up Reset Circuit. ............................................ 1-130 
1-123 8086/88 Reset and System Reset. .................................................. 1-130 
1-124 8288 Bus Controller Block Diagram ................................................. 1-131 
1-125 Status Line Activation and Termination ............................................... 1-132 
1-126 Maximum and Minimum Mode Command Timing .................•..................... 1-132 
1-127 8289 Bus Arbiter Block Diagram ......................................... , .......... 1-133 
1-128 Parallel Priority Resolving Technique ................................................ 1-135 
1-129 Higher Priority Arbiter Obtaining the Bus From a lower Priority Arbiter ...................... 1-135 
1-130 Serial Priority Resolvi ng .......................................................... 1-136 
1-131 Typical Medium Complexity CPU Circuit .............................................. 1-136 
1-132 Min Mode 8086 with Master 8259A on the local Bus and Slave 8259A's on the System Bus ..... 1-137 
1-133 Max Mode 8086 with Master 8259A on the local Bus and Slave 8259A's on the System Bus ..... 1-138 
1-134 MCE Timing to Gate 8259A CAS Address onto the 8086 local Bus ......................... 1-138 
1-135 Interrupt Vector Byte ............................................................. 1-139 
1-136 Priority Structure Variations-Fully Nested Mode ....................................... 1-139 
1-137 IR Triggering Timing Requirements .................................................. 1-141 

ix 



TABLE OF CONTENTS 

1-138 Cascaded 8259A's22 Interrupt Levels ....................................... , ....... 1-141 
1-139 Cascade-Buffered Mode Example ................................................... 1-143 
1-140 8237A DMA Controller Block Diagram ............................................... 1-143 
1-141 Cascaded 8237As ............................................................... 1-145 
1-142 Memory-To-Memory Transfer Timing ................................................. 1-146 
1-143 Command Register .............................................................. 1-147 
1-144 Software Command Codes ........................................................ 1-147 
1-145 Mode Register .................................................................. 1-147 
1-146 Request Register ................................................................ 1-147 
1-147 Mask Bits ...................................................................... 1-148 
1-148 Mask Register .................................................................. 1-148 
1-149 Status Register ................................................................. 1-148 
2-1 80186/80188 Functional Block Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-2 
2-2 ENTER Instruction Stack Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-7 
2-3 Flag Store Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-8 
2-4 80186/80188 DIP Pin Assignments .................................................. 2-19 
2-5 Major Cycle Timing Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27 
2-6 Generating Queue Status Information ................................................ 2-28 
2-7 80186 and 8086 Queue Status Generation ............................................ 2-29 
2-8 Example 80186 Buffered/Unbuffered Data Bus ........................................ 2"30 
2-9 Read Cycle Timing .............................................................. 2-30 
2-10 Generating 1/0 and Memory Read Signals ............................................ 2-31 
2-11 Write Cycle Timing ............................................................... 2-31 
2-12 Synthesizing Delayed Write from the 80186 ........................................... 2-32 
2-13 Active-Inactive Status Transitions ................................................... 2-32 
2-14 80186/8288 Bus Controller Interconnection ........................................... 2-32 
2-15 Circuit Holding LOCK' Active Until Ready Is Returned .................................. 2-33 
2-16 80186/8288/8289 Interconnection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34 
2-17 Physical Memory BytelWord Addressing .............................................. 2-35 
2-18 80186/External Chip SelectlDevice Chip Select Generation .............................. 2-35 
2-19 Example 2764/80186 Interface ..................................................... 2-35 
2-20 Example 2186/80186 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-37 
2-21 Example 8203/DRAM/80186 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 2-38 
2-22 8203/2164A-15 Access Time Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-39 
2-23 8208 Dynamic RAM Controller Interfaces ............................................. 2-40 
2-24 8208 Processor Address Interfaces .................................................. 2-41 
2-25 8208 Differentiated Reset Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-42 
2-26 Single T-State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-42 
2-27 Example 80186 Bus Cycle ......................................................... 2-43 
2-28 80186 Address Generation Timing .................................................. 2-43 
2-29 Demultiplexing the 80186 Address Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-44 
2-30 Valid/lnvalid ARDY Transitions ...................................................... 2-45 
2-31 Asynchronous Ready Circuits for the 80186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46 
2-32 Valid SRDY Transitions on the 80186 ............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-46 
2-33 Valid & Invalid Latch Input Transitions & Responses ..................................... 2-47 
2-34 Signal FloatlHLDA Timing ......................................................... 2-47 
2-35 80186 Idle Bus HOLD/HLDA Timing ............................................... " 2-48 
2c36 HOLD/HLDA Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-49 
2-37 End of HOLD Timing Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-49 
2-38 80186 CPUlDMA Channel Internal Model ............................................. 2-51 
2-39 80186 DMA Register Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-52 
2-40 DMA Control Register .............. ; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-52 
2-41 Example DMA Transfer Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. 2-53 
2-42 DMA Request Timing ............................................................. 2-55 
2-43 DMA Request Logic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-55 
2-44 DMA Acknowledge Synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-55 

x 



TABLE OF CONTENTS 

2-45 Source & Destination Synchronized DMA Request Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-56 
2-46 Timer Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-57 
2-47 80186 Timer Out Signal ........................................................... 2-59 
2-48 Example Timer Interface Code ..................................................... 2-60 
2-49 80186 Real Time Clock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-64 
2-50 80186 Baud Rate Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-64 
2-51 80186 Event Counter ............................................................. 2-65 
2-52 Interrupt Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-65 
2-53 iRMXTM 86 Interrupt Controller Interconnection ........................................ 2-66 
2-54 80186 Interrupt Controller Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-66 
2-55 INTO/INT1 Control Register Formats ................................................. 2-66 
2-56 INT2/INT3 Control Register Format .................................................. 2-67 
2-57 80186 Interrupt Sequencing ....................................................... 2-67 
2-58 Interrupt Controller Control Register ................................................. 2-68 
2-59 80186 Non-Cascaded Interrupt Connection ........................................... 2-69 
2-60 Cascade and Special Fully Nested Mode Interface ...................................... 2-69 
2-61 80186/8258A Interrupt Cascading ................................................... 2-70 
2-62 Example Interrupt Controller Interface Code ........................................... 2-71 
2-63 80186 iRMXTM 86 Mode Interface ................................................... 2-72 
2-64 80186/80130 iRMXTM 86 Mode Interface ............................................. 2-72 
2-65 80186 iRMXTM 86 Mode Interrupt Acknowledge Timing .................................. 2-74 
2-66 80186 Cascaded Interrupt Acknowledge Timing ........................................ 2-75 
2-67 80186 Memory Areas and Chip Selects .............................................. 2-75 
2-68 80186 Chip Select Control Registers ................................................. 2-76 
2-69 UMCS Register ................................................................. 2-77 
2-70 LMCS Register. ................................................................. 2-77 
2-71 MPCS Register ................................................................. 2-77 
2-72 MMCS Register ................................................................. 2-78 
2-73 Clock In/Clock Out Timing ......................................................... 2-79 
2-74 80186 Clock Generator Block Diagram ............................................... 2-79 
2-75 Recommended iAPX 186 Crystal Configuration ........................................ 2-80 
2-76 80186 Crystal Connection ......................................................... 2-80 
2-77 80186 Clock Generator Reset ...................................................... 2-81 
2-78 Coming out of Reset ............................................................. 2-81 
3-1 Submit file Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-2 
3-2 8087 Numeric Data Processor Pin Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-3 
3-3 Typical iAPX 86/2X Family System Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-4 
3-4 Typical iAPX 186/2X Family System Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-5 
3-5 Test for the Existence of an 8087. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-6 
3-6 iSBC 337 MULTIMODULE Mounting Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-6 
3-7 8087 Numeric Processor Extension Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-6 
3-8 Non-Memory Reference Escape Instruction Form ...................................... 3-7 
3-9 Memory Reference Escape Instruction Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-8 
3-10 ESCAPE Instructions Not Used By the 8087 NPX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-8 
3-11 8087 NPX-8086/88 CPU System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3-11 
3-12 8087 NPX-80186/188 CPU System Configuration ..................................... 3-12 
3-13 Synchronizing Execution With WAIT ................................................. 3-15 
3-14 Three Processor System Bus Signal Connections ...................................... 3-17 
3-15 iAPX 88/21 System Configuration ................................................... 3-18 
3-16 iAPX 86/22 System . . . . . . . . . . . . . . . . .. . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . . . . . . . 3-20 
3-17 SMALLBLOCK-NP)LSAVE ..................................................... 3-21 
3-18 SMALLBLOCK-NP)LRESTORE ................................................. 3-21 
3-19 NP)LCLEAN Code Example ...................................................... 3-22 
3-20 Inhibit/Enable 8087 Interrupts ...................................................... 3-23 
4-1 8089 Simplified Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-2 
4-2 Channel Register Set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-3 

xi 



TABLE OF CONTENTS 

4-3 Register Operands in MOV Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-5 
4-4 Register Operands in Arithmetic Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4-5 
4-5 Register Operands in Logical Instructions ............................... , . . . . . . . . . . . .. .4-6 
4-6 Typical 8089 Machine Instruction Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21 
4-7 80891/0 Processor Pinout Diagram ................................................. 4-22 
4-8 Command Communication Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-24 
4-9 CPU/lOP Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. 4-24 
4-10 iAPX 86/11,88/11 Configuration with 8089 in Local Mode .......... " .................... 4-25 
4-11 Typical 8089 Remote Configuration ................................................ " 4-26 
4-12 RESET-CA Initialization Timing ..............................•...................... 4-27 
4-13 Channel Attention Decoding Circuit ................................................. 4-28 
4-14 Channel Command Word Encoding ................................................. 4-28 
4-15 Channel Commands ............................................................. 4-29 
4-16 Channel State Save Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . .. 4-30 
4-17 Source Synchronized Transfer Cycle ..................... : ........................... 4-31 
4-18 Destination Synchronized Transfer Cycle ............................................. 4-32 
4-19 Read Bus Cycle (8-bit Bus) ........................................................ 4-35 
4-20 Write Bus Cycle (16-bit Bus) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 4-36 
4-21 Wait State Timing ................................................................ 4-38 
4-22 Program Status Word ....................... . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. 4-40 
5-1 80130 Simplified Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .. . .. 5-2 
5-2 80130 OSP Pinout Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5-3 
5-3 OSP Typical Configuration With An 8086 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. . . . . . . . . .. 5-10 
5-4 80130 OSP Timing Diagram ....................................................... 5-14 
5-5 High-Speed Address Decoding Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .. 5-15 

xii 



808618088 CPU 1 





CHAPTER 1 
8086/8088 CPU 

1.1 INTRODUCTION 

This chapter contains specific hardware design informa­
tion on the operation and functions of INTEL's 8086/8088 
Central Processing Units (CPUs). This information con­
sists of a component overview of the 8086/88 micropro­
cessors presenting architectural and software 
considerations, individual device pin functional and elec­
trical signal definitions, a detailed description of the mini­
mum and maximum operating modes, detailed 
descriptions of the operation of the address and data 
buses, an explanation of the protocols supported for local 
bus transfers to other devices, and a detailed description 
of interrupt operation. In addition, descriptions of the var­
ious 8086/88 family support circuits and their circuit 
functions appear at the end of the chapter. For more spe­
cific information of any of the 8086 family support cir­
cuits, refer to the Microsystem Components Handbook 
(Order Number: 230843-002). 

1.2 COMPONENT OVERVIEW 

The 8086 and 8088 are closely related third-generation 
microprocessors. Both CPU's contain a 20-bit address 
bus (1 mega-byte of address space) and utilize an identical 
instruction/function format. Differences between the two 
devices consist essentially of their respective data bus 
widths. The 8088 is designed with an 8-bit external data 
path to memory and lIO, while the 8086 can transfer 16 
bits at a time. In almost every other respect the processors 
are identical; software written for one CPU will execute 
on the other without alteration. Both chips are contained 
in standard 40-pin dual in-line packages and operate from 
a single + 5V power source. Except where expressly 
noted, the descriptions contained in this chapter are appli­
cable to both microprocessors. 

The 8086 and 8088 Microprocessors can be used for a 
wide spectrum of microcomputer applications. This flexi­
bility is one of their most outstanding characteristics. Sys­
tems can range from small uniprocessor minimal-memory 
designs implemented with a few chips (see Figure 1-1), to 
multiprocessor systems with up to a megabyte of memory 
(see Figure 1-2). 

Both the 8086 and 8088 microprocessors use a combined, 
or "time-multiplexed", address and data bus that permits 
several of the device pins to serve dual functions. Some 
microprocessor control pins also serve dual functions. 
These pins are defined according to the strapping of a 
single input pin (the MN/MX* pin). This feature provides 
configuration of the CPU's in either "minimum mode" or 
"maximum mode" circuits. 
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In the "minimum mode," the CPU is configured for 
small, single-processor systems. In this configuration all 
control signals are provided by the CPU and the dual 
function pins transfer signals directly to memory and 
input/output devices. 

In the "maximum mode" these same pins take on differ­
ent functions that are helpful in medium to large systems, 
especially systems with multiple processors. An Intel 
8288 Bus Controller is used to provide the control signal 
outputs. This allows several of the device pins previously 
delegated to these control functions to be redefined in or­
der to support multiprocessing applications. A detailed 
description of this feature is presented later in the chapter. 

The 8086 and 8088 Microprocessors are designed to op­
erate with the 8089 Input/Output Processor (lOP) and 
other processors in multiprocessing and distributed proc­
essing systems. When used in conjunction with one or 
more 8089s, the 8086 and 8088 expand the applicability 
of microprocessors into lIO-intensive data processing sys­
tems. Built-in coordinating signals and instructions, and 
electrical compatibility with Intel's MULTIBUS® shared 
bus architecture, simplify and reduce the cost of develop­
ing multiple-processor designs. 

Both the 8086 and 8088 are substantually more powerful 
than any microprocessor previously offered by Intel. Ac­
tual performance, of course, varies from application to 
application, but comparisons to the industry standard 
2-MHz 8080A are instructive. The 8088 is from four to 
six times more powerful than the 8080A; the 8086 pro­
vides seven to ten times the 8080Xs performance. 

The 8086's advantage over the 8088 is the result of the 
8086's 16-bit external data bus. In applications that ma­
nipulate 8-bit quantities extensively, or that are 
execution-bound, the 8088 can approach to within 10% 
of the 8086's processing throughput. 

The improved performance of the 8086 and 8088 is ac­
complished by combining a l6-bit internal data path with 
a pipelined architecture that allows instructions to be pre­
fetched during spare bus cycles. In addition, a compact 
instruction format that enables more instructions to be 
fetched in a given amount of time contributes to this high 
performance. 

Software for 8086 and 8088 systems does not need to be 
written in assembly language. The CPUs are designed to 
provide direct hardware support for programs written in 
high-level languages such as Intel's PLlM-86. Most 
high-level languages store variables in memory; the 
8086/8088 symmetrical instruction set supports direct op­
eration on memory operands, including operands on the 
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stack. The hardware addressing modes provide efficient, 
straightforward implementations of based variables, ar­
rays, arrays of structures and other high-level language 
data constructs. A powerful set of memory-to-memory 
string operations is available for efficient character data 
manipulation. Finally, routines with critical performance 
requirements that cannot be met with PLlM-86 may be 
written in ASM-86 (the 8086/8088 assembly language) 
and linked with PLlM-86 code. 

Although the 8086 and 8088 Microprocessors are totally 
new designs, they make the most of user's existing invest­
ments in systems designed around the 8080/8085 micro­
processors. Many of the standard Intel memory, 
peripheral control and communication chips are compati­
ble with the 8086 and the 8088. Software is developed in 
the familiar Intellec Microcomputer Development System 
environment, and most existing programs, whether writ­
ten in ASM-80 or PLlM-80, can be directly converted to 
run on the 8086 and 8088. 

1.2.1 Architectural Overview 

Both the 8086 and 8088 microprocessors incorporate two 
separate processing units (see Figures 1-3 and 1-4). These 
are the Execution Unit (EU) and the Bus Interface Unit 
(BID). Both microprocessors contain identical EU's. In 
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the 8086 the BID incorporates a 16-bit data bus and a 
6-byte instruction queue. In the 8088 the BID incorpo­
rates an 8-bit data bus and a 4-byte instruction queue. 

The EU executes instructions and the BIU fetches instruc­
tions, reads operands and writes results. The two units can 
operate independently of one another and are able, under 
most circumstances, to extensively overlap instruction 
fetch with execution. The result is that, in most cases, the 
time normally required to fetch instructions "disappears" 
because the EU executes instructions that have already 
been fetched by the BID. Figure 1-5 illustrates this over­
lap and compares it with traditional microprocessor oper­
ation. In the example, overlapping reduces the elapsed 
time required to execute three instructions, and allows two 
additional instructions to be prefetched as well. 

In the 8086 CPU, when two or more bytes of the 6-byte 
instruction queue are empty and the EU does not require 
the BIU to perform a bus cycle, the BIU executes instruc­
tion fetch cycles to refill the queue. In the 8088 CPU, 
when one byte of the 4-byte instruction queue is err-pty. 
the BID executes an instruction fetCh cycle. Note that 
since the 8086 CPU has a 16-bit data bus, it can access 
two instruction object code bytes in a single bus cycle. 
Since the 8088 CPU has an 8-bit data bus, it accesses one 
instruction object code byte per bus cycle. If the EU 
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issues a request for bus access while the BIU is in the 
process of an instruction fetch bus cycle, the BIU comple­
tes the cycle before honoring the EU's request. 

EXECUTION UNIT 

The execution units (EU's) of the 8086 and 8088 are iden­
tical (see Figures 1-3 and 1-4). The EU is responsible for 
the execution of all instructions, for providing data and 
addresses to the BIU, and for manipulating the general 
registers and the flag register. A 16-bit arithmetic/logic 
unit (ALU) in the EU maintains the CPU status and con­
trol flags, and manipulates the general registers and in­
struction operands. All registers and data paths in the EU 
are 16 bits wide for fast internal transfers. 

The EU has no connection to the system bus, the "outside 
world." It obtains instructions from a queue maintained 
by the BIU. Likewise, when an instruction requires ac­
cess to memory or to a peripheral device, the EU requests 
the BIU to obtain and store the data. All addresses manip­
ulated by the EU are 16 bits wide. The BIU, however, 
performs an address relocation that gives the EU access to 
the full megabyte of memory space. 

When the EU is ready to execute an instruction, it fetches 
the instruction object code byte from the BIU's instruction 
queue and then executes the instruction. If the queue is 
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empty when the EU is ready to fetch an instruction byte, 
the EU waits for the instruction byte to be fetched. If a 
memory location or I/O port must be accessed during the 
execution of an instruction, the EU requests the BIU to 
perform the required bus cycle. 

BUS INTERFACE UNIT 

The 8086 and 8088 BIU's are functionally identical, but 
are implemented differently to match the structure and 
performance characteristics of their respective buses. 
Data is transferred between the CPU and memory or I/O 
devices upon demand from the EU. The BIU executes all 
external bus cycles. This unit consists of the segment and 
communications registers, the instruction pointer and the 
instruction object code queue. The BIU combines seg­
ment and offset values in a dedicated adder to derive 
20-bit addresses, transfers data to and from the EU on the 
AL U data bus and loads or "prefetches" instructions into 
the queue. These "prefetched" instructions can then be 
fetched by the EU with a minimum of wait. 

During periods when the EU is busy executing instruc­
tions, the BIU "looks ahead" and fetches more instruc­
tions from memory. These instructions are stored in an 
internal RAM array called the instruction stream queu-:. 
The 8088 instruction queue holds up to four bytes of the 
instruction stream, while the 8086 queue can store up to 
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six instruction bytes. These queue sizes allow the BIU to 
keep the EU supplied with pre fetched instructions under 
most conditions without monopolizing the system bus. 
The 8088 BIU fetches another instruction byte whenever 
one byte in its queue is empty and there is no active re­
quest for bus access from the EU. The 8086 BIU operates 
similarly except that it does not initiate a fetch until there 
are two empty bytes in its queue. The 8086 BIU normally 
obtains two instruction bytes per fetch. If a program 
transfer forces fetching from an odd address, the 8086 
automatically reads one byte from the odd address and 
then resumes fetching two-byte words from the subse­
quent even addresses. 

In most circumstances the queues contain at least one byte 
of the instruction stream and the EU does not have to wait 
for instructions to be fetched. The instructions in the 
queue are those stored in memory locations immediately 
adjacent to and higher than the instruction currently being 
executed. That is, they are the next logical instructions so 
long as execution proceeds serially. If the EU executes an 
instruction that transfers control to another location, the 
BIU resets the queue, fetches the instruction from the new 
address, passes it immediately to the EU, and then begins 
refilling the queue from the new location. In addition, the 
BIU suspends instruction fetching whenever the EU 
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requests a memory or 110 read or write (except that a 
fetch already in progress is completed before executing 
the EU's bus request). 

GENERAL REGISTERS 

Both CPU's have the same complement of eight 16-bit 
general registers (see Figure 1-6). The general registers 
are subdivided into two sets of four registers each. These 
are the data registers (sometimes called the H & L group 
for "high" and "low"), and the pointer and index regis­
ters (sometimes called the P & I group). 

The data registers are unique in that their upper (high) and 
lower halves are separately addressable. This means that 
each data register can be used interchangeably as a 16-bit 
register, or as a two 8-bit registers. The other CPU regis­
ters are always accessed as 16-bit only. The data registers 
can be· used without constraint in most arithmetic and 
logic operations. In addition, some instructions use cere 
tain registers implicitly (see Table 1-1), therefore allow­
ing compact yet powerful encoding. 

The pointer and index registers can also be used in most 
arithmetic and logic operations. All eight general regis­
ters fit the definition of an "accumulator" as defined in 
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first and second generation microprocessors. The P & I 
registers (except for BP) are also used implicitly in some 
instructions (see Table I-I). 

SEGMENT REGISTERS 

The 8086 and 8088 memory space (up to one megabyte) is 
divided into logical segments of up to 64k bytes each. The 
CPU has direct access to four segments at a time. The 
base addresses (starting locations) of these memory seg­
ments are contained in the segment registers (see Figure 
1-7). The CS register points to the current code segment. 
Instructions are fetched from the CS segment. The SS 
register points to the current stack segment. Stack opera­
tions are performed on locations in the SS segment. The 
DS register points to the current data segment. The DS 
register generally contains program variables. The ES 
register points to the current extra segment, which also is 
typically used for data storage. 

The segment registers are accessable to programs and can 
be manipulated with several instructions. Good program­
ming practice and consideration of compatibility with fu­
ture Intel hardware and software products dictate that the 
segment registers be used in a disciplined fashion. 
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INSTRUCTION POINTER 

The 16-bit instruction pointer (IP) is similar to the pro­
gram counter (PC) in the 8080/8085 CPUs. The instruc­
tion pointer is updated by the BIU so that it contains the 
offset (distance in bytes) of the next instruction from the 
beginning of the current code segment; i.e., IP points to 
the next instruction. During normal execution, IP con­
tains the offset of the next instruction to be fetched by the 
BIU. Whenever IP is saved on the stack, however, it is 
first automatically adjusted to point to the next instruction 
to be executed. Programs do not have direct access to the 
instruction pointer, but instructions cause it to change and 
to be saved on and restored from the stack. 

FLAGS 

The 8086 and 8088 have six I-bit status flags (see Figure 
1-8) that the EU posts to reflect certain properties of the 
result of an arithmetic or logic operation. A group of in­
structions is available that allows a program to alter its 
execution depending on the state of these flags, i.e., on 
the result of a prior operation. Different instructions af­
fect the status flags differently; in general, however, the 
flags reflect the following conditions: 
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Figure 1-5 Overlapped Instruction Fetch and Execution 

1. If AF (the auxiliary flag) is set, there has been a carry 
out of the low nibble into the high nibble or a borrow 
from the high from the high nibble into the low nibble 
of an 8-bit quantity (low-order byte of a 16-bit 
quantity). This flag is used by decimal arithmetic in­
structions. 

2. If CF (the carry flag) is set, there has been a carry out 
of, or a borrow into, the high-order bit of the result 
(8-or 16- bit). The flag is used by instructions that add 
and subtract multibyte numbers. Rotate instructions 
can also isolate a bit in memory or a register by plac­
ing it in the carry flag. 

3. If OF (the overflow flag) is set, an arithmetic overflow 
has occurred; that is, a significant digit has been lost 
because the size of the result exceeded the capacity of 

1-6 

its destination location. An Interrupt On Overflow in­
struction is available that will generate an interrupt in 
this situation. 

4. If SF (the sign flag) is set, the high-order bit of the 
result is a 1. Since negative binary numbers are repre­
sented in the 8086 and 8088 in standard two's comple­
ment notation, SF indicates the sign of the result 
(0 = positive, 1 = negative). 

5. If the PF (the parity flag) is set, the result has even 
parity, an even number of I-bits. This flag can be used 
to check for data transmission errors. 

6. If ZF (the zero flag) is set, the result of the operation 
is O. 

Three additional control flags (see Figure 1-8) can be set 
and cleared by programs to alter processor operations: 
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Figure 1-7 Segment Registers 

Table 1-1 Implicit Use of General Registers 

REGISTER OPERATIONS 

AX Word Multiply, Word Divide, 
Word 1/0 

AL Byte Multiply, Byte Divide, Byte 
1/0, Translate, Decimal Arithmetic 

AH Byte Multiply, Byte Divide 

BX Translate 

CX String Operations, Loops 

CL Variable Shift and Rotate 

OX Word Multiply, Word Divide, 
Indirect 1/0 

SP Stack Operations 

SI String Operations 

01 String Operations 
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mF B~CARRY ~PARITY 
AUXILIARY CARRY 

'------- ZERO 

'--------- SIGN 

'----------OVERFLOW 

'-----------INTERRUPT-ENABLE 

'--------------OIRECTlON 

'---------------TRAP 

Figure 1-8 Status Flags 

1. Setting DF (the direction flag) causes string instruc­
tions to auto-decrement; that is, to process strings 
from the high address to the low address, or from 
"right to left." Clearing DF causes string instructions 
to auto-increment, or process strings from "left to 
right." 

2. Setting IF (the interrupt-enable flag) allows the CPU 
to recognize external (maskable) interrupt requests. 
Clearing IF disables these interrupts. IF has no affect 
on either non- maskable external or internally gener­
ated interrupts. 

3. Setting TF (the trap flag) puts the processor into 
single-step mode for debugging. In this mode, the 
CPU automatically generates an internal interrupt af­
ter each instruction, allowing a program to be in­
spected as it executes instruction by instruction. 

MODE SELECTION 

Each of the processors has a strap pin (MN/MX*) that 
defines the function of eight CPU pins in the 8086 and 
nine pins in the 8088. Connecting MN/MX* to + 5V 
places the CPU in minimum mode. This configuration is 
designed for small systems (roughly one or two boards) 
and the CPU provides bus control signals needed by 
memory and peripherals. When MN/MX* is strapped to 
ground, the CPU is configured in maximum mode. In this 
configuration the CPU encodes control signals on three 
lines. An 8288 Bus Controller is added to decode the sig­
nals for the rest of the system. The CPU uses the remain­
ing free lines for a new set of signals designed to help 
coordinate the activities of other processors in the system. 

SEGMENTATION 

Programs for the 8086 and 8088 "view" the memory 
space ( one megabyte) as a group of segments that are de­
fined by application. A segment is a logical unit of mem­
ory that may be up to 64k bytes long. Each segment is 
made up of contiguous memory locations and is an inde­
pendent, separately-addressable unit. Every segment is 
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Figure 1·9 Segment Locations in Physical memory 

assigned (by software) a base address, which is its starting 
location in the memory space. All segments begin on 
16-byte memory boundaries. There are no other restric­
tions on segment locations. Segments may be adjacent, 
disjoint, partially overlapped, or fully overlapped (see 
Figure 1-9). A physical memory location may be mapped 
into (contained in) one or more logical segments. 

The segment registers point to (contain the base address 
values of) the four currently addressable segments (see 
Figure 1-10). Programs obtain access to code and data in 
other segments by changing the segment registers to point 
to the desired segments. 

FFFFFH 

DATA: os: I B /---
CODE: CS: I 1---, 

D 

STACK: SS: I H 1-, I 
I 

EXTRA: ES: I h I I 
I I 

I I L I 

-: 8 
I 
L_ 

OH 

Figure 1·10 Currently Addressable Segments 
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Every application will define and use segments differ­
ently. The currently addressable segments provide a gen­
erous work space; 64k bytes for code, a 64k byte stack 
and 128k bytes of data storage. Many applications can be 
written to simply initialize the segment registers and then 
forget them. Larger applications should be designed with 
careful consideration given to segment definition. 

The segment structure of the 8086/8088 memory space 
supports modular software design by discouraging huge, 
monolithic programs. The segments also can be used to 
advantage in many programming situation. Thke, for ex­
ample, the case of an editor for several on-line terminals. 
A 64k test buffer (probably an extra segment) could be 
assigned to each terminal. A single program could main­
tain all the buffers by simply changing register ES to point 
to the buffer of the terminal requiring service. 

PHYSICAL ADDRESS GENERATION 

In theory, it is useful to think of every memory location as 
having two kinds of addresses, physical and logical. A 
physical address is the 20-bit value that uniquely identi­
fies each byte location in the megabyte memory space. 
Physical addresses range from OR to FFFFFH. All ex­
changes between the CPU and memory components use 
this physical address. 

Programs deal with logical, rather than physical ad­
dresses and allow code to be developed without prior 
knowledge of where the code is to be located in memory 
an facilitate dynamic management of memory resources. 
A logical address consists of a segment base value and an 
offset value. For any given memory location, the segment 
base value locates the first byte of the containing segment 
and the offset value is the distance, in bytes, of the target 
location from the beginning of the segment. Segment base 
and offset values are unsigned 16-bit quantities. The 
lowest-addressed byte in a segment has an offset of O. 
Many different logical addresses can map to the same 
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Figure 1-11 Logical and Physical Addresses 

physical location. In the example (see Figure 1-11) physi­
cal memory location 2C3H is contained in two different 
overlapping segments, one beginning at 2BOH and the 
other at 2COH. 

Whenever the BIU accesses memory -to fetch an instruc­
tion or to obtain or store a variable -it generates a physical 
address from a logical address. This is done by shifting 
the segment base value four bit positions and adding the 
offset as illustrated in Figure 1-12. Note that this addition 
process provides for modulo 64k addressing (addresses 
wrap around from the end of a segment to the beginning 
of the same segment). 

The BIU obtains the logical address of a memory location 
from different sources, depending on the type of refer­
ence that is being made (see Table 1-2). Instructions are 
always fetched from the current code segment; IP con­
tains the offset of the target instruction from the begin­
ning of the segment. Stack instructions always operate on 
the current stack segment; SP contains the offset of the 
top of the stack. Most variables (memory operands) are 
assumed to reside in the current data segment, although a 
program can instruct the BIU to access a variable in one 
of the other currently addressable segments. The offset of 
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a memory variable is calculated by the EU. This calcula­
tion is based on the addressing mode specified in the in­
struction; the result is called the operand's effective 
address (EA). 

Strings are addressed differently than other variables. The 
source operand of a string instruction is assumed to lie in 
the current data segment, but another currently address­
able segment may be specified. Its offset is taken from 
register SI, the source index register. The destination op­
erand of a string instruction always resides in the current 
extra segment; its offset is taken from 01, the destination 
index register. The string instructions automatically ad­
just SI and DI as they process the strings one byte or word 
at a time. 

When register BP, the base pointer register, is designated 
as a base register in an instruction, the variable is assumed 
to reside in the current stack segment. Therefore, register 
BP provides a convenient way to address data on the 
stack. However, BP can also be used to access data in any 
of the other currently addressable segments. 

The BIU's segment assumptions are a convenience to pro­
grammers in most cases. However, it is possible for a pro­
grammer to explicitly direct the BIU to access a variable 
in any of the currently addressable segments. (The only 

210912-001 



8086/8088 CPU 

rlFTLEFT 4 BITS I 1 2 3 4 U~~~ENT} 
·,-1------~-4~!~0~1 ~15~--------~0 ~~g~E~~ 
~;9~------t,.... ...... · ~O I 0 0 2 2 ,OFFSET 

I 0 
15 0 

2 II .... ------l + o 2 

15 t o 

I 1 2 6 2 I PHYSICAL ADDRESS 

~19:-----r+---!0 
TO MEMORY 
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exception is the destination operand of a string instruction 
which must be an extra segment.) This is done by preced­
ing an instruction with a segment override prefix. This 
one-byte machine instruction tells the BID which segment 
register to use to access a variable referenced in the fol­
lowing instruction. 

DYNAMICALLY RELOCATABLE CODE 

The segmented memory structure of the 8086 and 8088 
makes it possible to write programs that are 
position-independent, or dynamically relocatable. Dy­
namic relocation allows a multiprogramming or multi­
tasking system to make particularly effective use of 
available memory. Inactive programs can be written to 
disk and the space they occupied allocated programs. If a 
disk-resident program is needed later, it can be read back 
into any available memory location and restarted. Simi­
larly, if a program needs a large contiguous block of stor­
age, and the total amount is only available in non-adjacent 
fragments, other program segments can be compacted to 
free up a continuous space. This process is illustrated 
graphically in Figure 1-13. 

To be dynamically relocatable, a program must not load 
or alter its segment registers and must not transfer di­
rectly to a location outside the current code segment. In 

other words, all offsets in the program must be relative to 
fixed values contained in the segment registers. This al­
lows the program to be moved anywhere in memory as 
long as the segment registers are updated to point to the 
new base addresses. 

STACK IMPLEMENTATION 

Stacks in the 8086 and 8088 are implemented in memory 
and are located by the stack segment register (SS) and the 
stack pointer (SP). A system may have an unlimited num­
ber of stacks, and a stack may be up to 64k bytes long, the 
maximum length of a segment. (An attempt to expand a 
stack beyond 64k bytes overwrites the beginning of the 
segment.) One stack is directly addressable at a time; this 
is the current stack, often referred to simply as "the" 
stack. SS contains the base address of the current stack 
and SP points to the top of stack (IDS). In other words, 
SP contains the offset of the top of the stack from the 
stack segment's base address. However, the stack's base 
address (contained in SS) is not the "bottom" of the stack. 

Stacks in the 8086 and 8088 are 16 bits wide; instructions 
that operate on a stack add and remove stack items one 
word at a time. An item is pushed onto the stack (see 
Figure 1-14) by decrementing SP by 2 and writing the 
item at a new IDS. An item is popped off the stack by 

Table 1·2 Logical Addresses Sources 

DEFAULT ALTERNATE 
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET 

BASE BASE 

Instruction Fetch CS NONE IP 
Stack Operation SS NONE SP 
Variable (except following) DS CS,ES,SS Effective Address 
String Source DS CS,ES,SS SI 
String Destination ES NONE DI 
BP Used As Base Register SS CS,DS,ES Effective Address 
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Figure 1-13 Dynamic Code Relocation 

copying it from 'IDS and the incrementing SP by 2. In 
other words, the stack goes down in memory toward its 
base address. Stack operations never move items on the 
stack, nor do they erase them. The top of the stack 
changes only as a result of updating the stack pointer. 

RESERVED MEMORY 

Two areas in extreme low and high memory (see Figure 
1-15) are dedicated to specific processor functions or are 
reserved by Intel Corporation for use by Intel hardware 
and software products. The locations are OH through 7FH 
(128 bytes) and FFFFOH through FFFFFH (16 bytes). 
These areas are used for interrupt and system reset proc­
essing. 8086 and 8088 application systems do not use 
these areas for any other purpose. Doing so may make 
these systems incompatible with future Intel products. 

8086/8088 MEMORY ACCESS DIFFERENCES 

The 8086 can access either 8 or 16 bits of memory at a 
time. If an instruction refers to a word variable and that 
variable is located at an even-numbered address, the 8086 
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accesses the complete word in one bus cycle. If the word 
is located at an odd-numbered address, the 8086 accesses 
the word one byte at a time in two consecutive bus cycles. 

To maximize throughput in 8086-based systems, 16-bit 
data should be stored at even addresses (should be 
word-aligned). This is particularly true of stacks. Un­
aligned stacks can slow a system's response to interrupts. 
Nevertheless, except for the performance penalty, 
word alignment is totally transparent to software. This 
allows maximum data packing where memory space is 
constrained. 

The 8086 always fetches the instruction stream in words 
from even addresses except that the first fetch after a pro­
gram transfer to an odd address obtains a byte. The in­
struction stream is disassembled inside the processor and 
instruction alignment will not materially affect the per­
formance of most systems. 

The 8088 always accesses memory in bytes. Word oper­
ands are accessed in two bus cycles regardless of their 
alignment. Instructions are also fetched one byte at a 
time. Although alignment of word operands does not 
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affect the performance of 8088, locating 16-bit data on 
even addresses will insure maximum throughput if the 
system is ever transferred to an 8086. 

1.2.2 Software Overview 

The 8086 and 8088 execute exactly the same instructions. 
This instruction set includes equivalents to the instruc­
tions typically found in previous microprocessors, such as 
the 8080/8085. Significant new operations include: 
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13H 

DEDICATED 

OH 

MEMORY 

[FFH 

OPEN 

100H 

RESERVED FFH 
FBH 
F7H 

OPEN 

OH 

liD 

• multiplication and division of signed and unsigned bi­
nary numbers as well as unpacked decimal numbers, 

• move, scan and compare operations for strings up to 
64k bytes in length, 

• non-destructive bit testing, 

• byte translation from one code to another, 

• software generated interrupts, 

• a group of instructions that can help coordinate the 
activities of multiprocessing systems. 

The following paragraphs provide a description of the in­
structions by category and a detailed discussion of the 
various operand addressing modes. In addition, a com­
plete instruction set summary is provided in tabular form 
which recaps each device instruction by category, and 
provides timing cycles for each instruction. Information 
is also described on how to encode and decode machine 

Figure 1·15 Reserved Memory and 110 Locations instructions for any given assembly code instructioh. 

1-12 210912·001 



8086/8088 CPU 

8086/8088 INSTRUCTION SET 

The 8086/8088 instructions treat different types of oper­
ands uniformly. Nearly every instruction can operate on 
either byte or word data. Register, memory and immedi­
ate operands may be specified interchangeably in most 
instructions. The exception to this is that immediate val­
ues serve as "source" and not "destination" operands. In 
particular, memory variables may be added to, subtracted 
from, shifted, compared, and so on, in place, without 
moving them in and out of registers. This saves instruc­
tions, registers, and execution time in assembly language 
programs. In high-level languages, where most variables 
are memory based, compilers can produce faster and 
shorter object programs. 

The 8086/8088 instruction set can be viewed as existing 
on two levels. One is the assembly level and the other is 
the machine level. To the assembly language program­
mer, the 8086/8088 appear to have a repertoire of about 
100 instructions. One MOV (move) instruction, for exam­
ple, transfers a byte or a word from a register or a mem­
ory location or an immediate value to either a register or a 
memory location. The 8086/8088 CPU's, however, rec­
ognize 28 different MOV machine instructions ("move 
byte register to memory," move word immediate to regis­
ter," etc.). 

The two levels of instruction set address two different re­
quirements: efficiency and simplicity. The approximately 
300 forms of machine-level instructions make very effi­
cient use of storage. For example, the machine instruc­
tions that increments a memory operand is three or four 
bytes long because the address of the operand must be 
encoded in the instruction. To increment a register, how­
ever, does not require as much information, so the in­
struction can be shorter. The 8086/88 have eight different 
machine-level instructions that increment a different 
16-bit register. Each of these instructions are only one 
byte long. 

The assembly level instructions simplify the programmers 
view of the instruction set. The programmer writes one 
form of an INC (increment) instruction and the ASM-86 
assembler examines the operand to determine which ma­
chine level instruction to generate. The following para­
graphs provide a functional description of the 
assembly-level instructions. 

Data Transfer Instructions 

The 8086/8088 instruction set contains 14 data transfer 
instructions. These instructions move single bytes and 
words between memory and registers, and also move sin­
gle bytes and words between the AL or AX registers and 
110 ports. Table 1-3 lists the four types of data transfer 
instructions and their functions. 

1-13 

Table 1-3 Data Transfer Instructions 

GENERAL PURPOSE 

MOV Move byte or word 
PUSH Push word onto stack 
POP Pop word off stack 
XCHG Exchange byte or word 
XLAT Translate byte 

INPUT /OUTPUT 

IN Input byte or word 
OUT Output byte or word 

ADDRESS OBJECT 

LEA Load effective address 
LDS Load pointer using DS 
LES Load pointer using ES 

FLAG TRANSFER 

LAHF Load AH register from flags 
SAHF Store AH register in flags 
PUSHF Push flags onto stack 
POPF Pop flags off stack 

Data transfer instructions are categorized into four types: 
1) general purpose; 2) input/output; 3) address object; 
and 4) flag transfer. The stack manipulation instructions, 
which are used for transferring flag contents, and the in­
structions for loading segment registers are also included 
in this group. Figure 1-16 shows the flag storage formats. 
These formats are used primarily by the LAHF instruction 

~:~~' Is! Z ! U ! A ! U ! P ! U ! C I 
1765432101 

1_8080/8085 FLAGS_I 
1 1 
I I 

~g~~F, I u , U I U , U ,0,0 I I , T , S I Z I U I A I U , P, U ,c I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

U = UNDEFINED; VALUE IS INDETERMINATE 
D = OVERFLOW FLAG 
D = DIRECTION FLAG 
I = INTERRUPT ENABLE FLAG 
T = TRAP FLAG 
S = SIGN FLAG 
Z = ZERO FLAG 
A = AUXILIARY CARRY FLAG 
P = PARITY FLAG 
C = CARRY FLAG 

Figure 1-16 Flag Storage Formats 
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Table 1-4 Arithmetic Instructions 

ADDITION 

ADD Add byte or word 
ADC Add byte or word with carry 
INC Increment byte or word by 1 
AAA ASCII adjust for addition 
DAA Decimal adjust for addition 

SUBTRACTION 

SUB Subtract byte or word 
SBB Subtract byte or word with 

borrow 
DEC Decrement byte or word by 1 
NEG Negate byte or word 
CMP Compare byte or word 
AAS ASCII adjust for subtraction 
DAS Decimal adjust for subtraction 

MULTIPLICATION 

MUL Multiply byte or word unsigned 
IMUL Integer multiply byte or word 
AAM ASCII adjust for multiply 

DIVISION 

DIV Divide byte or word unsigned 
IDIV Integer divide byte or word 
AAD ASCII adjust for division 
CBW Convert byte to word 
CWO Convert word to doubleword 

when converting 8080/8085 assembly language programs 
to run on the 8086 or 8088. The address object instruc­
tions manipulate the addresses of variables instead of the 
contents of values of the variables. This is useful for list 
processing, based variable and string operations. 

Arithmetic Instructions 

The arithmetic instructions (see Table 1-4) perform opera­
tions on four types of numbers: 1) unsigned binary; 2) 
signed binary (integers); 3) unsigned packed decimal; and 
4) unsigned unpacked decimal. See Table 1-5. Binary 
numbers may be 8 or 16 bits long. Decimal numbers are 
stored in bytes, two digits per byte for packed decimal and 
one digit per byte for unpacked decimal. The processor 

always assumes that the operands specified in arithmetic 
instructions contain data that represents valid numbers for 
the type of instruction being performed. Invalid data may 
produce unpredictable results. 

Arithmetic instructions post certain characteristics of the 
result of an operation to six flags. Refer to Chapter 3 in 
the iAPX 86/88,186/188 User's Manual Programmers 
Reference for a detailed description of the arithmetic in­
structions and flags. 

Bit Manipulation Instructions 

The 8086 and 8088 CPU's provide three groups of in­
structions for manipulating bits within both bytes and 
word. These three groups are logicals, shifts and rotates. 
Thble 1-6 lists these three groups of bit manipulation in­
structions with their functions. 

a. Logical 

The logical instructions include the boolean operators 
"not", "and", "inclusive or", and "exclusive or". A 
TEST instruction that sets the flags as a result of a bool­
ean "and" operation, but does not alter either of its oper­
ands, is also included. 

b. Shifts 

The bits in bytes and words may be shifted arithmetically 
or logically. Up to 255 shifts may be performed, accord­
ing to the value of the count operand coded in the instruc­
tion. The count may be specified as a constant 1, or 
register CL, allowing the shift count to be a variable sup­
plied at execution time. Arithmetic shifts may be used to 
multiply and divide binary numbers by powers of two. 
Logical shifts can be used to isolate bits in bytes or words. 

c. Rotates 

Bits in bytes and words can also be rotated. Bits rotated 
out of an operand are not lost as in a shift, but are "cir­
cled" back into the other "end" of the operand. As in the 
shift instructions, the number of bits to be rotated is taken 

Table 1-5 Arithmetic Interpretation of 8-Bit Numbers 

HEX BIT PATTERN UNSIGNED SIGNED UNPACKED PACKED 
BINARY BINARY DECIMAL DECIMAL 

07 00000111 7 +7 7 7 

89 1 0001001 137 -119 invalid 89 

C5 1 1000101 197 -59 invalid invalid 
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Table 1-6 Bit Manipulation Instructions 

LOGICALS 

NOT "Not" byte or word 
AND "And" byteorword 
OR "Inclusive or" byte or word 
XOR "Exclusive or" byte or word 
TEST "Test" byte or word 

SHIFTS 

SHLISAL Shift logical! arithmetic left 
byte or word 

SHR Shift logical right byte or word 
SAR Shift arithmetic right byte or 

word 

ROTATES 

ROL Rotate left byte or word 
ROR Rotate right byte or word 
RCL Rotate through carry left byte 

or word 
RCR Rotate through carry right byte 

or word 

from the count operand, which may specify either a con­
stant of 1, or the CL register. The carry flag may act as an 
extension of the operand in two of the rotate instructions, 
allowing a bit to be isolated in CF and then tested by a JC 
(jump if carry) or JNC (jump if not carry) instruction. 

String Instructions 

Five basic string operations, called primitives, allow 
strings of bytes or words to be operated on, one element 
(byte or word) at a time. Strings of up to 64k bytes may be 
manipulated with these instructions. Instructions are 
available to move, compare and scan for a value, as well 
as moving string elements to and from the accumulator. 
Table 1-7 lists the string instructions. These basic opera­
tions may be preceded by a special one-byte prefix that 
causes the instruction to be repeated by the hardware, al­
lowing long strings to be processed much faster than 
would be possible with a software loop. The repetitions 
can be terminated by a variety of conditions, and a re­
peated operation may be interrupted and resumed. 

The string instructions operate similarly in many respects 
(refer to Table 1-8). A string instruction may have a 
source operand, a destination operand, or both. The harde 
ware assumes that a source string resides in the current 
data segment. A segment prefix may be used to override 
this assumption. A destination string must be in the cur­
rent extra segment. The assembler checks the attributes of 
the operands to determine if the elements of the strings 
are bytes or words. However, the assembler does not use 
the operand names to address strings. Instead, the con­
tents of register SI (source index) is used as an offset to 
address the current element of the source string. Also, the 
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Table 1-7 String Instructions 

REP Repeat 

REPE/REPZ Repeat while equal/zero 

REPNE/REPNZ Repeat while not 
equal/not zero 

MOVS Move byte or word string 

MOVSB/MOVSW Move byte or word string 

CMPS Compare byte or word 
string 

SCAS Scan byte or word string 

LODS Load by.te or word string 

STOS Store byte or word string 

contents of register DI (destination index) is taken as the 
offset of the current destination string element. These 
registers must be initialized to point to the 
source/destination strings before executing the string in­
structions. The LDS, LES and LEA instructions are use­
ful in performing this function. 

String instructions automatically update SI and/or DI in 
anticipation of processing the next string element. Setting 
DF (direction flag) determines whether the index registers 
are auto-incremented (DF = 0) or auto-decremented 
(DF = 1). Ifbyte strings are being processed, SI and/or DI 
is adjusted by 1. The adjustment is 2 for word strings. 

Table 1-8 String Instruction Register 
and Flag Use 

SI 

01 

CX 

ALiAX 

OF 

ZF 

Index (offset) for source string 

Index (offset) for destination 
string 

Repetition counter 

Scan value 
Destination for LODS 
Source for STOS 

0= auto-increment SI, 01 
1 = auto-decrement SI, 01 

Scan / compare terminator 
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If a repeat prefix has been coded, then register CX (count 
register) is decremented by 1 after each repetition of the 
string instruction. CX must be initialized to the number of 
repetitions desired before the string instruction is exe­
cuted. If CX is 0, the string instruction is not executed, 
and control goes to the following instruction. 

Program Transfer Instructions 

The sequence in which instructions are executed in the 
8086/8088 is determined by the content of the code seg­
ment register (CS) and the instruction pointer (lP). The 
CS register contains the base address of the current code 
segment, the 64k portion of memory from which instruc­
tions are currently being fetched. The IP points to the 
memory location from which the next instruction is to be 
fetched. In most operating conditions, the next instruction 
to be executed will have already been fetched and is wait­
ing in the CPU instruction queue. The program transfer 
instructions operate on the instruction pointer and on the 
CS register; changing the content of these causes normal 
sequential operation to be altered. When a program trans­
fer occurs, the queue no longer contains the correct in­
struction. When the BIU obtains the next instruction from 
memory using the new IP and CS values, it passes the 
instruction directly to the EU and then begins refilling the 
queue from the new location. 

Four groups of program transfers are available with the 
8086/8088 CPU's. See Table 1-9. These are unconditional 
transfers, conditional transfers, iteration control instruc­
tions, and interrupt-related instructions. 

a. Unconditional Transfers 

The unconditional transfer instructions may transfer con­
trol to a target instruction within the current code segment 
(intrasegment transfer) or to a different code segment (in­
tersegment transfer). The ASM-86 Assembler terms an 
intrasegment transfer SHORT or NEAR and an interseg­
ment transfer FAR. The transfer is made unconditionally 
any time the instruction is executed. 

b. Conditional Transfers 

The conditional transfer instructions are jumps that may 
or may not transfer control depending on the state of the 
CPU flags at the time the instruction is executed. These 
18 instructions (see Thble 1-10) each test a different com­
bination of flags for a condition. If the condition is "true" 
then control is transferred to the target specified in the 
instruction. If the condition is "false" then control passes 
to the instruction that follows the conditional jump. All 
conditional jumps are SHORT, that is, the target must be 
in the current code segment and within -128 to + 127 
bytes of the first byte of the next instruction (IMP OOH 
jumps to the first byte of the next instruction). Since 

Table 1·9 Program Transfer Instructions 

UNCONDITIONAL TRANSFERS 

CALL Call procedure 
RET Return. from procedure 
JMP Jump 

CONDITIONAL TRANSFERS 

JA/JNBE Jump if above/not below 
nor equal 

JAE/JNB Jump if above or 
equal/not below 

JB/JNAE Jump if below/not above 
nor equal 

JBE/JNA Jump if below or 
equal/ not above 

JC Jump if carry 
JE/JZ Jump if equal/zero 
JG/JNLE Jump if greater/not less 

nor equal 
JGE/JNL Jump if greater or 

equal/not less 
JLlJNGE Jump if less/not greater 

nor equal 
JLE/JNG Jump if less or equal/not 

greater 
JNC Jump if not carry 
JNE/JNZ Jump if not equal/not 

zero 
JNO Jump if not overflow 
JNP/JPO Jump if not parity/parity 

odd 
JNS Jump if not sign 
JO Jump if overflow 
JP/JPE Jump if parity / parity 

even 
JS Jump if sign 

ITERATION CONTROLS 

LOOP Loop 
LOOPE/LOOPZ Loop if equal/zero 
LOOPNE/LOOPNZ Loop if not equal/not 

zero 
JCXZ Jump if register CX = 0 

INTERRUPTS 

INT Interrupt 
INTO Interrupt if overflow 
IRET Interrupt return 
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Table 1·10 Interpretation of Conditional Transfers 

MNEMONIC CONDITION TESTED "JUMP IF ..... 

JA/JNBE (CF OR ZF)=O above/not below nor equal 
JAE/JNB CF=O above or equal/not below 
JB/JNAE CF=1 below Inot above nor equal 
JBE/JNA (CF OR ZF)=1 below or equal I not above 
JC CF=1 carry 
JE/JZ ZF=1 equal/zero 
JG/JNLE ((SF XOR OF) OR ZF)=O greater I not less nor equal 
JGE/JNL (SF XOR OF)=O greater or equal/not less 
JLIJNGE (SF XOR OF)=1 less/not greater nor equal 
JLE/JNG ((SF XOR OF) OR ZF)=1 less or equal I not greater 
JNC CF=O not carry 
JNE/JNZ ZF=O not equal I not zero 
JNO OF=O not overflow 
JNPIJPO PF=O not parity I parity odd 
JNS SF=O not sign 
JO OF=1 overflow 
JP/JPE PF=1 parity I parity equal 
JS SF=1 sign 

Note: "above" and "below" refer to the relationship of two unsigned values; 
"greater" and "less" refer to the relationship of two signed values. 

jumps are made by adding the relative displacement of the 
target to the instruction pointer, all conditional jumps are 
self-relative and are appropriate for position-independent 
routines. 

c. Iteration Control 

The iteration control instructions can be used to regulate 
the repetition of software loops. These instructions use the 
CX register as a counter. Like the conditional transfers, 
the iteration control instructions are self-relative and may 
only transfer to targets that are within -128 to + 127 
bytes of themselves, i.e., they are SHORT transfers. 

d. Interrupt Instructions 

The interrupt instructions allow interrupt service routines 
to be activated by programs as well as by external hard­
ware devices. The effect of software interrupts is similar 
to hardware-initiated interrupts. However, the processor 
does not execute an interrupt acknowledge bus cycle if the 
interrupt originates in software or with an NMI. 

Processor Control Instructions 

The processor control instructions (see Table 1-11) allow 
programs to control various CPU functions. One group of 
instructions updates flags, and another group is used pri­
marily for synchronizing the 8086 or 8088 to external 
events. A final instruction causes the CPU to do nothing. 
Except for the flag operations, none of the processor con­
trol instructions affect the flags. 

1-17 

OPERAND ADDRESSING MODES 

The 8086 and 8088 access instruction operands in many 
different ways. Operands may be contained in registers, 
within the instruction itself, in memory, or at I/O ports. 
Also, the addresses of memory and I/O port operands can 
be calculated in several different ways. These addressing 

Table 1·11 Processor Control Instructions 

FLAG OPERATIONS 

STC Set carry flag 
CLC Clear carry flag 
CMC Complement carry flag 
STO Set direction flag 
CLO Clear direction flag 
STI Set interrupt enable flag 
CLI Clear interrupt enable flag 

EXTERNAL SYNCHRONIZATION 

HLT Halt until interrupt or reset 
WAIT Wait for TEST pin active 
ESC Escape to external processor 
LOCK Lock bus during next 

instruction 

NO OPERATION 

NOP No operation 
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modes greatly extend the flexibility and convenience of 
the instruction set. The following paragraphs briefly de­
scribe the register and immediate modes of operand ad­
dressing, and then provide a detailed description of the 
memory and I/O addressing modes. 

Register and Immediate Operands 

Instructions that specify only register operands are gener­
ally the most compact and fastest executing of the operand 
addressing forms. This is because the register operand 
addresses are encoded in instructions in just a few bits, 
and because these operands are performed entirely within 
the CPU (no bus cycles are run). Registers may serve as 
source operands, destination operands, or both. 

Immediate operands are constant data contained in an in­
struction. The data may be either 8 or 16 bits in length. 
Immediate operands can be accessed quickly because they 
are available directly from the instruction queue. Like the 
register operand, no bus cycles need to be run to obtain an 
immediate operand. The limitations on immediate oper­
ands are that they may only serve as source operands and 
that they are constant value i 

Memory Addressing Modes 

Although the EU has direct access to register and immedi­
ate operands, memory operands must be transferred to 
and from the CPU over the bus. When the EU needs to 
read or write a memory operand, it must pass an offset 
value to the BIU. The BIU adds the offset to the (shifted) 
content of a segment register producing a 20Cbit physical 
.address and then executes the bus cycle or cycles. needed 
to access the operand. 

a. The Effective Address 

The offset that the EU calculates for a memory operand is 
called the operand's effective address or EA. This address 
is an unsigned l6-bit number that expresses the operand's 
distance in bytes from the beginning of the segment in 
which it resides. The EU can calculate the effective ad­
dress in several different ways. Information encoded in 
the second byte of the instruction tells the EU how to cal­
culate the effective address of each memory operand. A 
compiler or assembler derives this information from the 
statement or instruction written by the programmer. As­
sembly language programmers have access to all address­
ing modes. 

The EU calculates the EA by summing a displacement, 
the content of a base register and the content of an index 
register (see Figure 1-17). Any combination of these 
three components may be present in a given instruction. 
This allows a variety of memory addressing modes. 

1-18 

The displacement element is an 8-or 16-bit number that is 
contained in the instruction. The displacement generally 
is derived from the position oftheoperand name (a varia­
ble or label) in the program. The programmer can also 
modify this value or explicitly specify the displacement. 

A programmer may specify that either BX or BP is to 
serve as a base register whose content is to be used in the 
EA computation. 

Similarly, either SI or DI may be specified as the index 
register. The displacement value is a constant. The con­
tents of the base and index registers may change during 
execution. This allows one instruction to access different 
memory locations as determined by the current values in 
the base and/or index registers. Effective address calcula­
tions with the BP are made using the SS register, by de­
fault, Although either the DS or the ES registers may be 
specified instead. 

b. Direct Addressing 

Direct addressing is the simplest memory addressing 
mode (see Figure 1-18). No registers are involved and the 
EA is taken directly from the displacement of the instruc­
tion. Direct addressing is typically to access simple varia­
bles (scalars). 

c. Register Indirect Addressing 

The effective address of a memory operand may be.taken 
directly from one of the base or index registers (see Fig­
ure 1-19). One instruction can operate on many different 
memory locations if the value in the base or index register 
is updated appropriately. Any 16-bit general register may 
be used for register indirect addressing with the JMP or 
CALL instructions. 

d. Based Addressing 

In based addressing (see Figure 1-20), the effective ad­
dress is the sum of a displacement value and the content of 
register BX or BP. Specifying register BP as a base regis­
ter directs the BIU to obtain the operand from the current 
stack segment (unless a segment override prefix is 
present). This makes based addressing with BP a very 
convenient way to access stack data. 

Based addressing also provides a simple way to address 
structures which may be located at different places in 
memory (see Figure 1-21). A base register can be pointed 
at the base of the structure and elements of the structure 
can be addressed by their displacement from the structure 
base. Different copies of the same structure can be ac­
cessed by simply changing the base register. 
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Figure 1-17 Memory Address Computation 
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Figure 1-18 Direct Addressing 
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Figure 1-19 Register Indirect Addressing 

I 

1-19 

e. Indexed Addressing 

The effective address is calculated from the sum of a dis­
placement plus the content of an index register (SI or DI) 
in index addressing (see Figure 1-22). Indexed address is 
often used to access elements in an array (see Figure 
1-23). The displacement locates the beginning of the ar­
ray, and the value of the index register selects one element 

E~+i 
I EA 

Figure 1-20 Based Addressing 
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Figure 1-21 Accessing A Structure 
With Based Addressing 

( the first element is selected if the index register contains 
0). Since all array elements are the same length, simple 
arithmetic on the index register may select any element. 
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Figure 1-22 Indexed Addressing 
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Figure 1-23 Accessing an Array 
With Indexed Addressing 
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Ei~=+i 
I EA 

Figure 1-24 Based Index Addressing 

f. Based Index Addressing 

Based index addressing generates an effective address that 
is the sum of a base register, an index register and a dis­
placement (see Figure 1-24). This mode of addressing is 
very flexible because two address components can be var­
ied at execution time. 

Based index addressing provides a convenient way for a 
procedure to address an array allocated on a stack (see 
Figure 1-25). Register BP can contain the offset of a ref­
erence point on the stack, typically the top of the stack 
after the procedure has saved registers and allocated local 
storage. The offset of the beginning of the array from the 
reference point can be expressed by a displacement value, 
and the index register can be used to access individual 
array elements. Arrays contained in structures and matri­
ces (two-dimensional arrays) can also be accessed with 
based indexed addressing. 

g. String Addressing 

String instructions do not use the normal memory ad­
dressing modes to access operands. Instead, the index 
registers are used implicitly (see Figure 1-26). When a 
string instruction is executed, SI is assumed to point to the 
first byte or word of the source string. DI is assumed to 
point at the first byte or word of the destination string. In 
a repeated string operation, the CPU's automatically ad­
just SI and DI to obtain subsequent bytes or words. Note 
that for string instructions DS is the default segment reg­
ister to SI and ES is the default segment register for DI. 
This allows string instructions to easily operate on data 
located anywhere within the one megabyte address space. 

1/0 Port Addressing 

Any of the memory operand addressing modes may be 
used to access an I/O port if the port is memory mapped, 
For example, a group of terminals can be accessed as an 
"array". String instructions can also be used to transfer 
data to memory-mapped ports with an appropriate hard­
ware interface. 
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Figure 1-25 Accessing a Stacked Array with Based Index Addressing 

Two different addressing modes can be used to access 
ports located in the 110 space (see Figure 1-27). The port 
number is an 8-bit immediate operand for direct address­
ing. This allow fixed access to ports numbered 0-255. 
Indirect 110 port addressing is similar to register indirect 
addressing of memory operands. The port number is 
taken from register DX and can range from 0 to 65,535. 
By previously adjusting the content of register DX, one 
instruction can access any port in the 110 space. A group 
of adjacent ports can be accessed using a simple software 
loop that adjusts the value of DX. 

Instruction timings are presented as the number of clock 
periods required to execute a particular form of the in­
struction (register-to-register, immediate-to-memory, 
etc.). If the system is running with a 5 MHz maximum 
clock, the maximum clock period is 2oons; at 8MHz, the 
clock period is 125ns. When memory operands are used, 
" + EA" indicates a variable number of additional clock 
periods needed to calculate the operand's effective ad­
dress. Table 1-15 lists all effective address calculation 
times. 

INSTRUCTION SET SUMMARY 

The following paragraphs, and tables, provide detailed in­
formation for the 8086/8088 instruction set. Tables 1-12, 
1-13 and 1-14 explain the symbols that are used in Table 
1-16, the instruction set reference data table. Machine 
language instruction encoding and decoding information 
is provided in the paragraphs immediately following the 
instruction set summary. 

IOPCODE I 

~ ___ S~I ____ ~~I SOURCEEA 

____ D_I ____ ... J---I DESTINATION EA I 

Figure 1-26 String Operand Addressing 

1-21 

DIRECT PORT ADDRESSING 

~ 
~1~P~O~R~T~A~D~D~R'=ES~s~1 

INDIRECT PORT ADDRESSING 

Figure 1-27 1/0 Port Addressing 
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Table 1·12 Key to Instruction Coding Formats 

IDENTIFIER 

destination 

source 

source-table 

target 

short-label 

accumulator 

port 

source-string 

dest-string 

count 

interrupt-type 

USEDIN 

data transfer, 
bit manipulation 

data transfer, 
arithmetic, 
bit manipulation 

XLAT 

JMP, CALL 

cond. transfer, 
iteration control 

IN,OUT 

IN,OUT 

string ops. 

string ops. 

shifts, rotates 

INT 

optional-pop-value RET 

external-opcode ESC 

EXPLANATION 

A register or memory location that may contain data 
operated on by the instruction, and which receives (is 
replaced by) the result of the operation. 

A register, memory location or immediate value that is 
used in the operation, but is not altered by the instruc­
tion. 

Name of memory translation table addressed by register 
BX. 

A label to which control is to be transferred directly, or a 
register or memory location whose content is the 
address of the location to which control is to be transfer­
red indirectly. 

A label to which control is to be conditionally 
transferred; must lie within -128 to +127 bytes of the first 
byte of the next instruction. 

Register AX for word transfers, AL for bytes. 

An I/O port number; specified as an immediate value of 
0-255, or register DX (which contains port number in 
range 0-64k). 

Name of a string in memory that is addressed by register 
SI; used only to identify string as byte or word and 
specify segment override, if any. This string is used in 
the operation, but is not altered. 

Name of string in memory that is addressed by register 
DI; used only to identify string as byte or word. This 
string receives (is replaced by) the result of the opera­
tion. 

Specifies number of bits to shift or rotate; written as 
immediate value 1 or register CL (which contains the 
count in the range 0-255). 

Immediate value of 0-255 identifying interrupt pOinter 
number. 

Number of bytes (0-64k, ordinarily an even number) to 
discard from stack. 

Immediate value (0-63) that is encoded in the instruction 
for use by an external processor. 
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Table 1-13 Key to Flag Effects 

IDENTIFIER EXPLANATION 

(blank) not altered 

0 cleared to 0 

1 set to 1 

X set or cleared according 
to result 

U undefined-contains no 
reliable value 

R restored from previously-
saved value 

The timings given for control transfer instructions include 
any additional clocks required to reinitialize the instruc­
tion queue as well as the time required to fetch the target 
instructions. For instructions executing on an 8086, four 
clocks should be added for each instruction reference to a 
word operand located at an odd memory address to reflect 
any additional operand bus cycles required. Also, for in­
structions executing on an 8088, four clocks should be 
added to each instruction reference to a 16-bit memory 
operand. This includes stack operations. The required 
number of data references is listed for each instruction in 
Table 1-16 to aid in this calculation. 

All of the instruction times given are of the form "n(m)" , 
where"n" is the number of clocks required for the 8086 
to execute the given instruction, and "m" is the number of 
clocks required by the 80186 for the same instruction. 
The number of clocks required for the 8088 will be n for 
8-bit operations and n + (4 * transfers) for 16-bit opera­
tions. For the 80188, the number of clocks will be m for 
8-bit operations and m + (4 * transfers) for 16 bit 
operations. 

For instructions which repeat a specified number of times, 
the values m and n each consist of two parts in the relation 
"x + y/rep", where x is the initial number of clocks re­
quired to start the instruction, and y is the number of 
clocks corresponding to the number of iterations speci­
fied. For 16-bit repeated instructions on the 8088 and 
80188, when the expression "(4 * transfers)" has to be 
added to m or n, it should be added to the y part of the 
expression before it is multiplied by the number of 
repetitions. 

Several additional factors can alter the actual execution 
time from the figures shown in Table 1-16. The time pro­
vided assumes that the instruction has already been pre­
fetched and that it is waiting in the instruction queue. This 
assumption is valid under most, but not all, operating con­
ditions. A series of fast executing (fewer than two clocks 
per opcode byte) instructions can drain the queue and in­
crease execution time. Execution time is also slightly 

Table 1-14 Key to Operand Types 

IDENTIFIER EXPLANATION 

(no operands) No operands are written 

register 

reg 16 

An 8- or 16-bit general register 

A 16-bit general register 

seg-reg A segment register 

accumulator Register AX or AL 

immediate A constant in the range 
O-FFFFH 

immed8 

memory 

mem8 

A constant in the range O-FFH 

An 8- or 16-bit memory 
location(1) 

An 8-bit memory location(1) 

mem16 A 16-bit memory location(1) 

source-table Name of 256-byte translate 
table 

source-string Name of string addressed by 
register SI 

dest-string Name of string addressed by 
register 01 

OX Register OX 

short-label A label within -128 to +127 
bytes of the end of the instruc­
tion 

near-label 

far-label 

near-proc 

far-proc 

memptr16 

memptr32 

regptr16 

repeat 

A label in current code 
segment 

A label in another code 
segment 

A procedure in current code 
segment 

A procedure in another code 
segment 

A word containing the offset of 
the location in the current code 
segment to which control is to 
be transferred(1) 

A doubleword containing the 
offset and the segment base 
address of the location in 
another code segment to which 
control is to be transferred(1) 

A 16-bit general register 
containing the offset of the 
location in the current code 
segment to which control is to 
be transferred 

A string instruction repeat 
prefix 

(1)Any addreSSing mode-direct, register in­
direct, based, indexed, or based 
indexed-may be used 
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Table 1·15 Effective Address Calculation Time 

EA COMPONENTS CLOCKS' 

Displacement Only 6 
Base or Index Only (BX,BP,SI,DI) 5 
Displacement 

+ 9 
Base or Index (BX,BP,SI,DI) 
Base BP + 01, BX + SI 7 

+ 
Index BP+SI, BX+DI 8 
Displacement BP+DI+DISP 

11 
+ BX+SI+DISP 

Base 
+ BP+SI+DISP 

12 Index BX+ 01+ DISP 

• Add 2 clocks for segment override 

effected by the interaction of the EU and BIU when mem­
ory operands must be read or written. If the EU needs 
access to memory, it may have to wait for up to one clock 
if the BIU has already started an instruction fetch bus cy­
cle. (The EU can detect the need for a memory operand 
and post a bus request far enough in advance of its need 

for this operand to avoid waiting a full 4-clock bus cycle). 
If the queue is full the EU does not have to wait because 
the BIU is idle. (This assumes the BIU can obtain the bus 
on demand and no other processors are competing for the 
bus). . 

With typical instruction mixes, the time actually required 
to execute a sequence of instructions will be within 
5 - 10% of the sum of the individual timings provided in 
Table 1-16. Cases can be constructed, however, in which 
execution time may be much higher than the sum of the 
figures provided in the table. The execution time for a 
given sequence of instructions is always repeatable, as­
smning . comparable external conditions (interrupts, co­
processor activity, etc.). Ifthe execution time for a given 
series of instructions must be determined exactly, the in­
structions should be run on an execution vehicle such as 
the iSBC 88/25 or 86/30 board. 

MACHINE INSTRUCTION ENCODING AND 
DECODING 

Machine instruction encoding and decoding is primarily 
the concern of the programmer. It is presented here for 
the hardware designer since such encoding and decoding 

Table 1·16 Instruction Set Reference Data 

AAA I AAA (no operands) 
ASCII adjust for addition 

FIODITSZAPC 
ags U U U X U X 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 8(8) - 1 AAA 

AAD I AAD (no operands) 
ASCII adjust for division 

FIODITSZAPC 
ags U XXUXU 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 60(15) - 2 ADD 

AAM I AAM (no operands) 
ASCII adjust for multiply 

FI 0 0 ITS ZAP C 
ags U XXUXU 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 83(19) - 2 AAM 

AAS I AAS (no operands) 
ASCII adjust for subtraction 

FI 0 0 ITS ZAP C 
ags U UUXUX 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 8(7) - 1 AAS 

• For the 8086 (80t 86) add. four clocks for each 16·M word transfer With an odd address. For the 8088 (80188) add four clocks for each 16·M wora 
transfer. 
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Table 1·16 Instruction Set Reference Data (continued) 

ADC I ADC destination, source 
Add with carry 

FIODITSZAPC 
ags x XXX XX 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3(3) - 2 ADCAX,SI 
register, memory 9(10)+EA 1 2-4 ADC CX, BETA [SI) 
memory, register 16(10)+EA 2 2-4 ADC ALPHA [BX) [SI), DI 
register, immediate 4(4) - 3-4 ADC BX, 256 
memory, immediate 17(16)+EA 2 3-6 ADC GAMMA, 30H 
accumulator, immediate 4(3-4) - 2-3 ADCAL,5 

ADD I ADD destination, source 
Addition 

FIODITSZAPC 
ags X XXXXX 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3(3) - 2 ADDCX, DX 
register, memory 9(10)+EA 1 2-4 ADD DI, [BX),ALPHA 
memory, register 16(10)+EA 2 2-4 ADD TEMP, CL 
register, immediate 4(4) - 3-4 ADDCL,2 
memory, immediate 17(16)+EA 2 3-6 ADDALPHA,2 
accumulator, immediate 4(3-4) - 2-3 ADD AX, 200 

AND I AND destination, source . 0 D I TSZAPC 
Logical and Flags 0 XXUXO 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3(3) - 2 ANDAL, BL 
register, memory 9(10)+EA 1 2-4 AND CX, FLAB WORD 
memory, register 16(10)+EA 2 2-4 AND ASCII [DI), AL 
register, immediate 4(4) - 3-4 AND CX, OFOH 
memory, immediate 17(16)+EA 2 3-6 AND BETA, 01 H 
accumulator, immediate 4(3-4) - 2-3 AND AX, 01 01 OOOOB 

BOUND I BOUND destination, source 
Array bounds check 

Flags 0 D ITS ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

register, memory (35) 2 2 BOUND AX, ALPHA 

CALL I CALL target 
Call a procedure 

FIODITSZAPC 
ags x XXXXX 

Operands Clocks Transfers· Bytes Coding Example 

near-proc 19(14) 1 3 CALL NEAR_PROC 
far-proc 28(23) 2 5 CALL FOR_PROC 
memptr 16 21(19)+EA 2 2-4 CALL PROC_ TABLE [SI) 
regptr 16 16(13) 1 2 CALL AX 
memptr32 37(38)+EA 4 2-4 CALL [BX).TASK [SI) 

CBW I CBW (no operands) 
Convert byte to word 

FIODITSZAPC 
ags u UUXUX 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2(2) - 1 CBW 

"For the 8086 (80186) add four clocks for each 16·bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word 
transfer. 
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Table 1-16 Instruction Set Reference Data (continued) 

CLC I CLC (no operands) Flags 
ODITSZAPC 

Clear carry flag 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2(2) - 1 CLC 

CLO I CLD (no operands) Flags 
ODITSZAPC 

Clear direction flag 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2(2) - 1 CLD 

CLI I Cli (no operands) Flags 
ODITSZAPC 

Clear interrupt flag 0 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2(2) - 1 CLI 

CMC I CMC (no operands) Flags 
ODITSZAPC 

Complement carry flag X 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 2(2) - 1 CMC 

CMP I CMP destination, source Flags 
ODITSZAPC 

Compare destination to source X XXX XX 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3(3) - 2 CMP BX, CX 
register, memory 9(10)+EA 1 2-4 CMP DH, ALPHA 
memory, register 9(10)+EA 1 2-4 CMP [BP + 21, SI 
register, immediate 4(3)+EA - 3-4 CMP BL, 02H 
memory, immediate 10(10)+EA 1 3-6 CMP [BXI.RADAR [01), 3420H 
accumulator, immediate 4(3-4) - 2-3 CMP AL; 000100008 

CMPS I CMPS des-string, source-string 
Compare string 

FI 0 0 ITS ZAP C 
ags X XXXXX 

Operands Clocks Transfers' Bytes Coding Example 

dest-string, source-string 22(22) 2 1 CMPS BUSS1, BUFF2 
(repeat) dest-string, source-string 9+22/rep 2/rep 1 REPE CMPS 10, KEY 

(5 + 22/rep) 

CWO I CWD(no operands) Flags 
00 I TSZAPC 

Convert word to doubleword 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 5(4) . - 1 CWO 

OAA I DAA (no operands) Flags 
ODITSZAPC 

Decimal adjust for addition X XXXXX 

Operands Clocks Transfers· Bytes Coding e:xample 

(no operands) 4(4) . - 1 DAA 

"For the 8086 (80186) add four clocks for each 16·bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16'bit word 
transfer. 
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Table 1-16 Instruction Set Reference Data (continued) 

DAS I DAS (no operands) 
Decimal adjust for subtraction 

FI 0 D ITS ZAP C 
ags U XXXXX 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 4(4) - 1 DAS 

DEC I DEC destination Flags 
ODITSZAPC 

Decrement by 1 X XXXX 

Operands Clocks Transfers' Bytes Coding Example 

reg 16 3(3) - 1 DEC AX 
reg8 3(3) - 2 DECAL 
memory 15(15)+EA 2 2-4 DEC ARRAY [SI] 

DIV I DIV source 
Division, unsigned 

FIODITSZAPC 
ags U UUUUU 

Operands Clocks Transfers' Bytes Coding Example 

reg 8 80-90(29) - 2 DIVCL 
reg 16 144-162(38) - 2 DIVBX 
mem8 86-96+EA 1 2-4 DIVALPHA 

(35) 
mem 16 150-168+ 1 2-4 DIV TABLE [SI] 

EA(94) 

ENTER I ENTER Flags 
ODITSZAPC 

Procedure entry 

Operands Clocks Transfers' Bytes Coding Example 

locals, level L=0(15) - 4 ENTER 28, 3 
L=1(25) 

L>1 
(22+ 

16(n-1)) 

ESC I ESC external-opcode, source Flags 
ODITSZAPC 

Escape 

Operands Clocks Transfers' Bytes Coding Example 

immediate, memory 8(6)+EA 1 2-4 ESC 6.ARRAY [SI] 
immediate, register 2(2) - 2 ESC 20, AL 

HLT I HLT (no operands) Flags 
OD ITSZAPC 

Halt 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 2(2) - 1 HLT 

"For the 8086 (80186) add four clocks for each 16·bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16·bit word 
transfer. 
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Table 1-16 Instruction Set Reference Data (continued) 

IDIV IIDIV source 
Integer division 

FI 0 01 T S ZAP C 
ags U U U U U U 

Operands Clocks Transfers· Bytes Coding Example 

reg 8 101-112 - 2 IDIVBL 
(44-52) 

reg 16 165-184 - 2 IDIVCX 
(53-61) 

mem8 107-118+ 1 2-4 IDIV DIVISOR_BYTE [SI) 
EA(50-58) 

mem 16 171-190+ 1 2-4 IDIV [BX].DIVISOR_WORD 
EA(58-67) 

IMUL IIMUL source 
Integer multiplication 

FI 0 0 ITS ZAP C 
ags X UUUUX 

Operands Clocks Transfers· Bytes Coding Example 

immed8 (22-24) - 3 IMUL6 
immed 16 (29-32) - 4 IMUL20 
reg 8 80-98 - 2 IMULCL 

(25-28) 
reg 16 128-154 - 2 IMULBX 

(34-37) 
mem8 86-104+ 1 2-4 IMUL RATE_BYTE 

EA(31-34) 
mem 16 134-160+ 1 2-4 IMUL RATE_WORD [BP) (01) 

EA(40-43) 

IN liN accumulator, port Flags 
ODITSZAPC 

Input byte or word 

Operands Clocks Transfers· Bytes Coding Example 

accumulator, immed 8 10(10) 1 2 IN AL, OFFEAH 
accumulator, OX 8(8) 1 1 IN AX, OX 

INC IINC destination Flags ~ 0 I TSZAPC 
Increment by 1 XXXX 

Operands Clocks Transfers· Bytes Coding Example 

reg 16 3(3) - 1 iNCCX 
reg 8 3(3) - 2 INCBL 
memory 15(15)+EA 2 2-4 INC ALPHA [01) [BX) 

INS IINS source-string, port 
Input string 

Flags 0 0 ITS ZAP C 

Operands Clocks "TI'ansfers· Bytes Coding Example 

dest·string, port (14) 2 1 INS BUFF1, USART D 
(repeat) dest-string, port (9 + 8/rep) 2/rep 1 REP INS BUFF1, USART D 

'For the 8086 (80186) add four clocks for each 16·bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word 
transfer. 
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Table 1-16 Instruction Set Reference Data (continued) 

INT ~ INT interrupt-type Flags 
OOITSZAPC 

Interrupt 00 

Operands Clocks Transfers· Bytes Coding Example 

mmed 8 (type = 3) 52(45) 5 1 INT3 
immed 8 (type"* 3) 52(47) 5 2 INT67 

INTRt IINTR (external maskable interrupt) Flags 
OOITSZAPC 

Interrupt if INTER and IF = 1 00 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 61 7 N/A N/A 

INTO I INTO (no operands) Flags 
OOITSZAPC 

Interrupt if overflow 00 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 53 or 5 1 INTO 
4(48 or 4) 

IRET IIRET (no operands) 00 I TSZAPC 
Interrupt Return Flags R R R R R R R R R 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 32(28) 3 1 IRET 

JA/JNBE I JA/JNBE short-label Flags 
OOITSZAPC 

Jump if above/Jump if not below nor equal 

Operands Clocks Transfers· Bytes Coding Example 

Short-label 16 or - 2 JAABOVE 
4(13 or 4) 

JAE/JNB I JAE/JNB short-label Flags 
00 I TSZAPC 

Jump if above or equal/Jump if not below 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JAE ABOVE_EQUAL 
4(13 or 4) 

JB/JNAE I JB/JNAE Flags 
00 I TSZAPC 

Jump if below/Jump if not above nor equal 

Operands Clocks Ti'ansfers· Bytes Coding Example 

short-label 16 or - 2 JB BELOW 
4(13 or 4) 

JBE/JNA I JBE/JNA short-label Flags 
OOITSZAPC 

Jump if below or equal/Jump if not above 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JNA NOT -ABOVE 
4(13 or 4) 

'For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word 
transfer. 

tlNTR is not an instruction, it is included in table 1-16 only for timing information. 
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Table 1-16 Instruction Set Reference Data (continued) 

JC I JC short-label 
Jump if carry 

FIODITSZAPC ags 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JC CARRY_SET 
4(13 or 4) 

JCXZ 1 JCXZ short-label 
Jump if CX is zero 

FIODITSZAPC ags 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JCXZ COUNT_DONE 
4(16 or 5) 

JE/JZ I JE/JZ short-label Flags 
00 I TSZAPC 

Jump if equal/Jump if zero 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JZZERO 
4(13 or 4) 

JG/JNLE I JG/JNLE short-label Flags 
ODITSZAPC 

Jump if greater/Jump if not less nor equal 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JG GREATER 
4(13 or 4) 

JGE/JNL I JGE/JNL short-label 
Jump if greater or equal/Jump if not less 

Flags 0 0 ITS ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JGE GREATER_EQUAL 
4(13 or 4) 

JLlJNGE I JL/JNGE short-label Flags 
00 I TSZAPC 

Jump if less/Jump if not greater nor equal 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JL LESS 
4(13 or 4) 

JLE/JNG I JLElJNG short-label Flags 
00 I TSZAPC 

Jump if less or equal/Jump if not greater 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JNG NOT_GREATER 
4(13 or 4) 

'For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word 
transfer. 
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Table 1-16 Instruction Set Reference Data (continued) 

JMP I JMP target 
Jump 

Flags 0 D ITS ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

short-label 15(13) - 2 JMPSHORT 
near-label 15(13) - 3 JMP WITHIN_SEGMENT 
far-label 15(13) - 5 JMP FAR_LABEL 
memptr 16 18(17)+EA 1 2-4 JMP [BX).TARGET 
regptr 16 11 (11) - 2 JMPCX 
memptr32 24(26)+EA 2 2-4 JMP OTHER.SEG [SI) 

JNC I JNC short-label 
Jump if not carry 

Flags 0 D ITS ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JNC NOT_CARRY 
4(13 or 4) 

JNE/JNZ I JNE/JNZ short-label 
Jump if not equal/Jump if not zero 

Flags OD I TSZAPC 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JNE NOT_EQUAL 
4(13 or 4) 

JNO I JNO short-label 
Jump if not overflow 

Flags OD I TSZAPC 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JNO NO_OVERLOW 
4(13 or 4) 

JNP/JPO I JNP/JPO short-label 
Jump if not parity/Jump if parity odd 

Flags 0 D ITS ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JPO ODD_PARITY 
4(13 or 4) 

JNS I JNS short-label 
Jump if not sign 

Flags 0 D ITS ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JNS POSITIVE 
4(13 or 4) 

JO I JO'short-label 
Jump if overflow 

Flags OD I TSZAPC 

Operands Clocks Transfers· Bytes Coding Example 

short-label 16 or - 2 JO SIGNED_OVRFLW 
4(13 or 4) 

'Forthe 8086 (80186) add four clocks for each HI·bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16·bit word 
transfer. 
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Table 1·16 Instruction SetReference Data (continued) 

JP/JPE I JP/JPE short-label 
Jump if parity/Jump if parity even 

Flags 0 D ITS ZAP C 

Operands Clocks Transfers" Bytes Coding Example 

short-label 16 or - 2 JPE EVEN_PARITY 
4(13 or 4) 

JS I JS short-label 
Jump if sign 

Flags 0 D ITS ZAP C 

Operands Clocks Transfers" Bytes Coding Example 

short-label 16 or - 2 JS NEGATIVE 
4(13 or 4) 

LAHF I LAHF (no operands) 
Load AH from flags 

Flags 0 D ITS Z A P·C 

Operands I Clocks I Transfers· I Bytes Coding Example 

(no operands) I 4(2) I - I 1 LAHF 

LOS I LOS destination, source Flags 
ODITSZAPC 

Load pointer using DS 

Operands 1 Clocks I Transfers· I Bytes Coding Example 

reg 16, tnem 16 116(18)+EAI 2 1 2-4 LDS SI, DATA, SEG [DI) 

LEA I LEA destination, source Flags 
OD I TSZAPC 

Load effective address 

Operands I Clocks I Transfers· 1 Bytes Coding Example 

reg 16, mem 16 I 2(6)+EA 1 - r 2-4 LEA BX, [BP) [DI) 

LEAVE I LEAVE (no operand) 
Restore stack for procedure exit 

FI 0 D I T SZ A P C 
ags U UX U X 

Operands I Clocks I Transfers· I Bytes Coding Example 

(no operands) I (8) I 1 I 1 LEAVE 

LES I LES destination, source Flags 
ODITSZAPC 

Load pOinter using ES 

Operands I Clocks I Transfers" I Bytes Coding Example 

reg 16, mem 32 116(18)+EAI 2 12-4 LES DI, [BX), TXT_BUFF 

LOCK I LOCK (no operands) 
Lock bus 

Flags 0 D ITS ZAP C 

Operands I Clocks I Transfers· I Bytes Coding Example 

(no operands) I 2(2) I - I 1 LOCKXCHG FLAG, AL 

• For the 8086 (80186) .add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word 
transfer. 
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Table 1-16 Instruction Set Reference Data (continued) 

LODS I LODS source-string 
Load string 

Flags a D ITS ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

source-string 12(10) 1 1 LODS CUSTOMER_NAME 
(repeat) source-string 9+ 13/rep 1/rep 1 REP LaDS NAME 

(6+ 11/rep) 

LOOP I LOOP short-label 
Loop 

Flags a D ITS ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

short label 17/5(15/5) - 2 LOOP AGAIN 

LOOPE/LOOPZ I LOOPE/LOOPZ short label Flags 
00 ITSZAPC 

Loop if equal/Loop if zero 

Operands Clocks Transfers· Bytes Coding Example 

short label 18 or - 2 LOOPEAGAIN 
6(16 or 6) 

LOOPNE/LOOPNZ I LOOPNE/LOOPNZ short label Flags 
ODITSZAPC 

Loop if not equal/Loop if not zero 

Operands Clocks Transfers· Bytes Coding Example 

short label 19 or - 2 LOOPNE AGAIN 
5(16 or 5) 

NMlt I NMI (external nonmaskable interrupt) Flags 
00 I TSZAPC 

Interrupt if NMI = 1 00 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 50 5 N/A N/A 

MOV I MOV destination, source Flags 
ODITSZAPC 

Move 

Operands Clocks Transfers· Bytes Coding Example 

memory, accumulator 10(9) 1 3 MOV ARRAY [SI], AL 
accumulator, memory 10(8) 1 3 MOV AX, TEMP_RESULT 
register, register 2(2) - 2 MOVAX,CX 
register, memory 8(12)+EA 1 2-4 MOV Sp, STACK-TOP 
memory, register 9(9)+EA 1 2-4 MOV COUNT [DI], CX 
register, immediate 4(3-4) - 2-3 MOVCL,2 
memory, immediate 10(12-13) 1 3-6 MOV MASK [SX] [SI], 2CH 

+EA 
seg-reg, reg 16 2(2) - 2 MOVES,CX 
seg-reg, mem 16 8(9)+EA 1 2-4 MOV DS, SEGMENT_SASE 
reg 16, seg-reg 2(2) - 2 MOV Sp, SS 
memory, seg-reg 9(11)+EA 1 2-4 MOV [SX], SEG~SAVE, CS 

-For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word 
transfer. 

tNMI is not an instruction, it is included in table 1-16 only for timing information. 
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Table 1-16 Instruction Set Refere"ce Data (continued) 

MOVS I MOVS dest-string, source-string 
Move string 

Flags 0 D I T 5 ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

dest-string, source-string 18(9) 2 1 MOV5 LINE EDIT_DATA 
(repeat) dest-string, source-string 9+ 17/rep 2/rep 1 REP MOV5 5CREEN, BUFFER 

(8+8/rep) 

MOVSB/MOVSW I MOVSB/MOVSW (no operands) 
Move string (byte/word) 

Flags 0 D I T 5 ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 18(9) 2 1 MOV5B 
(repeat) (no operands) 9 + 17/rep 2/rep 1 REP MOV5W 

(8+8/rep) 

MUL I MULsource 
Multiplication, unsigned 

FI 0 D I .T S ZAP C 
ags x UUUUX 

Operands Clocks Transfers· Bytes Coding Example 

reg 8 70-77 - 2 MULBL 
(26-28) 

reg 16 118-133 - 2 MULCX 
(35-37) 

mem8 76-83+ 1 2-4 MUL MONTH [51) 
EA(32-34) 

mem 16 124-139+ 1 2-4 MUL BAUD_RATE 
EA(41-43) 

NEG I NEG destination 
Negate . 

Flags 0 D I T 5 ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

register 3(3) - 2 NEGAL 
memory 16(3)+EA 2 2-4 NEG MULTIPLIER 
o if destination is 0 

NOP I NOP (no operands) 
No Operation 

Flags ° D I T 5 ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 3(3) - 1 NOP 

NOT I NOT destination Flags 
o D I T 5 Z A.P C 

Logical not . 

Operands Clocks Transfers· Bytes Coding Example 

register 3(3) - 2 NOT AX 
memory 16(3)+EA 2 2-4 NOT CHARACTER 

'For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word 
transfer. . 
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Table 1-16 Instruction Set Reference Data (continued) 

OR I OR destination, source 
Logical inclusive or 

FIODITSZAPC 
ags 0 XXUXO 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3(3) - 2 ORAL, BL 
register, memory 9(10)+EA 1 2-4 OR DX, PORT _ID [DI] 
memory, register 16(10)+EA 2 2-4 OR FLAG_BYTE, CL 
accumulator, immediate 4(3-4) - 2-3 OR AL, 011011008 
register, immediate 4(4) - 3-4 ORCX,01H 
memory, immediate 17(16)+EA 2 3-6 OR [BX], CMD_WORD, OCFH 

OUT lOUT port, accumulator Flags 
ODITSZAPC 

Output byte or word 

Operands Clocks Transfers· Bytes Coding Example 

immed 8, accumulator 10(9) 1 2 OUT 44,AX 
DX, accumulator 8(7) 1 1 OUTDX, AL 

OUTS lOUTS port, source-string Flags 
ODITSZAPC 

Output string 

Operands Clocks Transfers· Bytes Coding Example 

port, source-string (14) 2 1 OUTS PORT2, BUFF2 
(repeat) port, source-string (8) + 8/rep) 2/rep 1 REP OUTS PORT2, BUFF2 

POP I POP destination Flags 
OOITSZAPC 

Pop word off stack 

Operands Clocks Transfers· Bytes Coding Example 

register 8(10) 1 1 POP OX 
seg-reg (CS illegal) 8(8) 1 1 POP OS 
memory 17(20)+EA 2 2-4 POP PARAMETER 

POPA I POPA (no operands) 
Pop all registers 

Flags 0 D ITS ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) (51) 8 1 POPA 

POPF I POPF (no operands) Flags 
OOITSZAPC 

Pop all registers RRRRRRRRR 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 8(8) 1 1 POPF 

PUSH I PUSH source Flags 
OOITSZAPC 

Push word onto stack 

Operands Clocks Transfers· Bytes Coding Example 

register 11 (1 0) 1 1 PUSH SI 
seg-reg (CS legal) 10(9) 1 1 PUSH ES 
memory 16(16)+ EA 2 2-4 PUSH DRETURN_CODE [SI] 

'For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word 
transfer. 
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Table 1·16 Instruction Set Reference Data (continued) 

PUSHA 
Operands 

(no operands) 

PUSHF 
Operands 

(no operands) 

ReL 

register, 1 
register, CL 

memory, 1 
memoryCL 

register, n 
memory, n 

RCR 

register, 1 
register, CL 

memory, 1 
memoryCL 

register, n 
memory, n 

REP 

Operands 

Operands 

Operands 

(no operands) 

REPE/REPZ 

Operands 

(no operands) 

I PUSHA (no operands) 
Push all registers 

I Clocks I Transfers· I Bytes 

I (36) I 8 I 4 

IpUSHF (no operands) 
Push flags onto stack 

I Clocks I Transfers· I Bytes 

I 10(9) I 1 I 1 

IRCL destination, count 
Rotate left through carry 

Clocks Transfers· 

2(2) 
8+41 

bit(5 + 1/bit) 
15(15)+EA 

20+41 
bit(17 + 

1/bit)+EA 
(5+ 1/bit) 
(17 + 1/bit) 

IRCR destination, count 
Rotate right through carry 

2 
2 

2 

Clocks Transfers· 

2(2) 
8+41 

bit(5 + 1/bit) 
15(15)+EA 

20+41 
bit(17 + 

1/bit)+EA 
(5 + 1/bit) 
(17 + 1/bit) 

I REP (no operands) 
Repeat string operation 

2 
2 

2 

Clocks Transfers· 

2(2) -

REPE/REPZ (no operands) 

Bytes 

2 
2 

2·4 
2·4 

3 
3-5 

Bytes 

2 
2 

2-4 
2-4 

3 
3-5 

Bytes 

Repeat string operation while equal! 
while zero 

I Clocks I Transfers· I Bytes 

I 2(2) I - I 1 

FI ODITSZAPC 
ags 

Coding Example 

PUSHA 

ODITSZAPC 
Flags 

Coding Example 

PUSHF 

FIODITSZAPC 
ags X C 

Coding Example 

RCLCX,1 
RCLAL, CL 

RCLALPHA,1 
RCL [BP), PARM, CL 

RCLCX,5 
RCLALPHA,5 

ODITSZAPC 
Flags X C 

Coding Example 

RCR BX, 1 
RCR BL, CL 

RCR [BX), STATUS, 1 
RCR ARRAY, [DI), CL 

RCR BX, 5 
RCRALPHA,5 

Flags 0 D ITS ZAP C 

Coding Example 

REP MOVS DEST, SRCE 

Flags 0 D ITS ZAP C 

Coding Example 

REPE CMPS DATA, KEY 

'Forthe 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word 
transfer. 
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Table 1-16 Instruction Set Reference Data (continued) 

REPNE/REPNZ REPNEIREPNZ (no operands) Flags ~ 0 I TSZAPC 
Repeat string operation while UUXUX 
not equal/not zero 

Operands I Clocks I Transfers· I Bytes Coding Example 

(no operands) I 2(2) I - I 1 REPNE SCAS INPUT_LINE 

RET I RET optional-pop-value 
Return from procedure 

Flags 0 0 ITS ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

(intra-segment, no pop) 16(16) 1 1 RET 
(intra-segment, pop) 20(18) 1 3 RET4 
(inter-segment, no pop) 26(22) 2 1 RET 
(inter-segment, pop) 25(25) 2 3 RET2 

ROL I ROL destination, count Flags 
OOITSZAPC 

Rotate left X X 

Operands Clocks 'n'ansfers· Bytes Coding Example 

register, 1 2(2) - 2 ROL BX, 1 
register, CL 8+41 - 2 ROLOI,CL 

bit(5 + 1lbit) 
memory, 1 15(15)+EA 2 2-4 ROL FLAG_BYTE [01),1 
memoryCL 20+41 2 2-4 ROL ALPHA, CL 

bit(17 + 
1/bit)+EA 

register, n (5+ 1/bit) - 3 ROLBX,5 
memory, n (17 + 1/bit) 2 3-5 ROLBETA,5 

ROR J ROR destination, count 
Rotate right 

FIOOITSZAPC 
ags X X 

Operands Clocks 'n'ansfers • Bytes Coding Example 

register, 1 2(2) - 2 ROR BX, 1 
register, CL 8+41 - 2 ROR BX, CL 

bit(5 + 1/bit) 
memory, 1 15(15)+EA 2 2-4 ROR PORT_STATUS, 1 
memoryCL 20+41 2 2-4 ROR CMO_WORO, CL 

bit(17+ 
1/bit)+EA 

register, n (5+ 1/bit) - 3 ROR BX, 5 
memory, n (17 + 1lbit) 2 3-5 ROR BETA, 5 

SAHF I SAHF (no operands) 
Store AH into flags 

FI 00 I TS ZAP C 
ags RRRRR 

Operands Clocks 'n'ansfers • Bytes Coding Example 

(no operands) 4(3) - 1 SAHF 

• For the 8088 (80186) add four clocks for each 1 6-blt word transfer with an odd address. For the 8086 (80188) add four clocks for each 16-bit word 
transfer. 
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Table 1·16 Instruction Set Reference Data (continued) 

SALISHL I SAL/SHL destination 
Shift arithmetic left/Shift logical left 

FIOOITSZAPC 
ags X ·X 

Operands Clocks Transfers· Bytes Coding Example 

register, 1 2(2) - 2 SALAL,1 
register, CL 8+4/ - 2 SAL 01, CL 

bit(5 + 1/bit) 
memory, 1 15(15)+EA 2 2-4 SAL [BX], OVERDRAW, 1 
memory, CL 20+41 2 2-4 SAL STORLCOUNT, CL 

bit(17 + 
1/bit)+EA 

register, n (5+ 1/bit) - 3 SALAH,5 
memory, n (17+ 1/bit) 2 3-5 SAL ALPHA, 5 

SAR I SAR destination, source Flags ~ 0 I TSZAPC 
Shift arithmetic right XXUXX 

Operands Clocks Transfers· Bytes Coding Example 

register, 1 2(2) - 2 SAR OX, 1 
register, CL 8+41 - 2 SAR 01, CL 

bit(5 + 1/bit) 
memory, 1 15(15)+EA 2 2-4 SAR N_BLOCKS, 1 
memoryCL 20+41 2 2-4 SAR N_BLOCKS, CL 

bit(17+ 
1/bit)+EA 

register, n (5+ 1/bit) - 3 SAR OX, 5 
memory, n (17 + 1/bit) 2 3-5 SAR OGLTH, 5 

SBB I SBB destination, source 
Subtract with borrow . 

FI 0 0 ITS ZAP C 
ags X XXXXX 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3(3) - 2 SBBBX, CX 
register, memory 9(10)+EA 1 2-4 SBB 01, [BX), PAYMENT 
memory, register 16(10)+EA 2 2-4 SBB BALANCE, AX 
accumulator, immediate 4(3-4) - 2-3 SBBAX, 2 
register, immediate 4(4) - 3-4 SBBCL,1 
memory, immediate 17(16)+EA 2 3-6 SBB COUNT, [SI), 10 

SeAS I SCAS dest-string 
Scan string 

FIOOITSZAPC 
ags X XXXXX 

Operands Clocks li'ansfers· Bytes Coding Example 

dest-string 15(15) 1 1 . SCAS INPUT_LINE 
(repeat) dest-string 9+ 15/rep 1/rep 1 REPNE SCAS BUFFER 

(5+ 15/rep) 

'For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word 
transfer.· . 
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Table 1·16 Instruction Set Reference Data (continued) 

SEGMENTt I SEGMENT override prefix Flags 
ODITSZAPC 

Override to specified segment 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 2(2) - 1 MOV SS:PARAMETER AX 

SHR I SHR destination, count 
Shift logical right 

FIODITSZAPC 
ags X X 

Operands Clocks Transfers' Bytes Coding Example 

register, 1 2(2) - 2 SHR SI, 1 
register, CL 8+41 - 2 SHRSI, CL 

bit(5 + 1/bit) 
memory, 1 15(15)+ EA 2 2·4 SHR ID_BYTE [SII [BX], 1 
memoryCL 20+41 2 2-4 SHR INPUT_WORD, CL 

bit(17 + 
1/bit)+EA 

register, n (5+ 1/bit) - 3 SHR SI, 5 
memory, n (17 + 1/bit) 2 3-5 SHRALPHA,5 

SINGLE STEPt I SINGLE STEP (Trap flag interrupt) Flags 
ODITSZAPC 

Interrupt if TF = 1 00 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 50 5 N/A N/A 

STC I STC (no operands) Flags 
ODITSZAPC 

Set carry flag C 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 2(2) - 1 STC 

STO I STD (no operands) Flags 
ODITSZAPC 

Set direction flag 1 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 2(2) - 1 STD 

STI I STI (no operands) Flags 
ODITSZAPC 

Set interrupt enable flag 1 

Operands Clocks Transfers' Bytes Coding Example 

(no operands) 2(2) - 1 STI 

"For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word 
transfer. 

tASM-86 incorporates the segment override prefix into the operand specification and not as a separate instruction. SEGMENT is included in table 
1-16 only for timing information. 

tSINGLE STEP is not an instruction, it is included in table 1-16 only for timing information. 
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Table 1-16 Instruction Set Reference Data (continued) 

STOS I STOS dest-string 
Store byte or word string 

FI 0 D ITS ZAP C ags 

Operands Clocks Transfers· Bytes Coding Example 

dest-string 11 (1 0) 1 1 STOS PRINT_LINE 
(repeat) dest-string 9+ 10/rep) 1/rep 1 REP STOS DISPLAY 

(6 + 9/rep) 

SUB I SUB destination, source 
Subtraction 

FIODITSZAPC 
ags x XXX XX 

Operands· Clocks Transfers· Bytes Coding Example 

register, register 3(3) - 2 SUBCX, BX 
register, memory 9(10)+EA 1 2-4 SUB DX, MATH_TOTAL [S1) 
memory, register 16(10)+EA 2 2-4 SUB [BP+2), CL 
accumulator, immediate 4(3-4) - 2-3 SUBAL,10 
register, immediate 4(4) - 3-4 SUB SI, 5280 
memory, immediate 17(16)+EA 2 3-6 SUB [BP), BALANCE, 1000 

TEST I TEST destination, source 
Test or non-destructive logical and 

FIODITSZAPC 
ags o XXUXO 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3(3) - 2 TESTSI,DI 
register, memory 9(10)+EA 1 2-4 TEST SI, END_COUNT 
accumulator, immediate 4(3-4) - 2-3 TEST AL, 001000008 
register, immediate 5(4) - 3·4 TEST BX, OCC4H 
memory, immediate 11(10)+EA - 3·6 TEST RETURN_COUNT, 01 H 

WAIT I WAIT (no operands) Flags 
ODITSZAPC 

Wait while TEST pin not asserted 

Operands Clocks Transfers· Bytes Coding Example 

(no operands) 4+5(6)n - 1 WAIT 

XCHG I XCHG destination, source Flags 
ODITSZAPC 

Exchange 

Operands Clocks Transfers· Bytes Coding Example 

accumulator, reg 16 3(3) - 1 XCHGAX, BX 
memory, register 17(17)+EA 2 2·4 XCHG SEMAPHORE, AX 
register, register 4(4) - 2 XCHGAL, BL 

XLAT I XLAT source-table 
Translate 

Flags 0 D ITS ZAP C 

Operands Clocks Transfers· Bytes Coding Example 

source-table 11 (11) 1 1 XLAT ASCII_TAB 

'For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 16-bit word 
transfer. . 
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Table 1-16 Instruction Set Reference Data (continued) 

XOR I XOR destination, source 
Logical exclusive or 

FI 0 D I T 5 ZAP C 
ags 0 XXUXO 

Operands Clocks Transfers· Bytes Coding Example 

register, register 3(3) - 2 XORCX, BX 
register, memory 9(10)+ EA 1 2-4 XOR CL, MA5LBYTE 
memory, register 16(10)+EA 2 2-4 XOR ALPHA [51], DX 
accumulator, immediate 4(3-4) - 2-3 XOR AL, 010000108 
register, immediate 4(4) - 3-4 XOR 51, 00C2H 
memory, immediate 17(16)+EA 2 3-6 XOR RETURN_CODE, OD2H 

• For the 8086 (80186) add four clocks for each 16-bit word transfer with an odd address. For the 8088 (80188) add four clocks for each 1S-bit word 
transfer. 

directly affects bus activity. As an example of the encod­
ing and decoding process, consider writing a MOV in­
struction in ASM-86 in the form: 

MOV destination , source 

This will cause the assembler to generate I of 28 possible 
forms of the MOV machine instruction. A programmer 
rarely needs to know the details of machine instruction 
formats or encoding. An exception may occur during de­
bugging when it may be necessary to monitor instructions 
fetched on the bus, read unformatted memory dumps, etc. 
This section provides the information necessary to trans­
late or decode an 8086 or 8088 machine instruction. 

To pack instructions into memory as densely as possible, 
the 8086 and 8088 CPUs utilize an efficient coding tech­
nique. Machine instructions vary from one to six bytes in 
length. One-byte instructions, which generally operate on 
single registers or flags, are simple to identify; the keys to 
decoding longer instructions are in the first two bytes. 
The format of these bytes can vary, but most instructions 
follow the format shown in Figure 1-28. 

The first six bits of a multibyte instruction generally con­
tain an opcode that identifies the basic instruction type: 

ADD, XOR, etc. The following bit, called the 0 field, 
generally specifies the "direction" of the operation: 1 = 
the REG field in the second byte identifies the destination 
operand, 0 = the REG field identifies the source oper­
and. The W field distinguishes between byte and word 
operations: 0 = byte, 1 = word. 

One of three additional single-bit fields, S, V or Z, ap­
pears in some instruction formats (refer to Table 1-17). S, 
in conjunction with W, indicates the sign extension of im­
mediate fields in arithmetic instructions. V distinguishes 
between single-and variable-bit shifts and rotates. Z is a 
compare bit with the zero flag in conditional repeat and 
loop instructions. 

The second byte of the instruction usually identifies the 
instruction's operands. The MOD (mode) field indicates 
whether one of the operands is in memory or whether 
both operands are registers (refer to Table 1-18). The 
REG (register) field identifies a register that is one of the 
instruction operands (refer to Table 1-19). In a number of 
instructions, particularly the immediate-to-memory vari­
ety, REG is used as an extension of the opcode to identify 
the type of operation. The encoding of the R/M 
(register/memory) field (refer to Table 1-20) depends on 
how the mode field is set. If MOD = 11 

BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5 BYTE 6 

II II 
OPCODE 

I II II 
Dlw MOD REG R/M 

~ 

------~-----r-----~------l 

I I I I 
LOW DISP/DATA I HIGH DISP/DATA I LOW DATA I HIGH DATA I 

I I I I 
-----------~------~-----~ 

REGISTER OPERAND/REGISTERS TO USE IN EA CALCULATION 

REGISTER OPERAND/EXTENSION OF OPCODE 

REGISTER MODE/MEMORY MODE WITH DISPLACEMENT LENGTH 

WORD/BYTE OPERATION 

DIRECTION IS TO REGISTER/DIRECTION IS FROM REGISTER 

OPERATION (INSTRUCTION) CODE 

Figure 1-28 Typical 8086/88 Machine Instruction Format 
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Table 1·17 Single·Bit Field Encoding 

Field Value 

S 
0 
1 

W 0 
1 

D 0 
1 

V 0 
1 

Z 
0 
1 

(register-to-register mode), then RIM identifies the sec­
ond register operand. If MOD selects memory mode, 
then R/M indicates how the effective address of the mem­
ory operand is to be calculated. 

Table 1·18 Mode (MOD) Field Encoding 

CODE EXPLANATION 

00 Memory Mode, no displacement 
follows* 

01 Memory Mode, 8-bit 
displacement follows 

10 MemoryMode, 16-bit 
displacement follows 

11 Register Mode (no 
displacement) 

*Except when RIM = 110, then 16-bit 
displacement follows 

Table 1·19 REG (Register) Field Encoding 

REG W=O W=1 

000 AL AX 
001 CL CX 
010 DL DX 
011 BL BX 
100 AH SP 
101 CH BP 
110 DH SI 
111 BH DI 

Function 

No sign extension 
Sign extend 8·bit immediate data to 16 bits if W=1 

Instruction operates on byte data 
Instruction operates on word data 

Instruction source is specified in REG field 
Instruction destination is specified in REG field 

Shift/ rotate count is one 
Shift/rotate count is specified in CL register 

Repeatlloop while zero flag is clear 
Repeatlloop while zero flag is set 
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Bytes 3 through 6 of an instruction are optional fields that 
usually contain the displacement value of a memory oper­
and and/or the actual value of an immediate constant 
operand. 

The displacement value may contain one or two bytes; the 
language translators generate one byte whenever possible. 
The MOD field indicates how many displacement bytes 
are present. Following Intel convention, if the displace­
ment is two bytes, the most-significant byte is stored sec­
ond in the instruction. If the displacement is only a single 
byte,the 8086 or 8088 automatically sign-extends this 
quantity to l6-bits before using the information in further 
address calculations. Immediate values always follow any 
displacement values that may be present. The second byte 
of a two-byte immediate value is the most significant. 

Table 1-22 lists the instruction encodings for all 
8086/8088 instructions. This table can be used to predict 
the machine encoding of any ASM-86 instruction. Table 
1-23 lists the 8086/8088 machine instructions in order by 
the binary value of their first byte. This table can be used 
to decode any machine instruction from its binary 
representation. Table 1-21 is a key to the abbreviations 
used in Tables 1-22 and 1-23. Figure 1-29 is a more com­
pact instruction decoding guide. 

1.3 DEVICE PIN DEFINITIONS 

The following paragraphs present functional descriptions 
of all input/output signals and electrical descriptions of all 
of the input/output pins on the 8086 and 8088 40-pin 
DIP's. 
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Table 1-20 Register/Memory Field Encoding 

MOD=11 EFFECTIVE ADDRESS CALCULATION 

RIM W=O W=1 RIM MOD=OO MOD=01 MOD=1~ 

000 AL AX 000 (BX)+(SI) (BX)+(SI)+08 (BX)+(SI)+016 
001 CL CX 001 (BX)+(OI) (BX)+(0I)+08 (BX)+(0I)+016 
010 OL OX 010 (BP)+(SI) (BP)+(SI)+08 (BP)+(SI)+016 
011 BL BX 011 (BP)+(OI) (BP) + (01) + 08 (BP) + (01) + 016 
100 AH SP 100 (SI) (SI)+08 (SI)+016 
101 CH BP 101 (01) (01)+08 (01)+ 016 
110 OH SI 110 OIRECT AOORESS (BP)+08 (BP)+016 
111 BH 01 111 (BX) 

1.3.1 Functional Description of All Signals 

Figure 1-30 shows the 8086/8088 DIP pin assignments 
and Table 1-24 provides a complete functional description 
of each device pin signal and correlates the description to 
the pin number and associated signal symbol. 

1.3.2 Electrical Description of Pins 

The absolute maximum ratings for the 8086/8088 device 
are as follows. 

ABSOLUTE MAXIMUM RATINGS 

Ambient Temperature Under Bias 
Storage Temperature 

Voltage on Any Pin with Respect to 
GND 

OOC to 70°C 
-65°C to 
+ 150°C 
-1.0to +7V 

Power Dissipation 2. S Watt 
Stresses above those listed above may cause permanent 
damage to the device. These values present stress ratings 
only and functional operation of the device at these or 
any other conditions above those indicated in the opera­
tional sections of the device specifications is not implied. 
Exposure to absolute maximum conditions for extended 
periods of time may affect the device reliability. 

Table 1-25 presents the D. C. voltage characteristics of the 
8086/8088 CPU's. Table 1-26 lists the A.C. characteris­
tics timing requirements and timing responses for mini­
mum complexity systems, and Table 1-27 lists the A.C. 
characteristics timing requirements and timing responses 
for maximum complexity systems (using 8288 bus 
controller). Figure 1-31 and Figure 1-32 presents wave­
forms for the minimum mode and maximum mode 
operation related to the preceding A. C. characteristics 
tables. 

1-43 

(BX)+08 (BX)+016 

1.3.3 OPERATING MODES 

One of the unique features the 8086 and 8088 CPU's al­
low the user is the ability to select between two functional 
definitions of a subset of the 8086/8088 outputs. This en­
ables the user to tailor the intended CPU system environ­
ment. This "system tailoring" is accomplished by 
strapping the CPU's MN/MX* (minimum/maximum) in­
put pin. Table 1-28 defines the 8086 and 8088 pin assign­
ments for both the minimum and maximum modes of 
operation. 

In the minimum mode, the CPU's support small systems 
by strapping the MN/MX* pin to + SY. In this mode of 
operation, the 8086/8088 CPU generates all bus control 
signals (DT/R*, DEN*, ALE and either M/IO* or 
IO/M*) and the command output signals (RD*, WR* or 
INTA *). The CPU also provides a mechanism for re­
questing bus access (HOLDIHLDA) that is compa~ible 
with bus master type controllers (e.g., the Intel 8237A 
DMA Controller). 

When a bus master requires bus access in the minimum 
mode, it activates the HOLD input to the CPU through its 
request logic. In response to the "hold" request, The 
CPU activates HLDA as an acknowledgement to the bus 
master, requesting the bus, and simultaneously floats the 
system bus and control lines. Since a bus request is asyn­
chronous, the CPU samples the HOLD input on the posi­
tive transition of each CLK signal and activates HLDA at 
the end of either the current bus cycle (if a bus cycle is in 
progress) or idle clock period. The CPU maintains the 
hold state until the bus master inactivates the HOLD in­
put. At that time the CPU regains control of the system 
bus. Note that during a "hold" state, the CPU continues 
to execute instructions until a bus cycle is required. 

In the minimum mode, the VO-memory control line for 
the 8088 CPU is the reverse of the corresponding control 
line for the 8086 CPU (M/IO* on the 8086 and IO/M* on 
the 8088). Since the 8088 CPU is an 8-bit device, this 
conditioning provides compatibility with existing 
MCS® -85 systems specific MCS-85 family devices (e.g., 
the Intel 8155/56). 
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Lo 
Hi 0 I 2 

0 ADD ADD ADD 
Mr/m w,fJ/m b.l.r/m 

I ADC ADC ADC 
b.f,r/m w.f.r/m b.tJ/m 

2 AND AND AND 
b,fJ/m w.f.r/m b,t,r/m 

3 XOR XOR XOR 
b.fJ/m w,f.r/m b,t.r/m 

4 INC INC INC 
AX CX OX 

5 PUSH PUSH PUSH 
AX CX OX 

6 

1 JO JNO JBI 
JNAE 

8 Immed Immed Immed 
b.r/m w.r/m b,r/m 

9 XCHG XCHG XCHG 
AX ex OX 

A MOV MOV MOV 
m - Al m - AX Al - m 

8 MOV MOV MOV 
1_ Al i _ Cl 1- Ol 

C RET, 
(I.SP) 

0 Shift Shilt Shift 
b w b.Y 

E lOOPNZI lOOPZI lOOP lOOPNE lOOPE 
F lOCK REP 

3 4 5 8 
ADD ADD ADD PUSH 

w.t.r/m b, ia w,la ES 
AOC AOC AOC PUSH 

w,t.r/rn b,i W.I SS 
AND AND AND SEG 

w,Ulm b.i W,I cES 

XOR XOR XOR SEG 
w.t.r/rn b.1 W,I ~SS 

INC INC INC INC 
ax SP BP SI 

PUSH PUSH PUSH PUSH 
BX SP BP SI 

JNBI JEI JNEI JBEI 
JAE JZ JNZ JNA 

Immed TEST TEST XCHG 
is,r/m b.r/m w.r/m b.r/m 
XCHG XCHG XCHG XCHG 

BX SP BP SI 
MOV MOVS MOVS CMPS 

AX - m 
MOV MOV MOV MOV 

I - Bl i - AH i - CH 1- OH 

RET lES lOS MOV 
b.i.r/m 

Shift 
W.Y AAM AAO 

JCXZ IN IN OUT 
b w b 

REP HLT CMC 
Grp 1 

z b.rlm 

where 
modOr/m 000 00' 

Immed ADD DA 
Shill AOl ADA 
Grp1 TEST -
Grp 2 INC DEC 

b • byte operation 
d • direct 
f • from CPU reg 
i = immediate 

0'0 
ADC 
ACl 
NOT 

CALL 

" 

ia "'" immed. to accurn, 
id • indirect 
is • immed. byte, sign ext. 
I • long ie. intersegment 

1 
POP 
ES 

POP 
SS 

OAA 

AAA 

INC 
01 

PUSH 
01 

JNBEI 
JA 

XCHG 
w.r/m 
XCHG 

01 

CMPS 

MOV 
I - BH 

MOV 
w.i.r/rn 

XlAT 

OUT 
W 

Grp 1 
w.r/m 

0" 
saa 
ACA 
NEG 

CALL 
l.id 

8 9 A 8 
OR OR OR OR 

b.fJ/m w,f.r/m b.tJ/m w,t,r/m 

SBB SBB SBB SBB 
b,fJ/m w,f.r/m b.l.r/m w,t.r/m 

SUB SUB SUB SUB 
b,fJ/m w.f.r/rn b.t.rlm w,U/rn 

CMP CMP CMP CMP 
b,f.r/m w.t,r/m b.t.r/m w.t.r/rn 

DEC DEC DEC DEC 
AX CX OX BX 

POP POP POP POP 
AX CX OX BX 

JS JNS JPI JNPI 
JPE JPO 

MOV MOV MOV MOV 
b,fJ/m w,f.rfm b.l.r/m w,l,r/m 

CBW CWO CAll WAIT I,d 

TeST TeST STOS STOS b,I,. w,l,a 

MOV MOV MOV MOV 
I - AX 1- CX I - OX 1- BX 

RET. RET 
1.(i·SP) I 

ESC ESC ESC ESC 
0 1 2 3 

CAll JMP JMP JMP 
d d I,d si,d 

ClC STC Cli STI 

'00 '0' "0 ", 
AND sua XOA CMP 

$HlISAL SHA SAA 
MUl IMUl DIY IOIV 
JMP JMP PUSH -
" 

Ud 

m = memory 
rIm • EA is second byte 
SI = short intrasegment 
sr '" segment ,.egister 
t • to CPU reg 
v '" variable 
W = word operation 
z = zero 

C 0 E F 
OR OR PUSH 
b.1 W.I CS 

SBB SBB PUSH POP 
b.i W.I OS OS 

SUB SUB SEG OAS 
b.1 W.I CS 

CMP CMP SEG AAS 
b,i W,I OS 

DEC DEC DEC DEC 
SP BP SI 01 

POP POP POP POP 
SP BP SI 01 

JlI JNlI JlEI JNlEI 
JNGE JGE JNG JG 
MOV lEA MOV POP 

.r,l,r/m .r,t,r/m rim 

PUSHF POPF SAHF lAHF 

LOOS LOOS SCAS SCAS 

MOV MOV MOV MOV 
1- SP I - BP I - SI 1-01 

INT INT INTO IRET 
Type 3 (Any) 

ESC ESC ESC ESC 
4 5 6 7 

IN IN OUT OUT 
v,b v,w v,b v,w 

ClO STO 
Grp 2 Grp 2 
b.rfm w.r/m 

Figure 1·29 Machine instruction Encoding Matrix 

In the maximum mode (MN/MX* pin strapped to 
ground), the Intel 8288 Bus controller is added to provide 
sophisticated bus control functions and compatibility with 
the MULTIBUS architecture, (Combining an Intel 8289 
Arbiter with the 8288 permits the CPU to support multi­
ple processors on the system bus.) The bus controller, in­
stead of the CPU (see Figure 1-33), provides all bus 
control and command outputs, This allows the pins previ-

1·44 

ously delegated to these functions to be redefined to sup­
port multiprocessing functions, 

1.3.4 Minimum Mode System 
Overview/Description 

The minimum mode 8086 (see Figure 1-34) is optimized 
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IDENTIFIER 

MOD 

REG 

R/M 

SR 

W,S, 0, V,Z 

DATA-S 

DATA-SX 

DATA-LO 

DATA-HI 

(OISP-LO) 

(OISP-HI) 

IP-LO 

IP-HI 

CS-LO 

CS-HI 

IP-INCS 

IP-INC-LO 

IP-INC-HI 

AOOR-LO 

AOOR-HI 

xxx 
YYY 
REGS 

REG16 

MEMS 

MEM16 

IMMEOS 

IMME016 

SEGREG 

OEST-STRS 

8086/8088 CPU 

Table 1-21 Key to Machine Instruction Encoding and Decoding 

EXPLANATION 

Mode field; described in this chapter. 

Register field; described in this chapter. 

Register/Memory field; described in this chapter. 

Segment register code: OO=ES, 01=CS, 10=SS, 11 =OS. 

Single-bit instruction fields; described in this chapter. 

S-bit immediate constant. 

8-bit immediate value that is automatically sign-extended to 16-bits 
before use. 

Low-order byte of 16-bit immediate constant. 

High-order byte of 16-bit immediate constant. 

Low-order byte of optional S- or 16-bit unsigned displacement; MOD 
indicates if present. 

High-order byte of optional 16-bit unsigned displacement; MOD 
indicates if present. 

Low-order byte of new IP value. 

High-order byte of new IP value 

Low-order byte of new CS value. 

High-order byte of new CS value. 

S-bit signed increment to instruction pointer. 

Low-order byte of signed 16-bit instruction pointer increment. 

High-order byte of signed 16-bit instruction pointer increment. 

Low-order byte of direct address (offset) of memory operand; EA not 
calculated. 

High-order byte of direct address (offset) of memory operand; EA not 
calculated. 

Bits may contain any value. 

First 3 bits of ESC opcode. 

Second 3 bits of ESC opcode. 

S-bit general register operand. 

16-bit general register operand. 

S-bit memory operand (any addressing mode). 

16-bit memory operand (any addressing mode). 

S-bit immediate operand. 

16-bit immediate operand. 

Segment register operand. 

Byte string addressed by 01. 
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Table 1-21 Key to Machine Instruction Encoding and Decoding (continued) 

IDENTIFIER EXPLANATION 

SRC-STR8 Byte string addressed by SI. 

DEST-STR16 Word string addressed by 01. 

SRC-STR16 Word string addressed by SI. 

SHORT-LABEL Label within ±127 bytes of instruction. 

NEAR-PROC Procedure in current code segment. 

FAR-PROC Procedure in another code segment. 

NEAR-LABEL Label in current code segment but farther than -128 to +127 bytes 
from instruction. 

FAR-LABEL Labei in another code segment. 

SOURCE-TABLE XLAT translation table addressed by BX. 

OPCOOE ESC opcode operand. 

SOURCE ESC register or memory operand. 

for small to medium (one or two boards), single CPU sys­
tems. Minimum mode system architecture is directed at 
satisfying requirements of the lower to middle segment of 
high performance l6-bit applications. The CPU maintains 

the full megabyte memory space, 64K-byte 1/0 space and 
16-bit data path. The CPU directly provides all bus con­
trol (DT/R*, DEN*, ALE, M/IO*) , commands (RD*, 
WR *, INTA *) and a simple CPU preemption mechanism 

Table 1-22 8086/88 Instruction Encoding 
DATA TRANSFER 

MOV = Move: 78543210 78543210 78543210 71543210 71543210 78543210 

Register/memory to/from register 100010dw mod reg rim (DISP·lO) (DISP·HI) I 
Immediate to register/memory 1 1 0 0 0 1 1 w mod 0 0 0 rim (DISP·lO) (DISP·HI) I data I dataitw-1 I 
Immediate to register 1 0 1 1 w reg data dataifw-1 

Memory to accumulator 1010000w addr·lo addr-hl 

Accumulator to memory 1 0 1 0 0 0 1 w addr-!o .ddr-hi 

Register/memory to segment register 1 0 0 0 1 1 1 0 mod o SR rim (DISP·lO) (DISP·HI) I 
Segment register to register I memory 10001100 mod o SR rim (DISp·lO) (DISP·HI) I 

PUSH.. Push: 

Register/memory 11111111 mod 1 1 o· rim I (DISP·lO) I (DISP·HI) I 
Register 01010reg 

Segment register OOOreg110 

POP = Pop: 

Register/memory 1 0 0 0 1 1 1 1 mod 0 0 0 r/l'!" I (DISP·lO) I (DISP-HI) I 
Register o 1 0 1 1 reg 

Segment register OOOreg111 
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Table 1-22 8086/88 Instruction Encoding (continued) 
DATA TRANSFER (Conl'd.) 

XCHG = ElCchange: 18543210 78543210 76543210 76543210 76543210 78543210 

Register Imemory with register 

Register with accumulator 

IN :: Input from: 

Fixed port 

Variable port 

OUT = Outputto: 

Fixed port 1 1 1 0 0 1 1 w OATA-8 

Variable port 1 1 1 0 1 1 1 w 

XLAT = Translate byte to AL 1 1 0 1 0 1 11 

LEA = Load EA to register 1 0 0 0 1 1 a 1 mod reg rim (OISP-LO) (OISP-H1) 

LOS = Load pointer to OS 1 ·1 0 0 0 1 a 1 mod reg rim (DISP-LO) (DISP·HI) 

LES = Load pointer to ES 1 1 0 0 0 1 a a mod reg rim (DISP·LO) (DISP·HI) 

LAHF = load AH with flags 1 0 0 1 1 111 

SAHF = Store AH into flags 1 0 0 1 1 1 1 a 

PUSHF = Push flags 1 0 0 1 1 1 a a 

POPF = Pop lIags 1 0 0 1 1 1 0 1 

ARITHMETIC 

ADO = Add: 

Reg/memory with register to either OOOOOOdw mod reg rim (DISP-LO) (DISP-HI) I 
Immediate to register/memory 100000sw mod a a a rim (DISP-LO) (DISP-HI) I data I data if s: w=Ol I 
Immediate to accumulator 0OOOO10w data data if w=l 

ADC = Add with carry: 

Reg/memory with register to either 0OO100dw mod reg rim (DISP-LO) (DISP-HI) I 
Immediate to register/memory 100000sw mod a 1 a rim (DISP-LO) (DISP-HI) I data I data if s: w=Ol I 
Immediate to accumulator 0OO1010w data data if w""l 

INC ... Increment: 

Register/memory 1 1 1 1 1 1 1 w mod 0 0 0 rim I (DISP-LO) I (DISP-HI) I 
Register 01000reg 

AAA :: ASCII adjust for add a a 1 1 a 1 11 

DAA = Decimal adjust for add a 0 1 o 0 1 1 1 
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Table 1·22 8086/88 Instruction Encoding (continued) 
ARITHMETIC (Cont'd.) 

SUB = Subtract: 1,654321'07654321016$4321,078:.5'43210 18543210 18543210 

Reg/memory and register to either 0Ol'010dw mod "0 rim (D1SP·LO) (DISp·HI) I 
Immediate from register/memory 100000sw mod , o , rim (DlSP'LO) (DISP-HI) I data I data if s: w=Ol I 
Immediate from accumulator 0010110w data data ifw=l 

see = Subtract with borrow: 

Aegfmemoryand register 10 either 0OOl10dw mod reg rim (DISP-LO) (DISP-HI) I 
Immediate from register/memory 100000sw mod o , , rIm (DISP-LO) (DISP-HI) I data I data if s: w=Ol I 
Immediate from accumulator 0OOl110w data data if w=l 

DEC Decrement: 

Register/memory 1 1 1 1 1 1 1 w mod001 rim i (DISP·LO) I (DISP-HI) I 
Register 01001reg 

NEG Change sign 1 1 1 1 0 1 1 w mod 0 1 1 rim I (DISP·LO) I (DISP-HI) I 

CMP = Compare: 

Register/memory and register 001110dw mod reg rim (DISP·LO) (DISP·HI) 

Immediate with register/memory 100000sw mod , , , rim (DISP·LO) (DISP·HI) data 1 data if s: w=l J 
Immediate with accumulator o 0 1 1 1 lOw data 

AAS ASCII adjust lor subtract o 0 , , , " , 
OAS Decimal adjust tor subtract o 0 , o , , , , 
MUl Multiply (unsigned, 1 1 1 1 0 1 1 w mod , o 0 rim (DISP·LO) (DISP·H1) 

IMUL Integer multiply (signed) , , 1 1 0 1 1 w mod , o , rim (DISP·lO) (DISp·HI) 

AAM ASCII adjust for multiply 1 1 a 1 0 1 0 0 00001010 (DISP-LO) (DISP·HI) 

DIV Divide (unsign,ed) " , , 0 , , w mod , , 0 rim (DISP-LO) (DISP-HI) 

IDIV Integer divide (signed) 1 1 1 1 0 1 , w mod , , , rim (DISP-LO) (DISP·HI) 

AAD ASCII adjust for divide 1 1 0 1 o 1 0 1 00001010 (DISP·lO) (DISP·HI) 

caw Convert byte to word 1 0 0 1 1 0 0 0 

CWD Convert word to double word , 0 0 1 1 0 ,0 1 

LOGIC 

NOT Invert 1 1 1 1 0 1 1 w mod o , o rim (DISP·lO) (DISP-Hl) 

SHl/SAL Shift logical I arithmetic left 1 1 0 1 0 0 v w mod , o 0 rim (DISP-LO) (DISP-HI) 

SHR Shift logical right 1 1 0 1 o 0 v w mod , o , rim (DISP-LO) (DISP·Hl) 

SAR Shift arithmetic right 1 1 0 1 o 0 Y W mod , , , rim (DISP·lO) (DISP·HI) 

ROl Rotate left 110100vw mod o 0 0 rim (DISP·lO) (DISP·HI) 
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Table 1-22 8086/88 Instruction Encoding (continued) 
LOGIC IConl'd.) 76543210 76543210 76543210 76543210 76543210 78543210 

ROR Rotate right 1101QOvw mod o 0 1 <1m (DISP-LO) (OISP·HI) 

ACL Rotate through carry flag left 110100vw mod 0 I o rim (DISP-LO) (DISP-HI) 

RCA Rotate through carry right 1 1 0 1 0 0 v w mod o 1 1 <1m (OISP-LO) {D1SP-HI} 

AND == And: 

Regl memory with register to either 001000dw mod reg <1m (DISP-lO) (DISP-HI) I 
Immediate to register/memory 1000000w mod 1 0 0 rim IDISP-LOI (OISP-HI) I data I dataifw=l I 
Immediate to accumulator Q010010w data data if w=l 

TEST = And function to flaga no result: 

Register/memory and register 0OO100dw mod reg rim (DISP-lOI I (DISP-HI) I 
Immediate data and register/memory 1 1 1 1 0' 1 w mod o 0 0 <1m (DISP-LO) I (DISP-HI) j data I data it w=l I 
Immediate data and accumulator 1010100w data 

OR = Or; 

Reg/memory and register to either 0000lQdw mod reg rim (D1SP-LO) (OlSP·HI) I 
Immediate to register/memory 1000000w mod o 0 1 rim IDISP-LO) (DISP-HI) I data I data if w=l I 
Immediate to accumulator OOOQ110w data data if w=l 

XOR = Exclusive or: 

Reg/memory and register to either o 0 1 1 0 0 d w mod reg rim IDISP-LOI IDISP-HI) I 
Immediate to register/memory o 0 1 1 0 lOw data IOISP-LO) IOIS.P-HI) I data I data if w=l I 
Immediate to accumulator o 0 1 1 0 lOw data data if w=l 

STRING MANIPULATION 

REP_Repeat 1 1 1 1 0 0 1 z 

MOVS.Move byte/word 1010010w 

eMPS == Compare byte I word 1 0 1 0 0 1 1 w 

SCAS.Scan byte/word 1 0 1 0 1 11 w 

LODS. Load byte/wd to ALI AX 1 0 1 0 1 1 0 w 

STDS. Star byte/wd from ALI A 1 0 1 0 1 0 1 w 

1·49 210912-001 



8086/8088 CPU 

Table 1-22 8086/88 Instruction Encoding (continued) 
CONTROL TRANSFER 

CALL = Call: 

Direct within segment 

Indirect within segment 

Direct intersegmenl 

Indirect intersegment 

JMP = Uncondltlonll Jump: 

Direct within segment 

Direct within segment-shorl 

Indirect within segment 

Direct intersegment 

Indirect intersegment 

RET = Return from CALL: 

Within segment 

Within seg adding immed to SP 

Intersegmenl 

Intersegment adding immediate to SP 

JE/JZ=Jump on equallzero 

JL/JNGE =Jump on less/not greater or equal 

JLE/JNG =Jump on less or equal/not greater 

Jet JNAE = Jump on below I not above or equal 

JBEI JNA = Jump on below or equal I not above 

JP I JPE = Jump on parity I parity even 

JO=Jumpon overflow 

JS=Jump on sign 

JNEI JNZ., Jump on not equal I not zerO 

JNL/JGE=Jumpon not less/greater or equal 

JNLE/JG =Jump on not less or equal/greater 

JNBI JAE. Jump on not below I above or equal 

JN8E/JA=Jump on not below or equal/above 

JNP/JPO_Jumpon not par/parodd 

JNO =Jump on not overflow 

76543210 765432'~O 76543210 76543210 76543210 78543210 

111 o 1 0 0 0 IP·INC-LO IP·INC-HI 

1111 1111 mod o 1 0 rim IOISP·LO) IOISP·HI) I 
1 0 0 1 1 0 1 0 IP-Io IP·hi 

CS-Io CS·hi 

11111111 mod o 1 1 rim (DISP·LO) (DISP·HI) I 

11 1 0 1 o 0 1 Ip·INC·LO Ip·INC·HI 

1 1 1 0 1 o 1 1 IP·INC8 

111 11 111 mod 1 0 0 rim (DISP·LO) (DISP·HI) I 
11 1 0 1 o 1 0 IP·lo IP-hi 

CS·lo CS-hi 

11111111 mod 1 0 1 rim (DISP-LO) (DISP·HI) I 

11 o 0 0 0 1 1 

11000010 dala-Io dala-hi I 
1 1 0 0 1 o 1 1 

1 1 0 0 1 o 1 0 data-Io dala-hi I 
o 1 1 1 0 1 o 0 IP-INC8 

o 1 1 1 1 1 0 0 Ip·INC8 

o 1 1 1 1 1 1 0 IP-INC8 

o 1 1 1 0 0 1 0 Ip·INC8 

o 1 1 1 0 1 1 0 IP-INC8 

o 1 1 1 1 0 1 0 IP·INC8 

o 1 1 1 0 0 0 0 Ip·INCB 

o 1 1 1 1 0 0 0 Ip·INCB 

o 1 1 1 0 1 o 1 Ip·INCB 

o 1 1 1 1 1 0 1 IP-INC8 

o 1 11 11 11 IP-INC8 

o 1 1 1 0 0 1 1 IP·INCB 

o 1 1 1 0 1 1 1 IP~INCB 

o 1 1 1 1 0 1 1 Ip·INC8 

o 1 1 1 0 0 0 1 IP·INCB 
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Table 1-22 8086/88 Instruction Encoding (continued) 
CONTROL TRANSFER (Cont'd.) 

RET = Return from CALL: 

JNS=Jump on not slg" 

LOOP = loop ex times 

LOOPZ/lOOPE= Loop while zero/equal 

LOOPNZlLOOPNE = Loop while nol zero/equa 

JCXZ=Jump on ex zero 

INT = Interrupt: 

Type specified 

Type3 

INTO = Interrupt on overllow 

IRET = Interrupt return 

PROCESSOR CONTROL 

eLC =Clear carry 

CMC =Complement carry 

STC = Set carry 

etD =Clear direction 

STD = Set direction 

eLi = Clear mterrupt 

STI = Set interrupt 

HLT=Halt 

WAIT=Wait 

ESC = Escape (to extern,,1 device) 

LOCK = Bus lock prefix 

SEGMENT = Override prefix 

I 

76543210 78543210 76543210 78543210 76543210 78543210 

0' , 11001 IP-INC8 

" , o 0 0 1 0 IP-INC8 

1 1 1 0 0 0 0 1 IP-1NC8 

1 1 1 0 0 0 0 0 Ip·INC8 

, , 1 0 0 0 1 1 IP-INC8 

1 1 0 0 1 1 0' DATA·8 l 
11001 , 0 0 

1 1 0 0 1 , , 0 

1 1 0 0 1 1 , , 

11111000 

11110101 

1111 1 0 0 1 

" , 1 1 1 0 0 

1111 1101 

1111 1 0 1 0 

" , 11011 

" , 1 0 1 0 0 

1 0 0 1 1 0 1 1 

1 1 0 1 1 x x x modyyyr/m I (DISP·LO) I (DISP·HI) I 
1 1 1 1 0 0 0 0 

o 0 1 reg 1 1 0 
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(HOLD, HLDA) compatible with existing DMA control­
lers (e.g., 8259A Interrupt Controller). 

In the minimum mode the 8088 CPU provides an SSO 
status output. This output is equivalent to SO in the maxi­
mum mode and can be decoded with DT/R* 
and - IO/M*, which are equivalent to S 1 * and S2 * re­
spectively, to provide the same CPU cycle status informa­
tion (see Table 1-29). This type of decoding could be used 
in a minimum mode 8088-based system to allow dynamic 
RAM refresh during passive CPU cycle. 

1.3.5 Maximum Mode System 
Overview/Description 

The maximum mode (see Figure 1-35) extends the system 
architecture to support multiprocessor configurations and 
local instruction set extension processors (coprocessors). 
By adding the 8288 bipolar bus controller, the 8086 out­
puts assigned to bus control and commands in the mini­
mum mode are redefined to allow these extensions and 
enhance general system performance. Specifically, (1) 
two prioritized levels of processor preemption 
(RQ*/GTO*, RQ*/GTl *) allow multiple processors to re­
side on the 8086's local bus and share its interface to the 
system bus, (2) Queue status (QSO, QSI) is available to 
allow external devices like ICETM-86 or special instruc­
tion set extension co-processors (such as the 8087 Nu­
meric Co-processor) to track the CPU instruction 
execution, (3) access control to shared resources in multi­
processor systems is supported by a hardware bus lock 
mechanism and (4) system command and configuration 
options are expanded via devices like the 8288 bus con­
troller and 8289 bus arbiter. 

QUEUE STATUS 

The queue status indicates what information is being re­
moved from the internal queue and when the queue is be­
ing reset due to a transfer of control (Thble 1-30). By 
monitoring the SO*, S I *, S2 * status lines for instructions 
entering the 8086 (1, 0, 0 indicates code access while AO 

and BHE* indicate word or byte) and QSO, QSI for in­
structions leaving the 8086's internal queue, it is possible 
to track the instruction execution. Since instructions are 
executed from the 8086's internal queue, the queue status 
is presented each CPU clock cycle and is not related to the 
bus cycle activity. This mechanism (1) allows a 
co-processor to detect execution of an ESCAPE instruc­
tion which directs the co-processor to perform a specific 
task and (2) allows ICETM-86 to trap execution of a spe­
cific memory location. 

An example of a circuit used by ICE is given in Figure 
1-36. The first up down counter tracks the depth of the 
queue while the second captures the queue depth on a 
match. The second counter decrements on further fetches 
from the queue until the queue is flushed or the count goes 
to zero indicating execution of the match address. The 
first counter decrements on fetch from the queue (QSO = 
I) and increments on code fetches into the queue. Note 
that a normal code fetch will transfer two bytes into the 
queue so two clock increments are given to the counter 
(T201 and T301) unless a single byte is loaded over the 
upper half of the bus (AO-P is high). Since the execution 
unit (EU) is not synchronized to the bus interface unit 
(BIU), a fetch from the queue can occur simultaneously 
with a transfer into the queue. The Exclusive-OR gate 
driving the ENP input of the first counter allows these 
simultaneous operations to cancel each other and not 
modify the queue depth. 

HARDWARE LOCK 

To address the problem of controlling access to shared 
resources, the maximum mode 8086 provides a hardware 
LOCK* output. The LOCK* output is activated through 
the instruction stream by execution of the LOCK prefix 
instruction. The LOCK* output goes active in the first 
CPU clock cycle following execution of the prefix and 
remains active until the clock following the completion of 
the instruction following the LOCK prefix. To provide 
bus access control in multiprocessor systems, the LOCK* 
signal should be incorporated into the system bus arbitra­
tion logic resident to the CPU. 

Table 1·23 Machine Instruction Decoding Guide 

1ST BYTE 
2ND BYTE BYTES 3, 4, 5, 6 ASM·86 INSTRUCTION FORMAT 

HEX BINARY 

00 0000 0000 MOD REG RIM (DISP-LO),(DISP-HI) ADD REGS/MEMS,REGS 
01 0000 0001 MOD REG RIM (DISP-LO).(DISP-HI) ADD REG16/MEM16.REG16 
02 0000 0010 MOD REG RIM (DISP-LO).(DISP-HI) ADD REGS.REGS/MEMS 
03 0000 0011 MOD REG RIM (DISP-LO).(DISP-HI) ADD REG16.REG161 M EM16 
04 0000 0100 DATA-S ADD AL.IMMEDS 
05 0000 0101 DATA-LO DATA-HI ADD AX.IMMED16 
06 0000 0110 PUSH ES 
07 0000 0111 POP ES 
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Table 1-23 Machine Instruction Decoding Guide (continued) 

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 
HEX BINARY 

08 0000 1000 MOD REG RIM (DISP-LO),(DISP-HI) OR REG81 MEM8,REG8 
09 0000 1001 MOD REG RIM (DISP-LO),(DISP-HI) OR REG16/MEM16,REG16 
OA 0000 1010 MOD REG RIM (DISP-LO),(DISP-HI) OR REG8,REG8/MEM8 
OB 0000 1011 MOD REG RIM (DISP-LO),(DISP-HI) OR REG16, REG161 MEM16 
OC 0000 1100 DATA-8 OR AL,IMMED8 
00 0000 1101 DATA-LO DATA-HI OR AX,IMMED16 
OE 0000 1110 PUSH CS 
OF 0000 1111 (not used) 
10 0001 0000 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG81 M EM8, REG8 
11 0001 0001 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG161 MEM16, REG16 
12 0001 0010 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG8,REG8/MEM8 
13 0001 0011 MOD REG RIM (DISP-LO),(DISP-HI) ADC REG16, REG161 M EM16 
14 0001 0100 DATA-8 ADC AL,IMMED8 
15 0001 0101 DATA-LO DATA-HI ADC AX,IMMED16 
16 0001 0110 PUSH SS 
17 0001 0111 POP SS 
18 0001 1000 MOD REG RIM (DISP-LO),(DISP-HI) SBB REG81 MEM8, REG8 
19 0001 1001 MOD REG RIM (DISP-LO),(DISP-HI) SBB REG16/MEM16,REG16 
1A 0001 1010 MOD REG RIM (DISP-LO),(DISP-HI) SBB REG8,REG8/MEMB 
1B 0001 1011 MOD REG RIM (DISP-LO),(DISP-HI) SBB REG16, REG161 M EM16 
1C 0001 1100 DATA-B SBB AL,IMMEDB 
10 0001 1101 DATA-LO DATA-HI SBB AX,IMMED16 
1E 0001 1110 PUSH OS 
1F 0001 1111 POP OS 
20 0010 0000 MOD REG RIM (DISP-LO),(DISP-HI) AND REGB/MEMB,REGB 
21 0010 0001 MOD REG RIM (DISP-LO),(DISP-HI) AND REG16/MEM16,REG16 
22 0010 0010 MOD REG RIM (DISP-LO),(DISP-HI) AND REGB,REGB/MEMB 
23 0010 0011 MOD REG RIM (DISP-LO),(DISP-HI) AND REG16,REG16/MEM16 
24 0010 0100 DATA-B AND AL,IMMEDB 
25 0010 0101 DATA-LO DATA-HI AND AX,IMMED16 
26 0010 0110 ES: (segment override 

prefix) 
27 0010 0111 DAA 
2B 0010 1000 MOD REG RIM (DISP-LO),(DISP-HI) SUB REGSI M EMB, REGB 
29 0010 1001 MOD REG RIM (DISP-LO),(DISP-HI) SUB REG16/MEM16,REG16 
2A 0010 1010 MOD REG RIM (DISP-LO),(DISP-HI) SUB REGB, REGBI MEMB 
2B 0010 1011 MOD REG RIM (DISP-LO,(DISP-HI) SUB REG16,REG16/MEM16 
2C 0010 1100 DATA-B SUB AL,IMMEDB 
20 0010 1101 DATA-LO DATA-HI SUB AX,IMMED16 
2E 0010 1110 CS: (segment override 

prefix) 
2F 0010 1111 DAS 
30 0011 0000 MOD REG RIM (DISP-LO),(DISP-HI) XOR REGB/MEMB,REGB 
31 0011 0001 MOD REG RIM (DISP-LO),(DISP-HI) XOR REG16/MEM16,REG16 
32 0011 0010 MOD REG RIM (DISP-LO),(DISP-HI) XOR REGB,REGB/MEMB 
33 0011 0011 MOD REG RIM (DISP-LO),(DISP-HI) XOR REG16,REG161 MEM16 
34 . 0011 0100 DATA-B XOR AL,IMMED8 
35 0011 0101 DATA-LO DATA-HI XOR AX,IMMED16 
36 0011 0110 SS: (segment override 

prefix) 
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Table 1-23 Machine Instruction Decoding Guide (continued) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT HEX BINARY 

37 0011 0110 AAA 
38 0011 1000 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG8/MEM8,REG8 
39 0011 1001 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG16/MEM16,REG16 
3A 0011 1010 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG8,REG8/MEM8 
3B 0011 1011 MOD REG RIM (DISP-LO),(DISP-HI) CMP REG16,REG16/MEM16 
3C 0011 1100 DATA-8 CMP AL,IMMED8 
3D 0011 1101 DATA-LO DATA-HI CMP AX,IMMED16 
3E 0011 1110 DS: (segment override 

prefix) 
3F 0011 1111 AAS 
40 0100 0000 INC AX 
41 0100 0001 INC CX 
42 0100 0010 INC DX 
43 0100 0011 INC BX 
44 0100 0100 INC SP 
45 0100 0101 INC BP 
46 0100 0110 INC SI 
47 0100 0111 INC DI 
48 0100 1000 DEC AX 
49 0100 1001 DEC CX 
4A 0100 1010 DEC DX 
4B 0100 1011 DEC BX 
4C 0100 1100 DEC SP 
4D 0100 1101 DEC BP 
4E 0100 1110 DEC SI 
4F 0100 1111 DEC DI 
50 0101 0000 PUSH AX 
51 0101 0001 PUSH CX 
52 0101 0010 PUSH DX 
53 0101 0011 PUSH BX 
54 0101 0100 PUSH SP 
55 0101 0101 PUSH BP 
56 0101 0110 PUSH SI 
57 0101 0111 PUSH DI 
58 0101 1000 POP AX 
59 0101 1001 POP CX 
5A 0101 1010 POP DX 
5B 0101 1011 POP BX 
5C 0101 1100 POP SP 
5D 0101 1101 POP BP 
5E 0101 1110 POP SI 
5F 0101 1111 POP DI 
60 0110 0000 (not used) 
61 0110 0001 (not used) 
62 0110 0010 (not used) 
63 0110 0011 (not used) 
64 0110 0100 (not used) 
65 0110 0101 (not used) 
66 0110 0110 (not used) 
67 0110 0111 (not used) 

1-54 210912-001 



8086/8088 CPU 

Table 1-23 Machine Instruction Decoding Guide (continued) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

68 0110 1000 (not used) 
69 0110 1001 (not used) 
6A 0110 1010 (not used) 
6B 0110 1011 (not used) 
6C 0110 1100 (not used) 
60 0110 1101 (not used) 
6E 0110 1110 (not used) 
6F 0110 1111 (not used) 
70 0111 0000 IP-INC8 JO SHORT-LABEL 
71 0111 0001 IP-INC8 JNO SHORT-LABEL 
72 0111 0010 IP-INC8 JB/JNAEI SHORT-LABEL 

JC 
73 0111 0011 IP-INC8 JNB/JAEI SHORT-LABEL 

JNC 
74 0111 0100 IP-INC8 JE/JZ SHORT-LABEL 
75 0111 0101 IP-INC8 JNE/JNZ SHORT-LABEL 
76 0111 0110 IP-INC8 JBE/JNA SHORT-LABEL 
77 0111 0111 IP-INC8 JNBE/JA SHORT-LABEL 
78 0111 1000 IP-INC8 JS SHORT-LABEL 
79 0111 1001 IP-INC8 JNS SHORT-LABEL 
7A 0111 1010 IP-INC8 JP/JPE SHORT-LABEL 
7B 0111 1011 IP-INC8 JNP/JPO SHORT-LABEL 
7C 0111 1100 IP-INC8 JLlJNGE SHORT-LABEL 
70 0111 1101 IP-INC8 JNLlJGE SHORT-LABEL 
7E 0111 1110 IP-INC8 JLE/JNG SHORT-LABEL 
7F 0111 1111 IP-INC8 JNLE/JG SHORT-LABEL 
80 1000 0000 MOD 000 RIM (DISP-LO),(DISP-HI), ADD REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 001 RIM (DISP-LO),(DISP-HI), OR REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD010 RIM (DISP-LO),(DISP-HI), ADC REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD011 RIM (DISP-LO),(DISP-HI), SBB REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD100R/M (DISP-LO),(DISP-HI), AND REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD101 RIM (DISP-LO),(DISP-HI), SUB REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD110 RIM (DISP-LO),(DISP-HI), XOR REG8/MEM8,IMMED8 

DATA-8 
80 1000 0000 MOD 111 RIM (DISP-LO),(DISP-HI), CMP REG8/MEM8,IMMED8 

DATA-8 
81 1000 0001 MODOOOR/M (DISP-LO),(DISP-HI), ADD REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
81 1000 0001 MOD 001 RIM (DISP-LO),(DISP-HI), OR REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
81 1000 0001 MOD010R/M (DISP-LO),(DISP-HI), ADC REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
81 1000 0001 MOD011 RIM (DISP-LO),(DISP-HI), SBB REG16/MEM16,IMMED16 

DATA-LO,DATA-HI 
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Table 1·23 Machine Instruction Decoding Guide (continued) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT HEX BINARY 

81 1000 0001 MOD 100 RIM (DISP-LO),(DISP-HI), AND REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

81 1000 0001 MOD101 RIM (DISP-LO),(DISP-HI), SUB REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

81 1000 0001 MOD110R/M (DISP-LO),(DISP-HI), XOR REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

81 1000 0001 MOD 111 RIM (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMED16 
DATA-LO,DATA-HI 

82 1000 0010 MOD 000 RIM (DISP-LO),(DISP-HI), ADD REG8/MEM8,IMMED8 
DATA-8 

82 1000 0010 MOD 001 RIM (not used) 
82 1000 0010 MOD010 RIM (DISP-LO),(DISP-HI), ADC REG8/MEM8,IMMED8 

DATA-8 
82 1000 0010 MOD011 RIM (DISP-LO),(DISP-HI), SBB REG81 MEM8,IMMED8 

DATA-8 
82 1000 0010 MOD100 RIM (not used) 
82 1000 0010 MOD 101 RIM (DISP-LO),(DISP-HI), SUB REG8/MEM8,IMMED8 

DATA-8 
82 1000 0010 MOD110R/M (not used) 
82 1000 0010 MOD 111 RIM (DISP-LO),(DISP-HI), CMP REG8/MEM8,IMMED8 

DATA-8 
83 1000 0011 MODOOOR/M (DISP-LO),(DISP-HI), ADD REG16/MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD001 RIM (not used) 
83 1000 0011 MOD010 RIM (DISP-LO), (DISP-HI), ADC REG161 M EM16,IMMED8 

DATA-SX 
83 1000 0011 MOD011 RIM (DISP-LO),(DISP-HI), SBB REG16/MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD 100 RIM (not used) 
83 1000 0011 MOD101 RIM (DISP-LO),(DISP-HI), SUB REG16/MEM16,IMMED8 

DATA-SX 
83 1000 0011 MOD 110 RIM (not used) 
83 1000 0011 MOD 111 RIM (DISP-LO),(DISP-HI), CMP REG16/MEM16,IMMED8 

DATA-SX 
84 1000 0100 MOD REG RIM (DISP-LO),(DISP-HI) TEST REG8/MEM8,REG8 
85 1000 0101 MOD REG RIM (DISP-LO),(DISP-HI) TEST REG16/MEM16,REG16 
86 1000 0110 MOD REG RIM (DISP-LO),(DISP-HI) XCHG REG8,REG8/MEM8 
87 1000 0111 MOD REG RIM (DISP-LO),(DISP-HI) XCHG REG16,REG16/MEM16 
88 1000 1000 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG8/MEM8,REG8 
89 1000 1001 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG16/MEM16/REG16 
8A 1000 1010 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG8,REG8/MEM8 
8B 1000 1011 MOD REG RIM (DISP-LO),(DISP-HI) MOV REG16,REG16/MEM16 
8C 1000 1100 MOD OSR RIM (DISP-LO),(DISP-HI) MOV REG16/MEM16,SEGREG 
8C 1000 1100 MOD1--R/M (not used) 
8D 1000 1101 MOD REG RIM (DISP-LO),(DISP-HI) LEA REG16,MEM16 
8E 1000 1110 MODOSR RIM (DISP-LO),(DISP-HI) MOV SEGREG,REG16/MEM16 
8E 1000 1110 MOD 1-- RIM (not used) 
8F 1000 1111 MODOOO RIM (DISP-LO),(DISP-HI) POP REG16/MEM16 
8F 1000 1111 MOD 001 RIM (not used) 
8F 1000 1111 MOD010 RIM (not used) 
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Table 1·23 Machine Instruction Decoding Guide (continued) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

8F 1000 1111 MOD011 RIM (not used) 
8F 1000 1111 MOD 100 RIM (not used) 
8F 1000 1111 MOD101 RIM (not used) 
8F 1000 1111 MOD110 RIM (not used) 
8F 1000 1111 MOD111 RIM (not used) 
90 1001 0000 NOP (exchange AX, AX) 
91 1001 0001 XCHG AX,CX 
92 1001 0010 XCHG AX,DX 
93 1001 0011 XCHG AX,BX 
94 1001 0100 XCHG AX,SP 
95 1001 0101 XCHG AX,BP 
96 1001 0110 XCHG AX,SI 
97 1001 0111 XCHG AX,DI 
98 1001 1000 CBW 
99 1001 1001 CWO 
9A 1001 1010 DISP-LO DISP-HI,SEG-LO, CALL FAR_PROC 

SEG-HI 
9B 1001 1011 WAIT 
9C 1001 1100 PUSHF 
90 1001 1101 POPF 
9E 1001 1110 SAHF 
9F 1001 1111 LAHF 
AO 1010 0000 ADDR-LO ADDR-HI MOV AL,MEM8 
A1 1010 0001 ADDR-LO ADDR-HI MOV AX,MEM16 
A2 1010 0010 ADDR-LO ADDR-HI MOV MEM8,AL 
A3 1010 0011 ADDR-LO ADDR-HI MOV MEM16,AL 
A4 1010 0100 MOVS DEST -STR8, SRC-STR8 
A5 1010 0101 MOVS DEST-STA16,SRC-STR16 
A6 1010 0110 CMPS DEST -STR8,SRC-STA8 
A7 1010 0111 CMPS DEST-STR16,SRC-STR16 
A8 1010 1000 DATA-8 TEST AL,IMMED8 
A9 1010 1001 DATA-LO DATA-HI TEST AX,IMMED16 
AA 1010 1010 STOS DEST-STR8 
AB 1010 1011 STOS DEST-STR16 
AC 1010 1100 LODS SRC-STR8 
AD 1010 1101 LODS SRC-STR16 
AE 1010 1110 SCAS DEST-STR8 
AF 1010 1111 SCAS DEST-STA16 
BO 1011 0000 DATA-8 MOV AL,IMMED8 
B1 1011 0001 DATA-8 MOV CL,IMMED8 
B2 1011 0010 DATA-8 MOV DL,IMMED8 
B3 1011 1011 DATA-8 MOV BL,IMMED8 
B4 1011 0100 DATA-8 MOV AH,IMMED8 
B5 1011 0101 DATA-8 MOV CH,IMMED8 
B6 1011 0110 DATA-8 MOV DH,IMMED8 
B7 1011 0111 DATA-8 MOV BH,IMMED8 
B8 1011 1000 DATA-LO DATA-HI MOV AX,IMMED16 
B9 1011 1001 DATA-LO DATA-HI MOV CX,IMMED16 
BA 1011 1010 DATA-LO DATA-HI MOV DX,IMMED16 
BB 1011 1011 DATA-LO DATA-HI MOV BX,IMMED16 
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Table 1-23 Machine Instruction Decoding Guide (continued) 

1ST BYTE 2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT HEX BINARY 

BC 1011 1100 DATA-LO DATA-HI MOV SP,IMMED16 
BD 1011 1101 DATA-LO DATA-HI MOV BP,IMMED16 
BE 1011 1110 DATA-LO DATA-HI MOV SI,IMMED16 
BF 1011 1111 DATA-LO DATA-HI MOV DI,IMMED16 
CO 1100 0000 (not used) 
C1 1100 0001 (not used) 
C2 1100 0010 DATA-LO DATA-HI RET IMMED16 (intraseg) 
C3 1100 0011 RET (intrasegment) 
C4 1100 0100 MOD REG RIM (DISP-LO),(DISP-HI) LES REG16,MEM16 
C5 1100 0101 MOD REG RIM (DISP-LO),(DISP-HI) LDS REG16,MEM16 
C6 1100 0110 MODOOOR/M (DISP-LO),(DISP-HI), MOV MEM8,IMMED8 

DATA-8 
C6 1100 0110 MOD 001 RIM (not used) 
C6 1100 0110 MOD010 RIM (not used) 
C6 1100 0110 MOD011 RIM (not used) 
C6 1100 0110 MOD 100 RIM (not used) 
C6 1100 0110 MOD101 RIM (not used) 
C6 1100 0110 MOD110 RIM (not used) 
C6 1100 0110 MOD 111 RIM (not used) 
C7 1100 0111 MOD 000 RIM (DISP-LO),(DISP-HI), MOV MEM16,IMMED16 

DATA-LO,DATA-HI 
C7 1100 0111 MOD 001 RIM (not used) 
C7 1100 0111 MOD010R/M (not used) 
C7 1100 0111 MOD011 RIM (not used) 
C7 1100 0111 MOD 100 RIM (not used) 
C7 1100 0111 MOD101 RIM (not used) 
C7 1100 0111 MOD110R/M (not used) 
C7 1100 0111 MOD 111 RIM (not used 
C8 1100 1000 (not used) 
C9 1100 1001 (not used) 
CA 1100 1010 DATA-LO DATA-HI RET IMMED16 (intersegment) 
CB 1100 1011 RET (intersegment) 
CC 1100 1100 INT 3 
CD 1100 1101 DATA-8 INT IMMED8 
CE 1100 1110 INTO 
CF 1100 1111 IRET 
DO 1101 0000 MOD 000 RIM (DISP-LO),(DISP-HI) ROL REG8/MEM8,1 
DO 1101 0000 MOD 001 RIM (DISP-LO),(DISP-HI) ROR REG8/MEM8,1 
DO 1101 0000 MOD010 RIM (DISP-LO),(DISP-HI) RCL REG8/MEM8,1 
DO 1101 0000 MOD011 RIM (DISP-LO),(DISP-HI) RCR REG8/MEM8,1 
DO 1101 0000 MOD100R/M (DISP-LO),(DISP-HI) SALISHL REG8/MEM8,1 
DO 1101 0000 MOD101 RIM (DISP-LO),(DISP-HI) SHR REG8/MEM8,1 
DO 1101 0000 MOD110R/M (not used) 
DO 1101 0000 MOD 111 RIM (DISP-LO),(DISP-HI) SAR REG8/MEM8,1 
D1 1101 0001 MOD 000 RIM (DISP-LO),(DISP-HI) ROL REG16/MEM16,1 
D1 1101 0001 MOD 001 RIM (DISP-LO),(DISP-HI) ROR REG16/MEM16,1 
D1 1101 0001 MOD010R/M (DISP-LO),(DISP-HI) RCL REG161 MEM16, 1 
D1 1101 0001 MOD011 RIM (DISP-LO),(DISP-HI) RCR REG16/MEM16,1 
D1 1101 0001 MOD100R/M (DISP-LO),(DISP-HI) SALISHL REG16/MEM16,1 
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Table 1-23 Machine Instruction Decoding Guide (continued) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT 

HEX BINARY 

01 1101 0001 M00101 RIM (OISP-LO),(OISP-HI) SHR REG16/MEM16,1 
01 1101 0001 M00110 RIM (not used) 
01 1101 0001 MOD 111 RIM (OISP-LO),(OISP-HI) SAR REG16/MEM16,1 
02 1101 0010 MOD 000 RIM (OISP-LO),(OISP-HI) ROL REG8/MEM8,CL 
02 1101 0010 MOD 001 RIM (OISP-LO),(OISP-HI) ROR REG8/MEM8,CL 
02 1101 0010 M00010 RIM (OISP-LO),(OISP-HI) RCL REG8/MEM8,CL 
02 1101 0010 MOD 011 RIM (OISP-LO),(OISP-HI) RCR REG8/MEM8,CL 
02 1101 0010 M00100 RIM (OISP-LO),(OISP-HI) SALISHL REG8/MEM8,CL 
02 1101 0010 M00101 RIM (OISP-LO),(OISP-HI) SHR REG8/MEM8,CL 
02 1101 0010 MOD 110 RIM (not used) 
02 1101 0010 M00111 RIM (OISP-LO),(OISP-HI) SAR REG8/MEM8,CL 
03 1101 0011 MOOOOO RIM (OISP-LO),(OISP-HI) ROL REG16/MEM16,CL 
03 1101 0011 MOD 001 RIM (OISP-LO),(OISP-HI) ROR REG16/MEM16,CL 
03 1101 0011 MOO010R/M (OISP-LO),(OISP-HI) RCL REG16/MEM16,CL 
03 1101 0011 M00011 RIM (OISP-LO),(OISP-HI) RCR REG16/MEM16,CL 
03 1101 0011 M00100 RIM (OISP-LO),(OISP-HI) SALISHL REG16/MEM16,CL 
03 1101 0011 M00101 RIM (OISP-LO),(OISP-HI) SHR REG16/MEM16,CL 
03 1101 0011 MOD 110 RIM (not used) 
03 1101 0011 M00111 RIM (OISP-LO),(OISP-HI) SAR REG16/MEM16,CL 
04 1101 0100 00001010 AAM 
05 1101 0101 00001010 AAO 
06 1101 0110 (not used) 
07 1101 0111 XLAT SOURCE-TABLE 
08 1101 1000 MOD 000 RIM 

1XXX MOOYYY RIM (OISP-LO), (OISP-HI) ESC OPCOOE,SOURCE 
OF 1101 1111 M00111 RIM 
EO 1110 0000 IP-INC-8 LOOPNEI SHOR~LABEL 

LOOPNZ 
E1 1110 0001 IP-INC-8 LOOPEI SHORT-LABEL 

LOOPZ 
E2 1110 0010 IP-INC-8 LOOP SHORT-LABEL 
E3 1110 0011 IP-INC-8 JCXZ SHORT-LABEL 
E4 1110 0100 OATA.-8 IN AL,IMME08 
E5 1110 0101 OATA-8 IN AX,IMME08 
E6 1110 0110 OATA-8 OUT AL,IMME08 
E7 1110 0111 OATA-8 OUT AX,IMME08 
E8 1110 1000 IP-INC-LO IP-INC-HI CALL NEAR-PROC 
E9 1110 1001 IP-INC-LO IP-INC-HI JMP NEAR-LABEL 
EA 1110 1010 IP-LO IP-HI,CS-LO,CS-HI JMP FAR-LABEL 
EB 1110 1011 IP-INC8 JMP SHORT-LABEL 
EC 1110 1100 IN AL,OX 
ED 1110 1101 IN AX,OX 
EE 1110 1110 OUT AL,OX 
EF 1110 1111 OUT AX,OX 
FO 1111 0000 LOCK (prefix) 
F1 1111 0001 (not used) 
F2 1111 0010 REPNE/REPNZ 
F3 1111 0011 REP/REPE/REPZ 
F4 1111 0100 HLT 
F5 1111 0101 CMC 
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Table 1-23 Machine Instruction Decoding Guide (continued) 

1ST BYTE 
2ND BYTE BYTES 3,4,5,6 ASM-86 INSTRUCTION FORMAT HEX BINARY 

F6 1111 0110 MOD 000 RIM (DISP-LO),(DISP-HI), TEST REG8/MEM8,IMMED8 
DATA-8 

F6 1111 0110 MOD 001 RIM (not used) 
F6 1111 0110 MOD010 RIM (DISP-LO),(DISP-HI) NOT REG8/MEM8 
F6 1111 0110 MOD011 RIM (DISP-LO),(DISP-HI) NEG REG8/MEM8 
F6 1111 0110 MOD100 RIM (DISP-LO),(DISP-HI) MUL REG8/MEM8 
F6 1111 0110 MOD101 RIM (DISP-LO),(DISP-HI) IMUL REG8/MEM8 
F6 1111 0110 MOD 110 RIM (DISP-LO),(DISP-HI) DIV REG8/MEM8 
F6 1111 0110 MOD 111 RIM (DISP-LO),(DISP-HI) IDIV REG8/MEM8 
F7 1111 0111 MOD 000 RIM (DISP-LO),(DISP-HI), TEST REG16/MEM16,IMMED16 

DAT A-LO, DAT A-H I 
F7 1111 0111 MOD 001 RIM (not used) 
F7 1111 0111 MOD010 RIM (DISP-LO),(DISP-HI) NOT REG16/MEM16 
F7 1111 0111 MOD011 RIM (DISP-LO),(DISP-HI) NEG REG16/MEM16 
F7 1111 0111 MOD100 RIM (DISP-LO),(DISP-HI) MUL REG16/MEM16 
F7 1111 0111 MOD101 RIM (DISP-LO),(DISP-HI) IMUL REG16/MEM16 
F7 1111 0111 MOD110 RIM (DISP-LO),(DISP-HI) DIV REG16/MEM16 
F7 1111 0111 MOD 111 RIM (DISP-LO),(DISP-HI) IDIV REG16/MEM16 
F8 1111 1000 CLC 
F9 1111 1001 STC 
FA 1111 1010 CLI 
FB 1111 1011 STI 
FC 1111 1100 CLD 
FD 1111 1101 STD 
FE 1111 1110 MOD 000 RIM (DISP-LO),(DISP-HI) INC REG8/MEM8 
FE 1111 1110 MOD 001 RIM (DISP-LO),(DISP-HI) DEC REG8/MEM8 
FE 1111 1110 MOD010 RIM (not used) 
FE 1111 1110 MOD011 RIM (not used) 
FE 1111 1110 MOD100 RIM (not used) 
FE 1111 1110 MOD101 RIM (not used) 
FE 1111 1110 MOD110 RIM (not used) 
FE 1111 1110 MOD 111 RIM (not used) 
FF 1111 1111 MODOOOR/M (DISP-LO),(DISP-HI) INC MEM16 
FF 1111 1111 MOD001 RIM (DISP-LO),(DISP-HI) DEC MEM16 
FF 1111 1111 MOD010 RIM (DISP-LO),(DISP-HI) CALL REG16/MEM16 (intra) 
FF 1111 1111 MOD011 RIM (DISP-LO),(DISP-HI) CALL MEM16 (intersegment) 
FF 1111 1111 MOD100 RIM (DISP-LO),(DISP-HI) JMP REG161 MEM16 (intra) 
FF 1111 1111 MOD101 RIM (DISP-LO),(DISP-HI) JMP MEM16 (intersegment) 
FF 1111 1111 MOD110 RIM (DISP-LO),(DISP-HI) PUSH MEM16 
FF 1111 1111 MOD 111 RIM (not used) 
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Table 1-24 8086/8088 Device Pin Descriptions 
The following pin function descriptions are for iAPX 86 systems in either minimum or maximum mode. The "Local 
Bus" in these descriptions is the direct multiplexed bus interface connection to the 8086 (without regard to additional 
bus buffers). 

Symbol Pin No. Type Name and Function 

AD'S-ADo 2-16,39 1/0 Address Data Bus: These lines constitute the time multiplexed memoryllO address (T 1) 
and data (T 2, T 3, T w, T 4) bus. Ao is analogous to SHE for the lower byte of the data bus, 
pins DrDo. It is LOW during T, when a byte is to be transferred on the lower portion of 
the bus in memory or 1/0 operations. Eight-bit oriented devices tied to the lower half 
would normally use Ao to condition chip select functions. (See SHE.) These lines are 
active HIGH and float to 3-state OFF during interrupt acknowledge and local bus "hold 
acknowledge:' 

A,g1Ss, 35-38 0 Address/StatuI: During T1 these are the four most sign i-
A,s1Ss, ficant address lines for memory operations. During 1/0 
A17/S4, operations these lines are LOW. During memory and 110 

A17'S4 A,oIS3 Characteristics 
A,s1S3 operations, status information is available on these 

lines during T 2, T 3, T w, and T 4. The status of the interrupt o (LOW) 0 Alternate Data 

enable FLAG bit (Ss) is updated at the beginning of each 0 1 Stack 
1 (HIGH) 0 Code or None 

CLK cycle. A'7/S4 and A,s1S3 are encoded as shown. 1 1 Data 

This information indicates which relocation register is 
s6 is 0 
(LOW) 

presently being used for data accessing. 

These lines float to 3-state OFF during local bus "hold 
acknowledge." 

SHE/S7 34 0 Bus High Enable/Status: During T, the bus high enable 
signal (SHE) should be used to enable data onto the 
most significant half of the data bus, pins D,s-Ds. Eight- iRE Ao Characterlsllcs 

bit oriented devices tied to the upper half of the bus 0 0 Whole word 
would normally use SHE to condition chip select func- 0 1 Upper byte froml 

tions. SHE is LOW during T, for read, write, and inter- to odd address 

rupt acknowledge cycles when a byte is to be transfer- 1 0 Lower byte froml 

red on the high portion of the bus. The S7 status informa- to even address 

tion is available during T 2, T 3, and T 4. The signal is active 
1 1 None 

LOW, and floats to 3-state OFF in "hold." It is LOW dur-
ing T 1 for the first interrupt acknowledge cycle. 

AD 32 0 Read: Read strobe indicates that the processor is performing a memory of 110 read cy-
cle, depending on the state of the S2 pin. This signal is used to read devices which 
reside on the 8086 local bus. RD is active LOW during T2, T 3 and T w of any read cycle, 
and is guaranteed to remain HIGH in T 2 until the 8086 local bus has floated. 

This signal floats to 3-state OFF in "hold acknowledge." 

READY 22 I READY: is the acknowledgement from the addressed memory or 110 device that it will 
complete the data transfer. The READY signal from memory/IO is synchronized by the 
8284A Clock Generator to form READY. This signal is active HIGH. The 8086 READY in-
put is not synchronized. Correct operation is not guaranteed if the setup and hold 
times are not met. 

INTR 18 I Interrupt Request: is a level triggered input which is sampled during the last clock cy-
cle of each instruction to determine if the processor should enter into an interrupt 
acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table 
located in system memory. It can be internally masked by software resetting the inter-
rupt enable bit. INTR is internally synchronized. This signal is active HIGH. 

TEST 23 I TEST: input is examined by the "Wait" instruction. If the TEST input is LOW execution 
continues, otherwise the processor waits in an "Idle" state. This input is synchronized 
internally during each clock cycle on the leading edge of CLK. 
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Table 1·24 8086/8088 Device Pin Descriptions (continued) 

Symbol Pin No. Type Name and Function 

NMI 17 I Non·maskable interrupt: an edge triggered input which causes a type 2 interrupt. A 
subroutine is vectored to via an interrupt vector lookup table located in system 
memory. NMI is not maskable internally by software. A transition from a lOW to HIGH 
initiates the interrupt at the end of the current instruction. This input is internally syn· 
chronized. 

RESET 21 I Reset: causes the processor to immediately terminate its present activity. The signal 
must be active HIGH for at least four clock cycles. It restarts execution, as described in 
the Instruction Set description, when RESET returns lOW. RESET is internally syn· 
chronized. 

ClK 19 I Clock: provides the basic timing for the processor and bus controller. It is asymmetric 
with a 33% duty cycle to provide optimized internal timing. 

Vee 40 Vcc: + 5V power supply pin. 

GND 1,20 Ground 

MN/MX 33 I Minimum/Maximum: indicates what mode the processor is to operate in. The two 
modes are discussed in the following sections. 

The fol/owing pin function descriptions are for the 808618288 system in maximum mode (i.e., MNIMX = VssJ. Only the 
pin functions which are unique to maximum mode are described; aI/ other pin functions are as described above. 

S2, S" So 26-28 0 Status: active during T4, T" and T 2 and is returned to the 
passive state (1,1,1) during T 3 or during Tw when READY $2 $, So Characteristics 

is HIGH. This status is used by the 8288 Bus Controller OILOW) 0 0 Interrupt 

to generate all memory and 1/0 access control signals. Acknowledge 

Any change by 5;,5;, or So during T 4 is used to indicate 0 0 , Read 1/0 Port 
0 1 0 Write 1/0 Port 

the beginning of a bus cycle, and the return to the pas· 0 1 1 Hall 

sive state in T 3 or Tw is used to indicate the end of a bus 1 (HIGH) 0 0 Code Access 

cycle. 
, 0 1 Read Memory 
1 1 0 Write Memory 

These signals float to 3-state OFF in "hold acknowl- 1 1 1 Passive 

edge." These status lines are encoded as shown. 

RO/GTo, 30,31 110 Request/Grant: pins are used by other local bus masters to force the processor to 
RCi/GT, release the local bus at the end of the processor's current bus cycle. Each pin is 

bidirectional with RO/GTo having higher priority than RO/GT,. RO/GT has an internal 
pull-up resistor so may be left unconnected. The request/grant sequence is as follows 
(see Figure 9): 

1. A pulse of 1 ClK wide from another local bus master indicates a local bus request 
("hold") to the 8086 (pulse 1). 

2. During a T4 or T, clock cycle, a pulse 1 ClK wide from the 8086 to the requesting master 
(pulse 2), indicates that the 8086 has allowed the local bus to float and that it will enter 
the "hold acknowledge" state at the next ClK. The CPU's bus interface unit is discon-
nected logically from the local bus during "hold acknowledge." 

3. A pulse 1 ClK wide from the requesting master indicates to the 8086 (pulse 3) that 
the "hold" request is about to end and that the 8086 can reclaim the local bus at the 
next CLK. 

Each master-master exchange of the local bus is a sequence of 3 pulses. There must 
be one dead CLK cycle after each bus exchange. Pulses are active lOW. 

If the request is made while the CPU is performing a memory cycle, it will release the local 
bus during T4 of tne cycle when all the following conditions are met: 

1. Request occurs on or before T2· 

2. Current cycle is not the low byte of a word (on an odd address). 
3. Current cycle is not the first acknowledge of an interrupt acknowledge sequence. 
4. A locked instruction is not currently executing. 

1·62 210912-001 



8086/8088 CPU 

Table 1-24 8086/8088 Device Pin Descriptions (continued) 

Symbol Pin No. Type Name and Function 

If the local bus is idle when the request is made the two possible events will follow: 

1. local bus will be released during the next clock. 
2. A memory cycle will start within 3 clocks. Now the four rules for a currently active 

memory cycle apply with condition number 1 already satisfied. 

~ 29 0 LOCK: output indicates that other system bus masters are not to gain control of the 
system bus while lOCK is active lOW. The lOCK signal is activated by the "LOCK" 
prefix instruction and remains active until the completion of the next instruction. This 
signal is active lOW, and floats to 3·state OFF in "hold acknowledge." 

QSh QSo 24, 25 0 Queue StatuI: The queue status Q~ QSo CHARACTERISTICS 
is valid during the ClK cycle o (LOW) 0 No Operation 
after which the queue operation 

~ (HIGH) 
1 First Byte of Op Code from Queue 

is performed. 0 Empty the Queue 
QS, and QSo provide status to 1 1 Subsequent Byte from Queue 
allow external tracking of the 
internal 8086 instruction queue. 

The fol/owing pin function descriptions are for the BOB6 in minimum mode (i.e., MN/MX = Vee!- Only the pin functions which 
are unique to minimum mode are described; aI/ other pin functions are as described above. 

M/iO 28 0 Status line: logically equivalent to S2 in the maximum mode. It is used to distinguish a 
memory access from an I/O access. MIlO becomes valid in the T4 preceding.!. bus cycle 
and remains valid until the final T 4 of the cycle (M = HIGH, 10 = LOW). MilO floats to 
3·state OFF in local bus "hold acknowledge." 

WJ:f 29 0 Write: indicates that the processor is performing a write memory or write I/O cycle, 
depending on the state of the M/iO signal. WR is active for T 2, T 3 and Tw of any write cy· 
cle. It is active LOW, and floats to 3·state OFF in local bus "hold acknowledge." 

INTA 24 0 INTA is used as a read strobe for interrupt acknowledge cycles. It is active LOW during 
T 2, T 3 and T w of each interrupt acknowledge cycle. 

ALE 25 0 Address Latch Enable: provided by the processor to latch the address into the 82821 
8283 address latch. It is a HIGH pulse active during Tl of any bus cycle. Note that ALE 
is never floated. 

OT/R 27 0 Data Transmit/Receive: needed in minimum system that desires to use an 8286/8287 
data bus transceiver. It is used to control the direction of data flow through the 
transceiver. Logically DT/R is equivalent to S"; in the maximum mode, and its timing is 
the same as for M/iO. (T = HIGH, R = LOW.) This signal floats to 3·state OFF in local bus 
"hold acknowledge." 

DEN 26 0 Data Enable: provided as an output enable for the 8286/8287 in a minimum system 
which uses the transceiver. DEN is active LOW during each memory and I/O access and 
for INTA cycles. For a read or INTA cycle it is active from the middle of T 2 until the mid· 
die of T 4, while for a write cycle it is active from the beginning of T 2 until the middle of 
T4. om floats to 3·state OFF in local bus "hold acknowledge." 

HOLD, 31,30 I/O HOLD: indicates that another master is requesting a local bus "hold." To be acknowl· 
HLOA edged, HOLD must be active HIGH. The processor receiving the "hold" request will 

issue HLOA (HIGH) as an acknowledgement in the middle of a T, clock cycle. Simul· 
taneous with the issuance of HLDA the processor will float the local bus and control 
lines. After HOLD is detected as being LOW, the processor will LOWer the HLOA, and 
when the processor needs to run another cycle, it will again drive the local bus and 
control lines. 

The same rules as for RQlelT apply regarding when the local bus will be released. 

HOLD is not an asynchronous input. External synchronization should be provided if the 
system cannot otherwise guarantee the setup time. 
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During normal multiprocessor system operation, priority 
of the shared system bus is determined by the arbitration 
circuits on a cycle by cycle basis. As each CPU requires a 
transfer over the system bus, it request access to the bus 
via its resident bus arbitration logic. When the CPU gains 
priority (determined by the system bus arbitration scheme 
and any associated logic), it takes control of the bus, per­
forms its bus cycle and either maintains bus control, vol­
untarily releases the bus or is forced off the bus by the 
loss of priority. The lock mechanism prevents the CPU 
from losing bus control (either voluntarily or by force) 
and guarantees a CPU the ability to execute multiple bus 
cycles (during execution of the locked instruction) with­
out intervention and possible corruption of the data by 
another CPU. A classic use of the mechanism is the 
'TEST and SET semaphore' during which a CPU must 
read from a shared memory location and return data to the 
location without allowing another CPU to reference the 
same location between the TEST operation (read) and the 
SET operation (write). In the 8086 this is accomplished 
with a locked exchange instruction (see Figure 1-37). 

LOCK XCHG reg, MEMORY; reg is any register 
; MEMORY is the address 
of the 
; semaphore 

Another application of LOCK* for multiprocessor sys­
tems consists of a locked block move which allows high 
speed message transfer from one CPU's message buffer 
to another. 

During the locked instruction, a request for processor 
preemption (RQ*/GT*) is recorded but not acknowledged 
until completion of the locked instruction. The LOCK* 
has no direct affect on interrupts. As an example, a locked 
HALT instruction will cause HOLD (or RQ*/GT*) re­
quests to be ignored but will allow the CPU to exit the 
HALT state on an interrupt. In general, prefix bytes are 
considered extensions of the instructions they preceded. 
Therefore, interrupts that occur during execution of a pre­
fix are not acknowledged (assuming interrupts are en­
abled) until completion of the instruction following the 
prefix (except for instructions which are servicing inter­
rupts during their execution, i.e., HALT, WAIT and re­
peated string primitive). Note that multiple prefix bytes 
may precede an instruction. Another example is a 'string 
primitive' preceded by the repetition prefix (REP) which 
is interruptible after each execution of the string primi­
tive. This holds even if the REP prefix is combined with 
the LOCK prefix. This prevents interrupts from being 
locked out during a block move or other repeated string 
operation. As long as the operation is not interrupted, 
LOCK* remains active. Further information on the oper­
ation of an interrupted string operation with multiple pre­
fixes is presented in the section dealing with the 8086 
interrupt structure. 
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1.3.6 General Design Considerations 

Since the minimum mode 8086 has common read and 
write commands for memory and 1/0, if the memory and 
110 address spaces overlap, the chip selects must be quali­
fied by M/IO* to determine which address space the de­
vices are assigned. This restriction on chip select 
decoding can be removed if the 1/0 and memory ad­
dresses in the system do not overlap and are properly de­
coded, all 1/0 is memory mapped, or RD*, WR * and 
M/IO* are decoded to provide separate memory and 1/0 
readlwrite commands (see Figure 1-38). The 8288 bus 
controller in the maximum mode 8086 system generates 
separate 1/0 and memory commands in place of a MilO'" 
signal. An 110 device is assigned to the 1/0 space or 
memory space (memory mapped 1/0) by connection of 
either 1/0 or memory command lines to the command in­
puts of the device. To allow overlap of the memory and 
110 address space, the device must not respond to chip 
select alone but must require a combination of chip select 
and a read or a write command. 

Linear select techniques (see Figure 1-39) for 1/0 devices 
can only be used with devices that either reside in the 110 
address space or require more than one active chip select 
(at least one low active and one high active). Devices with 
a single chip select input cannot use linear select if they 
are memory mapped because memory address space 
FFFFOH-FFFFFH is aSSigned to reset startup and mem­
ory space OOOOOH-003FFH is assigned to interrupt 
vectors. 

1.4 BUS OPERATION 

In order to understand the operation of a time-multiplexed 
bus, the BIU's bus cycle must be understood. A bus cycle 
is an asynchronous event that presents the address of an 
1/0 peripheral or memory location. The address is fol­
lowed by either a read control signal to capture or read 
data from the addressed device, or a write control signal 
and the associated data to transmit or write the data to the 
addressed device. The selected device (memory or 1/0 
peripheral) accepts the data on the bus during a write cy­
cle or places the requested data on the bus during a read 
cycle. On termination of the specified cycle, the device 
latches the data written or removes the data read. 

1.4.1 Multiplexed Address and Data Bus 

The 8086/88 has a combined address and data bus com­
monly referred to as a time multiplexed bus. Time multi­
plexing makes the most efficient use of pins on the 
processor while permitting the use of a standard 4O-pin 
package. This "local bus" can be buffered directly and 
used throughout the system with address latching pro­
vided on memory and 1/0 modules. In addition, the bus 
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GND VCC GND VCC 

AD14 AD15 A14 A15 

AD13 A16/S3 A13 A16/S3 

AD12 A17/S4 A12 A17/S4 

ADll A18/S5 All A18/S5 

AD10 A19/S6 Al0 A19/S6 

AD9 SHE/57 A9 550 (HIGH) 

AD8 MN/Mx A8 MN/Mx 

AD7 Rii AD7 iiii 

AD6 8086 HOLD (RO/GTO) AD6 8088 HOLD (RQ/GTO) 
CPU CPU 

AD5 HLDA (RQ/GT1) AD5 HLDA (RO/GT1) 

AD4 WR (LOCK) AD4 WR (LOCK) 

AD3 M/iO (52) AD3 IO/M (52) 

AD2 DTIR (51) AD2 DTIR (51) 

ADl DEN (So) ADl DEN (So) 

ADO ALE (050) ADO ALE (050) 

NMI INTA (051) 
NMI INTA (051) 

INTR TEST 
INTR TEST 

CLK READY 
CLK READY 

GND RESET 
GND RESET 

MAXIMUM MODE PIN FUNCTIONS (e.g., LOCK) 
ARE SHOWN IN PARENTHESES 

Figure 1-30 8086/8088 DIP Pin Assignments 

can also be demultiplexed at the processor with a single 
set of address latches if a standard non-multiplexed bus is 
desired for the system, 

1.4.2 Bus Cycle Definition 

The 8086 is a true 16-bit microprocessor with 16-bit in­
ternal and .external data paths, one megabyte of memory 
address space (220) and a separate 64K byte (216) 1/0 ad­
dress space. The CPU communicates with its external en­
vironment via a twenty-bit time multiplexed address, 
status and data bus and a command bus. To transfer data 
or fetch instructions, the CPU executes a bus cycle (see 
Figure 1-40). The minimum bus cycle consists of four 
CPU clock cycles ("T") states. During the first T state 
(Tl), the CPU asserts an address on the twenty-bit multi­
plexed addressldatal status bus. For the second T state 
(TZ), the CPU removes the address from the bus and ei­
ther tri-states its outputs on the lower sixteen bus lines in 
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preparation for a ready cycle or asserts write data. Data 
bus transceivers are enabled in either T 1 or T2 depending 
on the 8086 system configuration and the direction of the 
transfer (into or out of the CPU). Read, write or interrupt 
acknowledge commands are always enabled in TZ. The 
maximum mode 8086 configuration also provides a write 
command enabled in T3 to guarantee time for data setup 
prior to command activation. 

During T2, the upper four multiplexed bus lines switch 
from address (AI9-AI6) to bus cycle status (S6, S5, S4, 
S3). The status information (see Table 1-31) is available 
primarily for diagnostic monitoring. However, a decode 
of S3 and S4 could be used to select one of four banks of 
memory, one assigned to each segment register. This tech­
nique allows partitioning the memory by segment to ex­
pand the memory addressing beyond one megabyte. It 
also provides a degree of protection by preventing errone­
ous write operations to one segment from overlapping 
into, and destroying information, in another segment. 
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Table 1·25 D.C. Characteristics 

(8086: TA = O°C to 70°C. Vee = 5V :t 10"10) 
(8086-1: TA = O°C to 70°C. Vee = 5V :t 5"10) 
(8086-2: TA = O°C to 70°C. Vee = 5V :t 5"10) 

Symbol P.rameter Min. 

VIL Input Low Voltage -0.5 

VIH Input High Voltage 2.0 

VOL Output Low Voltage 

VOH Output High Voltage 2.4 

Icc Power Supply Current: 8086 
8086-1 
8086-2 

ILl Input Leakage Current 

ILO Ol!tput Leakage Current 

VCL Clock Input Low Voltage -0.5 

VCH Clock Input High Voltage 3.9 

Capacitance 01 Input Buffer 
CIN (All input except 

ADo - AD15. RQ/GT) 

CIO 
Capacitance 01 110 Buffer 
(ADo - AD15.m:i/GT) 

The CPU continues to provide status information on the 
upper four bus lines during T3 and will either continue to 
assert write data or sample read data on the lower sixteen 
bus lines. If the selected memory or I/O device is not 
capable of transferring data at the maximum CPU transfer 
rate. the device must signal the CPU "not ready" and 
force the CPU to insert additional clock cycles (Wait 
states, TW) after T3. The 'not ready' indication must be 
presented to the CPU by the start of T3. Bus activity dur­
ing TW is the same as T3. In a "normally not ready" 
system, when the selected device has had sufficient time 
to complete the transfer, it aSserts "Ready" and allows the 
CPU to continue from the TW states. The CPU will latch 
the'data on the bus during the last wait state or during T3 
if no wait states are requested: The bus cycle is terminated 
in T4 (command lines are disabled and the selected exter­
nal device releases the bus). To devices in the system, the 
bus cycle appears as an asynchronous event consisting of 
an address to select the device followed by a read strobe 
or data and a write strobe. The selected device accepts 
bus data during a write cycle and drives the desired data 
onto the bus during a read cycle. On termination of the 
command, the device latches write data or disables its bus 
drives. The only way the device controls the bus cycle is 
by inserting wait cycles. 

The 8086 CPU only executes a bus cycle when.instruc­
tions or operands must be transferred to or from memory 
or I/O devices. When not executing a,bus cycle, the bus 
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M ••. Units Tast Conditions 

+0.8 V 

Vee + 0.5 V 

0.45 V IOL=2.5 mA 

V 10H= - 4oo,.A 

340 
360 mA TA=25°C 
350 

± 10 ,..A OV", VIN '" VCC 

± 10 ,..A 0.45V" VOUT " Vee 

+0.6 V 

Vcc + 1.0 V 

15 pF Ic= 1 MHz 

15 pF Ic= 1 MHz 

interface executes idle cycles (T 1). During the idle cy­
cles, the CPU continues to drive status information from 
the previous bus cycle on the upper address lines. If the 
previous bus cycle was a write, the CPU continues to 
drive the write data onto the multiplexed bus until the start 
of the next bus cycle. If the CPU executes idle cycles 
following a ready cycle, the CPU will not drive the lower 
16 bus lines until the next bus cycle is required. 

Since the CPU prefetches up to six bytes of the instruction 
stream for storage and execution from an internal instruc­
tion queue, the relationship may be skewed in time and 
separated by additional instruction fetch bus cycles. In 
general, if the BIU fetches an instruction into the 8086's 
internal instruction queue, it may also fetch several addi­
tional instructions before the EU removes the instruction 
from the queue and executes it. If the EU executes a jump 
or other control transfer instruction from the queue, it 
ignores any instructions remaining in the queue; the CPU 
discards these instructions with no effect on operation. 
The bus activity observed during execution of a specific 
instruction depends on the preceding instructions; the ac­
tivity, however, may always be determined within a spe­
cific sequence. 

1.4.3 Address and Data Bus Concepts 

The programmer views the 8086 memory address space 
as a sequence of one million bytes in which any byte may 

210912-001 



8086/8088 CPU 

contain an eight bit data element and any two consecutive 
bytes may contain a 16-bit data element. There is no con­
straint on byte or word addresses (i.e., boundaries). The 
address space is physically implemented on a 16-bit data 
bus by dividing the address space into two banks of up to 
512K bytes (see Figure 1-41). One bank connects to the 
lower half of the 16-bit data bus (D7-0) and contains even 
addressed bytes (AO = 0). The other bank connects to the 
upper half of the data bus (DI5-8) and contains odd ad­
dressed bytes (AO = I). Address lines AI9-AI select a 
specific byte within each bank. To perform byte transfers 
to even addresses (Figure 1-42), the information is trans­
ferred over the lower half of the data bus (D7-0). AO (ac­
tive low) enables the bank connected. to the lower half of 

the data bus to participate in the transfer. Another 8086 
signal, Bus High Enable (BHE*), disables the bank on the 
upper half of the data bus to prevent its participation in the 
transfer. This action prevents a write operation to the 
lower bank from destroying data in the upper bank. De­
vice pin 34 (refer to paragraph 1.3) is multiplexed be­
tween BHE* during Tl and S7 during T2 through T4. 
The current implementation of the 8086 equates BHE* to 
S7. That is, if BHE * is high during T I then S7 will like­
wise be high during T2 through T4. Since BHE* is a mul­
tiplexed signal with timing identical to the A19-A16 
address lines, it also should be latched during Tl with 
ALE to provide a stable signal during the bus cycle. To 
perform byte transfers to odd addresses (see Figure 1-42), 

Table 1·26 A.C. Timing Requirements for Minimum Complexity System 

(8086: TA ; O'G to 70'G, vec ; 5V ± 10%) 
(8086-1: TA ; O'G to 70'G, Vee; 5V ± 5%) 
(8086-2: TA ; O'G to 70'G, Vee; 5V ± 5%) 

MINIMUM COMPLEXITY SYSTEM 
TIMING REQUIREMENTS 

Symbol Parameter 8086 8086·1 (Preliminary) 

Min. Max. Min. Max. 

TClCl ClK Cycle Period 200 500 100 500 

TClCH ClK low Time 118 53 

TCHCl ClK High Time 69 39 

TCH1CH2 elK Rise Time 10 10 

TCL2Cl1 ClK Fall Time 10 10 

TDVCl Data in Setup Time 30 5 

TClDX Data in Hold Time 10 10 

TR1VCl ROY Setup Time 35 35 
into 8284A (See 
Notes 1. 2) 

TClR1X ROY Hold Time 0 0 
into 8284A (See 
Notes 1. 2) 

TRYHCH READY Setup 118 53 
Time into 8086 

TCHRYX READY Hold Time 30 20 
into 8086 

TRYlCl READY Inactive to -8 -10 
ClK (See Note 3) 

THVCH HOLD Setup Time 35 20 

TINVCH INTR. NMI. TEST 30 15 
Setup Time (See 
Note 2) 

TlllH Input Rise Time 20 20 
(Except ClK) 

TIHll Input Fall Time 12 12 
(Except ClK) 
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Test 
8086-2 Units Conditions 

Min. Max. 

125 500 ns 

68 ns 

44 ns 

10 ns From 1.0V to 

3.5V 

10 ns From 3.SV to 

1.0V 
--

20 ns 

10 ns 

35 ns 

0 
I 

ns 

68 ns 

20 ns 

-8 , ns 

20 ns 

15 ns 

20 ns From O.8V to 

2.0V 

12 ns From 2.0V to 
O.8V 
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Table 1-26 A.C. Timing Requirements for Minimum Complexity System (continued) 

TIMING RESPONSES 

T •• t 
Symbol Parameter 8086 8086·1 (Preliminary) 8086-2 Unit. Condition. 

Min. Max. Min. Max. Min. Max. 

TCLAV Address Valid Delay 10 110 '10 50 10 60 ns 

TCLAX Address Hold Time 10 10 10 ns 

TCLAZ Address Float TCLAX 80 10 40 TCLAX 50 ns 
Delay 

TLHLL ALE Width TCLCH-20 TCLCH-l0 TCLCH-l0 ns 

TCLLH ALE Active Delay 80 40 50 ns 

TCHLL ALE Inactive Delay 85 45 55 ns 

TLLAX Address Hold Time TCHCL-l0 TCHCL-l0 TCHCL-l0 ns 
to ALE Inactive 

TCLDV Data Valid Delay 10 110 10 50 10 60 ns 'CL = 20-100 pF 

TCHDX Data Hold Time 10 10 10 ns for all 8086 Out-

puts (In addi-
TWHDX Data Hold Time TCLCH-30 TCLCH-25 TCLCH-30 ns tion to 8086 self-

AfterWA load) 

TCVCTV Control Active 10 110 10 50 10 70 ns 
Delay 1 

TCHCTV Control Active 10 110 10 45 10 60 ns 
Delay 2 

TCVCTX Control Inactive 10 110 10 50 10 70 ns 
Delay 

TAZAL Address Float to 0 0 0 ns 
AEAD Active 

TCLAL AD Active Delay 10 165 10 70 10 100 ns 

TCLAH RD Inactive Delay 10 150 10 60 10 80 ns 

TAHAV RD Inactive to Next TCLCL-45 TCLCL-35 TCLCL-40 ns 
Add ress Active 

TCLHAV HLDA Valid Delay 10 160 10 60 10 100 ns 

TALAH AD Width 2TCLCL-75 2TCLCL-40 2TCLCL-50 ns 

TWLWH WAWidth 2TCLCL-60 2TCLCL-35 2TCLCL-4O ns 

TAVAL Address Valid to TCLCH-60 TCLCH-35 TClCH-4O ns 

ALE Low 

TOLOH Output Aise Time 20 20 20 ns .From 0.8V to. 
2.0V 

I TOHOL Output Fall Time 12 12 12 ns From 2.0V to 
0.8V 

NOTES: 
1. Signal at 8284A shown for ref .. rence only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 
3. Applies only to T2 state. (8 ns into T3). 

the information is transferred over the upper half of the 
data bus (DIS-D8). BHE* (active low) will enable the 
upper bank and AO will disable the lower bank. Directing 
the data transfer to the appropriate half of the data bus and 
activation of S7 (BHE*) and AO is performed by the 
8086, transparent to the programmer. For example, con­
sider loading a byte of data into the ex register (lower 
half of the ex register) from an odd addressed memory 
location (referenced over the upper half of the 16-bit data 

bus). The data is transferred into the 8086 over the upper 
8 bits of the data bus, automatically redirected to the 
lower half of the 8086 internal 16-bit data path and stored 
in the ex register. This capability also allows byte I/O 
transfers with the AL register to be directed to I/O devices 
connected to either the upper or lower half of the 16-bit 
data bus. 
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To access even addressed l6-bit words (two consecutive 
bytes with the least significant byte at an even byte ad­
dress), A19-Al select the appJOpriate byte within each 
bank and AO and BHE* (active low) enable both banks 
simultaneously (see Figure 1-43). To access an odd ad­
dressed l6-bit word (see Figure 1-43), the least signifi­
cant byte (addressed by A19-Al) is first transferred over 
the upper half of the bus (odd addressed byte, upper bank, 
BHE* low active and AO-l). The most significant byte is 

accessed by incrementing the address (A19-AO) which al­
lows A19-Al to address the next physical word location 
(recall that AO was high which indicates a word refer­
enced from an odd byte boundary). A second bus cycle is 
then executed to perform the transfer of the most signifi­
cant byte with the lower bank (AO is now low and BHE* is 
high). The sequence is automatically executed by the 
8086 whenever a word transfer is executed to an odd ad­
dress. Directing the upper and lower bytes of the 8086 's 

Table 1·27 A.C. Timing Requirements for Maximum Complexity System 

MAX MODE SYSTEM (USING 8288 BUS CONTROLLER) 
TIMING REQUIREMENTS 

T .. t 
Symbol Paramater 8086 8088·1 (Preliminary) 8088·2 (Preliminary) Unit. Condition. 

Min. Max. Min. Max. Min. Max. 

TClCl ClK Cycle Period 200 500 100 500 125 500 ns 

TClCH elK Low Time 118 53 68 ns 

TCHCl ClK High Time 69 39 44 ns 

TCH1CH2 elK Rise Time 10 10 10 ns From l.QVto 
3.5V 

TCl2Cll ClK Fall Time 10 10 10 ns From 3.5Vto 
1.0V 

TDVCl Data in Setup Time 30 5 20 ns 

TClDX Data In Hold Time 10 10 to ns 

TR1VCl ROY Setup Time 35 35 35 ns 
into 8284A (See 

Notes I, 2) 

TClR1X ROY Hold Time 0 0 0 ns 
into 8284A (See 

Notes I, 2) 

TRYHCH READY Setup Time 118 53 68 ns 
into 8086 

TCHRYX READY Hold Time 30 20 20 ns 
into 8086 

TRYlCl READY Inactive to -8 -10 -8 ns 
ClK (See Note 4) 

TINVCH Setup Time for 30 15 15 ns 
Recognition (INTR, 
NMI, 'fEST) (See 

Note 2) 

TGVCH RO/GT Setup Time 30 12 15 ns 

TCHGX RO Hold Time into 40 20 30 ns 
8086 

TILIH Input Rise Time 20 20 20 ns From 0.8Vto 
(Except ClK) 2.0V 

TIHll Input Fall Time 12 12 12 ns From 2.0Vto 
(Except ClK) 0.8V 

NOTES: 
1. Signal at 8284A or 8288 shown for reference only. 
2. Setup requirement for asynchronous signal only to guarantee recognition at next elK. 
3. Applies only to T3 and wait states. 
4. Applies only to T2 state (8 ns into T3). 
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Table 1-27 A.C. Timing Requirements for Maximum Complexity System (continued) 

TIMING RESPONSES 

TI.' 
Symbol Parameter 8088 8088-1 (Prellmlnlry) 8088-2 (Prellmlnlry) Unit. Condition. 

Min. Me •. Min. Mu. Min. Ma •. 

TCLMl Command Active 10 35 10 35 10 35 ns 
Delay (See Note 1) 

TClMH Command Inactive 10 35 10 35 10 35 ns 
Delay (5 .. Note 1) 

TRYHSH READY Active to 110 45 65 ns 
Status Passive (See 
Note 3) 

TCHSV Status Active Delay 10 110 10 45 10 60 ns 

TCLSH Status Inactive 10 130 10 55 10 70' ns 
Delay 

TCLAV Address Valid 10 110 10 50 10 60 ns 
Delay 

TCLAX Address Hold Time 10 10 10 ns 

TCLAZ Address Float Delay TCLAX 80 10 40 TCLAX 50 ns 

TSVlH Status Valid to ALE 15 15 15 ns 
High (See Note 1) 

TSVMCH Status Valid to 15 15 15 ns 
MCE High (Soe 
Notel) 

TCLlH ClK low to ALE 15 15 15 ns 
Valid (See Note 1) 

TCLMCH ClK low to MCE 15 15 15 ns 
High (See Note 1) 

TCHll ALE Inactive Delay 15 15 15 ns CL = 20-100 pF 
(SoeNotel) for an 8086 Out-

TCLMCl MCE Inactive Delay 15 15 15 ns puts (In add i-

(SooNotel) tion to 8086 self· 

load) 
TClOV Data Valid Delay 10 110 10 50 10 60 ns 

TCHOX Data Hold Time 10 10 10 ns 

TCVNV Control Active 5 45 5 45 5 45 ns 
Delay (See Note 1) 

TCVNX Contrellnaetive 10 45 10 45 10 45 ns 
Delay (5 .. Note 1) 

TAZRL Address Float to 0 0 0 ns 
Read Active 

TCLRl RO Active Delay 10 165 10 70 10 100 ns 

TCLRH RD Inactive Delay 10 150 10 60 10 80 ns 

TRHAV RO Inactive to TCLCl-45 TClCl-35 TClCl-4O ns 

Next Address Active 

TCHOTl Direction Control 50 50 50 ns 

Active Delay (Soe 
Note 1) 

TCHOTH Direction Control 30 30 30 ns 

Inactive Delay (See 
Note 1) 

TCLGL GT Active Delay 0 85 0 45 0 50 ns 

TCLGH GT Inactive Delay 0 85 0 45 0 50 ns 

TRLRH ROWldth 2TCLCL-75 2TCLCL-4O 2TCLCL-50 ns 

TOLOH Output Rise Time 20 20 20 ns From 0.8V to 
2.0V 

TOHOL Output Fan Time 12 12 12 ns From2.0Vto 

O.SV 
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Table 1·28 Minimum/Maximum Mode Pin Assignments 

8086 8088 

Mode Mode 
Pin Pin 

Minimum Maximum Minimum Maximum 

31 HOLD RO/GTO 31 HOLD RO/GTO 
30 HLDA RO/GT1 30 HLDA RO/GT1 
29 WR LOCK 29 WR LOCK 
28 MIlO 52 28 101M 52 
27 DT/R 51 27 DT/R 51 
26 DEN 50 26 DEN SO 
25 ALE OSO 25 ALE OSO 
24 INTA OS1 24 INTA OS1 

34 SSO High State 

Table 1·29 Status Bit Decoding 

Status Inputs 
CPU Cycle 8288 Command 

S2 S1 SO 

0 0 0 Interrupt Acknowledge INTA 
0 0 1 Read I/O Port 10RC 
0 1 0 Write I/O Port 10WC,AIOWC 
0 1 1 Halt None 
1 0 0 Instruction Fetch MRDC 
1 0 1 Read Memory MRDC 
1 1 0 Write Memory MWTC,AMWC 
1 1 1 Passive 

Table 1·30 Status Line Decoders 

S2 Sl So 
o (LOW) 0 0 Interrupt Acknowledge 
0 0 1 Read I/O Port 
0 1 0 Write I/O Port 
0 1 1 Halt 
1 (HIGH) 0 0 Code Access 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 

internal 16-bit registers to the appropriate halves of the 
data bus is also performed automatically by the 8086 and 
is transparent to the programmer. 

During a byte read, the CPU floats the entire 16-bit data 
bus even though data is only expected on the upper or 
lower half of the data bus. As will be demonstrated later, 
this action simplifies the chip select decoding require­
ments for read only devices (ROM, EPROM). During a 
byte write operation, the 8086 will drive the entire 16-bit 
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None 

data bus. The information on the half of the data bus not 
transferring data is indeterminate. These concepts also 
apply to the I/O address space. Specific examples of I/O 
and memory interfacing are considered in the correspond­
ing sections. 

1.4.4 Memory and 1/0 Peripherals Interface 

The 8086 and 8088 CPUs have a 20-bit address bus and 
are capable of accessing one megabyte of memory ad­
dress space. The memory is organized as a linear array of 
up to 1 million bytes, addressed as OOOOO(H) to FFF­
FF(H). The memory is logically divided into code, data, 
extra data, and stack segments of up to 64 K bytes each, 
with each segment falling on 16-byte boundaries (see Fig­
ure 1-44). 

All memory references are made relative to base ad­
dresses contained in high speed segment registers. The 
segment types were chosen based on the addressing needs 
of programs. The segment register to be selected is auto-
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Figure 1-31 Minimum Mode Waveforms 
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WAVEFORMS (Continued) 

MINIMUM MODE (Continued) 

elK (I2UA Output) 

WRITE CYCLE 

(NOTE 1) 

(RD,iii'fA, I DT"'zYOH) 

MliO 

ALE 

INTA CYCLE DTIR 
(NOTES ,. 3) 

Ati. WR",VOH 
lIRE. VoL! 

SOFTWARE HALT-

AD, WA, INTA. = YaH 

DT/A = INDETERMINATE 

NOTES: 

TelAV 

8086/8088 CPU 

INVALID ADDRESS 

1. All signals switch between VOH and VOL unless otherwise specified. 

TCVCTX--

SOFTWARE HALT 

2. ROY is sampled near the end of T2, T3, Tw to determine if Tw machines states are to be inserted. 
3. Two INTA cycles run back-to-back. The 8086 LOCAL AODR/OATA BUS is floating during both INTA cycles. Control signals shown 

for second INTA cycle. 
4. Signals at 8284A are shown for reference only. 
5. All timing measurements are made at 1.5V unless otherwise noted. 

Figure 1-31 Minimum Mode Waveforms (continued) 
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WAVEFORMS 

MAXIMUM MODE 
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Figure 1-32 Maximum Mode Waveforms 

1-74 

------
\ 

,~-----

X 
r--

I 
----

\\\ 

flOAT 

TRHAV----! 

TCHDTH 

210912-001 



WAVEFORMS (Continued) 

MAXIMUM MODE (Continued) 

eLK 

$2,~,S:O (EXCEPT HALT) 

WRITE CYCLE 
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DEN 

8288 0VfPUTS 

SEE NOTES 5,6 AMWC OR AIOWC 

INTACYCLE 

SOFTWARE HALT -

ADu-ADo 
(SEE NOTES 3 " 4) 

A015-AOO 
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see NOTES 5,6 
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8086/8088 CPU 

T, T, T, 

T .. 

DATA 

TClMH--

INVALID ADDRESS 

T, 

TCHDX-
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_TCLMH 

FLOAT 

~ TeL,OX 

~ /,..---------~\ -------
'----__ ......J \. _____ _ 

NOTES: 
1. All signals switch between VOH and VOL unless otherwise specified. 
2. ADY is sampled near the end of T2, T3, Tw to determine if Tw machines states are to be inserted. 
3. Cascade address is valid between first and second INTA cycle. 

\ 

\~----

4. Two INTA cycles run back-to-back. The 8086 LOCAL ADDA/DATA BUS is floating during both INTA cycles. Control for pointer 
address is shown lor second INTA cycle. 

5. Signals at 8284A or 8288 are shown for reference only. 
6. The issuance of the 8288 command and control signals (MADC, MWTC, AMWC, IOAC, lOWe, AiOWc, INTA and DEN) lags the 

active high 8288 CEN. 
7. All timing measurements are made at 1.SV unless otherwise noted. 
8. Status inactive in state just prior to T4' 

Figure 1·32 Maximum Mode Waveforms 
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Figure 1·33 Elementary Maximum Mode System 

matically chosen according to the rules of the following 
table. All information in one segment type share the same 
logical attributes (e.g., code or data). By structuring 
memory into relocatable areas of similar characteristics 
and by automatically selecting segment registers, pro­
grams are shorter, faster, and more structured. 

Word (16-bit) operands can be located on even or odd 
address boundaries and are thus not constrained to even 
boundaries as is the case in many 16-bit computers. For 
address and data operands, the least significant byte of the 
word is stored in the lower valued address location and the 
most significant byte in the next higher address location. 
The BIU automatically performs the proper number of 
memory accesses, one if the word operand is on an even 
byte boundary and two if it is on an odd byte boundary. 
Except for the performance penalty, this double access is 
transparent to the software. This performance penalty 
does not occur for instruction fetches, only word operands. 

Physically, the memory is organized as a high bank 
(015-08) and a low bank (07-00) of 512K 8-bit bytes 
addressed in parallel by the processor's address lines 
A 19-A 1. Byte data with even addresses is transferred on 
the 07-00 bus lines while odd addressed byte data (AO 
HIGH) is transferred on the 015-08 bus lines. The proc­
essor provides two enable signals, BHE* and AO, to se-

1-76 

lectively allow reading from or writing into either an odd 
byte location, even byte location, or both. The instruction 
stream is fetched from memory as words and is addressed 
internally by the processor to the byte level as necessary. 

In referencing word data the BIU requires one or two 
memory cycles depending on whether or not the starting 
byte of the word is on an even or add address, respec­
tively. Consequently, in referencing word operands per­
formance can be optimized by locating data on even 
address boundaries. This is an especially useful technique 
for using the stack, since odd address references to the 
stack may adversely affect the context switching time for 
interrupt processing or task multiplexing. 

Certain locations in memory are reserved for specific 
CPU operations (see Figure 1-45). Locations from ad­
dress FFFFOH through FFFFFH are reserved for opera­
tions including a jump to the initial program loading 
routine. Following RESET, the CPU will always begin 
execution at location FFFFOH where the jump must be. 
Locations OOOOOH through 003FFH are reserved for in­
terrupt operations. Each of the 256 possible interrupt 
types has its service routine pointed to by a 4-byte pointer 
element consisting of a 16-bit segment address and a 
16-bit offset address. The pointer elements are assumed to 
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Figure 1·36 8086/88 Queue Tracking Circuit 

have been stored at the respective places in reserved mem­
ory prior to occurrence of interrupts. 

MEMORY INTERFACE 

The basic characteristics of 8086/8088 memory organiza­
tion (see Figure 1-46) are partitioning of the 16-bit word 
memory into high and low 8-bit banks on the upper and 
lower halves of the data bus and inclusion of BHE* and 

"'~~JLJ '.~~~~~ 
LOCK ~ 

LOCK NOP BYTE NEXT LOCK LOCKED INSTRUCTION 
PREFIX FROM THE PREFIX FROM 

BYTE FROM QUEUE THE QUEUE 
aUEUE (LOCKED NOP) 

1 QUEUE STATUS INDICATES FIRST BYTE OF OPCODE FROM THE QUEUE. 

2 THE LOCK OUTPUT WILL GO INACTIVE BETWEEN SEPARATE LOCKED INSTRUCTIONS. 

3 TWO CLOCKS ARE REQUIRED FOR DECODE OF THE LOCK PREFIX AND 
ACTIVATION OF THE [OCR SIGNAL. 

4 SINCE QUEUE STATUS REFLECTS THE QUEUE OPERATION IN THE PREVIOUS CLOCK 
CYCLE, THE iJ5CK OUTPUT ACTUALLY GOES ACTIVE COINCIDENT WITH THE START 
OF THE NEXT INSTRUCTION AND REMAINS ACTIVE FOR ONE CLOCK CYCLE 
FOLLOWING THE INSTRUCTION. 

S IF THE INSTRUCTION FOllOWING THE LOCK PREFIX IS NOT IN THE QUEUE, THE 
LOCK OUTPUT STILL GOES ACTIVE AS SHOWN WHILE THE INSTRUCTION IS BEING 
FETCHED. 

6 THE BIU WILL STIll PERFORM INSTRUCTION FETCH CYCLES DURING EXECUTION 
OF A LOCKED INSTRUCTION. THE U)CR MERelY LOCKS THE BUS TO THIS CPU FOR 
WHATEVER BUS CYCLES THE CPU PERFORMS DURING THE LOCKED INSTRUCTION. 

Figure 1·37 8086/88 Lock Activity 
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AO in selection of the banks. Specific implementations 
depend on the type of memory and system configuration. 

ROM and EPROM 

ROM's and EPROM's are the easiest devices to interface 
to the 8086/8088 system (see Figure 1-47). The byte for­
mat of these devices provides a simple bus interface and, 
since they are read only devices, AO and BHE* do not 
need to be included in their chip enable/select decoding. 
(Chip enable is similar to chip select and also determines 
if the device is in active or standby power mode.) The 
address lines connected to the devices start with A 1 and 
continue up to the maximum number of address lines the 
device can accept. The remaining address lines are used 
for chip enablel select decoding. To connect the devices 
directly to the multiplexed bus, they must have output en­
ables. The output enable is also necessary to avoid bus 
contention in other configurations. No special decode 
techniques are required for generating chip 
enable/selects. Each valid decode selects one device on 
the upper and lower halves of bus to allow byte and word 
access. Byte access is achieved by reading the full word 
onto the bus with the 8086 only accepting the desired 
byte. If RD*, WR * and M/IO* are not decoded to form 
separate commands for memory and 110 in a minimum 
mode 8086, M/IO* (high active) must be a condition of 
chip enable/select decode. This is also true if the 1/0 
space overlaps the memory space assigned to the 
EPROM/ROM. The output enable is controlled by the 
system memory read signal. 

Four parameters must be evaluated when determining the 
compatibility of static ROM's and PROM's to an 
808618088 system. The parameters, equations and evalua­
tion techniques given in the 110 section are also applicable 
to these devices. The relationship of parameters is given 
in Table 1-32. TACC and TCE are related to the same 
equation and differ only by the delay associated with the 
chip enable/select decoder. The following example shows 
a 2716 EPROM memory residing on the multiplexed bus 
of a minimum mode 8086 configuration: 

TACC: 3TCLCL -140 - address buffer delay: 
430 ns (8282 : 30 ns max delay) 

TCE : TACC - decoder delay: 412 ns (8205 
decoder delay: 18 ns) 

TOE: 2TCLCL - 195 : 205 ns 

TDF: :155 

The results of the calculations in the previous example 
represent the times a minimum mode configuration re­
quires from the component for full speed compatibility 
with the system. 
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74LS02 74LS388 

DEFINED EN~~~: _______ -.4--' 

NOTE: IF IT IS NOT NECESSARY TO THREE·STATE THE COMMAND LINES. A 
DECODER (1205 OR 745131) COULD IE USED. THE 74LS257 IS NOT 
RECOMMENDED SINCE THE OUTPUTS MAY EXPERIENCE VOLTAGE 
SPIKES WHEN ENTERING OR LEAVING THREE·STATE. 

Figure 1·38 Decoding Memory and 1/0 RD" 
and WR" Commands 

Static RAM 

Several new memory design requirements are introduced 
when interfacing static RAM's to the system. To begin 
with, AO and BHE* must be included in the chip 
select/chip enable decoding of the devices and write tim­
ing must be considered in the compatibility analysis. 

Data bus connections must be restricted to either the up­
per half or the lower half of the data bus for each device. 
Also, devices must not straddle the upper and lower 
halves of the data bus. In order to select either the upper 
byte, lower byte or the full 16-bit word for a write opera­
tion, BHE* must be a condition of decode for selecting 
the upper byte and AO must be a condition of decode for 
selecting the lower byte. Several selection techniques for 

ADD~~~~:U 
Il!lIll 1m 110 DEVICE 

~ WlI 
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LINESl e! 

1m 1m 110 DEVICE 

WlI WII 

(b) MULTIPLE CHIP SELECTS 

Figure 1·39 Linear Select for 1/0 

210912-001 



READ 
CYCLE 

CLK 

A19/S6,A16/S3 

READY 

RD 

--J 
r 

X 

8086/8088 CPU 

I-T,------T,-- - ~T"". T.-i-
Jr---; It----- ,1"'--' ~ 

AD DR STATUS X 

- P -
~--~----. 

ADDRESS A1S~AO , FLOAT -- )( DATA IN 015~OO )( FLOAT 
1--- 1-. -----

DliA V 

WRITE 
CYCLE 

DEN 

WR 

DEN 

DTIR 

ADDRESS 

---
----

r-,. V 

X DATA OUT -x::::.. 

V 

Figure 1·40 Basic 8086/88 Bus Cycles 

CA) LOGICAL ADDRESS SPACE 

FFFFF 

FFFF£ 
FFFFO 
FFFFC 

~ 
1 MEO .... YTE 

(I) PHYStCAllMPlEMENTATlON OF THE 
ADDRESS SPACE 

512K IYTES 

FFFFF 
FFFFD 

512K BYTES 

FFFF£ 
FFFFC 

Figure 1·41 8086 Memory 
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devices with single chip selects and no output enables are 
illustrated in Figure 1-48 and Figure 1-49 illustrates se­
lection techniques for devices with chip selects and output 
enables. 

In the first examples (see Figure 1-48) AO and BHE* 
must be included to decode or enable the chip selects. 
Since these memories do not have output enables, read 
and write are used as enables for chip select generation to 
prevent bus contention. If read and write are not used to 
enable the chip selects, devices with common 
input/output pins will be subjected to severe bus conten­
tion between chip select and write active. For devices with 
separate input/output lines, the outputs can be externally 
buffered with the buffer enable controlled by read. This 
solution will only allow bus contention between memory 
devices in the array during chip select transition periods. 
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For devices with output enables (see Figure 1-49), write 
may be gated with BHE* and AO to provide upper and 
lower bank write strobes. This simplifies chip select de­
coding by eliminating BHE* and AO as a condition of 
decode. Although both devices are selected during a byte 
write operation, only one will receive a write strobe. No 
bus contention will exist during the write since a read 
command must be issued to enable the memory output 
drivers. 

If multiple chip selects are available at the device, BHE* 
and AO may directly control device selection. This allows 
normal chip select decoding of the address space and di­
rect connection of the read and write commands to the 
devices. Alternately, the multiple chip select inputs of the 
device could directly decode the address space (linear se­
lect) and be combined with the separate write strobe tech­
nique to minimize the control circuits needed to generate 
chip selects. 

As with the EPROM's and ROM's, if separate commands 
are not provided for memory and 110 in the minimum 
mode 8086 and the address spaces overlap, M/IO* (high 
active) must be a condition of chip select decode. Also, 
the address lines connected to the memory devices must 
start with Al rather than AO. 

The write timing parameters listed in Table 1-33 may also 
need to be considered to analyze RAM compatibility (de­
pending on the RAM device being considered). CPU 
clock relative timing is listed in Table 1-34. The equations 
specify the device requirements at the CPU and provide a 
base for determining device requirements in other config­
urations. For example, consider the write timing require­
ments of a 2148 in a maximum mode buffered 8086 
system (see Figure I-50). The write parameters of the 
2148 that must be analyzed are TWP write pulse width, 
TWR write recovery time, TDW data valid at end of 
write, and TDH data hold from write time. 

TWA = 2TCLCL - TCLMLmax + TCLMHmin 
=375 ns. 

TWR = 2TCLCL - TCLMHmax + TCLLHmin 
+ TSHOVmin = 17Ons. 

TDW = 2TCLCL - TCDLVmax + TCLMHmin 
- TIVOV max = 265ns. 

TDH = TCLCH - TCLMHmax + TCHDXmin 
+ TIVOVmin = 95ns. 

A comparison of these results with the 2148 family indi­
cates the standard 2148 write timing is fully compatible 
with this 8086 configuration. The read timing must also 
be analyzed to determine the complete compatibility of 
the devices. 

Dynamic RAM 

A dynamic RAM is one of the most complex devices to 
design into an 8086 system. In order to help the Design 
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Figure 1·42 Memory Even and Odd 
Data Byte Transfers 

Engineer and simplify the design task somewhat, Intel 
provides the 8202,8203,8207, and 8208 dynamic RAM 
controllers as part of the 8086 family of peripheral de­
vices. The following paragraphs describe the use of the 
8202 with the 8086 in designing a dynamic memory sys­
tem for an 8086 system. 

For example, a standard interconnection for an 8202 in an 
8086 system (see Figure I-51) accomn1odates 64K words 
(128 bytes) of dynamic RAM which is addressable as 
words or bytes. To access the RAM, the 8086 must initiate 
a bus cycle with an address that selects the 8202 (via 
PCS*) and the appropriate transfer command (MRDC* or 
MWTC*). If the 8202 is not performing a refresh cycle, 
the access starts immediately, otherwise, the 8086 must 
wait for completion of the refresh. XACK* from the 8202 
is connected to the 8284 RDY input to force the CPU to 
wait until the RAM cycle is completed before the CPU 
can terminate the bus cycle. This effectively synchronizes 
the asynchronous events of refresh and CPU bus cycles. 
The normal write command (MWTC*) is used rather than 
the advanced command (AMWC*) to guarantee that data 
is valid at the dynamic RAMs before the write command 
is issued. Gating WE* withAO and BHE* provides selec­
tive write strobes to the upper and lower banks of memory 
to allow byte and word write operations. The logic which 
generates the strobe for the data latches allows read data 
to propagate to the system as soon as the data is available 
and latches the data on the trailing edge of CAS*. 
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1l!Ibie 1·31 Status Information 

S4 

o 
o 

Alternate (relative to the ES segment) 

Stack (relative to the SS segment) 

Code/None (relative to the CS seg-
ment or a default of zero) 

Data (relative to the OS segment) 

S5 = IF (interrupt enable flag) 
S6 = 0 (indicates the 8086 is on the bus) 

Table 1·32 EPROM/ROM Parameters 

TOE - Output Enab(e to Valid Data .. TRLDV 
TACC - Address to Valid Data 5 TAVDV 
TCE - Chip Enable to Valid Data" TSLDV 
TDF - Output Enable High to Output Float. TRHDZ 

a. Read Cycle 

For no wait state operation, the 8086 requires data to be 
valid from MRDC* in: 

2TCLCL-TCLML-TDVCL-buffer delays = 291 
ns. 

Since the 8202 is CAS* access limited, only CAS* access 
time needs to be examined. The 8202/2118 guarantees 
data valid from 8202 RD* low to be: 

(tph + 3tp + 100 ns) 8202 TCC delay + TCAC for the 
2118 

A 25 MHz 8202 and 2118-3 pro"ide only 297 ns, which is 
insufficient for no wait state operation. If only 64K bytes 
are accessed, the 8202 requires only (tph + 3tp = 85 ns) 
giving 282 ns access and no wait states required (see Fig­
ures 1-52 and 1-53). Refer to the devices respective data 
sheets for additional information. 

1-82 
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Figure 1·45 Reserved Memory Locations 
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ADDRESS _____ -, 

CONTROL 

DATA 

Figure 1·46 8086/8088 Memory Array 

a. Write Cycle 

An important consideration for dynamic RAM write cy­
cles is to guarantee data to the RAM is valid when both 
CAS* and WE* are active. For the 2118, ifWE* is valid 
prior to CAS*, the data setup is to CAS* and if CAS* is 
valid before WE* (as would occur during a read modify 
write cycle) the data setup time is to WE*. 

For the 8202, the WR* to CAS* delay is analyzed to de­
termine the data setup time to CAS* inherently provided 
by the 8202 command to RAS*/CAS* timing. The mini­
mum delay from WR* to CAS* is: 

CHIP SELECT ------<p----<l! CE 

Oa.'5 00., 
2732 

iiii----+-l 

Do., \,--... ----1 

NOTE "0 AND iiiE ARE NOT USED. 

Figure 1·47 EPROM/ROM Bus Interface 
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ADDRESS '--___ -, 

"0-----1 

BHE ---++----01 
MliO OR 

ADDITIONAL ---...... +---q 
ADDRESS 

(I) 

ce) 

AOOR 

"0 

AD 
Wii 

MliO 

iiHE CS1 

CS2 

Cd) 

.5 

.5 

LOW BANK 
CHIP SELECTS 

HIGH BANK 
CHIP SELECTS 

LOW BANK 
CHIP SELECTS 

HIGH BANK 
CHIP SELECTS 

Figure 1·48 Chip Select Generation for Devices 
Without Output Enables 
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A10.1 ______ --,--, 

RD--------1 

100--""'''''' 

WR~-.,~" 

2142's 

~~-----~CSl 
CS2 

+V 

(a) HIGH AND lOW BANK WRITE STROBES 

A1CJ.' _______ -, 

RD--------~ 

WR------------~ 

AO-------4~ 

2142', 

Bliil-------il-------q ~S2 

CS----------+----------~ 

(0) 100 AND iiHe AS DIRECT CHIP SELECT INPUTS 

2142's 

A10.' _______ --, 

RD ---------1 

100-_""'''''' Nf:i ..... ___ , 

BHE--1....J 

A" ------'-+----<11 

A,,-------~----.......I 

(e) LINEAR CHIP SELECT USED WITH HIGH 
AND LOW BANK WRITE STROBES 

Figure 1·49 Chip Selection for Devices 
With Output Enables 

D1.0 
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Table 1·33 Typical Static RAM Write 
Timing Parameters 

TW - Write Pulse Width 
TWA - Write Release (Address Hold From End of Write) 
TOW - Data and Write Pulse Overlap 
TDH - Data Hold From End of Write 
TAW - Address Valid 10 End of Write 
TCW - Chip SelecllO End of Wrile 
TASW - Address Valid 10 Beginning of Wrile 

!FrC
'" s" CL~2" 

DTiR DEN 
ALE 

~c," 
8284 

.. 86 

DATA 

Figure 1·50 Sample Compatibility Analysis 
Configuration 

TCCmin = tph + 2tp + 25 = 127 ns @ 25 MHz 

Subtracting buffer delays and data setup at the 2118, we 
have 83 ns to generate valid data after the write command 
is issued by the CPU (in this case the 8288). Since the 
8086 will not guarantee valid data until TCLAVmax - T­
CLMLmin = 100 ns from the advanced write signal, the 

Table 1·34 Cycle Dependent Write Parameters 
for RAM Memories 

(I) Minimum Mod. 

TW = TWLWH = 2TCLCL - 60 = 340 ns 
TWR= TCLCL- TCVCTXmax+ TCLLHmin = 90 ns 
TDW= 2TCLCL- TCLDVmax+ TCVCTXmin = 300 ns 
TDH = TWHDX = 88 ns 
TAW= 3TCLCL- TCLAVmax+ TCVCTXmin= 500 ns 
TCW=TAW-Chip Selecl Decode 
TASW= TCLCL- TCLAVmax + TCVCTXmin= 100 ns 

(b) Maximum Mod. 

TW= TCLCL- TCLMLmax+ TCLMHmin = 175 ns 
TWR= TCLCL- TCLMHmax+ TCLLHmin= 165 ns 
TOW=TW= 175 ns 
TOH = TCLCHmin - TCLMHmax + TCHDXmin = 93 ns 
TAW= 3TCLCL- TCLAVmax+ TCLMHmin= 500 ns 
TCW= TAW - Chip Selecl Decode 
TASW = 2TCLCL- TCLAVmax + TCLMLmin = 300 ns 
TWA' = TW + TCLCL = 375 ns 
TOWA' = 2TCLCL- TCLDVmax+ TCLMHmin = 300 ns 
TASWA' = TASW - TCLCL= 100 ns 

*Relative to Advanced Write. 
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OTHER 
READY 
INPUTS 

.... 
5MHz 

ADo·ADlI 
.~. 

.2 .. 

Figure 1·51 5 MHz 8086 System Using an 8202 Dynamic RAM Controller 

normal write signal is used. The normal write MWTC* 
guarantees data is valid 100 ns before it is active. The 
worst case write pulse width is approximately 175 ns 
which is sufficient for all 2118 's. 

c. Synchronization 

To force the 8086 to wait during refresh the XACK * or 
SACK* lines must be returned to the 8284A ready input. 
The maximum delay from RD* to SACK* (if the 8202 is 
not performing refresh) is TAC = tp + 40 = 80 ns. To 
prevent a wait state at the 8086, RDY must be valid at the 
8284A TCLCHmin - TCLMLmax - TRI VCLmax = 48 
ns after the command is active. This implies that under 
worst case conditions, one wait state will be inserted for 
every read cycle. Since MWTC* does not occur until one 
clock later, two wait states may be inserted for writes. 

The XACK* from command delay will assert RDY 
TCC + TCX = (tph + 3tp + 100) + (5tp + 20) = 460 ns 
after the command. This will typically insert one or two 
wait states. 

1-85 

Unless 2118-3's are used in 64K byte or less memories, 
SACK* must not be used since it does not guarantee a wait 
state. From the previous access time analysis we saw that 
other configurations required a wait state. 

1/0 PERIPHERAL INTERFACE 

The 8086 can interface with 8-and 16-bit I/O devices us­
ing either 110 instructions or memory mapped 110. The 
I/O instructions allow the 110 devices to reside in a sepa­
rate 110 address space while memory mapped 110 allows 
the full power of the instruction set to be used for 110 
operations. Up to 64K bytes of I/O mapped 110 may be 
defined in an 8086 system. To the programmer, the sepa­
rate 110 address space is only accessible with INPUT and 
OUTPUT commands which transfer data between 110 de­
vices and the AX (for 16-bit data transfers) or AL (for 
8-bit data transfers) register. The first 256 bytes of the 110 
space (0 to 255) are directly addressable by the 110 in­
structions while the entire 64K is accessible via register 
indirect addressing through the DX registe1. fhe latter 
technique is particularly desirable for service procedures 
that handle more than one device by allowing the desired 
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Figure 1-52 8202 Timing Information 

device address to be passed to the procedure as a parame­
ter. I/O devices may be connected to the local CPU bus or 
the buffered system bus. 

Eight-Bit 110 

Eight-bit 110 devices may be connected to either the upper 
or lower half of the data bus. Assigning an equal number 
of devices to the upper and lower halves of the bus will 
distribute the bus loading. If a device is connected to the 
upper half of the data bus, all 1/0 addresses assigned to 
the device must be odd (AO = 1). If the device is on the 
lower half of the bus, its addresses must be even (AO = 0). 
The address assignment directs the 8-bit transfer to the 
upper (odd byte address) or lower (even byte address) half 
of the 16-bit data bus. Since AO will always be a one or 
zero for a specific device, AO cannot be used as an ad­
dress input to select registers within a specific device. If a 
device on the upper half of the bus and one on the lower 
half are assigned addresses that differ only in AO (adja-

1-86 

cent odd and even addresses), AO and BHE* must be con­
ditions of chip select decode to prevent a write to one 
device from erroneously performing a write to the other. 

One technique for generating 110 device chip selects uses 
separate 8205's to generate chip selects for odd and even 
addressed byte peripherals (see Figure I-54). If a word 
transfer is performed to an even addressed device, the 
adjacent odd addressed 1/0 device is also selected. This 
allows accessing the devices individually with byte trans­
fers or simultaneously as a 16-bit device with word trans­
fers. Another technique restricts the chip selects to byte 
transfers, however a word transfer to an odd address will 
cause the 8086 to run two byte transfers that the decode 
technique will not detect. A third technique simply uses a 
single 8205 to generate odd and even device selects for 
byte transfers and will only select the even addressed 8-bit 
device on a word transfer to an even address. 

One last technique for interfacing with 8~bit peripherals 
(see Figure 1-55) multiplexes the 16-bit data bus onto an 
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Figure 1-53 2118 Family Timing 

8-bit bus to accommodate byte oriented DMA or block 
transfers to memory mapped 8~bit I/O. Devices connected 
to this interface may be assigned a sequence of odd and 
even addresses rather than all odd or even. 

If greater than 256 bytes of the 1/0 space or memory 
mapped I/O is used, additional decoding beyond these 
sample techniques may be necessary. This decoding can 
be done with additional TTL, 8205's or bipolar PROMs. 
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Figure 1-54 110 Device Chip Select Techniques 

The bipolar PROMs are slightly slower than mUltiple lev­
els of TTL (50 ns versus 30 to 40 ns for TTL) but provide 
full decoding in a single package and allow inserting a 

iiD-~><>----------, 

IfL.J....,.-,---'\ ::~rpHERAL 

iIif 
PERIPHERAL 

C8 

DATA BUS 

Figure 1-55 16-bit to 8-bit Bus Conversion 
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Figure 1-56 . Bipolar PROM Decoder 

new PROM to reconfigure the system I/O map without 
circuit board or wiring modifications (see Figure 1-56). 

Sixteen-Bit 1/0 

Sixteen-bit I/O devices should be assigned even addresses 
for reasons of efficient bus utilization and simplicity of 
device selection. To guarantee the device is selected only 
for word operations, AO and BHE* should be conditions 
of chip select code (see Figure 1-57). 

110 DEVICE COMPATIBILITY 

Compatibility of an I/O device with a microprocessor is 
always a system design consideration. This section 
presents a set of A.C. characteristics which represent the 
timing of the asynchronous bus interface of the 8086. The 
included equations are expressed in terms of the CPU 
clock (when applicable). These equations are derived for 
minimum and maximum modes of the 8086 and they rep­
resent the bus characteristics at the CPU. The results can 
be used to determine I/O device requirements for opera­
tion on a single CPU local bus or buffered system bus. 

NOTE 

These values are not applicable to a MULTI­
BUS system bus interface. The requirements 
for a MULTIBUS system bus are available in 
the MULTIBUS interface specification. 

Table 1-35 presents a list of bus parameters, their defini­
tion and how they relate to the A. C. characteristics of. 

ADDAESS ----h/l "0.. 00 

Ao -'---+-<lI Ii .2051 
m Ii 

E. 

EVEN ADDRESSED 
WORD PERIPHERALS 

Figure 1-57 16-bit 110 Decode 
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Table 1-35 Peripheral Compatibility Parameters 

TAVRL - Address stabte before RD leading edge 
TRHAX - Addre •• hold after RD trailing edge 
TRLRH - Read pulse width 
TRLDV - Read to data val id delay 
TRHDZ - Read trailing edge to data floating 
TAVDV - Address to valid data delay 
TRLRL - Read cycle time 
TAVWL - Addre.s valid before write leading edge 
TAVWLA - Address valid before advanced write 
TWHAX - Address hold after write trailing edge 
TWLWH - Write pulse width 
TWLWHA - Advanced write pulse width 
TDVWH - Data set up to write trailing edge 
TWHDX - Data hold from write trailing edge 
TWLCL - Write recovery time 
TWLCLA - Advanced write recovery time 
TSVRL - Chip select stable before RD leading edge 
TRHSX - Chip select hold after RD trailing edge 
TSLDV - Chip select to data valid delay 
TSVWL - Chip select stable before WR leading edge 
TWHSX - Chip select hold after WR trailing edge 
TSVWLA - Chip select stable before advanced write 

(TAR) 
[TRA) 
(TRR) 
[TRD) 
(TDF) 
[TAD) 

(TRCYC) 
[TAW) 
(TAW) 
[TWA) 

(TWW) 
[TWW) 
(TOW) 
(TWO) 
(TRV) 
(TRV) 
(TAR) 
[TRA) 
(TRD) 
[TAW) 
(TWA) 
[TAW) 

Symbols in parentheses are equivalent parameters specified for 
Intel peripherals. 

Intel peripherals. Table 1-36 presents Cycle dependent 
values of the parameters. For each equation, if more than 
one signal path is involved, the equation reflects the worst 
case path. For example: 

TAVRL (address valid before read active) = 
(1) Address from CPU to RD* active 
(2) ALE (to enable the address through the address 

latches) to RD* active 

The worst case delay path is (1). 

For maximum mode 8086 configurations, TAVWLA, 
TWLWHA and TWLCLA relate to the advanced write 
signal while TAVWL, TWLWH and TWLCL relate to the 
normal write signal. 

In the given list of equations, TWHDXB represents the 
data hold time from the trailing edge of write for the mini­
mum mode with a buffered data bus. For this equation, 
TCVCTX cannot be a minimum for data hold and a maxi­
mum for write inactive. The maximum difference is 50 ns 
giving the result TCLCH-50.Ifthe reader wishes to ver­
ify the equations or derive others, refer to the index under 
"Bus Timing" for assistance with interpreting the 8086 
bus timing diagrams. 

Figure 1-58 shows four representative configurations and 
the compatible Intel peripherals (including wait states if 
required) for each configuration given in Table 1-37. 
Configuration 1 and 2 consist of minimum mode demulti­
plexed bus 8086 systems without (1) and with (2) data bus 
transceivers. Configurations 3' and 4 consist of maximum 
mode systems with one (3) and two (4) levels of address 
and data buffering. The last configuration is characteristic 
of a multi-board system with bus buffers on each board. 
The 5 MHz parameter values for these configurations (re-

1-89 

Table 1-36 Peripherals Cycle Dependent 
Parameter Requirements 

(I) Minimum Mode 

TAVRL = TCLCL + TCLRLmin - TCLAVmax = TCLCL - 100 
TRHAX = TCLCL - TCLRHmax + TCLLHmin = TCLCL - 150 
TRLRH = 2TCLCL - 60 = 2TCLCL - 60 
TRLDV = 2TCLCL - TCLRLmax - TOVCLmin = 2TCLCL - 195 
TRHDZ= TRHAVmin= 155 ns 
TAVDV= 3TCLCL- TDVCLmin- TCLAVmax= 3TCLCL-140 
TRLRL= 4TCLCL= 4TCLCL 
TAVWL=TCLCL+ TCVCTVmin- TCLAVmax= TCLCL-1oo 
TWHAX = TCLCL + TCLLHmin - TCVCTXmax = TCLCL - 110 
TWLWH = 2TCLCL - 40 = 2TCLCL - 40 
TDVWH = 2TCLCL + TCVCTXmin - TCLDVmax = 2TCLCL - 100 
TWHDX = TWHDZmin = 89 
TWLCL= 4TCLCL= 4TCLCL 
TWHDXB= TCLCHmin+(- TCVCTXmax+ TCVCTXmin)= 

TCLCHmin - 50 

Note: Delays relative to chip select are a function of the chip select 
decode technique used and are equal to: equivalent delay 
from address - chip select decode delay. 

(b) Maximum Moda 

TAVRL= TCLCL+ TCLMLmin- TCLAVmax= TCLCL-1oo 
TRHAX = TCLCL - TCLMHmax + TCLLHmin = TCLCL - 40 
TRLRH = 2TCLCL- TCLMLmax + TCLMHmin = 2TCLCL- 25 
TRLDV = 2TCLCL - TCLMLmax - TDVCLmin = 2TCLCL - 65 
TRHDZ= TRHAVmin = 155 
TAVDV= 3TCLCL- TOVCLmin- TCLAVmax= 3TCLCL-140 
TRLRL = 4TCLCL = 4TCLCL 
TAVWLA=TAVRL=TCLCL-1oo 
TAWIL = TAVRL+ TCLCL= 2TCLCL-100 
TWHAX = TRHAX = TCLCL - 40 
TWLWHA = TRLRH = 2TCLCL - 25 
TWLWH = TRLRH - TCLCL = TCLCL - 25 
TDVWH = 2TCLCL + TCLMHmin - TCLDVmax = 2TCLCL- 100 
TWHDX = TCLCHmin - TCLMHmax + TCHDZmin = TCLCHmin - 30 
TWLCL = 3TCLCL = 3TCLCL 
TWLCLA = 4TCLCL = 4TCLCL 

fer to Table 1-38) demonstrate the relaxed device require­
ments for even a large complex configuration. The 
analysis assumes all components are exhibiting the speci­
fied worst case parameter values under the corresponding 
temperature, voltage and' capacitive load conditions. If the 
capacitive loading on the 8282/83 or 8286/87 is less than 
the maximum, refetto the graphs of delay versus capaci­
tive loading in the respective data sheets to determine the 
appropriate delay values. 

To determine peripheral compatibility, modify the equa­
tions given for the CPU to account for additional delays 
from address latches and data transceivers in the configu­
ration. Once the system configuration is selected, deter­
mine the system requirements at the peripheral interface 
and use the results to evaluate compatibility of the periph­
eral to the system. During this process, consider: (1) can 
the device operate at maximum bus bandwidth and if not, 
how many wait states are required, and (2) are there any 
problems that cannot be resolved by wait states. 

Examples of the first consideration include TRLRH (read 
pulse width) and TRLDV (read access or RD* aC.tive to 
output data valid). Consider address !lCcess time (valid 
address to valid data) for the maximum mode fully buf­
fered configuration: 
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Figure 1-58 8086 System Configurations 

TAVDV= 3TCYC-I40 ns-address latch delay­
- address buffer delay - chip select decode de­
lay - 2 transceiver delays 

Table 1-37 Compatible Peripherals 
for a 5 MHz 8086/88 

Con.I .... llon 

Minimum Mode MulmumMode 
Unbuffered Bu.tered Bu ..... d Fully Bu'tered 

8251A ". lW ". ". 

8253-5 ". lW ". ". 

8255A·5 ". lW ". ". 

8257·5 ". lW ". ". 

8259A ". ". ". ". 

8271 ". lW ". ". 

8273 ". lW ". ". 

8275 ". lW ". ". 

8279-5 ". lW ". ". 

8041A' ". lW ". ". 

8741A ". lW ". ". 

8291 ". ". ". ". 

'Includes other Intel peripherals based on the8041A (i.e., 8292, 8294, 
8295). 

". implies full operation with no walt states. 

W Implies the numbar of wait states required. 

1·90 

Assuming inverting latches, buffers and transceivers with 
22 ns max delays (8283, 8287) and a bipolar PROM de­
code with 50 ns delay, the result is: 

TAVDV = 322 ns @ 5 MHz 

This result gives the address to data valid delay required 
at the peripheral (in this configuration) to satisfy zero wait 
state CPU access time. If the maximum delay specified 
for the peripheral is less than the result, this parameter is 
compatible with zero wait state CPU operation. If not, 
wait states must be inserted until TAVDV + n * TCYC (n 
is the number of wait states) is greater than the peripherals 
maximum delay. If several parameters require wait states, 
either the largest number required should always be used 
or different transfer cycles can insert the maximum num­
ber required for that cycle, 

The second consideration includes TAVRL (address set up 
to read).and TWHDX (data hold after write), Incompati­
bilities in this area cannot be resolved by the insertion of 
wait states and may require either additional hardware, 
slowing down the CPU (if the parameter is related to the 

210912-001 



8086/8088 CPU 

Table 1·38 Peripheral Requirements for 
Full Speed Operation with 
a 5 MHz 8086/88 

Conflgurltlon 

Minimum Mode Maximum Mode 

Unbulll..-l Bulllred Bull.rld Fully Bull.rod 

TAVRL 70 72 70 58 
TRHAX 57 27 ,69 ,4, 
TRLRH 340 320 375 347 
TRLDV 205 ,50 305 26' 
TRHDZ '55 '58 382 360 
TAVDV 430 400 400 372 
TRLRL 800 770 800 772 
TAVWL 70 72 270 258 
TAVWLA - - 70 58 
TWHAX 97 67 '69 ,4, 
TWLWH 360 340 ,75 '47 
TWLWHA - - 375 347 
TDVWH 300 339 270 258 
TWHDX 88 ,5 95 ,3 
TWLCL 800 772 800 572 
TWLCLA - - 800 772 
TSVRL 52 54 52 40 
TRHSX 50 50 ,7, '43 
TSLDV 4,2 382 382 354 
TSVWL 52 54 252 240 
TWHSX 90 90 ,7, '43 
TSVWLA - - 52 40 

- Not applicable. 

clock) or not using the device. As an example, consider 
address valid prior to advanced write lower (TAVWLA) 
for the maximum mode fully buffered: 

TAVWLA= TCYC-1OO ns-address latch delay­
- address buffer delay - chip select decode de­
lay + write buffer delay (minimum) 

Assuming inverting latches and buffers with 22 ns delay 
(8283/8287) and an 8205 address decoder with 18 ns de­
lay: 

TAVWLA = 38 ns which is the time a 5 MHz 8086 
system provides. 

Multiple Communications Lines Example 

Consider an interrupt drive procedure for handling multi­
ple communications lines. On receiving an interrupt from 
one of the lines, the invoked procedure polls the lines 
(reading the status of each) to determine which line to 
service. The procedure does not enable lines but simply 
services input and output requests until the associated out­
put buffer is empty (for output requests) or until an input 
line is terminated (for the example, only EOT is consid­
ered). On detection of the terminate condition, the routine 
will disable the line. It is assumed that other routines will 
fill a lines output buffer and enable the device to request 
output or empty the input buffer and enable the device to 
input additional characters. 
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LOWER HALVES OF THE DATA BUS. 

ADDRESS 

o 
1 
2 
3 
4 
5 
6 
7 

ETC. 

DEVICE 0 
DEVICE 1 
DEVICE 0 
DEVICE 1 
DEVICE 2 
DEVICE 3 
DEVICE 2 
DEVICE 3 

DATA 
DATA 
CONTROUSTATUS 
CONTROUSTATUS 
DATA 
DATA 
CONTROUSTATUS 
CONTROUSTATUS 

Figure 1·59 Device Assignment 

The routine begins operation by loading CX with a count 
of the number of lines in the system and DX with the I/O 
address of the first line. The I/O addresses are designed 
with 8251's as the 110 devices (see Figure 1-59). The sta­
tus of each line is read to determine if it needs service. If 
yes, the appropriate routine is called to input or output a 
character. After servicing the line or if no service is 
needed, CX is decremented and DX is incremented to test 
the next line. After all lines have been tested and serviced, 
the routine terminates. If all interrupts from the lines are 
OR'd together, only one interrupt is used for all lines. If 
the interrupt is input to the CPU through an 8259A inter­
rupt controller, the 8259A should be programmed in the 
level triggered mode to guarantee all line interrupts are 
serviced. 

To service either an input or an output request (see Figure 
1-60), the called routine transfers DX to BX, and shifts 
BX to form the offset for this device into the table of input 
or output buffers. The first entry in the buffer is an index 
to the next character position in the buffer and is loaded 
into the 81 register. By specifying the base address of the 
table of buffers as a displacement into the data segment, 
the base + index + displacement addressing mode allows 
direct access to the appropriate memory location. 

Memory - 1/0 Block Transfers Example 

The memory mapped 110 and the 8086 string primitive 
instructions may be used to perform block transfers be­
tween memory and 110. By assigning a block of the 
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THIS CODE OEMONSTRATES TESTING DEVICE 
STATUS FOA SERVICE, CONSTRUCTINQ THE 
APPROPRIATE LINE IUFFER ADDRESS FOR INPUT 
AND OUTPUT AND SERVICING AN INPUT 
REQUEST 

CHECtCS'A'US: 

WRITE_ SEAVICE: 
NEXT_IO: 

ADDRESS: 

AEAD: 

MASK EQU OFFFDH 
INPUT AL, OX 
MQY AH, AL 

: OET 1251. STATUS, 

TEST AH, AEAD_OR_WRITLSTATUS 
JZ NEXT_IO 
CALL ADDRESS 
TEST AH, READ STATUS 
JZ WfUTE_SERYICE 
CALL READ 
TEST AH, WAITE SUTUS 
JZ NEXT_IO 
CALL WRITE 
DEC ex 
JNC EXIT 
AND ox, MASK 
ADD OX, 3 
OR ox, 2 
JMP CHECILSTATUI 

AND ox, MASK 
MOY IH,DL 
INC IH 
SHA IH 
XOR IL,IL 
AIT 
INPUT AL, DX 

; TEIT IF DONE. 
; YE., REITO'" • AnU"N, 
; REMOVE.t AND 
; INCRIMINT ADDRUI. 
; IILICT ITATUS FOR 
; NEXT INPUT, 

; IELICT DATA., 
; CONSTRUCT IUFFER 
; OIiPLACEMINT II'OR 
; THII DEVICE. 
; IX IS THI DISPLACEMENT, 

i RIAD CHAMCTIIII. 
MOV II, AIlAD-I.UFflAI,I)(j 
MOY IIIIAD_IU"ERI,IX .• IIJ.AL 
INC ~IIAD_'UFfI~II')(j 

j on CHARACTER POINTIR. 
; ITO~I CHAIlACTI~. 
j INCR CH ...... CTIR POINTE ... 
j END 0' TMNIMIUION? eMP AL, lOT 

JNZ CONT _RIAD 
CALL DIUILI READ 
CONT _READ: RIT 

j VEl, DIIAILE "ICIIVEIII. 
; lEND M.18'GI THAT INPUT 
j II RIADY, 

Figure 1·60 1/0 Input Request Code Example 

memory address space (equivalent in size to the maximum 
block to be transferred to the liD device) and decoding 
this address space to generate the liD device's chip select, 
the block transfer capability is easily implemented. Fig­
ure 1-61 gives an interconnect for 16-bit liD devices 
while Figure 1-62 incorporates the 16-bit bus to 8-bit bus 
mUltiplexing scheme to support 8-bit liD devices. A code 
example to perform such a transfer is shown in Figure 
1-63. 

1.4.5 System Design Alternatives 

Two implementation alternatives must be considered 
when referring to the system data bus: 1) the multiplexed 
addressldata bus (see Figure 1-64); and 2) a data bus buf­
fered from the multiplexed bus by transceivers (see Fig­
ure 1-65). 

If memory or liD devices are connected directly to the 
multiplexed bus, the designer must guarantee the devices 
do not corrupt the address on the bus during T 1. To avoid 
this, device output drivers should not be enabled by the 
device chip select. They should have an output enable 
controlled by the system read signal (see Figure 1-66). 
The 8086 timing guarantees that read is not valid until the 
address is latched by ALE (see Figure 1-67). All Intel 
peripherals, EPROM products, and RAM's for micropro­
cessors provide output enable or read inputs to allow con­
nection to the multiplexed bus. 
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TAANSFER 258 BYTE BLOCKS TO THE I/O DEVICE 

THE ADDRESS SPACE ASSIGNED TO THE 110 DEVICE IS 

A" 
FROM i-IASE 
THAU ~IASE ~A' ~ ADDRESS _0', 

ADDRESS 1', 

MEMORY DATA NEED NOT IE ALIGNED TO EVEN ADDRESS 10UNDAAIES 
110 TAANSFERS MUST IE WORD TRANSFERS TO EVEN ADDRESS 10UNDARIES 

Figure 1·61 Block Transfer to 16·blt 1/0 
Using 8086/88 String Primitives 

There are several techniques available for interfacing de­
vices without output enables to the multiplexed bus, Note 
that each of these techniques introduces other restrictions 
or limitations. Consider the case of chip select gated with 
read and write (see Figure 1-68). Two problems exist with 
this technique. First, the chip select access time is re­
duced to the read access time, and may require a faster 

A"., L-___ -,/ 

iiiiE --+-4._, 

3805 
A·1 

CHIP SELECT 

CS 

8·BIT 
DATA 110 

DEVICE 

iiii Wii 

ADDRESS ASSIGNMENT SAME AS PREVIOUS EXAMPLE. 18-BIT BUS IS 
MULTIPLEXED ONTO AN 8·BIT PERIPHERAL BUS. 

Figure 1·62 Block Transfer to 8·bit 1/0 
Using 8086188 String 
Primitives 
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; DEFINE THE 110 ADDRESS SPACE 
110 SEGMENT 
ORG BLOCKJDDRESS 

1I0_BLOCK: OW, a8 DUP (?) 
110 ENDS 

; ASSUME THE DATA IS FROM THE CURRENT 
: DATA SEGMENT 

CLD ; OF. FORWARD 
LES 01, I/O_BLOCKJDDAESS ; 110 BLOCK ADDRESS 

MOV ex, BLOCK_LENGTH 
MOV 51, SOURCILADDRESS 

; CONTAINS THE ADDRESS 
; OF 1/0 BLOCK 

MOVS 110 BLOCK : PERFORM WORD TRANSFERS 

; END CODE EXAMPLE 

NOTE THE CODE IS CAPABLE OF PERFORMING BVTE TRANSFERS BY 
CHANGING THE 110 BLOCK DEFINITION FROM 'a. WORD TO as. BYTES 

Figure 1·63 Code For Block Transfers 

device if maximum system performance (Le., no wait 
states) is to be achieved (see Figure 1-69). Second, the 
designer must verify that the chip select-to-write setup 
and hold times for the device are not violated (see Figure 
1-70). Alternate techniques can be extracted from the bus 
interfacing techniques, also described in this chapter, but 
are subject to the associated restrictions. In general, for 
best results, use devices with output enables. 

To guarantee the specified A.C. characteristics, the 8086's 
drive capability of 2.0 rnA and capacitive loading of 100 
pF subsequently limits the fan out of the multiplexed bus. 
Assuming capacitive loads of 20 pF per I/O device, 12 pF 
per address latch and 5-12 pF per memory device, a sys­
tem mix of three peripherals and two to four memory de­
vices (per bus line) approach the loading limit. 

MULTIPLEXED DATA BUS 

BHE 

8282 

ADDRESS 

L-____ --'A"'D"',,'--:::::AD"",'-'\ MULTIPLEXED 

ADDRESS/OAT A 

Figure 1·64 Multiplexed Data Bus 
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BUFFERED DATA BUS 

SYSTEM 
BUS 

Figure 1·65 Buffered Data Bus 

The data bus must be buffered using inverting or 
non-inverting octal buffers to satisfy the capacitive load­
ing and drive requirements of larger systems. To enable 
and control the direction of the transceivers, the 8086 pro­
vides Data Enable (DEN) and Data Transmit/Receive 
(DT/R*) signals (see Figure 1-65). These signals provide 
the appropriate timing to guarantee isolation of the multi­
plexed bus from the system during Tl and elimination of 

ALE-----I 

ADDRESS BUS 

MULTIPLEXED 
BUS 

Figure 1·66 Devices With Output Enable 
on the Multiplexed Bus 
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T1 T2 T3 T4 

,----
/ ,-----ALE 

Figure 1·67 Relationship of ALE to READ 

ADDRESS 

'--_______ -::><:---,/ MULTIPLEXED BUS 

Figure 1·68 Devices Without Output Enable 
on the Multiplexed Bus 

.000 ... ---< ....... ________ ------

DATA 

'\ 
, . 

J -,-

1 ACCESS TIME FOA CS GENERATED FROM ADDRESS DECODE. 

2 ACCESS TIME IF CS IS GATED WITH ADlWlt 

Figure 1·69 Access Time: CS Gated 
with AD*IWR* 
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bus contention with the CPU during read and write (see 
Figure 1-71). Although the memory and peripheral de­
vices are isolated from the CPU (see Figure 1-72), bus 
contention may still exist in the system if the devices do 
not have an output enable control other than chip select. 
As an example, bus contention will exist during transition 
from one chip select to another (the newly selected device 
begins driving the bus before the previous device has dis­
abled its drivers). Another, more severe case exists during 
a write cycle: from chip select to write active, a device 
whose outputs are controlled only by chip select, will 
drive the bus simultaneously with write data being driven 
through the transceivers by the CPU (see Figure 1-73). 
The same technique given for circumventing these prob­
lems on the multiplexed bus can be applied here with the 
same limitations. 

Since the majority of system memories and peripherals 
require a stable address for the duration of the bus cycle, 
the address on the multiplexed address/data bus during Tl 
should be latched and the latched address used to select 
the desired peripheral or memory location. Since the 
8086 has a 16-bit data bus, the multiplexed bus compo­
nents of the 8085 family are not applicable to the 8086 (a 
device on address/data bus lines 8-15 will not be able to 
receive the byte selection address on lines 0-7). To de­
multiplex the bus (see Figure 1-74), the 8086 system pro­
vides an Address Latch Enable signal (ALE) to capture 
the address in transparent D-type latches. The latches 

.ooo~~ _____________ _ 

WR-------------~ 

C!.WII----h}~ k 
1 cs IS NOT VALID PRIOR TO WRITE AND BECOMES ACTIVE ONE OR TWO GATE 

DELAVS LATER. 

a CS REMAINS VALID AFTER WRITE ONE OR TWO GATE DELAYS, 

Figure 1·70 CE to WR* Setup and Hole 
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AD. 

AOtS-ADo 

1 READ iffi 
CYCLE 

DTIR 

DEN 

AD,s·ADo 

Viii 
2 WRITE 

CYCLE 

DiN 

DT/A" 

8086/8088 CPU 

"_Tlll·~~~_T3 

ADDRESS A,,-Ao I FLOAT 
f--- IX DATA IN 015-Do 

- ~ 

1\ 

X ADDRESS X DATA OUT 

- ---, 
- _J 

1 DiN IS ENABLED AnER THE _ HAS FLOATED THE MULTIPLEXED BUS 

2 !!Ell ENABLES THE TRANSCEIVERS EARLY IN THE CYCLE, BUT DTIR GUARANTEES 
THE TRANSCEIVERS ARE IN TRANSMIT RATHER THAN RECEIVE MODE AND WILL 
NOT DRIVE AGAINST THE CPU. 

Figure 1-71 Bus Transceiver Control 

T4_ 

--- -----
) FLOAT --- -----

V 

i FLOAT 

II 

may be either inverting or non-inverting. These devices 
propagate the address through to the outputs while ALE is 
high and latch the address on the falling edge of ALE. ADDA~~ ________________________ __ 

0'" / 
J 

~ lUI CONTENllON"...;. _______ •• _______ _ 
10'" Dl¥telS DillY r- - ~ 

THIIUS 

Figure 1-72 Devices With Output Enable 
on the System Bus Figure 1-73 CS·/Bus Driving Device Timing 
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ADDRESS 
BUS 

AD1S-ADo 

Figure 1-74 De-multiplexing Address and Data 
From the Processor Bus 

This timing delays address access and chip select decod­
ing by only the propagation delay of the latch. The out­
puts are enabled through the low active OE* input. The 
demultiplexing of the multiplexed address/data bus 
(Jatchings of the address from the multiplexed bus), can 
be done locally at appropriate points in the system or at 
the CPU with a separate address bus distributing the ad­
dress throughout the system (see Figure 1-75). For opti­
mum system performance and compatibility with 
multiprocessor and MULTIBUS configurations, the latter 
technique is strongly recommended over the first. 

8088 
CPU 

ADDRESS BUS 

DATA BUS 

SEPARATE ADDRESS AND DATA BUSSES 

r------, 
I I 
I I 
I , 

I r' --~~~~ 
I 8086 
I CPU 

I 
I , , , , L ______ J 

1----..-----.. ALE 

L-.L-____ J\ ADDRESS/DATA 

BUS 

Figure 1-75 Multiplexed Bus With Local 
Address Demultiplexing 

NOTE 

Throughout this chapter consider the multi­
plexed bus as the local CPU bus and the de­
multiplexed address and buffered data bus as 
the system bus. 

MULTIPLEXED ADDRESS AND DATA BUS 

An additional extension to bus implementation is a second 
level of buffering to reduce the total load seen by devices 
on the system bus (see Figure 1-76). This technique is 
typically used for multiboard systems and for isolation of 
memory arrays. The concerns with this configuration are 
the additional delay for access and, more important, con­
trol of the second transceiver in relationship to the system 
bus and the device being interfaced to the system bus. One 
technique for controlling the transceiver (see Figure 1-77) 
simply distributes DEN and DT/R* throughout the sys­
tem. DT/R * is inverted to provide proper direction con­
trol for the second level transceivers. Another technique 
(see Figure 1-78) provides control for devices with output 
enables. RD* is used to normally direct data from the 

. system bus to the peripheral. The buffer is selected when­
ever a device on the local bus is chip selected. Bus conten­
tion is possible on the device's local bus during a read as 
the read simultaneously enables the device output and 
changes the transceiver direction. Contention may also 
occur as the read is terminated. 
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For devices without output enables, the same technique 
can be applied (see Figure 1-79) if the chip select to the 
device is conditioned by read or write. Controlling the 
chip select with read/write prevents the device from driv­
ing against the transceiver prior to the command being 
received. Using this technique, read/write time and 
CS-to-write setup and hold times limit access to the de­
vices. 

Using an alternate technique applicable to devices with 
and without output enables, (see Figure 1-80). RD* con­
trols the direction of the transceiver but it is not enabled 
until a command and chip select are active. The possibil­
ity for bus contention still exists but is reduced to varia­
tions in output enable versus direction change time for the 
transceiver. Full access time from chip select is now avail­
able, but data will not be valid prior to write and will only 
be held valid after write by the delay to disable the trans­
ceiver. 

In the last example of a technique for devices with sepa­
rate inputs and outputs (see Figure 1-81) separate bus re­
ceivers and drivers are provided rather than a single 
transceiver. The receiver is always enabled while the bus 
driver is controlled by RD* and chip select. The only pos­
sibility for bus contention in this system occurs as multi­
ple devices during chip selection changes. 
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CPU LOCAL 
BUS 

SYSTEM 
BUS 

MEMORY/IO 
LOCAL BUS 

Figure 1·76 Fully Buffered System 

1.4.6 Multiprocessor/Coprocessor 
Applications 

The 8086 architecture supports multiprocessor systems 
based on the concept of a shared system bus (see Figure 
1-82). All CPU's in the system communicate with each 
other and share resources using the system bus. The bus 
may be either the Intel MULTIBUS system bus or an ex­
tension of the system bus. Arbitration logic consists of the 
major addition required to the demultiplexed system bus 

MEMORY/IIO DEVICES 

Figure 1·77 Controlling System Transceivers 
with DEN and DT/R* 

WR-----------. 
1lI------?------, 
RD--------~--+_--------_r-+_, 

SVSTEM fL ____ J'\1 
DATA 
BUS 

MEMORYIIIO 
DEVICE 

,2H/7 

MEMORY/IIO 
DEVICE 

Figure 1·79 Buffering Devices Without 
OE*/RD* and With Common 
or Separate Input/Output 

~------1>------------' 

SYSTEM DATA BUS 

828617 

MEMORY/I/O 
DEVICE 

Figure 1·80 Buffering Devices Without OE*/RD* 
and With Common or Separate 

Figure 1·78 Buffering Devices with OE*/RD* Input/Output 
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e!~~-------------------------, 

lm--qL-'" 

Wft---------+--~----------__, 

SYSTEM 

74804 
OR 

74S240 
LOCAL WRITE BUS 

DATA -.----+--1 o 
BUS 

748240 

LOCAL READ BUS 
MEMORY/I/O 
DEVICE 

Figure 1·81 Buffering Devices Without OE*/RO· 
and With Separate 
Input/Output 

to control access to the system bus. As each CPU asyn­
chronously requests access to the shared bus, the arbitra­
tion logic resolves priorities and grants bus access to the 
highest priority CPU. Having gained access to the bus, 
the CPU completes its transfer and will either relinquish 
the bus or wait to be forced to relinquish the bus. For 
discussion on MULTIBUS arbitration techniques, refer to 
Application Note AP-28A, Intel MULTIBUS Interfacing. 

To support a multi-master interface to the MULTIBUS 
system bus for the 8086 family, the 8289 bus arbiter is 
included as part of the family. The 8289 is compatible 
with the 8086's local bus and in conjunction with the 8288 
bus controller, implements the MULTIBUS protocol for 
bus arbitration. The 8289 provides a variety of arbitration 
and prioritization techniques to allow optimization of bus 
availability, throughput, and utilization of shared re­
sources. Additional features (implemented through strap­
ping options) extend the configuration options beyond a 
pure CPU interface to the multi-master system bus for 

SHARED 
PERIPHERALS 

Figure 1·82 8086 Family Multiprocessor System 
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access to shared resources to include concurrent support 
of a local CPU bus for private resources. For specific con­
figurations and additional information on the 8289, refer 
to paragraph 1.8.3. 

LOCK· 

The LOCK*outputis used in conjunction with an Intel 
8289 Bus Arbiter to guarantee exclusive access of a 
shared system bus for the duration of an instruction. This 
output is software controlled and is effected by preceding 
the instruction with a one byte "lock" prefix (see instruc­
tion set description earlier in this chapter). 

When the lock prefix is decoded by the EU, the EU in­
forms the BID to activate the LOCK* output during the 
next clock cycle. This signal remains active until one 
clock cycle after the execution of the associated instruc­
tion is concluded. 

QSO, QS1 

The QSl and QSO (Queue Status) outputs permit external 
monitoring of the CPU's internal instruction queue to al­
low instruction set extension processing by a coprocessor. 
(The corresponding Intel ICE modules use these status 
bits during "trace" operations.) The encoding of the QS 1 
and QSO bits is shown in Table 1-39. 

1.4.7 Interpreting The 8086/8088 Bus 
Timing Diagrams 

The 8086/8088 bus timing diagrams are a powerful tool 
for determining system requirements. The timing dia­
grams for both the minimum and maximum modes (Fig­
ures 1-83 and 1-84) may be divided into six sections: (1) 
address and ALE; (2) read cycle timing; (3) write cycle 
timing; (4) interrupt acknowledge timing; (5) ready tim­
ing; and (6) HOLD/HLDA or RQ*/GT* timing. Since the 
A.C. characteristics of the signals are specified relative to 
the CPU clock, the relationship between the majority of 
the signals can be reduced by simply determining the 
clock cycles between the clock edges the signals are rela­
tive to and adding or subtracting the appropriate minimum 
or maximum parameter values. One aspect of system tim­
ing not compensated for in this approach is the worst case 
relationship between the minimum and maximum param­
eter values (also known as tracking relationships). As an 
example, consider a signal which has specified minimum 
and maximum turn on and turn off delays. Depending on 
device characteristics, it may not be possible for the com­
ponent to simultaneously demonstrate a maximum turn on 
and a minimum turn off delay even though worst case 
analysis might imply the possibility. This argument is 
characteristic of MOS devices and is therefore applicable 
to the 8086 A.C. characteristics. Therefore, the designer 
should assume that in worst case analysis mixing mini-
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Table 1·39 Queue Status Bit Decoding 

QS1 QSO Queue Status 

o (low) 0 No Operation. During the last 
clock cycle, nothing was taken 
from the queue. 

0 1 First Byte. The byte taken from the 
queue was the first byte of the 
instruction. 

1 (high) 0 Queue Empty. The queue has 
been reinitialized as a result of the 
execution of a transfer instruction. 

1 1 Subsequent Byte. The byte taken 
from the queue was a subsequent 
byte of the instruction. 

The queue status is valid during the eLK cycle after which the 
queue operation is performed. 

mum and maximum delay parameters will typically ex­
ceed the worst case obtainable and should therefore 
receive further subjective degradation to obtain 
worst-worst case values. This following paragraphs pro­
vide guidelines for specific areas of 8086 timing sensitive 
to tracking relationships. 

MINIMUM MODE BUS TIMING 

The minimum mode address and ALE timing relationship 
determines the ability to capture a valid address from the 
multiplexed bus. Since the D-type latches capture the ad­
dress on the trailing edge of ALE, the critical timing in­
volves the state of the address lines when ALE terminates. 
If the address valid delay is assumed to be maximum 
TCLAV and ALE terminates at TCHLLmin, its earliest 
point (assuming zero minimum delay), the address would 
be valid only if TCLCHmin-TCLAVmax = 8 ns prior to 
ALE termination. This result is unrealistic in the assump­
tion of maximum TCLAV and minimum TCHLL. To pro­
vide an accurate measure of the true worst case, a 
separate parameter specifies the minimum time for ad­
dress valid prior to the end of ALE (TAVAL). TAVAL = 
TCLCH-60 ns overrides the clock related timings and 
guarantees 58 ns of address setup to ALE termination for 
a 5 MHz 8086. The address is guaranteed to remain valid 
beyond the end of ALE by the TLLAX parameter. This 
specification overrides the relationship between TCHLL 
and TCLAX which might seem to imply the address may 
not be valid by the end of the latest possible ALE. 
TLLAX holds for the entire address bus. The TCLAXmin 
specification on the address indicates the earliest the bus 
will go invalid if not restrained by a slow ALE. TLLAX 
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and TCLAX apply to the entire multiplexed bus for both 
read and write cycles. AD15-0 is tri-stated for read cycles 
and immediately switched to write data during write cy­
cles. AD 19-16 immediately switch from address to status 
for both read and write cycles. TLHLLmin, which takes 
precedence over the value obtained by relating 
TCLLHmax and TCHLLmin, guarantees the minimum 
ALE pulse width. 

To determine the worst case delay-to-valid address on a 
demultiplexed address bus, two paths are considered: (1) 
delay of valid address and (2) delay to ALE. Since the 
D-type latches are flow through devices, a valid address is 
not transmitted to the address bus until ALE is active. A 
comparison of address valid delay TCLAVmax with ALE 
active, delay TCLLHmax indicates TCLAVmax is the 
worst case. Subtracting the latch propagation delay gives 
the worst case address bus valid delay from the start of the 
bus cycle. 

Minimum Mode Read Cycle Timing 

Read timing consists of conditioning the bus, activating 
the read command and establishing the data transceiver 
enable and direction controls. DT/R* is established early 
in the bus cycle and requires no further consideration. 
During read, the DEN* signal must allow the transceivers 
to propagate data to the CPU with the appropriate data 
setup time and continue to do so until the required data 
hold time. The DEN* turn on delay allows TCLCL + 
TCHCLmin - TCVCTV max - TDVCL = 127 ns trans­
ceiver enable time prior to valid data required by the 
CPU. Since the CPU data hold time TCLDXmin and min­
imum DEN* turnoff delay TCVCTXmin are both 10 ns 
relative to the same clock edge, the hold time is guaran­
teed. Additionally, DEN* must disable the transceivers 
prior to the CPU, redriving the bus with the address for 
the next bus cycle. The maximum DEN* turn off delay 
(TCVCTXmax), compared with the minimum delay for 
addresses out of the 8086 (TCLCL + TCLAVmin), indi­
cates the transceivers are disabled at least 105 ns before 
the CPU drives the address onto the multiplexed bus. 

If memory or 110 devices are connected directly to the 
multiplexed address and data bus, the TAZRL parameter 
guarantees the CPU will float the bus before activating 
read, allowing the selected device to drive the bus. At the 
end of the. bus cycle, the TRHAV parameter specifies the 
bus float delay the device being deselected must satisfy to 
avoid contention with the CPU driving the address for the 
next bus cycle. The next bus cycle may start as soon as 
the cycle following T4 or any number of clock cycles 
later. 

The minimum delay from read active to valid data at the 
CPU is 2TCLCL - TCLRLmax - TDVCL = 205 ns. The 
minimum pulse width is 2TCLCL -75 ns = 325 ns. This 
specification (TRLRH) overrides the result which could 
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Figure 1·83 8086 Bus Timing - Minimum Mode System 
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be derived from the clock relative delays (2TCLCL-T­
CLRLmax + TCLRHmin). 

Minimum Mode Write Cycle Timing 

The write cycle provides write data to the system, gener­
ates the write command and controls data bus transceiv­
ers. The transceiver direction control signal DT/R* is 
conditioned to transmit at the end of each ready cycle and 
does not change during a write cycle. This process allows 
the transceiver enable signal DEN* to be active early in 
the cycle (while addresses are valid) without corrupting 
the address on the multiplexed bus. The leading edge of 
T2 enables both the write data and write command. A 
comparison of minimum WR* active delay TCVCTVmin 
with the maximum write data delay TCLDV indicates that 
write data may be not valid until 100 ns after write is 
active. The devices in the system should capture data on 
the trailing edge of the write command rather than the 
leading edge to guarantee valid data. The data from the 
8086 is valid a minimum of 2TCLCL - TCLDVmax + 
TCVCTXmin = 300 ns before the trailing edge of write. 
The minimum write pulse width is TWLWH = 
2TCLCL - 60 ns = 340 ns. The CPU maintains valid 
write data TWHDX ns after write. The TWHDZ specifi­
cation overrides the result derived by relating TCLCHmin 
and TCHDZmin which implies write data may only be 
valid 18 ns after WR*. Normally the CPU simply 
switches the output drivers from data to address at the 
beginning of the next bus cycle. If forced off the bus by a 
HOLD or RQ* input, the 8086 floats the bus after write. 
As with the read cycle, the next bus cycle may start in the 
clock cycle following T4 or any clock cycle later. 

The CPU disables DEN* a minimum of TCLCHmin + 
TCVCTXmin-TCVCTXmax= 18 ns after write to 
guarantee data hold time to the selected device. Again 
comparing TCVCTXmin with TCVCTXmax, the real 
minimum delay from the end of write to transceiver dis­
able equals approximately 60 ns. 

Minimum Mode Interrupt Acknowledge Timing 

The interrupt acknowledge sequence consists of two inter­
rupt acknowledge timing cycles as previously described. 
The detailed timing of each cycle is identical to the read 
cycle timing with two exceptions: command timing and 

. address/data bus timing. 

The multiplexed address/data bus floats from the begin­
ning (Tl) of the INTA* cycle (within TCLAZ ns). The 
upper four multiplexed address/status lines do not 
three-state. The address value on A19-A16 is indetermi­
nate, but the status information will be valid (S3 = 0, 
S4=0, S5=IF, S6=0, S7=BHE*=0). The multiplexed 
address/ data lines will remain in three-state until the cy­
cle after T4 of the INTA * cycle. This sequence occurs for 

each of the INTA * bus cycles. The interrupt type number 
read by the 8086 on the second INTA * bus cycle must 
satisfy the same setup and hold times required for data 
during a read cycle. 

The DEN* and DT/R* signals are enabled for each 
INTA * cycle and do not remain active between the two 
cycles. Their timing for each cycle is identical to the read 
cycle. 

The INTA * command has the same timing as the write 
command. It is active within lIOns of the start of T2 pro­
viding 260ns of access time from command to data valid 
at the 8086. The command is active a minimum of 
TCVCTXmin = IOns into T4 to satisfy the data hold time 
of the 8086. This provides minimum INTA* pulse width 
of 300ns, however, taking signal delay tracking into con­
sideration gives a minimum pulse width of 340ns. Since 
the maximum inactive delay of INTA* is TCVCTX­
max = lIOns and the CPU will not drive the bus until 15ns 
(TCLAVmin) into the next clock cycle, 105ns are availa­
ble for interrupt devices on the local bus to float their 
outputs. If the data bus is buffered, DEN* provides the 
same amount of time for local bus transceivers the 
three-state the outputs. 

Minimum Mode Ready Timing 

The CPU typically generates the system ready signal from 
either the address decode of the selected device or the 
address decode and the command (RD*, WR *, INTA *. 
For a system which is normally not ready, the time to 
generate ready from a valid address and not insert a wait 
state, requires 2TCLCL - TCLAVmax - TRI VCLmax = 
255 ns. This time is available for buffered delays and ad­
dress decoding to determine if the selected device does 
not require a wait state and drive the RDY line high. If 
wait cycles are required, the user hardware must provide 
the appropriate ready delay. Since the address will not 
change until the next ALE, RDY will remain valid 
throughout the cycle. If the system is normally ready, se­
lected devices requiring wait states also have 255 ns to 
disable the RDY line. The user circuits must delay 
re-enabling RDY by the appropriate number of wait 
states. 

If the RD* command is used to enable the RDY signal, 
TCLCL - TCLRLmax - TRIVCLmax = 15 ns are availa­
ble for external logic. If the WR* command is used, TCL­
CL - TCVCTVmax - TRIVCLmax = 55 ns is available. 
Comparison of RDY control by address or command indi­
cates that address decoding provides the best timing. If 
the system is normally not ready, address decode alone 
could be used to provide RDY for devices not requiring 
wait states while devices requiring wait states may use a 
combination of address decode and command to activate a 
wait state generator. If the system is normally ready, de­
vices not requiring wait states do Iiothing to RDY while 
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devices needing wait states should disable RDY via the 
address decode and use a combination of address decode 
and command to activate a delay to re-enable RDY. 

If the system requires no wait states for memory and a 
fixed number of wait states for RD* and WR* to alillO 
devices, the M/IO* signal can be used as an early indica­
tion of the need for wait cycles. This techniques allows a 
common circuit to control ready timing for the entire sys­
tem without feedback of address decodes. 

Minimum Mode TEST" Timing 

The TEST* input is sampled by the 8086 only during exe­
cution of the WAIT instruction. The TEST* signal should 
be active for a minimum of 6 clock cycles during the 
WAIT instruction to guarantee detection. 

MAXIMUM MODE BUS TIMING 

The maximum mode 8086 bus operations are logically 
equivalent to the minimum mode operation. Detailed tim­
ing analysis now involves signals generated by the CPU 
and the 8288 bus controller. The 8288 also provides addi­
tional control and command signals which expand the 
flexibility of the system. 

Maximum Mode Address and ALE Timing 

In the maximum mode, the address information continues 
to come from the CPU while the ALE strobe is generated 
by the 8288. To determine the worst case relationships 
between ALE and the address, we first must determine 
8288 ALE activation relative to the SO*-S2* status from 
the CPU. The maximum mode timing diagram specifies 
two possible delay paths to generate ALE. The first is 
TCHSV + TSVLH measured from the rising edge of the 
clock cycle preceding T1. The second path is TCLLH 
measured from the start of T 1. Since the 8288 initiates a 
bus cycle from the states lines leaving the passive states 
(SO* - S2* = I), if the 8086 is late in issuing the status 
(TCHSVrnax) while the clock high time is a minimum 
(TCHCLmin), the status will not have changed by the 
start of T I and ALE is issued TSVLH ns after the status 
changes. If the status changes prior to the beginning of 
Tl, the 8288 will not issue the ALE until TCLLH ns after 
the start of T1. The resulting worst case delay to enable 
ALE (relative to the start of Tl) is TCHSVmax + 
TSVLHmax - TCHCLmin = 58 ns. Note, whencalculat­
ing signal relationships, be sure to use the proper maxi­
mum mode values rather than equivalent minimum mode 
values. 

The trailing edge of ALE is triggered in the 8288 by the 
positive clock edge in Tl regardless of the delay to enable 
ALE. The resulting minimum ALE pulse width is 
TCLCHmax-58 ns= 75 ns assuming the TCHLL= O. 

TCLCHmax must be used since TCHCLmin was assumed 
to derive the 58 ns ALE enable delay. The address is guar­
anteed to be valid TCLCHmin + TCHLLmin - TCLAV­
max = 8 ns prior to the trailing edge of ALE to capture 
the address in the latches. Again we have assumed a very 
conservative TCHLL = O. Note, since the address of ALE 
are driven by separate devices, no tracking of A.C. char­
acteristics can be assumed. 

The address hold time to the latches is guaranteed by the 
address remaining valid until the end of Tl while ALE is 
disabled a maximum of 15 ns from the positive clock tran­
sition in Tl (TCHCLmin - TCHLLmax = 52 ns address 
hold time). The multiplexed bus transitions from address 
to status and write data or tri-state (for read) are identical 
to the minimum mode timing. Also, since the address 
valid delay (TCLAV) remains the critical path in establish­
ing a valid address, the address access times to valid data 
and ready are the same as the minimum mode system. 

Maximum Mode Read Cycle Timing 

The maximum mode system offers read signals generated 
by both the 8086 and the 8288. The 8086 RD* output 
signal timing is identical to the minimum mode system. 
Since the A.C. characteristics of the read commands gen­
erated by the 8288 are significantly better than the 8086 
output, access to devices on the demultiplexed buffered 
system bus should use the 8288 commands. The 8086 
RD* signal is available for devices which reside directly 
on the multiplexed bus. The following evaluations for 
read, write and interrupt acknowledge only consider the 
8288 command timing. 

The 8288 provides separate memory and 1/0 read signals 
which conform to the same A.C. characteristics. The 
commands are issued TCLML ns after the start of T2 and 
terminate TCLMH ns after the start of T4. The minimum 
command length is 2TCLCL - TCLMLmax + 
TCLMLmin = 375 ns. The access time to valid data at the 
CPU is 2TCLCL - TCLMLmax - TDVCLmax = 335 ns. 
Since the 8288 was designed for systems with buffered 
data busses, the commands are enabled before the CPU 
has tri-stated the multiplexed bus and should not be used 
with devices which reside directly on the multiplexed bus 
(to do so could result in bus contention during 8086 bus 
float and device tum-on). 

The direction control for data bus transceivers is estab­
lished in TI while the transceivers are not enabled by 
DEN until the positive clock transition of T2. This pro­
vides TCLCH + TCVNVmin = 123 ns for 8086 bus float 
delay and TCHCLmin + TCLCL - TCVNVmax - TDV­
CLmax = 187 ns of transceiver active to data valid at the 
CPU. since both DEN and command are valid a minimum 
of 10 ns into T4, the CPU data hold time TCLDX is guar­
anteed. A maximum DEN disable of 45 ns (TCVNXmax) 
guarantees the transceivers are disabled by the start of the 
next 8086 bus cycle (215 ns minimum from the same 
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clock edge). On the positive clock transition of T4, 
DT/R * is returned to transmit in preparation for a possi­
ble write operation on the next bus cycle. Since the sys­
tem memory and.IlO devices reside on a buffered system 
bus, they must tri-state their outputs before the device for 
the next bus cycle is selected (approximately 2TCLCL) or 
the transceivers drive write data onto the bus (approxi­
mately 2TCLCL). 

Maximum Mode Write Cycle Timing 

In the maximum mode, the 8288 provides normal and ad­
vanced write commands for memory and I/O. The ad­
vanced write commands are active a full clock cycle ahead 
of the normal write commands and have timing identical 
to the read commands. The advanced write pulse width is 
2TCLCL- TCLMLmax + TCLMHmin = 375 ns while 
the normal write pulse width is TCLCL - TCLMLmax + 
TCLMHmin = 175 ns. Write data setup time to the se­
lected device is a function of either the data valid delay 
from the 8086 (TCLDV) or the transceiver enable delay 
TCVNY. The worst case delay to valid write data is 
TCLDV = 110 ns minus transceiver propagation delays. 
This implies the data may not be valid until lOOns after 
the advanced write command but will be valid approxi­
mately TCLCL-TCLDVmax+ TCLMLmin 100 ns 
prior to the leading edge of the normal write command. 
Data will be valid 2TCLCL-TCLDVmax + 
TCLMHmin = 300 ns before the trailing edge of either 
write command. The data and command overlap for the 
advanced command is 300 ns while the overlap with the 
normal write command is 175 ns. The transceivers are 
disabled a minimum of TCLCHmin - TCLMHmax + 
TCVNXmin = 85 ns after the write command while the 
CPU provides valid data a minimum of TCLCHmin - T­
CLMHmax + TCHDZmin = 85 ns. This guarantees 
write data hold of 85 ns after the write command. The 
transceivers are disabled TCLCL - TCVNXmax + TCH­
DTLmin = 155 ns (assuming TCHDTL = 0) prior to 
transceiver direction change for a subsequent read cycle. 

Maximum Mode Interrupt Acknowledge Timing 

The maximum mode INTA * sequence is logically identi­
cal to the minimum mode sequence. The transceiver con­
trol (DEN and DT/R*) and INTA* command timing of 
each interrupt acknowledge cycle is identical to the read 
cycle. As in the minimum mode system, the multiplexed 
address/data bus will float from the leading edge of Tl for 
each INTA * bus cycle and not be drive by the CPU until 
after T4 of each INTA* cycle. The setup and hold times 
on the vector number for the second cycle are the same as 
data setup and hold for the read. If the device providing 
the interrupt vector number is connected to the local bus, 
TCLCL - TCLAZmax + TCLMLmin = 130 ns are avail­
able from 8086 bus float to INTA * command active. The 

selected device on the local bus must disable the system 
data bus transceivers since DEN is still generated by the 
8288. 

If the 8288 is not in the lOB (I/O Bus) mode, the 8288 
MCE/PDEN* output becomes the MCE output. This out­
put is active during each INTA * cycle and overlaps the 
ALE signal during Tl. The MCE is available for gating 
cascade addresses from a master 8259A onto three of the 
upper AD15-AD8 lines and allowing ALE to latch the 
cascade address into the address latches. The address 
lines may then be used to provide CAS and address selec­
tion to slave 8259A's located on the system bus (see Figure 
1-85). MCE is active within 15 ns of status or the start of 
Tl for each INTA * cycle. MCE should not enable the 
CAS lines onto the multiplexed bus during the first cycle 
since the CPU does not guarantee to float the bus until 80 
ns into the first INTA * cycle. The first MCE can be inhib­
ited by gating MCE with LOCK*. The 8086 LOCK* out­
put is activated during T2 of the first cycle and disabled 
during T2 of the first cycle and disabled during T2 of the 
second cycle. The overlap of LOCK* with MCE allows 
the first MCE to be masked and the second MCE to gate 
the cascade address onto the local bus. Since the 8259A 
will not provide a cascade address until the second cycle, 
no information is lost. As with ALE, MCE is guaranteed 
valid within 58 ns of the start of Tl to allow 75 ns CAS 
address setup to the trailing edge of ALE. MCE remains 
active TCHCLmin - TCHLLmax + TCLMCLmin = 52 
ns after ALE to provide data hold time to the latches. 

If the 8288 is strapped in the lOB mode, the MCE output 
becomes PDEN* and all I/O references are assumed to be 
devices on the local bus rather than the demultiplexed sys­
tem bus. Since INTA * cycles ilre considered I/O cycles, 
all interrupts are assumed to come from the local system 
and cascade addresses are not gated onto the system ad­
dress bus. Additionally, the DEN signal is not enabled 
since no I/O transfers occur on the system bus. If the local 
I/O bus is also buffered by transceivers, the PDEN* sig­
nal is used to enable those transceivers. PDEN* A.C. 
characteristics are identical to DEN with PDEN* enabled 
for I/O references and DEN enabled for instruction or 
memory data references. 

Maximum Mode Ready Timing 

Ready timing based on address valid timing is the same 
for maximum and minimum mode systems. The delay 
from 8288 command valid· to RDY valid ;It the 8284 is 
TCLCL - TCLMLmax - TRlVCLmin = 130 ns. This 
time is available for external circuits to determine the 
need to insert wait states and disable ROY or enable RDY 
to avoid wait states. INTA*, all read commands and ad­
vanced write commands provide this timing. The normal 
write command is not valid until after the RDY signal 
must be valid. Since both normal and advanced write 
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Figure 1-85 Max Mode 8086 with Master 8259A on the Local Bus and Slave 8259A's on the System Bus 

commands are generated by the 8288 for all write cycles, 
the advanced write may be used to generate a RDY indica­
tion even though the selected device uses the normal write 
command. 

Since separate commands are provided for memory and 
110, no M/IO* signal is specifically available as in the 
minimum mode to aIlowan early 'wait state required' in­
dication for 110 devices. The S2 * status line, however is 
logically equivalent to the M/IO* signal and can be used 
for this purpose. 

Other Maximum Mode Considerations 

The RQ*/GT* timing is covered in the Bus Exchange 
Mechanisms section paragraph 1.6.2 Maximum Mode 
(RQ*/GT*) later in this chapter and will not be duplicated 
here. The only additional signals to be considered in the 
maximum mode of operation are the queue status line 
QSO and QS1. These signals are changed on the leading 
edge of each clock cycle (high to low transition) including 
idle and wait cycles (the queue status independent of bus 
activity). External logic may sample the lines on the low 
to high transition of each clock cycle. When sampled, the 
signals indicate the queue activity in the previous clock 
cycle and therefore lag the CPU's activity by one cycle. 
The TEST* input requirements are identical to those 
stated for the minimum mode. 

To inform the 8288 of HALT status when a HALT instruc­
tion is executed, the 8086 will initiate a status transition 

from passive to HALT status. The status change will 
cause the 8288 to emit an ALE pulse with an indetermi­
nate address. Since no bus cycle is initiated (no command 
is issued), the results of the address will not affect the 
CPU operation (i.e., no response such as READY is ex­
pected from the system). This external hardware to latch 
and decode all transitions in system status. 

1.4.8 Wait State Insertion 

The ready signal is used in the system to accommodate 
memory and I/O devices that cannot transfer information 
at the maximum CPU bus bandwidth. Ready is also used 
in multiprocessor systems to force the CPU to wait for 
access to the system bus or MULTmUS system bus. To 
insert a wait state in the bus cycle, the READY signal to 
the CPU must be inactivate (low) by the end of T2. To 
avoid insertion of a wait state, READY must be active 
(high) within a specified setup time prior to the positive 
transition during T3. Depending on the size and charac­
teristics of the system, ready implementation may take 
one of two approaches. 

The classical ready implementation is to have the system 
'normally not ready'. When the selected device receives 
the command (RD*IWR*/INTA*) and has had sufficient 
time to complete the command, it activates READY to the 
CPU, allowing the CPU to terminate the bus cycle. This 
implementation is characteristic of large multiprocessor, 
MULTIBUS systems or systems where propagation de-
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lays, bus access delays and device characteristics inher­
ently slow down the system. for maximum system 
performance, devices that can run with no wait states 
must return 'READY' within the previously described 
limit. Failure to respond in time will only result in the 
insertion of one or more wait cycles. 

An alternate technique is to have the system 'normally 
ready'. All devices are assumed to operate at the maxi­
mum CPU bus bandwidth. Devices that do not meet the 
requirement must disable READY by the end of T2 to 
guarantee the insertion of wait cycles. This implementa­
tion is typically applied to small single CPU systems and 
reduces the logic required to control the ready signal. 
Since the failure of a device requiring wait states to dis­
able READY by the end of T2 will result in premature 
termination of the bus cycle, the system timing must be 
carefully analyzed when using this approach. 

The 8086 has two different timing requirements on 
READY depending on the system implementation. for a 
'normally ready' system to insert a wait state, the READY 
must be disabled within 8 ns (TRYLCL) after the end of 
T2 (start of T3) (see Figure 1-86). To guarantee proper 
operation of the 8086, the READY input must not change 
from ready to not ready during the clock low time of T3. 
For a 'normally not ready' system to avoid wait states, 
READY must be active within 119 ns (TRYHCH) of the 
positive clock transition during T3 (see Figure 1-87). For 

both cases, READY must satisfy a hold time of 30 ns 
(TCHRYX) from the T3 or TW positive clock transition. 

To generate a stable READY signal which satisfies the 
previous setup and hold times, the 8284 provides two sep­
arate system ready inputs (RDY1, RDY2) and a single 
synchronized ready output (READY) for the CPU. The 
RDY inputs are qualified with separate access enables 
(AEN1*, AEN2*, low active) to allow selecting one of 
the two ready signals (see Figure 1-88). The gated signals 
are logically OR'ed and sampled at the beginning of each 
CLK cycle to generate READY to the CPU (see Figure 

.7 X. ClK 8 18 
ClK a RESET .0 21 
RESET 

YE---1! X. 
READY 

5 22 
READY 

+5 

~ Fie 
8284 8088 

11 RES 

~ AENI 

~ ~ RDYI 

~ AEN2 
...! RDY2 

Figure 1·88 Ready Inputs to the 8284 
and Output to the 8086/88 
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1-89). The sampled READY signal is valid within 8 ns 
(TRYLCL) after CLK to satisfy the CPU timing require­
ments on 'not ready' and ready. Since READY cannot 
change until the next CLK, the hold time requirements 
are also satisfied. The system ready inputs to the 8284 
(RDY1, RDY2) must be valid 35 ns (TRIVCL) before T3 
and AEN* must be valid 60 ns before T3. For a system 
using only one RDY input, the associated AEN* is tied to 
ground while the other AEN* is connected to 5 volts 
through approximately lK ohms (see Figure 1-90). If the 
system generates a low active ready signal, it can be con­
nected to the 8284 AEN* input if the additional setup time 
required by the 8284 AEN* input is satisfied. In this case, 
the associated RDY input would be tied high (see Figure 
1-91). 

1.4.9 8086/8088 Instruction Sequence 

Figure 1-92 illustrates the internal operation and bus ac­
tivity that occur as an 8086 CPU executes a sequence of 
instructions. This figure presents the signals and timing 
relationships that help illustrate 8086 operation. The fol­
lowing discussion interprets the figure. 

Figure 1-92 shows the repeated execution of an instruc­
tion loop. This loop is defined in both machine code and 
assembly language by Figure 1-93. The loop demon­
strates both the effects of a program jump on the queue 
and makes the instruction sequence easy to follow. The 
program sequence consists of seven instructions and 16 
bytes, and is typical of the tight loops found in many ap­
plication programs. This particular sequence contains 
several sort, fast-executing instructions that demonstrate 
both the effect of the queue on CPU performance and the 
interaction between the execution unit (EU) fetching code 
from the queue and the bus interface unit (BIU) filling the 
queue and performing the requested bus cycles. For the 
purpose of this discussion, code, stack, and memory data 
references are aligned on even word boundaries. The en­
tire sequence of instructions has taken 55 clock cycles. 
Eighteen opcode bytes were fetched, one word memory 
read occurred, and one word stack write was performed. 

Consider that the loop starts in clock cycle 1 with the 
queue reinitialization that occurs as part of the JMP in­
struction. The EU completes JMP instruction execution. 
While the BIU performs an opcode fetch to begin refilling 
the queue. 

In clock cycle 8, the queue status lines indicate that the 
first byte of the MOV immediate instruction has been re­
moved from the queue (one clock cycle after it was placed 
there by the BIU fetch) and that execution of this instruc­
tion has begun. The second byte of this instruction is 
taken from the queue in clock cycle 10 and then, during 
clock cycle 12, the EU pauses to wait one clock cycle for 
the second BIU opcode fetch to complete and for the third 

byte of the MOV immediate instruction to be come availa­
ble for execution (recall that the queue status lines indi­
cate queue activity that has occurred in the previous 
clock). 

Clock cycle 13 begins the execution of the PUSH AX 
instruction, and during clock cycle 15, the BIU begins the 
fourth opcode fetch. The BIU finishes the fourth fetch in 
clock cycle 18 and prepares for another fetch when it re­
ceives a request from the EU for a memory write (the 
stack push). Instead of completing the opcode fetch and 
forcing the EU to wait for additional clock cycles, the BIU 
immediately aborts the fetch cycle (resulting in two idle 
clock cycles, TI, in clock cycles 19 and 20) and performs 
the required memory write. This interaction between the 
EU and BIU results in a single clock extension to the exe­
cution time of the PUSH AX instruction, the maximum 
delay that can occur in response to an EU bus cycle re­
quest. 

Execution continues during clock cycle 24 with the exe­
cution of sequential register-to-register MOV instruc­
tions. The first of these instructions takes full advantage 
of the pre fetched opcode to complete this operation in two 
clock cycles. The second MOV instruction, however, de­
pletes the queue and requires two additional clock cycles 
(28 and 29). 

During clock cycle 30, the ADD memory indirect to AX 
instruction begins. In the time required tv execute this 
instruction, the BIU completes two opcode fetch cycles 
and a memory read, then begins a fourth opcode fetch 
cycle. Note that in the case of the memory read, the EU's 
request for a bus cycle occurs at a point in the BIU fetch 
cycle where it can be incorporated directly (idle states are 
not required and no EU delay is imposed). 

During clock cycle 44, the EU begins the ADD immedi­
ate instruction, taking four bytes from the queue and com­
pleting instruction execution in four clock cycles. Also 
during this time, the BIU senses a full queue during clock 
cycle 45 and enters a series of bus idle states (five or six 
bytes constitute a full queue in the 8086; the BIU waits 
until it can fetch a full word or opcode before accessing 
the bus). 

At clock cycle 47, the BIU again begins a bus cycle se­
quence, one that becomes an "overfetch" since the EU is 
executing a JMP instruction. As part of the JMP instruc­
tion, the queue reinitialization (which began the instruc­
tion sequence) occurs. 

The example can be easily extended to incorporate wait 
states in the bus access cycles. In the case of a single wait 
state, each bus cycle would be lengthened to five clock 
cycles with a wait state (TW) inserted between every T3 
and T4 state of the bus cycle. As a first approximation, 
the instruction sequence execution time would appear to 
be lengthened by 10 clock cycles, one cycle for each use­
ful read or write bus cycle that occurs. Actually, this ap-
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proximation for the number of wait states inserted is 
incorrect since the queue can compensate for wait states 
by making use of previously idle bus time. For the exam­
ple code sequence, this compensation reduced the actual 
execution time by one wait state, and the sequence was 
completed in 64 clock cycles, one less than the approxi­
mated 65 clock cycles. 

This example is, deliberately, partially bus limited and in­
dicates the types of EU and BIU interaction that can occur 
in this type of situation. Most application code sequences, 
however, use a high proportion of more complex, 
longer-executing instructions and addressing modes, and 

SYSTEM 
READY 

+5 

8284 
RDYl 

AeN2 
RDY2 

Figure 1·90 Using RDY1/RDY2 to 
Generate Ready 

SYSTE~ ----.! RIi1 8284 

~~RDYl 
~AEN2 

K r- RDY2 

lKJ. 

+5 -= 

Figure 1·91 Using AEN1*/AEN2* 
to Generate Ready 

therefore tend to be execution limited. In this case, less 
BIU-EU interaction is required, the queue more often is 
full, and more idle states occur on the bus. 

1.5 BUS EXCHANGE MECHANISMS 

The 8086 supports protocols for transferring control of 
the local bus between itself and other devices capable of 
acting as bus masters. The minimum mode configuration 
offers a signal level handshake similar to the 8080 and 
8085 systems. The maximum mode provides an enhanced 
pulse sequence protocol designed to optimize utilization 
of CPU pins while extending the system configurations to 
two prioritized levels of alternate bus masters. These pro­
tocols are simply techniques for arbitration of control of 
the CPU's local bus and should not be confused with the 
need for arbitration of the system bus. 

1.5.1 Minimum Mode (HOLD/HLDA) 

The minimum mode 8086 system uses a hold request in­
put (HOLD) to the CPU and a hold acknowledge (HLDA) 
output from the CPU. To gain control of the bus, a device 
must assert HOLD to the CPU and wait for the HLDA 
before driving the bus. When the 8086 can relinquish the 
bus, it floats the RD*, WR *, INTA * and M/IO* com­
mand lines, the DEN* and DT/R* bus control lines and 
the multiplexed address/data/status lines. The ALE signal 
is not tri-stated. The CPU acknowledges the request with 
HLDA to allow the requestor to take control of the bus. 
The requestor must maintain the HOLD request active un­
til it no longer requires the bus. The HOLD request to the 
8086 directly affects the execution unit. The CPU will 
continue to execute from its internal queue until either 
more instructions are needed or an operand transfer is 
required. This allows a high degree of overlap between 
CPU and auxiliary bus master operation. When the re-
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Figure 1·92 Representative Instruction Execution Sequence 

questor drops the HOLD signal, the 8086 will respond by 
dropping HLDA. The CPU will not re-drive the bus, 
command and control signals from tri-state until it needs 
to perform a bus transfer. Since the 8086 may still be 
executing from its internal queue when HOLD device is 
driving the bus. To prevent the command lines from drift­
ing below the minimum VIH level during the transition of 
bus control, 22K ohm pull up resistors should be con­
nected to the bus command lines. The timing diagram in 
Figure 1-94 shows the handshake sequence and 8086 tim-

ASSEMBLY LANGUAGE MACHINE CODE 

MOV AX, OF802H 
PUSH AX 
MOVCX, BX 
MOVDX,CX 
ADD AX, [SI] 
ADD SI, 8086H 
JMP$ -14 

B802F8 
50 
8BCB 
8BD1 
0304 
81C68680 
EBFO 

Figure 1·93 Instruction Loop Sequence 

1-111 

ing to sample HOLD, float the bus, and enable/disable 
HLDA relative to the CPU clock. 

To guarantee valid system operation, the designer must 
assure that the requesting device does not assert control of 
the bus prior to the 8086 relinquishing control and that the 
device relinquishes control of the bus prior to the 8086 
driving the bus. The HOLD request into the 8086 must be 
stable THVCH ns prior to the CPU's low to high clock 
transition. Since this input is not synchronized by the 
CPU, signals driving the HOLD input should be synchro­
nized with the CPU clock to guarantee the setup time is 
not violated. Either clock edge may be used. The maxi­
mum delay between HLDA and the 8086 floating the bus 
is TCLAZmax - TCLHAVmin - 70 ns. If the system can­
not tolerate the 70 ns overlap, HLDA active from the 8086 
should be delayed to the device. The minimum delay for 
the CPU to drive the control bus from HOLD inactive is 
THVCHmin + 3TCLCL = 635 ns and THVCHmin + 
3TCLCL+ TCHCL= 701 ns to drive the multiplexed 
bus. If the device does not satisfy these requirements, 
HOLD inactive to the 8086 should be delayed. The delay 
from HLDA inactive to driving the busses is TCLCL + 
TCLCHmin-TCHAVmax= 158 ns for the control bus 
and 2TCLCL - TCLHAVmax = 240 ns for the data bus. 
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LATENCY OF HLDA TO HOLD 

The decision to respond to a HOLD request is made in the 
bus interface unit. The major factors that influence the 
decision are the current bus activity, the state of the 
LOCK* signal internal to the CPU (d by the software 
LOCK prefix) and interrupts. 

If the LOCK* is not active, an interrupt acknowledge cy­
cle is not in progress and the Bus Interface Unit (BIU) is 
executing a T4 or T1 when the HOLD request is received, 
the minimum latency to HLDA is: 

35 ns 
65 ns 
200ns 
IOns 

310 ns 

THVCH min (Hold setup) 
TCHCLmin 
TCLCL (bus float delay) 
TCLHAV min (HLDA delay) 

@5MHz 

The maximum delay under these conditions is: 

34 ns 
200 ns 
82 ns 
200 ns 
160 ns 
677 ns 

(just missed setup time) 
delay to next sample 
TCHCLmax 
TCLCL (bus float delay) 
TCLHAV max (HLDA delay) 
@5MHz 

If the BIU just initiated a bus cycle when the HOLD re­
quest was received, the worst case response time is: 

34 ns 
82 ns 
7*200 
N*200 
160 ns 

THVCH (just missed) 
TCHCLmax 
bus cycle execution 
N wait stateslbus cycle 
TCLHAV max (HLDA delay) 

1.676 microseconds @ 5 MHz, no wait states 

Note, the 200 ns delay for just missing is included in the 
delay for bus cycle execution. If the operand transfer is a 
word transfer to an odd byte boundary, two bus cycles are 
executed to perform the transfer. The BIU will not ac­
knowledge a HOLD request between the two bus cycles. 
This type of transfer would extend the above maximum 

latency by four additional clocks plus N additional wait 
states. With no wait states in the bus cycle, the maximum 
would be 2.476 microseconds. 

Although the minimum mode 8086 does not have a hard­
ware LOCK* output, the software LOCK prefix may still 
be included in the instruction stream. The CPU internally 
reacts to the LOCK prefix as would the maximum mode 
8086. Therefore, the LOCK does not allow a HOLD re­
quest to be honored until completion of the instruction 
following the prefix. This allows an instruction which 
performs more than one memory reference (example 
ADD [BXJ, CX; which adds CX to [BX]) to execute with­
out another bus master gaining control of the bus between 
memory references. Since the LOCK signal is active for 
once clock longer than the instruction execution, the max­
imumlatency to HLDA is: 

34 ns 
200ns 
82 ns 
(M+ 1)*200 
200 ns 
160 ns 

THVC (just missed) 
delay to next sample 
TCHCLmax 
ns LOCK instruction execution 
set up HLDA (internal) 
TCLHAV max (HLDA delay) 

(M*200 ns) + 876 ns @ 5MHz 

If the HOLD request is made at the beginning of an inter­
rupt acknowledge sequence, the maximum latency to 
HLDA is: 

34 ns 
82 ns 
2600ns 
160 ns 

THVCH (just missed) 
TCHCLmax 
13 clock cycles for INTA 
TCLHAVmax 

2.876 microseconds @ 5 MHz 

MINIMUM MODE DMA CONFIGURATION 

A typical use of the HOLD/HLDA signals in the mini­
mum mode 8086 system is bus control exchange with 
DMA devices like the Intel 8257-5 or 8237 DMA control-
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lers. Figure 1-95 illustrates a general interconnect for this 
type of configuration using the 8237-2. The DMA con­
troller resides on the upper half of the 8086 's local bus 
and shares the A8-A15 demultiplexing address latch of 
the 8086. All registers in the 8237-2 must be assigned odd 
addresses to allow initialization and interrogation by the 
CPU over the upper half of the data bus. The 8086 
RD*/WR* commands must be demultiplexed to provide 
separate 110 and memory commands which are compati­
ble with the 8237-2 commands. The AEN control from 
the 8237-2 must disable the 8086 commands from the 
command bus, disable the address latches from the lower 
(AO-A7) and upper (AI9-AI6) address bus and select the 
8237-2 address strobe (ADSTB) to the A8-A15 address 
latch. If the data bus is buffered, a pull-up resistor on the 
DEN line will keep the buffers disabled. The DMA con­
troller will only transfer bytes between memory and 1/0 
and requires the 110 devices to reside on an 8-bit bus de­
rived from the 16-bit to 8-bit bus multiplex circuit given 
in Section 4. Address lines A7-AO are drive directly by 
the 8237 and BHE* is generated by inverting AO. If 
A19-A16 are used, they must be provided by an addi­
tional port with either a fixed value or initialized by soft­
ware and enabled onto the address bus by AEN. 

Figure 1-96 gives an interconnection for placing the 8257 
on the system bus. By using a separate latch to hold the 
upper address from the 8257-5 and connecting the outputs 
to the address bus as shown, 16-bit DMA transfers are 
provided. In this configuration, AEN simultaneously en­
ables AO and BHE* to allow word transfers. AEN still 
disables the CPU interface to the command and address 
busses. 

RO*/GT* TO HOLD/HLDA CONVERSION 

Consider a circuit for translating a HOLD/HLDA hand­
shake sequence into a RQ*/OT* pulse sequence (see Fig­
ures 1-97 and 1-98). After receiving the grant pulse, the 
HLDA is enabled TCHCLmin ns before the CPU has 
tri-stated the bus. If the requesting circuit drives the bus 
within 20 ns of HLDA, it may be desirable to delay the 
acknowledge one clock period. The HLDA is dropped not 
later than one clock period after HOLD is disabled. The 
HLDA also drops at the beginning of the release pulse to 
provide 2TCLCL + TCLCH for the requestor to relin­
quish control of the status lines and 3TCLCL to float the 
remaining signals. 

1.5.2 Maximum Mode (RQ*/GT*) 

The maximum mode 8086 configuration supports a sig­
nificantly different protocol for transferring bus control. 
When viewed with respect to the HOLD/HLDA sequence 
of the minimum mode, the protocol appears difficult to 
implement externally. However, it is necessary to under­
stand the intent of the protocol and its purpose within the 
system architecture. 

The maximum mode RQ*/OT* sequence is intended to 
transfer control of the CPU local bus between the CPU 
and alternate bus masters which reside totally on the local 
bus and share the complete CPU interface to the system 
bus. The complete interface includes the address latches, 
data transceivers, 8288 bus controller and 8289 
multi-master bus arbiter. If the alternate bus masters in the 
system do not reside directly on the 8086 local bus, sys­
tem bus arbitration is required rather than local CPU bus 
arbitration. To satisfy the need for multi-master system 
bus arbitration at each CPU's system interface, the 8289 
bus arbiter should be used rather than the CPU RQ*/OT* 
logic. 

RO*/GT* USAGE 

The RQ*/OT* protocol was developed to allow up to two 
instruction set extension processor (co-processors) or 
other special function processors (like the 8089 110 proc­
essor in local mode) to reside directly on the 8086 local 
bus. Each RQ* IOT* pin of the 8086 supports the full pro­
tocol for exchange of bus control. The sequence consists 
of a request from the alternate bus master to gain control 
of the system bus, a grant from the CPU to indicate the 
bus has been relinquished and a release pulse from the 
alternate master when done. The two RQ*/OT* pins 
(RQ*/OTO* and RQ*/OTI *) are prioritized with 
RQ*/OTO* having the highest priority. The prioritization 
only occurs if requests have been received on both pins 
before a response has been given to either. For example, 
if a request is received on RQ* lOTI * followed by a re­
quest on RQ*/OTO* prior to a grant on RQ*/OTI *, 
RQ* IOTO* will gain priority over RQ* lOTI *. However, 
if RQ*/OTI * had already received a grant, a request on 
RQ* IOTO* must wait until a release pulse is received on 
RQ*/OTl*. 

The requestl grant sequence interaction with the bus inter­
face unit is similar to HOLD/HLDA. The CPU continues 
to execute until a bus transfer for additional instructions 
or data is required. If the release pulse is received before 
the CPU needs the bus, it will not drive the bus until a 
transfer is required. 

Upon receipt of a request pulse, the 8086 floats the multi­
plexed address, data and status bus, the SO*, S 1 * , and S2 * 
status lines, the LOCK* pin and RD*. This action does 
not disable the 8288 command outputs from driving the 
command bus and does not disable the address latches 
from driving the address bus. The 8288 contains internal 
pull-up resistors on the SO*, SI*, and S2* status lines to 
maintain the passive state while the 8086 outputs are 
tri-state. The passive state prevents the 8288 from initiat­
ing any commands or activating DEN to enable the trans­
ceivers buffering the data bus. If the device issuing the 
RQ* does not use the 8288, it must disable the 8288 com­
mand outputs by disabling the 8288 AEN* input. Also, 
address latches not used by the requesting device must be 
disabled. 
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RQ*/GT* OPERATION 

To request a transfer of bus control via the RQ*/GT* lines 
(see Figure 1-99), the device must drive the line low for 
no more than one CPU clock interval to generate a request 
pulse. The pulse must be synchronized with the CPU 
clock to guarantee the appropriate setup and hold times to 
the clock edge which samples the RQ*/GT* lines in the 
CPU. After issuing a request pulse, the device must begin 
sampling for a grant pulse with the next low to high clock 
edge. Since the 8086 can respond with a grant pulse in the 
clock cycle immediately following the request, the 
RQ*/GT* line may not return to the positive level be­
tween the request and grant pulses. Therefore edge trig­
gered logic is not valid for capturing a grant pulse. It also 

implies the circuits which generates the request pulse 
must guarantee the request is removed in time to detect a 
grant from the CPU. After receiving the grant pulse, the 
requesting device may drive the local bus. Since the 8086 
does not float the address and data bus, LOCK* or RD* 
until the high to low clock transition following the low to 
high clock transition the requestor uses to sample for the 
grant, the requestor should wait the float delay of the 
8086 (TCLAZ) before driving the local bus. This precau­
tion prevents bus contention during the access of bus con­
trol by the requestor. 

To return control of the bus to the 8086, the alternate bus 
master relinquishes bus control and issues a release pulse 
on the same RQ*/GT* line. The 8086 may drive the 
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SO*-S2 * status lines, RD* and LOCK*, three clock cy­
cles after detecting the release pulse and the address/data 
bus TCHCLmin ns (clock high time) after the status lines. 
The alternate bus master should be tri-stated off the local 
bus and have other 8086 interface circuits (8288 and ad­
dress latches) re-enabled within the 8086 delay to regain 
control of the bus. 

RQ*/GT* LATENCY 

The RQ* to GT* latency for a single RQ*/GT* line is 
similar to the HOLD to HLDA latency. The cases given 
for the minimum mode 8086 also apply to the maximum 
mode. For each case the delay from RQ* detection by the 
CPU to GT* detection by the requestor is: (HOLD to 
HLDA delay) - (THVCH + TCHCL + TCLHAV) 

This gives a clock cycle maximum delay for an idle bus 
interface. All other cases are the minimum mode result 
minus 476 ns. If the 8086 has previously issued a grant on 
one of the RQ*/GT* lines, a request on the other 
RQ*/GT* line will not receive a grant until the first de­
vice releases the interface with a release pulse on its 
RQ*/GT* line. The delay from release on one RQ*/GT* 

line to a grant on the other is typically one clock period 
(see Figure 1-100). Occasionally the delay from a release 
on RQ*/GT* to a grant on RQ*/GT* will take two clock 
cycles and is a function of a pending request for transfer 
of control from the execution unit. The latency from re­
quest to grant when the interface is under control of a bus 
master on the other RQ*/GT* line is a function of the 
other bus master. The protocol embodies no mechanism 
for the CPU to force an alternate bus master off the bus. A 
watchdog timer should be used to prevent an errant alter­
nate bus master from 'hanging' the system. 

HOLD/HLDA INTERFACE TO MAXIMUM MODE 
SYSTEMS 

To allow a device with a simple HOLD/HLDA protocol to 
gain control of a single CPU system bus, the circuit in 
Figure 1-101 could be used. The design is effectively a 
simple bus arbiter which isolates the CPU from the sys­
tem bus when an alternate bus master issues a HOLD re­
quest. The output of the circuit, Address ENable (AEN*), 
disables the 8288 and 8284 when the 8086 indicates idle 
status (SO*. S 1 *, S2 * = 1), LOCK * is not active and a 
HOLD request is active. With AEN* inactive, the 8288 
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Figure 1-97 HOLD/HLDA-to/from-RQ*/GT* Conversion Circuit 

tri-states the command outputs and disables DEN which 
tri-states the data bus transceivers. AEN* must also 
tri-state the address latch outputs. These actions remove 
the 8086 from the system bus and allow the requesting 
device to drive the system bus. The AEN* signal to the 
8284 disables the ready input and forces a bus cycle initi­
ated by the 8086 to wait until the 8086 regains control of 

the system bus. The CPU may actively drive its local mul­
tiplexed bus during this interval. 

The requesting device will not gain control of the bus 
during an 8086 initiated bus cycle, a locked instruction or 
an interrupt acknowledge cycle. The LOCK* signal from 
the 8086 is active between INTA * cycles to guarantee the 

HL.O _________________ ..... , 

Figure 1-98 HOLD/HLDA-to/from-RQ*/GT* Conversion Timing 
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Figure 1·99 Request/Grant Sequence Timing 

CPU maintains control of the bus. Unlike the minimum 
mode 8086 HOLD response, this arbitration circuit al­
lows the requestor to gain control of the bus between con­
secutive bus cycles which transfer a word operand on an 
odd address boundary and are not locked. Depending on 
the characteristics of the requesting device, any of the 
74LS74 outputs can be used to generate a HLDA to the 
device. 

CHANNEL 0 TO 1 

CLOCK 

Upon completion of its bus operations, the alternate bus 
master must relinquish control of the system bus and drop 
the HOLD request. After AEN* goes inactive, the ad­
dress latches and data transceivers are enabled but, if a 
CPU initiated bus cycle is pending, the 8288 will not 
drive the command bus until a minimum of 105 ns or 
maximum of 275 ns later. If the system is normally not 
ready, the 8284 AEN* input may immediately be enabled 
with ready returning to the CPU when the selected device 
completes the transfer. If the system is normally ready, 

RaJGTO \--.I RELEASE 

\--.I GRANT 

CHANNEL 1 TO 0 

CLOCK 

RQJGT1 \--.I RELEASE 

\ ...... _--'/ GRANT 

OR 

\ / GRANT 

Figure 1·100 Channel Transfer Delay Timing 
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Figure 1·101 Circuit to Translate HOLD into AEN Disable for Maximum Mode 8086/88 

the 8284 AEN* input must be delayed long enough to 
provide access time equivalent to a normal bus cycle. The 
74LS74 latches in the design provide a minimum of 
TCLCHmin for the alternate device to float the system 
bus after releasing HOLD, They also provide 2TCLCL ns 
address access and 2TCLCL - TAEVCHmax ns (8288 
command enable delay) command access prior to ena­
bling 8284 ready detection. If HLDA is generated as 
shown in Figure 1-10 1, TCLCL ns are available for the 
8086 to release the bus prior to issuing HLDA while 
HLDA is dropped almost immediately upon loss of 
HOLD. 

A circuit configuration for an 8257-5 using the technique 
to interface with a maximum mode 8086 can be derived 
from Figure 1-96. The 8257-5 has its own address latch 
for buffering the address lines A15-A8 and uses its AEN* 
output to enable the latch onto the address bus. The maxi­
mum latency from HOLD to HLDA for this circuit is de­
pendent on the state of the system when the HOLD is 
issued. For an idle system the maximum delay is propaga­
tion delay through the NAND gate and RIS flip-flop 
(TDl) plus 2TCLCL plus TCLCHmax plus propagation 
delay of the 74LS74 and 74LS02 (TD2) , For a locked 
instruction it becomes: TDI + TD2 + (M + 2) 
*TCLCL + TCLCHmax where M is the number of clocks 
required for execution of the locked instruction. For the 
interrupt acknowledge cycle the latency is TDI + TD2 + 
9 *TCLCL + TCLCHmax. 

1.6 RESET 

The 8086/8088 RESET line provides an orderly way to 
start or restart an iAPX 8086/8088 system. When the 
processor detects the positive-going edge of a pulse on 
RESET, it terminates all activities until he signal goes 
LOW, at which time the internal CPU registers are initial­
ized to the reset condition (see Figure 1-102), 

Upon RESET, the code segment register and the instruc­
tion pointer are initialized to FFFFH and 0 respectively, 
Therefore, the 8086 executes its first instruction follow­
ing system reset from absolute memory location FF­
FFOH. This location normally contains an intersegment 
direct IMP instruction whose target is the actual begin­
ning of the system program. 

As external (maskable) interrupts are disabled by system 
reset, the system software should re-enable interrupts as 
soon as the system is initialized, 

The 8086/8088 requires a high active reset with minimum 
pulse width of four CPU clocks except after power on 
which requires a 50 microsecond reset pulse. Since the 
CPU internally synchronizes reset with the clock, the re­
set is internally active for up to one clock period after the 
external reset. Non-Maskable Interrupts (NMI) or hold 
requests on RQ*/GT* which occur during the internal re­
set, are not acknowledged. A minimum mode hold re­
quest or maximum mode RQ* pulses active immediately 
after the internal reset will be honored before the first 
instruction fetch. 

1.6.1 Reset Bus Conditioning 

From reset, the 8086/8088 will condition the bus (refer to 
Table 1-40). The multiplexed bus will tri-state upon detec­
tion of reset by the CPU. Other signals which tri-state will 
be driven to the inactive state for one clock low interval 
prior to entering tri-state (see Figure 1-102). In the mini­
mum mode, ALE and HLDA are drive inactive and are 
not tri-stated. In the maximum mode, RQ*/GT* lines are 
held inactive and the queue status indicates no activity. 
The queue status will not indicate a reset of the queue so 
any user defined external circuits monitoring the queue 
should also be reset by the system reset. 22K ohm pull-up 
resistors should be connected to the CPU command and 
bus control lines to guarantee the inactive state of these 
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Figure 1-102 8086/88 Bus Conditioning on Reset Timing Diagram 

Table 1-40 Condition of 8086/88 Bus and 
Output Signal Pins during Reset 

Signals Condition 

AD15.() Three-State 
A 19.1e1S6-3 Three-State 
BHEISL Three-State 
S2/(M/IO) Driven to "1" then three·state 
SlI(DT/R) Driven to "1" then three-state 
SOlD EN Driven to "1" then three-state 
LOCKlWR Driven to "1" then three·state 
RD Driven to "1" then three·state 
INTA Driven to "1" then three-state 
ALE 0 
HLDA 0 
RQ/GTO 1 
RQ/GT1 1 
QSO 0 
QS1 0 

Table 1-41 8288 Outputs During Passive Modes 

ALE 
DEN 
DTiFi 
MCElPiSEN 
COMMANDS 

o 
o 
1 

0/1 
1 

lines in systems where leakage currents or bus capaci­
tance may cause the voltage levels to settle below the min­
imum high voltage of devices in the system. In maximum 
mode systems, the 8288 contains internal pull-ups on the 
SO*-S2 * inputs to maintain the inactive state for these 
lines when the CPU floats the bus. The high state of the 
status lines during reset causes the 8288 to treat the reset 
sequence as a passive state (refer to Table 1-41). If the 
reset occurs during a bus cycle, the return of the status 
lines to the passive state will terminate the bus cycle and 
return the command lines to the inactive state. 

NOTE 
The 8288 does not tri-state the command out­
puts based on the passive state of the status 
lines. 

If the CPU needs to be tri-stated off the bus during reset in 
a single CPU system, connect the reset signal to the 
8288's AEN* input and output enable of the address 
latches (see Figure 1-103). This connection forces the 
command and address bus interface to tri-state while the 
inactive state of DEN from the 8288 tri-states the trans­
ceivers on the data bus. 

1.6.2 Multiple Processor Considerations 

For multiple processor systems using arbitration of a 
multi-master bus, the system reset should be connected to 
the INIT* input of the 8289 bus arbiter in addition to the 
8284 reset input (see Figure 1-104). The low active INIT* 
input forces all 8289 outputs to their inactive state. The 
inactive state of the 8289 AEN* output will force the 8288 
to tri-state the command outputs and the address latches to 
tri-state the address bus interface. DEN inactive from the 

8088 

Figure 1-103 Reset Disable for Max Mode 
8086/8088 Bus Interface 
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Figure 1-104 Reset Disable for Max Mode 
8086188 Bus Interface in 
Multi CPU System 

8288 will tri-state the data bus interface. For the 
multi-master CPU configuration, the reset should be com­
mon to all CPU's (8289's and 8284's) and satisfy the max­
imum of either the CPU reset requirements or 3 TBLBL 
(38289 bus clock times) + 3 TCLCL (3 8086 clock cycle 
times) to satisfy 8289 reset requirements. If the 8288 
command outputs are tri-stated during reset, the com­
mand lines should be pulled up to Vee through 2.2K ohm 
resistors. 

1.7 INTERRUPTS 

CPU interrupts can be software or hardware initiated. 
Software interrupts originate directly from program exec 
cution (i.e., execution of a breakpointed instruction) or 
indirectly through program logic (i.e., attempting to di­
vide by zero). Hardware interrupts originate from exter­
nal logic and are classified as either non-maskable or 
rnaskable. All interrupts, whether software or hardware 
initiated, result in the transfer of control to a new program 
location. A 256-entry vector table (see Figure 1-105), 
which contains address pointers to the interrupt routines, 
resides in absolute locations 0 through 3FFH. Each entry 
in this table consists of two 16-bit address values (four 
bytes) that are loaded into the code segment (CS) and the 
instruction pointer (IP) registers as the interrupt routine 
address when an interrupt is accepted. 

The first five interrupt vectors (see Figure 1-105) are as­
sociated with the software-initiated interrupts and the 
hardware non-maskable interrupt (NMI). The next 27 in­
terrupt vectors are reserved by Intel and should not be 
used to ensure compatibility with future Intel products. 
The remaining interrupt vectors (vectors 32 through 255) 
are available for user interrupt routines. 

Memory Table Vector 
Address..-___ .:;En;.::t'Y.:...-__ --. Oeflnilion 

I } Vector 25510} 

3FE 

3FC 

82 

80 

7E 

7C 

16 

" 
12 

10 

OE 

OC 

OA 

08 

06 

04 

02 

00 

CS255 

'P255 

: User Available 

1----C- S- 3-2----i } 

:========IP=3=2 ======~ Vector 32" 

eS31 

IP31 

CS5 

IPS 

CS4 

IP4 

CS3 

IP3 

CS2 

IP2 

CS1 

IP 1 

CS Value - Vector 0 (CS 0) 

IP Value - Vector 0 (IP 0) 

I }_.""} 
I Reserved 

} Vector S 

} Vector. - Overflow 

} Vector 3 - Breakpoint 

} Vector 2 - NMI 

} Vector t - Slngle·Step 

} Vector 0 - Divide Error 

2 Bytes_! 

Figure 1-105 Interrupt Vector Table 

1.7.1 Classes of Interrupts 

The four classes of interrupts are prioritized with 
software-initiated interrupts having the highest priority 
and with maskable and single step interrupts sharing the 
lower priority (refer to iAPX 86/88,186/188 User's Man­
ual Programmer's Reference). Since the CPU disables 
maskable and single step interrupts when acknowledging 
any interrupt, if recognition of maskable interrupts or sin­
gle step operation is required as part of the interrupt rou­
tine, the routine first must set the mask bits. 

Refer to Table 1-42 for the processing times for the vari­
ous classes of interrupts. 

To determine interrupt latency (the time interval between 
the posting of the interrupt request and the execution of 
"useful" instructions within the interrupt routine), addi­
tional time must be included for the completion on an 
instruction being executed when the interrupt is posted 
(interrupts are generally processed only at instruction 
boundaries), for saving the contents of any additional reg-
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Table 1-42 Interrupt Processing Timing 

Interrupt Class Processing Time 

External Maskable Interrupt 
(INTR) 61 clocks 

Non-Maskable Interrupt (NMI) 50 clocks 

INT (with vector) 51 clocks 
INTType 3 52 clocks 
INTO 53 clocks 

Single Step 50 clocks 

isters prior to interrupt processing (interrupts automati­
cally save only CS, IP and Flags) and for any wait states 
that may be incurred during interrupt processing. 

The predefined interrupt types in the 8086 are listed be­
low and a brief description of how each is involved is 
included in this section. When. invoked, the CPU will 
transfer control to the memory location specified by the 
vector associated with the specific type. The user must 
provide the interrupt service routine and initialize the in­
terrupt vector table with the appropriate service routine 
address. The user may additionally invoke these inter­
rupts through hardware or software. If the preassigned 
function is not used in the system, the user may assign 
some other function to the associated type. However, for 
compatibility with future Intel hardware and software 
products for the 8086 family, interrupt types 0-31 should 
not be assigned as user defined interrupts. Interrupt 
classes include the following: 

Type 0 - Divide Error 
Type I - Single Step 
Type 2 - Non-Maskable Interrupt 
Type 3 - One Byte Interrupt 
Type 4 - Interrupt On Overflow 
User Defined Software Interrupt 
User Defined Hardware Interrupt 

1.7.2 Divide Error - Type 0 

Type 0 interrupts are invoked whenever a division opera­
tion is attempted during which the quotient exceeds the 
maximum value (e.g., division by zero). The interrupt is 
non-maskable and is entered as part of the execution of 
the divide instruction. If interrupts are not re-enabled by 
the divide error interrupt service routine, the service rou­
tine execution time should be included in the worst case 
divide instruction execution time (primarily when consid­
ering the longest instruction execution time and its effect 
on latency to servicing hardware interrupts). 

1-121 

1 .7.3 Single Step - Type 1 

This interrupt type occurs one instruction after the TF 
(Trap Flag) is set in the flag register. It is used to allow 
software single stepping through a sequence of code. Sin­
gle stepping is initiated by copying the flags onto the 
stack, setting the TF bit on the stack and popping the 
flags. The interrupt routine should be the single step rou­
tine itself. The interrupt sequence saves the fl"g and pro­
gram counter, then resets the TF flag to allow the single 
step routine to execute normally. To return to the routine 
under test, an interrupt return restores the IP, CS and flags 
with TF set. This allows the execution of the next instruc­
tion in the program under test before trapping back to the 
single step routine. Single Step is not masked by the IF 
(Interrupt Flag) bit in the flag register. 

1.7.4 Non-Maskable Interrupt - Type 2 

Interrupt Type 2 is the highest priority hardware interrupt 
and is non-maskable. The input is edge triggered but is 
synchronized with the CPU clock and must be active for 
two clock cycles to guarantee recognition. The interrupt 
signal may be removed prior to entry to the service rou­
tine. Since the input must make a low to high transition to 
generate an interrupt, spurious transitions on the input 
should be suppressed. If the input is normally high, the 
NMI must be two CPU clock times to guarantee trigger­
ing. This input is typically reserved for catastrophic fail­
ures like power failure or timeout of a system watchdog 
timer. 

1.7.5 One Byte Interrupt - Type 3 

A special form of the software interrupt instruction which 
requires a single byte of code space involves Type 3 inter­
rupts. It is primarily used as a breakpoint interrupt for 
software debug. With full representation within a single 
byte. the instruction can map into the smallest instruction 
for absolute resolution in setting breakpoints. This inter­
rupt is not maskable. 

1.7.6 Interrupt on Overflow - Type 4 

This non-maskable interrupt occurs if the overflow flag 
(OF) is set in the flag register and the INTO instruction is 
executed. The instruction allows trapping to an overflow 
error service routine. 

Interrupt types 0 and 2 can occur without specific action 
by the programmer (except for performing a divide for 
Type 0) while types 1. 3, and 4 require a conscious act by 
the programmer to generate these interrupt types. All but 
type 2 are invoked through software activity and are di­
rectly associated with a specific instruction. 
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1.7.7 User-Defined Software Interrupts 

The user can generate an interrupt through the software 
with a two byte interrupt instruction INT nn. The first 
byte is the INT opcode while the second byte (nn) con­
tains the top number of the interrupt to be performed. The 
INT instruction is not maskable by the interrupt enable 
flag'. This instruction can be used to transfer control to 
routines that are dynamically relocatable and whose loca­
tion in memory is not known by the calling program. This 
technique also saves the flags of the calling program on 
the stack prior to transferring control. The called proce­
dure must return control with an interrupt return (IRET) 
instruction to remove the flags from the stack and fully 
restore the state of the calling program. 

All interrupts invoked through software (all interrupts dis­
cussed thus far with the exception of NMI) are not maska­
ble with the IF flag and initiate the transfer of control at 
the end of the instruction in which they occur. They do 
not initiate interrupt acknowledge bus cycles and will dis­
able subsequent maskable interrupts by resetting the IF 
and TF flags. The interrupt vector for these interrupt 
types is either implied or specified in the instruction. 
Since the NMI is an asynchronous event to the CPU, the 
point of recognition and initiation of the transfer of con­
trol is similar to the maskable hardware interrupts. 

1.7.8 User-Defined Hardware Interrupts 

The maskable interrupts initiated by the system hardware 
are activated through the INTA pin of the 8086 and are 
masked by the IF bit of the status register (interrupt flag). 
During the last clock cycle of each instruction, the state of 
the INTA pin is sampled. The 8086 deviates from this rule 
when the instruction is MOV or POP to a segment regis­
ter. For this case, the interrupts are not sampled until 
completion of the following instruction. This delay allows 
a 32-bit pointer to be loaded to the stack pointer registers 
SS and SP without the danger of an interrupt occurring 
between the two loads. An uninterruptable instruction se­
quence follows: 

MOV SS, NEW$STACK$SEGMENT 
MOV SP, NEW$STACK$POINTER 

Another exception includes the WAIT instruction which 
waits for a low active input on the TEST* pin. This in­
struction also continuously samples the interrupt request 
during its execution and allows servicing interrupts dur­
ing the wait. When an interrupt is detected, the WAIT 
instruction is again fetched prior to servicing the interrupt 
to guarantee the interrupt routine will return to the WAIT 
instruction. 

Also, since prefixes are considered part of the instruction 
they precede, the 8086 will not sample the interrupt line 
until completion of the instruction the prefix(es) pre­
cede(s). Other than HALT or WAIT, the string primitives 

preceded by the repeat (REP) prefix deviate from this 
rule. The repeated string operations will sample the inter­
rupt line at the completion of each repetition. This in­
cludes repeat string operations which include the lock 
prefix. If multiple prefixes precede a repeated string oper­
ation, and the instruction is interrupted, only the prefix 
immediately preceding the string primitive is restored. To 
allow correct resumption of the operation, use the follow­
ing or a similar programming technique: 

LOCKED$BLOCK$MOVE: 
LOCK REP MOVS DEST, CS:SOURCE 

ANDCX, CX 
JNZ LOCKED$BLOCK$MOVE 

The code bytes generated by the 8086 assembler for the 
MOVS instruction are (in descending order): LOCK pre­
fix, REP prefix, Segment Override prefix and MOVS. 
Upon return from the interrupt, the segment override pre­
fix is restored to guarantee that one additional transfer is 
performed between the correct memory locations. The in­
structions following the Move operation test the repetition 
count value to determine if the move was completed and 
return if not. 

If the INTR pin is high when sampled and the IF bit is set 
to enable interrupts, the 8086 executes an interrupt ac­
knowledge sequence. To guarantee the interrupt will be 
acknowledged, the INTR input must be held active until 
the interrupt acknowledge is issued by the CPU. If the 
BIU is running a bus cycle when the interrupt condition is 
detected (as would occur if the BIU is fetching an instruc­
tion when the current instruction completes), the interrupt 
must be valid at the 8086 two clock cycles prior to T4 of 
the bus cycle if the next cycle is to be an interrupt ac­
knowledge cycle. If the two clock setup is not satisfied, 
another pending bus cycle will be executed before the in­
terrupt acknowledge is issued. If a hold request is also 
pending (this might occur if an interrupt and hold request 
are made during execution of locked instruction), the in­
terrupt is serviced after the hold request is serviced. 

1.7.9 Interrupt Acknowledge 

The interrupt acknowledge sequence (see Figure 1-106) is 
only generated in response to an interrupt request (lNTR) 
on the 8086 INTR input. The CPU provides iI single 
INTR that can be software masked by clearing the inter­
rupt enable bit in the flags register through the execution 
of a CLI instruction. The INTR input is level triggered 
and synchronized internally to the positive transition of 
the CLK signal. In order to be accepted before the next 
instruction, INTR must be active during the clock period 
preceding the end ofthe current instruction (and the inter­
rupt enable bit must be set). When a maskable interrupt is 
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Figure 1-106 Interrupt Acknowledge Timing 

acknowledged, the CPU executes two interrupt acknowl­
edge (INTA *) bus cycles. The two INTA * bus cycles are 
typically separated by two idle clock cycles. 

During the bus cycles the INTA * command is issued 
rather than read. No address is provided by the 8086 dur­
ing either bus cycle (BHE * and status are valid). How­
ever, ALE is still generated and will load the address 
latches with indeterminate information. This condition re­
quires that devices in the system do not drive their outputs 
without being qualified by the Read Command. The ALE 
is useful in maximum mode systems with multiple 8259A 
priority interrupt controllers. During the INTA * bus cy­
cle, DT/R* and DEN are conditioned to allow the 8086 to 
receive a one byte interrupt type number from the inter­
rupt system. 

The first INTA * bus cycle signals an interrupt acknowl­
edge cycle is in progress and allows the system to prepare 
to present the interrupt type number on the next INTA * 
bus cycle. The CPU does not capture information on the 
bus during the first cycle. During the first bus cycle, the 
CPU floats the address/data bus and activates the INTA * 
(Interrupt Acknowledge) command output during states 
T2 and T4. 

During the second bus cycle, the CPU again activates its 
INTA * command output. In response to the second 
INTA*, the external interrupt system (e.g., an Intel 
8259 A Programmable Interrupt Controller) places a byte 
on the data bus that identifies the source of the interrupt 
(the vector number or vector "type"). This byte is read by 
the CPU and then multiplied by four and the resultant 
value used as a pointer into the interrupt vector table. Be­
fore calling the corresponding interrupt routine, the CPU 

saves the machine status by pushing the current contents 
of the flags register onto the stack. The CU then clears the 
interrupt enable and trap bits in the flags register to pre­
vent subsequent maskable and single step interrupts, and 
establishes the interrupt routine return linkage by pushing 
the current CS and IP register contents onto the stack be­
fore loading the new CS and IP register values from the 
vector table. 

In the minimum mode, the CPU will not recognize a hold 
request from another bus master until the full interrupt 
acknowledge sequence is completed. In the maximum 
mode, the CPU activates the LOCK* output from state T2 
of the first bus cycle until state T2 of the second bus cycle 
to signal all 8289 Bus Arbiters in the system that the bus 
should not be accessed by any other processor. 

The type number must be transferred to the 8086 on the 
lower half of the 16-bit data bus during the second cycle. 
This implies that devices which present interrupt type 
numbers to the 8086 must be located on the lower half of 
the 16-bit data bus. The timing of the INTA* bus cycles 
(with exception of address timing) is similar to read cycle 
timing. 

NOTE 

For readers familiar with the 8080 and the 
8085, the 8086 interrupt acknowledge se­
quence deviates from the form used on 8080 
and 8085 in that no instruction is issued as part 
of the sequence. The 8080 and 8085 required 
either a restart or call instruction be issued to 
affect the transfer of control. 
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NMI ACKNOWLEDGE 

The non-maskable interrupt (NMI) occurs as a result of a 
positive transition at the CPU's NMI input pin. This input 
is asynchronous and, in order to ensure that it is recog­
nized, is required to have a minimum duration of two 
clock cycles. NMI is typically used with power fail cir­
cuits, error correction memory or bus parity detection 
logic to allow fast response to these fault conditions. 
When NMI is activated, control is transferred to the inter­
rupt service routine pointed to by vector 2 following exe­
cution of the current instruction. When a non-maskable 
interrupt is acknowledged, the current contents of the 
flags register are pushed onto the stack (the stack pointer 
is decremented by two), the interrupt enable and trap bits 
in the flags register are cleared (disabling maskable and 
single step interrupts), and the vector CS and IP address 
pointers are loaded into the CS and IP registers as the 
interrupt service routine address. 

MINIMUM MODE SYSTEM INTERRUPT 

In the minimum mode system, the M/IO* signal will be 
low indicating 110 during the INTA * bus cycles. The 8086 
internal LOCK* signal will be active from T2 of the first 
bus cycle until T2 of the second to prevent the BIU from 
honoring a hold request between the two INTA * cycles. 

MAXIMUM MODE SYSTEM INTERRUPT 

In the maximum mode, the status lines SO*-S2 * will re­
quest the 8288 to activate the INTA * output for each cy­
cle. The LOCK* output of the 8086 will be active from 
T2 of the first cycle until T2 of the second to prevent the 
8086 from honoring a hold request on either RQ*/GT* 
input and to prevent bus arbitration logic from relinquish­
ing the bus between INTA *'s in multi-master systems. 
The consequences of READY are identical to those for 
READ and WRITE cycles. 

INTERRUPT TYPE PROCESSING 

Once the 8086 has the interrupt type number (from the 
bus for hardware interrupts, from the instruction stream 
for software interrupts or from the predefined condition), 
the type number is multiplied by four to form the dis­
placement to the corresponding interrupt vector in the in­
terrupt vector table. The four bytes of the interrupt vector 
include: 

1. Least significant byte of the instruction pointer 

2. Most significant byte of the instruction pointer. 

3. Least significant byte of the code segment register. 

4. Most significant byte of the code segment register. 

During the transfer of control, the CPU pushes the 
flags and current code segment register and instruc­
tion pointer onto the stack. The new code segment and 
instruction pointer values are loaded and the single 
step and interrupt flags are reset. Resetting the inter­
rupt flag disables response to further hardware inter­
rupts in the service routine unless the flags are 
specifically re-enabled by the service routine. The CS 
and IP values are read from the interrupt vector table 
with data read cycles. No segment registers are used 
when referring to the vector table during the interrupt 
context switch. The vector displacement is added to 
zero to form the 20-bit address and S4, S3 = 10 indi­
cating no segment register selection. 

BUS ACTIVITY DURING A HARDWARE 
INTERRUPT 

The hardware interrupt acknowledge sequence bus activ­
ity includes: Two interrupt acknowledge bus cycles, read 
new IP from the interrupt vector table, read new CS from 
the interrupt vector table, Push flags, Push old CS, Op­
code fetch of the first instruction of the interrupt service 
routine, and Push old IP. After saving the old IP, the BIU 
will resume normal operation of prefetching instructions 
into the queue and servicing EU requests for operands. S5 
(interrupt enable flag status) will go inactive in the second 
clock cycle following reading the new CS. 

The elapsed time from the end of the instruction during 
which the interrupt occurred to the start of interrupt rou­
tine execution consists of 61 clock cycles. For software 
generated interrupts, the sequence of bus cycles is the 
same except no interrupt acknowledge bus cycles are exe­
cuted. This reduces the delay to service routine execution 
to 51 clocks for INT nn and single step, to 52 clocks for 
INT3 and to 53 clocks for INTO. The same interrupt setup 
requirements with respect to the BIU that were stated for 
the hardware interrupts also apply to the software inter­
rupts. If wait states are inserted by either the memories or 
the device supplying the interrupt type number, the given 
clock times will increase accordingly. 

INTERRUPT PRECEDENCE 

When considering the precedence of interrupts for multi­
ple simultaneous interrupts, the apply following guide­
lines: 

1. INTR is the only maskable interrupt and if detected 
simulta neously with other interrupts, resetting of IF 
by the other interrupts will mask INTR. This causes 
INTR to be the lowest priority interrupt serviced after 
all other interrupts unless the other interrupt service 
routines re-enable interrupts. 

2. Of the non-maskable interrupts (NMI, single step and 
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software generated), in general, single step has the 
highest priority (will be serviced first) followed by 
NMI, followed by the software interrupts. 

This priority implies that a simultaneous NMI and single 
step trap will cause the NMI service routine to follow sin­
gle step; a simultaneous software trap and single step trap 
will cause the software interrupt service routine to follow 
single step and simultaneous NMI and software trap will 
cause the NMI service routine to be executed followed by 
the software interrupt service routine. An exception to 
this priority structure occurs if all three interrupts are 
pending. For this case, transfer of control to the software 
interrupt service routine followed by the NMI trap will 
cause both the NMI and software interrupt service rou­
tines to be executed without single stepping. Single step­
ping resumes upon execution of the instruction following 
the instruction causing the software interrupt (the next in­
struction in the routine being single stepped). 

If the user does not wish to single step before INTR serv­
ice routines, the single step routine need only disable in­
terrupts during execution of the program being single 
stepped and re-enable interrupts on entry to the single step 
routine. Disabling the interrupts during the program un­
der test prevents entry into the interrupt service routine 
while single step (TF = 1) is active. To prevent single 
stepping before NMI service routines, the single step rou­
tine must check the return address on the stack for the 
NMI service routines address and return control to that 
routine without single step enabled. As examples, con­
sider Figures 1-107 and 1-108. In Figure 1-107 single 
step and NMI occur simultaneously while in Figure 
1-108, NMI, INTR and a divide error all occur during a 
divide instruction being single stepped. 

1.8 SUPPORT COMPONENTS 

The following paragraphs provide descriptions of the var­
ious unique support components used in systems to sup­
port the 8086/88 CPU's. These components include the 
8284A Clock Generator/Driver, the 8288 Bus Controller, 
the 8289 Bus Arbiter, the 8259A Programmable Interrupt 
Controller and the 8237A Programmable DMA Control­
ler. These components may be used when designing both 
minimum and maximum mode applications for the 
8086/8088 Microprocessors. The following paragraphs 
present detailed design information on the various support 
circuits and describe the benefits of each. The circuit de­
signer should also refer to the Intel Microsystems Compo­
nents Handbook (No. 230843-002) for detailed data 
sheets on each of the devices. 

1.8.1 8284A Clock Generator and Driver 

The 8284A Clock GeneratorlDriver is an integral part of 
the 8086 family that Intel offers to satisfy the 8086 re­
quirement for an external clock signal. In addition to pro-

TF.IF_1 

NMI 

NORMAL SINGLE STEP 
OPERATION 

Figure 1·107 NMI During Single Stepping and 
Normal Single Step Operation 

viding the primary (system) clock signal, this device 
provides both the hardware reset interface and the mecha­
nism for the insertion of wait states in the bus cycle. An 
optimum 33 % duty cycle clock with the required voltage 
levels and transition times can be obtained with the 8284A 
clock generator (see Figure 1-109). Either an external fre­
quency source or a series resonant crystal may drive the 
8284A. 

CLOCK GENERATION 

The 8086 requires a clock signal with fast rise and fall 
times (10 ns max) between low and high voltages of-0.5 
to+0.6 low and 3.9 to VCC+ 1.0 high (see Figure 
1-110). The maximum clock frequency of the 8086 is 5 
MHz, 8 MHz for the 8086-2 and 10 MHz for the 8086-1. 
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Since the design of the 8086 incorporates dynamic cells, a 
minimum frequency of 2 MHz is required to retain the 
state of the machine. Due to the minimum frequency re­
quirement, single stepping or cycling of the CPU may not 

be accomplished by disabling the clock. In general, for 
frequencies below the maximum, the CPU clock need not 
satisfy the frequency dependent pulse width limitations 
stated in the 8086 data sheet. The values specified only 
reflect the minimum values which must be satisfied and 
are stated in terms of the maximum clock frequency. As 
the clock frequency approaches the maximum frequency 
of the CPU, the clock must conform to a 33 % duty cycle 
to satisfy the CPU minimum clock low and high time 
specifications. 

CRYSTAL CLOCK REFERENCE 

The selected clock crystal must oscillate at 3X the desired 
CPU frequency. To select the crystal inputs of the 8284A 
as the frequency source for clock generation, the F/C* 
input to the 8284A must be strapped to ground. The strap­
ping option allows selecting either the crystal or the exter­
nal frequency input as the source for clock generation. 
Fundamental mode crystals are recommended for a more 
accurate and stable frequency generation. When selecting 
a crystal for use with the 8284A, the series resistance 
should be as low as possible. Since the other circuit com­
ponents will tend to shift the operating frequency from 
resonance, the operating impedance will typically be 
higher than the specified series resistance. If the attenua­
tion of the oscillator's feedback circuit reduces the loop 
gain to less than one, the oscillator will fail. A recom­
mended crystal configuration is shown in Figure 1-11I. 

EXTERNAL FREQUENCY CLOCK REFERENCE 

If a high accuracy frequency source, externally variable 
frequency source or a common source for driving multi­
ple 8284A's is desired, the External Frequency Input 
(EPI) of the 8284A can be selected by strapping the F/C* 
input to 5 volts through approximately lK ohms (see Fig­
ure 1-112). The external frequency source should be TTL 
compatible, have a 50% duty cycle and oscillate at three 
times the desired CPU operating frequency. The maxi­
mum EFI frequency the 8284A can accept is slightly 
above 24 MHz with minimum clock low and high times of 
13 ns. Although no minimum EFI frequency is specified, 
it should not violate the CPU minimum clock rate. If a 
common frequency source is used to drive multiple 
8284A's distributed throughout the system, each 8284A 
should be drive by its own line from the source. To mini­
mize noise in the system, each line should be a twisted 
pair driven by a buffer like the 74LS04 with the ground of 
the twisted pair connecting the ground of the source and 
receiver. To minimize clock skew, the lines to all 8284A's 
should be of equal length. A simple technique for generat­
ing a master frequency source for additional 8284A's is 
shown in Figure 1-113 where an 8284A with a crystal is 
used to generate the desired frequency. The oscillator out­
put of the 8284A (OSC) equals the crystal frequency and 
is used to drive the external frequency to all other 8284A's 
in the system. 
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Figure 1-110 8086/88 Clock Waveform 

The oscillator output is inverted from the oscillator signal 
used to drive the CPU clock generator circuit. Because of 
this inversion, the oscillator output of one 8284A should 
not drive the EFI input of a second 8284A if both are 
driving clock inputs of separate CPU's that are to be syn-
chronized. The variation on EFI to CLK delay over a 

+5 
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EXTEANAl F'~ 

FREQUENCY 14 EFI 
SOUACE 

ClK 
1 \I 
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-
range of 8284A's may approach 35 to 45 ns. If, however, Figure 1-112 8284A Interfaced to an 8086/88 
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Figure 1-113 External Frequency for 
Multiple 8284's 

all 8284A's are the same package type, have the same rela­
tive supply voltage and operate in the same temperative 
environment, the variation will be reduced to between IS 
and 25 ns. 

8284A OUTPUTS 

There are three frequency outputs from the 8284A, the 
oscillator (OSC) mentioned above, the system clock 
(CLK) which drives the CPU, and a peripheral clock 
(PCLK) that runs at one half the CPU clock frequency 
(see Figure 1-114). The oscillator output is only driven by 
the crystal and is not affected by the F/C* strapping op­
tion. If a crystal is not connected to the 8284A when the 
external frequency input is used, the oscillator output is 
indeterminate. The CPU clock is derived from the se­
lected frequency source by an internal divide by three 
counter. The counter generates the 33 % duty cycle clock 
which is optimum for the CPU at maximum frequency. 
The peripheral clock has a 50 % duty cycle and is derived 
from the CPU clock. The maximum skew is 20 ns be­
tween OSC and CLK, and 22 ns between CLK and 
PCLK. 

= 

ClK 
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Figure 1-115 Synchronizing CSYNC With EFI 

Since the state of the 8284A divide by three counter is 
indeterminate at system initialization (power on), an ex­
ternal sync to the counter (CSYNC) provides synchroni­
zation of the CPU clock to an external event. When 
CSYNC is brought high, the CLK and PCLK outputs are 
forced high. When CSYNC returns low, the next positive 
clock from the frequency source starts clock generation. 
CSYNC must be active for a minimum of two periods of 
the frequency source. If CSYNC is asynchronous to the 
frequency source, use the circuit in Figure 1-115 for syn­
chronization. The two latches minimize the probability of 
a meta-stable state in the latch driving CSYNC. The 
latches are clocked with the inverse of the frequency 
source to guarantee the 8284A setup and hold time of 
CSYNC to the frequency source (see Figure 1-116). If a 
single 8284A is to be synchronized to an external event 

EFI 

CSVNC J, 
I 

--l 

I 
I 
I 
I--TYHEH 

-MAX IS SPEC'ED TO GUARANTEE MAX aoee CLOCK FREQUENCY 

Figure 1-116 CSYNC Setup and Hold to EFI 

PClK~ ~ 
Figure 1-114 Oscillator to ClK and ClK to PClK Timing Relationships 
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Figure 1·117 EFI From 8284A Oscillator 

and an external frequency source is not used, the oscilla­
tor output of the 8284A may be used to synchronize 
CSYNC (see Figure 1-117). Since the oscillator output is 
inverted from the internal oscillator signal, the inverter in 
the previous example is not required. If multiple 8284A's 
are to be synchronized, an external frequency source 
must drive all 8284A's and a single CSYNC synchroniza­
tion circuit must drive the CSYNC input of all 8284A's 
(see Figure 1-118). Since activation of CSYNC may 
cause violation of CPU minimum clock low time, it 
should only be enabled during reset or CPU clock high. 
CSYNC must also be disabled a minimum of four CPU 
clocks before the end of reset to guarantee proper CPU 
reset. 

Due to the fast transitions and high drive (5 rnA) of the 
8284A CLK output, it may be necessary to put a 10 to 100 
ohm resistor in series with the clock line to eliminate ring­
ing (resistor value depending on the amount of drive re­
quired). If multiple sources of CLK are needed with 
minimum skew, CLK can be buffered by a high drive de­
vice (74S241) with outputs tied to 5 volts through 100 
ohms to guarantee VOH = 3.9 min (8086 minimum clock 

+. 

+5 

100Q 

elK 

8284 100Q 

100Q 

Figure 1·119 Buffering the 8284 ClK Output 

input high Voltage) (see Figure 1-119). A single 8284A 
should not be used to generate the CLK for multiple 
CPU's that do not share a common local (mUltiplexed) 
bus since the 8284A synchronizes ready to the CPU and 
can only accommodate ready for single CPU. If multiple 
CPU's share a local bus, they should be driven with the 
same clock to optimize transfer of bus control. Under 
these circumstances, only one CPU will be using the bus 
for a particular bus cycle which allows sharing a common 
READY signal (see Figure 1-120). 

THE 8284A RESET FUNCTION 

The reset signal to the 8086 can be generated by the 
8284A; the 8284A has a Schmitt trigger input (RES*) for 
generating reset from a low active external reset. The hys­
teresis specified in the 8284A data sheet implies that at 
least 0.25 volts will separate the 0 and 1 switching point 
of the 8284A reset input. Inputs without hysteresis will 
switch from low to high and high to low at approximately 
the same voltage threshold. The inputs are guaranteed to 
switch at specified low and high voltages (VIL and VIH) 
but the actual switching point is anywhere in-between. 
Since VIL min is specified at 0.8 volts, the hysteresis 
guarantees that the reset will be active until the input 

MUL TIPlEX£D IUS 

Figure 1·120 8086 and Coprocessor on the 
local Bus Share 

Figure 1·118 Synchronizing Multiple 8284As a Common 8284 
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reaches at least I. 05 volts. A reset will not be recognized 
until the input drops at least 0.25 volts below the reset 
inputs VIR of2.6 volts. 

POWER UP RESET 

To guarantee reset from power up, the reset input must 
remain below 1.05 volts for 50 microseconds after Vee has 
reached the minimum supply voltage of 4.5 volts. The 
hysteresis allows the reset input to be drive by a simple 
RC circuit (see Figure 1-121). The calculated RC value 
does not include time for the power supply to reach 4.5 
volts or the charge accumulated during this interval. 
Without the hysteresis, the reset output might oscillate as 
the input voltage passes through the switching voltage of 
the input. The calculated RC value provides the minimum 
required reset period of 50 microseconds for 8284A's that 
switch at the 1.05 volt level and a reset period of approxi­
mately 162 microseconds for 8284A's that switch at the 
2.6 volt level. If tighter tolerance between the minimum 
and maximum reset times is necessary, the reset circuit 
shown in Figure 1-122 might be used rather than the sim­
ple RC circuit. This circuit provides a constant current 
source and a 1.inear charge rate on the capacitor rather 
than the inverse exponential charge rate of the RC circuit. 
This implementation generates a maximum reset period 
of 124 microseconds. 

The 8284A synchronizes the reset input with the CPU 
clock to generate the RESET signal to the CPU (see Fig­
ure 1-123). The output is also available as a general reset 
to the entire system. The reset has no effect on any clock 
circuits in the 8284A. 

1.8.2 8288 Bus Controller 

The 8288 Bus Controller (Figure 1-124) uses the S2*, 
SI * and SO* status bit outputs from the CPU (and the 
8089 lOP) to generate all bus control and command out­
put signals required for a bus cycle. The status bit outputs 
are decoded as outlined in Table 1-43. For a detailed de­
scription of the operation of the 8288 Bus Controller, re­
fer to the Microsystems Component Handbook (Intel 
Order No. 230843-002). 

The three status lines (SO*, S 1 *, S2 *) are defined to pro­
vide communications with the 8288 and 8289. The status 
lines tell the 8288 when to initiate a bus cycle, what type 
of command to issue and when to terminate the bus cycle. 
The 8288 samples the status lines at the beginning of each 
CPU clock (CLK). To initiate a bus cycle, the CPU drives 
the status lines from the passive state (SO*, S 1 *, S2 * = 1) 
to one of the seven possible command codes (see Table 
1-43). This occurs on the rising edge of the clock during 
T4 of the previous bus cycle or a TI (idle cycle, no cur­
rent bus activity). The 8288 detects the status change by 
sampling the status lines on the high to low transition of 
each clock cycle. The 8288 starts a bus cycle by generat-
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ing ALE and appropriate buffer direction control of the 
clock cycle immediately following detection of the status 
change (T 1). The bus transceivers and the selected com­
mand are enabled in the next clock cycle (T2) (or T3 for 
normal write commands). When the status returns to the 
passive state, the 8288 will terminate the command (see 
Figure 1-125). Since the CPU will not return the status to 
the passive state until the 'ready' indication is received, 
the 8288 maintains active command and bus control for 
any number of wait cycles. The status lines may also be 
used by other processors on the 8086's local bus to moni­
tor bus activity and control the 8288 if they gain control 
of the local bus. 

The 8288 provides the bus control (DEN, DT/R*, ALE) 
and commands (INTA*, MRDC*, IORC*, MWTC*, 
AMWC*, IOWC*, AIOWC*) removed from the CPU. 
The command structure has separate read and write com­
mands for memory and I/O to provide compatibility with 
the MULTIBUS command structure. 

The advanced write commands are enabled one clock per­
iod earlier than the normal write to accommodate the 
wider write pulse widths often required by peripherals 

Table 1·43 Status Line Decode Chart 

s; s, So Processor State 8288Command 

0 0 0 InterrUQI Acknowledge INTA 
0 0 1 Read I/O Port 10RC 
0 1 0 Write I/O Port 10WC,AIOWC 
0 1 1 Halt None 
1 0 0 Code Access M'RoC 
1 0 1 Read Memory MRDC 
1 1 0 Write Memory MWTC,AMWC 
1 1 1 Passive None 
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and static RAMs. The normal write provides data setup 
prior to write to accommodate dynamic RAM memories 
and I/O devices which strobe data on the leading edge of 
write. The advanced write commands do not guarantee 
that data is valid prior to the leading edge of the com­
mand. The DEN signal in the maximum mode is inverted 
from the minimum mode to extend transceiver control by 
allowing logical conjunction of DEN with other signals. 
While not appearing to be a significant benefit of interrupt 
control and various system configurations will demon­
strate the usefulness of qualifying DEN. Figure 1-126 
compares the timing of the minimum and maximum mode 
bus transfer commands. Although the maximum mode 
configuration is designed for multiprocessor environ­
ments, large single CPU designs (either MULTIBUS sys­
tems or greater than two PC boards) should also use the 
maximum mode. Since the 8288 is a bipolar dedicated 
controller device, its output drive for the commands (32 
rnA) and tolerances on A.C. characteristics (timing pa­
rameters and worse case delays) provide better large sys­
tem performance than the minimum mode 8086. 

In addition to assuming the functions removed from the 
CPU, the 8288 provides additional strapping options and 
controls to support multiprocessor configurations and pe­
ripheral devices on the CPU local bus. These capabilities 
allow assigning resources (memory or I/O) as shared 
(available on the MULTIBUS system bus) or private (ac­
cessible only by this CPU) to reduce contention for access 
to the MULTIBUS system bus and improve multi-CPU 
system performance. The following paragraphs describe 
these strapping options. 
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I/O BUS MODE 

Strapping the lOB pin HIGH puts the 8288 in the 110 Bus 
mode of operation. In the 110 Bus mode all command 
lines (lORC*, 10WC*, AIOWC*, INTA*) are always en­
abled and not dependent on AEN*. When an 110 com­
mand is issued by the processor, the 8288 immediately 
activates the command lines using PDEN* and DT/R* to 
control the 110 bus transceiver. In this configuration the 
110 command lines should not be used to control the sys­
tem bus because there is no arbitration present. In this 
mode one 8288 can handle two external busses. No wait­
ing is involved when the CPU wants to gain access to the 
1/0 bus. Normal memory access requires a "Bus Ready" 
signal (AEN* LOW) before it will proceed. The lOB 
mode of operation is especially advantageous in a 
multi-processor system where there are 110 or peripherals 
are dedicated to only one processor. 

SYSTEM BUS MODE 

When the lOB pin is strapped LOW the 8288 is in the 
System Bus Mode of operation. No commands are issued 
in this mode until 115ns after the AEN* line is activated 
(LOW). The System Bus Mode assumes arbitration logic 
will inform the bus controller (on the AEN* line) when 
the bus is free for use. Both memory and 110 commands 
wait for arbitration. This mode is used when only one bus 
exists. In this case, both 110 and memory are shared by 
more than one processor. 

1.8.3 8289 Bus Arbiter 

The 8289 Bus Arbiter (see Figure 1-127) operates in con­
junction with the 8288 Bus Controller to interface an 
8086, 8088, or 8089 processor to a multi-master system 
bus (the 8289 is used as a general bus arbitration unit). 

The processor is unaware of the arbiter's existence and 
issues commands as though it has exclusive use of the 
system bus. If the processor does not have the use of the 
multi-master system bus, the bus arbiter prevents the bus 
controller, the data transceivers and the address latches 
from accessing the system bus (i.e., all bus driver outputs 
are forced into the high impedance state). Since the com­
mand was not issued, a transfer acknowledge (XACK) 
will not be returned and the processor will enter into wait 
states. Transfer acknowledges are signals returned from 
the addressed resource to indicate to the processor that the 
transfer is complete. This signal is typically used to con­
trol the ready inputs of the clock generator. The processor 
will remain in a wait state until the bus arbiter acquires the 
use of the multi-master system bus. At that time the bus 
arbiter will allow the bus controller, the data transceivers 
and the address latches to access the system bus. The 
8089 uses the LOCK* output to guarantee exclusive ac­
cess of a shared system bus for the duration of an instruc­
tion. LOCK* is software controlled and must be preceded 
by the instruction requiring exclusive access with a one 
byte "lock" prefix. When the lock prefix is decoded by 
the EU, the EU informs the BIU to activate the LOCK* 
output during the next clock signal. This signal remains 
active until one clock cycle after the execution of the asso­
ciated data transfer is concluded. Once the command has 
been issued and a data transfer has taken place, a transfer 
acknowledge (XACK) is returned to the processor. The 
processor then completes its transfer cycle. In this way, 
the arbiter serves to multiplex a processor (or bus master) 
onto a multi-master system bus and avoid contention prob­
lems between bus masters. 

Since there can be many bus masters on a multi-master 
system bus, some means of resolving priority between bus 
masters simutaneously requesting the bus must be pro­
vided. The 8289 provides several resolving techniques. 
These techniques are based on a priority concept that at 
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any given time one bus master will have priority over the 
rest. Two of the techniques, parallel and serial priority 
resolving techniques, are discussed in the following para­
graphs. 

The parallel priority resolving technique uses a separate 
bus request line (BREQ*) for each arbiter on the 
multi-master bus system (see Figure 1-128). Each 
BREQ* line enters into a priority encoder which gener­
ates the binary address of the highest priority BREQ* line 
which is active. The binary address is decoded by a de­
coder to select the corresponding BPRN* (Bus Priority 
In) line to be returned to the highest priority requesting 
arbiter. The arbiter receiving priority (BPRN* true) then 
allows its associated bus master onto the multi-master sys­
tem bus as soon as it becomes available. When one bus 
arbiter gains priority over another arbiter it cannot imme­
diately seize the bus, it must wait until the present bus 
transaction is complete. Upon completing its transaction 
the present bus occupant recognizes that it no longer has 
priority and surrenders the bus by releasing BUSY*. 
BUSY* is an active low "OR" tied signal line which goes 
to every bus arbiter on the system bus. When BUSY* 
goes inactive (high), the arbiter which presently has bus 
priority (BPRN* true) then seizes the bus and pulls 
BUSY* low to keep other arbiters off the bus. Refer to 
Figure 1-129. Multi-master system bus transactions are 
synchronized to the bus clock (BCLK). This allows the 
parallel priority resolving circuits or any other priority 
resolving scheme to settle. 

The serial priority resolving technique eliminates the need 
for the priority encoder-decoder. arrangement by 
daisy-chaining the bus arbiters together, connecting the 
higher priority bus arbiter's BPRO* (Bus Priority Out) 
output to the BPRN* of the next lower priority. (See Fig­
ure 1-130). 

There are two types of processors in the 8086 family - -an 
I/O processor (the 8089 lOP) and a non-I/O processor 
(the 8086 and 8088 CPU's). Consequently, there are two 
basic operating modes in the 8289 Bus Arbiter. One, the 
I/O Peripheral Bus (lOB) mode, permits the processor ac­
cess to both an I/O peripheral bus and a multi-master sys­
tem bus. The second, the Resident Bus (RESB) mode, 
permits the processor to communicate over both a resi­
dent bus and a multi-master system bus. Even though.it is 
intended for the arbiter to be configured in the lOB mode 
when interfacing to an I/O processor and for it to be in the 
RESB mode when interfacing to a non-I/O processor, it is 
quite possible for the reverse to be true. That is, it is pos­
sible for a non-I/O processor to have access to an I/O 
peripheral bus or for an I/O processor to have access to a 
resident bus as well as access to a multi-master system 
bus. The lOB strapping option configures the 8289 Bus 
Arbiter into the lOB mode and RESB strapping optires it 
into the resident bus mode. If both strapping options are 
strapped false, a third mode of operation is created, the 
single bus mode, in which the arbiter interfaces. the proc­
essor to a multi-master system .bus only. See Figure 

1-131. With both options strapped true, the arbiter inter­
faces the processor to a multi-master system bus, a resi­
dent bus and an I/O bus. 

1.8.4 8259A Programmable Interrupt 
Controller 

The 8259A is a programmable interrupt controller (PIC) 
designed to accommodate the INTA * protocol of maska­
ble hardware interrupts. This component is programma­
ble to operate in both 8080/8085 systems and 8086 
systems. The 8259A manages eight levels of interrupts 
and has built-in features for expansion. The devices are 
cascadable in master/slave arrangements to allow up to 64 
interrupt levels in the system with additional 8259A's. 

Figures 1-132 and 1-133 are examples of 8259 A's in mini­
mum and maximum mode 8086 systems. The minimum 
mode configuration (a) shows an 8259A connected to the 
CPU's multiplexed bus. Configuration (b) illustrates an 
8259A connected to a demultiplexed bus system. These 
interconnects are also applicable to maximum mode sys­
tems. The configuration given for a maximum mode sys­
tem shows a master 8259A on the CPU's multiplexed bus 
witave 8259A's out on the buffered system bus. This con­
figuration demonstrates several unique features of the 
maximum mode system interface. If the master 8259A 
receives interrupts from a mix of slave 8259A's and regu­
lar idevices, the slaves must provide the type number for 
devices connected to them while the master provides the 
type number for devices directly attached to its interrupt 
inputs. The master 8259A is programmable to determine 
if an interrupt is from a direct input or a slave 8259A and 
will use this information to enable or disable the data bus 
transceivers (via the NAND function of DEN and EN*). 
If the master must provide the type number, it will disable 
the data bus transceivers. If the slave provides the type 
number, the master will enable the data bus transceivers. 
The EN* output is normally high to allow the 8086/8288 
to control the bus transceivers. To select the proper slave 
when servicing a slave interrupt, the master must provide 
a cascade address to the slave. If the 8288 is not strapped 
in the I/O bus mode (the 8288 lOB input connected to 
ground), the MCE/PDEN* output becomes a MCE or 
Master Cascade Enable output. This signal is only active 
during INTA * cycles (see Figure 1-134) and enables the 
master 8259A's cascade address onto the 8086's local bus 
during ALE. This allows the address latches to capture 
the cascade address with ALE and allows use of the dress 
bus for selecting the proper slave 8259A. The MCE is 
gated with LOCK* to minimize local bus contention be­
tween the 8086 tri-stating its bus outputs and the cascade 
address being enabled onto .the bus. The first INTA * bus 
cycle allows the master to resolve internal priorities and 
output a cascade address to be transmitted to the slaves on 
the subsequent INTA* bus cycle. 
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Figure 1-128 Resolving Technique 

The following paragraphs provide a more detailed de­
scription of interrupt vectoring, the interrupt priority 
scheme, the edge and level triggering modes and interrupt 
cascading. For additional information on the 8259A, refer 
to Intel Application Note AP-59. 

INTERRUPT VECTORING 

Each IR input of the 8259A has an individual interrupt 
vector address in memory associated with it. Designation 
of each address depends upon the initial programming of 
the 8259A. The 8259A must be programmed in the 

MCS-86/88 mode of operation to insure correct interrupt 
vectoring when used in an 8086/8088 system. 

When programmed in the MCS-86/88 mode, the 8259A 
should only be used with an MCS-86 or MCS-88 system. 
In this mode, the 8086/8088 will handle interrupts in the 
format described in the 8259A - 8086/8088 Overview. 

Upon interrupt in the MCS-86/88 mode, the 8259A will 
output a single interrupt-vector byte to the data bus. This 
is in response to only two INTA * pulses issued by the 
8086/8088 after the 8259A has raised INT high. 

I HIGHER PRIORITY 8US ARBITER REQUESTS THE MUl TI·MASTER SYSTEM BUS. 
ATTAINS PRIORITY. 

3 LOWER PRIORITY BUS ARBITER RELEASES BUSY. 

4 HIGHER PRIORITY BUS ARBITER THEN ACQUIRES THE BUS AND PULLS BUSY DOWN. 

Figure 1-129 Higher Priority Arbiter Obtaining the Bus from a Lower Priority Arbiter 
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GATION DELAY FADM ARBITER TO ARBITER. NORMALLY, AT 10 MHz ONLY 3 AR81· 
TEFl MAY BE DAISY-CHAINED. 

Figure 1·130 Serial Priority Resolving. 

The first INTA * pulse is used only for set-up purposes 
internal to the 8259A. As in the MCS-80/85 mode, this 
setup includes priority resolution and cascade mode oper­
ations which will be covered later. Unlike the MCS-80/85 
mode, no CALL opcode is placed on the data bus. 

The second INTA * pulse is used to enable the single 
interrupt-vector byte to select one of 256 interrupt 
"types" in the 8086/8088 memory. Interrupt type selec­
tion for all eight IR levels is made when initially program­
ming the 8259A. However, reference to only one interrupt 
is needed for programming. The upper 5 bits of the inter-

rupt vector byte are user definable. The lower 3 bits are 
automatically inserted by the 8259A depending on the IR 
level. 

Contents of the interrupt-vector byte for 8086/8088 type 
selection is put on the data bus during the second INTA * 
pulse and shown in Figure 1-135. 

INTERRUPT PRIORITIES 

A variety of modes and commands are available for con­
trolling the interrupt varieties of the 8259A. All of them 
are programmable, i.e., they may be changed dynami­
cally under software control. With these modes and com­
mands, many possibilities are conceivable, giving the 
user enough versatility for almost any interrupt controlled 
application. 

Fully Nested Mode 

The fully nested mode is a general purpose priority mode. 
This mode supports a multilevel-interrupt structure in 
which priority order of all eight IR inputs are arranged 
from highest to lowest. 

Unless otherwise programmed, the fully nested mode is 
entered by default upon initialization. At this time, IRO is 
assigned the highest priority through IR7 the lowest. The 
fully nested mode, however, is not confined to this IR 
structure alone. Once past initialization, other IR inputs 
can be assigned highest priority also, keeping the 
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Figure 1·131 Typical Medium Complexity CPU Circuit 
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b. 

Figure 1-132 Min Mode 8086 with Master 8259A on the Local Bus and Slave 8259A's 
on the System Bus 

multilevel-interrupt structure of the fully nested mode. 
Figure 1-136 shows some variations of the priority struc­
tures in the fully nested mode. 

In general, when an interrupt is acknowledged, the high­
est priority request is determined from the IRR (Interrupt 
Request Register). The interrupt vector is then placed on 
the data bus. In addition, the corresponding bit in the ISR 
(In-Service Register) is set to designate the routine in 
service. This ISR bit remains set until an EOI 
(End-Of-Interrupt) command is issued to the 8259A. 
EOI's will be explained in greater detail shortly. 

In the fully nested mode, while an ISR bit is set, all fur­
ther requests of the same or lower priority are inhibited 
from generating an interrupt to the microprocessor. A 

higher priority request, though, can generate an interrupt, 
thus vectoring program execution to its service routine. 
Interrupts are only acknowledged, however, if the micro­
processor has previously executed an"Enable Interrupts" 
instruction. This is because the interrupt request pin on 
the microprocessor gets disabled automatically after ac­
knowledgement of any interrupt. The assembly language 
instruction used to enable interrupts is "ST!". Interrupts 
can be disable by using the instruction "eLi". When a 
routine is completed a "return" instruction "IRET" is 
executed. 

A single 8259A is essentially always in the fully nested 
mode unless certain programming conditions disturb it. 
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Figure 1·133 Max Mode 8086 with Master 8259A on the Local Bus and Slave 8259A's 
on the System Bus 

• The special mask mode The following programming conditions can cause the 
8259A to go out of the high to low priority structure of the 
fully nested mode. • A slave with a master not in the special fully nested 

mode 
• The automatic Eor mode 

T, I T2 T3 T.. TI TI T, I T, T, 

ALEJ\ ___ ------'n'----_ 
\1....-____ ----11 

FLOAT 

Figure 1·134 MCE Timing to Gate 8259A CAS Address onto the 8086 Local Bus 
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IR 07 06 05 04 03 02 01 00 
7 T7 T6 T5 T4 T3 1 1 1 
6 T7 T6 T5 T4 T3 1 1 a 
5 T7 T6 T5 T4 T3 1 a 1 
4 T7 T6 T5 T4 T3 1 a a 
3 T7 T6 T5 T4 T3 a 1 1 
2 T7 T6 T5 14 T3 a 1 a 
1 T7 T6 T5 T4 T3 a a 1 
a T7 T6 T5 T4 T3 a a a 

Figure 1-135 Interrupt Vector Byte 

Additional details on these interrupt modes can be 
found in Intel Application Note AP-59. These modes 
are mentioned here so that the designer will be aware 
of them. As long as these program conditions are not 
enacted, the fully nested mode remains undisturbed. 

End of Interrupt (EOI) 

Upon completion of an interrupt service the 8259A must 
be informed so that its ISR can be updated. This is done to 
keep track of which interrupt levels are in the process of 
being serviced and their relative priorities. Three differ­
ent End-Of-Interrupt (EO!) formats are available to the 
designer. These are: 1) non-specific EO! command; 2) 
specific EOI command; and, 3) automatic EOI command. 
Selection of which EOI to use is dependent on the inter­
rupt operation the designer wishes to perform. 

a. Non-Specific EOI Command 

The microprocessor sends a non-specific EOI command 
to let the 8259A know when a service routine has been 
completed. This command does not specify the the exact 
interrupt level. The 8259 A automatically determines the 
interrupt level and resets the correct bit in the ISR. 

To use the non-specific EO! command the 8259A must be 
in a mode of operation where it can predetermine 
in-service routine levels. For this reason the non-specific 
EOI command should only be used when the most recent 
level acknowledged and serviced is always the highest pri­
ority level. When the 8259A receives a non-specific EO! 

IR LEVELS rr=IR6J R5 lR4 IR3_IR2 IR1 IRO 
PRIORITY 7 ---.L_L_~ __ ~ ___ 1 0 

A 

IR LEVELS 1R7 IRG IRS IR4 IR3 IR2 IR1 IRO 
PRIORITY 4. '3 2·' 1 a 7 6 5 

IR LEVELS IR7 IRG IRS IR4 IR3 IR2 I 1 IRO 
PRIORITY 1 ~L_7_6 ___ 5 _4 _3 2 

C 

Figure 1-136 Priority Structure Variations­
Fully Nested Mode 

command, it resets the highest priority ISR bit. This con­
firms to the 8259 A that the highest priority routine of the 
routines in service is finished. 

b. Specific EOI Command 

A specific EOI command is sent from the microprocessor 
to let the 8259A know when a service routine of a particu­
lar interrupt level is completed. Unlike the non-specific 
EOI command which automatically resets the highest pri­
ority ISR bit, a specific EOI command specifies an exact 
ISR bit to be reset. One of the eight IR levels of the 8259A 
can be specified in this command. The purpose of the 
specific EO! command is to reset the ISR bit of a com­
pleted service routine whenever the 8259 A cannot auto­
matically determine the completion. 

c. Automatic EOI Mode 

When programmed in the automatic EOI mode the micro­
processor does not need to issue a command to notify the 
8259A of a completed interrupt routine. The 8259A ac­
complishes this by performing a non-specific EOI auto­
matically at the trailing edge of the last INTA * pulse 
(second pulse). The advantage of automatic EOI over the 
other EOI commands is that no command has to be is­
sued. This simplifies programming and lowers code re­
quirements within interrupt routines. However, special 
consideration must be taken when deciding to use the au­
tomatic EO! mode because it disturbs the fully nested 
mode. 

Automatic Rotation - Equal Priority 

Automatic rotation of priorities is used in applications 
where interrupting devices are of equal priority, such as 
communications channels. The concept is that once a pe­
ripheral is serviced, all other equal priority peripherals 
should be given a chance to be serviced before the origi­
nal peripheral is serviced again. This is accomplished by 
automatically assigning a peripheral the lowest priority 
after it has been serviced. Therefore, worst case, the de­
vice would have to wait until all other devices have been 
serviced before being serviced again. 

There are two methods of accomplishing automatic rota­
tion. One is the "rotate on non-specific EO! command" 
which is used with the non-specific EOI command. The 
other is the "rotate in automatic EOI mode" which is used 
with the automatic EOI mode. 

a. Rotate On Non-Specific EOI Command 

When the rotate on non-specific EOI command is issued, 
the highest ISR bit is reset as in a normal non-specific 
EO! command. However, after the ISR bit is reset the 
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corresponding IR level is assigned the lowest priority. 
Other IR priorities rotate to confonn to the fully nested 
mode based on the newly assigned low priority. 

b. Rotate On Automatic EOI Mode 

The rotate in automatic EOI mode operates similar to the 
non-specific EO! command. The main difference is that 
priority is done automatically after the last INTA * pulse 
of an interrupt request. Th enter or exit this mode a 
rotate-in-automatic-EOI set command and a 
rotate-in-automatic-EOI clear command is provided. Af­
ter these two commands, no other commands are needed, 
as in the automatic EOI mode. However, when using any 
fonn of the automatic EO! mode, special consideration 
since the guideline for the automatic EO! mode also 
stands for the rotate in automatic EO! mode. 

Specific Rotation - Specific Priority 

The specific rotation mode provides the designer with 
versatile capabilities in interrupt controlled operations. 
This priority mode is very useful in applications where a 
specific device's interrupt priority must be altered. Unlike 
automatic rotation, which automatically sets priorities, 
specific rotation is completely user controlled. The user 
selects which interrupt level is to receive lowest or highest 
priority. This can be done during the main program or 
within interrupt routines. Two specific rotation com­
mands are available to the user, the "set priority com­
mand" and the "rotate on specific EOI command". 

a. Set Priority Command 

The set priority command allows the programmer to as­
sign an IR level to the lowest priority. All other interrupt 
levels will confonn to the fully nested mode based on the 
newly assigned low priority. 

b. Rotate On Specific EOI Command 

The rotate on specific EOI command is a combination of 
the set priority and the specific EO! command. As in the 
set priority command, a specified IR level is assigned 
lowest priority. As in the specific EOI command, a speci­
fied level will be reset in the ISR. Therefore, the rotate on 
specific EOI command accomplishes both tasks in only 
one command. 

INTERRUPT TRIGGERING 

There are two basic ways of sensing an active interrupt 
request. One is a level sensitive input and the other is an 
edge sensitive input. The 82S9A provides the edge trig-

gered mode and the level triggered mode to allow the user 
the capability of either method. Selection of one of these 
methods is done during the programmed initialization of 
the 82S9A. 

Level Triggered Mode 

When the 82S9A is in the level triggered mode it will 
recognize any active (high) level on the IR input as an 
interrupt request. If the IR input remains active after an 
EOI command has been issued, resetting its ISR bit, an­
other interrupt will be generated. This assumes the proc­
essor INT pin is enabled. Unless repetitious interrupt 
generation is desired, The IR input must be brought to an 
inactive state before an EOI command is issued in its 
service routine. However, necessary timing requirements 
must be obeyed (see Figure 1-137). Note that the request 
on the IR line must remain until after the falling edge of 
the first INTA>I< pulse. On any IR input, if the request goes 
inactive before the first INTA>I< pulse, the 82S9A will re­
spond as if IR7 was active. In any design where there is a 
possibility of this happening, the IR7 default feature can 
be used as a safeguard. This can be accomplished by us­
ing the IR7 routine as a "cleanup routine" which might 
check the 82S9A status or merely return program executi 
to its pre-interrupt location. 

Edge 1l'lggered Mode 

In the edge triggered mode the 82S9A will only recognize 
interrupts if generated by an inactive (low) to active (high) 
transition on the IR input. The edge triggered mode incor­
porates an edge lockout method of operation. This means 
that after the rising edge of an interrupt request and the 
acknowledge of the request, the positive level of the IR 
input will not generate further interrupts on this level. The 
user does not neeto worry about quickly removing the re­
quest to avoid generating further interrupts. Before an­
other interrupt can be generated the IR input must return 
to the inactive state. 

Timing requirements for the edge triggered mode are 
shown Figure 1-137. As in the level triggered mode, the 
request on the IR input must remain active until after the 
falling edge of the first INTA>I< pulse in the edge triggered 
mode. Unlike the level triggered mode, after the interrupt 
request is acknowledged its IRR latch is disarmed. Only 
after the IR input goes inactive will the IRR latch again 
become armed making it ready to receive another inter­
rupt request (in the level triggered mode the IR latch is 
always armed). Note that the IR7 default discussed in the 
level triggered mode also works in the edge triggered 
mode. 

INTERRUPT CASCADING 

More than one 82S9A can be used to expand the priority 
interrupt scheme to up to 64 levels without additional 
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Figure 1·137 IR Triggering Timing Requirements 

hardware. This method for expanded interrupt capability 
is called cascading. The 8259A supports cascading opera­
tions with the cascade mode. Additionally, the specially 
fully nested mode and the buffered mode are available for 
increased flexibility when cascading 8259A's under cer­
tain applications. 

Cascade Mode 

In the cascade mode, basic operation consists of one 
8259A acting as a master to the others which are acting as 
slaves. A specific hardware set-up is required to establish 
operation in the cascade mode (see Figure 1-138). Figure 

1-138 shows a typical system containing a master and two 
slaves, providing 22 interrupt levels. Note that the master 
is designated by a high on the SP*/EN* pin, while the 
SP*/EN* pins on the slaves are grounded (this can also be 
done by software, see the buffered mode). Also the INT 
output pin of each slave is connected to the an IR input pin 
on the master. The CASO-2 pins on all 8259A's are paral­
leled. These pins, which act as outputs when the 8259A is 
a master and inputs for the slaves, serve as a private 
8259A bus. They control which slave has control of the 
system bus for interrupt vectoring operation with the 
processor. All other pins are connected as in normal oper­
ation (each receives an INTA pulse). 
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Figure 1·138 Cascaded 8259A's 22 Interrupt Levels 
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In addition to the hardware set-up requirements, all 
8259A's must be software programmed to work in the cas­
cade mode. Programming the cascade mode is done dur­
ing the initialization of each 8259A. The 8259A that is 
selected as master must receive specification during its 
initialization as to which of its IR inputs are connected to 
a slave's INT pin. Each slave must be designated during its 
initialization with an ID (0 -7) corresponding to which of 
the master's IR inputs its INT pin is connected to. This is 
necessary so the master's CASO-2 pins will be able to ad­
dress each individual slave. Note that as in normal opera­
tion' each 8259A must also be initialized to give its IR 
inputs a unique interrupt vector. 

Specially Fully Nested Mode 

Depending on the application, changes in the nested 
structure of the cascade mode may be desired. This is 
because the nested structure of a slave 8259 A differs from 
that of the normal fully nested mode. In the cascade 
mode, if a slave receives a higher priority interrupt re­
quest than the one in service (through the same slave), it 
will not be recognized by the master. This is because the 
master's ISR bit is set, ignoring all requests of equal or 
lower priority. In this case, the higher priority slave inter­
rupt will not be serviced until after the master's ISR bit is 
reset by an EO! command. This will normally be after 
completion of the lower priority routine. 

If the user wishes to have a truly fully nested structure 
within a slave 8259A, the specially fully nested mode 
should be used. The specially fully nested mode is pro­
grammed in the master only. This is done the master's 
initialization. In this mode the master will ignore only 
those interrupt requests of lower priority than the set ISR 
bit and will respond to all requests of equal or higher pri­
ority. Therefore, if a slave receives a higher priority re­
quest than the one in service, it will be recognized. To 
ensure proper interrupt operation when using the special 
fully nested mode, the software must determine if any 
other slave interrupts are still in service before issuing an 
EOI command to the master. This done by resetting the 
appropriate slave ISR bit with an EO! and then reading it's 
ISR. If the ISR contains all zeros, there aren't any other 
interrupts from the slave in service and an EOI command 
can be sent to the master. If the ISR isn't all zeros, an EO! 
command should not be sent to the master. Clearing the 
master's ISR bit with an EOI command while there are 
still slave interrupts in service would allow lower priority 
interrupts to be recognized at the master. 

Buffered Mode 

The buffered mode is useful in large systems where buf­
fering is required on the data bus. Although not limited to 
cascading, the buffered mode is most pertinent for this 
use. In the buffered mode, whenever the 8259A's data bus 

output is enabled, its SP*/EN* pin will go low. This sig­
nal can be used to enable data transfer through a buffer 
transceiver in the required direction. 

A conceptual diagram of three 8259A's in cascade is show 
in Figure 1-139. Each slave is controlling an individual 
8286 8-bit bidirectional bus driver by means of the buf­
fered mode. Note the pull-up on the SP*/EN* line. This 
pull-up is used to enable data transfer to the 8259A for its 
initial programming. When data transfer is to go from the 
8259A to the processor, SP*/EN* will go low, otherwise 
it will be high. 

1.8.5 8237A Programmable DMA 
Controller 

When configured in minimum mode, the 8086 and 8088 
provide HOLD (hold) and HLDA (hold acknowledge) sig­
nals that are compatible with the 8237 A DMA controller. 
The 8237 A can request use of the bus for direct transfer 
of data between an I/O device and memory by activating 
HOLD. The CPU will complete the current bus cycle, if 
one is in progress, and the issue HLDA, granting the bus 
to the DMA controller. The CPU will not attempt to use 
the bus until HOLD goes inactive. 

The 8086 addresses memory that is physically organized 
in two separate banks, one containing even-addressed 
bytes and one containing odd-addressed bytes. An 8-bit 
DMA controller must alternately select these banks to ac­
cess logically adjacent bytes in memory. Used as a maxi­
mum mode DMA controller, the 8089 provides a simple 
way to interface a high-speed 8-bit device to an 
8086-based system (refer to Chapter 4). 

The 8237A Multimode Direct Memory Access (DMA) 
Controller (see Figure 1-140) is a peripheral interface cir­
cuit designed to improve system performance by allowing 
external devices to directly transfer information from the 
system memory. Memory-to-memory transfer capability 
is also provided. The 8237 A offers a wide variety of pro­
grammable control features to enhance data throughput 
and system optimization and to allow dynamic reconfi­
guration under program control. The 8237 A is designed 
to be used in conjunction with an external 8-bit address 
register such as the 8282. It contains four independent 
channels and may be expanded to any number of channels 
by cascading additional controller chips. The three basic 
transfer modes allow programmability of the types of 
DMA service by the user. Each channel can be individu­
ally programmed to Autoinitialize to its original condition 
following an End of Process (EOP). 

DMA OPERATION 

The 8237 A operates in two major cycles, the Idle cycle 
and the Active cycle. Both device cycles are made up of 
several states. The 8237 A can assume seven different 
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Figure 1-139 Cascade-Buffered Mode Example 

states, each composed of one or more complete clock cy­
cles. State I (SI) is the inactive state. This state is entered 
when the 8237A has no valid DMA requests pending. In 
the SI state, the DMA controller is inactive, but may be in 
the Program Condition, being programmed by the proc­
essor. State SO (SO) is the first state of a DMA service. At 
this point the 8237 A has requested a hold, but the proces­
sor has not yet returned an acknowledge. The 8237 may 
still be programmed until it receives HLDA from the 
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CPU. An acknowledge from the CPU signals that DMA 
transfers can begin. S 1, S2, S3 and S4 are working the 
states of the DMA service. If more time is needed to com­
plete a transfer than is available with normal timing, wait 
states (SW) can be inserted between S2 or S3 and S4 by 
use of the Ready line on the 8237A. Note that the data 
transferred directly from the I/O device-to-memory (or 
visa versa) with IOR* and MEMW* (or MEMR* and 
IOW*) being active at the same time. The data is not read 

Figure 1-140 8237A DMA Controller Block Diagram 
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into or driven out of the 8237A in lIO-to-memory or 
memory-to-llb DMA transfers. 

Memory-to-memory transfers require a read-from and a 
write-to-memory to complete each transfer. The states. 
which resemble the normal working states, use two digit 
numbers for identification. Eight states are required for a 
single transfer. The first four states (SII, S12, S13, S14) 
are used for the read-from-memory half and the last four 
states (S21, S22, S23, S24) for the write-to-memory half 
of the transfer. 

Idle Cycle 

When no channel is requesting service, the 8237A will 
enter the Idle cycle and perform SI states. In this cycle the 
8237A will sample the DREQ lines every clock cycle to 
determine if any channel is requesting a DMA service. 
The device will also sample CS*, looking for an attempt 
by the microprocessor to write or read the internal regis­
ters. When CS* is low and HLDA is low, the 8237 A en­
ters the Program condition. The CPU can now establish, 
change or inspect the internal definition of the part by 
reading from or writing to the internal registers. Address 
lines AO-A3 are inputs to the device and select which reg­
isters will be read or written. The lOR * and 10W* lines 
are used to select and time reads or writes. An internal 
flip-flop is used to generate an additional bit of address 
due to the number and size of the internal registers. This 
bit is used to determine the upper or lower byte of the 
16-bit Address and Word Count registers. The flip-flop is 
reset by Master Clear or Reset. A separate software com­
mand can also reset this flip-flop. 

Special software commands can be executed by the 
8237A in the Program Condition. These commands are 
decoded as sets of addresses with the CS* and 10W*. The 
commands do not make use of the data bus. Instructions 
include Clear First/Last Flip-Flop and Master Clear. 

Active Cycle 

When the 8237A is in the Idle cycle and a non-masked 
channel requests a DMA service, the device will output 
an HRQ to the microprocessor and enter the Active cycle. 
In this cycle the DMA service will take place. The DMA 
service takes place in one of four modes: 1) single trans­
fer mode; 2) block transfer mode; 3) demand transfer 
mode; and 4) cascade mode. 

a. Single Transfer Mode 

In the Single Transfer mode the 8237 A is programmed to 
make one transfer only. The word count will be decre­
mented and the address decremented of incremented fol-

lowing each transfer. When the word count "rolls over" 
from zero to FFFFH, a Thrminal Count (TC) will cause 
an Autoinitialization if the channel has been programmed 
to do so. 

DREQ must be held active until DACK becomes active in 
order to be recognized. If DREQ is held active throughout 
the single transfer, HRQ will go inactive and release the 
bus to the system. HRQ will again go active and another 
single transfer will occur upon receipt of a new HLDA. 
This ensures one full machine cycle execution between 
DMA transfers. 

b. Block Transfer Mode 

In the Block Transfer Mode the device is activated by 
DREQ to continue making transfers during service until a 
TC, caused by word count going to FFFFH, or an external 
End of Process (EOP*) is encountered. DREQ should be 
held active until DACK becomes active. Autoinitialization 
will occur at the end of the service if the channel is pre­
programmed for it. 

c. Demand Transfer Mode 

In this mode the device is programmed to continue mak­
ing transfers until a TC of external EOP* is encountered, 
or until DREQ goes inactive. Therefore, transfers may 
continue until the lIO device has exhausted its data capac­
ity. After the 1/0 device has had a chance to catch up, the 
DMA service is re-established by means of a DREQ. 
During the time between services when the microproces­
sor is allowed to operate, the intermediate values of ad­
dress and word count are stored in the 8237A Current 
Address and Current Word Count registers. Only EOP* 
can cause an Autoinitialize at the end of the service. 
EOP* is generated by TC or by an external signal. 

d. Cascade Mode 

This mode is used to cascade more than one 8237 A to­
gether for simple system expansion. The HRQ and HLDA 
signals from the additional 8237 A are connected to the 
DREQ and DACK signals of a channel of the initial 
8237A. This allow the DMA requests of the additional 
device to propagate through the priority network circuits 
of the preceding device. The priority chain is preserved 
and the new device must wait for its turn to acknowledge 
requests. Since the cascade channel of the initial 8237 A is 
used only for prioritizing the additional device, it does not 
output any address or control signals of its own. The 
8237A will respond to DREQ and DACK but all other 
outputs except HRQ will be disabled. 

Two additional 8237A devices cascaded into an initial de­
vice using two of the previous channels are shown in Fig­
ure F14L This forms a two level DMA system. More 
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Figure 1-141 Cascaded 8237As 

8237 As could be added at the second level by using the 
remaining channels of the first level. Additional devices 
can also be added by cascading into the channels of the 
second level devices, forming a third level. 

TRANSFER TYPES 

Each of the three active transfer modes can perform three 
different types of transfers. These are Read, Write, and 
Verify. Write transfers move data from an 110 device to 
the memory by activating MEMW* and lOR *. Read 
transfers move data from memory to an 110 device by 
activating MEMR * and 10W*. Verify transfers are 
pseudo transfers. The 8237 A operates as in Read or Write 
transfers generating addresses, and responding to EOp, 
however, the memory and 1/0 control lines all remain in­
active. Verify mode is not permitted during memory to 
memory operation. 

Memory-to-Memory Transfers 

The 8237A includes a memory-to-memory transfer fea­
ture to perform block moves of data from one memory 
address space to another with a minimum of program 
space and effort. (See Figure 1-142 for timing.) Channels 
o and 1 are selected to operate in the memory-to-memory 
mode by programming a bit in the Command register. A 
transfer is initiated by setting the software DREQ for 
channel O. The 8237A requests a DMA service in the nor­
mal manner. After HLDA is true, the device reads data 
from the memory using eight-state transfers in the Block 
Transfer mode. The channel 0 Current Address register is 
the source for the address used and is decremented or 
incremented in the normal manner. The data byte read 
from the memory is stored in the 8237A internal Tempo­
rary register. Channel 1 then writes the data from the 

Temporary register to memory using the address in its 
Current Address register and incrementing or decrement­
ing it in the normal manner. The channel 1 Current Count 
is decremented. When the word count of the channel goes 
to FFFFH, a TC is generated causing an EOP* output 
terminating the service. To allow a single word to be writ­
ten to a block of memory Channel 0 may be programmed 
to retain the same address for all transfers. 

The 8237 A will respond to external EOP* signals during 
memory-to-memory transfers. Data comparators in block 
schemes may use this input to terminate the service when 
a match is found. Memory-to-memory operations can be 
detected as an active AEN with no DACK outputs. 

DMA REGISTERS 

The 8237 A contains 344 bits of internal memory in the 
form of registers. Table 1-44 lists the registers by name 
and shows the size of each. The following paragraphs pro­
vide a detailed description of each register and their func­
tions. 

Current Address Register 

Each channel has a 16-bit Current Address register. This 
register holds the value of the address used during DMA 
transfers. The address is automatically incremented or de­
cremented after each transfer and the intermediate values 
of the address are stored in the Current Address register 
during the transfer. This register is written or read by the 
microprocessor in successive 8-bit bytes. The register 
may also be reinitialized back to its original value by an 
:Autoinitialize. Autoinitialize takes place after EOP*. 

Current Word Register 

Each channel has a 16-bit Current Word Register. This 
register determines the number of transfers to be per­
formed. The actual number of transfers will be one more 
than the number programmed in the Current Word regis­
ter (programming a count of 100 will result in 10 1 trans­
fers, etc.). The word count is decremented after each 
transfer. The immediate value of the word count is stored 
in the register during the transfer. When the value in the 
register goes from zero to FFFFH, a TC will be gener­
ated. This register is loaded or read in successive 8-bit 
bytes by the microprocessor in the Program Condition. 
Following the end of a DMA service it may also be reiniti­
lized by an Autoinitialization back to its original value. 
Autoinitialize can occur only when EOP* occurs. If it is 
not Autoinitialized, this register will have a count of FF­
FFH after TC. 
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Figure 1-142 Memory-To-Memory Transfer Timing 

Base Address and Base Word Count Registers 

Each channel has a pair of Base Address and Base Word 
Count Registers. These 16-bit registers store the original 
value of their associated current registers. During Au­
toinitialize these values are used to restore the current reg­
isters to their original values. The base registers are 

Table 1-44 8237A Internal Registers 
Ne_ Sin Number 

Base Address Aeglsters 16 bits 4 
Base Word Count Aeglsters 16blts 4 
Current Address Registers 16 bits 4 
Current Word Count Aeglsters 16 bits 4 
Temporary Address Aeglster 16 bits 1 
Temporary Word Count Aeglster 16 bits 1 
Stetul Aeglster 8blts 1 
Command Register 8 bits 1 
Temporary Register 8 bits 1 
Mode Registers 6 bits 4 
Mask Aeglster 4 bits 1 
Aequest Register 4 bits 1 

written simultaneously with their corresponding current 
register in 8-bit bytes in the Program Condition by the 
microprocessor. These registers cannot be read by the mi­
croprocessor. 

Command Register 

The 8-bit Command register controls the operation of the 
8237A (see Figure 1-143). This register is programmed 
by the microprocessor in the Program Condition and is 
cleared by Reset or a Master Clear instruction. Figure 
1-143 lists the function of each of the command bits. Fig­
ure 1-144 shows the address coding. 

Mode Register 

Each channel has a 6-bit Mode register associated with it 
(see Figure 1-145). When the register is being written to 
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o Memory-ta-memory disable 
1 Memory-la-memory enable 

o Channel 0 address hold disable 
Channel 0 address hold enable 
If bit 0=0 

Controller enable 
Controller disable 

o Normal1lming 
L----I 1 Compressed liming 

X 11 bit 0 ... 1 

L ____ -I 0 Fixed priority 
1 Rotating priority 

o Late write selection 
'-------1 Extended write selection 

If bit 3= 1 

DREQ sense active high 
DAEQ sense active low 

Figure 1·143 Command Register 

by the microprocessor in the Program condition, bits 0 
and 1 determine which channel Mode register is to be 
written. 

Request Register 

The 8237A can respond to requests for DMA service 
which are initiated by software as well as by a DREQ. 
Each channel has a request bit associated with it in the 
4-bit Request register (see Figure 1-146). These are 
non-maskable and subject to prioritization by the Priority 
Encoder network. Each register bit is set or reset sepa­
rately under software control or is cleared upon genera­
tion of a TC or external EOP*. The entire register is 
cleared by a Reset. To set or reset a bit, the software loads 

Signals 

A3 A2 At AO lOR lOW Operation 

Read Status Register 

Write Command Register 

Illegal 

Write Request Register 

Illegal 

Wnte Single Mask RegISter 811 

Illegal 

Write Mode Register 

Illegal 

Clear Byte POinter Flip i Flop 

Read Temporary Register 

Master Clear 

Illegal 

Clear Mask Register 

Illegal 

Write All Mask Register Bits 

Figure 1·144 Software Command Codes 

7 6 5 4 3 2 1 0 ~ Bit Number 

l I I I I I I I 

~ T-LfOO , ... o.~ 01 Channel 1 select 
10 Cha"el 2 s.'ec, 
11 Channel 3 select 

00 Verdy transfer 
01 Write transfer 
10 Read transfer 
11 lIIegal 
XX If bits 6 and 7 = 11 

o Autoinitialization disable 
1 Autoinitialization enable 

o Address increment select 
1 Address decrement select 

( 00 
L _______ -{ 01 

l '0 
11 

Demand mode select 
Single mode select 
Block mode select 
Cascade mode select 

Figure 1·145 Mode Register 

the proper form of the word. See Table 1-45 for register 
address coding. In order to make a software request, the 
channel must be in Block Mode. 

Mask Register 

Each channel has a mask bit (see Figure 1-147) which can 
be set to disable the incoming DREQ. Each mask bit is set 
when its associated channel produces an EOP* if the 
channel is not programmed for Autoinitialize. Each bit of 
the 4-bit Mask register (see Figure 1-148) may also be set 
or cleared separately under software control. The entire 
register is also set by a Reset. This disables all DMA 
requests until a clear Mask register instruction allows 

Table 1·45 Definition of Register Codes 

Operation 
Signals 

Register 
CS lOR lOW A3 A2 AI 

Command Write 0 1 0 1 0 0 
Mode Write 0 1 0 1 0 1 
Request Write 0 1 0 1 0 0 
Mask Set/Reset 0 1 0 1 0 1 
Mask Write 0 1 0 1 1 1 
Temporary Read 0 0 1 1 1 0 
Status Read 0 0 1 1 0 0 

7 6 5 4 3 2 1 0 ....-Bit Number 

I I I I I I I I I 
-..- ~ 00 Select channel 0 

Don't Care 01 Select channel 1 
10 Select channel 2 
11 Select channel 3 

Reset request bit 
Set requesl bit 

Figure 1·146 Request Register 

AO 

0 
1 
1 
0 
1 
1 
0 
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7 6 5 4 3 2 1 0 _ Bit Number 

I I I I I I I I I -..-- L{ 00 Select channel 0 mask bit 
Don't Care 01 Select channel 1 mask bit 

10 Select channel 2 mask bit 
11 Select channel 3 mask bit 

Clear mask bit 
Set mask bit 

Figure 1·147 Mask Bits 

o Clear channel 0 mask bit 
1 Set channel 0 mask bIt 

Clear channel 1 mask bit 
Set channel 1 mask bit 

a Clear channel 2 mask bit 
1 Set channel 2 mask bit 

Figure 1·148 Mask Register 

them to occur. The instruction to separately set or clear 
the mask bits is similar in form to that used with the Re­
quest register. See Thble 1-45 for instruction addressing. 

Status Register 

The Status register (see Figure 1-149) is available to be 
read out of the 8237 A by the microprocessor. This regis­
ter contains information about the status of the devices at 
this point. This information includes which channels have 
reached a terminal count and which channels have pend-

1 Channel 0 has reached TC 
1 Channel 1 has reached TC 

Channel 2 has reached TC 
Channel 3 has reached TC 

Channel 0 request 
Channell request 

L~======= Channel 2 request 
1 Channel 3 request 

Figure 1·149 Status Register 

ing DMA requests. Bits 0-3 are set every time a TC is 
reached by that channel or an external EOP* is applied. 
These bits are cleared upon Reset and on each Status 
Read. Bits 4-7 are set whenever their corresponding chan­
nel is requesting service. 

Temporary Register 

The Temporary register is used to hold data during 
memory-to-memory transfers. Following the completion 
of the transfers, the last word moved can be read by the 
microprocessor in the Program Condition. The Tempo­
rary register always contains the last byte transferred in 
the last memory·to-memory operation, unless cleared by 
a Reset. 

Software Commands 

The software commands are additional special software 
commands which can be executed in the Program Condi­
tion (see Figure 1-144). The commands do not depend on 
any specific bit pattern on the data bus. The software 
command are Clear First/Last Flip-Flop, Master Clear 
and Clear Mask Register. Figure 1-144 lists the address 
codes for the software commands. 

a. Clear First/Last Flip/Flop 

This command is executed prior to writing or reading new 
address or word count information to the 8237 A. This 
initializes the flip-flop to a known state so that subsequent 
accesses to register contents by the microprocessor will 
address upper and lower bytes in the correct sequence. 

b. Master Clear 

This software instruction has the same effect as the hard­
ware Reset. The Command, Status, Request, Temporary, 
and Internal First/Last Flip-Flop registers are cleared and 
the Mask register is set. The 8237 A will enter the Idle 
cycle. 

c. Clear Mask Register 

This command clears the mask bits of all four channels, 
enabling them to accept DMA requests. 
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CHAPTER 2 
80186/80188 CPU 

2.1 INTRODUCTION-THE HIGH 
INTEGRATION CONCEPT 

This chapter presents hardware design data for the 80186/ 
80188 CPU's and describes the features that distinguish 
them from the 8086/8088. The 80186/80188 are upward 
compatible from the 8086/8088. In compatible modes of 
operation the 80186/188 operate virtually the same as the 
8086/88. This chapter also describes the use of the 80186/ 
188 with various input/output peripheral and memory de­
vices. As the reader will discover, the integrated devices 
of the iAPX186 (a DMA unit, timer, interrupt controller, 
bus controller, chip select logic, and ready generation 
logic all integrated onto the chip) greatly simplify system 
configuration. 

The iAPX86/88 family consists of two devices: the 80186 
processor with a 16-bit external bus and the 80188 proc­
essor with an 8-bit external bus. Internally, both devices 
use the same processor with the same integrated compo­
nents. Except where noted, all references to the 80186 in 
this chapter apply equally to the 80188. Also, all paramet­
ric values in this chapter are from the iAPX186 Advance 
Information Data Sheet and pertain to 8 MHz devices. 

2.2 COMPONENT OVERVIEW 

The 80186 and 80188 microprocessors each contain a 
number of the most common iAPX system components 
integrated onto a single chip (see Figure 2-1). These on­
board devices include: 

• Clock generator 

• Two, independent, high speed DMA channels 

• Programmable Interrupt Controller 

• Three programmable 16-bit timers 

• Programmable memory and peripheral chip select 
logic 

• Programmable wait state generator 

• Local bus controller. 

This high scale integration doubles the throughput of the 
standard 5 MHz 8086. The 80186/88 instruction set is 
completely upward compatible with iAPX86 object code 
and contains only ten new instructions in addition to the 
complete 8086 instruction set. Device compatibility ex­
tends to 8086 bus support components that include: 

• 8282 and 8283 Octal Latches 

• 8286 and 8287 Bus Transceivers 

• 8288 Bus Controller for the iAPX86/88 

• 8289 Bus Arbiter 

2-1 

In addition, the 80186 may be interfaced to the 8087 Nu­
meric Data Co-Processor to make use of the "number 
crunching" capabilities of that device. 

2.2.1 Architectural Overview 

The 80186/188 device architecture consists of the same 
Bus Interface Unit (BIU) and Execution Unit (EU) as the 
8086188 (see Figure 2-1). The 80186 and 80188 CPUs 
have the same basic register set, memory organization, 
and addressing modes as the 8086 and 8088. The differ­
ences between the 80186 and 80188 are the same as the 
differences between the 8086 and 8088: the 80186 has a 
16-bit architecture and a 16-bit bus interface; the 80188 
has a 16-bit internal architecture, but an 8-bit data bus 
interface; the 80186 has a 6-byte prefetch queue and the 
80188 has a 4-byte prefetch queue. The execution times 
of the two processors differ accordingly. For each non­
immediate 16-bit read/write instruction, 4 additional 
clock cycles are required by the 80188. In addition, the 
801861188 contain a programmable interrupt controller, 
three 16-bit programmable timers, a chip select unit, and 
a two channel programmable direct memory access 
(DMA) unit. 

EXECUTION UNIT AND BUS INTERFACE UNIT 

As in the 8086/88, the EU is responsible for the execution 
of all instructions, for providing data and addresses to the 
BIU, and for manipulating the general registers and the 
flag register. Except for a few control pins, the EU is 
completely isolated from the "outside" world. The BIU 
executes all external bus cycles and consists of the seg­
ment and communications registers, the instruction 
pointer and the instruction object code queue. The BIU 
combines segment and offset values in its dedicated hard­
ware adder to derive 20-bit addresses, transfers data to 
and from the EU on the Arithmetic Logic Unit (ALU) 
data bus and loads "pre-fetched" instructions into the 
queue from which they are fetched by the EU. 

When the EU is ready to execute an instruction, it fetches 
the instruction object code byte from the BIU's instruction 
queue and then executes the instruction. If the queue is 
empty when the EU is ready to fetch an instruction byte, 
the EU waits for the instruction byte to be fetched. If a 
memory location or I/O port must be accessed during in­
struction execution, the EU requests the BIU to perform 
the required bus cycle. 

The two processing sections of the CPU operate indepen­
dently. In the 80186 CPU, when two or more bytes of the 
6-byte instruction queue are empty and the EU does not 
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require the BIU to perform a bus cycle, the BIU executes 
instruction fetch cycles to refill the queue. In the 80188 
CPU, when one byte of the 4-byte instruction queue is 
empty, the BIU executes an instruction fetch cycle. Note 
that since the 80186 CPU has a 16-bit data bus, it can 
access two instruction object code bytes in a single bus 
cycle. The 80188 CPU, since it has an 8-bit data bus, can 
access only one instruction object code byte per bus cy­
cle. If the EU issues a request for bus access while the 
BIU is in the process of an instruction fetch bus cycle, the 
BIU completes the cycle before honoring the EU's 
request. 

CLOCK GENERATOR 

The 80186/188 integrated circuits include a clock genera­
tor and crystal oscillator. The crystal oscillator can be 
used with a parallel resonant, fundamental mode crystal 
at 2X the desired CPU clock speed (i.e., 16 MHz for an 8 
MHz 80186), or with an external oscillator also at 2X the 
CPU clock. The output of the oscillator is internally di­
vided by two to provide the 50% duty cycle CPU clock 
that initiates all 80186 system timing. The CPU clock is 
externally available, and all timing parameters are refer­
enced to this externally available signal. The clock gener­
ator also provides ready synchronization for the 
processor. 

PROGRAMMABLE INTERRUPT CONTROLLER 

The integrated 80186 interrupt controller arbitrates inter­
rupt requests between all internal and external sources. 
The integrated interrupt controller has two major modes 
of operation, non-iRMXTM 86 mode (called master 
mode) and iRMX 86 mode. In the master mode, the inte­
grated controller acts as the master interrupt controller for 
the system. It can be directly cascaded as the master sys­
tem interrupt controller for up to two slave external 
8259A interrupt controllers to allow up to 128 interrupts. 
In the iRMX 86 mode the integrated interrupt controller 
can be configured as a slave controller to an external mas­
ter system interrupt controller. This provides complete 
compatibility with an 80130, 80150, and the iRMX 86 
operating system. Some of the interrupt controller regis­
ters and interrupt controller pins change definition be­
tween the two modes, but the basic function of the 
integrated interrupt controller remains basically the same. 

PROGRAMMABLE TIMERS 

The integrated timer unit contains three independent pro­
grammable 16-bit timer/counters. Two of these timers can 
be used to count external events, to provide waveforms 
derived from either the CPU clock or an external clock of 
any duty cycle, or to interrupt the CPU after a specified 
number of timer "events". The third timer counts only 
CPU clocks and can be used to interrupt the CPU after a 
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programmable number of CPU clocks, to give a count 
pulse to either or both of the other two timers after a pro­
grammable number of CPU clocks, or to give a DMA 
request pulse to the integrated DMA unit after a program­
mable number of CPU clocks. 

CHIP SELECT AND READY GENERATION UNIT 

The 80186 integrated chip select logic is used to enable 
memory or peripheral devices. Memory addressing uses 
six output lines and peripheral addressing uses seven out­
put lines. The memory chip select lines are split into 3 
groups in order to separately address the three major 
memory areas in a typical 80186 system. These major 
memory areas are upper memory for reset ROM, lower 
memory for interrupt vectors and mid-range memory for 
programs. The size of each of these areas is user pro­
grammable. The starting location of lower memory is 
OOOOOH and the ending location for upper memory is 
FFFFFH. Starting and ending locations for mid-range 
memory is user programmable. 

The seven peripheral select lines each address one of 
seven contiguous 128 byte blocks above a user program­
mable base address. The base address for each of these 
blocks can be located in either memory or 110 space so 
that the peripheral devices may be either memory or I/O 
mapped. 

Each of the programmed chip select areas has a set of 
programmable ready bits. These ready bits control an in­
tegrated wait state generator. This allows a programmable 
number of wait states (from 0 to 3) to be inserted when­
ever an access is made to the area of memory associated 
with the chip select area. Each set of ready bits also con­
tains a bit which determines whether the external ready 
signals (ARDY and SRDY) will be used or ignored (i.e., a 
bus cycle will terminate even though a ready has not been 
returned on the external pins). A total of 5 sets of ready 
bits allow independent ready generation for each of upper 
memory, lower memory, mid-range memory, peripheral 
devices 0-3 and peripheral devices 4-6. 

PROGRAMMABLE DIRECT MEMORY 
ACCESS UNIT 

The 801861188 contain an integrated programmable Di­
rect Memory Access (DMA) Unit which contains two 
high speed DMA channels. This DMA unit performs 
transfers to or from any combination of 110 space and 
memory space in either byte or word units. Each DMA 
cycle requires from two to four bus cycles: one or two 
cycles to fetch the data to an internal register; and one or 
two cycles to deposit the data. This operation allows word 
data to be located on odd boundaries, or byte data to be 
moved from odd locations to even locations. (Locating 
word data on odd boundaries and moving bytes from odd 
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to even locations is normally difficult, since odd bytes are 
transferred on the upper 8 data bits of the 16-bit data bus, 
while even data bytes are transferred on the lower 8 data 
bits of the data bus.) 

Each DMA channel maintains a set of independent 20-bit 
source and destination pointers which are used to access 
the source and destination of the data transferred. Each of 
these pointers may independently address either I/O or 
memory space. After each DMA cycle, the pointers may 
be independently incremented, decremented, or main­
tained constant. Each DMA channel also keeps a transfer 
count which may be used to terminate a series of DMA 
transfers after a pre-programmed number of transfers. 

INTERNAL PERIPHERAL INTERFACE 

The 80186 CPU uses 16-bit registers, contained within an 
internal 256-byte control block, to control all integrated 
peripherals. This control block may be mapped into either 
memory or I/O space. Internal logic recognizes the ad­
dress and responds to the bus cycle. During bus cycles to 
the internal registers, the bus controller signals the opera­
tion externally (i.e., the RD*, WR * status, address, data, 
etc., lines will be driven as in a normal bus cycle), and 
ignores D15-0, SRDY and ARDY. The base address of the 
control block must be on an even 256-byte boundary (i.e., 
the lower 8 bits of the base address are all zeros). The 
80186 CPU may read from or write to all of the defined 
registers within this control block at any time. The cur­
rent base address of the control block determines the loca­
tion of any register contained within the 256-byte control 
block. Refer to Volume I of this manual for a description 
of control block programming. 

The integrated iAPX 80186 peripherals operate semi­
autonomously from the CPU. Access to them is, for the 
most part, through software read/write of the control and 
data locations in the control block. Most of these registers 
can be both read from and written to. A few dedicated 
lines, such as interrupts and DMA requests, provide real­
time communication between the CPU and peripherals 
similar to the more conventional system that uses discrete 
peripheral blocks. The overall interaction and function of 
the peripheral blocks has not substantially changed. 

CPU ENHANCEMENTS 

The 80186 and 80188 are highly integrated microproces­
sors. They effectively combine 15 to 20 of the most com­
mon iAPX86 system components on a single chip (see 
Figure 2-1). The 80186 and 80188 provide higher per­
formance and more highly integrated solutions to the total 
system problem of the microprocessor user. The higher 
performance results from the enhancements made to both 
the general and specific areas of CPU operation. These 
include faster effective address calculation, improvements 
in the execution speed of many instructions, and the addi-
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tion of new instructions designed to improve the existing 
code, or to produce optimum 80186/188 code. Increased 
integration simplifies system construction, which results 
in lower part count, therefore, a substantial reduction in 
system cost for the user. 

The 80186/188 have the same basic instruction set, mem­
ory organization, and addressing modes as the 8086/88. 
The differences between the 80186 and 80188 are the 
same as the differences between the 8086 and 8088: the 
80186 has a 16-bit architecture and a 16-bit bus interface; 
the 80188 has a 16-bit internal architecture, but an 8-bit 
data bus interface. The instruction execution times of the 
two processors differ accordingly. For each non­
immediate 16-bit data read/write instruction four addi­
tional clock cycles are required for the 80188. 

CPU Execution Speed 

Because of 80186/188 hardware enhancements in both the 
bus interface unit and the execution unit, most instruc­
tions require fewer clock cycles to execute than on the 
8086/88. Execution speed is gained by performing the 
effective address calculations (base + displacement + 
index) with a dedicated hardware adder, which takes only 
4 clock cycles in the 80186/188 bus interface unit, rather 
than with a microcode routine (used by the 8086/88). This 
results in an execution speed which is three to six times 
faster than the 8 MHz 8086/88. 

In addition, the execution speed of specific instructions 
has been enhanced. All multiple-bit shift and rotate in­
structions execute 1.5 to 2.5 times faster than the 8 MHz 
8086/88. Multiply and divide instructions execute three 
times faster. String move instructions run at bus band­
width (i.e., data is transferred onto the bus in each con­
secutive CPU clock cycle), allowing transfers at 2 
Megabytes per second (80186),and 1 Megabyte per sec­
ond (80188), which is about twice the speed of the 8 MHz 
8086 or 8088, respectively. Overall, the 80186/188 
CPU's are 30-percent faster than the 8 MHz 8086/88 
CPU's, and 50-percent faster than the 5 MHz 8086/88 
CPU's. 

2.2.2 Software Overview 

The following paragraphs describe the functions of the 
new instructions and interrupts provided by the 80186/ 
80188 CPU's. A description of the overall instruction set 
by category is also provided. In addition, a complete in­
struction set summary is provided in tabular form which 
recaps each device instruction by category, and provides 
timing cycles for each instruction. 

NEW 80186/80188 INSTRUCTIONS 

The 80186/188 CPU's add ten new instructions to those in 
the basic 8086/88 instruction set. These instructions are 
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designed to simplify assembly language programming, 
enhance the performance of high-level language imple­
mentations, and reduce the size of object code for the 
80186/188. The new instructions appear shaded in the in­
structions set summary at the back of the 80186 data 
sheet. The following paragraphs explain the operation of 
these new instructions. In order to use these new instruc­
tions with the 8086/80186 assembler, the "$modI86" 
switch must be given to the assembler. This can be done 
by placing the line: "$modI86" at the beginning of the 
assembly language file. 

Push Immediate (PUSHI) Instruction 

The PUSHI instruction allows immediate data to be 
pushed onto the processor stack. This data can be either 
an immediate byte (sign extended 8-bit value) or an imme­
diate word (16-bit value). If the data is a byte, it will be 
sign extended to a word before it is pushed onto the stack 
(since all track operations are word operations). 

Push All/Pop All (PUSHA, POPA) Instructions 

These two instructions allow all of the eight of the 80186 
general purpose registers to be saved onto the stack, or 
restored from the stack. The registers saved by this in­
struction (in the order they are pushed onto the stack) are 
AX, CX, DX, BX, SP, BP, SI and DI. The SP value 
pushed onto the stack is the value of the register before the 
first PUSH (AX) is performed; the value popped for the 
SP register is ignored. 

PUSHA and POPA do not save any of the segment regis­
ters (CS, DS, SS, ES), the instruction pointer (IP), the 
flag register, or any of the integrated peripheral registers. 

Integer Immediate Multiply (IMUL) 

The IMUL instruction allows a value to be multiplied by 
an immediate value. The result of this operation is 16 bits 
long. One operand for this instruction is obtained using 
one of the 80186 addressing modes (meaning it can be in 
a register or in memory). The immediate value can be 
either a byte or a word, but will be sign extended if it is a 
byte. The 16-bit result of the multiplication can be placed 
in any of the 80186 general purpose or pointer registers. 

IMUL requires three operands: the register in which the 
result is to be placed, the immediate, and the second oper­
and. The second operand can be any of the 80186 general 
purpose register or a specified memory location. 

Shifts/Rotates By An Immediate Value 

The 80186 can perform multiple bit shifts or rotates 
where the number of bits to be shifted is specified by an 
immediate value. This is different from the 8086, where 
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only a single bit shift can be performed, or a multiple shift 
can be performed where the number of bits to be shifted is 
specified in the CL register. 

All of the shift/rotate instructions of the 80186 allow the 
number of bits shifted to be specified by an immediate 
value. Like all multiple bit shift operations performed by 
the 80186, the number of bits shifted is the number of bits 
specified modulus 32 (i.e., the maximum number of bits 
shifted by the 80186 multiple bit shifts is 31). 

These instructions require two operands: the operand to 
be shifted (which may be a register or a memory location 
specified by any of the 80186 addressing modes) and the 
number of bits to be shifted. 

Block Input/Output (INS/OUTS) Instructions 

The two new 80186 input/output instructions (INS and 
OUTS) perform block input or output operations similar 
to the string move instructions of the processor. 

The INS instruction performs block input from an 110 
port to memory. The 110 address is specified by the DX 
register and the memory location is pointed to by the DI 
register. After the operation is performed, the DI register 
is adjusted by 1 (if a byte input is specified) or by 2 (if a 
word input is specified). The adjustment is either an in­
crement or a decrement, as determined by the Direction 
bit in the flag register of the processor. The ES segment 
register is used for memory addressing, and cannot be 
overridden. When preceeded by a Repeat (REP) prefix, 
this instruction allows blocks of data to be moved from an 
110 address to a block of memory. The 110 address in the 
DX register is not modified by this operation. 

The OUTS instruction performs block output from mem­
ory to an 110 port. The 110 address is specified by the DX 
register and the memory location is pointed to by the SI 
register. After the operation is performed, the SI register 
is adjusted by 1 (if a byte output is specified) or by 2 (if a 
word output is specified). The adjustment is either an in­
crement or a decrement, as determined by the Direction 
bit in the flag register of the processor. The DS segment 
register is used for memory addressing, but can be over­
ridden by using the segment override prefix. When pre­
ceeded by a Repeat (REP) prefix, this instruction allows 
blocks of data to be moved from a block of memory to an 
110 address. The 110 address in the DX register is not 
modified by this operation. 

Like the string move instructions, these two instructions 
require two operands to specify whether word or byte op­
erations are to take place. Additionally, this determination 
can be supplied by the mnemonic itself by adding a "B" 
or "W" to the basic mnemonic. For example: 

INSB 
REPOUTSW 

;perform byte input 
;perform word block output 
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Array Sounds (SOUND) Instruction 

The 80186 supplies the BOUND instruction to facilitate 
bound checking of arrays. In this instruction, the calcu­
lated index into the arrays is placed in one of the general 
purpose registers of the 80186. Located in two adjacent 
word memory locations are the lower and upper bounds 
for the array index. The BOUND instruction compares 
the register contents to the memory locations, and if the 
value in the register is not between the values in the mem­
ory locations, an interrupt type 5 is generated. The com­
parisons performed are SIGNED comparisons. A register 
value equal to the upper bound or the lower bound will not 
cause an interrupt. This instruction requires two argu­
ments: the register in which the calculated array index is 
placed, and the word memory location which contains the 
lower bound of the array which can be specified by any of 
the 80186 memory addressing modes). The location con­
taining the upper bound of the array must follow immedi­
ately the memory location containing the lower bound of 
the array. 

ENTER And LEAVE Instructions 

The 80186 contains two instructions which are used to 
build and tear down stack frames of the higher level, 
block structured languages. The instruction used to build 
these stack frames is the ENTER instruction. The al­
gorithm for this instruction is: 

PUSH BP 

if level=O then 
BP:=SP; 

/*save the previous frame 
pointer*/ 

else templ: =S P; I*save current frame pointer*/ 
temp2:=level-l; 
do while temp2>O I*copy down previous level 

frame*/ 
BP: =BP-2 ; l*pointers*1 
PUSH [BP]; 

BP:=templ; 
PUSH BP; 

I*in the save area*1 
SP:=SP-disp; 

I*local variables*! 

I*put current level frame pointer*1 

/*create space on the stack for*1 

Figure 2-2 shows the layout of the stack before and after 
this operation. 

This instruction requires two operands. The first value 
(disp) specifies the number of bytes the local variables of 
this routine require. This is an unsigned value and can be 
as large as 65536. The second value (level) is an unsigned 
value which specifies the level of the procedure and can 
be as great as 255. 

The 80186 includes the LEAVE instructions to tear down 
stack frames built by the ENTER instruction. As can be 
seen from the layout of the stack left by the ENTER in-
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struction, this involves only moving the contents of the BP 
register to the SP register, and popping the old BP value 
from the stack. 

Neither the ENTER nor the LEAVE instructions save any 
of the 80186 general purpose registers. If they must be 
saved, this must be done in addition to the ENTER and the 
LEAVE. In addition, the LEAVE instruction does not per­
form a return from a subroutine. If this is desired, the 
LEAVE instruction must be explicitly followed by the 
RET instruction. 

ADDITIONAL INTERRUPTS 

The 80186/80188 include two additional interrupts to de­
tect program execution errors and escape opcodes. These 
two new interrupts are the Unused Opcode and Escape 
Opcode. The following paragraphs describe these new 
interrupts. 

Unused Opcode 

When opcodes OFH, 63H -67H, FIH and FFFFH are ex­
ecuted an interrupt type 6 is generated. This interrupt is 
useful in detecting programs errors (e.g., the execution of 
data), and provides a set of opcodes which the user may 
define for specific purposes, emulating the action of the 
instruction in software. 

Escape Opcode 

The 801861188 CPU's may be programmed to cause an 
interrupt type 7 when an escape opcode (D8H-DFH) is 
encountered. This provides a straightfoward method of 
giving instructions to coprocessors, e.g., the 8087. The 
programming is done by a bit in the relocation register. It 
is programmed not to cause a interrupt on reset. 

80186/80188 INSTRUCTION SET 

The 80186 and 80188 execute exactly the same instruc­
tions. This instruction set includes equivalents to the in­
structions typically found in previous microprocessors, 
such as the 8080/8085. Significant new operations 
include: 

• Multiplication and division of signed and unsigned bi­
nary numbers as well as unpacked decimal numbers, 

• move, scan and compare operations for strings up to 
64k bytes in length, 

• non-destructive bit testing, 

• byte translation from one code to another, 

• software generated interrupts, 

• a group of instructions that can help coordinate the 
activities of multiprocessing systems. 
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Figure 2-2 ENTER Instruction Stack Frame 

In addition to these improvements, the 80186/80188 
CPU's provide ten new instructions that are used to 
streamline existing code and produce optimum new iAPX 
186 code (refer to the paragraphs on "NEW 80186/80188 
INSTRUCTIONS" in paragraph 2.2.2). 

The 80186/80188 instructions treat different types of op­
erands uniformly. Nearly every instruction can operate on 
either byte or word data. Register, memory, and immedi­
ate operands may be specified interchangeably in most 
instructions. The exception is that immediate values serve 
as source and not destination operands. In particular, 
memory variables may be added to, subtracted from, 
shifted, compared, and so on, in place, without moving 
them in and out of registers. This saves instructions, reg­
isters, and execution time in assembly language pro­
grams. In high-level languages, where most variables are 
memory based, compilers can produce faster and shorter 
object programs. 

The 80186/80188 instruction set basically exists on two 
levels. One is the assembly level and the other is the ma­
chine level. To the assembly language programmer, the 
80186 appears to have a repertoire of about 100 instruc­
tions. One MOV (move) instruction, for example, trans­
fers a byte or a word from a register or a memory location 
or an immediate value to either a register or a memory 
location. The CPU's, however, recognize 28 different 
MOV machine instructions ("move byte register to mem­
ory", "move word immediate to register", etc.). 

The two levels of instruction set address two different re­
quirements: efficiency and simplicity. The approximately 
300 forms of machine-level instructions make very effi­
cient use of storage. For example, the machine instruc­
tions that increments a memory operand is three or four 
bytes long because the address of the operand must be 
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encoded in the instruction. To increment a register, how­
ever, does not require as much information, so the in­
struction can be shorter. The 80186/188 have eight 
different machine-level instructions that increment a dif­
ferent 16-bit register. Each of these instructions are only 
one byte long. 

The 801861188 instruction set is divided into seven func­
tional groups. These are data transfer, arithmetic, bit ma­
nipulation, string manipulation, control transfer, high 
level and processor control instructions. The following 
paragraphs provide a functional description of the 
assembly-level instructions. 

Data Transfer Instructions 

Data transfer instructions move single bytes and words 
between memory and registers. These instructions also 
move single bytes and words between the AL or AX reg­
isters and 110 ports. Table 2-1 lists the four types of data 
transfer instructions and their functions. The data transfer 
instructions are categorized in four types: general pur­
pose; input/output; address object; and flag transfer. The 
stack manipulation instructions, the instructions for trans­
ferring flag contents and the instructions for loading seg­
ment registers are included in this group. Figure 2-3 
shows the flag storage formats primarily used by the 
LAHF instruction when converting 8080/8085 assembly 
language programs to run on the 80186 or 80188. The 
address object instructions manipulate the addresses of 
variables instead of the contents of values of the variables. 
This is useful for list processing, based variable and string 
operations. 
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Table 2·1 Data Transfer Instructions 

GENERAL PURPOSE 

MOV Move byte or word 
PUSH Push word onto stack 
POP Pop word off stack 
XCHG Exchange byte or word 
XLAT Translate byte 

INPUT /OUTPUT 

IN Input word or byte 
OUT Output word or byte 

ADDRESS OBJECT 

LEA Load effective address 
LDS Load pointer using DS 
LES Load pOinter using ES 

FLAG TRANSFER 

LAHF Load AH register from flags 
SAHF Store AH register in flags 
PUSHF Push flags onto stack 
POPF Pop flags off stack 

Arithmetic Instructions 

Arithmetic operations (see Table 2-2) may be performed 
on four types of numbers: unsigned binary, signed binary 
(integers), unsigned packed decimal and unsigned un­
packed decimal (see Table 2-3). Binary numbers may be 8 
or 16 bits long. Decimal numbers are stored in bytes, two 
digits per byte for packed decimal and one digit per byte 
for unpacked decimal. The processor always assumes that 

~~~~. Is, Z , U , A , U ! P I U ! C I 
I 7 6 5 4 3 2 1 0 I 
1....--6080/8085 FLAGS----..I 
I I 
I I 

~g~~F'lu! U,U ,U ,0,0, I, T,S ,Z ,U tA,U, P, Ute I 
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

U = UNDEFINED; VALUE IS INDETERMINATE 
0= OVERFLOW FLAG 
o = DIRECTION flAG 
I = INTERRUPT ENABLE flAG 
T = TRAP flAG 
S = SIGN FLAG 
Z = ZERO flAG 
A = AUXILIARY CARRY FLAG 
P = PARITY FLAG 
C = CARRY flAG 

Figure 2·3 Flag Store Formats 
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Table 2·2 Arithmetic Instructions 

ADDITION 

ADD Add byte or word 
ADC Add byte or word with carry 
INC Increment byte or word by 1 
AAA ASCII adjust for addition 
DAA Decimal adjust for addition 

SUBTRACTION 

SUB Subtract byte or word 
SBB Subtract byte or word with 

borrow 
DEC Decrement byte or word by 1 
NEG Negate byte or word 
CMP Compare byte or word 
AAS ASCII adjust for subtraction 
DAS Decimal adjust for subtraction 

MULTIPLICATION 

MUL Multiply byte or word unsigned 
IMUL Integer multiply byte or word 
AAM ASCII adjust for multiply 

DIVISION 

DIV Divide byte or word unsigned 
IDIV Integer divide byte or word 
AAD ASCII adjust for division 
CBW Convert byte to word 
CWD Convert word to doubleword 

the operands specified in arithmetic instructions contain 
data that represents valid numbers for the type of instruc­
tion being performed. Invalid data may produce unpre­
dictable results. 

Bit Manipulation Instructions 

The 80186 and 80188 CPU's provide three groups of in­
structions for manipulating bits within both bytes and 
words. These three groups are logicals, shifts and rotates. 
Table 2-4 lists the three groups of bit manipulation in­
struetions with their functions. 

a. Logical 

The logical instructions include the boolean operators 
"not", "and", "inclusive or", and "exclusive or". A 
TEST instruction that sets the flags, but does not alter 
either of its operands is also included. 

b. Shifts 

The bits in bytes and words may be shifted arithmetically 
or logically. Up to 255 shifts may be performed, accord­
ing to the value of the count operand coded in the instruc­
tion. The count may be specified as a constant 1, or 
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Table 2·3 Arithmetic Interpretation of a·Bit Numbers 

HEX BIT PATTERN UNSIGNED 
BINARY 

07 o 0 0 0 0 1 1 1 7 

89 10001001 137 

C5 11000101 197 

register CL, allowing the shift count to be a variable sup­
plied at execution time. Also, the number of shifts may be 
specified as an immediate value in the instruction. This 
eliminates the need for a MOV immediate to the CL regis­
ter if the number of shifts is known at assembly time. 
Before the 80186/80188 perform a shift or rotate, they 
AND the value to be shifted with 1 FH. This limits the 
number of shifts occurring to 32 bits. Arithmetic shifts 
may be used to multiply and divide binary numbers by 
powers of two. Logical shifts can be used to isolate bits in 
bytes or words. 

c. Rotates 

Bits in bytes and words can also be rotated. Bits rotated 
out of an operand are not lost as in a shift, but are "cir­
cled" back into the other "end" of the operand. As in the 
shift instructions, the number of bits to be rotated is taken 
from the count operand, which may specify either a con­
stant of 1, or the CL register. The carry flag may act as an 

Table 2·4 Bit Manipulation Instructions 

LOGICALS 

NOT "Not" byte or word 
AND "And" byte or word 
OR "Inclusive or" byte or word 
XOR "Exclusive or" byte or word 
TEST "Test" byte or word 

SHIFTS 

SHLISAL Shift logical/arithmetic left 
byte or word 

SHR Shift logical right byte or word 
SAR Shift arithmetic right byte or 

word 

ROTATES 

ROL Rotate left byte or word 
ROR Rotate right byte or word 
RCL Rotate through carry left byte 

or word 
RCR Rotate through carry right byte 

or word 
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SIGNED UNPACKED PACKED 
BINARY DECIMAL DECIMAL 

+7 7 7 

-119 invalid 89 

-59 invalid invalid 

extension of the operand in two of the rotate instructions, 
allowing a bit to be isolated in CF and then tested by a JC 
(jump if carry) or JNC (jump if not carry) instruction. 

String Instructions 

The string instructions, also called primitives, allow 
strings of bytes or words to be operated on, one element 
(byte or word) at a time. Strings of up to 128k bytes may 
be manipulated with these instructions. Instructions are 
available to move, compare and scan for a value, as well 
as moving string elements to and from the accumulator 
and 110 ports. Table 2-5 lists the string instructions. These 
basic operations may be preceded by a special one-byte 
prefix that causes the instruction to be repeated by the 
hardware, allowing long strings to be processed much 
faster than would be possible with a software loop. The 
repetitions can be terminated by a variety of conditions, 
and a repeated operation may be interrupted and resumed. 

Program Transfer Instructions 

The instruction execution sequence for the 80816/80188 
is determined by the content of the code segment register 
(CS) and the instruction pointer (IP). The CS register con­
tains the base address of the current code segment (i.e., 
the 64k memory area where instructions are currently be­
ing fetched). The IP points to the memory address where 
the next instruction to be fetched is located. In most oper­
ating conditions, the next instruction to be executed will 
have already been fetched and will be waiting in the CPU 
instruction queue. The program transfer instructions op­
erate on the instruction pointer and on the CS register. 
Changing the content of these causes normal sequential 
operation to be altered. When a program transfer occurs, 
the queue no longer contains the correct instruction. 
When the BIU obtains the next instruction from memory 
using the new IP and CS values, it passes the instruction 
directly to the EU and then begins refilling the queue 
from the new location. 

Four groups of program transfers are available with the 
80186/188 CPU's (see Table 2-6). These are uncondi­
tional transfers, conditional transfers, iteration control in­
structions, and interrupt-related instructions. 
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Table 2·5 String Instructions 

REP Repeat 

REPE/REPZ Repeat while equal/zero 

REPNE/REPNZ Repeat while not 
equal/not zero 

MOVS Move byte or word string 

MOVSB/MOVSW Move byte or word string 

CMPS Compare byte or word 
string 

SCAS Scan byte or word string 

LODS Load byte or word string 

STOS Store byte or word string 

a. Unconditional Transfers 

The unconditional transfer instructions may transfer con­
trol to a target instruction within the current code segment 
(intrasegment transfer) or to a different code segment (in­
tersegment transfer). The ASM-86 Assembler terms an 
intrasegment transfer NEAR and an intersegment transfer 
FAR. The transfer is made unconditionally any time the 
instruction is executed. 

b. Conditional Transfers 

The conditional transfer instructions are jumps that may 
or may not transfer control depending on the state of the 
CPU flags at the time the instruction is executed. These 
18 instructions (see Table 2-7) each test a different combi­
nation of flags for a condition. If the condition is "true" 
then control is transferred to the target specified in the 
instruction. If the condition is "false" then control passes 
to the instruction that follows the conditional jump. All 
conditional jumps are SHORT, that is, the target must be 
in the current code segment and within -128 to + 127 
bytes of the first byte of the next instruction (IMP DOH 
jumps to the first byte of the next instruction). Since 
jumps are made by adding the relative displacement of the 
target to the instruction pointer, all conditional jumps are 
self-relative and are appropriate for position-independent 
routines. 

c. Iteration Control 

The iteration control instructions can be used to regulate 
the repetition of software loops. These instructions use the 
CX register as a counter. Like the conditional transfers, 
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Table 2·6 Program li'ansfer Instructions 

UNCONDITIONAL TRANSFERS 

CALL Call procedure 
RET Return from procedure 
JMP Jump 

CONDITIONAL TRANSFERS 

JA/JNBE Jump If above/not below 
nor equal 

JAE/JNB Jump If above or 
equal/not below 

JB/JNAE Jump If below/not above 
nor equal 

JBE/JNA Jump If below or 
equal! not above 

JC Jump if carry 
JE/JZ Jump if equal/zero 
JG/JNLE Jump if greater/not less 

nor equal 
JGE/JNL Jump if greater or 

equal! not less 
JLlJNGE Jump if less/not greater 

nor equal 
JLE/JNG Jump if less or equal/ not 

greater 
JNC Jump if not carry 
JNE/JNZ Jump if not equal/ not 

zero 
JNO Jump if not overflow 
JNP/JPO Jump if not parity / parity 

odd 
JNS Jump if not sign 
JO Jump if overflow 
JP/JPE Jump if parity / parity 

even 
JS Jump if sign 

ITERATION CONTROLS 

LOOP Loop 
LOOPE/LOOPZ Loop If equal/zero 
LOOPNEI LOOPNZ Loop If not equal! not 

zero 
JCXZ Jump If register CX - 0 

INTERRUPTS 

INT Interrupt 
INTO Interrupt If overflow 
IRET Interrupt return 
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Table 2-7 Interpretation of Conditional Transfers 

MNEMONIC CONDITION TESTED "JUMP IF ... " 

JA/JNBE (CF oRZF)-O above/not below nor equal 
JAE/JNB CF-O above or equal I not below 
JB/JNAE CF-1 below I not above nor equal 
JBE/JNA (CF OR ZF)-1 below or equal/not above 
JC CF-1 carry 
JE/JZ ZF-1 eQual/zero 
JG/JNLE «SF XOR OF) OR ZF)-O greater I not less nor equal 
JGE/JNL (SF XOR OF)-O greater or equal I not less 
JL/JNGE (SF XOR OF)-1 less I not greater nor equal 
JLE/JNG ((SF XOR OF) OR ZF)-1 less or equal I not greater 
JNC CF-O not carry 
JNE/JNZ ZF-O not equal I not zero 
JNO OF-O not overflow 
JNP/JPO PF=O not parity I parity odd 
JNS SF-O not sign 
JO OF=1 overflow 
JP/JPE PF=1 parity I parity equal 
JS SF=1 sign 

Note: "above" and "below" refer to the relationship of two unsigned values; 
"greater" and "less" refer to the relationship of two signed values. 

the iteration control instructions are self-relative and may 
only transfer to targets that are within -128 to + 127 
bytes of themselves, i.e., they are SHORT transfers. 

d. Interrupt Instructions 

Interrupt instructions allow interrupt service routines to 
be activated by programs as well as by external hardware 
devices. The effect of software interrupts is similar to 
hardware-initiated interrupts. However, the processor 
does not execute an interrupt acknowledge bus cycle if the 
interrupt originates in software or with an NMI. 

High-Level Instructions 

The 80186/188 CPU's have two instructions used with 
high-level languages. These are ENTER and LEAVE. De­
tailed descriptions of the operation of these two instruc­
tions are contained in the paragraphs on "NEW 801861 
80188 INSTRUCTIONS" in paragraph 2.2.2. 

Processor Control Instructions 

The processor control instructions allow programs to con­
trol various CPU functions. Table 2-8 lists the groups of 
processor control instructions and their functions. One 
group of instructions updates flags, and another group is 
used primarily for synchronizing the processor with ex-
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ternal events. A final instruction causes the CPU to do 
nothing. Except for the flag operations, none of the proc­
essor control instructions affect the flags. 

Table 2-8 Processor Control Instructions 

FLAG OPERATIONS 

STC Set carry flag 
CLC Clear carry flag 
CMC Complement carry flag 
STD Set direction flag 
CLD Clear direction flag 
STI Set interrupt enable flag 
Cli Clear interrupt enable flag 

EXTERNAL SYNCHRONIZATION 

HLT Halt until interrupt or reset 
WAIT Wait for TEST pin active 
ESC Escape to external processor 
LOCK Lock bus during next 

instruction 

NO OPERATION 

NOP No operation 
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INSTRUCTION SET SUMMARY 

Table 2-9 presents a reference data table of the complete 
80186/80188 instruction set with timing cycles for each 
instruction. The instruction timings represent the mini­
mum execution time in clock cycles for each instruction. 
The timings are based on the following assumptions: 

• The opcode, along with any data or displacement re­
quired for execution of a particular instruction, has 
been prefetched and resides in the queue at the time it 
is needed. 

• No wait states or bus HOLDS occur. 

• All word-data is located on even-address boundaries. 

All jumps and calls include the time required to fetch the 
opcode of the next instruction at the destination address. 
Any instructions which involve memory references can 
require one (and in some cases, two) additional clocks 
above the minimum timings shown. This is du.e to the 
asynchronous nature of the handshake between the BIU 
andEU. 

2.3 DEVICE PIN DEFINITIONS 

The following paragraphs present functional descriptions 
of all input/output signals and electrical descriptions of all 
of the input/output pins on the 80186 and 80188 40-pin 
DIP's. 

2.3.1 Functional Description of All Signals 

Figure 2-4 shows the 80186/80188 DIP pin assignments 
and Table 2-10 provides a complete functional description 
of each device pin signal and correlates the description to 
the pin number and associated signal symbol. 

2.3.2 Electrical Description of Pins 

The absolute maximum ratings for the 8086/8088 device 
are as follows. 

Absolute Maximum Ratings 

Ambient Temperature 
Under Bias 

Storage Temperature 
Voltage on Any Pin with 

Respect to GND 

Power Dissipation 

OOC to 70°C 

-65°C to + 150°C 

-1.0 to +7V 

3.0 Watt 

Stresses above those listed above may cause permanent 
damage to the device. These values present stress ratings 
only and functional operation of the device at these or any 
other conditions above those indicated in the operational 
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sections of the device specifications is not implied. Expo­
sure to absolute maximum conditions for extended peri­
ods of time may affect the device reliability. 

Table 2-11 presents the D. C. voltage characteristics of the 
80186/188 CPU's. Tables 2-12 through 2-16 list the vari­
ous A. C. characteristics timing requirements and timing 
responses for the 80186/188 CPU's. Figure 2-5 presents 
the major cycle timing waveforms for the 80186/80188 
CPU's related to the preceding A.C. characteristics 
tables. 

2.4 OPERATING MODES 

The following paragraphs present the various operating 
modes of the 801861188 CPU's and compare these to 
those of the 8086/88 CPU's described in Chapter 1. Refer 
to the 8086/88 operating mode discussion in paragraph 
1.4. 

2.4.1 8086/88-80186/188 Operating Mode 
Comparisons 

The 80186/188 multiplexed address/data bus simultane­
ously supports both the 8086/88 minimum mode local bus 
and the maximum mode system bus. The 80186/188 pro­
vides both local bus controller outputs (RD*, WR * , ALE, 
DEN* and DT/R*) and the system status outputs (SO*, 
S 1 * and S2*) for use with the 8288 bus controller. This is 
different from the 8086/88 where local bus controller out­
puts (generated only in the minimum mode) are not avail­
able if the status outputs (generated only in the maximum 
mode) are required. 

Because the 80186/188 simultaneously provides both lo­
cal bus control signals and status outputs, many systems 
supporting both a system bus (MULTIBUS) and a local 
bus will not require two separate external bus controllers. 
The bus control signals may be used to control the local 
bus while the status signals are concurrently connected to 
the 8288 bus controller to drive the system bus control 
signals. The 801861188 CPU's require an 8288 and an 
8289 to interface with the MULTIBUS. 

2.4.2 Queue Status Mode of Operation 

When the RD* line is externally grounded during reset 
and remains grounded during processor operation, causes 
the 80186 to enter "queue status" mode. In this mode, the 
WR * and ALE signals become queue status outputs, re­
flecting the status of the internal pre-fetch queue during 
each clock cycle. These signals allow a processor exten­
sion (such as the Intel 8087 numeric data processor) to 
track execution of instructions within the 80186. The in­
terpretation of QSO (ALE) and QSl (WR*) are given in 
Table 2-17. These signals change on the high-to-low clock 
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Table 2·9 Instruction Set Summary 

FUNCTION 

DATA TRANSFER 
MOV = Move: 
Register to Register/Memory 

Register'memory to register 

Immediate to register memory 

Immediate to register 

Memory to accumulator 

Accumulator to memory 

Registermemory to segment register 

Segment register to reglster,'memory 

PUSH = Push: 

FORMAT 

11 000100wi 

11 000101wl 

11 1 0 0 0 1 1 w I 
11 01 1 w reg I 
11 010000wl 

11 0100 01w l 

11 00 0 1 1 1 0 I 
11 00011001 

mod reg rim 

mod reg rim 

modOOO rim 

data 

addr-Iow 

addr-Iow 

mod 0 reg rim 

mod 0 reg rim 

Memory 1111111111 modl10 rim 

RegISter 10 1 0 1 0 reg I 

dala dal,,1 w " 1 

datailw,-1 

addr-high 

addr-high 

Segment reglSler 10 0 0 reg 1 1 0 I 
¥_:fl£~~il~l\l;;l(?:~ll:J'f!Jl;lir;J!it,\;.~,~~; ~li;'f'~i;;;;i§j~"';!;i4;;;, ';:;II.:;:<f!~I;:fi"';>"'::"':I:A""'i;i"'I."', ,"', "',i,:"'},"";"'l"",''"': "'ili"',"''"i''''~I:'''$'i'''''W'''I'''li,''''~:';' 'Y,HflC,,',lj" 

POP = Pop: 
Memory 11 00 0 1 1 1 11 modOOO rim 

Register 10 1 0 1 1 reg I 
Segment register 10 0 0 reg 1 1 11 (reg ~011 

Clock 
Cycles 

2/12 
2/9 

12-13 
3-4 

9 

8 
2/9 
2/11 

16 
10 
9 

Comments 

8/16-bit 
8/16-bit 

;;1;;,1,;",'::,,::, ,'10,'::!',; ','c"" "",,',' ,",'/,I/i:Yti/',I:/iU;, 

I,,'! I",:; , I"~ ,,",",I!', 

20 
10 
8 

",'',1,,',:' 'I""""",,,>:://,,/! 
"",',! 

XCHG = exchlnge: 
Register/memory with register 11 000011wl mod reg rim 4/17 
Register with accumulator 11 00 1 0 reg I 3 

IN = Input lrom: 
Fixed port 11 1 1 0 0 lOw I port 10 
Variable port 11 1 1 0 1 lOw I 8 

OUT = OUlpUtlD: 
FIXed porI 11 1 1 00 1 1 W port 9 
variable port 11 1101 1 1 w 7 
XLAT, Translale byte to AL 11 1 0 1 0 1 1 11 
LEA = Load EA to reg ISler 11 00 0 1 1 0 1 mod reg rim 6 
LOS = Load pointer to OS 11 1 0 0 0 1 0 1 mod reg rim (mod + II) 18 
LES = Load pOinter 10 ES 11 1000100 mod reg rim (mod + II) 18 
LAHF = Load AH wllh flags 11 o 0 1 1111 2 
SAHF ~ Slore AH Inl0 Ilags 11 00 1 1 1 1 0 1 3 
PUSHF = Push Ilags 11 00 1 1 1 0 0 I 9 
POPf - Pop lIags 11 00 1 1 0 t 1 8 

SEGMENT. Sigmont Ovor,ldo: 

CS 10 0 1 0 1 1 1 0 I 2 

ss 10 0 1 1 0 1 1 0 I 2 

os 10 0 1 1 1 1 1 0 I 2 

ES 1001001101 2 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 
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Table 2-9 Instruction Set Summary (continued) 

Clock 
FUNCnON FORMAT Cycl •• Comments 

ADD '= Add: 
Reg/memory with register to either 10 00 0 0 0 d w I mod reg rim 3/10 
Immediate to registerlmemory 1100000swi modOOO rim data dataifsw=01 4/16 

Immediate to accumulator 10 00 0 0 1 0 wi data dataifw=1 3/4 8116-bit 

ADC = Add with carry: 
Reg/memory with register to either 10 0 0 1 0 0 d w I mod reg rim I 3/10 
Immediate to registerlmemory 1100000swl mod 0 1 0 rim I data dataifsw=01 4/16 
Immediate to accumulator 10001010wl data I dataifw=1 3/4 8116-bit • 
INC = Incremenl: 
Register/memory 11 11 1 1 11 wi mod 000 rim 3/15 
Register 10 1 0 0 0 reg I 3 

sua = Sublract: 
Reg/memory and register to either 10 0 1 0 1 0 d wi mod reg rim 3/10 
Immediate from register/memory 1100000swi mod 1 01 rim data dataifsw=01 4/16 
Immediate from accumulator 10 0 1 0 1 1 0 wi data dataifw= 1 3/4 8116-b,it 

SaB = Sublract willi borrow: 
Reglmemory and register to either 10 00 t 1 0 d wi mod reg rim 3/10 
Immediate from registerlmemory 11 OOOOOs wi mod011 rim data dataifsw=01 4/16 

Immediate from accumulator 10 00 1 1 1 0 wi data dataifw=1 3/4 8116-bit 

DEC = Decrement: 
Registerlmemory 11 111111 wi mod 00 1 rim 3/15 
Register 10 1 0 0 1 reg I 3 

CMP = Compare: 
Registerlmemory with register 10 01 1 1 01 wi mod reg rim 3/10 
Register with register/memory 10 0 1 1 1 00 w mod reg rim 3/10 
Immediate wifh registerlmemory !100000sw mod111 rim data dataifsw=01 3/10 
Immediate with accumulator 10 01 1 1 1 0 w data dataifw=1 3/4 8116-bit 
NEG = Change sign 11 11 1011 w mod011 rim 3 
AM = ASCII adjust for add 10 01 1 01 1 8 
OM = Oecimal adjust for add 10 01 0 0 1 1 4 
AAS = ASCII adjust for subtract 10 01 1 1 1 1 7 
DAS = Decimal adjust for subtract 10 01 0 1 1 1 4 

MUL = Multiply (unsigned): 11 11 1011 w mod 1 00 rim 
Register-Byte 26-28 
Register-Word 35-37 
Memory-Byte 32-34 
Memory-Word 41-43 

IMUL = Integer multiply (signed): 11 11 101 1 wi mod1'01 rim 
Register-Byte 25-28 
Register-Word 34-37 
Memory-Byte 31-34 
Memory-Word 40-43 

DIY = Divide (unsigned): 11 11 1 011 wi mod110 rim 
Register-Byte 29 
Register-Word 38 
Memory-Byte 35 
Memory-Word 

Shaded areas indicate instructions not available in iAPX 86,88 microsystems, 
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Table 2·9 Instruction Set Summary (continued) 

FUNCTION FORMAT 

(Continued): 

IDlY ~ Integer divide (signed) 11 1 1 1 0 1 1 w 1 mod 111 rim 
Register-Byte 
Register-Word 
Memory-Byte 
Memory-Word 
AAM = ASCII adlustfor multiply 11 1 0 1 0 1 0 0 1 0 0 0 0 1 0 1 0 1 

AAO= ASCII adjustfor.divide 11 10101011000010101 

CBW=Convertbytetoword 11 001 100 01 

CWO = Convert word to double word 11 0 0 1 1 0 0 1 1 

LOGIC 
Shill/Rotate Inst,uctlons: 
RegisterlMemory by 1 11 1 0 1 000 wi mod Tn rim 1 

RegisterlMemory by CL 11 1 0 1 o 0 1 wi mod m rim I 
~·H -~: i i.~ :n~: 

m Instruction 
o 0 0 ROL 
o 0 1 ROR 
o 1 0 RCL 
o 1 1 RCR 
1 0 0 SHUSAL 
1 0 1 SHR 
111 SAR 

AND = And: 
Reg/memory and register to either 1001000d w i mod reg rim 

Immediate to register/memory 11000000wl mod 1 00 rim data dataifw=1 

Immediate to accumulator 10010010wl data data ifw= 1 

TEST = And function 10 flags, no ,esult: 
Register/memory and register 11 000010wl mod reg rim 

Immediate data and register/memory 11 11 1 011 wi modOOO rim data dataifw=1 

Immediate data and accumulator 11 010100wl data dataifw=1 

OR = Or: 
Reglmemory and register to either 1000010dwi mod reg rim 

Immediate to register!memory 11000000wl mod 00 1 rim data dataifw=1 

Immediate to accumulator 10000110wl data dataifw=1 

XOR = Exclusive or: 
Reg/memory and register to either 1001100dwi mod reg rim 

Immediate to register/memory 11000000wl mod 11 0 rim data dataifw=1 

Immediate to accumulator 10011010wl data dataifw= 1 

NOT = Invert registerlmemory [1 1 1 1 0 1 1 wi mod010 rim 

STRING MANIPULATION: 
MOYS ~ Move byte/word 11 010010wl 

CMPS = Compare byte/word 11 01 001 1 wi 

SCAS = Scan byte/word 11 01 0 1 1 1 wi 

LOOS = Load byte/wd to AUAX 11 

Shaded areas indicate instructions not available in iAPX 86,88 microsystems. 
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Clock 
Cycles 

44-52 

53-61 
50-58 
59-67 

19 
15 
2 
4 

2/15 
5+n/17+n 

3/10 

4/16 

3/4 

3/10 
4/10 

3/4 

3/10 

4/16 

3/4 

3/10 

4/16 

3/4 
3 

14 
22 
15 
12 

Comments 

8/16-bit 

8/16-bit 

8/16-bit 

8/16-bit 
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FUNCTION 

Repeated by count In ex 
MOVS - Move strIOg 

CMPS - Compare strIOg 

SCAS - Scan string 

LOOS - Load string 

CONTROL TRANSFER 

CALL; Call: 
Direct within segment 

Re91ster memory 
indirect within segment 

Direct intersegment 

Indirect mlersegment 

JMP; Unconditional jump: 
Short!long 

Direct within segment 

80186/80188 CPU 

Table 2-9 Instruction Set Summary (continued) 

FORMAT 

11 1 0 0 1 11010010wl 

11 o 0 1 z 11 0 1 0 0 1 1 w I 
11 11 o a 1 

11 11 o 0 1 

11 1 0 1 o a a dlsp-Iow dlSp-hlgh 

11 11 11 mod010rm 

11 00 1 1 a 1 segment offset 

segment selector 

11 111111 1 modOl1rm (mod T 11) 

11 1 1 0 1 0 1 disp-Iow 

11 1 1 a 1 00 disp-Iow dlSp·hlgh 

Reglster.tmemory indirect within segment I 1 11111 mod 1 00 rm 

Direct mtersegment 11 1 a 1 0 1 a I segmen10ilset 

I segment selector 

Indirect intersegment 11 111111 1 mod 1 0 1 r m (mod Til) 

RET ; Return from CALL: 
Within segment 11 1 0 a 0 a 1 

Within seg addmg Immed to SP 11 1 a a a a 1 a I data-lOw data·hlgh 

Intersegment ~OO 1 01 11 

Intersegment adding Immediate to SP 11 1 a a 10 1 a I data-low data"hlgh 

Shaded areas indicate instructions not available in iAPX 86,88 microsystems. 

2-16 

Clock 
Cycles 

8+8n 
5+22n 
5+15n 
6+11n 

15 
13/19 

23 

38 

14 
14 

11/17 

14 

26 

16 
18 
22 

25 

Comments 
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FUNCTION 

CONTROL TRANSFER 

JE/JZ 0 Jump on equaliZero 

JLJJNGE ::= Jump on less;not greater or equal 

JLE/JNG ::= Jump on less or equal mol greater 

J8/JNAE = Jump on belowmot above or equal 

JBE/JNA ~ Jump on below or equalmol above 

JP/JPE ~ Jump on parl~'pan~ even 

JO ~ Jump on ovtrtlow 

JS = Jump on sign 

JNE/JNZ ~ Jump on not equal'not zero 

JNl/JGE == Jump on not less;greater or equal 

JNLE/JG ~ Jump on notlessorequaligreater 

JNB/JAE ~ Jump on not belowlabove orequal 

JNBElJA ~ Jump on not below orequal"bove 

JNP/JPO ~ Jump on not par'par odd 

JNO ~ Jump on not Ovtrtlow 

JNS ~ Jump on not Sign 

JCXZ ~ Jump on ex zelO 

LOOP ~ loop ex times 

LOOPZlLOOPE ~ loop while zewequal 

LOOPNZ/LOOPNE ~ loop while not zerOiequal 

INT = Interrupt: 
Type specilied 

Type 3 

INTO::= Interrupt on overflow 

IRET ~ Inlerlupt return 

80186/80188 CPU 

Table 2-9 Instruction Set Summary (continued) 

FORMAT 

10 1 1 1 0 1 0 0 disp 

10 1 1 1 1 1 0 0 disp 

10 1 1 1 1 1 1 dlSp 

10 1 1 1 0 0 1 dlSp 

10 1 1 1 0 1 1 dlSp 

10 1 1 1 1 0 1 dlSp 

101110000 disp 

10 1 1 1 1 00 0 dlSP 

10 1 1 1 0 1 0 1 disp 

10 1 1 1 1 1 0 1 disp 

10 1 1 1 1 1 1 1 disp 

10.1 1 1 0 0 1 1 disp 

10 1 1 1 0 1 1 1 disp 

10 1 1 1 1 0 1 1 dlSp 

10 1 1 1 0 00 1 dlSP 

10 1 1 1 1 0 0 1 dlSp 

11 1 1 0 0 0 1 1 I dlSp 

11 1 1 0 0 0 1 0 I disp 

11 1 1 0 0 0 0 1 I dlSP 

11 11000001 disp 

11 1 0 0 1 1 0 1 1 type 

11 1 0 0 1 1 0 0 1 

11 1 0 0 1 1 1 01 

11 1 0 0 1 1 1 11 

Shaded areas indicate instructions not available in iAPX 86,88 microsystems. 
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Clock 
Cycles 

4/13 

4/13 

4/13 
4/13 

4/13 

4/13 

4/13 

4/13 

4/13 
4/13 

4/13 

4/13 

4/13 
4/13 

4/13 

5/15 

6/16 

6/16 

16 
5 

47 

45 

48/4 

28 

Comments 

13 if JMP 
taken 

4ifJMP 
not taken 

JMP takenl 
J MP not taken 

if I NT. takenl 
if INT. not 

taken 
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Table 2-9 Instruction Set Summary (continued) 

Clock 
FUNCTION FORMAT Cycles Comments 

PROCESSOR CONTROL 
CLC = Clear carry 11 1 1 1 1 00 01 2 
CMC = Complement carry 11 1 1 1 0 1 0 1 1 2 
STC = Set carry 11 1 1 1 1 00 1 1 2 
CLO = Clear direclion 11 1 1 1 1 1 0 01 2 
STO = Set direction 11 1 1 1 1 1 0 1 1 2 
CLI = Clear interrupt 11 1 1 1 1 0 1 01 2 
sn = Set interrupt 11 1 1 1 1 0 1 1 1 2 
HLT = ~alt 11 1 1 1 0 1 0 01 2 
\VAIT=Wait 11 00 1 1 0 1 1 1 6 if test = 0 
LOCK = Bus lock prefix 11 tIl 0 0 0 01 2 
ESC = Processor Extension Escape 11 1 0 lIT TTl mod LLL rim 1 6 

(ITT lLL are opcode to processor extension) 

Shaded areas indicate instructions not available in iAPX 86, 88 microsystems. 

FOOTNOTES 

The effective Address (EA) of the memory operand is 
computed according to the mod and rim fields: 

if mod = 11 then rim is treated as a REG field 

if mod = 00 then OISP = 0*, disp-Iow and disp-high 

are absent 

if mod = 01 then OISP = disp-Iow sign-extended to 

16-bits, disp-high is absent 

if mod = 10 then OISP = disp-high: disp-Iow 

if rim = 000 then EA = (BX) + (SI) + OISP 

if rim = 001 then EA = (BX) + (01) + OISP 

if rim = 010 then EA = (BP) + (SI) + OISP 

if rim = 011 then EA = (BP) + (01) + OISP 

if rim = 100 then EA = (SI) + OISP 

if rim = 101 then EA = (01) + OISP 

if rim = 110 then EA = (BP) + OISP* 

if rim = 111 then EA = (BX) + OISP 

OISP follows 2nd byte of instruction (before data if 
required) 

·except if mod = 00 and rim = 110 then EA = disp-high: disp-Iow. 

NOTE: • 
EA CALCULATION TIME IS 4 CLOCK CYCLES FOR ALL MODES AND IS INCLUDED 
IN THE EXECUTION TIMES GIVEN WHENEVER APPROPRIATE. 

SEGMENT OVERRIDE PREFIX 

10 0 1 reg 1 1 0 I 

2-18 

regis assigned according to the following: 

reg 
Segment 
Register 

00 ES 
01 CS 
10 SS 
11 OS 

REG is assigned according to the following table: 

l6-Bit (w = 1) 8-Bit (w = 0) 
000 AX 000 AL 

001 CX 001 CL 
010 OX 010 OL 
011 BX 011 BL 

100 SP 100 AH 

101 BP 101 CH 

110 SI 110 OH 
111 01 111 BH 

The physical addresses of all operands addressed by 
the BP register are computed using the SS segment 
register. The physical addresses of the destination op­
erands of the string primitive operations (those ad­
dressed by the 01 register) are computed using the ES 
segment, which may not be overridden. 
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TOP 

Sci .. ,,:+--"--"_' U 'U 

S1 
52 

AROY 
CLKOUT 

RESET 
X2 
X1 

Vss 

BOTTOM 

ALElQSD 
RD/QSMO 

WAlQS1 
BHE 

A191S6 
A18/S5 
A17/S4 

TMRIN1 
TMRIND 
ORQ1 

',DRQD A 18/53 1Mc, r11r1 r1 

....................................................................... .Il....Ij,J' , ~ 'I.:lJ' L..JJ...IL:'-~I..II..JJ..J.'::'J::.lW~U::J 
PIN NO.1 MARK .............. 

Figure 2-4 80186/80188 DIP Pin Assignments 

transition, one clock phase earlier than on the 8086. Note 
that since execution unit operation is independent of bus 
interface unit operation, queue status lines may change in 
any T ,state. 

Since the ALE, RD*, and WR * signals are not directly 
available from the 80186 when it is configured in queue 
status mode, these signals must be derived from the status 
lines SO*-S2 * using an external 8288 bus controller. Th 
prevent the 80186 from accidentally entering queue status 
mode during reset, the RD* line is internally provided 
with a weak pullup device. RD* is the ONLY tri-state or 
input pin on the 80186 which is pulled up (neither pullups 
nor pulldowns are used for any other 80186 tri-state or 
input pin). 

2.4.3 Interrupt Controller Operating Modes 

The integrated interrupt controller has two major modes 
of operation. These are the non-iRMX 86 mode (referred 
to as master mode) and the iRMX 86 mode. In master 
mode the integrated interrupt controller acts as the master 
interrnpt controller for the system. 

In iRMX 86 mode the controller operates as a slave to an 
external interrupt controller which operates as the master 
system interrupt controller. Some of the interrupt control­
ler registers and interrupt controller pins change defini-

2-19 

tions between the two modes, but the basic function of the 
interrupt controller remains basically the same. The main 
difference between the two modes is that when in the mas­
ter mode, the interrupt controller presents its input di­
rectly to the 80186 CPU and in the iRMX 86 mode the 
interrupt controller presents its interrupt input to an exter­
nal controller. The external interrupt controller then 
presents the interrupt inputs to the CPU. 

Placing the interrupt controller in the iRMX 86 mode is 
done by setting the iRMX mode bit in the peripheral con­
trol block relocation register. A description of the opera­
tion of the integrated interrupt controller in the iRMX 86 
and non-iRMX 86 modes of operation is contained in par­
agraph 2.8.3. 

2.5 BUS OPERATION 

Bus operation in the 80186/188 and 8086/88 CPU's is 
basically the same. Before proceeding with this section 
review the 8086 Bus Operation discussion in paragraph 
1.5. 

In the 80186, bus cycles occur sequentially, but do not 
necessarily follow one after another; that is, the bus may 
remain idle for several T states (Ti) between each bus 
access initiated by the 80186. A bus idle occurs whenever 
the 80186 internal queue is full and no read/write cycles 
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Table 2·10 80186/80188 Device Pin Descriptions 

Symbol Pin No. ~ Name and Function 

Vcc, Vee 9.43 I System Power: + 5 volt power supply. 

Vss, Vss 26.60 I System Ground. 

RESET 57 0 Reset Output Indicates that the 80186 CPU ir. being reset, and can be used as a system 
reset. It Is active HIGH. synchronized with the procassor clock, and lasts an Integer 
number of clock periods corl'!lsponding to thfllength of the ~ signal. 

Xl,X2 59.58 I Crystel Inputs, Xl and X2, provide an external connecllon for a fundamental mode 
parallel resonant crystal' for the intarnal. crystel oscillator. Xl can interface to an 
external clock instead of a crystel. In this case, minimize the capacitanca on X2 or 
drive X2 with complemented Xl. The input or oscillator frequency is Internally divided 
by two to generate the clock signal (CLKoi.JT). 

CLKOUT 56 0 Clock Output provides the system with a 50% duty cycle waveform. All device pin 
timings are specified relative to CLKOIJT. CLKOUT has suffiCient MOS drive capabilitias 
for the 8087 Numeric Processor Extension. 

RES 24 I System Reset causas the 80186 to Immediately terminate Its present activity, clear the 
Internal logic, and enter a dormant stata. This signal may be asynchronous to the 
80186 clock. The 80186 begins fetching instructions approximately 7 clock cycles 
after RES Is returned HIGH. RES Is required to be LOW for greater than 4 clock 
cycles and Is Internally synchronized. For proper Initialization. tha LOW-to-HIGH transi-
tion of RES must occur no sooner than 50 microseconds after power up. This Input 
is provided with a Schmitt-trigger to facilitate power-on RES generation via an RC 
network. When RES occurs. the 80186 will drive the status lines to an Inactive level 
for one clock, and then trl-state them. 

'inT 47 I TEST is examined by the WAIT instruction. If the TEST input is HIGH when 
"WAIT" execution begins, instruction execution will suspend. TEST will be 
resampled until it goes LOW, at which time execution will resume. If interrupts 
are enabled while the 80186 is waiting for TEST, interrupts will be serviced. This 
input is synchronized internally. 

TMR IN 0, 20 I Timer Inputs are used either as clock or pontrol signals, depending upon the 
TMRINl 21 I programmed timer mode. These inputs are active HIGH (or LOW-to-HIGH 

transitions are counted) and internally synchronized. 

TMR OUT 0, 22 0 Timer outputs are used to provide single pulse or continUous waveform gener-
TMR OUT 1 23 0 ation, depending upon the timer mode selected. 

,DRaO 18 I DMA Request is driven HIGH by an external device when it desires that a 
ORal 19 I DMA channel (Channel 0 or 1) perform a transfer. These signals are active 

HIGH, level-triggered, and internally synchronized. 

NMI 46 I Non-Maskable Interrupt is an e.dge-triggered input which causes a type 2 
interrupt. NMI is not maskable internally. A transition from a LOW to HIGH 
initiates the interrupt at the next instruction boundary. NMI is latched inter-
nally. An NMI duration of one clock or more will guarantee service. This input is 
internally synchronized. 

INTO,INT1, 45,44 I Maskable Interrupt Requests can be requested by strobing one of these pins. 
INT2/fNTAij 42 I/O When configured as inputs, these pins are active HIGH. Interrupt Requests are 
INT3/INTAl 41 I/O synchronized internally. INT2 and INT3 may be configured via software to 

provide active-LOW interrupt-acknowledge output signals. All interrupt inputs 
may be configured via software to be either edge- or level-triggered. To ensure 
recognition, all interrupt requests must remain active until the interrupt is 
acknowleged. When iRMX mode is selected, the function of these pins 
changes (see Interrupt Controller section of this data sheet). 

A19/S6, 65 0 Address Bus Outputs (16-19) and Bus Cycle Status (3-6) reflect the four most 
A18/S5, 66' 0 significant address bits during T1. These signals are active HIGH. During T2, 
A17/S4, 67 0 T3, Tw, and T4, status information is available on these lines as encoded 
A16/53 66 0 below: 

I I 
Low 

I 
High 

I 56 Processor Cycle DMA Cycle 

53,$4, and 55 are defined as LOW during T2-T4' 

AD15-ADO 10-17, I/O Address/Data Bus (0-15) signals constitute the time mutiplexed memory or I/O 
1-8 address (T1) and data (T2' T3, Tw, and T4) bus. The bus is active HIGH. Ao is 

analogous to BHE for the lower byte of the data bus, pins 07 through Do. It is 
LOW during T1 when a byte is to be transferred onto the lower portion of the 
bus in memory or I/O operations. 
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Table 2·10 80186/80188 Device Pin Descriptions (continued) 

Pin 
Symbol No. Type Name and Function 

BHE/S7 64 0 During T, the Bus High Enable sign-al should be used to determine if data is to 
be enabled onto the most significant half of the data bus. pins 0'5-08. BHE is 
LOW during T, for read. write. and interrupt acknowledge cycles when a byte is 
to be transferred on the higher half of the bus. The S7 sta~information is 
available during T2. T3. and T4. S7 is logically equivalent to BHE. The signal is 
active LOW. and is tristated OFF during bus HOLD. 

BHE and AO Encodings 

BHE Value AO Value Function 

0 0 Word Transfer 
0 1 Byte Transfer on upper half of data bus (015-08) 
1 0 Byte Transfer on lower half of data bus (07-00) , 1 Reserved 

ALE/QSO 61 0 Address Latch Enable/Queue Status 0 is provided by the 80186 to latch the 
address into the 8282/8283 address latches. ALE is active HIGH. Addresses are 

. guaranteed to be valid on the trailing edge of ALE. The ALE rising edge is 
generated off the rising edge of the CLKOUT immediately preceding T, of the 
associated bus cycle. effectively one-half clock cycle earlier than in the stan-
dard 8086. The trailing edge is generated off the CLKOUT rising edge in T, as 
in the 8086. Note that ALE is never floated. 

WR/QSl 63 0 Write Strobe/Queue Status 1 indicates tl;1at the data on the bus is to be written 
into a memory or an I/O device. WR Is active for T2, T3, and Tw of any write 
cycle. It is active LOW, and floats during "HOLD." It is driven HIGH for one clock 
during Reset, and then floated. When the 80186 is in queue status mode, the 
ALE/QSO and WR/QSl pins provide information about processor/instruction 
queue interaction. 

QSl QSO Queue Operation 

0 0 No queue operation 
0 1 First opcode byte fetched from the queue 
1 1 Subsequent byte fetched from the queue 
1 0 Empty the queue 

RD/QSMD 62 0 Read Strobe indicates that the 80186 is performing a memory or 1/0 read cycle. 
RD is active LOW for T., T3 , and Tw of any read cycle. It is guaranteed not to go 
LOW in T. until after the Address Bus is floated. RD is active LOW, and floats 
during "HOLD." RD is driven HIGH for one clock during Reset, and then the output 
driver is floated. A wllak internal pull-up mechanism on the RD line holds it HIGH 
when the line is not driven. During RESET the pin is sampled to determine 
whether the 80186 should provide ALE, WR and RD, or ilthe Queue-Status should 
be provided. RD should be connected to GND to provide Queue-Status data. 

ARDY 55 I Asynchronous Ready informs the 80186 that the addressed memory space or I/O 
device will complete a data transfer. The ARDY input pin will accept an 
asynchronous input, and is active HIGH. Only the rising edge is internally 
synchronized by the 80186. This means that the falling edge of ARDY must be 
synchronized to the 80186 clock. I! connected to Vee, no WAIT states are inserted. 
Asynchronous ready (A ROY) or synchronous ready (SRDY) must be active to 
terminate a bus cycle. I! unused, this line should be tied LOW. 

--
SRDY 49 I Synchronous Ready must be synchronized externally to the 80186. The use of 

SRDY provides a relaxed system-timing specification on the Ready input. This is 
accomplished by eliminating the one-hal! clock cycle which is required for 
internally resolving the signal level when using the ARDY input. This lineis active 
HIGH. I! this line is connected to Vee, no WAIT states are inserted. Asynchronous 
ready (ARDY) or synchronous ready (SRDY) must be active before a bus cycle is 
terminated. I! unused, this line should be tied LOW. 

LOCK 48 0 LOCK output indicates that other system bus masters are not to gain control of 
the system bus while LOCK is active LOW. The LOCK signal is requested by the 
LOCK prefix instruction and is activated at the beginning of the first data cycle 
associated with the instruction following the LOCK prefix. It remains active 
until the completion of the instruction following the LOCK prefix. No pre-
fetches will occur while LOCK is asserted. LOCK is active LOW, is driven HIGH 
for one clock during RESET, and then floated. 

I 
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Table 2·10 80186/80188 Device Pin Descriptions (continued) 

Pin 
Symbol No. Type Name and Function 

SO,Sl,S2 52-54 0 Bus cycle status SO-S2 are encoded to provide bus-transaction information: 

80186 Bus Cycle Status Information 

S2 Sl SO Bus Cycle Initiated 

0 0 0 Interrupt Acknowledge 
0 0 1 Read I/O 
0 1 0 Write I/O 
0 1 1 Halt 
1 0 0 Instruction Fetch 
1 0 1 Read Data from Memory 
1 1 0 Write Data to Memory 
1 1 1 Passive (no bus cycle) 

The status pins float during "HOLD." 
S2 may be used as a logical M/IO indicator, and 51 as a DT/R indicator. 
The status lines are driven HIGH for one clock during Reset, and then floated 

ntil a bus cycle begins. 

HOLD (input) 50 I HOLD Indicates that another bus master Is requesting the local bus. The 
HLDA (output) 51 0 HOLD Input Is active HIGH. HOLD may be asynchronous with respect to the 

80186 clock. The 80186 will Issue a HLDA (HIGH) In response to a HOLD 
re~uest at the end of T4 or Tl. Simultaneous with the Issuance of HLDA, the 
80 86 will float the local bus and control lines. After HOLD Is detected as 
being LOW, the 80186 will lower HLDA. When the 80186 needs to run 
another bus cycle, It will again drive the local bus and control lines. 

UCS 34 0 Upper Memory Chip Select is an active LOW output whenever a memory 
reference Is made to the defined upper portion (1 K-256K block) of memory. 
This line is not floated during bus HOLD. The address range activating ues is 
software programmable. 

LCS 33 0 Lower Memory Chip Select is active LOW whenever a memory reference is 
made to the defined lower portion (lK-256K) of memory. This line is not 
floated during bus HOLD. The address range activating LCS is software 
programmable. 

MCSO-3 38,37,36,35 0 Mid-Range Memory Chip Select signals are active LOW when a memory 
reference is made to the define~id-range portion of memory (8K-512K). 
These lines are not floated during us HOLD. The address ranges activating 
~-3 are software programmable. 

PCSO 25 0 Peripheral Chip Select signals 0-4 are active LOW when a reference is made to 

l5C'Sl·4 27,28,29,30 
the defined peripheral area (64K byte I/O space). These lines are not floated 

0 during bus HOLD. The address ranges activating PCSO-4 are software 
programmable. 

PCS5/Al 31 0 Peripheral Chip Select 5 or Latched Al may be programmed to provide a sixth 
peripheral chip select, or to provide an internally latched Al Signal. The 
address range activating ~ is software programmable. When programmed 
to provide latched Al, rather than PCS5, this pin will retain the previously 
latched value of Al during a bus HOLD. Al is active HIGH. 

PCSS/A2 32 0 Peripheral Cblp Select 6 or Latched A2 may be programmed to provide a 
seventh peripheral chip select, or to provide an internally latched A2 signal. 
The address range activating PCSS is softwa!!..R!:ogrammable. When pro-
grammed to provide latched A2, rather than PCS6, this pin will retain the 
previously latched value of A2 during a bus HOLD. A2 Is active HIGH. 

DT/R 40 0 Data Transmit/Receive controls the direction of data flow through the external 
8286/8287 data bus transceiver. When LOW, data Is transferred to the 80186. 
When HIGH the 80186 places write data on the data bus. 

DEN 39 0 Data Enable is provided as an 8286/8287 data bus transceiver o'utput enable. 
l5EN Is active LOW during each memory and I/O access.l5EN is HIGH whenever 
DTIJ!f changes state. 
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Table 2-11 D.C. Characteristics 

D.C. CHARACTERISTICS (T3A=oo-70o, Vcc=5V :l::10%) 

. Symbol Parameter Min. 

VIL Input Low'Voltage - 0.5 

VIH Input High Voltage 2.0 
, (All except Xl and (RES) 

VIH1 Input High Voltage (1lES) 

Va. Output Low Voltage 3.0 

VOH Output High Voltage 2.4 

Icc Power Supply Current 

lu Input Leakage Current 

Ito Output Leakage Current 

Vew Clock Output Low 

VCHO Clock Output High 4.0 

Vcu Clock Input Low Voltage -0.5 

VCHI Clock Input High Voltage 3.9 

~ Input Capacitance 

c:., 1/0 Capacitance 

are being requested by the execution unit or integrated 
DMA unit. Recall that the bus interface unit fetches op­
codes (including immediate data) from memory, while the 
execution unit actually executes the pre-fetched instruc­
tions. The number of clock cycles required to execute an 
80186 instruction vary from 2 clock cycles for a register 
to register move to 67 clock cycles for an integer divide. 

If a program contains many long instructions, program 
execution will be CPU limited, that is, the instruction 
queue will be constantly filled. Thus, the execution unit 
does not need to wait for an instruction to be fetched. If a 
program contains mainly short instructions or data move 
instructions, the execution will be bus limited. Here, the 
execution unit will be required to wait often for an in­
struction to be fetched before it continues its operation. 

Although the amount of bus usage (Le., the percentage of 
bus time used by the 80186 for instruction fetching and 
execution required for top performance) will vary consid­
erably from one program to another, a typical instruction 
mix on the 80186 will require greater bus usage than the 
8086. This is greater usage caused by the higher perform­
ance execution unit requiring instructions from the pre-

Max. Units Test Conditions 

+ 0.8 Volts 

Vee + 0.5 Volts 

Vee + 0.5 Volts 

0.45 Volts I. = 2.5 mA for· m:l-~ 
I •. = 2 .. 0 mA lor all other outputs 

Volts loa = -400 ~ 

550 mA Max measured at +A = ~~~c 
45ij AS 

",lQ ~ OV < VIN < Vee 

",10 ~ 0.45V < VOUT < Vee 

0.6 Volt~ I~ - 4.0 mA 

Volts 10• = -200~ 
0.6 Volts 

Vee + 1.0 Volts 

10 PI" 
20 pF 

2-23 

fetch queue at a greater rate. This usage also means that 
the effect of wait states is more pronounced in an 80186 
system than in an 8086 system. In all but a few cases, 
however, the performance degradation incurred by adding 
a wait state is less than might be expected because instruc­
tion fetching and execution are performed by separate 
units. 

2.5.1 HALT Bus Cycle 

The 80186 uses a HALT bus cycle to signal external cir­
cuits that the CPU has executed a HLT instruction. This 
bus cycle differs from a normal bus cycle in two impor­
tant ways. First, since the processor is entering a halted 
state, none of the control lines (RD'" or WR*) will be 
driven active. Address and data information will not be 
driven by the processor, and no data will be returned. 
Second, the SO"'-S2'" statUs lines go to their passive state 
(all high) during T2 of the bus cycle, well before they go 
to their passive state during a normal bus cycle. RD"', 
WR"', INTA*, DEN'" will all go high (VOH) and DT/R'" 
will go low (VOL)' Like a normal bus cycle, ALE is driven 
active. Since no valid address information is present, the 
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Table 2·12 A.C. Characteristics Timing Requirements 

A.C. CHARACTERISTICS (TA = O·-70·C. Vee = 5V ::t: 10%) 
80186 Timing Requirements. All Timings Measured At 1.5 Volts Unless Otherwise Noted. 
Applicable to 80186 (8 MHz) and 80186·6 (6 MHz) 

Symbol Parameter Min. 

TOVCl Data in Setup (AID) 20 

TClOX Data in Hold (AID) 10 

TARYCHl Asynchronous Ready 
inactive hold time 15 

TARYHCH Asynchronous Ready 
(AREAOY) active setup 
time· 20 

TARYlCL AREAOY inactive setup 
time 35 

TCHARYX AREADY hold time 15 

TSRYCL Synchronous Ready 
(SREADY) transition setup 
time 20 

TClSRY SREADY transition hold 
time 15 

THVCl HOLD Setup· 25 

TINVCH INTR, NMI. TEST, TIMERIN. 
Setup· 25 

TINVCl DRQO. DRQ1. Setup· 25 

·To guarantee recognition at next clock. 

information strobed into the address latches should be ig­
nored. However, this ALE pulse can be used to latch the 
HALT status from the SO*-S2* status lines. 

Halting the processor does not interfere with the opera­
tion of any of the 80186 integrated peripheral units. 
Therefore, if a OMA transfer is pending while the proces­
sor is halted, the bus cycles associated with the OMA 
transfer will run. In fact, OMA latency time will improve 
while the processor is halted because the OMA unit will 
not be contending with the processor for access to the 
80186 bus. 

2.5.2 8086/80186 Bus Operation 
Differences 

The 80186 bus was designed to be upward compatible 
with the 8086 bus. As a result, the 8086 bus interface 
components (the 8288 bus controller and the 8289 bus 
arbiter) may be used directly with the 80186. There are a 
few differences between the two processors, however, 
which must be considered. These are described in the fol­
lowing paragraphs. 

CPU DUTY CYCLE AND CLOCK GENERATOR 

The 80186 contains an integrated clock generator which 
provides a 50% duty cycle CPU clock. The 8086 differs 
by using an external clock generator (the 8284A) with a 

•.... ----
Max. Units Test Conditions 

2·24 

--
ns 

ns 

ns 

ns 

ns 

ns --

ns 

ns 

ns 

ns 

ns 

33% duty cycle CPU clock (one-third of the time it is 
high, the other two-thirds of the time, it is low). These 
differences manifest themselves as follows: 

1. No oscillator output is available from the 80186, as it 
is available from the 8284A clock generator. 

2. The 80186 does not provide a PCLK (50% duty cy­
cle, one-half CPU clock frequency) output as does the 
8284A. 

3. The clock low phase of the 80186 is narrower, and the 
clock high phase is wider than on the same speed 
8086. 

4. The 80186 does not internally factor AEN with ROY. 
Therefore, if both ROY inputs (AROY and SROY) are 
used, external logic must be used to prevent the ROY 
not connected to a certain device from being driven 
active during an access to this device (remember, 
only one ROY input needs to be active to terminate a 
bus cycle). 

5. The 80186 concurrently provides both a single asyn­
chronous ready input and a single synchronous ready 
input, while the 8284Aprovideseither two synchro­
nous ready inputs or two asynchronous ready inputs as 
a user-strapable option. 

6. The CLOCKOUT (CPU clock output signal) drive cac 

pacity of the 80186 is less than the CPU clock drive 
capacity of the 8284A. Therefore, not as many high 
speed devices (e.g., Schottky TTL flip-flops) may be 
connected to this signal as can be used with the 8284A 
clock output. 
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Table 2-13 A.C. Characteristics Master Interface Timing Responses 

80188 (8 MHz) 

Symbol Paramelers Min. MalL 

TCLAV Address Valid Delay 5 55 

TCLAX Address Hold 10 

TCLAZ Address Float Delay TCLAX 35 

TCHCZ Command Lines Float Delay 45 

TCHCV Command Lines Valid Delay 
(afterftoat) 55 

TLHLL ALE Width T CLCL-35 

TCHLH ALE Active Delay 35 

TCHLL ALE Inactive Delay 35 

TLLAX Address Hold to ALE Inactive TCHCL-25 

TCLOV Data Valid Delay 10 44 

TCLOCX Data Hold Time 10 

TWHOX Data Hold after WR T CLCL-40 

TCVCTV Control Active Delay 1 5 70 

TCHCTV Control. Active Delay 2 10 55 

TCVCTX Control Inactive Delay 5 55 

TCVOEX DEN Inactive Delay 
(Non-Write Cycle) 10 70 

TAlRL Address Float to RD Active 0 

TCLRL RD Active Delay 10 70 

TCLRH RD Inactive' Delay 10 55 

TRHAV RO Inactive to Address Active T ClCL-40 

TCLHAV HLDA Valid Delay 5 50 

TRLRH RDWidth 2T CLCL-50 

TWLWH WRWidth 2TcLCL-40 

TAVAl Add,ess Valid to ALE Low T CLCH-25 

TCHSV Status Active Delay 10 55 

TCLSH Status Inactive Delay 10 65 

TCLTMV Timer Output Delay 60 

TCLRO Reset Delay 60 

TCHQSV Queue Status Delay 35 

TCHDX Status Hold Time 10 

TAVCH Address Valid to Clock High 10 

7, The crystal or external oscillator used by the 80186 is 
twice the CPU clock frequency, while the crystal or 
external oscillator used with the 8284A is three times 
the CPU clock frequency, 

80188-6 (6 MHz) 

Min. Max. Units Test Conditions 

5 63 ns CL : 20-200 pF all outputs 

10 ns 

TcLAX 44 ns 

56 ns 

76 ns 

TCLCL-35 ns 

44 ns 

44 ns 

T CHCL-30 ns 

10 55 ns 

10 ns 

T CLCL-50 ns 

5 87 ns 

10 76 ns 

5 76 ns 

10 87 ns 

0 ns 

10 87 ns 

10 TCLCH ns 

T CLCL-50 ns 

5 67 ns 

2T CLCL-50 ns 

2TcLCL_40 ns 

TClCH-45 ns 

10 TCHCL ns 

10 TCLCH ns 

75 ns 100 pF max 

75 ns 

44 ns 

10 ns 

10 ns 

LOCAL BUS CONTROLLER AND CONTROL 
SIGNALS 

The 80186 simultaneously provides both local bus con­
troller outputs (RD*, WR*, ALE, DEN*, and DT/R*) 

Table 2-14 A.C. Characteristics Chip-Select Timing Requirements 

Symbol Parameter Min, Max, Min_ Max. Units Test Conditions 

TCLCSV Chip-Select Active Delay 66 80 ns 

Tcxcsx Chip-Selct Hold from 
Command Inactive 35 35 ns 

TCHCSX Chip-Select Inactive Delay 5 35 10 47 ns 
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Table 2·15 A.C. Characteristics ClKIN Requirements 

80186 ClKIN Re.quirements 

80186 (8 MHz) 
Symbol Parameter Min. Max. 
TCKIN ClKIN Period 62.5 250 

TCKHl ClKIN Fall Time 10 

TCKlH ClKIN Rise Time 10 

TClCK ClKIN Low Time 25 

TCHCK ClKIN High Time 25 

and status outputs (SO*, S 1 *, S2 *) for use with the 8288 
bus controller. This is different from the 8086 where the 
local bus controller outputs (generated only in minimum 
mode) are sacrificed if status outputs (generated only in 
maximum mode) are desired. These differences will man­
ifest themselves in 8086 systems and 80186 systems as 
follows: 

1. Because the 80186 can simultaneously provide local 
bus control signals and status outputs, many systems 
supporting both a system bus (e.g., a MULTIBUS) 
and a local bus will not require two separate external 
bus controllers, that is, the 80186 bus control signals 
may be used to control the local bus while the 80186 
status signals are concurrently connected to the 8288 
bus controller to drive the control signals of the sys­
tem bus. 

2. The ALE signal of the 80186 goes active a clock 
phase earlier on the 80186 then on the 8086 or the 
8288. This timing minimizes address propagation 
time through the address latches, since typically the 
delay time through these latches from inputs valid is 
less than the propagation delay from the strobe input 
active. 

3. The 80186 RD* input must be tied low to provide 
queue status outputs from the 80186 (see Figure 2-6). 
When so strapped into "queue status mode", the 
ALE and WR * outputs provide queue status informa­
tion. Notice that this queue status information is avail­
able one clock phase earlier from the 80186 than from 
the 8086. See Figure 2-7. 

80186·6 (6 MHz) 
Min. Max. Units Test Conditions 

83 250 ns 

,10 ns 3.5 to 1.0 volts 

10 ns 1.0 to 3.5 volts 

33 ns 1.5 volts 

33 ns 1.5 volts 

HOlD/HlDA VERSUS RQ*/GT* 

The 80186 uses a HOLD/HLDA type of protocol for ex­
changing bus mastership (like the 8086 in minimum 
mode) rather than the RQ*/GT* protocol used by the 
8086 in maximum mode. This allows compatibility with 
Intel's new generation of bus master peripheral devices 
(for example the 82586 Ethernet controller or 82730 CRT 
controller) . 

STATUS INFORMATION 

The 80186 does not provide S3-S5 status information. On 
the 8086, S3 and S4 provide information regarding the 
segment register used to generate the physical address of 
the currently executing bus cycle. S5 provides informa­
tion concerning the state of the interrupt enable flip-flop. 
These status bits are always low on the 80186. 

Status signal S6 is used to indicate whether the current 
bus cycle is initiated by either the CPU or a DMA device; 
subsequently, S6 is always low on the 8086. On the 
80186, it is low whenever the current bus cycle is initiated 
by the 80186 CPU, and is high when the current bus cycle 
is initiated by the 80186 integrated DMA unit. 

BUS DRIVE 

The 80186 output drivers will drive 200pF loads. This is 
double that of the 8086 (l OOpF). This allows larger sys­
tems to be constructed without the need for bus buffers. It 

Table 2·16 A.C. Characteristics ClKOUT Requirements 

80186 ClKOUT Timing (200 pF load) 

Symbol Parameter Min. Max. Min. Max. Units Test Conditions 
TCICO ~lKIN to ClKOUT Skew 50 62.5 ns 

TClCl ClKOUT Period 125 500 167 500 ns 

TClCH ClKOUT Low Time V2 TClCl-7.5 V2 TClCl-7.5 ns 1.5 volts 

TCHCl ClKOUT High Time '/2 TClCl-7.5 '/2 TClCl-7.5 ns 1.5 volts 

TCH1CH2 ClKOUT Rise Time 15 15 ns 1.0 to 3.5 volts 

. TCL2Cll ClKOUT Fall Time 15 15 ns 3.5 to 1. volts 

2-26 210912-001 



CLKOUT 

BHE/S7, 

A19/$s-A'6 /5:J 

ALE 

80186/80188 CPU 

T, T, Tw 

TCHU;-:;:~ 1-

WRITE CYCLE 

RQ,INTA, 
DT/R ~ VOH 

INTA CYCLE 

fiij,~~VOH 
tlit11: = VOL 

DT/R 

SOFTWARE HALT-DT/R ~VOL' 
RD, WR, INTA, DEN ~ VOH 

pcs, 
MCS 
LCS, 
UCS 

::LAV____ ~gt~l:: I::: TC,LAZ_ J-

1~5~Ao 1\ DATAOU' TClpox:r-

~--------II.~~~I~~ 
--I_--+"_V"'_-+-'~ ~r-+ITLLA: -- jl#~-

__ ~ __ -+ ____ '~_YY __ ~'_-~~I-~-+----l·~ .. ,.LW .. ~------~~ __ ~ __ ~ ____ _ 

- ..J- TCLAZ j/ \ 1- :CLDX 

--t---JI FLOAT /r POINTEI 1 FLOAT 

- ~- TCHCTV // I~lfl;=':!:£!!£!!..--
~ -J-~ ~[)'f-----
~ VI/ 

___ +-____ '_~Y~I _ __I..-[j . __ . i-rj-+J+-___ _ 

I 

---+---t 

-
INVALID ADDRESS 

_TCLCSV 

TCHC~X­

TCXCSX_ 

Figure 2·5 Major Cycle Timing Waveforms 

-

also means that good grounds must be provided to the 
80186, since its large drivers can discharge its outputs 
very quickly causing large current transients on the 80186 
ground pins. 

READIWRITE SIGNALS 

The 80186 does not provide early and late write signals, 
as does the 8288 bus controller. The WR * signal gener­
ated by the 80186 corresponds to the early write signal of 
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TCH1CH2 

CLKOUT 

52.So ---r----~----_+-----r------r_--_+--+.r~~77~t_----_+------------

BHEIS7,A 19156-A 16/S3 

READ CYCLE 

NOTES: 

ALE 

AD,,-ADo 

DTIR 

DEN 

PCS, 

MCii ----t""""' 
LCS, 
UCS 

1. Following a Write cycle, the Local Bus is floated by the 80186 only when the 
80186 enters a "Hold Acknowledge" state. 

2. INTA occurs one clock later in RMX-mode. 
3. Status inactive just prior to T4 

Figure 2·5 Major Cycle Timing Waveforms (continued) 

QS1 

0 

0 

Table 2·17 80186 Queue Status 

QSO Interpretation 

0 no operation 

I 

QSO ----; 

QS1 ..... ---I 

80186 

ALE 

WR 

first byte of instruction taken 
from queue 

I 0 queue was reinitialized 
r-L-R_D __ .... 

I I subsequent byte of instruction 
taken from queue Figure 2·6 Generating Queue Status Information 
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CLOCK 
OUT 

186 

as ________ ~------~----~L-~----~_*--------

8086 --------~~------~--------~~,~----~~~------as ____________________________ ~'~ ____ ~J~ ____ __ 

1. 80186 changes queue status off falling edge of ClK 
2. 8086 changes queue status off rising edge of ClK 

Figure 2-7 80186 and 8086 Queue Status Generation 

the 8288. This means that data is not stable on the 
address/data bus when this signal is driven active. 

The 80186 also does not provide differentiated lIO and 
memory ready and write command signals. If these sig­
nals are desired, an external 8288 bus controller may be 
used, or the S2* signal may be used to synthesize differ­
entiated commands. 

2.5.3 Multiplexed Address/Data Bus 
(186,188) 

Because of the bus drive capabilities ofthe 80186 (200pF, 
sinking 2mA, sourcing 400!-,A, roughly twice that of the 
8086), this bus may not require additional buffering in 
many small systems. If data buffers are not used in the 
system, take steps to prevent bus contention between the 
80186 and the devices directly connected to the 80186 
data bus. Since the 80186 floats the address/data bus be­
fore activating any command lines, the only requirement 
on a directly connected device is that it floats its output 
drivers after a read BEFORE the 80186 begins to drive 
address information for the next bus cycle (consider the 
minimum time from RD* inactive until addresses active 
for the next bus cycle (tRHAV) which has a minimum value 
of 8Sns). If the memory or peripheral device cannot dis­
able its output drivers in time, data buffers will be re­
quired to prevent both the 80186 and the peripheral or 
memory device from driving these lines concurrently. 
Note, this parameter is unaffected by the addition of wait 
states. Data buffers solve this problem because their out­
put float times are typically much faster than the 80186 
required minimum. 

If buffers are required, the 80186 provides DEN* (Data 
ENable) and DT/R* (Data Transmit/Receive) signals to 
simplify buffer interfacing. The DEN* and DT/R * signals 
are activated during all bus cycles, whether or not the 
cycle addresses buffered devices. The DEN* signal is 
driven low whenever the processor is either ready to re­
ceive data (during a read) or when the processor is ready 
to send data (during a write); that is, any time during an 
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active bus cycle when address information is not being 
generated on the address/data pins. In most systems, the 
DEN* signal should NOT be directly connected to the 
OE* input of buffers, since unbuffered devices (or other 
buffers) may be directly connected to the processor's 
address/data pins. If DEN* were directly connected to 
several buffers, contention would occur during read cy­
cles, as many devices attempt to drive the processor bus. 
Rather, DEN* should be a factor (along with the chip se­
lects for buffered devices) in generating the output enable 
input of a bi-directional buffer. 

The DT/R * signal determines the direction of data propa­
gation through the bi-directional bus buffers. It is high 
when ever data is being driven out from the processor, 
and is low whenever data is being read into the processor. 
Unlike the DEN* signal, DT/R* may be directly con­
nected to bus buffers, since this signal does not usually 
directly enable the output drives of the buffer. See Figure 
2-8 for an example data bus subsystem supporting both 
buffered and unbuffered devices. Observe the A side of 
the 8286 buffer is connected to the 80186, the B side to 
the external device. The B side of the buffer has greater 
drive capacity than the A side (since it is meant to drive 
much greater loads). The DT/R* signal can directly drive 
the T (transmit) signal of the buffer, since it has the cor­
rect polarity for this configuration. 

CONTROL SIGNALS 

The 80186 directly provides the control signals RD*, 
WR*, LOCK*, and TEST*. In addition, the 80186 pro­
vides the status signals SO*-S2 * and S6 from which all 
other required bus control signals can be generated. 

RD* ANDWR* 

The RD* and WR * signals strobe data to or from memory 
or lIO space. The RD* signal is driven low off the begin­
ning of T2, and is driven high off the beginning of T4 
during all memory and lIO reads (see Figure 2-9). RD* 
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Figure 2·8 Example 80186 Buffered/Unbuffered Data Bus 

will not become active until the 80186 has ceased driving 
address information on the address/data bus. Data is sam­
pled into the processor at the beginning of T4. RD* will 
not go inactive until the processor's data hold time (IOns) 
has been satisfied. 

Note that the 80186 does not provide separate I/O and 
memory RD* signals. If separate I/O read and memory 
read signals are required, they can be synthesized using 
the 52* signal (which is low for all I/O operations and 
high for all memory operations) and the RD* signal (see 

Figure 2-10). If this approach is used, the 52* signal will 
required latching, since the 52* signal (like 50* and 51 *) 
goes to a passive state well before the beginning of T4 
(where RD* goes inactive). If 52* was directly used for 
this purpose, the type of read command (I/O or memory) 
could change just before T4 as 52* goes to the passive 
state (high). The status signals may be latched using ALE 
in an identical fashion as is used to latch the address sig­
nals (often using the spare bits in the address latches). 

CLOCK 
OUT 

ADO­

AD15 

1. tClAZ: Clock low until address float=35 ns max 
2. tClRl: Clock low until RD active = 70 ns max 
3. tAZRl: Address float until RD active = 0 ns min 
4. tDVCl: Data valid until clock low (data input set-up time) = 20 ns min' 
5. tClDX: Clock low until data invalid (data input hold time from clock) = 10 

ns min' 
6. tClRH: Clock low until RD high = 10 ns min 
7. tRHAV: RD high until addresses valid = 85 ns min _ 
8. tRHDX: Read high until data invalid (data input hold from RD) = 0 ns min' 
, Input requirements of 80186, all others are output characteristics 

Figure 2·9 Read Cycle Timing 
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Figure 2·10 Generating 1/0 and Memory Read Signals 

Often the lack of separate liD and memory RD* signal is 
not important in an 80186 system. Each of the 80186 chip 
select signals will respond on only one of memory or liD 
accesses (the memory chip selects respond only accesses 
to memory space; the peripheral chip selects can respond 
to accesses to either I/O or memory space, at programmer 
option). Therefore, the chip select signal enables the ex­
ternal device only during accesses to the proper address in 
the proper space. 

The WR * signal is also driven low off the beginning of T2 
and driven high off the beginning of T4. Like the RD* 
signal, the WR* signal is active for all memory and liD 
writes, and also like the RD* signal, separate liD and 
memory writes may be generated using the latched S2 * 
signal along with the WR* signal (see Figure 2-11). More 
importantly, however, is the active going edge of write. At 
the time WR * makes its active (high to low) transition, 
valid write data is NOT present on the data bus. When 
using this signal as a write enable signal for DRAMs and 
iRAMs consider that both of these devices require that the 
write data be stable on the data bus at the time of the 
inactive to active transition of the WE* signal. In DRAM 

T, 

ADO· 

applications, a DRAM controller (such as the Intel 8207 
or 8203) solves this problem while with iRAMs this prob­
lem may be solved by placing cross-coupled NAND gates 
(S-R latch) between the CPU and the iRAMs on the WR* 
line (see Figure 2-12). This S-R latch will delay the active 
going edge of the WR * signal to the iRAMs by a clock 
phase, allowing valid data to be driven onto the data bus. 

STATUS LINES 

The 80186 provides three status outputs which are used to 
that indicate the type of bus cycle currently being exe­
cuted. These signals go from an inactive state (all high) to 
one of seven possible active states during the T state im­
mediately preceding T1 of a bus cycle (see Figure 2-13). 
The possible status line encodings and their interpreta­
tions are given in Table 2-18. The status lines are driven 
to their inactive state in the T state (T3 or Tw) immedi­
ately preceding T4 of the current bus cycle. 

The status lines may be directly connected to an 8288 bus 
controller, which can be used to provide local bus control 

T3 

AD15 __ ~~~~J~ ______ +-~~ __ ~~ ____ ~~'\-~~ ___ 
\Vii 

I 
I 
I I I 

1. tCLOV: Clock low until data valid = 44 ns max 
2. tCVCTV: Clock low until WR active = 70 ns max 
3. tCVCTX: Clock low until WR inactive = 55 ns max 
4. tCLOOX: Clock high until data invalid = 10 ns max 

5. WR inactive until data invalid = tCLCL min - tCVCTX + tCLDOX 

= 125 - 55 + 10 

= 80 ns 

Figure 2·11 Write Cycle Timing 
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Figure 2·13 Active·lnactive Status Transitions 

Table 2·18 80186 Status Line Interpretation 

S2 S1 S9 Operation 

0 0 0 interrupt acknowledge 
0 0 I read I/O 
0 I 0 write I/0 
0 I 1 halt 
1 0 0 instruction fetch 
I 0 1 read memory 
1 I 0 write memory 
1 1 1 passive 

signals or MULTIBU5 control signals (see Figure 2-14). 
Use of the 8288 bus controller does not preclude the use 
of the 80186 generated RD*, WR* and ALE signals, 
however. The 80186 directly generated signals may be 
used to provide local bus control signals, while an 8288 
provides MULTIBU5 control signals, for example. 
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80186 

8288 

SO-52 SO-52 
BUS CONTROL 

CLOCK SIGNALS 
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CLK 

Figure 2·14 80186/8288 Bus Controller 
Interconnection 

The 80186 provides two additional status signals: 56 and 
57. 57 is equivalent to BHE* (refer to Volume I of this 
User's Guide) and appears on the same pin as BHE*. 
BHE*/57 changes state, reflecting the bus cycle about to 
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be run, in the middle of the T state (T4 or Ti) immediately 
preceding Tl of the bus cycle. This timing means that 
BHE*/S7 does not need to be latched, i.e., it may be used 
directly as the BHE* signal. S6 provides information con­
cerning the unit generating the bus cycle. It is time multi­
plexed with A19, and is available during T2, T3, T4, and 
Tw. In the 8086 family, all central processors (e.g., the 
8086, 8088, and 8087) drive this line low, while all I/O 
processors (e.g., 8089) drive this line high during their 
respective bus cycles. Following this scheme, the 80186 
drives this line low whenever the bus cycle is generated by 
the 80186 CPU, but drives it high when the bus cycle is 
generated by the integrated 80186 DMA unit. This proc­
ess allows external devices to distinguish between bus cy­
cles fetching data for the CPU from those transferring 
data for the DMA unit. 

The three other status signals, S3, S4, and S5, available 
on the 8086 are not provided on the 80186. Together, S3 
and S4 indicate the segment register from which the cur­
rent physical address derives. S5 indicates the state of the 
interrupt flip-flop. On the 80186, these signals will al­
ways be low. 

TEST" AND LOCK" 

The 80186 provides a TEST* input and a LOCK* output. 
The TEST* input is used in conjunction with the proces­
sor WAIT instruction. TEST* is typically driven by a 
processor extension (like the 8087) to indicate whether it 
is busy. Then, by executing the WAIT (or FWAIT) in­
struction, the central processors may be forced to tempo­
rarily suspend program execution until the processor 
extension indicates that it is idle by driving the TEST* 
line low. 

The CPU drives LOCK* output low whenever the data 
cycles of a LOCKED instruction are executed. A 
LOCKED instruction is generated whenever the LOCK 
prefix occurs immediately before an instruction. The 
LOCK prefix is active for the single instruction immedi­
ately following the LOCK prefix. This signal indicates to 
a bus arbiter (e.g., the 8289) that a series of locked data 
transfers is occurring. The bus arbiter should not release 
the bus while locked transfers are occurring. The 80186 
will not recognize a bus HOLD, nor will it allow DMA 
cycles to be run by the integrated DMA controller during 
locked data transfers. Locked transfers are used in multi­
processor systems to access memory based semaphore 
variables which control access to shared system resources 
(refer to Intel Application Note AP-106, "Multiprogram­
ming with the iAPX88 and iAPX86 Microsystems," by 
George Alexy, September 1980). 

On the 80186, the LOCK* signal goes active during Tl of 
the first DATA cycle of the locked transfer. It is driven 
inactive three T states after the beginning of the last DATA 
cycle of the locked transfer. On the 8086, the LOCK* 
signal is activated immediately after the LOCK prefix is 
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Figure 2-15 Circuit Holding LOCK" Active 
Until Ready is Returned 

executed. The LOCK prefix may be executed well before 
the processor is prepared to perform the locked data 
transfer. This process activates the LOCK* signal before 
the first LOCKED data cycle is performed. Since LOCK* 
is active before the processor requires the bus for the data 
transfer, opcode pre-fetching can be LOCKED. However, 
since the 80186 does not activate the LOCK * signal until 
the processor is ready to actually perform the locked 
transfer, locked pre-fetching will not occur with the 
80186. 

The LOCK* signal does not remain active until the end of 
the last data cycle of the locked transfer; this may cause 
problems in some systems if, for example, the processor 
requests memory access from a dual ported RAM array 
and is denied immediate access (because of a DRAM re­
fresh cycle, for example). When the processor finally 
gains access to the RAM array, it may have already 
dropped its LOCK* signal. This allows the dual port con­
troller to give the other port access to the RAM array 
instead. Figure 2-15 illustrates an example circuit which 
can be used to hold LOCK* active until a RDY has been 
received by the 80186. 

MULTIBUS® APPLICATIONS 

The 8288 and 8289 are the bus controlled and multi­
master bus arbitration devices used with the 8086 and 
8088. Because the 80186 bus is similar to the 8086 bus, 
they can be directly used with the 80186 (see Figure 
2-16). 

The 8288 bus controller generates control signals (RD*, 
WR*, ALE, DTlR*, DEN, etc.) for an 8086 maximum 
mode system. It derives its information by decoding status 
lines SO*-S2 * of the processor. Because the 80186 and the 
8086 drive the same status information on these lines, the 
80186 can connect directly to the 8288 just as in an 8086 
system. Using the 8288 with the 80186 does not prevent 
using the 80186 control signals directly. Many systems 
require both local bus control signals and system bus con­
trol signals. In this type of system, the 80186 lines could 
be used as the local signals, with the 8288 lines used as 
the system signals. 
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NOTE 

In an 80186 system, the 8288-generated ALE 
pulse occurs later than that of the 80186 itself. 

In multi-master bus systems, use the 8288 ALE pulse to 
strobe the addresses into the system bus address latches to 
insure that the address hold times are met. 

The 8289 bus arbiter arbitrates the use of a multi-master 
system bus among various devices each of which can be­
come the bus master. This component also decodes status 
lines 80*-82 * of the processor directly to determine when 
the system bus is required. When the system bus is re­
quired, the 8289 forces the processor to wait until it has 
acquired control of the bus, then it allows the processor to 
drive address, data and control information onto the sys­
tem bus. The system determines when it requires system 
bus resources by an address decode. Whenever the ad­
dress being driven coincides with the address of an 
on-board resource, the system bus is not required and 
thus will not be requested. The circuit shown in Figure 
2-16 factors the 80186 chip select lines to determine when 
the system bus should be required, or when the 80186 
request can be satisfied using a local resource. 

2.5.4 Data Transfer 

During clock cycles T2, T3, Tw, and T4 of a bus cycle the 
m}lltiplexed address/data bus becomes a 16-bit data bus. 
Data transfers on this bus may be either in bytes or in 
words. All memory is byte addressable. This means that 
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the upper and lower byte of a 16-bit word each have a 
unique byte address by which they may be individually 
accessed, even though they share a common word address 
(see Figure 2-17). 

All bytes with even addresses (AO = 0) reside on the lower 
8 bits of the data bus, and all bytes with odd addresses 
(AO = 1) reside in the upper 8 bits of the data bus. When­
ever an access is made to only an even byte, AO is driven 
low, BHE* is driven high, and the data transfer occurs on 
00-07 of the data bus. Whenever an access is made to 
only an odd byte, BHE* is driven low, AO is driven high, 
and the data transfer takes place on 08-016 of the data 
bus. If a word access is performed to an even address, 
both AO and BHE* are driven low and the data transfer 
takes place over the entire 16-bit data bus (00-015). 

Word accesses are made to the addressed byte and the 
next higher numbered byte. Two byte accesses must be 
performed if a word access is performed to an odd ad­
dress, the first to access the odd byte at the first word 
address on 08-015, and the second to access the even 
byte at the next sequential word address on 00-07. For 
example, byte 0 and byte 1 can be individually accessed 
(read or written) in two separate bus cycles (byte ac­
cesses) to byte addresses 0 and 1 at word address 0 (see 
Figure 2-17). They may also be accessed together in a 
single bus cycle (word access) to word address O. How­
ever, two word access bus cycles are required to address 
1. The first cycle accesses byte 1 at word address 0 (note 
byte 0 will not be accessed), and the second cycle ac­
cesses byte 2 at word address 2 (note byte 3 will not be 
accessed). Therefore, to maximize processor perform­
ance, all data should be located at even addresses. 

When byte reads are made, the data returned on the half 
of the data bus not being accessed is ignored. When byte 
writes are made, the data driven on the half of the data bus 
not being written is indeterminate. 

2.5.5 Memory and 110 Peripherals Interface 

The 80186 uses the same techniques for interfacing mem­
ory (i.e., static RAM, dynamic RAM, EPROM, and 
ROM) as used for the 8086. Before continuing with this 
section, review the discussions regarding memory inter­
face in paragraphs 1.5.4. 

MEMORY INTERFACE 

The 80186 includes a chip select unit that generates hard­
ware chip select signals for memory and I/O accesses 
generated by the 80186 CPU and OMA units. This unit is 
programmable to fulfill the chip select requirements (in 
terms of memory device or bank size and speed) of most 
small and medium sized 80186 systems. 
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Chip selects are driven for internally generated bus cycles 
only. Any cycles generated by an external unit (e. g., an 
external DMA controller) will not cause the chip selects 
to go active. Therefore, any external bus masters must be 
responsible for their own chip select generation. Also, 
during a bus HOLD, the 80186 does not float (i.e., tri­
state) the chip-select lines. Therefore, logic must be in­
cluded to enable the devices to which the external bus 
master wishes to access (see Figure 2-18). 

ROM and EPROM Interface 

The Intel 2764 EPROM provides one of the simplest 
memory interfaces to implement with the 80186. The ad­
dress is latched using the address generation circuit (see 
Figure 2-19). The AO line of each EPROM is connected 

to the Al address line from the 80186, NOT to the AO 
line. Also, AO signals a data transfer on only the lower 8 
bits of the 16-bit data bus. The EPROM outputs are con­
nected directly to the address/data inputs of the 80186, 
and the 80186 RD* signal is used as the OE* for the 
EPROMs. 

The chip select output of the 80186 drives the chip enable 
of the EPROM directly. For this configuration, access 
time for the EPROMs is calculated as follows: 

Time from address: 

!cLAY + (3 + N)*tcLcL - t[YQy(8282) -tDYCL 
= 375 + (N * 125) -44-30 -20 
=281 +(N * 125) ns 

80186 CHIP SELECT~ MEMORY or I/O 

EXTER"N'A"LL~Y~G~E=N~E=R~AT~E~D"'CHIP SELECT ---~ DEVICE CHIP SELECT 

Figure 2-18 80186/External Chip Select/Device Chip Select Generation 
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Time from chip select: 

(3 + N)*tCLC - tCLCSV - tOVCL 
= 375 + (N * 125) -66-20 
=289+(N * 125) ns 

Time from RD* (OE*): 

(2 + N)tcLCL - tCLRL - tOVCL 
=250+(N * 125)-70-20 
=160+(N * 125) ns 

where: 

tcLAV time from clock low in T1 until address are 
valid 

tcLCL clock period of processor 
t,vov time from input valid of 8282 until output valid 

of 8282 
tOVCL 186 data valid input setup time until clock low 

time ofT4 
tcLCSV time from clock low in T 1 until chip selects are 

valid 
tCLRL time from clock low in T2 until RD* goes low 
N number of wait states inserted 

As indicated in the preceding calculations, 250ns 
EPROMs must be used for zero wait state operation. The 
only significant parameter not included in the preceding 
calculations is tRHAV ' This is the time from RD* inactive 
(high) until the 80186 begins driving address information. 
This parameter is typically 85ns to meet the 2764-25 
(250ns speed selection) output float time requirement 
(85ns). If slower EPROMs are used, a discrete data buffer 
MUST be inserted between the EPROM data lines and the 
address/data bus. This is required since these devices may 
continue to drive data information on the multiplexed 
addressl data bus when the 80186 begins to drive address 
information for the next bus cycle. 

RAM Interface 

Randon access memory (RAM) devices are interfaced to 
the 80186 very much as they are interfaced to the 8086. 
The Intel 2186 iRAM is a memory device ideally suited 
for 80186 applications (see Figure 2-20). This RAM de­
vice incorporates many requisite system features, includ­
ing low power dissipation, automatic initialization, 
extended cycle operation, and two-line bus control to 
eliminate bus contention. The 2186 almost ideally 
matches the 80186 because of its large scale integration 
and the fact that it does not require address latching. 

The 2186 is internally a dynamic RAM integrated with 
refresh and control circuits. It operates in two modes: 
pulse mode and late cycle mode. Pulse mode is entered if 
the CE* input signal to the device is low for a maximum 
of 130ns, and requires the command input (RD* or WE*) 
to go active within 90ns after CE*. Because of these re­
quirements, interfacing the 80186 to the 2186 in pulse 
mode would be difficult. Instead, the late cycle mode is 
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used to afford a much simpler interface with no loss of 
performance. The iRAM automatically selects between 
these modes by the nature of the control signals. 

The 2186 is a leading edge triggered device, therefore, 
address and data information are strobed into the device 
on the active going (high to low) transition of the com­
mand signal. This action requires that both CE* and WR* 
be delayed until the address and data driven by the 80186 
are guaranteed stable. Figure 2-20 shows a simple circuit 
which can be used to perform this function. ALE CAN­
NOT be used to delay CE* if addresses are not latched 
externally. This would violate the address hold time re­
quired by the 2186 (30ns). 

Since the 2186 devices are RAMs, data bus enables BHE* 
and AO MUST be used to factor either the chip enables or 
write enables of the lower and upper bytes of the 16-bit 
RAM memory system. If this is not done, all memory 
writes, including single byte writes, will write to both the 
upper and lower bytes of the memory system. The exam­
ple system shown in Figure 2-20 uses BHE* and AO as 
factors to the 2186 CE * because both of these signals (AO 
and BHE*) are valid when the address information is 
valid from the 80186. 

The 2186 requires a certain amount of recovery time be­
tween the time chip enable goes inactive and the chip en­
able going active to insure proper operation. For a 
"normal" cycle (a read or write), this time is tEHEL = 40 
ns. The 80186 chip select lines go inactive soon enough at 
the end of a bus cycle to provide the required recovery 
time even if two consecutive accesses are made to the 
iRAMs. If the 2186 *CE is asserted without a command 
signal (WE* or OE*), a false memory cycle (FMC) is 
generated. Whenever an FMC is generated, the recover 
time is much longer; another memory cycle must not be 
initiated for 200ns. As a result, if the memory system will 
generate FMCs, CE* must be taken away in the middle of 
the T state (T3 or Tw) immediately preceding T4 to insure 
that two consecutive cycles to the iRAM will not violate 
this parameter. Status going passive (all high) can be used 
for this purpose. These lines will all go high during the 
first phase of the next to last T state (either T3 or Tw) of a 
bus cycle. 

Since the 2186 is a dynamic device, it requires refresh 
cycles to maintain data integrity. The circuits that gener­
ate these refresh cycles are integrated within the 2186. To 
support the required refresh cycles the 2186 has a ready 
line which is used to suspend processor operation if a 
processor RAM access coincides with an internally gener­
ated refresh cycle. The ready line is an open collector 
output, allowing many devices to be wire OR'ed together, 
since more than one device may be accessed at a time. 
These lines are also normally ready, which means that 
they will be high whenever the 2186 is not being ac­
cessed, i.e., they will only be driven low if a processor 
request coincides with an internal refresh cycle. There­
fore, the ready lines from the iRAM must be factored into 
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Figure 2-20 Example 2186/80186 Inter1ace 

the 80186 RDY circuit only during accesses to the iRAM 
itself. Since the 2186 refresh logic operates asynchron­
ously to the 80186, this RDY line must be synchronized 
for proper operation with the 80186, either by the inte­
grated ready synchronizer or by an external circuit. The 
example circuit uses the integrated synchronizer associ­
ated with the ARDY processor input. 

The 2186 ready lines are active unless a processor access 
coincides with an internal refresh cycle. These lines must 
go inactive after a cycle is requested in time to insert wait 
states into the data cycle. The 2186 drives this line low 
within 50ns after CE * is received, which is early enough 
to force the 80186 to insert wait states if they are required. 
Of primary concern in this case is that the ARDY line be 
driven not active before its setup time in the middle of T2. 
This setup time is required by the nature of the 80186 
asynchronous ready synchronization circuits. Since the 
2186 RDY pulse may be as narrow as 50ns, if ready was 
returned after the first stage of the synchronizer, and sub­
sequently changed states within the ready setup and hold 
time of the high to low going edge of the CPU clock at the 
end of T2, improper operation may occur. 

The example interface shown in Figure 2-20 has a zero 
wait state RAM read access tie from CE* of: 
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3 * tCLCL - tcLCSV - (TTL delay) - tovCL 

= 375 -66- 30-20ns 
=258 ns 

where: 

tcLCL CPU clock cycle time 
tcLCsv time from clock low in T1 until chip selects are 

valid 
tOVCL = 80186 data in setup time before clock low in T4 

The data valid from OE* active is less than lOOns, and is 
therefore not an access time limiter in this interface. Ad­
ditionally, the 2186 data float time from RD* inactive is 
less than the 85ns 80186 imposed maximum. The CE* 
generation circuit shown in Figure 2-20 provides an ad­
dress setup time of at least 11 ns, and an address hold time 
of at least 35ns (assuming a maximum two level TTL de­
lay ofless than 30ns). 

Write cycle address setup and hold times are identical to 
the read cycle times. This circuit shown provides at least 
Ilns write data setup and lOOns data hold time from 
WE*, easily meeting the Ons setup and 40ns hold times 
required by the 2186. 

For more information concerning 2186 timing and inter­
facing refer to the 2186 data sheet in the Memory Compo­
nents Handbook (Intel Order Number: 210830-004, or 
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Figure 2·21 Example 8203/DRAM/80186 Interface 

the Intel Application Note AP-132, "Designing Memory 
systems with the 8Kx8 iRAM" by John Fallin and 
William Righter (June 1982). 

8203 Dynamic RAM Interface 

The Intel 8203 Dynamic RAM Controller is designed spe­
cifically to provide all of the signals necessary (i.e., con­
trol, address multiplexing, and refresh generation) to use 
2164, 2117 or 2118 dynamic RAMs in microcomputer 
systems. As such, it is ideally suited to 80186 applica­
tions. For an application example of an 80186 used with 
the 8203 and interfaced with 64K dynamic RAMs (see 
Figure 2-21). 

All 8203 cycles are generated from control signals (RD* 
and WR*) provided by the 80186. These signals will not 
go active until T2 of the bus cycle. In addition, since the 
8203 clock (generated by the internal crystal oscillator of 
the 8203) is asynchronous to the 80186 clock, all memory 
requests by the 80186 must be synchronized to the 8203 
before the cycle will be run. To minimize this synchroni-
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zation time, the 8203 should be used with the highest 
speed crystal that will maintain DRAM compatibility. 
Even if a 25 MHz crystal is used (the maximum allowed 
by the 8203), two wait states will be required by the ex­
ample circuit when using 150ns DRAMs with an 8 MHz 
80186, three wait states if 200ns DRAMs are used (see 
Figure 2-22). 

The entire RAM array controlled by the 8203 can be se­
lected by one or a group of the 80186 provided chip se­
lects. These chip selects can also be used to insert the wait 
states required by the interface. 

Since the 8203 is operating asynchronously to the 80186, 
the RDY output of the 8203 (used to suspend processor 
operation when a processor DRAM request coincides 
with a DRAM refresh cycle) must be synchronized to the 
80186 (the 80186 ARDY line provides the necessary 
ready synchronization). The 8203 ready outputs operate 
in a normally not ready mode, that is, they are only driven 
active when an 8203 cycle is being executed, and a re­
fresh cycle is not being run. This process differs funda­
mentally from the normally ready mode used by the 2186 
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8203 operation Total Access Time = 70 + 245 +85 +30 +20 = 450 ns (3.6 T-states) 

Figure 2·22 8203/2164A·15 Access Time Calculation 

iRAMs. The 8203 SACK* signal is presented to the 
80186 only when the DRAM is being accessed. Notice 
that the SACK* output of the 8203 is used, rather than the 
XACK * output. Since the 80186 will insert at least one 
full CPU clock cycle between the time RDY is sampled 
active, and the time data must be present on the data bus, 
using the XACK* signal would insert unnecessary addi­
tional wait states, since it does not indicate ready until 
valid data is available from the memory. (For more infor­
mation about 8203/DRAM interfacing and timing, refer 
to the 8203 data sheet, or Intel Application Note AP97 A, 
"Interfacing Dynamic RAM to iAPX86/88 Systems Us­
ing the Intel 8202A and 8203" by Brad May, April 1982). 

8208 Dynamic RAM Interface 

The Intel 8208 Dynamic RAM Controller is designed to 
address, refresh and directly drive 64K and 256K Dy­
namic RAM's in iAPX 186 and iAPX 188 systems. The 
8208 contains the control circuits capable of supporting 
one of several possible interface bus structures (see Fig­
ure 2-23). It may be programmed to run synchronous or 
asynchrouous to the processor clock. The 8208 has been 
optimized to run synchronously with the 801861188 and 
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when programmed to run asynchronously it inserts the 
necessary synchronization circuits for RD*, WR *, PE*, 
and PCTL inputs. 

The 8208 is capable of addressing 64K and 256K dynamic 
RAMs. It directly supports the 2164A RAM family or 
any RAM with similar timing requirements. Figure 2-24 
shows the connection of the processor address bus to the 
8208 using the different RAMs. 

The 8208 divides memory into two banks with each bank 
having its own Row Address Strobe (RAS*) pair and 
Column Address Strobe (CAS*) pair. This organization 
permits RAM cycle interleaving. RAM cycle interleaving 
overlaps the start of the next RAM cycle with the RAM 
precharge period of the previous RAM cycle. Hiding the 
precharge period of one RAM cycle behind the data ac­
cess period of the next RAM cycle optimizes memory 
bandwidth and is effective as long as successive RAM 
cycles occur in the alternate banks. Successive data ac­
cesses to the same bank cause the 8208 to wait for the 
precharge time of the previous RAM cycle. The excep­
tion to this is when the 8208 is programmed in an iAPX 
186 synchronous configuration consecutive read cycles to 
the same bank do not result in additional wait states, zero 
wait state reads result. 
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Figure 2·23 8208 Dynamic RAM Controller Interfaces 

If all of the RAM banks are not occupied, the 8208 reas­
signs the RAS* and CAS* strobes to allow wider data 
words without increasing the loading on the RAS* and 
CAS* drivers. Table 2-19 shows the bank selection decod­
ing and the horizontal word expansion, including RAS* 
and CAS* assignments. For example, if only one RAM 
bank is occupied, the two RAS* and CAS* strobes are 
activated with the same timing. Program bit RB is not 
used to check the bank select input BS. System design 
must protect from "illegal", non-existent banks of mem­
ory by deactivating the PE input when addressing an "il­
legal", non-existent bank of memory. The 8208 adjusts 
and optimizes either the fast or slow RAMS as 
programmed. 

a_ 8208 Memory Initialization 

After programming is complete, the 8208 performs eight 
RAM "wake-up" cycles to prepare the dynamic RAM for 
proper device operation. During the "warm-up" some of 
the RAM interface parameters may not be met, but this 
should not harm the dynamic RAM array. 
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h. Refresh 

The 8208 provides an internal refresh interval counter and 
a refresh address counter to allow the 8208 to refresh 
memory. It will refresh 128 rows every 2 milliseconds or 
256 rows every 4 milliseconds. This allow RAM refresh 
options to be supported. Also, the 8208 has the ability to 
refresh 256 row address locations every 2 milliseconds 
via the Refresh Period programming option. the 8208 
may be programmed for any of five refresh options. 
These are: 

1. Internal refresh only; 

2. External refresh with failsafe protection; 

3. External refresh without failsafe protection; 

4. Burst Refresh modes; 

5. No Refresh. 

The refresh time interval may be decreased by 10%,20% 
or 30%. This option allows the 8208 to compensate for 
reduced clock frequencies. An additional 5 % interval 
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Figure 2-24 8208 Processor Address Interfaces 

shortening is built-in in all refresh interval options to com­
pensate for lock variations and non-immediate response to 
the internally generated refresh request. 

c_ External Refresh Requests After RESET 

External refresh requests are not recognized by the 8208 
until after it is finished programming and preparing mem­
ory for access. Memory preparation includes 8 RAM cy­
cles to prepare and ensure proper dynamic RAM 
operation. The time it takes for the 8208 to recognize a 
request is shown as follows. 

Table 2-19 Bank Selection Decoding and Word 
Expansion 

Program Bank 
Bit Input 8208 
RB BS AAS/eA$ Pair Allocation 

0 0 'AAS'o l' CASo 1 to Bank 0 

0 1 Illegal 

1 0 RASo, CAS'o to Bank 0 

1 1 ~1' CAS1 to Bank 1 
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TRESP = PROG + TPREP 

where: 

TPROG 
TPREP 

= (40)(TCLCL) which is programming time 
= (8)(32)(TCLCL) which is RAM warm-up 

time 

if TCLCL = 125 nsec then TRESP = 37 usec 

d. Reset 

The 8208 uses the falling edge of the asynchronous RE­
SET input to directly sample the logic levels of the PCTL, 
RFRQ, and POI inputs. The internally synchronized fall­
ing edge of reset is used to begin programming operations 
(shifting the contents of the external shift register, if 
needed, into the POI input). 

The 8208 will register bu t not respond to command and 
status inputs until programming is completed. A simple 
means of preventing commands or status from occurring 
this period is to differentiate the system reset pulse to ob­
tain a smaller reset pulse for the 8208. The total time of 
the 8208 reset pulse and the 8208 programming time must 
be less than the time before the first command the CPU 
issues in systems that alter default port synchronization 
programming bit (default is synchronous interface). Dif­
ferentiated reset is unnecessary when the default synchro­
nization programming is used. 

The differentiated reset pulse would be shorter than the 
system reset pulse by at least the programming period re­
quired by the 8208. The differentiated reset pulse first 
resets the 8208, and system reset would reset the rest of 
the system. While the rest of the system is still in reset, 
the 8208 completes its programming. Figure 2-25 illus­
trates a circuit to accomplish this task. Within four clocks 
after RESET goes active, all the 8208 outputs will go 
high, except for AOO-2, which will go low. 

2.5.6 Interpreting the 80186/80188 Bus 
Timing Diagrams 

The 80186 bus and the 8086 bus are very similar in struc­
ture. Both include a multiplexed address/data bus, along 
with various control and status lines. Table 2-20 lists the 
80186 bus signals by function and name. Each bus cycle 
requires a minimum of 4 CPU clock cycles along with 
any number of wait states required to accommodate the 
speed access limitations of external memory or peripheral 
devices. The bus cycles initiated by the 80186 CPU are 
identical to those initiated by the 80186 integrated DMA 
unit. The following paragraphs describe the 80186 bus 
timing with all timing values given for an 8MHz 80186. 
Any future speed selections for the 80186 may have dif­
ferent values for the various parameters. 
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Figure 2-25 8208 Differentiated Reset Circuit 

Eaeh 80186 clock cycle (called "T" states) are numbered 
sequentially T1, T2, T3, Tw and T4. Additional idle T 
states (T) can occur between T4 and TI when the proces­
sor requires no bus activity (instructions fetches, memory 
writes, 110 reads, etc.). The ready signals control the 
number of wait states (Tw) inserted in each bus cycle. This 
number can vary from zero to positive infinity. 

The beginning of the T state is signaled by a high to low 
transition of the CPU clock. Each T state is divided into 
two phases, phase 1 (or the low phase) and phase two (or 
the high phase) which occur during the low and high lev­
els of the CPU clock, respectively (see Figure 2-26). 

Different types of bus activity occur during all of the 
T-states (see Figure 2-27). Address generation informa­
tion occurs during T1, data generation during T2, Tl , Tw 
and T4. The beginning of a bus cycle is signaled by the 
status lines of the processor going from a passive state (all 
high) to an active state in the middle of the T-state imme-

=-1 
1-1 -(!}-1~ 

I (LOW 

I PHASE) 

I 

(!}2 

(HIGH 

PHASE) 

Figure 2-26 Single T-State 

L 
diately before TI (either T4 or T j). Because information 
concerning an upcoming bus cycle occurs during the 
T-state immediately before the first T-state of the actual 
bus cycle, two different types of T4 and T j can be gener­
ated. One where the T-state is immediately followed by a 
bus cycle and one where the T-state is immediately fol­
lowed by an idle T state. 

During the first type of T 4 or Tjo status information con­
cerning the upcoming bus cycle is generated. This infor­
mation will be available no later than tcHsv (55 ns) after 
the low-to-high transition of the 80186 clock in the middle 
of the T state. During the second type of T4 or Tjo the 
status outputs remain inactive (high), since no bus cycle is 
to be started. This means that the decision per the nature 
of a T 4 or T j state (Le., whether it is immediately followed 
by a T j or a T I) is decided at the beginning of the T-state 
immediately preceding the T4 or T j (see Figure 2-13). 
This has consequences for the bus latency time. 

Physical addresses are generated by the 80186 during TI 
of the bus cycle. Since the address and data lines are mul­
tiplexed on the same set of pins, addresses must be 
latched during T 1 if they are required to remain stable for 
the duration of the bus cycle. To facilitate latching of the 
physical address, the 80186 generates an active high ALE 
(Address Latch Enable) signal which can be directly con­
nected to a transparent latch's strobe input. 

Table 2-20 80186 Bus Signals 

Function Slgn.IN.me 

address/data ADO-ADIS 
address/status A16/S3-A19-S6,BHE/S7 
co-processor control TEST 
local bus arbitration HOLD,HLDA 
local bus control ALE,RD,WR,DT /it,DEN 
multi-master bus LOCK 
ready (wait) interface SRDY,ARDY 
status information SO-S2 
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Addresses are guaranteed valid for no more than teLA v (44 
ns) after the beginning of T I' and will remain valid at least 
teLAX (10 ns) after the end of T1• See Figure 2-28 for 
80186 physical address generation parameters. The ALE 
signal is driven high in the middle of the T state (either T 4 

or T.) immediately preceding T I and is driven low in the 
middle ofT!> no sooner than tAVAL (30 ns) after addresses 
become valid. This parameter (tAVAL) is required to satisfy 
the address latch set-up times of address valid until strobe 
inactive. Addresses remain stable on the address/data bus 
at least tLLAX (30 ns) after ALE goes inactive to satisfy 
address latch hold times of strobe inactive to address 
invalid. 

Because ALE goes high long before addresses become 
valid, the delay through the address latches will be mainly 

CLOCK 

OUT 

ALE 

AO-A19 -----...,..-t-~ 

NOTES: 

T, 

the propagation delay through the latch rather than the 
delay from the latch strobe, which is typically longer than 
the propagation delay. For the Intel 8282 latch, this pa­
rameter is tIVOV, the input valid to output valid delay when 
strobe is held active (high). Note that the 80186 drives 
ALE high one full clock phase earlier than either the 8086 
or 8288 bus controller. The 80186 also keeps ALE high 
throughout the 8086 or 8288 ALE high time (i.e., the 
80186 ALE pulse is wider). 

A typical circuit for latching physical addresses (see Fig­
ure 2-29) uses three 8282 transparent octal non-inverting 
latches to demultiplex all 20 address bits provided by the 
80186. Typically, the upper 4 address bits are used only to 
select among various memory components and subsys­
tems, so when the integrated chip selects (see paragraph 

T2 

1. tCHlH: Clock high to ALE high=35 ns max 
2. tcLAv: Clock low to address valid =44 ns max 

3. tCHlL: CloCk high to ALE low=35 ns max 
4. tCLAx: Clock low to address invalid (address hold from clock low)=10 ns 

min 
5. tllAX: ALE low to address invalid (address hold from ALE)=30 ns min 
6. tAVAl: Address valid to ALE low (address setup to ALE)=30 ns min 

Figure 2-28 80186 Address Generation Timing 
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Figure 2-29 Oemultiplexing the 80186 Address Bus 

2.8.4) are used, these upper bits do not need to be 
latched. The worst case address generation time from the 
beginning of T 1 (including address latch propagation time 
tIVOV of the Intel 8282) for the circuit is: 

tCLAV (44 ns) + t1vOV (30 ns) = 74 ns 

Many memory and peripheral devices may not require 
addresses to remain stable throughout data transfer. Ex­
amples of these are the 80130 and 80150 operating system 
firmware chips, and the 2186 8K x 8 iRAM. If a system is 
entirely constructed of these types of devices, addresses 
do not need to be latched. In addition, two of the periph­
eral chip select outputs from the 80186 may be configured 
to provide latched A I and A2 outputs for peripheral regis­
ter selects in a system which does not demultiplex the 
address/data bus. 

One additional signal is generated by the 80186 to address 
memory. This is BHE* (Bus High Enable). This signal, 
along with AO, is used to enable byte devices connected to 
either or both halves (bytes) of the 16-bit data bus. Be­
cause AO is used only to enable devices onto the lower 
half of the data bus, memory chip address inputs are usu­
ally driven by address bits AI-AI9, NOT AO-AI9. This 
provides 512K unique word addresses, or 1M unique 
BYTE addresses. BHE* is not present on the 8-bit 80188. 
All data transfers occur on the eight bits of the data bus. 
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2_5_7 Wait State Generator 

The 80186 provides two ready lines, a synchronous ready 
(SRDY) line and an asynchronous ready (ARDY) line. 
These lines signal the processor to insert wait states (Tw) 
into a CPU bus cycle. Wait states allow slower devices to 
respond to CPU service requests (reads or writes). They 
are only inserted when both ARDY and SRDY are low 
(i.e., only one of ARDY or SRDY need be active to termi­
nate a bus cycle). Any number of wait states may be in­
serted into a bus cycle. The 80186 will ignore the RDY 
inputs during an access to the integrated peripheral regis­
ters, and to any area where the chip select ready bits indi­
cate that the external ready should be ignored. 

Since the timing between the two ready lines is different, 
asynchronous ready inputs to the ARDY line are inter­
nally synchronized to the CPU clock before being pre­
sented to the processor (see Figure 2-30). Figure 2-31 
illustrates an ARDY synchronization circuit. The first 
flip-flop to "resolves" the asynchronous transition of the 
ARDY line. It will achieve a definite high or low level 
before the second flip-flop latches its output for presenta­
tion to the CPU. When latched high, it allows the level 
present on the ARDY line to pass directly to the CPU; 
when latched low, it forces not ready to be presented to 
the CPU. 

With this scheme, only the active going edge of the 
ARDY signal is synchronized. Once the synchronization 
flip-flop has sampled high, the ARDY input directly 
drives the RDY flip-flop. Since inputs to this RDY 
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Figure 2·30 Valid/Invalid ARDY Transitions 

flip-flop must satisfy certain setup and hold times, these 
setup and hold times (tARYLCL = 35ns and tcHARYX = 15ns 
respectively) must be satisfied by any inactive going tran­
sition of the ARDY line. Used in this manner, ARDY al­
lows a slow device the greatest amount of time to respond 
with a not ready after it has been selected. In a normally 
ready system, a slow device must respond with a not 
ready quickly after it has been selected to prevent the 

,processor from continuing and accessing invalid data 
from the slow device. By implementing ARDY in the 
above manner, the slow device has an additional clock 
phase to respond with a not ready. 

If RDY is sampled active into the RDY flip-flop at the 
beginning of T3 or Tw (meaning that ARDY was sampled 
high into the synchronization flip-flop in the middle of aT 
state, and has remained high until the beginning of the 
next T state), that T state will be immediately followed by 
T4. If RDY is sampled low into the RDY flip-flop at the 
beginning of T3 or T2 (meaning that either ARDY was 
sampled low into the synchronization flip-flop OR that 
ARDY was sampled high into the synchronization 
flip-flop, but has subsequently changed to low before the 
ARDY setup time) that T state will be immediately fol­
lowed by a wait state (Tw). Any asynchronous transition 
on the ARDY line not occurring during the above times, 
that is, when the processor is not "looking at" the ready 

2·45 210912-001 



ARDY 
INPUT 

80186/80188 CPU 

r----------------~ 

80186 I 

I I 
I 
I 
Icc 

I CPU 

I CLOCK-L- ________ _ ___ -.J 

FROM SYNCHRONOUS 
READY 

1. Asynchronous Resolution Flip Flop 
2. Ready Latch Flip Flop 

TO BUS 
INTERFACE 
UNIT 

NOTE: The second flip-flop is not actually in the circuit. It is drawn here only 
to show the functional equivalent of the interface to the BIU. 

Figure 2·31 Asynchronous Ready Circuits for the 80186 

2.5.8 80186 Synchronization lines, will not cause CPU malfunction. Again, for ARDY 
to force wait states to be inserted, SRDY must be tied low, 
since they are internally ORed together to form the proc­
essor RDY signal. 

The synchronous ready (SRDY) line requires that ALL 
transitions on this line during T2, T3 or Tw satisfy a cer­
tain setup and hold time (tSRYCL = 35 ns and tcLSRY = 15 ns 
respectively). If these requirements are not met, the CPU 
will not function properly (see Figure 2-32). The proces­
sor looks at this line at the beginning of each T3 and Tw. 
If the line is sampled active at the beginning of either of 
these two cycles, that cycle will be immediately followed 
by T4. If, however, the line is sampled inactive at the 
beginning of either of these two cycles, that cycle will be 
followed by a Tw. Any asynchronous transition on the 
SRDY line not occurring at the beginning of T3 or Tw, 
that is, when the processor is not "looking at" the ready 
lines will not cause CPU malfunction. 

Many input signals to the 80186 are asynchronous, that is, 
a specified set up or hold time is not required to insure 
proper functioning of the device. Associated with each of 
these inputs is a synchronizer which samples this external 
asynchronous signal, and synchronizes it to the interal 
80186 clock. 

CLOCK 
OUT 

SRDY 

SYNCHRONIZER REQUIREMENTS 

Every data latch requires a certain set up and hold time in 
order to operate properly. At a certain window within the 
specified set up and hold time, the latch will try to latch 
the data. If the input makes a transition within this win­
dow, the output cannot attain a stable state within the 
given output delay time. The size of this sampling 

1. Decision: Not ready, T-state will be followed by a wait state 
2. Decision: Ready, T-state will not be followed by a wait state 
3. tSRYCl: Synchronous ready stable until clock low (SRDY set-up 

time) = 35 ns min 

4. tClSRY: 

Clock low until synchronous ready transition (SRDY hold time) = 

15 ns min 

Figure 2·32 Valid SRDY Transitions on the 80186 
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Figure 2·33 Valid & Invalid Latch Input 
Transitions & Responses 

window is typically much smaller than the actual window 
specified by the data sheet specifications, however, part to 
part variation can move this actual window around within 
the specified window. 

Even ifthe input to a data latch makes a transition while a 
data latch is attempting to latch this input, the output of 
the latch will attain a stable state after a certain amount of 
time-typically much longer than the normal strobe to 
output delay time (see Figure 2-33). Therefore, in order 
to synchronize an asynchronous signal, sample the signal 
into one data latch, wait a certain amount of time, then 
latch it into a second data latch. Since the time between 
the strobe into the first data latch and the strobe into the 
second data latch allows the first data latch to attain a 
steady state (or to resolve the asynchronous signal), the 
second data latch will be presented with an input signal 
which satisfies any set up and hold time requirements it 
may have. The output of this second latch is a synchro­
nous signal with respect to its strobe input. 

A synchronization failure can occur if the synchronizer 
fails to resolve the asynchronous transition within the 
time between the two latch's strobe signals. The rate of 
failure is determined by the actual size of the sampling 
window of the data latch, and by the amount of time be· 
tween the strobe signals of the two latches. Obviously, as 
the sampling window gets smaller, the number of times an 
asynchronous transition will occur during the sampling 
window will drop. In addition, however, a smaller sam­
pling window is also indicative of a faster resolution time 
for an input transition which manages to fall within the 
sampling window. 

80186 SYNCHRONIZERS 

The 80186 contains synchronizers on the RES*, TEST*, 
TmrInO·I, DRQO·I, NMI, INTO-3, ARDY, and HOLD 
input lines. Each of these synchronizers use the two stage 
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Figure 2·34 Signal Float/HLDA Timing 

synchronization technique described above (with some 
minor modifications for the ARDY line, refer to para­
graph 2.5.1). The sampling window of the latches is de­
signed to be in the tens of pico-seconds, and should allow 
operation of the synchronizers with a mean time between 
failures of over 30 years assuming continuous operation. 

2.6 BUS EXCHANGE MECHANISMS 

The 80186 uses a HOLD/HLDA bus exchange protocol. 
This protocol allows other asynchronous bus master de­
vices (i.e., ones which drive address, data, and control 
information on the bus) to gain control of the bus to per­
form bus cycles (memory or 110 reads or writes). 

2.6.1 HOLD Response 

In the HOLD/HLDA protocol, a device requiring bus 
control (e.g., an external DMA device) raises the HOLD 
line. In response to this HOLD request, the 80186 will 
raise its HLDA line after it has finished its current bus 
activity. When the external device is finished with the bus, 
it drops its bus HOLD request. The 80186 responds by 
dropping its HLDA line and resuming bus operation. 

When the 80186 recognizes a bus hold by driving HLDA 
high, it will float many of its signals (see Figure 2-34). 
ADO·ADI5 (address/data 0·15) and DEN* (data enable) 
are floated within tCLAZ (35 ns) after the same clock edge 
that caused HLDA to be driven active. A16-A19 (address 
16-19), RD*, WR*, BHE* (Bus High Enable), DT/R* 
(Data Transmit/Receive*) and SO-S2 (status 0·2) are 
floated within lcHCZ (45 ns) after the clock edge immedi­
ately before the clock edge on which HLDA becomes 
active. 

Only the signals described in the previous paragraph float 
during bus HOLD. Signals that do not float during 
bus HOLD are mainly associated with peripheral 
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HOLD 

HLDA ____ :...... ___ ...:-___ -1 

1. tHVCL: Hold valid until clock low = 25 ns min 
2. tCLHAV: Clock low until HLDA active = 50 ns max 

Figure 2-35 80186 Idle Bus HOLD/HLDA Timing 

functionality or control bus devices, either directly or in­
directly. These signals include TmrOut, ALE (Address 
Latch Enable) and the chip select lines (UCS*, LCS*, 
MCSO-3*, and PCSO-6*). The designer should be aware 
that the chip select circuits do not look at externally gen­
erated addresses. Discrete chip select and ready genera­
tion logic must be used for memory or peripheral devices 
that are addresses by external bus master devices. 

2.6.2 HOLD/HLDA Timing and Bus Latency 

The time required between HOLD going active and the 
80186 driving HLDA active is known as bus latency. 
Many factors affect this latency, including synchroniza­
tion delays, bus cycle times, locked transfer times and 
interrupt acknowledge cycles. Since the HOLD request 
line is internally synchronized by the 80186, and it may 
be an asynchronous signal. To guarantee recognition on a 
certain clock edge, it must satisfy a certain setup and hold 
time to the falling edge of the CPU clock. A full CPU 
clock cycle is required for this synchronization, that is, 
the internal HOLD signal is not presented to the internal 
bus arbitration circuits until one full clock cycle after it is 
latched from the HOLD input. If the bus is idle, HLDA 
will follow HOLD by two CPU clock cycles plus a small 
amount of setup and propagation delay time. The first 
clock cycle synchronizes the input and the second clock 
cycle signals the internal circuits to initiate a bus hold. 
(See Figure 2-35.) 

Many factors influence the number of clock cycles be­
tween a HOLD request and a HLDA. These factors may 
make the latency longer than the best case shown above. 
One of the most important factors is that the 80186 will 
not relinquish the local bus until the bus is idle. An idle 
bus occurs whenever the 80186 is not performing any bus 
transfers. When the bus is idle the 80186 generates idle 
T-states. The bus can become idle only at the end of a bus 
cycle. Therefore, the 80186 can recognize HOLD only 
after the end of the current bus cycle. The 80186 will 
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normally insert no Tj states between T4 and TJ of the next 
bus cycle if it requires any bus activity (e.g., instruction 
fetches or 110 reads). However, the 80186 may not have 
an immediate need for the bus after a bus cycle, and will 
insert Tj states independent of the HOLD input. 

When the HOLD request is active, the 80186 will be 
forced to proceed from T4 to TjsO that the bus may be 
relinquished. See Figure 2-36. HOLD must go active 3 
T-states before the end of a bus cycle to force the 80186 to 
insert idle T-states after T4 (and to synchronize the re­
quest, and one to signal the 80186 that T 4 of the bus cycle 
will be followed by idle T-states). After the bus cycle has 
ended, the bus hold will be immediately acknowledged. If 
the 80186 has already determined that an idle T-state will 
follow T4 of the current bus cycle, HOLD only needs to 
go active two T-states before the end of the bus cycle to 
force the 80186 to relinquish the bus at the end of the 
current bus cycle. This is because the external HOLD re­
quest is not required to force the generation of idle 
T-states. 

An external HOLD has a higher priority than both the 
80186 CPU or the integrated DMA unit. However, an ex­
ternal HOLD will not separate the. two cycles needed to 
perform a word access to an odd memory location. Also, 
an external HOLD will not separate the two-to-four bus 
cycle required to perform a DMA transfer using the inte­
grated controller. Each of these factors will add additional 
bus cycle times to the bus latency of the 80186. 

Another factor influencing bus latency is locked transfers. 
Whenever a locked transfer is occurring, the 80186 will 
not recognize external HOLDs. The 80186 will also not 
recognize internal D MA bus requests. Locked transfers 
are programmed by preceding an instruction with the 
LOCK prefix. Any transfers generated by such a prefixed 
instruction will be locked, and will not be separated by 
any external bus requesting device. String instructions 
may be locked. Since string transfers may require thou­
sands of bus cycles, bus latency will suffer if they are 
locked. 

The final factor affecting bus latency time is interrupt ac­
knowledge cycles. When an external interrupt controller 
is used, or if the integrated interrupt controller is used in 
the iRMX86 mode the 80186 will run two interrupt ac­
knowledge cycles back to back. These cycles are automat­
ically "locked" and will never be separated by any bus 
HOLD, either internal or external. 

2.6.3 End of HOLD Timing 

After the 80186 recognizes that the HOLD input has gone 
inactive, it will drop its HLDA line in a single clock cy­
cle. Figure 2-37 shows this timing. The 80186 will insert 
only two Tj after HLDA has gone inactive, assuming that 
the 80186 has internal bus cycles to run. During the last 
Tj, status information will go active concerning the bus 
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Figure 2-36 HOLD/HLDA Timing 

1. HOLD internally synchronized 
2. Greater than 25 ns 
3. Less than 50 ns 
4. Lines come out of float only if a bus cycle is pending 

Figure 2-37 End of HOLD Timing Diagram 
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cycle about to be run. If the 80186 has no pending bus 
activity, it will maintain all lines floating (high impe­
dance) until the last Ti before it begins the first bus cycle 
after the HOLD. 

2.7 INTERRUPTS 

Interrupts fall into three classes: hardware initiated inter­
rupts; INT instructions; and instruction exceptions. Hard­
ware initiated interrupts usually occur in response to some 
external input and are classified as non-maskable or 
maskable. Software programs cause an interrupt with an 
INT instruction. Interrupt exceptions usually occur when 
some unusual circumstance, that prevents further instruc­
tion processing, occurs while attempting to process 
instructions. 

The 801861188 CPU receives interrupts from both inter­
nal and external sources. Internal interrupt sources such 
as the timers and DMA channels can be disabled by their 
own control registers or by mask bits in the integral inter­
rupt controller. The 80186/188 integral interrupt control­
ler has its own control registers that set the mode of 
operation for the controller. 

The integral interrupt controller operates in two major 
modes (refer to paragraph 2.4). These two modes of oper­
ation are the master (non-iRMX 86) mode and the iRMX 
86 mode. 

In the master mode the integral interrupt controller acts as 
the system master interrupt controller. Five pins (NMI 
and INTO-INT3) are provided in this interrupt mode for 
external interrupt sources. Each external interrupt source 
has a pre-assigned vector type and priority. (See Table 
2-21.) Vector types point to address information for inter­
rupt service routines. The user can program the interrupt 
sources into any of eight different priority by placing a 
3-bit priority level (0-7) in the control register of the in­
terrupt source. Vectors generated in the master mode are 
fixed and cannot be changed. 

In addition, the integral interrupt controller will generate 
interrupt vectors for the the integrated DMA channels and 
the integrated timers. Interrupt vectors for the external 
interrupt lines will also be generated by the integral inter­
rupt controller if the external interrupt lines are not confi­
gured in the cascade or special fully nested modes. 

In the iRMX 86 mode the integral interrupt controller op­
erates as a slave to an external interrupt controller which 
is the master system interrupt controller. Vector genera­
tion in this mode of operation is exactly like the operation 
of an 8259A slave. The interrupt generates an 8-bit vector 
which the CPU multiplies by four and uses as an address 
into a vector table. The significant five bits of the vector 
are user programmable while the lower three bits are gen­
erated by the priority logic. These bits represent the en-
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Table 2·21 801861188 Interrupt Vectors 

Vector Default Related 

I Interrupt Name 1\'pe ,Priority Instructions 

Divide Error 0 '1 DIV,IDIV 
Exception 

Single Step 1 12"2 All 
Interrupt 

NMI 2 1 All 
Breakpoint 3 '1 INT 

Interrupt 
INTO Detected 4 '1 INTO 

Overflow 
Exception 

Array Bounds 5 '1 BOUND 
Exception 

Unused-Opcode 6 '1 Undefined 
Exception Opcodes 

! ESC Opcode 7 '1'" ESC Opcodes 
Exception 

Timer 0 Interrupt 8 2A .... 
Timer 1 Interrupt 18 2B .... 
Timer 2 Interrupt 19 2C .... 
Reserved 9 3 
DMA 0 Interrupt 10 4 
DMA 1 Interrupt 11 5 
INTO Interrupt 12 6 
INTI Interrupt 13 7 
INT2 Interrupt 14 8 
INT3 Interrupt 15 9 

NOTES: 
*1. These are generated as the result of an instruction 

execution. 
* *2. This is handled as in the 8086. 

* * * *3. All three timers constitute one source of request to 
the interrupt controller. The Timer interrupts all have 
the same default priority level with respect to all 
other interrupt sources, However, they have a de­
fined priority ordering amongst themselves, (Priority 
2A is higher priority than 2B,) Each Timer interrupt 
has a separate vector type number. 

4. Default priorities for the interrupt sources are used 
only if the user does not program each source into a 
unique priority level. 

* * * 5, An escape opcode will cause a trap only if the 
proper bit is set in the peripheral control block relo­
cation register. 

coding of the priority level requesting service. The 
significant five bits of the vector are programmed by writ­
ing to the Interrupt Vector at offset 20H. 

For a detailed description of the operation of the integral 
interrupt controller in the various interrupts modes, and 
vector generation in these modes (refer to paragraph 
2.8.4). 

2.8 SUPPORT CIRCUITS 

The following paragraphs describe the various integral 
support circuits that are use to support the 801861188 
CPU's. These integral circuits are the Direct Memory 
Access (DMA) Unit, the Timer Unit, the Interrupt 
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Controller Unit, the Chip Select Unit and the Clock Gen­
erator Unit. Paragraph 2.2.1 provides an overview of 
these integral circuits. 

2.8.1 Direct Memory Access (DMA) Unit 

The 80186 contains an integrated DMA unit with two in­
dependent high speed DMA channels. These channels op­
erate independently of the CPU, and drive all integrated 
bus interface components (bus controller, chip selects, 
etc.) exactly as the CPU (see Figure 2-38). Therefore, 
bus cycles initiated by the DMA unit are exactly the same 
as bus cycles initiated by the CPU (except that S6 = I dur­
ing all DMA initiated cycles, refer to paragraph 2.5). 
Therefore, interfacing with the DMA unit itself is very 
simple, since, except for the addition of the DMA request 
connection, it is exactly the same as interfacing to the 
CPU. 

Data transfers can occur between memory and I/O spaces 
(e.g., Memory to I/O) or within the same space (e.g., 
Memory to Memory or I/O to I/O). Data can be transfer­
red either in bytes (8 bits) or in words (16 bits) to or from 
even or odd addresses. Each DMA channel maintains 
both a 20-bit source and destination pointer which can be 
optionally incremented or decremented after each data 
transfer (by one or two depending on byte or word trans­
fers). Each data transfer consumes two bus cycles (a mini­
mum of eight clocks), one cycle to fetch data and the 
other to store data. This provides a maximum data trans­
fer rate of one MW/sec (megaword/second) or two 
MBytes/sec. 

PROGRAMMING THE DMA UNIT 

Each of the two DMA channels contains several registers 
which are used to control the channel operations. These 
registers are included in the 80186 integrated peripheral 
control block. Registers included are the source and desti­
nation pointer registers, the transfer count register, and 
the control register. Layout and bit interpretations for 
these registers are shown in Figure 2-39. 

The 20-bit source and destination pointers allow access to 
the complete I Mbyte address space of the 80186. All 20 
bits are affected by the auto-increment or auto-decrement 
unit of the DMA (i.e., the DMA channels address the full 
1 Mbyte address space of the 80186 as a flat, linear array 
without segments). When addressing I/O space, the upper 
4 bits of the DMA pointer registers should be pro­
grammed to be O. If these upper 4 bits are not pro­
grammed to 0, the programmed value (greater than 64K 
in 110 space) will be driven onto the address bus where it 
is not accessable to the CPU. However, the data transfer 
will take place correctly. 
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Figure 2-38 80186 CPU/DMA Channel 
Internal Model 

After every DMA transfer the 16-bit DMA transfer count 
register is decremented by I, whether a byte transfer or a 
word transfer has occurred. If·the TC bit in the DMA 
control register is set, the DMA ST/STOP* bit (discussed 
later) will be cleared when this register goes to zero, caus­
ing DMA activity to cease. A transfer count of zero al­
lows 65536 (2 16) transfers. 

The DMA control register contains bits which control 
various channel characteristics. (See Figure 2-40.) This 
includes control bits for each of the data source and desti­
nation whether the pointer points to memory or I/O space, 
or whether the pointer will be incremented/decremented/ 
left alone after each DMA transfer. The control register 
also contains a bit which selects between byte or word 
transfers. Two synchronization bits are used to determine 
the source of the DMA requests. The TC bit determines 
whether DMA activity will cease after a programmed 
number of DMA transfers. The INT bit is used to enable 
interrupts to the processor when this has occurred. 

NOTE 

An Interrupt will not be generated to the CPU 
when the count reaches zero unless both the 
INT bit and the TC bit are set. 

The control register also contains a start/stop (ST/STOP*) 
bit. This bit is used to enable DMA transfers. Whenever 
this bit is set, the channel is "armed" and a DMA transfer 
will occur whenever a DMA request is made to the chan­
nel. If this bit is cleared, no DMA transfers will be per­
formed by the channel. A companion bit, the CHG/ 
NOCHG* bit, allows the contents of the DMA register to 
be changed without modifying the state of the start/stop 
bit. The ST/STOP* will only be modified if the CHG/ 
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Figure 2·39 80186 DMA Register Layout 

NOCHG* bit is also set during the write to the DMA 
control register. The CHG/NOCHG* bit is write only. 
This bit will always be read back as a '0'. Because DMA 
transfers could occur immediately after the ST/STOP* bit 
is set, this bit should only be set after all other DMA 
control registers have been programmed. This bit is auto­
matically cleared when the transfer count reaches zero 
and the TC bit in the DMA control register is set. This bit 
is also cleared when the transfer count register reaches 
zero and unsynchronized DMA transfers are programmed 
(regardless of the state of the TC bit). 

All DMA unit programming registers are directly access­
able by the CPU. This means the CPU can, for example, 
modify the DMA source pointer register after 137 DMA 
transfers have occurred, and have the new pointer value 
used for the 138th DMA transfer. If more than one regis­
ter in the DMA channel is being modified during the time 
when a DMA request may be generated, and the DMA 
channel is enabled (ST/STOP* bit set), the register pro-

gramming values should be placed into memory locations 
and moved into the DMA registers using a locked string 
move instruction. This will prevent a DMA transfer from 
occurring after only half of the register values have 
changed. This also holds true if a read/modify/write type 
of operation is being performed (e.g., ANDing off bits in 
a pointer register in a single AND instruction to a pointer 
register mapped into memory space. 

DMA TRANSFERS 

Every DMA transfer in the 80186 consists of two inde­
pendent bus cycles, the fetch cycle and the deposit cycle 
(see Figure 2-41). During the fetch cycle, the byte or 
word data is accessed from memory or I/O space using 
the address in the source pointer register. The data ac­
cessed is placed in an internal temporary register, which 
is not accessible by the CPU. During the deposit cycle, 
the byte or word data in this internal register is placed in 

Figure 2·40 DMA Control Register 
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Figure 2·41 Example DMA Transfer Cycle 

memory or I/O space using the address in the destination 
pointer register. These two bus cycles will not be sepa­
rated by bus HOLD or by the other DMA channel, and 
one will never be run without the other except when the 
CPU is RESET. Notice that the bus cycles run by the 
DMA unit are exactly the same as memory or liD bus 
cycles run by the CPU. The only difference between the 
two is the state of the S6 status line (which is multiplexed 
on the A 19 line): on all CPU initiated bus cycles, this 
status line will be driven low; on all DMA initiated bus 
cycles, this status line will be driven high. 

DMA REQUESTS 

Each DMA channel has a single DMA request line by 
which an external device may request a DMA transfer. 
The synchronization bits in the DMA control register de­
termine whether this line is interpreted to be connected to 
the source of the DMA data or the destination of the 
DMA data. All transfer requests on this line are synchro­
nized to the CPU clock before being presented to internal 
DMA logic. Any asynchronous transitions of the DMA 
request line will not cause the DMA channel to malfunc­
tion. In addition to external requests, DMA requests may 
be generated whenever the internal Timer 2 times out, or 
continuously by programming the synchronization bits in 
the DMA control register to call for unsynchronized 
DMA transfers. 

The 80186 DMA controller handles two types of inter­
nally synchronized DMA transfers: the first Timer 2 gen­
erates the DMA request, and the second where the DMA 
channel itself generates the DMA request. The DMA 
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channel can be programmed to generate a DMA request 
whenever Timer 2 reaches its maximum count. Setting 
the TDRQ bit in the DMA channel control register selects 
this feature. A DMA request generated in this manner 
will be latched in the DMA controller, so that once the 
timer request has been generated, it cannot be cleared ex­
cept by running the DMA cycle or by clearing the TDRQ 
bits in both DMA control registers. Before any DMA re­
quests are generated in this mode, Timer 2 must be initi­
ated and enabled. 

A timer requested DMA cycle being run by either DMA 
channel will reset the timer request. Thus, if both chan­
nels are using the timer to request a DMA cycle, only one 
DMA channel will execute a transfer for every timeout of 
Timer 2. Another implication of having a single bit timer 
DMA request latch in the DMA controller is that if an­
other Timer 2 timeout occurs before a DMA channel has 
a chance to run a DMA transfer, the first request will be 
lost (Le., only a single DMA transfer will occur, even 
though the timer has timed out twice). 

The DMA channel can also be programmed to provide its 
own DMA requests. In this mode, DMA transfer cycles 
will be run continuously at the maximum bus bandwidth, 
one after the other until the preprogrammed number of 
DMA transfers (in the DMA transfer count register) have 
occurred. This mode is selected by programming the syn­
chronization bits in the DMA control register for unsyn­
chronized transfers. In this mode, the DMA controller 
monopolizes the CPU bus (Le., the CPU will not be able 
to perform opcode fetching, memory operations, etc., 
while the DMA transfers are occurring). Also, the DMA 
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will only perform the number of transfers indicated in the 
maximum count register regardless of the state of the TC 
bit in the DMA control register. 

DMA REQUEST TIMING AND LATENCY 

Before any DMA request can be generated, the 80186 
internal bus must be granted to the DMA unit. A certain 
amount of time is required for the CPU to grant this inter­
nal bus to the DMA unit. The time between a DMA re­
quest being issued and the DMA transfer being run is 
known as DMA latency. Many of the issues concerning 
DMA latency are the same as those concerning bus la­
tency (refer to the paragraphs on Bus Exchange Mecha­
nisms). Consider the important difference that external 
HOLD always has bus priority over an internal DMA 
transfer. Thus, the latency time of an internal DMA cycle 
will suffer during an external bus HOLD. 

Each DMA channel has a programmed priority relative to 
the other DMA channel. Both channels may be pro­
grammed to be the same priority, or one may be pro­
grammed to be of higher priority than the other channel. 
If both channels are active, DMA latency will suffer on 
the lower priority channel. If both channels are active and 
both channels are of the same programmed priority, DMA 
transfer cycles will alternate between the two channels 
(i.e., the first channel will perform a fetch and deposit, 
followed by a fetch and deposit by the second channel, 
etc). 

The DMA request (DRQ) is sampled four clock cycles 
before the beginning of a bus cycle to determine if any 
DMA activity will be required. A minimum of four CPU 
clock cycles must occur between the time DRQ goes ac­
tive and the beginning of the first DMA cycle (see Figure 
2-42). It takes at least four clock cycles for the request to 
propagate through the logic circuits (see Figure 2-43). 
This time is independent of the number of wait states in­
serted in the bus cycle. The maximum DMA latency is a 
function of other processor activity. 

If DRQ is sampled active at point 1 in Figure 2-42, the 
DMA cycle will be executed, even if the DMA request 
goes inactive before the beginning of the first DMA cy­
cle. If the BIU is busy and cannot run the cycle when 
DRQ goes active, DRQ must remain active for a mini­
mum of four clock cycles before the time that it is possi­
ble to run the requested cycle. DMA requests are not 
permanently stored, therefore, if DRQ goes inactive after 
one clock, a zero will be propagated through the logic and 
no DMA cycles will be run. 

DMA ACKNOWLEDGE 

The 80186 does not generate an explicit DMA acknowl­
edge signal. Instead, a read or write directly to the DMA 
requesting device is performed. A DMA acknowledge 
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signal can be generated, if required, by decoding an ad­
dress, or by using one of the PCS* lines (see Figure 
2-44). 

NOTE 

ALE must be used to factor the DACK because 
addresses are not guaranteed stable when chip 
selects go active. The use of ALE is required 
because if the address is not stable when the 
PCS goes active, glitches can occur at the out­
put of the DACK generation circuits as the ad­
dress lines change state. Once ALE has gone 
low, the addresses are guaranteed to have been 
stable for at least tAvAL (30ns). 

EXTERNALLY SYNCHRONIZED DMA 
TRANSFERS 

The 80186 DMA controller is capable of two types of 
externally synchronized DMA transfers (requested exter­
nally rather than by integrated Timer 2 or by the DMA 
channel itself (in unsynchronized transfers). These trans­
fers are source synchronized and destination synchro­
nized transfers and are selected by programming the 
synchronization bits in the DMA channel control register. 
Source synchronized and destination synchronized trans­
fer differ in the time at which the DMA request pin is 
sampled to determine if another DMA transfer is immedi­
ately required after the currently executing DMA trans­
fer. For source synchronized transfers, the DMA request 
is sampled such that two source synchronized DMA trans­
fers may occur one immediately after the other. For desti­
nation synchronized transfers a certain amount of idle 
time is automatically inserted between two DMA transfers 
to allow time for the DMA requesting device to drive its 
DMA request inactive. 

Source Synchronized DMA Transfers 

In a source synchronized DMA transfer, the source of the 
DMA data requests the DMA cycle (for example, a 
floppy disk read from the disk to main memory). In this 
type of transfer, the device requesting the transfer is read 
during the fetch cycle of the DMA transfer. Since four 
CPU clock cycles elapse from the time DMA request is 
sampled to the time the DMA transfer is actually begun, 
and a bus cycle takes a minimum of four clock cycles, the 
earliest time the DMA request pin will be sampled for 
another DMA transfer will be at the beginning of the de­
posit cycle of a DMA transfer. This allows over three 
CPU clock cycles between the time the DMA requesting 
device receives an acknowledge to its DMA request 
(around the beginning ofT2 of the DMA fetch cycle), and 
the time it must drive this request inactive (assuming no 
wait states) to insure that another DMA transfer is not 
performed if it is not desired (see Figure 2-45). 
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1. Current DMA destination synchronized transfer will be followed 
immediately by another DMA transfer 

Figure 2-45 Source & Destination Synchronized DMA Request Timing 

Destination Synchronized DMA Transfers 

In destination synchronized DMA transfers, the destina­
tion of the DMA data requests the DMA transfer (for ex­
ample a floppy disk write from main memory to the disk). 
In this type of transfer, the device requesting the transfer 
is written during the deposit cycle of the DMA transfer. 
This transfer causes a problem since the DMA requesting 
device will not receive notification of the DMA cycle be­
ing run until three clock cycles before the end of the 
DMA transfer (if no wait states are being inserted into the 
deposit cycle of the DMA transfer) and four clock cycles 
elapse before the DMA controller can determine whether 
another DMA cycle should be run immediately following 
the current DMA transfer. To avoid this problem, the 
DMA unit will relinquish the CPU bus after each destina­
tion synchronized DMA transfer for at least two CPU 
clock cycles. This action allows the DMA requesting de­
vice time to drop its DMA request if it does not immedi­
ately desire another immediate DMA transfer. 

When the DMA unit relinquishes the bus, the CPU may 
resume bus operation (e.g., instruction fetching, memory 
or I/O reads or writes, etc.). Typically, a CPU initiated 
bus cycle will be inserted between each destination syn­
chronized DMA transfer. If no CPU bus activity is re­
quired, however (and none can be guaranteed), the DMA 
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unit will insert only two CPU clock cycles between the 
deposit cycle of one DMA transfer and the fetch cycle of 
the next DMA transfer. The DMA destination requesting 
device must drop its DMA request at least two clock cy­
cles before the end of the deposit cycle regardless of -the 
number of wait states inserted into the bus cycle. Figure 
2-45 shows the DMA request ending too late to prevent 
the immediate generation of another DMA transfer. Any 
wait states inserted in the deposit cycle of the DMA trans­
fer will lengthen the amount of time from the beginning of 
the deposit cycle to the time DMA will be sampled for 
another DMA transfer. Therefore, if the amount of time a 
device requires to drop its DMA request after receiving a 
DMA acknowledge from the 80186 is longer than the 0 
wait state 8MHz 80186 maximum (lOOns) from the start 
of T2, wait states can be inserted into the DMA cycle to 
lengthen the amount of time the device has to drop its 
DMA request after receiving the DMA acknowledge. Ta­
ble 2-22 lists the amount of time between the beginning of 
T2 and the time DMA request is sampled as wait states 
are inserted in the DMA deposit cycle. 

2.8.2 Timer Unit 

The 80186 contains three internal 16-bit programmable 
timers (see Figure 2-46) two of which are connected to 
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Table 2-22 DMA Request Inactive Timing 

! WAIT MAXIMUM TIME (ns) 
STATES 6MHz 8MHZ 

0 141 100 
I 308 225 
2 475 350 
3 641 475 

Table 2-23 Timer Control Block Format 

'Reg later Offset 

Reglater Name Tmr.O Tmr.1 Tmr.2 

Mode/Control Word 56H 5EH 66H 
Max Count B 54H 5CH not present 
Max Count A 52H 5AH 62H 
Count Register 50H 58H 60H 

four external pins (two pins per timer). These timers 
(Timers 0 and I) can be used to count external events, 
time external events, generate non-repetitive waveforms, 
etc. The third timer is not directly accessible through ded­
icated pins. This timer is useful for real-time coding and 
time delay applications and may be used to prescale the 
other two timers (refer to Volume I of this User's Guide). 

The timers are controlled by II 16-bit registers in the 
internal peripheral control block (refer to Table 2-23). 
The count register contains the current value of the timer 
and it can be read or written at any time independent of 
whether the timer is running or not. The value of this 
register will be incremented for each timer event. Each of 
the timers contains a MAX COUNT register, which de­
fines the maximum count the timer will reach. After 

TIMERO' 

reaching the MAX COUNT register value, the timer 
count value will reset to zero during that same clock (i.e" 
the maximum count value is never stored in the count reg­
ister itself). Timers 0 and I contain, in addition, a second 
MAX COUNT register, which enables the timers to alter­
nate their count between two different MAX COUNT val­
ues programmed by the user. If a single MAX COUNT 
register is used, the timer output pin switches LOW for a 
single clock, one clock after the maximum count value 
has been reached. In the dual MAX COUNT register 
mode, the output pin indicates which MAX COUNT reg­
ister is currently in use, thus allowing nearly complete 
freedom in selecting waveform duty cycles. For the timers 
with two MAX COUNT registers, the RIU bit in the con­
trol register determines which is used for the comparison. 

Each timer gets serviced every fourth CPU-clock cycle. 
Therefore, the timers, whether clocked internally or ex­
ternally can only operate at speeds up to one-quarter the 
internal clock frequency (one-eighth the crystal rate). 
This will be 2 MHz for an 8 MHz CPU clock. Due to 
internal synchronization and pipelining of the timer cir­
cuits, a timer output may take up to six clocks to respond 
to any individual clock or gate input. Since the count reg­
isters and the maximum count registers are all 16 bits 
wide, 16 bits of resolution are provided. However, any 
read or write access to the Timers will add one wait state 
to the minimum four-clock bus cycle. This is needed to 
synchronize and coordinate the internal data flows be­
tween the internal timers and the internal bus. 

TIMER INPUT PIN OPERATION 

Timers 0 and 1 each have individual timer input pins. 
All low-to-high transitions on these input pins are 

TIMER 2 

DMA 
REQ. 

T2 
INT. 
REQ. 

MAX COUNT VALUE CLOCK MAX COUNT VALUE MAX COUNT VALUE 
B B 

ALL 16 BIT REGISTERS 

MODE/CONTROL 
WORD 

INTERNAL ADDRESS/DATA BUS 

Figure 2-46 Timer Block Diagram 
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synchronized, latched, and presented to the counter ele­
ment when the particular timer is being serviced by the 
counter element. 

Signals on this input affect timer operation in three differ­
ent ways. The way the pin signals are used is determined 
by the external (EXT) and retrigger (RTG) bits in the 
timer control register. If the EXT bit is set, transitions on 
the input pin cause the timer count value to increment if 
the timer is enabled (the timer control register enable bit 
is set). Thus, the timer counts external events. If the EXT 
bit is cleared, all timer increments are caused by either 
the CPU clock or by Timer 2 timing out. In this mode, the 
RTG bit determines whether the input pin will enable 
timer operation, or whether it will retrigger timer 
operation. 

If the EXT bit is low and the RTG bit is also low, the timer 
will count internal timer events only when the timer input 
pin is high and the enable (EN) bit in the timer control 
register is set. 

In this mode, the pin is level sensitive, not edge sensitive. 
A low-to-high transition on the timer input pin is not re­
quired to enable timer operation. If the input is tied high, 
the timer will be continually enabled. The time enable 
input signal is completely independent of the EN bit in the 
timer control register: both must be high for the timer to 
count. Example uses for the timer in this mode would be a 
real time clock or a baud rate generator. 

If the EXT bit is low and the RTG bit is high, the timer 
will act as a digital one-shot. In this mode, every 
low-to-high transition on the timer input pin will cause the 
timer to reset to zero. If the timer is enabled (i.e., the EN 
bit in the timer control register is set) timer operation will 
begin and the timer will count CPU clock transitions or 
Timer 2 timeouts. Timer operation will cease at the end of 
a timer cycle, that is, when the value in the maximum 
count register A is reached and the timer count value re­
sets to zero (in single maximum count register mode, re­
member that the maximum count value is never stored in 
the timer count register) or when the value in maximum 
count register B is reached and the timer count value re­
sets to zero (in dual maximum count register mode). If 
another low-to-high transition occurs on the input pin be­
fore the end of the timer cycle, the timer will reset to zero 
and begin the timing cycle again regardless of the state of 
the continuous (CONT) bit in the timer control register. If 
the CONT bit in the timer control register is cleared, the 
timer EN bit will automatically be cleared at the end of 
the timer cycle. This means that any additional transitions 
on the input pin will be ignored by the timer. If the CONT 
bit in the timer control register is set, the timer will reset 
to zero and begin another timing cycle for every 
low-to-high transition on the input pin, regardless of 
whether the timer had reached the end of a timer cycle, 
because the timer EN bit would not have been cleared at 
the end of the timing cycle. An example use of the timer 
is this mode is an alarm clock time out signal or interrupt. 
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TIMER OUTPUT PIN OPERATION 

Timers 0 and 1 each contain a single timer output pin. 
This pin can perform two functions at programmer op­
tion. The first is a single pulse indicating the end of a 
timing cycle. The second is a level indicating the maxi­
mum count register currently being used. The timer out­
puts operate as outlined below whether internal or 
external clocking of the timer is used. If external clocking 
is used, however, the user should remember that the time 
between an external transition on the timer input pin and 
the time this transition is reflected in the timer out pin will 
vary depending on when the input transition occurs rela­
tive to the timer's being serviced by the counter element. 

When the timer is in single maximum count register mode 
(timer control register ALT bit cleared) the timer output 
pin goes low for a single CPU clock the clock after the 
timer is serviced by the counter element where maximum 
count is reached (see Figure 2-47). This mode is useful 
when using the timer as a baud rate generator. 

When the timer is programmed in dual maximum count 
register mode (timer control register ALT bit set), the 
timer output pin indicates which maximum count register 
is being used. The pin is low if maximum count register B 
is being used for the current count, high if maximum 
count register A is being used. If the timer is programmed 
in continuous mode (the CONTinuous bit in the timer 
control register is set), this pin could generate a waveform 
of any duty cycle. For example, if maximum count regis­
ter A contained 10 and maximum count register B con­
tained 20, a 33% duty cycle waveform would be 
generated. 

TIMER APPLICATIONS 

The 80186 timers can be used for almost any application 
for which a Qiscrete timer circuit would be used. These 
include real time clocks, baud rate generators, or event 
counters. 

Real Time Clock 

The sample program (see Figure 2-48) shows the 80186 
timer being used with the 80186 CPU to form a real time 
clock (see Figure 2-49). In this implementation, Timer 2 
is programmed to provide an interrupt to the CPU every 
millisecond. The CPU then increments memory based 
clock variables. 

Baud Rate Generator 

The 80186 timers can be used as baud rate generators for 
serial communication controllers (e.g., the 8274). Figure 
2-50 shows this simple connection and Figure 2-48 lists 
the code to program the timer as a baud rate generator. 
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TIMER 0 SERVICED --
INTERNAL ------------------~,r_--------4_------------------COUNT MAXCOUNT-1 

VALUE 

TMROUT--------------------------~ 
PIN 

Figure 2-47 80186 Timer Out Signal 

Event Counter 

The 81086 timer can be used to count events. Figure 2-51 
shows a hypothetical application in which the 80186 timer 
will count the interruptions in a light source. The number 
of interruptions can be read directly from the count regis­
ter of the timer, since the timer counts up (i.e., each inter­
ruption in the light source will cause the timer count value 
to increase). Figure 2-48 lists the code to set up the 80186 
timer in this mode. 

2.8.3 Interrupt Controller 

The 80186 integrated interrupt controller performs the 
tasks of an 8259 A type interrupt controller in a typical 
microprocessor system. Figure 2-52 shows a block dia­
gram of the integrated interrupt controller. These tasks 
include synchronizing and prioritizing interrupt requests, 
and request type vectoring in response to a CPU interrupt 
acknowledge. Nesting is provided so interrupt service 
routines for lower priority interrupts may themselves be 
interrupted by higher priority interrupts. The integrated 
controller has two major modes of operation, the 
iRMX-86 mode and the non-iRMX 86 (master) mode. In 
the master mode the integrated interrupt controller can be 
the master controller for up to two external Intel 8259 A 
interrupt controllers allowing up to 128 interrupts. In the 
iRMX 86 mode it can be the slave to an external interrupt 
controller to allow compatibility with the iRMX86 operat­
ing system and the 80130/80150 operating system copro­
cessors (refer to Volume I ofthis User's Manual). 

The 80186 can receive interrupts from a number of 
sources, both internal and external. The internal interrupt 
controller merges these requests on a priority basis, for 
individual service by the CPU. 

Internal interrupt sources (Timers and DMA channels) 
are disabled by their own control registers or by mask bits 
within the interrupt controller. The 80186 interrupt con­
troller has its own control registers that set the controller 
mode of operation. 
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The interrupt controller resolves priority among simulta­
neous requests. Nesting is provided so interrupt service 
routines for lower priority interrupts may themselves be 
interrupted by higher priority interrupts. 

iRMXTM 86 MODE OPERATION 

The iAPX 186/188 integrated interrupt controllers have a 
special iRMX compatibility mode of operation that allows 
the use of the 80186/188 within the iRMX 86 operating 
system interrupt structure. To use this mode of operation, 
bit 14 in the peripheral control block relocation register 
must be set and special initilization software must be 
provided. 

When the iRMX mode is used, the internal interrupt con­
troller is used as a slave controller to an external interrupt 
controller. The internal 80186/188 resources are moni­
tored through the internal interrupt controller, and the ex­
ternal interrupt controller functions as the system master 
interrupt controller. When an external interrupt controller 
(such as an 8259A) is used it requires additional control 
pins from the 80186. Therefore, some of the external in­
terrupt pins are no longer used for external interrupt in­
puts. Since the external interrupt registers are no longer 
required, the unused registers can now be used by the 
timers. There are enough of these unused registers to ded­
icate one to each timer. Previously all of the timers shared 
one register. In this mode of operation each timer inter­
rupt source has its own mask bit, IS bit and control word. 

The iRMX 86 operating system requires peripherals to be 
assigned fixed priority levels. This is incompatible with 
the normal operation of the 80186/188 interrupt control­
ler. Therefore the initialization software must program the 
proper priority for each source. The required priority lev­
els for the internal interrupt sources in the iRMX 86 mode 
are shown in Table 2-24. These priority level assignments 
must remain fixed in the iRMX mode of operation. 

The iRMX 86 mode of operation allows nesting of inter­
rupt requests. The configuration of the 80186/188 with 
respect to an external 8259 A master is shown in Figure 
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$mod186 
name 

80186/80188 CPU 

this file contains example 80186 timer routines. The first routine 

argl 
arg2 
arg3 
timer.2int 

sets up the timer and interrupt controller to cause the timer 
to generate an interrupt every 10 milliseconds, and to service 
interrupt to implement a real time clock. Timer 2 is used in 
this example because no input or output signals are required. 
The code example assumes that the peripheral control block has 
not been moved from its reset location (FFOO·FFFF in I/O space). 

equ word ptr [BP + 4] 
equ word ptr [BP + 6] 
equ word ptr [BP + 8] 
equ 19 

timer .2control equ OFF66h 
timer.2malLcti equ OFF62h 
timer.inLcti equ OFF32h 
eoLregister equ OFF22h 
interrupLstat equ OFF30h 

data segment 
public hour.,minute.,second.,msec_ 

msec_ db ? 
hOUL db 
minute_ db ? 
seconcL. db ? 
data ends 

cgroup group code 
dgroup group data 

code segment 
public seUime. 
assume cs:code,ds:dgroup 

seuime(hour,minute,second) sets the time variables, initializes the 
80186 timer2 to provide interrupts every 10 milliseconds, and 
programs the interrupt vector for timer 2 

seuime. proc near 
enter 0,0 
push AX 
push DX 
push SI 
push DS 

xor AX,AX 

mov DS,AX 

mov S[,4 * timer2.int 

timer 2 has vector type 19 

interrupt controller regs 

public 'data' 

public 'code' 

set stack addressability 
save registers used 

set the interrupt vector 
the timers have unique 
interrupt 
vectors even though they share 
the same control register 

Figure 2-48 Example Timer Interface Code (Sheet 1 of 4) 
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timer2-interrupLroutine 

bump.second: 

bump_minute: 

80186/80188 CPU 

mov os: [SI] ,offset timer_2-interrupLroutine 
inc SI 
inc SI 
mov OS: [SI],CS 
pop OS 

mov 
mov 
mov 
mov 
mov 
mov 
mov 

mov 
mov 

out 
mov 
mov 

AX,argl 
hour_,AL 
AX,arg2 
minute_,AL 
AX,arg3 
second.,AL 
msec_,O 

OX,timer2_malLcti 
AX,20000 

OX,AX 
OX,timer2_control 
AX,II1000000000000 1 b 

out OX,AX 

mov 
mov 

OX,timer-inLctl 
AX,OOOOb 

out OX,AX 

set the time values 

set the max count value 
10 ms /500 ns (timer 2 counts 
at 1/4 the CPU clock rate) 

set the control word 
enable counting 
generate interrupts on TC 
continuous counting 

set up the interrupt controller 
unmask interrupts 
highest priority interrupt 

sti enable processor interrupts 

pop SI 
pop OX 
pop AX 
leave 
ret 
endp 

proc 
push 
push 

cmp 
jae 
inc 
jmp 

mov 
cmp 
jae 
inc 
jmp 

mov 
cmp 
jae 
inc 
jmp 

far 
AX 
OX 

msec_,99 
bump_second 
msec_ 
reseLinLcti 

msec_,O 
second_,59 
bump_minute 
second_ 
reseLinLcti 

second.,O 
minute_,59 
bump_hour 
minute_ 
reseLinLctl 

see if one second has passed 
if above or equal... 

reset millisecond 
see if one minute has passed 

see if one hour has passed 

Figure 2-48 Example Timer Interface Code (Sheet 2 of 4) 
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bumpllour: 

reseLhour: 

reseLint.ctl: 

timer2JnterrupLroutine 
code 

$mod186 
name 

mov 
cmp 
jae 
inc 
jmp 

80186/80188 CPU 

minute.,O 
hour.,12 
reset.hour 
hour. 
reseLint.ctl 

mov hour., I 

mov 
mov 
out 

pop 
pop 
iret 
endp 
ends 
end 

OX,eoLregister 
AX,8000h 
OX,AX 

OX 
AX 

example.80 I 86.baud.code 

this file contains example 80186 timer routines. The second routine 
sets up the timer as a baud rate generator. In this mode, 
Timer I is used to continually output pulses with a period of 
6.5 usec for use with a serial controller at 9600 baud 
programmed in divide by 16 mode (the actual period required 
for 9600 baud is 6.51 usec). This assumes that the 80186 is 
running at 8 MHz. The code example also assumes that the 
peripheral control block has not been moved from its reset 
location (FFOO-FFFF in I/O space). 

, 
timer Lcontrol equ OFF5Eh 
timer LmalLcnt equ OFF5Ah 

code segment 
assume cs:code 

set-baudO initializes the 80186 timer! as a baud rate generator for 
a serial port running at 9600 baud 

set-baud. proc 
push 
push 

mov 
mov 
out 
mov 
mov 

near 
AX 
OX 

OX,timerLmalLcnt 
AX,13 
OX,AX 
OX,timerLcontrol 
AX, 11 0000000000000 1 b 

out OX,AX 

see if.12 hours have passed 

non·specific end of interrupt 

public 'code' 

save registers used 

set the max count value 
500ns * 13 - 6.5 usec 

set the control word 
enable counting 
no interrupt on TC 
continuous counting 
single max count register 

Figure 2-48 Example TImer Interface Code (Sheet 3 of 4) 
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seLbaud.. 
code 

$modl86 
name 

80186/80188 CPU 

pop DX 
pop AX 
ret 
endp 
ends 
end 

example_80 I 86_counLcode 

this file contains example 80186 timer routines. The third routine 
sets up the timer as an external event counter. In this mode, 
Timer I is used to count transitions on its input pin. After 
the timer has been set up by the routine, the number of 
events counted can be directly read from the timer count 
register at location FF58H in I/O space. The timer will 
count a maximum of 65535 timer events before wrapping 
around to zero. This code example also assumes that the 
peripheral control block has not been moved from its reset 
location (FFOO-FFFF in I/O space). 

timerl_control equ OFF5Eh 
timer LmalLcnt equ OFF5Ah 
timer LcnLreg equ OFF58H 

code segment 
assume cs:code 

seLcountO initializes the 80186 timer I as an event counter 

seLcounL proc near 
push AX 
push DX 

mov DX, timer l_malLcnt 
mov AX,O 

out DX,AX 
mov DX,timerLcontrol 
mov AX, II 00000000000 I 0 I b 

out DX,AX 

xor AX,AX 
mov DX,timerLcnLreg 
out DX,AX 

pop DX 
pop AX 
ret 

seLcounL endp 
code ends 

end 

public 'code' 

save registers used 

set the max count value 
allows the timer to count 
all the way to FFFFH 

set the control word 
enable counting 
no interrupt on TC 
continuous counting 
single max count register 
external clocking 

zero AX 
and zero the count in the timer 
count register 

Figure 2-48 Example Timer Interface Code (Sheet 4 of 4) 

2-63 210912-001 



80186/80188 CPU 

fully nested modes of operation. Five pins are provided 
for external interrupt sources. One of these pins is dedi­
cated to NMI. The other four (INTO-INT3) may be confi­
gured in three ways. The response to internal interrupts is 
identical in all three modes, but the function of the four 
external interrupt pins differs in each mode. The interrupt 

+ 5V controller is set to one of these modes by programming 

TIMER 

o 

TMR IN 1 

TMR OUT 1 

TMR INO 

Figure 2·49 80186 Real Time Clock 

2-53. The INTO input is used as the 80186 CPU interrupt 
input. INT3 functions as an output to send the 80186 
slave-interrupt-requests to one of the 8 master-PIC-inputs. 

Correct master-slave interface requires decoding of the 
slave addresses (CASO-2). Because of pin limitations, the 
80186 slave address will have to be decoded externally. 
INTI * is used as a slave-select input. In this configuration 
the slave vector address is transferred internally, but the 
READY input must be supplied externally. INT2 * is used 
as an acknowledge output, suitable to drive the INTA * 
input of an 8259A. 

NON·iRMXTM 80 MODE 

When configured in the non-iRMX 86 mode, the internal 
interrupt controller operates in one of three basic modes: 
the fully nested mode, the cascade mode, and the special 

80186 
+ 5V 

- TMRINOt 
TIMER 

0 TMROUTO TxC } SERIAL 
RxC CONTR'OLLER -

the correct bits in the INTO and INTI control registers. 

In the fully nested mode of operation, the four pins are 
configured as four interrupt input lines with internally 
generated interrupt vectors. In both the cascade and the 
special fully nested modes of operation the four interrupt 
input pins can be configured as either three interrupt input 
lines and interrupt a~knowledge output, or two interrupt 
inputs lines and two dedicated interrupt acknowledge out­
put lines. In the cascade mode of operation, when two 
interrupts are received from the same interrupt controller, 
one after the other, the internal controller will wait until 
the service routine for the first is complete before ac­
knowledging the second internal interrupt. When this oc­
curs in the special fully nested mode, the second interrupt 
from the same cascaded interrupt controller is assumed to 
be of higher priority and will be acknowledged before the 
first interrupt service routind is completed. These four 
interrupt inputs can be programmed in either edge-or 
level-trigger mode, as specified by the LTM bit in the 
source's control register. 

The interrupt controller will generate interrupt vectors for 
the integrated DMA channels and the integrated timers. In 
addition, interrupt vectors for the external interrupt lines 
will be generated if they are not configured in cascade, or 
special fully nested mode. 

Each interrupt source has a preassigned vector type (see 
Thble 2-21). Vector types point to address information for 
interrupt service routines. The vectors generated are fixed 
and cannot be changed. 

The user can program the interrupt sources into any of 
eight different priority levels. Programming is done by 
placing a 3-bit priority level (0-7) in the control register of 
each interrupt source. (A source priority of 4 has higher 
priority over all priority levels from 5-7. Priority registers 
containing values lower than 4 have higher priority.) All 
interrupt sources have preprogrammed default priority 
levels. 

If two requests with the same programmed priority level 
are pending at once, the priority ordering scheme indi­
cated in Table 2-21 is used. If the serviced interrupt rou­
tine reenables interrupts it allows other requests to be 
serviced. 

CONTROL REGISTERS 

The interrupt controller contains registers that control its 
Figure 2·50 80186 Baud Rate Generator operation (see Figure 2-54). Certain registers change 
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Figure 2·51 80186 Event Counter 

Table 2·24 Internal Source Priority Level 

Priority Level Interrupt Source 

0 TimerO 
1 (reserved) 
2 DMA 0 
3 DMA1 
4 Timer 1 
5 Timer 2 

their modes of operation between the two major modes of 
the interrupt controller: master mode and iRMX86 mode. 
These control registers include the Timer Register, two 
DMA registers, and four external input registers. The 
Timer and the DMA registers are used for interrupt con­
troller interaction with the internal DMA and Timer units 
of the processor. Refer to Volume I of this User's Manual 
for full descriptions of these registers. The external input 
registers are of the greatest concern to the hardware 
designer. 

The external input registers contain the control words for 
the four external interrupt input pins. See Figures 2-55 
and 2-56. Figure 2-55 illustrates the format of the INTO 

TIMER TIMER TIMER OMA OMA 

and the INTI control registers; Figure 2-56 shows the for­
mat of the INT2 and INT3 registers. In cascade mode or 
special fully nested mode, the control words in the INT2 
and INT3 registers are not used. 

INTERRUPT SOURCES 

The 80186 interrupt controller receives and arbitrates 
among many different interrupt request sources, both in­
ternal and external. Each interrupt source may be pro­
grammed to be a different priority level in the interrupt 
controller. Figure 2-57 shows an interrupt request genera­
tion flow chart. Such a flowchart would be followed inde­
pendently by each interrupt source. 

Internal Interrupt Sources 

The 80186 internal interrupt sources include three timers 
and the two DMA channels. These sources operate inde­
pendently of external devices as regards to interrupts to 

o 2 0 INTO INn INT2 INTJ NMI 

OMAO 
CONTROL REG. 

INTERRUPT 
REaUEST REG 

INTERRUPT 
MASK REG 

IN·SERVICE 
REG 

DM"1 
CONTROL REG 

EXT INPUT 0 
CONTROL REG 

EXT. INPUT 1 
CONTROL REG 

EXT. INPUT 2 
CONTROL REG 

PRIORITY 
RESOLVER 

PRIOR. lEV. 
MASK REG 

INTERRUPT 
STATUS REG. 

Figure 2·52 Interrupt Controller Block Diagram 
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MASTER MODE OFFSET ADDRESS ;RMX86~ Mode 

INT3 CONTROL REGISTER 

INT2 CONTROL REGISTER 

INTI CONTROL REGISTER -----------------------
INTO CONTROL REGISTER 

DMAI CONTROL REGISTER 

DMAO CONTROL REGISTER 

TIMER CONTROL REGISTER 

INTERRUPT CONTROLLER STATUS REGISTER 

INTERRUPT REQUEST REGISTER -----------------------
IN-SERVICE REGISTER 

PRIORITY MASK REGISTER -----------------------
MASK REGISTER 

POLL STATUS REGISTER 

POLL REGISTER 

EOI REGISTER -----------0-----------

3EH CD 

3CH ===========0=========== 3AH TIMER 2 CONTROL REGISTER 

38H TIMER 1 CONTROL REGISTER 

36H 

34H 

32H 

30H 

2EH 

2CH 

DMAI CONTROL REGISTER 

DMAO CONTROL REGISTER 

TIMER 0 CONTROL REGISTER 

INTERRUPT CONTROLLER STATUS REGISTER 

INTERRUPT REQUEST REGISTER 

IN SERVICE REGISTER 

2AH PRIORITY MASK REGISTER 

28H MASK REGISTER 

26H == == == =====0= = == = = ===== 24H ___________ 0 __________ _ 
22H SPECIFIC EOI REGISTER 

20H INTERRUPT VECTOR REGISTER 

1. Unsupported in this mode: values written mayor may not be stored 

Figure 2·54 80186 Interrupt Controller Registers 

15 14 6543210 

o I 0 I o ISFNMI c I LTM I MSK I PR21 PAl I PRO I 

Figure 2·55 INTOIINT1 Control Register Formats 

External Interrupt Sources the 80186. Refer to Volume I of this User's Manual for 
detailed information regarding the operation of interrupts 
from these sources. 

The 80186 provides five dedicated pins for external inter­
rupt sources. One of these pins is dedicated to non­
maskable interrupt, (NMI). NMI is typically used for 

2-66 210912-001 



80186/80188 CPU 

15 14 5 4 3 2 1 0 

o 0 I 

Figure 2-56 INT211NT3 Control Register Format 

power-fail interrupts, etc. The other four pins may func­
tion either as four interrupt input lines with internally 
generated interrupt vectors, as an interrupt line and an 
interrupt acknowledge line (called the "cascade mode") 
along with two other input lines with internally generated 
interrupt vectors, or as two interrupt input lines and two 
dedicated interrupt acknowledge output lines. 

When programmed in master mode, the 80186 interrupt 
controller accepts external interrupt requests only. In this 

mode, the external pins associated with the interrupt con­
troller may serve either as direct interrupt inputs, or as 
cascaded interrupt inputs from other interrupt controllers 
as a programmed option. These options are selected by 
programming the C and SFNM bits in the INTO and INTI 
control registers (see Figure 2-58). 

When the interrupt lines are configured in cascade mode, 
the 80186 interrupt controller will not generate internal 
interrupt vectors for external sources. The interrupt 

NO 

NO 

PRESENT INTERRUPT 
REQUEST TO 

EXTERNAL CONTROLLER 

Figure 2-57 80186 Interrupt Sequencing 
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Figure 2-58 Interrupt Controller Control Register 

controller will generate interrupt vectors for internal 
sources. External sources in the cascade mode use exter­
nally generated interrupt vectors. When an interrupt is ac­
knowledged, the controller initiates two INTA * cycles and 
reads the vector into the 80186 on the second cycle. 
Therefore, the capability to interface to external 8259A 
programmable interrupt controllers is provided when the 
inputs are configured in cascade mode. 

The basic modes of operation on the interrupt controller 
in master mode are similar to the 8259A. The interrupt 
controller responds identically to internal interrupts in all 
three modes: the modes differ only in the interpretation of 
function of the four external interrupt pins. Programming 
the correct bits in the INTO and INTI control registers 
sets. 

When the four interrupt inputs are programmed as direct 
inputs, each is controlled by an individual interrupt con­
trol register. These registers each contain three bits to se­
lect the interrupt priority level and a single bit to enable 
the processor interrupt source. In addition, each control 
register contains a bit which selects either the edge or 
level triggered interrupt input mode. When edge triggered 
mode is selected, a low-to-high transition must occur on 
the interrupt input before an interrupt is generated. In 
level triggered mode, only a high level needs to be main­
tained to generate an interrupt. In both modes, the inter­
rupt level must remain high until the interrupt is 
acknowledged (i.e., the interrupt request is not latched in 
the interrupt controller). The status of the interrupt input 
can be shown by reading the interrupt request register. 
Each of the external pins has a bit in this register which 
indicates an interrupt request on the corresponding pin. 

NOTE 

Since interrupt requests on these inputs are not 
latched by the interrupt controller, if the exter­
nal input goes inactive, the interrupt request 
(and also the bit in the interrupt request regis­
ter) will also go inactive (low). Also, if the in­
ter rupt input is in edge triggered mode, a 
low-to-high transition on the input pin must oc­
cur before the interrupt request bit will be set 
in the interrupt request register. 
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If the C (Cascade) bits in the INTO or INTI control regis­
ters are set, the interrupt input is cascaded to an external 
interrupt controller. Whenever the interrupt presented to 
the INTO or INTI line is acknowledged in this mode, the 
integrated interrupt controller will not provide the inter­
rupt type for the interrupt. Instead, two INTA bus cycles 
will be run, with the INT2 and INT3 lines providing the 
interrupt acknowledge pulses for the INTO and the INTI 
interrupt requests respectively. INTO/INT2 and 
INTlIINT3 may be individually programmed into cas­
cade and special fully nested modes. This allows 128 indi­
vidually vectored interrupt sources if two banks of nine 
external interrupt controllers each are used. 

iRMXTM Mode Sources 

When the interrupt controller is configured in iRMX 
mode, the integrated interrupt controller accepts interrupt 
requests only from the integrated peripherals. Any exter­
nal interrupt requests must go through an external inter­
rupt controller. This external interrupt controller requests 
interrupt service directly from the 80186 CPU through 
the INTO line on the 80186. In this mode, the function of 
this line is not affected by the integrated interrupt control­
ler. In addition, in iRMX 86 mode the integrated interrupt 
controller must request interrupt service through this ex­
ternal interrupt controller; this interrupt request is made 
on the INT3line. 

EXTERNAL INTERFACE 

The four 80186 interrupt signals can be programmably 
configured into three major options. These options are 
direct interrupt inputs (with the integrated controller pro­
viding the interrupt vector), cascaded (with an external 
interrupt controller providing the interrupt vector), or 
iRMX 86 mode. In all these modes, any interrupt pre­
sented to the external lines must remain set until the inter­
rupt is acknowledged. 

Direct Input Mode 

Clearing cascade mode bits configures the interrupt input 
lines as direct interrupt input lines (see Figure 2-59). In 
this mode an interrupt source (e.g., an 8272 floppy disk 
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Figure 2·59 80186 Non·Cascaded 
Interrupt Connection 

controller) may be directly connected to the interrupt in­
put line. Whenever an interrupt is received on the input 
line, the integrated controller will do nothing unless the 
interrupt is enabled, and it is the highest priority pending 
interrupt. At this time, the interrupt controller will 
present the interrupt to the CPU and wait for an interrupt 
acknowledge. When the acknowledge occurs, it will 
present the interrupt vector address to the CPU. In this 
mode, the CPU will not run any interrupt acknowledge 
cycles. Also, in this mode, the SFNM bit in the interrupt 
control register is ignored. 

Cascade Input Mode 

Setting the cascade mode bit and clearing the SFNM bit 
configures the interrupt input lines in cascade mode. In 
this mode, the interrupt input line pairs with an interrupt 
acknowledge line. The INT2/INTAO* and INT3/INTAI * 
lines are dual purpose; they can function as direct input 
lines, or they can function as interrupt acknowledge out­
puts. INT2/INTAO* provides the interrupt acknowledge 
for an INTO input, and INT3/INTAI * provides the inter­
rupt acknowledge for an INTI input (see Figure 2-60). 

When programmed in this mode, in response to an inter­
rupt request on the INTO line, the 80186 will provide two 
interrupt acknowledge pulses. These pulses will be pro-

8259A 80186 

INT INTO 

INTA INT2 

8259A 

INT INn 

INTA INT3 

Figure 2·60 Cascade and Special Fully 
Nested Mode Interface 
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vided on the INT2/INTAO* line, and will also be reflected 
by interrupt acknowledge status being generated on the 
SO*-S2 * status lines. On the second pulse, the interrupt 
type will be read in. 

INTO/INT2/INTAO* and INTI/INT3/INTAI * may be in­
dividually programmed into interrupt request/ 
acknowledge pairs, or programmed as direct inputs. 
Therefore, INTO/INT2/INTAO* may be programmed as 
an interrupt/acknowledge pair, while INTI and INT3/ 
INTAI * each provide separate internally vectored inter­
rupt inputs. 

When an interrupt is received on a cascaded interrupt, the 
priority mask bits and the in-service bits in the particular 
interrupt control register are set into the interrupt control­
ler's mask and priority mask registers. This action pre­
vents the controller from generating an 80186 CPU 
interrupt request from a lower priority interrupt. 

As an example of the cascade mode, consider the 80186 
interface to an 8259A (see Figure 2-61). The INTO and 
the INT2 lines are used as direct interrupt input lines. 
(Figure 2-62 lists assembly code that may be used to ini­
tialize the 80186 interrupt controller.) This configuration 
provides ten external interrupt lines: two provided by the 
80186 interrupt controller and eight from the 8259A. The 
8259A, configured as the master controller, will only re­
ceive interrupt acknowledge pulses in response to an in­
terrupt it has generated. It may be cascaded again with up 
to eight additional 8259A's (each configured as slaves). 

NOTE 

An interrupt ready signal must be returned to 
the 80186 to prevent the generation of unde­
sired wait states in response to the interrupt 
acknowledge cycles. 

Special Fully Nested Mode 

When both the cascade mode bit and the SFNM bit are 
set, the interrupt input lines are configured in the Special 
Fully Nested Mode. In this mode the external interface is 
identical to the Cascade Mode. The Special Fully Nested 
Mode differs only in the conditions that allow an interrupt 
sent from the external interrupt controller to the inte­
grated interrupt controller to interrupt the 80186 CPU. 

When an interrupt is received from a Special Fully Nested 
Mode interrupt line, it will interrupt the 80186 CPU if it 
is the highest priority interrupt pending, regardless of the 
state of the in-service bit for the interrupt source in the 
interrupt controller. When an interrupt is acknowledged 
from a Special Fully Nested Mode interrupt line, in-serve 
bits in the particular interrupt control register will be set 
into the interrupt controller's in-service register. This will 
prevent the interrupt controller from generating an 80186 
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Figure 2·61 80186/8258A Interrupt Cascading 

CPU interrupt request from a lower priority interrupt. 
Unlike cascade mode, however, the interrupt controller 
will not prevent additional interrupt requests generated by 
the same external interrupt controller from interrupting 
the 80186 CPU. If the external (cascaded) interrupt con­
troller receives a higher priority interrupt request on one 
of its interrupt request lines and presents it to the inte­
grated controller's interrupt request line, it may cause an 
interrupt to be generated to the 80186 CPU, regardless of 
the state of the in-service bit for the interrupt line. 

If the SFNM mode bit is set, but the cascade mode bit is 
not set, the controller provides internal interrupt vector­
ing. The controller also ignores the state of the in-service 
bit in determining whether to present an interrupt request 
to the CPU. In other words, it uses the SFNM conditions 
of interrupt generation with an internally vectored inter­
rupt response (i.e., if the interrupt pending is the highest 
priority type pending, it will cause a CPU interrupt re­
gardless of the state of the in-service bit for the interrupt). 

iRMX Mode 

When the RMX bit in the peripheral relocation register is 
set, the interrupt controller is set into iRMX 86 mode. In 
this mode, all four interrupt controller input lines are used 
to perform the necessary handshaking with the external 
master interrupt controller (see Figure 2-63). 

Because the integrated interrupt controller is a slave con­
troller, it must be able to generate an interrupt input for an 
external interrupt controller. It also must be signaled 
when it has the highest priority pending interrupt to know 
when to place its interrupt vector on the bus. The INT3/ 
Slave Interrupt Output and INTI/Slave Select* lines, re-
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spectively supply these two signals. The external master 
interrupt controller must be able to interrupt the 80186 
CPU, and needs to know when the interrupt request is 
acknowledged. The INTO and INT2/INTAO* lines pro­
vide these functions. 

In the iRMX86 mode (see Figure 2-64), the 80130 inter­
rupt controller is the master interrupt controller of the 
system. The 80186 generates an interrupt request to the 
80130 interrupt controller when one of the 80186 inte­
grated peripherals has created an interrupt condition, and 
that condition is sufficient to generate an interrupt from 
the 80186 integrated interrupt controller. The 80130 de­
codes the interrupt acknowledge status directly from the 
80186 status lines; thus, the INT2/INTAO* line of the 
80186 need not be connected to the 81030. The circuit 
illustrated by Figure 2-64 uses this interrupt acknowledge 
signal to enable the cascade address decoder. The 80130 
drives the cascade address on AD8-ADIO during Tl of 
the second interrupt acknowledge cycle. This cascade ad­
dress is latched into the system address latches, and if the 
proper cascade address is decoded by the 8205 decoder, 
the 80186 INTlISLAVE SELECT* line will be driven ac­
tive, enabling the 80186 integrated interrupt controller to 
place its interrupt vector on the internal bus. (See Figure 
2-62 for the code to configure the 80186 into iRMX 86 
mode.) 

Interrupt Latency 

Interrupt latency time is the period of time between the 
time the 80186 receives the interrupt to the time it begins 
to respond to the interrupt. Interrupt latency differs from 
interrupt response time, which is the time from when the 
processor actually begins processing the interrupt to when 
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$modl86 
name 

80186/80188 CPU 

example.80 I 86JnterrupLcode 

This routine configures the 80186 interrupt controller to provide 
two cascaded interrupt inputs (through an external 8259A 
interrupt controller on pins INTO/INT2) and two direct 
interrupt inputs (on pins INTI and INn). The default priority 
levels are used. Because of this, the priority level programmed 
into the control register is set the III, the level all 
interrupts are programmed to at reset. 

intO.control 
inLmask 

equ 
equ 

OFF38H 
OFF28H 

code 

seLinL 

seUnL 
code 

$modl86 
name 

segment 
assume CS:code 
proc near 
push OX 
push AX 

mov AX,OIOOIlIB 

mov OX,intO.control 
out OX,AX 

mov AX,OIOOIlOIB 

mov OX,inLmask 
out OX,AX 
pop AX 
pop OX 
ret 
endp 
ends 
end 

example.80186JnterrupLcode 

This routine configures the 80186 interrupt controller into iRMX 86 
mode. This code does not initialize any of the 80186 
integrated peripheral control registers, nor does it initialize 
the external 8259A or 80130 interrupt controller. 

reloca tion.reg equ OFFFEH 

code segment 
assume CS:code 

seLrmlL proc near 
push OX 
push AX 

mov OX,relocation.reg 
in AX,OX 
or AX,O I OOOOOOOOOOOOOOB 
out OX,AX 

public 'code' 

cascade mode 
interrupt unmasked 

now unmask the other external 
interrupts 

public 'code' 

read old contents of register 
set the RMX mode bit 

Figure 2-62 Example Interrupt Controller Interface Code 
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Figure 2·63 80186 iRMXTM 86 Mode Interface 

it actually executes the first instruction of the interrupt 
service routine. The factors affecting interrupt latency are 
the instruction being executed and the state of the inter­
rupt enable flip-flop. Interrupts will be acknowledged 
only if the interrupt enable flip-flop in the CPU is set. 
Therefore, interrupt latency will be very long indeed if 
interrupts are never enabled by the processor! 

80186 

ALE ADDR 

r- lATCH 

)8 
80130 

ADO·AD15 ADO-AD15 
/ 

ClK ClK 

MMCS2 MEMCS 
IRO· 

PCS3 IOCS IR7 

Slj.S2 /3 
SO-S2 / 

SHE SHE 
INT 

INTO J 
INT3 

When interrupts are enabled in the CPU, the interrupt la­
tency is a function of the instructions being executed. 
Only repeated instructions will be interrupted before be­
ing completed, and those only between their respective 
iterations. Therefore, the interrupt latency time could be 
as long as 69 CPU clocks-the time it takes the processor 
to execute an integer divide instruction (with a segment 
override prefix) the longest single instruction on the 
80186. 

Other factors can affect interrupt latency. An interrupt 
will not be accepted between the execution of a prefix 
(such as segment override prefixes and lock prefixes) and 
the instruction. In addition, an interrupt will not be ac­
cepted between an instruction which modifies any of the 
segment registers and the instruction immediately follow­
ing the instruction. This interrupt denial is required to 
allow the stack to be changed. If the interrupt were ac­
cepted, the return address from the interrupt would be 
placed on a stack which was not valid (the Stack Segment 
register would have been modified but the Stack Pointer 
register would not have been). Finally, an interrupt will 
not be accepted between the execution of the WAIT in­
struction and the instruction immediately following it if 
the TEST* input is active. If the WAIT sees the TEST* 
input inactive, however, the interrupt will be accepted, 
and the WAIT will be re-executed after the interrupt 

L8 L7 
/ / 

+5 

11'3 A8·A 
/ 

AO-A15 

10 

INTERRUPT 

REQUESTS 

8205 ~ 
E2 E3 

INT2 E1 

INn - 7 

Figure 2·64 80186/80130 iRMXTM 86 Mode Interface 
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Table 2-25 80186 Interrupt Vector Types 

Interrupt Vector Default 
Name Type Priority 

timer 0 8 Oa 
timer I 18 Ob 
timer 2 19 Oc 
DMAO 10 2 
DMAI II 3 
INTO 12 4 
INT I 13 5 
INT 2 14 6 
INT 3 15 7 

return. Re-executing WAIT is required, since the WAIT is 
used to prevent execution by the 80186 of an 8087 in­
struction while the 8087 is busy. 

INTERRUPT RESPONSE TIMING 

The 80186 can respond to an interrupt in two different 
ways. The first will occur if the internal controller is pro­
viding the interrupt vector information with the controller 
in master mode. The second will occur if the CPU reads 
interrupt type information from an external interrupt con­
troller or if the interrupt is in the iRMX 86 mode. In both 
of these instances the interrupt vector information driven 
by the 80186 integrated interrupt controller is not availa­
ble outside the 80186 microprocessor. 

In each interrupt mode the interrupt controller will auto­
matically set the in-service bit when the integrated inter­
rupt controller receives an interrupt response, and reset 
the interrupt request bit in the integrated controller. The 
priority mask bits are set by writing to the register only 
(except on RESET when they are set to 7). The priority 
mask bits will remain one value and prevent lower priority 
interrupts from occurring until the programmer resets or 
changes the register. 

In addition, unless the interrupt control for the interrupt is 
set in Special Fully Nested Mode, the interrupt controller 
will prevent any interrupts from occurring from the same 
interrupt line until the in-service bit for that line has been 
cleared. 

Internal Vectoring, Master Mode 

In the master mode of operation, the interrupt types asso­
ciated with all interrupt sources are fixed and unalterable 
(see Table 2-25). In response to an internal CPU interrupt 
acknowledge the interrupt controller will generate the 
vector address instead of the interrupt type. On the 80186, 
as with the 8086, the interrupt vector address is the inter­
rupt type multiplied by 4. This speeds up the interrupt 
response time. 
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In master mode, the integrated interrupt controller is the 
master system interrupt controller. Therefore, no external 
interrupt controller needs to be informed when the inte­
grated controller is providing an interrupt vector or when 
interrupt acknowledge is taking place. As a result, no in­
terrupt acknowledge bus cycles will be generated. The 
first external indication that an interrupt has been ac­
knowledged will be the processor reading the interrupt 
vector from the interrupt vector table to low memory. 

Since the two interrupt acknowledge are not run, and the 
interrupt vector address does not need to be calculated, 
interrupt to an internally vectored interrupt is 42 clocks 
cycles, which is faster than the interrupt response when 
external vectoring is required, or the interrupt controller 
is run in the iRMX 86 mode. 

If two interrupts of the same programmed priority occur, 
the default priority scheme (see Table 2-25) is used. 

Internal Vectoring, iRMXTM 86 Mode 

In the iRMX mode of operation the interrupt types associ­
ated with the various interrupt sources can be changed. 
The upper 5 most significant bits are taken from the inter­
rupt vector register, and the lower 3 significant bits are 
taken from the priority level of the device causing the 
interrupt. Since the interrupt type, instead of the interrupt 
vector address, is given by the interrupt controller in this 
mode the interrupt vector address must be calculated by 
the CPU before servicing the interrupt. 

In this mode of operation the integrated interrupt control­
ler will present the interrupt type to the CPU in response 
to the two interrupt acknowledge bus cycles run by the 
processor. During the first interrupt acknowledge cycle, 
the external master interrupt controller determines which 
slave interrupt controller will be allowed to place its inter­
rupt vector on the microprocessor bus. During the second 
interrupt acknowledge cycle, the processor reads the in­
terrupt vector from its bus. Therefore, these two interrupt 
acknowledge cycles must be run since the integrated con­
troller will present the interrupt type information only 
when the external interrupt controller signal the inte­
grated controller that it has the highest pending interrupt 
request (see Figure 2-65). The 80186 samples the SLAVE 
SELECT* line during the falling edge of the clock at the 
beginning of T3 of the second interrupt acknowledge cy­
cle. This input must be stable 20ns before and IOns after 
this edge. 

These two interrupt acknowledge cycles will be run back 
to back, and will be LOCKED with the LOCK* (see para­
graph 2.5.3) output active (meaning that DMA requests 
and HOLD requests will not be honored until both cycles 
have been run). Note that the two interrupt acknowledge 
cycles will always be separated by two idle T state, and 
that the wait states will be inserted into the interrupt ac­
knowledge cycle if a ready is not returned by the 
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Figure 2·65 80186 iRMXTM 86 Mode Interrupt Acknowledge Timing 

processor bus interface. The two idle T states are inserted 
to allow compatibility with the timing requirements of an 
external 8259A interrupt controller. 

Because the interrupt acknowledge cycles must be run in 
iRMX 86 mode, even for internally generated vectors, 
and the integrated controller presents an interrupt type 
rather than a vector address, the interrupt response time 
here is the same as if an externally vectored interrupt was 
required, in other words 55 clocks. 

External Vectoring 

External interrupt vectoring occurs whenever the 80186 
interrupt controller is placed in the cascade mode, special 
fully nested mode, or iRMX 86 mode (and the integrated 
controller is not enabled by the external master interrupt 
controller). In this mode, the 80186 generates two inter­
rupt acknowledge cycles, reading the interrupt type off 
the lower 8 bits of the address/data bus on the second 
interrupt acknowledge cycle (see Figure 2-66). This inter­
rupt response is exactly the same as the 8086, so that the 
8259A interrupt controller can be used exactly as it would 
in an 8086 system. Notice that the two interrupt acknowl­
edge cycles are LOCKED, and that two idle T-states are 
always inserted between the two interrupt acknowledge 
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bus cycles, and that wait states will be inserted in the in­
terrupt acknowledge cycle if a ready is not returned to the 
processor. Also notice that the 80186 provides two inter­
rupt acknowledge signal, one for interrupts signaled by 
the INTO line, and one for interrupts signaled by the INTI 
line (on INT2/INTAO* and INT3/INTAI * lines, respec­
tively). These two interrupt acknowledge signals are mu­
tually exclusive. Interrupt acknowledge status will be 
driven on the status lines (50*-52*) when either INT2/ 
INTAO* or INT3/INTAI * signal an interrupt 
acknowledge. 

2.8.4 Chip Select/Wait State Generation 
Unit 

The 80186/188 CPU contains an integrated chip select 
unit which provides programmable chip-select' generation 
logic for both the memories and peripherals. This unit can 
also be programmed to provide WAIT state (READY) 
generation and can provide latched address bits A 1 and 
A2. The chip select lines are active for all memory and 
I/O cycles in their programmed areas, whether the cycles 
are generated by the CPU of the integrated DMA unit. 
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MEMORY CHIP SELECTS 

The 80186 provides six discrete chip select lines which 
connect to memory components in an iAPX186 system. 
These lines (see Figure 2-67) output signals for three 
memory areas: upper memory (UCS*), lower memory 
(LCS*), and mid-range memory (MCSO-3*). 

The range for each chip select is user-programmable and 
can be set to 2K, 4K, 8K, 16K, 32K, 64K, 128K (plus lK 
and 256K for upper and lower chip selects). In addition, 
the beginning or base address of the mid-range memory 

UCS 

1 

FFFFF 

STARTUP 

ROM 

MCS3 { 
---

MCS2 { PROGRAM 

MEMORY 

MCS1 { 

---

MCSO { 
---

'" 1 

INTERRUPT 

VECTOR 

TABLE 
0 

Figure 2·67 80186 Memory Areas and Chip 
Selects 
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chip select may also be selected. Only one chip select may 
be programmed to be active for any memory location at a 
time. All chip select sizes are in bytes, whereas iAPX 186 
memory is arranged in words. For example, if16 64K xl 
memories are used, the memory block size will be 128K, 
not 64K. The upper limit of UCS* and the lower limit of 
LCS* are fixed at FFFFFH and OH in memory space, 
respectively. The other limit of these is set by the memory 
size programmed into the control register for the chip se­
lect line. Mid-range memory allows both the base address 
and the block size of the memory area to be programmed. 
The only limitation is that the base address must be pro­
grammed to be an integer multiple of the total block size. 
For example, if the block size was 128K bytes (four 32K 
byte blocks) the base address could be 0 or 20000H, but 
not 10000H. 

Four registers in the peripheral control block (see Figure 
2-68) control the memory chip selects. These selects in­
clude one each for UCS* and LCS*, the values of which 
determine the size of the memory blocks addressed by 
these two lines. The other two registers control the size 
and base address of the mid-range memory block. 

On reset, only UCS* is active. Reset programs it to be 
active for the top lK memory block, to insert three wait 
states to all memory fetches, and to factor external ready 
for every memory fetch. All other chip select registers 
assume indeterminate states after reset, but none of the 
other chip select lines will be active until all necessary 
registers for a chip select have been accessed (not neces­
sarily written, a read to an uninitialized register will en­
able the chip select function controlled by that register). 

Generally, the chip selects of the 80186 should not be pro­
grammed such that any two areas overlap. In addition, 
none of the programmed chip select areas should overlap 
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Figure 2·68 80186 Chip Select Control Registers 

any of the locations of the integrated 256-byte control reg­
ister block, If such an overlap condition exists, whenever 
two chip select lines are programmed to respond to the 
same area, both will become active during any access to 
that area. When programmed as such, the ready bits for 
both areas must be programmed to the same value. If not 
programmed in this manner, the processor response to an 
access in this area is indeterminate. If any of the chip 
select areas overlap the integrated 256-byte control regis­
ter block, the timing on the chip select line is altered. As 
always, the CPU ignores any values returned on the exter­
nal bus from this access. 

Upper Memory CS· 

The 80186 provides a chip select, called UCS *, for the 
top of memory, The top of memory is usually used as the 
system memory because, after reset, the 80186 begins ex­
ecuting at memory location FFFFOH. 

The upper limit of memory defined by this chip select is 
always FFFFFH, while the lower limit is programmable. 
By programming the lower limit, the size of the select 
block is also defined. Table 2-26 shows the relationship 
between the base address selected and the size of the 
memory block obtained. 

The lower limit of this memory block is defined in the 
UMCS register (see Figure 2-69). This register is at offset 
AOH in the internal control block. The legal values for 
bits 6-13 and the resulting starting address and memory 
block sizes are given in Table 2-26. Any combination of 
bits 6-13 not shown in Table 2-26 will result in undefined 
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Table 2·26 UMCS Programming Values 

Starting 
Address Memory UMCS Value 

(Base Block (Assuming 
Address) Size RO=Rl =R2=O) 

FFCOO 1K FFF8H 
FF800 2K FFB8H 
FFOOO 4K FF38H 
FEOOO 8K FE38H 
FCOOO 16K FC3BH 
FBOOO 32K F838H 
FOOOO 64K F036H 
EOOOO 126K E038H 
CODOC 256K C038H 

operation. After reset, the UMCS register is programmed 
for a lK area. It must be reprogrammed if a larger upper 
memory area is desired. 

Any internally generated 20-bit address whose upper 16 
bits are greater than or equal to UMCS (with bits 0-5 
"0") will cause UCS to be activated. UMCS bits R2-RO 
are used to specify READY mode for the area of memory 
defined by this chip-select register. 

Lower Memory CS· 

The 80186 provides a chip select for low memory called 
LCS*. The bottom of memory contains the interrupt vec­
tor table, starting at location OOOOOH. 

The lower limit of memory defined by this chip select is 
always Oh, while the upper limit is programmable. By 
programming the upper limit, the size of the memory 
block is also defined. Table 2-27 shows the relationship 
between the upper address selected and the size of the 
memory block obtained. 

The upper limit of this memory block is defined in the 
LMCS register (see Figure 2-70). This register is at offset 
A2H in the internal control block. The legal values for 
bits 6-15 and the resulting upper address and memory 
block sizes are given in Table 2-27. Any combination of 
bits 6-15 not shown in Table 2-27 will result in undefined 
operation. After reset, the LMCS register value is unde­
fined. However, the LCS* line will not become active un­
til the LMCS register is accessed. 

Any internally generated 20-bit address whose upper 16 
bits are less than or equal to LMCS (with bits 0-5 "1") 
will cause LCS* to be active, LMCS register bits R2-RO 
are used to specify the READY mode for the area of 
memory defined by this chip-select register. 

Mid·Range CS· 

The 80186 provides four MCS® * lines which are active 
within a user-locatable memory block. This block can be 
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Figure 2·69 UMCS Register 
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Figure 2·70 LMCS Register 
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Figure 2·71 

located anywhere within the iAPX 186 1M byte memory 
address space exclusive ofthe areas defined by UCS* and 
LCS*. Both the base address and size of this memory 
block are programmable. 

The size of the memory block defined by the mid-range 
select lines (refer to Table 2-28), is determined by bits 
8-14 of the MPCS register (see Figure 2-71). 

Table 2·27 LMCS Programming Values 

Memory LMCS Value 
Upper Block (Assuming 

Address Size RO=R1 =R2=O) 

003FFH 1K 0038H 
007FFH 2K 0078H 
OOFFFH 4K 00F8H 
01FFFH 8K 01F8H 
03FFFH 16K 03F8H 
07FFFH 32K 07F8H 
OFFFFH 64K OFF8H 
1FFFFH 128K 1FF8H 
3FFFFH 256K 3FF8H 

Table 2·28 MPCS Programming Values 

Total Block Individual MPCS Bits 
Size Select Size 14-8 

8K 2K 00000018 
16K 4K 00000108 
32K 8K 00001008 
64K 16K 00010008 

128K 32K 00100008 
256K 64K 01000008 
512K 128K 10000008 

MPCS Register 
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NOTE 
This register is located at A8H in the internal 
control block. Only one of bits 8-14 must be 
set at a time or unpredict able operation of the 
MCS* lines will otherwise occur. 

Each of the four chip-select lines is active for one of the 
four equal contiguous divisions of the mid-range block. 
Therefore, if the total block size is 32K, each chip select 
is active for 8K of memory with MCSO* being active for 
the first range and MCS3* being active for the last range. 

The base address of the mid-range memory block is de­
fined 15-9 of the MMCS register (see Figure 2-72) lo­
cated at offset A6H in the internal control block. These 
bits correspond to bits A19-A13 of the 20-bit memory 
address. Bits AI2-AO of the base address are always O. 
The base address may be set at any integer multiple of the 
size of the total memory block selected. For example, if 
the mid-range block size is 32K (or the size of the block 
for which each MCS* line is active is 8K), the block 
could ocated at 10000H or 18000H, but not at 14000H, 
since the first few integer multiples of a 32K memory 
block are OH, 8000H, 10000H, 18000H, etc. After reset, 
the contents of both of these registers is undefined. How­
ever, none of the MCS* lines will be active until both the 
MMCS and MPCS registers are accessed. 

MMCS bits R2-RO specify READY mode of operation for 
all mid-range chip selects. All devices in mid-range mem­
ory must use the same number of WAIT states. 

The 512K block size for the mid-range memory chip se­
lects is a special case. When using 512K, the base address 
would have to be at either locations OH or 80000H. If it 
were to be programmed at OH when the LCS* line was 
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Figure 2·72 MMCS Register 

programmed, there would be an internal conflict between 
the LCS* ready generation logic and the MCS* ready 
generation logic. Likewise, if the base address were pro­
grammed at 80000H, there would be a conflict with the 
UCS* ready generation logic. Since the LCS* chip-select 
line does not become active until programmed, while the 
UCS* line is active at reset the memory base can be set 
only at OH. If this base address is selected, however, the 
LCS* range must not be programmed. 

INPUT/OUTPUT PERIPHERAL CHIP SELECTS 

Since 80186 memory interfacing is similar to the 8086, 
the two processors are also similar when interfacing to 
I/O peripherals. The 80186 contains integral interfacing 
logic that provides seven discrete chip select lines 
(PCSO-6*). These seven chip select lines are intended for 
connection to 110 peripherals in an iAPX86 system. The 
signals on these lines, PCSO-6*, go active for one of 
seven contiguous 128-byte areas in memory or 110 space 
above a programmed base address. 

Two registers in the internal peripheral control block (see 
Figure 2-68) control the peripheral chip selects. These 
registers allow the base address of the peripherals to be 
set, and allow the peripherals to be mapped into memory 
or 110 space. Both registers must be accessed before any 
of the peripheral chip selects become active. 

A bit in the memory/peripheral chip select (MPCS) regis­
ter allows PCS5* and PCS6* to become latched when out­
puts Al and A2 occur. When this option is selected, 
PCS5* and PCS6* indicate the state of Al and A2 
throughout the bus cycle. These outputs provide for exter­
nal peripheral register selection in a system where the ad­
dress is not latched. On reset, these lines are driven high 
and only indicate the state of Al and A2 after both PACS 
and MPCS have been accessed (and are programmed to 
provide Al and A2-refer to Volume I of this User's 
Guide). 

READY/WAIT STATE GENERATION 

The 801861188 generates an internal READY signlll for 
each of the memory or peripheral chip select (CS*) iines. 
From 0 to 3 WAIT states may be inserted by the internal 
ready generation unit for each access to any memory or 
110 areas to which the chip select circuits respond. Table 
2-29 shows how the ready control bits should be pro­
grammed to provide this. In addition, the READY genera-
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tion circuit may be programmed to ignore external 
READY signals (i.e., only the internal ready circuit will 
be used) or to factor the external READY signal (i.e., a 
ready will be returned to the processor only after both the 
internal ready circuit has gone ready and the external 
ready has gone ready). Also, when a memory access oc­
curs where there is no programmed chip select, ARDY 
and SRDY may be used to insert wait states as in the 8086 
system. 

A circuit must be included, however, to generate an exter­
nal ready since, at reset, the READY generator is pro­
grammed to factor external READY to all accesses to the 
top IK byte memory block. If a READY was not returned 
on one of the external ready lines (ARDY or SRDY) the 
processor would wait indefinitely to fetch the first 
instruction. 

READY control consists of 3 bits for each CS* line or 
group of lines. This allows independent ready generation 
for each of upper memory, lower memory, mid-range 
memory, peripheral devices 0-3 and peripheral devices 
4-6. The ready bits control an integrated WAIT State Gen­
erator that allows a programmable number of WAIT states 
to be automatically inserted whenever an access is made 
to the area of memory associated with a chip select area. 
Each set of ready bits includes a bit which determines 
whether the internal ready signals (ARDY or SRDY) are 
used or ignored (i.e., the bus cycle terminates even 
though a ready has not been returned on the external 
pins). 

When the externally generated READY is used (R2 = 0), 
the internal ready generator operates in parallel with the 
external READY. For example, if the internal ready gen­
erator is set to insert two Wait states, but activity on the 
external READY lines inserts four WAIT states, only four 
WAIT states will be inserted by the processor. This is be­
cause the two WAIT states generated by the internal 

Table 2·29 80186 WAIT State Programming 

R2 R1 RO Number of Wait States 

0 0 0 o + external ready 
0 0 I I + external ready 
0 I 0 2 + external ready 
0 I I 3 + external ready 
I 0 0 o (no external ready required) 
I 0 I I (no external ready required) 
I I 0 2 (no external ready required) 
I 1 I 3 (no external ready required) 
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generator overlapped the first two WAIT states generated 
by the external READY signal. The external ARDY and 
SRDY lines are always ignored during cycles accessing 
internal peripherals. 

2.8.5 Clock Generator/Reset/Ready 

The 80186 clock generator produces the main clock sig­
nal (see Figure 2-73) for all 80186 integrated compo­
nents, and all CPU synchronous devices in. the 80186 
system (see Figure 2-74). This clock generator includes a 
crystal oscillator, a divide-by-two counter, reset circuits, 
and ready generation logic. 

The clock generator generates the 50% duty cycle proces­
sor clock for the iAPX 186 by dividing the output of a 
crystal oscillator by two to form the symmetrical clock 
signal. If an external oscillator is used, the state of the 
clock generator will change on the falling edge of the os­
cillator signal. The CLKOUT pin provides the processor 

X, 

x, 

clock signal for use outside the iAPX 186 and may be 
used to drive other system components. All timings are 
referenced to the output clock. 

CRYSTAL CLOCK REFERENCE 

The 80186 oscillator circuit is designed to be used with a 
parallel resonant fundamental mode crystal (see Figure 
2-75) as the time base. The crystal frequency selected 
should be double the intended CPU clock frequency. Do 
not use an LC or RC circuit with this oscillator. If an 
external oscillator is used, connect it directly to input pin 
Xl in lieu of a crystal (input pin X2 may be left to float). 
The output of the oscillator is not directly available out­
side the 80186. 

The crystal oscillator is a parallel resonant, Pierce oscilla­
tor designed to be used as shown in Figure 2-76 (the ca­
pacitor values shown are approximate). As the crystal 

CPU CLOCK & 

CLOCKOUT 

ARDY --------+~r-;;;,=-, CPU 

READY SRDY -----------------+----f 

~----------------~~~ 
CPU RESET 

& 

RESET OUTPUT 

Figure 2·74 80186 Clock Generator Block Diagram 
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Figure 2·75 Recommended iAPX 186 
Crystal Configuration 

frequency drops, the de-coupling capacitor values should 
be increased, (e.g., at the 4 MHz minimum crystal fre­
quency supported by the 80186 these capacitors should be 
30pF). 

EXTERNAL FREQUENCY CLOCK REFERENCE 

The 80186 can use an external clock frequency standard 
(similar to the 8086 when used in conjunction with the 
8284A). The external frequency input (EFI) signal con­
nects directly to the Xl input of the oscillator (X2 is left 
open). This oscillator input drives an internal divide-by­
two counter to generate the CPU clock. The external fre­
quency reference can thus be virtually any duty cycle, as 
long as the minimum high and low times for the signal are 
consistent with those specified for the 80186 (refer to the 
Intel iAPX186 data sheet). 

READY SYNCHRONIZATION 

The 80186 provides both synchronous and asynchronous 
ready inputs. Asynchronous ready synchronization is ac­
complished by circuits which samples ARDY in the mid­
dle of T2, T3, and again in the middle of each Tw until 
ARDY is sampled HIGH. One-half CLKOUT cycle of 
resolution time is used and full synchronization is per­
formed only on the rising edge of ARDY (i.e., the falling 
edge of ARDY must be synchronized to the CLKOUT 

80186 

x, 

ck ±~F 
T x, 

±2~F 

signal if it will occur during T2, T3, or Tw). 
High-to-LOW transitions of ARDY must be performed 
synchronously to the CPU clock. 

A second ready input (SRDY) is provided to interface 
with externally synchronized ready signals. This input is 
sampled at the end ofT2, T3, and again at the end of each 
Tw until it is sampled HIGH. By using this input rather 
than the asynchronous ready input, the half-clock cycle 
resolution time penalty is eliminated. This input must sat­
isfy set-up and hold times to guarantee proper operation 
of the circuit. 

Ready synchronization is discussed in more detail in para­
graph 2.5.7. Refer to that discussion and the timing dia­
gram contained in paragraph 2.5.7 for additional detail. 

RESET 

The 80186 provides both a RES* input pin and a synchro­
nized RESET output pin for use with other system com­
ponents. The RES* input pin is provided with hysteresis 
to allow a power-on reset signal generated from an RC 
network. RES* is required to be low for greater than four 
clock cycles and must occur no sooner than 50 microsec­
onds after power-up. RESET is guaranteed to remain ac­
tive for at least five clocks, given a RES* input lasting at 
least six clocks. RESET may be delayed from RES* up to 
2.5 clocks. 

The reset input signal also resets the divide-by-two 
counter. A one clock cycle internal clear pulse is gener­
ated when the RES* input signal first goes active. This 
clear pulse goes active beginning on the first low-to-high 
transition of the Xl input after RES* goes active, and 
goes inactive on the next low-to-high transition of the Xl 
input. In order to insure that the clear pulse is generated 
on the next EFI cycle, the RES* input signal must satisfy 
a 25ns setup time to the high-to-low EPI input signal (see 
Figure 2-77). During this clear, clockout will be high. On 
the next high-to-low transition of Xl, clockout will go 
low, and will change state on every subsequent 
high-to-low transition of EFI. 

Crystal Choice Recommendations: 

Frequency & Tolerance: Determined by System 
Requirements 

Temperature Range: o to 70°C 
ESR (Equivalent Series 

Resistance): 30 ohms max 
Co (Shunt Capacitance): 7 pfmax 
CL (Load Capacitance): 20 pf :!:2pf 
Drive Level: 1 mwmax 

Figure 2·76 8018.6. Crystal Connection 
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Figure 2-77 80186 Clock Generator Reset 

The high-to-Iow transition of the clockout signal of the 
80186 synchronizes the reset signal presented to the rest 
of the 80186, and also the signal present on the RESET 
output pin of the 80186. This signal remains active as 
long as the RES* input also remains active. After the 
RES* input goes inactive, the 80186 will begin to fetch its 
first instruction (at memory location FFFFOH) after six 
and a half CPU clock cycles (i.e., Tl of the first fetch will 
occur six and a half clock cycles later). To insure that the 
RESET output will go inactive on the next CPU clock 
cycle, the inactive going edge of the RES* input must 
satisfy certain hold and setup times to the low-to-high 
edge of the clockout signal of the 80186 (see Figure 
2-78). 

Initialization and Processor Reset 

Processor initialization or startup is accomplished by 
driving the RES* input pin LOW. RES* forces the 80186 
to terminate all execution and local bus activity. No in­
struction or bus activity will occur as long as RES* is 
active. After RES* becomes inactive and an internal proc­
essing interval elapses, the 80186 begins execution with 
the instruction at physical location FFFFOH. RES* also 
sets some registers to predefined values (see Table 2-30). 

Local Bus Controller and Reset 

Upon receipt of a RESET pulse from the RES* input, the 
local bus controller will perform the following actions: 

• Drive DEN*, RD"', and WR* HIGH for one clock 
cycle, then float. 

NOTE 

RD* is also provided with an internal pull-up 
device to prevent the processor from inadver­
tently entering Queue Status mode during re­
set. 

• Drive SO*-S2* to the passive state (all HIGH) and 
then float. 

• Drive LOCK'" HIGH and then float. 
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Table 2-30 80186 Initial Register State After 
RESET 

Status Word 
Instruction Pointer 
Code Segment 
Data Segment 
Extra Segment 
Stack Segment 
Relocation Register 
UMCS 

F002(H) 
OOOO(H) 
FFFF(H) 
OOOO(H) 
OOOO(H) 
OOOO(H) 
20FF(H) 
FFFB(H) 

• Tristate ADO-I5, AI6-19, BHE*, DT/T*. 

• Drive ALE LOW (ALE is never floated). 

• Drive HLDA LOW. 

Chip Select/Ready Logie and Reset 

Upon reset, the Chip-Select/Ready logic will perform the 
following actions: 

• All chip-select outputs will be driven high. 

• Upon leaving RESET, the UCS* line will be pro­
grammed to provide chip select to a lk block with the 
accompanying READY control bits set at 011 to allow 
the maximum number of internal wait states in con­
junction with external Ready consideration (i.e., 
UMCS resets to FFFBH). 

• No other chip select or READY control registers have 
any predefmed values after RESET. They will not be­
come active until the CPU accesses their control regis­
ters. Both the PACS and MPCS registers must be 
accessed before the PCS* lines will become active. 

~'~ 
RES ____ ...J 

RESET ---------"""'L-

Figure 2-78 Coming Out of Reset 
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DMA Channels and Reset 

Upon RESET, the DMA channels will perform the fol­
lowing actions: 

• The Start/Stop bit for each channel will be reset to 
STOP. 

• Any transfer in progress is aborted. 

Timers and Reset 

Upon RESET, the Timers will perform the following 
actions: 

• All EN (Enable) bits are reset preventing timer 
counting. 

• 11 SEL (Select) bits are reset to zero. This selects 
MAX COUNT register A, resulting in the Timer Out 
pins going HIGH upon RESET. 
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Interrupt Controller and Reset 

Upon RESET, the interrupt controller will perform the 
following actions: 

• All SFNM bits reset to 0, implying Fully Nested 
Mode. 

• All PR bits in the various control registers set to 1. 
This places all sources at lowest priority (leve1111). 

• All LTM bits reset to 0, resulting in edge-sense mode. 

• All Interrupt Service bits reset to O. 

• All Interrupt Request bits reset to O. 

• All MSK (Interrupt Mask) bits are set to 1 (mask). 

• All C (Cascade) bits reset to 0 (non-cascade). 

• All PRM (Priority Mask) bits set to 1, implying no 
levels masked. 

• Initialized to non-iRMX 86 mode. 
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CHAPTER 3 
8087 NUMERIC PROCESSOR EXTENSION 

3.1 INTRODUCTION 

This chapter provides specific hardware design informa­
tion on the operation and functions of INTEL's 8087 Nu­
meric Processor Extension (NPX). General information 
on the NPX coprocessor and its applications is presented, 
along with a component overview of the architectural and 
software considerations, and individual device pin func­
tional signal definitions. Detailed descriptions of the NPX 
operating modes, general operation with the iAPX 86/186 
host CPU's, and bus operation artd timing are also pre­
sented. In addition, an explanation of the protocols sup­
porting local bus transfers to the host CPU's, and a 
description of interrupt operation are also provided. For 
more specific information of any of the 8086 family sup­
port circuits, refer to the Microsystem Component Hand­
book (Order Number: 230843-002). 

3.1.1 iAPX 86, 88, 186, 188 Base 

The 8087 Numeric Processor Extension (NPX) is based 
on the iAPX861 88/186/188 family of microprocessors. 
These microprocessors are general purpose devices, de­
signed for general data processing applications that re­
quire fast, efficient data movement and control 
instructions. The actual arithmetic performed on data val­
ues is fairly simple in data applications. The iAPX 86 
family of microprocessors fills this need in an effective, 
low cost manner. However, some applications require 
more powerful arithmetic instructions and data types than 
provided by a general purpose data processor. Since the 
real world deals in fractional values and requires 
arithmetic operations like square root, sine and loga­
rithms, integer data types and their operations may not 
meet the needed accuracy, speed, and ease of use require­
ments. 

These advanced functions are not simple to implement 
and are not inexpensive. General data processors do not 
provide these features because of their cost to other 
less-complex applications that do not require such sophis­
ticated features. Therefore a special, easy to use proces­
sor which has a high level of hardware and software 
support is required to implement these functions. 

The 8087 (NPX) provides these features and supports the 
data types and operations needed. The NPX allows use of 
all of the current hardware and software support that is 
available for the iAPX 86/10, iAPX 88/10, iAPX 186/10 
and iAPX 188/10 microprocessors. The following para­
graphs present some typical applications for microproces­
sors using the NPX. In addition, a discussion of the use of 
the special hardware component, the 8087 NPX, and its 
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software based 8087 emulator is also included. Both the 
component and the software emulator add extra data types 
and operations to the iAPX 86/10 family ofmicroproces­
sors. The hardware component and the software emulator 
are completely compatible. 

NUMERIC PROCESSOR EXTENSION 
APPLICATIONS 

The versatility and performance of the 8087 NPX make it 
appropriate for a broad array of numerically-oriented ap­
plications. Generally, any application that exhibits the fol­
lowing characteristics will benefit by implementing 
numeric processing on the 8087: 

1. Numeric data vary over a wide range of values or in­
clude non- integral values; non-integral values; 

2. Algorithms produce very large or very small interme­
diate results; 

3. Computations must be very precise, i.e., a large num­
ber of significant digits must be maintained; 

4. Performance requirements exceed the capacity oftra­
ditional microprocessors; 

5. Consistently safe, reliable results must be delivered 
using a programming staff that is not expert in nu­
meric techniques. 

The 8087 can also reduce software development costs and 
improve the performance of systems that do not use real 
numbers, but operate on multi-precision binary or deci­
mal integer values. 

A few examples, which show how the 8087 might be used 
in specific numerics applications, are described in the fol­
lowing list. In the past, these types of systems have typi­
cally been implemented with minicomputers. The advent 
of the 8087 brings the size and cost savings of micropro­
cessor technology to these applications for the first time. 

1. Business data processing - The NPX's ability to ac­
cept decimal operands and produce exact decimal 
results up to 18 digits greatly simplifies accounting 
programming. Financial calculations which use power 
functions can take advantage of the 8087's exponen­
tiation and logarithmic instructions. 

2. Process control - the 8087 solves dynamic range 
problems auto maticaJly, and its extended precision 
allows control functions to be fine-tuned for more ac­
curate and efficient performance. Control algorithms 
implemented with the NPX also contribute to im­
proved reliability and safety, while the 8087's speed 
can be exploited in real-time operations. 
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3. Numeric control - The 8087 can move and position 
machine tool heads with extreme accuracy. Axis posi­
tioning also benefits from the hardware trigonometric 
support provided by the 8087. 

4. Robotics - Coupling small size and modest power 
requirements with powerful computational abilities, 
the NPX is ideal for on-board six-axis positioning. 

5. Navigation - Very small, light weight, and accurate 
inertial guidance systems can be implemented with the 
8087. Its built-in trigonometric functions can speed 
and simplify the calculation of position from bearing 
data. 

6. Graphics terminals - The 8087 can be used in graph­
ics terminals to locally perform many functions which 
normally demand the attention of a main computer; 
these include rotation, scaling, and interpolation. By 
also including an 8089 Input/Output Processor to per­
form high speed data transfers, very powerful and 
highly self-sufficient terminals can be built from a rel­
atively small number of 8086/88 family components. 

7. Data acquistion - The 8087 can be used to scan, scale 
and reduce large quantities of data as it is collected. 
This lowers the storage requirements as well as the 
time required to process the data for analysis. 

These examples are all oriented toward the "traditional" 
numerics applications. There are, however, many other 
types of systems that do not appear to the end user as 
"computational" , but can employ the 8087 to advantage. 
The 8087 presents the imaginative system designer with 
an opportunity similar to that created by the introduction 
of the microprocessor itself. Many applications can be 
viewed as numerically-based if sufficient computational 
power is available to support this view. This is analogous 
to the thousands of successful products that have been 
built around "buried" microprocessors, even though the 
products themselves bear little resemblance to computers. 

8087 EMULATOR VERSUS COMPONENT USE 

Two basic implementations of the Numeric Data Proces­
sor Extension (NPX) are available. One is using the 8087 
component and the other is with its software emulator 
(E8087). Whether the emulator or the component is used 
has no effect on programs at the source level. All instruc­
tions, data types and features are used in the same way at 
the source level. 

All numeric instruction opcodes must be replaced with an 
interrupt instruction when the emulator is used. This re­
placement is performed by the LlNK86 program. Inter­
rupt vectors in the hosts interrupt vector table will point to 
numeric instruction emulation routines in the 8087 soft­
ware emulator. 
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BOB7 BASED LINK/LOCATE COMMANDS 

LlNKB6 :F1:PROG.OBJ, IO.LlB, BOB7.LlB TO 
:F1:PROG.LNK 

LOCB6 :F1:PROG.LNK TO :F1:PROG 

SOFTWARE EMULATOR BASED 
LINK/LOCATE COMMANDS 

LlNKB6 :F1 :PROG.OBJ, IO.LlB, EB087.LlB, 
EB087 TO :F1:PROG.LNK 

LOCB6 :F1:PROG.LNK TO :F1:PROG 

Figure 3-1 Submit file Example 

When the emulator is used, the linker changes all the 
2-byte wait-escape, nop-escape, wait-segment override, 
or nop-segment override sequences generated by an as­
sembler or compiler for the 8087 component with a 
2-byte interrupt instruction. Any remaining bytes of the 
numeric instruction are left unchanged. 

The host executes software interrupt instructions formed 
by the linker when it encounters numeric and emulated 
instructions. The interrupt vector table directs the host to 
the proper entry point in the 8087 emulator. The host then 
decodes any remaining part of the numeric instruction us­
ing the interrupt return address and CPU register set, per­
forms the indicated operation, and returns to the next 
instruction following the emulated numeric instruction. 
One copy of the 8087 emulator can be shared by all pro­
grams in the host. 

The decision to use the 8087 or the software emulator is 
made at link time, when all software modules are brought 
together. Depending on whether an 8087 or its software 
emulator is used, a different group of library modules are 
included for linking with the program. 

If the 8087 component is used, the libraries do not add 
any code to the program, they just satisfy external refer­
ences made by the assembler or compiler. Using the emu­
lator will not increase the size of individual modules, 
however, other modules requiring about 16K bytes that 
implement the emulator will be automatically added. 

Selecting between the emulator or the 8087 can be very 
easy. Different versions of submit files performing the 
link operation can be used to specify the different set of 
library modules needed. See Figure 3-1 for an example of 
the two different submit files for the same program using 
the NPX with an 8087 or the 8087 emulator. 

3.1.2 8087 Mobility In Any iAPX 86, 88, 
186 Design 

The design of any maximum mode iAPX 86/1X, 88/1X, 
18611X or 188/1X system can be easily upgraded with an 
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Figure 3·2 8087 Numeric Data Processor 
Pin Diagram 

8087. Such a system would then be designated an 86/2X, 
88/2X, 186/2X or 188/2X. See Figure 3-2 for 8087 DIP 
pin assignments, Figure 3-3 for local bus interconnections 
of a typical iAPX 86/20 (or iAPX 88120) system, and 
Figure 3-4 for local bus interconnects of a typical iAPX 
186/2X (or iAPX 188/2X) system. The 8087 shares the 
maximum mode host's multiplexed address/data bus, sta­
tus signals, queue status signals, ready status signals, 
clock and reset signal. Two dedicated signals, BUSY and 
INT, are used to inform the host of the 8087's status. To 
ensure that the host will always see a "not busy" status if 
an 8087 is not installed, a 10K pull-down resistor should 
be installed on the BUSY signal line. 

Adding the 8087 to an iAPX 86/88/186/188 design has a 
minor effect on the system timing. Installing the 8087 
adds 15 pF to the total capacitive loading on the shared 
address/data and status signals. The 8087 can drive a total 
capacitive load of 100 pF above its own self load and sink 
2.0 rnA of DC current on its pins. This AC and DC drive 
is sufficient for an iAPX 86/21 system consisting of two 
sets of data transceivers, address latches, and bus control­
lers for two separate busses, an on-board bus and an 
off-board MULTIBUS using the 8289 bus arbiter. Refer 
to paragraphs 3.8 and 3.7 in this chapter for additional 
information on connecting the 8087 INT and RQ/GT 
pins. 

A prewired 40-pin socket for the 8087 component can be 
left on a CPU board. Then, adding the 8087 to such a 
system would be as easy as plugging in the device. In this 
case, if a program attempts to execute any numeric in­
structions when the 8087 is not installed, the instruction 
will be treated as a NOP instruction by the host. Software 
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can test for the existence of the 8087 by initializing it and 
then storing the control word. A program segment that 
illustrates this technique is shown in Figure 3-5. 

When no CPU board space has been left for the 8087 
component (or memory space for its software emulator), 
a maximum mode iAPX 86/1X system can be upgraded to 
a numeric processor using the iSBC 337 MULTIMO­
DULE. The iSBC 337 MULTIMODULE is designed for 
just such a function. The iSBC 337 provides a socket for 
the host microprocessor and an 8087. A 40-pin plug is 
provided on the underside of the 337 to plug into the orig­
inal host's socket (see Figure 3-6). Two other pins on the 
underside of the MULTIMODULE allow easy connection 
to the 8087 INT and RQ/GTl pins. 

3.2 COMPONENT OVERVIEW 

The 8087 Numeric Data Processor Extension (NPX) pro­
vides arithmetic and logical instruction support for a vari­
ety of numeric data types in iAPX 86/20, 88/20 systems. 
The 8087 executes instructions as a coprocessor to a max­
imum mode 8086 or 8088 and effectively extends the reg­
ister and instruction set of (including the addition of 
several new data types) an iAPX 86/10 or 88/10 based 
system. The 8087 is an extension to the iAPX 86/10 or 
88/10 that provides enhanced register, data types, control, 
and instruction capabilities at the harJwa,~ level. 

The 8087 extends the capability of an iAPX186/188 sys­
tem when interfaced to an 80186 or 80188 through the 
Intel 82188 Integrated Bus Controller. When interfaced to 
the 80186/88, the combination of components form an 
iAPXI86(188)/20 system. 

3.2.1 Architecture Overview 

The 8087 is internally comprised of two processing ele­
ments (see Figure 3-7), the Control Unit and the Numeric 
Execution Unit. The numeric execution unit executes all 
numeric instructions, while the control unit receives and 
decodes instructions, reads and writes memory operands 
and executes NPX control instructions. These two ele­
ments operate independently of one another; this allows 
the control unit to maintain synchronization with the CPU 
while the numeric execution unit is busy processing nu­
meric instructions. 

CONTROL UNIT 

The control unit keeps the 8087 synchronized with its host 
CPU. 8087 instructions intermix with host CPU instruc­
tions in a single instruction stream (the CPU fetches all 
instructions from memory). By monitoring the status sig­
nals (SO*-S2 *, S6) of the CPU, the NPX control unit de-
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Test for the existence of an 8087 in the system. This code will always recognize an 8087 
independent of the TEST pin usage on the host. No deadlock is possible. Using the 8087 
emulator will not change the function of this code since ESC instructions are used. The word 
variable control is used for communication between the 8087 and the host. Note: if an 8087 is 
present, it will be initialized. Register ax is not transparent across this code. 

ESC 
XOR 
MOV 
ESC 
OR 
JZ 

28, bx 
ax, ax 
control, ax 
15, control 
ax, control 
no_8087 

FNINIT if 8087 is present. The contents of bx is irrelevant 
These two instructions insert delay while the 8087 initializes itself 
Clear intial control word value 
FNSTCW if 8087 is present 
Control = 03ffh if 8087 present 
Jump if no 8087 is present 

Figure 3-5 Test for the Existence of an 8087 

iSBC 337'~ MULTIMODULET~ BOARn 

I 
BOARD OPTIONAL SOLDER 

(iSec 86/12ATM) MOUNT 

termines when an 8086 instruction is being fetched. At 
the same time, the control unit monitors the Data bus in 
parallel with the host CPU to obtain instructions that per­
tain to the 8087. 

The CPU maintains an instruction queue that is identical 
to the queue in the host CPU. By monitoring the BHE*IS7 
line, the control unit automatically determines if the CPU 
is an 8086 or an 8088 iinmediately after reset and matches 
its queue length accordingly. Also, by monitoring the 

FiQure 3-6 iSBC® 337 MULTIMODULE 
Mounting Scheme 
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Figure 3-7 8087 Numeric Processor Extension Block Diagram 
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CPU's queue status lines (QSO, QS1), the control unit ob­
tains and decodes instructions from the queue synchro­
nously with the CPU. 

A numeric instruction for the 8087 appears as an ES­
CAPE instruction to the 8086 or 8088 CPU; both the 
CPU and the NPX decode and execute the ESCAPE in­
struction together. Only the 8087, however, recognizes 
the numeric instructions. The start of a numeric operation 
begins when the CPU executes the ESCAPE instruction 
(the instruction mayor may not identify a memory oper­
and). 

The CPU does, however, distinguish between ESCAPE 
instructions that refer to memory operands and those that 
do not. If the instruction refers to a memory operand, the 
CPU calculates the operand's address using anyone of its 
available addressing modes, and then performs a "dummy 
read" of the word at that location. (Any location with the 
1M byte address space is allowed.) This read cycle is nor­
mal except that the CPU ignores the data it receives. If the 
ESCAPE instruction does not contain a memory refer­
ence (e.g., an 8087 stack operation), the CPU simply pro­
ceeds to the next instruction. 

An 8087 instruction can have one of three memory refer­
ence options: 

1. not reference memory; 

2. load an operand word from memory into the 8087; 

3. store an operand word from the 8087 into memory. 

If the 8087 requires no memory reference, the numeric 
execution unit simply executes its instruction. If the 8087 
does require a memory reference, the control unit uses 
the "dummy read" cycle initiated by the host CPU to cap­
ture and save the address that the CPU places on the bus. 
If the instruction specifies a register load, the control unit 
also captures the data word when it becomes available on 
the local data bus. If the 8087 requires data longer than 
one word, the control unit immediately obtains the bus 
from the CPU using the request/grant protocol and reads 
in the rest of the information in consecutive bus cycles. In 
a store operation, the control unit captures and saves the 
store address as in a register load operation, and ignores 
the data word that follows in the "dummy read" cycle. 
When the 8087 is ready to perform the store, the control 
unit obtains the bus from the CPU and writes the operand 
starting at the specified address. 

NUMERIC EXECUTION UNIT 

The 8087 executes all instructions that involve the nu­
meric register stack. These instructions include 
arithmetic, logical, transcendental, constant and data 
transfer operations. The numeric execution unit in the 
NPX has a 80-bit wide data path (64 fraction bits, 15 ex­
ponent bits and a sign bit) that allows internal operand 
transfers to be performed at very high speeds. 
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MOD 
11 I 1 I 0 I 1 I 1 I I I 11 I 1 I I I I I I 1 

115 114 113 112 111 ItO 19 18 17 16 IS 14 13 12 11 10 

Figure 3-8 Non-Memory Reference Escape 
Instruction Form 

When the numeric execution unit begins executing an in­
struction, it activates the 8087 BUSY signal. This signal 
can be used in conjunction with the CPU WAIT instruc­
tion to resynchronize both processors when the numeric 
execution unit has completed its current instruction. 

3.2.2 Software Overview 

The following paragraphs discuss the ESCAPE instruc­
tion format and discuss the use of the ESCAPE instruc­
tion with custom coprocessors. The constraints which the 
designer must exercise when designing this type of circuit 
are also discussed. 

ESCAPE INSTRUCTION FORMAT 

There are two basic forms of the ESCAPE instructions. 
These are the non-memory form (see Figure 3-8) and the 
memory reference form (see Figure 3-9). All ESCAPE 
instructions start with the high order 5-bits of the instruc­
tion being 11011. The non-memory form ofthe ESCAPE 
instruction initiates some activity in the coprocessor using 
the nine available bits of the ESCAPE instruction to indi­
cate which action to perform. 

The memory reference forms of the ESCAPE instruction 
allow the host to point out a memory operand to the 
coprocessor using any host memory addressing mode. Six 
bits are available in this form to identify what to do with 
the memory operand. Note that the coprocessor may not 
recognize all possible ESCAPE instructions. In this case 
the coprocessor ignores the unrecognized ESCAPE in­
structions. 

In the memory reference forms of the ESCAPE instruc­
tions bits 7 and 6 of the byte follow the ESCAPE opcode. 
These two bits are the MOD field of the 8086 or 8088 
effective address calculation. Together with R/M field 
bits 2 through 0, bits 7 and 6 determine the addressing 
mode and how many subsequent bytes still remain in the 
instruction. 

The 8086 or 8088 ESCAPE instructions provide 64 mem­
ory reference opcodes and 512 non-memory reference 
opcodes. The 8087 only uses 57 of the memory reference 
opcodes and 406 of the non-memory reference opcodes. 
Refer to Figure 3-10 for a list of the ESCAPE instructions 
not used by the 8087. 
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MOD RIM 16·blt direct displacement 
11 I 1 I ° I 1 I 1 I I I 1 ° I ° 1 I I 1 1 I 1 I ° I I I I I I I I I I I I I I I I 1 

'15 114 113 1,2 '11 '10 19 Ie '7 '6 15 '4 13 12 1, 10 0,5 0'4 013 0'2 0'1 0'0 09 De 07 06 0S 04 03 02 0, DO 

MOD RIM 16·blt displacement 
11111011111 I 11 1 10 1 I III I II I I I I I III I I I I I I I 

'15 1,4 113 1,2 IH '10 19 Ie '7 '6 15 14 13 '2 '1 10 0,5 014 013 0'2 0'1 ~10 09 De 07 06 Os 04 03 02 0, Do 

MOD RIM a·blt displacement 
11111011111 I I 10lljl III I I I I I I I I ~ 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

MOD RIM 

111110111'1 I 11°1 0 1 I I I I I I 
'15 '14 113 '12 '11 '10 19 Ie 17 16 15 14 '3 12 1, 10 

Figure 3·9 Memory Reference Escape Instruction Form 

1 I 1 I ° I 1 1 1 I 1 1 11 I 1 I 1 1 L ... 1.-1 __ 
115 '14 113 '12 1,1 '10 19 18 17 '6 IS 14 13 12 '1 to 

110 19 18 IS 14 13 12 11 10 Available codes 

0 0 1 0 1 0 0 0 1 
0 0 1 0 1 0 0 1 -
0 0 1 0 1 0 1 
0 0 1 1 0 0 0 1 
0 0 1 1 0 0 1 1 
0 0 1 1 0 1 1 1 
0 0 1 1 1 0 1 0 
0 0 1 1 1 1 0 1 
0 0 1 1 1 1 1 1 
0 1 1 1 0 0 1 0 
0 1 1 1 0 0 1 1 
0 1 1 1 0 1 
0 1 1 1 1 ---- 16 

0 1 1 ----- 32 

1 1 1 0 0 0 0 1 
1 1 1 0 0 0 1 0 
1 1 1 0 0 1 --
1 1 1 0 1 
1 1 1 1 ---- 16 

105 total 

Available Non-Memory Reference Escape Instructions 

MOD RIM 

11 1 1°1 1 11 1 I I II I I I LLL 
'15 1,4 113 112 "1 '10 '9 '8 '7 16 15 '4 13 '2 '1 10 

110 19 18 IS 14 13 

0 0 0 0 1 
0 1 0 0 1 
0 1 1 0 0 
0 1 1 1 0 
1 0 0 0 1 
1 0 1 0 1 
1 1 0 0 1 

Available Memory Reference Escape Instructions 

Figure 3·10 ESCAPE Instructions Not Used 
By the 8087 NPX 
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USING THE 8087 WITH CUSTOM 
COPROCESSORS 

When designing numeric processors with custom copro­
cessors, the designer should limit the use of ESCAPE in­
structions to only those not used by the 8087. Using only 
the unused ESCAPE instructions with custom coproces­
sors is necessary to prevent ambiguity as to whether any 
specific ESCAPE instruction is intended for the numeric 
or custom coprocessor. Note that using any escape in­
struction for a custom coprocessor may conflict with op­
codes chosen for future Intel coprocessors. 

Using the 8087 together with other custom coprocessors 
under the following constraints: 

1. All 8087 errors are masked. The 8087 will update its 
opcode and instruction address registers for the un­
used opcodes. Unused memory references 
instructions will also update the operand address 
value. These changes make software-defined error 
handling in the 8087 impossible. 

2. If the coprocessors provide a BUSY signal, they must 
be ORed together for connection to the host TEST 
pin. When the host executes a WAIT instruction, it 
does not know which coproces sor will be effected by 
the following ESCAPE instruction. Typically, all co­
processors must be idle before executing the ESCAPE 
instruction. 

3.3 DEVICE PIN ASSIGNMENTS 

A complete functional description of each device pin sig­
nal is provided Thble 3-1. This table correlates the de­
scription to the pin number and associated signal symbol. 

3.4 OPERATING MODES 

The following paragraphs describe the operation of the 
8087 NPX in conjunction with the 8086(88) and 
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Symbol 

AD15-ADO 

A19/56, 
A18/55, 
A17/54, 
A16/53 

SHE/57 

52, 51, SO 

RQ/GTO 

8087 NUMERIC PROCESSOR EXTENSION 

Table 3·1 8087 Device Pin Descriptions 

Type Name and Function 

IlO Address Data:These lines constitute the time multiplexed memory address (Tl) and data (T 2, 
T3, Tw, T4) bus. AO is analogous to SHE for the lower byte of the data bus, pins 07-00. It is 
LOW during T, when a byte is to be transferred on the lower portion of the bus in memory 
operations. Eight-bit oriented devices tied to the lower half of the bus would normally use AO 
to condition chip select functions. These lines are active HIGH. They are input/output lines for 
8087 driven bus cycles and are inputs which the 8087 monitors when the 8086/8088 is in 
control of the bus. A 15-A8. do not require an address latch in an iAPX 88/20. The 8087 will 
supply an address for the T,-T4 period. 

I/O Address Memory: During T, these are the four most significant address lines 
for memory operations. During memory operations, status information is available on 
these lines during T2, T3, Tw, and T4. For 8087 controlled bus cycles, 56, 54, and 53 
are reserved and currently one (HIGH), while 55 is always LOW These lines are inputs which 
the 8087 monitors when the 8086/8088 is in control of the bus. 

I/O Bus High Enable: During T, the bus high enable signal (SHE) should be used to enable data 
onto the most significant half of the data bus, pins 015-08. Eight-bit oriented devices tied to 
the upper half of the bus would normally use SHE to condition chip select functions. SHE is 
LOW during T, for read and write cycles when a byte is to be transferred on the high portion of 
the bus. The 57 status information is available during T2, T3, Tw, and T4' The signal is active 
LOW 57 is an input which the 8087 monitors during 8086/8088 controlled bus cycles. 

I/O Status: For 8087 driven bus cycles, these status lines are encoded as follows: 

S2 S1 SO 
o (LOW) X X Unused 
1 (HIGH) 0 0 Unused 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive 

5tatus is driven active during T4, remains valid during T, and T2, and is returned to the 
passive state (1,1, 1) during T 3 or during Tw when READY is HIGH. This status is used by the 
8288 Sus Controller to generate all memory access control signals. Any change in 52, 51, or 
50 during T 4 is used to indicate the beginning of a bus cycle, and the return tei the passive 
state in T 3 or Tw is used to indicate the end of a bus cycle. These signals are monitored by the 
8087 when the 8086/8088 is in control of the bus. 

I/O Request/Grant: This request/grant pin is used by the NPX to gain control of the local bus from 
the CPU for operand transfers or on behalf of another bus master. It must be connected to one 
of the two processor request/grant pins. The request grant sequence on this pin is as follows: 
1. A pulse one clock wide is passed to the CPU to indicate a local bus request by either the 

8087 or the master connected to the 8087 RQ/GT1 pin. 

2. The 8087 waits for the grant pulse and when it is received will either initiate bus transfer 
activity in the clock cycle following the grant or pass the grant out on the RQ/GT1 pin in this 
clock if the initial request was for another bus master. 

3. The 8087 will generate a release pulse to the CPU one clock cycle after the completion of 
the last 8087 bus cycle or on receipt of the release pulse from the bus master on Ra/GT1. 
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Table 3·1 8087 Device Pin Descriptions (continued) 

Symbol ~pe Name and Function 

RQ/GTl I/O Request/Grant:This request/grant pin is used by another local bus master to force the 8087 to 
request the local bus. If the 8087 is not in control of the bus when the request is made the 
request/grant sequence is passed through the 8087 on theRQ/GTO pin one cycle later. 
Subsequent grant and release pulses are also passed through the 8087 with a two and one 
clock delay, respectively, for resynchronization. R<5/GT"l has has an internal pullup resistor, 
and so may be left unconnected. If the 8087 has control of the bus the request/grant sequence 
is as follows: 
1. A pulse 1 ClK wide from another local bus master indicates a local bus request to the 8087 

(pulse 1). 
2. During the 8087's next T4 or Tl a pulse 1 ClK wide from the 8087 to the requesting master 

(pulse 2) indicates that the 8087 has allowed the local bus to float and that it will enter the 
"RQ/GT acknowledge" state at the next ClK. The 8087's control unit is disconnected 
logically from the local bus during "RQ/GTacknowledge." 

3. A pulse 1 ClK wide from the requesting master indicates to the 8087 (pulse 3) that the 
"RQ/GT" request is about to end and that the 8087 can reclaim the local bus at the next 
ClK. 

Each master-master exchange of the local bus is a sequence of 3 pulses. There must be one 
dead ClK cycle after each bus exchange. Pulses are active lOW 

QS1, I OS1, OSO: QSl and QSO provide the 8087 with status to allow tracking of the CPU 
QSO instruction queue. 

OS1 OSO 
o (lOW) 0 No Operation 
0 1 First Byte of Op Code from Queue 
1 (HIGH) 0 Empty the Queue 
1 1 Subsequent Byte from Queue 

INT 0 Interrupt: This line is used to indicate that an unmasked exception has occurred during 
numeric instruction execution when 8087 interrupts are enabled. This signal is typically 
routed to an 8259A. INT is active HIGH. 

BUSY 0 Busy: This signal indicates that the 8087 NEU is executing a numeric instruction. It is con-
nected to the CPU's TEST pin to provide synchronization. In the case of an unmasked 
exception BUSY remains active until the exception is cleared. BUSY is active HIGH. 

READY I Ready: READY is the acknowledgment from the addressed memory device that it will 
complete the data transfer. The ROY signal from memory is synchronized by the 8284A Clock 
Generator to form READY. This signal is active HIGH. 

RESET I Reaet: RESET causes the processor to immediately terminate its present activity. The signal 
must be active HIGH for at least four clock cycles. RESET is internally synchronized. 

ClK I Clock: The clock provides the basic timing for the processor and bus controller. It is asym-
metric with a 33% duty cycle to provide optimized internal timing. 

Vee Power: Vee is the +5V power supply pin. 

GND Ground: GND are the ground pins. 

NOTE: 
For the pin descriptions of the 8086 and 8088 CPU's reference those respective data sheets (iAPX 86/10, iAPX 88/10). 
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Figure 3-11 8087 NPX - 8086/88 CPU System Configuration 

80186(188) microprocessors, describe the overall electri­
cal interface and present design considerations relate to 
the interface. 

3.4.1 8087/8086(88) Interface 

When installed as a coprocessor to the 8086 or 8088, the 
8087 connects in parallel with the CPU (see Figure 3-11). 
The CPU's status lines (SO*-S2 *) and queue status lines 
(QSO-QS1) allow the 8087 to monitor and decode instruc­
tions in synchronization with the CPU and without any 
CPU overhead. The 8087 can process instructions in par­
allel with and independent of the host CPU. For resyn­
chronization, the NPX's BUSY signal informs the CPU 
that the 8087 is executing an instruction; the CPU WAIT 
instruction tests this signal to insure that the NPX is ready 
to execute subsequent instructions. The NPX can inter­
rupt the CPU when it detects an error or exception. The 
8087's interrupt request line is typically routed to the 
CPU through an 8259A Programmable Interrupt Control­
ler (see Figure 3-2) for 8087 pinout information. 

The 8087 uses one of the request/grant lines of the 
iAPX86 architecture to obtain control of the local bus for 
data transfers. The other request/grant line is available for 
general system use (e.g., an I/O processor in LOCAL 
mode). A bus master can also be connected to the 8087's 
RQ*/OTl * line. In this configuration the 8087 will pass 
the request/grant handshake signals between the CPU and 
the attached master when the 8087 is in control. There­
fore, two additional masters can be configured in an iAPX 
86120 or an 88/20 system; one master will share the 8086 
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bus with the 8087 on a first come first serve basis, and the 
second master will be guaranteed to be higher in priority 
than the 8087. All processors use the same clock genera­
tor and system bus interface components (bus controller, 
latches, transceivers, and bus arbiter - see Figure 3-11). 

3.4.2 8087/80186(88) Interface 

The iAPX186/20 system operates similar to the 
iAPX86/20. The 80186 contains integral controller de­
vices (refer to Chapter 2) which result in device pin as­
signments and functions that differ from the 8086. To 
simplify iAPX186/20 system configuration, Intel pro­
vides the 82188 Integrated Bus Controller which enables 
communication between the 80186 and the 8087 without 
the need for random logic (see Figure 3-12). 

The 82188 converts the ARDY and SRDY signals of the 
80186 to RDY for the 8087; similarly, it converts 
HOLD/HLDA of the 80186 to RQ/OTO,1 for the 8087. 
When configured into an iAPX186/20 system, RD* (pin 
62) of the 80186 must be grounded. The 82188 supplies 
the command and control signals to the devices on the 
system bus that the 80186 would otherwise provide. 
These signals include: 

ARDY 
SRDY 
RD* 
WR* 
ALE 

DEN* 
DT/R* 
CSOUT* 
HOLD 
HLDA 
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Figure 3·12 8087 NPX - 801861188 CPU System Configuration 

3.5 8086 (80186)/8087 OPERATION 

The following paragraphs describe 8087 NPX escape se­
quence (ESCAPE) operation, and also describe the opera­
tional sequence where 8087 controls the bus. 

3.5.1 Decoding Escape Instructions 

The coprocessor must examine all instructions executed 
by the host to recognize ESCAPE instructions. When the 
host fetches an instruction byte from its internal queue, 
the coprocessor must also fetch an instruction byte. 

The queue status state, fetch opcode byte, identifies when 
an opcode byte is being examined by the host. At the 
same time, the coprocessor will check if the byte fetched 
from its internal instruction queue is an ESCAPE opcode. 
If the instruction is not an ESCAPE, the coprocessor will 
ignore it. The queue status signals for fetch subsequent 
byte and flush queue let the coprocessor track the host's 
queue without knowledge of the length and function of 
host instructions and addressing modes. 

HOST ESCAPE INSTRUCTION PROCESSING 

The host performs one of two possible actions when an 
ESCAPE instruction occurs. The host may either do noth­
ing or read a word value beginning at that address. The 
host ignores the value of the word read. ESCAPE instruc­
tions change none of the registers in the host except for 
advancing IP. Therefore, the ESCAPE instruction will ef­
fectively be a Nap to the host if no coprocessor exists, or 
the coprocessor ignores the ESCAPE instruction. Except 
for calculating a memory address and reading a word of 
memory, the host makes no other assumptions regarding 
coprocessor activity. 

Memory reference ESCAPE instructions have two pur­
poses. One identifies a memory operand and the other is, 
for certain instructions, to transfer a word from memory 
to the coprocessor. 
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COPROCESSOR INTERFACE TO MEMORY 

Coprocessor design is greatly simplified if only the read­
ing of memory values of 16 bits or less is required. The 
host can perform all the reads with the coprocessor latch­
ing the value as it appears on the data bus at the end of T3 
during the memory read cycle. The coprocessor does not 
need to become a local bus master to read or write addi­
tional information. 

If the coprocessor must write information to memory, or 
deal with data values longer than one word, it must save 
the memory address and be able to become the local bus 
master. The read operation performed by the host when 
executing the ESCAPE instruction places the 20-bit phys­
ical address of the operand on the address/data pins dur­
ing T1 of the memory cycle. The coprocessor can latch 
the address at this time. If the coprocessor instruction also 
requires reading a value, it will appear on the data bus 
during T3 of the memory read. All other memory bytes 
are addressed relative to this starting physical address. 

Whether the coprocessor becomes a bus master or not, it 
must be able to identify the memory read performed by 
the host in the course of executing an ESCAPE instruc­
tion if it has memory reference instruction forms. Identi­
fying the memory read requires the following conditions 
be met: 

1. A MOD value of 00, 01 or 10 in the second byte of the 
ESCAPE instruction executed by the host. 

2. This action must be the first data read memory cycle 
performed by the host after it encountered the ES­
CAPE instruction (Le., S2-S0 will be 101 and S6 will 
be 0). 

The coprocessor must continue to track the host's instruc­
tion queue while it calculates the memory address and 
reads the memory value. This simply requires following 
the fetch subsequent byte status commands that occur on 
the queue status pins. 
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The coprocessor must be aware of the host bus character­
istics that determine how the host will read the word oper­
and of a memory reference ESCAPE instruction. An 
8088 host will always perform two byte reads at sequen­
tial addresses, but an 8086 can perform either single word 
read or two byte reads to sequential addresses. The 8086 
places no restrictions on the alignment of word operands 
in memory. It will automatically perform two byte opera­
tions for word operands at an odd address. These two op­
erations are necessary because the two bytes of operand 
exist in two different memory words. The coprocessor 
must be able to accept the two possible methods of read­
ing a word value on the 8086. 

The coprocessor determines whether an 8086 performs 
one or two memory cycles as a part of the current ES­
CAPE instruction execution. During Tl of the first mem­
ory read by the host, the ADO pin tells the coprocessor if 
this is the only read to be performed as part of the ES­
CAPE instruction. If ADO is a I during Tl of the memory 
cycle, the 8086 immediately follows this memory read 
cycle with another one at the next byte address. 

3.5.2 Concurrent Execution of Host and 
Coprocessor 

After the coprocessor has started its operation, the host 
may continue on with the program, executing it in parallel 
while the coprocessor performs the function started ear­
lier. The parallel operation of the coprocessor does not 
normally affect that of the host unless the coprocessor 
must reference memory or I/O-based operands. When the 
host releases the local bus to the coprocessor, the host 
may continue to execute from its internal instruction 
queue. However, the host must stop when it also needs the 
local bus currently in use by the coprocessor. Except for 
the stolen memory cycle, the operation ofthe coprocessor 
is transparent to the host. 

This parallel operation of the host and coprocessor is 
called concurrent execution. Concurrent execution of in-' 
structions requires less total time than a strictly sequential 
execution would. System performance will be higher with 
concurrent execution of instructions between the host and 
coprocessor. 

SYNCHRONIZATION 

In exchange for the higher system performance made 
available by concurrent execution, programs must syn­
chronize the coprocessor with the host. Synchronization 
is necessary whenever the host and coprocessor must use 
information available from the other. Synchronization in­
volves either the host or coprocessor waiting for the other 
to finish an operation currently in progress. Since the host 
executes the program, and has program control instruc-
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tions like jumps, it is given the responsibility for synchro­
nization. To meet this need, a special host instruction 
exists to synchronization host operation with a coproces­
sor. 

A more detailed discussion of the effects of instruction 
execution synchronization between the host CPU and the 
8087 coprocessor is contained in the following paragraphs 
under "Instruction Synchronization". 

COPROCESSOR CONTROL 

The host has the responsibility for overall program con­
trol. Coprocessor operation is initiated by special "ES­
CAPE" instructions encountered by the host. When the 
host encounters an ESCAPE instruction, the coprocessor 
is expected to perform the action indicated by the instruc­
tion. 

The host's coprocessor interface requires the coprocessor 
to recognize when the host has encountered an ESCAPE 
instruction. Whenever the host begins executing a new 
instruction, the coprocessor must look to see if it is an 
ESCAPE instruction. Since only the host fetches instruc­
tions and executes them, the coprocessor must monitor 
the instructions being executed by the host. 

3.5.3 Instruction Synchronization 

Instruction synchronization is required because the 8087 
can only perform one numeric operation at a time. Before 
any numeric operation is started, the 8087 must have 
completed all activity from previous instructions. When 
executing a typical NPX instruction, the CPU will com­
plete the ESC long before the 8087 finishes interpretation 
of the same machine instruction. Upon completion of the 
ESC, the CPU will decode and execute the next instruc­
tion, and the NPX's control unit, tracking the CPU, will 
do the same. (The NPX "executes" a CPU instruction by 
ignoring it.) If the CPU has work to do that does not effect 
the NPX, it can proceed with a series of instructions while 
the NPX is executing in parallel. The NPX's control unit 
will ignore these CPU-only instructions as they do not 
contain the 8087 escape code. This asynchronous execu­
tion of the processors can substantially improve the per­
formance of systems that can be designed to exploit it. 

Two cases, however, make it necessary to synchronize the 
execution of the CPU to the NPX: 

1. An NPX instruction that is executed by the numeric 
execution unit must not be started if the execution unit 
is still busy executing a previous instruction. 

2. The CPU should not execute an instruction that ac­
cesses a memory operand being referenced by the 
NPX until the NPX has actually accessed the location. 
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The host coprocessor synchronization instruction (WAIT) 
uses the TEST pin of the host. The coprocessor can signal 
that it is still busy to the host via this pin. Whenever the 
host executes a wait instruction, it will stop program exe­
cution while the TEST input is active. When the TEST 
pin becomes inactive, the host will resume program exe­
cution with the next instruction following the WAIT. 
While waiting on the TEST pin, the host can be inter­
rupted at 5 clock intervals; however, after the TEST pin 
becomes inactive, the host will immediately execute the 
next instruction, ignoring any pending interrupts between 
the WAIT and the following instruction. 

The WAIT instruction allows software to synchronize the 
CPU to the NPX so that the CPU will not execute the 
following instruction until the NPX is finished with its 
current (if any) instruction. 

Whenever the 8087 is executing an instruction, it activates 
its BUSY line. This signal is wired to the CPU's TEST* 
input as shown in Figure 3-11. The NPX ignores the 
WAIT instruction, and the CPU executes it. The CPU in­
terprets the WAIT instruction as "wait while TEST* is 
active." The CPU examines the TEST* pin every 5 
clocks. If TEST* is inactive, execution proceeds with the 
instruction following the WAIT. If TEST* is active, the 
CPU examines the pin again. Therefore, the effective ex­
ecution time of a WAIT can stretch from 3 clocks (3 
clocks are required for decoding and setup) to infinity, as 
long as TEST" remains active. The purpose of the WAIT 
instruction is to prevent the CPU from decoding the next 
instruction until the 8087 is not busy. The instruction fol­
lowing a WAIT is decoded simultaneously by both proces­
sors. 

To satisfy the first synchronization case, every 8087 in­
struction that affects the numeric execution unit should be 
preceded by a WAIT to ensure that the execution unit is 
ready. All instructions except the processor control class 
affect the numeric execution unit. To simplify program­
ming, the 8086 family language translators provide the 
WAIT automatically, therefore, when an assembly lan­
guage programmer codes: 

FMUL 
FDIV 

; (multiply) 
; (divide) 

The assembler produces four machine instructions, as if 
the programmer had written: 

WAIT 
FMUL 
WAIT 
FDIV 

; (multiply) 

; (divide) 

This ensures that the multiply runs to completion before 
the CPU and the 8087 control unit decode the divide. 
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To satisfy the second synchronization case, the program­
mer must explicitly code the FWAIT instruction immedi­
ately before a CPU instruction that accesses a memory 
operand read or written by a previous 8087 instruction. 
This will ensure that the 8087 has read or written the 
memory operand before the CPU attempts to use it. (The 
FWAIT mnemonic causes the assembler to create a CPU 
WAIT instruction that can be eliminated at link time if the 
program is run on an 8087 emulator.) 

A typical sequence of instructions that illustrates the ef­
fect of the WAIT instruction and parallel execution of the 
NPX with a CPU is shown in Figure 3-13). The first two 
instructions in the sequence (FMUL and FSQRT) are 
8087 instructions that illustrate the ASM -86 assembler's 
automatic generation of a preceding WAIT, and the effect 
of the WAIT when the NPX is, and is not, busy. 

Since the NPX is not busy when the first WAIT is encoun­
tered, the CPU executes it and immediately proceeds to 
the next instruction, and the NPX ignores the WAIT. The 
next instruction is decoded simultaneously by both proc­
essors. The NPX starts the multiplication and raises its 
BUSY line. The CPU executes the ESC and then the sec­
ond WAIT. Since TEST* is active (it is tied to BUSY), the 
CPU effectively stretches execution of the multiply by 
lowering BUSY. The next instruction is interpreted as a 
square root by the NPX and another escape by the CPU. 
The CPU finishes the ESC well before the NPX comple­
tes the FSQRT. This time, instead of waiting, the CPU 
executes three instructions (CMP, JG and MOV) while the 
8087 is working on the FSQRT. The 8087 ignores these 
CPU-only instructions. The CPU then encounters the 
third WAIT, generated by the assembler immediately pre­
ceding the FIST (store stack top into integer word). When 
the NPX finished the FSQRT, both processors proceed to 
the next instruction, FIST to the NPX and ESC to the 
CPU. The CPU completes the escape quickly and then 
executes an explicit programmer-coded FWAIT to ensure 
that the 8087 has updated BETA before it moves BETA's 
new value to the register AX (refer to Figure 3-13). 

The 8087 control unit can execute most processor control 
instructions by itself regardless of what the numeric exe­
cution unit is doing. Therefore, in these cases the 8087 
can potentially execute two instruction at once. The 
ASM-86 assembler provides separate"wait" and "no 
wait" mnemonics for these instructions. For example, the 
instruction that sets the 8087 interrupt enable mask, and 
therefore disables interrupts, can be coded as FDISI or 
FNDISI. The assembler does not generate a WAIT if the 
second form is coded, so that the interrupts can be dis­
abled while the numeric execution unit is busy with a pre­
vious instruction. The no-wait forms are principally used 
in exception handlers and operating systems. 

210912·001 



8087 NUMERIC PROCESSOR EXTENSION 

;ASSUME 8087 REGISTER STACK IS LOADED WITH OPERANDS, 
, NEU IS NOT BUSY, 

AND THAT' ALPHA' AND' BETA' ARE WORD 
INTEGERS. 

FSQRT 
CMP 
JG 
MOV 

CONTINUE: FIST 
FWAIT 

MOV 

ALPHA,100 
CONTINUE 
ALPHA, 1 00 
BETA 

AX,BETA 

MULTIPLY TOP STACK 
ELEMENTS 
SQUARE ROOT OF PRODUCT 
ALPHA> 100 7 

YES, LEAVE UNALTERED 
NO, SET TO 100 
STORE ROOT AS INTEGER WORD 
WAIT FOR 8087 TO COMPLETE 
STORE OF BETA 
PROCEED TO PROCESS BETA 

NDP: ~_F_M_UL_ ..... I ... I _____ F_S_Q_RT ____ ---'II FIST I 

BUsv .. fEST: __ -,I V V"""'----''--

NOTES: 

• [W~iJ = Assembler-generated instruction . 

• Instruction execution times are not drawn to scale. 

Figure 3-13 Synchronizing Execution With WAIT 

3.6 BUS OPERATION 

Connecting the 8087 in tandem with an 8086 
(iAPX86/20) or with an 80186 (iAPXI86120), does not 
change system bus operation from the normal operation 
of the bus in a iAPX861l0 or iAPX186/1O system. How­
ever, some minor differences exist between the 
iAPX86120 and the iAPX186/20 systems, primarily due 
the requirement for a 82188 Interface chip in the 
iAPX186120 system. For additional information on the 
82188 Integrated Bus Controller refer to the Preliminary 
Data Sheet Revision 1.2. The following paragraphs de­
scribe the operation and timing of the bus in the various 
configurations. 

3.6.1 iAPX86/20 Bus Operation 

Operation and timing for the 8087 bus structure are iden­
tical to all other processors in the maximum mode config­
uration iAPX 86,88 series and the iAPX 186, 188 series. 
The address time-multiplexes with the data on the first 
16/8 lines of the address/data bus. A16 through A19 are 
time-multiplex with four status lines S3-S6. Lines S3, S4, 
and S6 are always high (logical 1) for 8087 driven bus 
cycles while S5 is always low (logical 0). When the 8087 
is monitoring CPU bus cycles (passive mode), the 8087 
monitors S6 to discriminate between 8086/8088 activity 
and that of a local I/O processor or any other local bus 
master. 
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NOTE 
The 8086/8088 must be the only processor on 
the local bus to drive S6 low. 

Line S7 multiplexes with BHE* and has the same value as 
BHE* for all 8087 bus cycles. When an 8288 Bus Con­
troller is used, status lines SO*-S2 * are used to determine 
the type of bus cycle being run, as shown in the following 
list: 

S2* 
o 
1 
1 
1 
1 

Sl* 
X 
o 
o 
1 
1 

SO* 
X 
o 
1 
o 
1 

Unused 
Unused 
Memory Data Read 
Memory Data Write 
Passive (no bus cycle) 

3.6.2 iAPX186/20 Bus Operation 

The 82188 Interface chip provides a local bus arbitration 
function for an 80186 system consisting of an 80186, an 
8087 and a third processor with a HOLD-HLDA type bus 
exchange protocol. The 82188 also provides the bus con­
trol signals otherwise supplied to the system by the 80186 
and contains ARDY and SRDY signals to its own integral 
Ready circuit (refer to paragraph 3.4.2). 

The 82188 also has an integral queue status circuit which 
inserts a one-phase delay on the queue status signals to 
meet the 8087 Queue-Status timing requirements (refer to 
paragraph 3.4.2). 
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BUS ARBITRATION 

The 82188 defines the priorities for access to the system 
bus for multiprocessor systems that include an 80186 and 
an 8087. As indicated in Figure 3-14), HOLD output 
from the 80186 and HLDA input to the 80186 intercon­
nect directly to the 82188. The 82188 then exchanges its 
own HOLD output and the HLDA input with the system. 
In this configuration, the 82188 assigns the highest sys­
tem bus access priority to the system (third processor in 
Figure 3-14), second priority to the 8087, and default to 
the 80186. 

When the 8087 has control of the bus, and the third proc­
essor needs the bus, the 82188 asserts RQ* IGTl * to take 
control of the bus from the 8087 and pass control to the 
third processor. If the 8087 does not have control of the 
bus, the 82188 passes control directly to the third proces­
sor without exercising the 8087 RQ*/GTl * protocol. The 
80186 will not regain control of the bus from the 82188 
until both the third processor and the 8087 are finished 
with the bus. 

The third processor uses the system HOLD and HLDA 
(SYSHOLD and SYSHLDA) lines to request bus access 
from the 82188. Similarly, the 82188 uses the 80186 
HOLD and HLDA lines to gain bus control from and re­
turn bus control to the 80186. The 82188 also uses the 
RQ*/GTO* lines from the 8087 for NPX bus control. 

NOTE 

The 82188 contains weak pull-up devices to 
set both RQ*/GTl * and RQ*/GTO* high if the 
82188 is configured in a system with out an 
8087. 

BUS CONTROL SIGNALS 

Status line outputs from the 80186 and the 8087 (see Fig­
ure 3-12) are sent to the 82188. The 82188 decodes these 
signal lines and generates bus control signals that would 
otherwise be generated and output directly by an 80186. 
The signals decoded by the 82188 include: 

ALE 
RD* 
WR* 
DT/R* 
DEN* 

The 82188 also contains the AEN* input which enables 
the system command lines. This signal provides the hard­
ware designer with the ability to tri-state RD*, WR *, and 
DEN* by asserting AEN* high SO*, SI * and S2* decode 
exactly the same as for the 8086 and the 80186. 
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READY CIRCUIT 

The system ARDY and SRDY signals are applied to the 
82188 inputs for these signals. The 82188 samples SRDY 
on the rising edge of the clock. Since ARDY is asyn­
chronous, the 82188 contains a one-phase synchronizer at 
its ARDY input. Using this synchronizer, the 82188 syn­
chronizes only the leading edge of ARDY (the 82188 pre­
sumes the trailing edge of ARDY falls on the eLK edge). 
From the ARDY and SRDY inputs, the 82188 produces a 
single synchronized Ready signal SRO. The SRO is ap­
plied to the 8087 READY input and the 80186 SRDY in­
put (note that the 80186 ARDY input should be tied low). 

The inherent 82188 propagation delays cause 
iAPX186120 system timing to differ from that of a 
iAPX186110 system. The 82188 samples ARDY one 
clock phase earlier than in a non-iAPX186/20 system. 
Also, SRDY setup time to the eLK falling edge is 30ns 
longer than the 80186 requirements (the 82188 changes 
SRO only when eLK is high). 

The 82188 inserts three Wait states, by using SRO, in the 
first 256 80186 bus cycles after a Reset. (This feature is 
for programmer use to re-program the 80186 Wait State 
generator to 0 Wait states.) 

3.7 BUS EXCHANGE MECHANISM 

Two basic decisions must be made when connecting the 
8087 to a system: 1.) interconnection of the RQ/GT sig­
nals of all of the local bus masters; and 2.) connecting the 
Interrupt (INT) signal pin. The decision on where to con­
nect the RQ/GT signal that is made at this point affects the 
response time needed to service local bus requests from 
other local bus masters, such as an 8089 lOP or other 
coprocessor. The interrupt connection affects the re­
sponse time to service an interrupt request and how 
user-interrupt handlers are written. The implications of 
how these pins are connected concern both the hardware 
designer and programmer and must be understood by 
both. The following paragraphs provide information on 
making the decision where to connect the RQ/GT signal. 
Refer to paragraph 3.8 for the discussion on interconnec­
tion of the Interrupt (INT) signal. 

3.7.1 8087 RQ/GT Function 

The presence of the 8087 in the RQ/GT path from the lOP 
to the host has little effect on the maximum wait time seen 
by the lOP when requesting the local bus. The 8087 adds 
two clocks of delay to the basic time required by the host. 
This low delay is achieved due to a preemptive protocol 
implemented by the 8087 on RQ/GTl. 

The 8087 always gives higher priority to a request for the 
local bus from a device attached to its RQ/GTl pin than to 
a request generated internally by the 8087. If the 8087 
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Figure 3-14 Three Processor System Bus Signal Connections 

currently owns the local bus and a request is made to its 
RQ/GTl pin, the 8087 will finish the current memory 
cycle and release the local bus to the requestor. If the 
request from the devices arrives when the 8087 does not 
own the local bus, the 8087 will then pass the request on 
to the host via its RQ/GTO pin. 

The RQ/GT issue can be broken into three general cata­
gories depending on system configuration: 86/20 or 
88120,86/21 or 88/21, and 86122 or 88122. Remote oper­
ation of an lOP is not effected by the 8087 RQ/GT con­
nection. 

iAPX 86/20, 88/20 SYSTEM CONFIGURATION 

For an 86/20, 88/20 just connect the RQ/GTO of the 8087 
to RQ/GTO (1) of the host (see Figure 3-3). 

iAPX 86/21, 88/21 SYSTEM CONFIGURATION 

For an 86121 or 88121, connect RQ/GTO of the 8087 to 
RQ/GTO(I) of the host and connect RQ/GT of the 8089 to 
RQ/GTl ofthe 8087 (see Figure 3-15). 

The RQ/GTl pin of the 8087 exists to provide one 110 
processor with a low maximum wait time for the local 
bus. The maximum wait times to gain control of the local 
bus for a device attached to RQ/GTl of an 8087 for an 
8086 or 8088 host are shown in Table 3-2. These numbers 
are all dependent on when the host will release the local 
bus to the 8087. 

Three factors determine when the host will release the 
local bus (see Table 3-2): 

1. Type of host; 

2. Current instruction being executed; 

3. Use ofthe lock prefix. 
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An 8086 host will not release the local bus between the 
two consecutive byte operations performed for 
odd-aligned word operands. In contrast, the 8088 will 
never release the local bus between two bytes of a word 
transfer, independent of its byte alignment. Host opera­
tions such as acknowledging an interrupt will not release 
the local bus for several bus cycles. Using a lock prefix in 
front of a host instruction prevents the host from releasing 
the local during the execution of that instruction. 

iAPX 86/22, 88/22 SYSTEM CONFIGURATION 

An 86/22 system offers two alternatives in regards to 
which lOP to connect to an 110 device. Each lOP will 
offer a different maximum delay time to service an 110 
request. (See Figure 3-16.) 

The second 8089 (lOP A) must use the RQ/GTO pin of the 
host. When using two lOP's the designer must decide 
which lOP services which 110 devices. This decision is 
determined by the maximum wait time allowed between 
the time an 110 device requests lOP service and when the 
lOP can respond. Since the maximum service delay times 
of the two lOP's can be very different, it makes very little 
difference which of the two host RQ/GT pins are used. 

The different wait times are due to the non-preemptive 
nature of bus grants between the two host RQ/GT pins. 
IOPA and the 8087/IOPB combination cannot communi­
cate about the need to use the local bus. Any request for 
the local bus by the IOPA must wait (worst case) for the 
host, the 8087, and the 10PB to finish their longest se­
quence of memory cycles. 10PB must wait in the worst 
case for the host and 10PA to finish their longest sequence 
of memory cycles. The 8087 has little effect on the maxi­
mum wait time of 10PB. 

3.7.2 Delay Effects of the 8087 

The delay effects of the 8087 on 10PA can be significant. 
When executing special instructions (FSAVE, FNSAVE, 
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Table 3-2 Worst Case Local Bus Request Wait Times In Clocks 

System No Locked 
Configuration Instructions 

iAPX 86121 
even aligned words lSI 

iAPX 86/21 
odd aligned words lSI 

iAPX 88121 lSI 

Notes: 1. Add two cla<:ks for each wait state inlCl'ted per bus cycle 
2. Add four clocks for each wait state inserted per bu. cycle 
• Execution time of IOlllest loc:ked instruction 

FRSlDR), the 8087 can perform 50 or 96 consecutive 
memory cycles with an 8086 or 8088 host, respectively. 
These instructions do not affect response time to local bus 
requests seen by an IOPB. 

If the 8087 is performing a series of memory cycles while 
executing these instructions, and IOPB requests the local 
bus, the 8087 will stop its current memory activity, then 
release the local bus to IOPB. The 8087 cannot release the 
bus IOPA since it cannot know that IOPA wants to use the 
local bus, like it can for IOPB. 

3.7.3 Reducing 8087 Delay Effects 

For 86122 or 88122 systems requiring lower maximum 
wait times for IOPA, it is possible to reduce worst case 
bus usage. If three 8087 instructions are never executed 
(namely FSAVE, FNSAVE, or FRSlDR) the maximum 
number of consecutive memory cycles performed by the 
8087 is 10 or 16 for an 8086 or 8088 host respectively. 
The function of these instructions can be emulated with 
other 8087 instructions. 

There are alternative techniques for switching the nu­
meric context without using the FSAVE/FNSAVE or 
FRSlDR instructions. These alternative techniques are 
slower than those using these instructions, but they reduce 
the worst case continuous local bus usage of the 8087. 
Only an iAPX 86/22 or iAPX 88/22 systems derive any 
real benefit from these alternatives. By replacing all 
FSAVE/FNSAVE instructions, the worst case local bus 
usage of the 8087 will be 6 or 10 consecutive bus cycles 
for the 8086 or 8088 host, respectively. 

Instead of saving and loading the entire numeric context 
in one long series of memory transfers, these alternative 
routines use the FSTENV/FNSTENV/FLDENY instruc­
tions and separate numeric register load/store instruc­
tions. Using separate load/store instructions for the 
numeric registers forces the 8087 to release the local bus 
after each numeric load/save instruction. The longest se­
ries of back-to-back transfers required by these instruc­
tions are 8/12 memory cycles (8086/8088 host, 
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Only Locked Other Locked 
Exchange Instructions 

3S1 max (lSI' 0) 

432 max (432• 0 ) 

432 max (432• 0 ) 

respectively). The FSAVE/FNSAVE/FRSlDR instruc­
tions, in contrast, perform 50/94 back-to-back memory 
cycles for an 8086 or 8088 host. 

COMPATIBILITY WITH FSAVE/FNSAVE 

This technique produces a context area of the same format 
produced by the FSAVE/FNSAVE instructions. Other 
software modules expecting this type of format will not be 
affected. All of the same interrupt and deadlock consider­
ations that apply to FSAVE and FNSAVE also apply to 
FSTENV and FNSTENV. With the exception that the nu­
meric environment is 7 words rather than the 47 words of 
the numeric context, all factors concerning the use of the 
FSAVE/FNSAVE also apply. 

The state of the NPX registers must be saved in memory 
in the same as used with the FSAVE/FNSAVE instruc­
tions. The program example (see Figure 3-17) starting at 
the label SMALLJ3LOCK......NP~SAVE illustrates a 
software loop that will store their contents into memory in 
the same top relative order as that of FSAVE/FNSAVE. 

To save the registers the FSTP instructions, the FSTP in­
structions must be tagged valid, zero, or special. This 
function will force all the registers to be tagged valid, 
independent of their contents or old tag, and then save 
them. No problems will arise if the tag value conflicts 
with the register's content for the FSTP instruction. Sav­
ing empty registers insures compatibility with the 
FSAVE/FNSAVE instructions. After saving all the nu­
meric registers, they will all be tagged empty, the same as 
if an FSAVE/FNSAVE instruction had been executed. 

COMPATIBILITY WITH FRSTOR 

Restoring numeric context reverses the procedure de­
scribed in the preceding paragraphs. This is shown by the 
code starting at SMALLJ3LOCK-NP~ESlDRE 
(see Figure 3-18). All eight registers are reloaded in the 
reverse order. With each register load, a tag value will be 
assigned to each register. The tags assigned by the register 
load do not since the tag word will be {)verwritten when 
the environment is reloaded later with FLDENV. 
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Figure 3·16 iAPX 86/22 System 

Two assumptions are required for the correct operation of 
the restore function. First, all numeric registers must be 
empty, and second, the TOP field must be the same as that 
in·the context being restored. These assumptions will be 
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satisfied if a matched set of pushes and pops were per­
formed between saving the numeric context and reloading 
it. If these assumptions cannot be met, the code example 
(see Figure 3-19)starting at NP~CLEAN shows how 
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Save the NPX context independent of NDP interrupt state. Avoid using the FSAVE instruction to 
limit the worst case memory bus usage of the 8087. The NPX context area formed will appear the 
same as if an FSAVE instruction had written into it. The variable save_area will hold the NPX 
context and must be 47 words long. The registers ax, bx, and cx will not be transparent. 

small_block_N PX_save: 
FNSTCW save_area 
NOP 
FNDISI 
MOV 
MOV 
XOR 

ax, save_area 
cx,8 
bx, bx 

FSTENV save_area 
FWAIT 
XCHG save_area + 4, bx 
FLDENV save_area 
MOV 
MOV 
XOR 

save_area, ax 
save_area + 4, bx 
bx, bx 

reg_store~loop: 

FSTP saved_reg [bx) 
ADD bx, type saved_reg 
LOOP reg_store_loop 

Save current IEM bit 
Delay while 8087 saves control register 
Disable 8087 BUSY Signal 
Get original control word 
Set numeric register count 
Tag field value for stamping all registers as valid 
Save NPX environment 
Wait for the store to complete 
Get orig i nal tag val ue and set new tag val ue 
Force all register tags as valid. BUSY is still masked. No data 
synchronization needed. Put original control word into NPX 
environment. Put original tag word into NPX environment 
Set initial register index 

Save register 
Bump pOinter to next register 

All done 

Figure 3-17 SMALLBLOCLNPLSAVE 

to force all the NPX registers empty and set the WP of 
field in the status word. 

These improvements do have a cost. This is the increased 
execution time of 427 or 747 additional clocks for an 
8086 or 8088, respectively, for the equivalent save and 

restore operations. These operations appear in 
time-critical context-switching functions of an operating 
system or interrupt handler. This technique has no affect 
on the maximum wait time seen by IOPB or wait time 
seen by IOPA due to IOPB: 

Restore the NPX context without using the FRSTOR instruction. Assume the NPX context is in the 
same form as that created by an FSAVE/FNSAVE instruction, all the registers are empty, and that 
the TOP field of the N PX matches the TOP field of the N PX context. The variable save_area must 
be an NPX context save area, 47 words long. The registers bx and cx will not be transparent. 

small_blocLNPX_restore: 

MOV cX,8 
MOV bx, type saved_reg"7 

reg_load_loop: 

FLO saved_reg [bx) 
SUB bx, type saved_reg 
LOOP reg_load_loop 
FLDENV save_area 

; Set register count 
Starting offset of ST(7) 

Get the register 
Bump pOinter to next register 

Restore N PX context 
All done 

Figure 3-18 SMALL_BLOCLNPLRESTORE 
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Force the NPX into a clean state with TOP matching the TOP field stored in the NPX context and all 
numeric registers tagged empty. Save_area must be the NPX environment saved earlier. 

; Temp_env is a 7 word temporary area used to build a prototype NPX environment. Register ax will 
; not be transparent. 

NPX_clean: 
FINIT 
MOV 
AND 
FSTENV 

ax, save_area + 2 
ax, 3800H 
temp_env 

Put NPX into known state 
Get original status word 
Mask out the top field 
Format a temporary environment area with all registers 
stamped empty and TOP field = O. 

FWAIT Wait for the store to finish. 
OR temp_env + 2, ax Put in the desired TOP value. 
FLDENV temp_env ; Setup new NPX environment. 

; Now enter small_block_NPX_restore 

Figure 3·19 NPX_CLEAN Code Example 

Which lOP to connect to which 110 device in an 86/22 or 
88/22 system will depend on how quickly an 110 request 
by the device must be serviced by the lOP. This maximum 
time must be greater than the sum of the maximum delay 
of the lOP and the maximum wait time to gain control of 
the local bus by the lOP. 

3.8 INTERRUPTS 

One of the most important decisions to make in adding the 
8087 to an 8086 or 8088 system is where to attach the 
8087 Interrupt (INT) signal. The 8087 INT pin provides 
an external indication of software-selected numeric er­
rors. This causes the numeric program to stop until some­
thing is done about the error. A numeric error occurs in 
the NPX whenever an operation is attempted with invalid 
operand or attempts to produce a result which cannot be 
represented. Deciding where to connect the INT signal 
can have important consequences on other interrupt han­
dlers. 

3.8.1 Recommended Interrupt 
Configurations 

Five categories cover most of the uses of the 8087 inter­
rupt in fixed priority interrupt systems. The following 
presents an interrupt configuration for each of these cate­
gories. 

1. All errors on the 8087 are always masked. Numeric 
interrupts are not possible. Leave the 8087 INT signal 
disconnected. 

2. The 8087 is the only interrupt in the system. Connect 
the 8087 INT signal directly to the host's INTR input 
(see Figure 3- 20). A bus driver supplies interrupt 
vector 1016 for compatibility with Intel supplied soft­
ware. 
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3. The 8087 interrupt is a stop everything event. Choose 
a high priority interrupt input that will terminate all 
numerics related activity. This is a special case since 
the interrupt handler may never return to the point of 
interruption (i.e., reset the system and restart rather 
than attempt to continue operation). 

4. Numeric exceptions or numeric programming errors 
are expected and all interrupt handlers either do not 
use the 8087 or only use it with all errors masked. Use 
the lowest priority interrupt input. The 8087 interrupt 
handler should allow further interrupts by higher pri­
ority events. The PIC's priority system will automati­
cally prevent the 8087 from disturbing other 
interrupts without adding extra code to them. 

5. Case 4 holds except that interrupt handlers may also 
generate numeric interrupts. Connect the 8087 INT 
signal to multiple interrupt inputs. One input would 
still be the lowest priority input as in case 4. Interrupt 
handlers that may generate a numeric interrupt may 
require another 8087 INT connection to the next high­
est priority interrupt. Normally the higher priority nu­
meric interrupt inputs would be masked and the low 
priority numeric interrupt enabled. The higher prior­
ity interrupt would be unmasked only when servicing 
an interrupt which requires 8087 exception handling. 

All of these configurations hide the 8087 from all inter­
rupt handlers which do not use the 8087. Only those inter­
rupt handlers that use the 8087 are required to perform 
any special 8087 related interrupt control activities. 

A conflict can arise between the desired PIC interrupt in­
put and the required interrupt vector of 1016 for compati­
bility with Intel software for numeric interrupts. A simple 
solution is to use more than one interrupt vector for nu­
meric interrupts, all pointing at the same 8087 interrupt 
handler. Design the numeric interrupt handler so that it 
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Disable any possible numeric interrupt from the 8087. This code is safe to place in any 
procedure. If an 8087 is not present, the ESCAPE instructions will act as nops. These 

; instructions are not affected by the TEST pin of the host. Using the 8087 emulator will not 
convert these instructions into interrupts. A word variable, called control, is required to hold 
the 8087 "ontrol word. Control must not be changed until it Is reloaded Into the 8087. 

ESC 15, control 
NOP 
NOP 
ESC 28,cx 

; (FNSTCW) Save current 8087 control word 
; Delay while 8087 saves current control 
; register value 
; (FNDISI) Disable any 8087 interrupts 
; Set IEM bit in 8087 control register 
; The contents of cx is Irrelevant 
; Interrupts can now be enabled 

(Your Code Here) 

Reenable any pending interrupts in the 8087. This instruction does not disturb any 8087 instruction 
currently in progress since ail it does is change the IEM bit in the control register. 

TEST control,80H 
JNZ $+4 
ESC 28,ax 

; Look at IEM bit 
; If IEM = 1 skip FNENI 
; (FNENI) reenable 8087 interrupts 

Figure 3-20 Inhibit/Enable 8087 Interrupts 

does not need to know what the interrupt vector was (i.e., 
do not use specific EO! commands). If an interrupt sys­
tem uses rotating interrupt priorities, it does not matter 
which interrupt is used. 
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CHAPTER 4 
8089 INPUT/OUTPUT PROCESSOR 

4.1 INTRODUCTION 

This chapter contains specific hardware design informa­
tion on the operations and functions of INTEL's 8089 
Input/Output Processor (lOP) when used with the iAPX 
86,88 and iAPX 186,188 family of microprocesssors. 
The chapter contains general information on the lOP, 
along with a component overview presenting architectural 
and software considerations, and individual device pin 
functional signal definitions. Detailed descriptions of the 
lOP's operating modes, bus operation, bus exchange 
mechanisms and a description of interrupt operation are 
also provided. For more specific information of any of the 
8086 family support circuits, refer to the Microsystems 
Components Handbook (Order Number 230843-002). 

4.2 COMPONENT OVERVIEW 

The 8089 Input/Output Processor (lOP) is an intelligent 
DMA controller that is used with the Intel iAPX 86,88 
and iAPX 186,188 family of microprocessors. The proc­
essing power of the 8089 lOP can remove 110 overhead 
from the 8086, 8088, 80186 or 80188 microprocessors. 
In addition, it may operate concurrently with a CPU, giv­
ing improved performance in 110 intensive applications 
over an iAPX 86,88 or iAPX 186,188 system operating 
without an 8089. The 8089 provides two 110 channels, 
each supporting a transfer rate of up to 1.25 megabytes 
per second at the standard clock frequency of 5 MHz. 
Memory based communication between the lOP and CPU 
enhances system flexibility and encourages software mo­
dularity for more reliable, easier to develop systems. 

The 8089 lOP combines the functions of a DMA control­
ler with the processing capabilities of a microprocessor. 
In addition to the normal DMA function of transferring 
data, the 8089 dynamically translates and compares data 
as it is transferred. The lOP also supports a number of 
terminate conditions, including byte count, data compare 
or miscompare, and the occurrence of an external event. 
Each of the two separate DMA channels contains its own 
register set. Depending on the established priorities (both 
inherent and program determined), the two channels can 
alternate (interleave) their respective operations. 

The 8089 has transfer flexibility integrally designed into 
it. It will perform routine transfers between an I/O pe­
ripheral and memory, and, in addition, transfer data be­
tween two 110 devices or between two areas of memory. 
The 8089 automatically handles transfers between dissim­
ilar bus widths. When the 8089 transfers data from an 
8-bit peripheral bus to a 16-bit memory bus, it reads two 
bytes from the peripheral, assembles the bytes into a 
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16-bit word and then writes the single word to the ad­
dressed memory location. Both 8-and 16-bit peripherals 
can reside on the same (l6-bit) bus because the lOP trans­
fers bytes with the 8-bit peripheral, and transfers words 
with the 16-bit peripheral. 

4.2.1 Architectural Overview 

The 8089 lOP is internally divided into the functional 
units described in the following paragraphs (see Figure 
4-1). These functional units are connected by a 20-bit data 
path to obtain maximum internal transfer rates. 

COMMON CONTROL UNIT (CCU) 

lOP operations (instructions, DMA transfer cycles, chan­
nel attention responses, etc.) are composed of sequences 
called internal cycles. A single bus cycle takes one inter­
nal cycle, therefore, the execution of an instruction may 
require several internal cycles. There are 23 different 
types of internal cycles. Each of these take from two to 
eight clocks to execute, not including possible wait states 
and bus arbitration resolving. 

The Common Control Unit (CCU) coordinates lOP ac­
tivities by allocating internal cycles to the various proces­
sor units, i.e., the CCU determines which unit will 
execute the next internal cycle. For example, when both 
channels are active, the CCU determines which channel 
has priority and lets that channel run; if the channels have 
equal priority, the CCU "interleaves" their execution. 
The CCU also initializes the processor. 

ARITHMETIC/LOGIC UNIT (ALU) 

The Arithmetic/Logic Unit (ALU) can perform unsigned 
binary arithmetic on 8-and 16-bit binary numbers. The 
results of this arithmetic may be up to 20 bits in length. 
Available arithmetic instructions include addition, incre­
ment and decrement. Logical operations ("and," "or" 
and "not") may be performed on either 8-or 16-bit quan­
tities. 

ASSEMBLY/DISASSEMBLY REGISTERS 

All data entering the chip flows through the 
AssemblylDissassembly registers. When data is being 
transferred between different width buses, the 8089 uses 
the assembly/disassembly registers to effect the transfer 
in the fewest possible bus cycles. During a DMA transfer 
from an 8-bit peripheral to 16-bit memory, for example, 
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Figure 4·1 8089 Simplified Functional Block Diagram 

the lOP runs two bus cycles, picking up eight bits in each 
cycle. It then assembles a 16-bit word and transfers the 
word to memory in a single bus cycle. (The first and last 
cycles of a transfer may be performed differently to ac­
commodate odd-addressed words; the lOP automatically 
adjusts for this condition.) 

INSTRUCTION FETCH UNIT 

The instruction fetch unit controls instruction fetching for 
the executing channel (one channel actually runs at a 
time). If the bus over which the instructions are being 
fetched is eight bits wide, the instructions are obtained 
one byte at a time, and each fetch requires one bus cycle. 
If the instructions are being fetched over a 16-bit bus, the 
instruction fetch unit automatically employs a I-byte 
queue to reduce the number of bus cycles. Each channel 
has its own queue, and the activity of one channel does 
not affect the other's queue. 

BUS INTERFACE UNIT (BIU) 

The Bus Interface Unit (BIU) controls all the bus cycles. 
It transfers instructions and data between the lOP and ex­
ternal memory or peripherals. Every bus access is associ­
ated with a register tag bit. These tag bits indicate to the 
BIU whether the system or 110 space is to be addressed. 
The BIU outputs the type of bus cycle (instruction fetch 
from 1/0 space, data store into system space, etc.) on sta­
tus lines SO*, S I *, and S2 *. An 8288 Bus Controller de­
codes these lines and provides signals that selectively 
enable one bus or the other. 

The BIU also distinguishes between the physical and the 
logical widths of system and 110 buses. The physical 
widths of the buses are fixed. These are communicated to 
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the BIU during initialization. In the local configuration, 
both buses must be the same width (either 8-or 16-bits), 
matching the width of the host CPU bus. In the remote 
configuration, the lOP system bus must be the same phys­
ical width as the bus it shares with the CPU. The width of 
the lOP's 110 bus (local to the 8089) may be selected inde­
pendently. If any 16-bit peripherals are located in the 1/0 
space, a 16-bit 110 bus must be used. If only 8-bit devices 
reside on the 110 bus, either an 8-or 16-bit 110 bus may be 
selected. A 16-bit 110 bus has the advantage of easy ac­
commodation of future 16-bit devices and fewer instruc­
tion fetches if channel programs are placed in the 110 
space. 

For any given DMA transfer, a channel program specifies 
the logical width of the system and the 1/0 buses. Each 
channel specifies logical bus widths independently. The 
logical width of an 8-bit physical bus can only be eight 
bits. However, a 16-bit physical bus can be used as either 
an 8-or 16-bit logical bus. This allows. both 8-and 16-bit 
devices to be accessed over a single 16-bit physical bus. 
The permissible physical and logical bus widths for both 
locally and remotely configured lOPs are listed in Table 
4-1. Logical bus width pertains to DMA transfers only. 

Table 4·1 Physical/Logical Bus 
Combinations 

Configuration 
System Bus I/O Bus 

Phys;cal:Log;cal Phys;cal:Log;cal 

Local 
S:S S:S 

16:S116 16:8116 

S:S S:S 

Remote 
16:S116 16:S116 
16:S116 S:S 
S:S 16:S116 
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The physical bus width determines whether instructions 
are fetched and operands are read and written in bytes or 
words. 

The BIU, in addition to performing transfers, is responsi­
ble for local bus arbitration. In the local configuration, 
the BIU uses the RQ*/GT* (request/grant) line to obtain 
the bus from the CPU and to return it after a transfer has 
been performed. In the remote configuration, the BIU 
uses RQ* /GT* to coordinate use of the local I/O bus with 
another lOP or a local CPU, if present. System bus arbi­
tration in the remote configuration is performed by an 
8289 Bus Arbiter that operates invisibly to the lOP. The 
BIU automatically asserts the LOCK * (bus lock) signal 
during execution of a TSL (test and set lock) instruction 
and, if specified by the channel program, can assert the 
LOCK* signal for the duration of a DMA transfer. 

CHANNELS 

Although the 8089 is a single processor, it is useful to 
consider it as two independent channels under most cir­
cumstances. A channel may perform DMA transfers and 
execute channel programs, or it may also be idle. The 
following paragraphs describe the hardware features that 
support these operations. 

I/O Control 

Each channel contains an I/O control section that controls 
the operation of the channel during DMA transfers. If the 
transfer is source (destination) synchronized, the channel 
waits for a signal on the DMA request line (DRQ) before 
performing the next fetch-store (store) sequence in the 
transfer. If the transfer is to be terminated by an external 
signal, the channel monitors its external terminate line 
(EXT) and stops the transfer when this line goes active. 
Between the fetch and store cycles (when the data is in the 
lOP) the channel optionally counts, translates, and scans 
the data, and may terminate the transfer based on the 
results of these operations. Each channel also has a sys­
tem interrupt line (SINTR) that can be activated by soft­
ware to issue an interrupt request to the CPU. 

Registers 

Each channel has an independent set of registers (see Fig­
ure 4-2) that are not accessible to the other channel. Most 
of the registers assume different roles depending whether 
a channel program is being executed or a DMA transfer is 
being performed. Channel programs must be careful to 
save these registers in memory prior to a DMA transfer if 
their values are needed following the transfer. Thble 4-2 
provides a brief summary of each of the channel registers. 
Refer to Chapter 7 of the iAPX 86/88,186/188 User's 
Manual Programmers Reference for a detailed descrip­
tion of the channel registers. 
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TAG 
BIT 

r, 
1--1 
1--1 r, 
L..J 

19 15 7 

GENERAL PURPOSE A 

GENERAL PURPOSE B 

GENERAL PURPOSE C 

TASK POINTER 

PARAMETER BLOCK POINTER 

INDEX 

BYTE COUNT 

MASK/COMPARE 

CHANNEL CONTROL 

Figure 4-2 Channel Register Set 

Task Pointer 

o 

GA 

GB 

GC 

TP 

PP 

IX 

BC 

MC 

CC 

The CCU loads the task pointer from the parameter block 
when it starts or resumes a channel program. The task 
pointer is used as an instruction pointer or program 
counter. During program execution, the channel automat­
ically updates the task pointer to point to the next instruc­
tion to be executed. Program transfer instructions (JMP, 
CALL, etc.) update the task pointer to cause nonsequen­
tial execution. A procedure (subroutine) returns to the 
calling program by loading the task pointer with an ad­
dress previously saved by the CALL instruction. The task 
pointer is fully accessible to channel programs and can be 
used as a general register or as a base register. This is not 
recommended, however, since it can make programs very 
difficult to understand. 

4.2.2 Software Overview 

This section provides a summary of the 8089 lOP's in­
struction set and also provides information on the 
machine-level encoding and decoding of these instruc­
tions. 

INSTRUCTION SET SUMMARY 

The lOP's 53 instructions are divided into five functional 
categories; 

1. data transfer; 

2. arithmetic; 

3. logic and bit manipulation; 

4. program transfer; and 

5. processor control. 
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Table 4-2 Channel Register Summary 

System 
Program 

Register Size 
Access 

or I/O Use by Channel Programs Use in DMA Transfers 
Pointer 

GA 20 Update Either General, base Source/destination pointer 

GB 20 Update Either General, base Sourcejdestination pointer 

GC 20 Update Either General, base Translate table pointer 

TP 20 Update Either Procedure return, Adjusted to reflect cause of 
instruction pointer termination 

PP 20 Reference System Base N/A 

IX 16 Update N/A General, auto-increment N/A 

BC 16 Update N/A General Byte counter 

MC 16 Update N/A General, masked compare Masked compare 

CC 16 Update N/A Restricted use recommended Defines transfer options 

The following paragraphs provide a brief functional de­
scription of each instruction category and how they are 
used in channel programs. Instruction set reference data 
tables list every instruction alphabetically and show the 
execution time, encoded length and a sample of the 
ASM-89 coding for each permissable operand combina­
tion. Additional information on the 8089 instruction set is 
contained in volume 1 of this manual. 

Data Transfer Instructions 

Data transfer instructions move data between memory and 
the channel registers. The move word variable (MOV), 
move byte variable (MOVB), move word immediate 
(MOVI) and move byte immediate (MOVBI) instructions 
provide standard byte and word moves (including 
memory-to-memory). Refer to Figure 4-3 for the effect of 
these instructions on the register operands. 

Two additional special instructions are provided, move 
pointer (MOVP) and load pointer with doubleword 
(LDP). These instructions load addresses into pointer reg­
isters and update tag bits in the process are available. 

Arithmetic Instructions 

Arithmetic instructions interpret all operands as unsigned 
8, 16 or 20 bit binary numbers. Signed values are repre­
sented in standard two's complement notation with the 
high order bit representing the sign (0 = positive, 1 = neg­
ative). The processor has no way of detecting an overflow 
into the sign bit, therefore the software must provide for 
this possibility. 

4-4 

The 8089 performs arithmetic operations on values of up 
to 20 significant bits sign-extending byte and word oper­
ands to 20 bits. To accomplish this, bit 7 of a byte operand 
is propagated through bits 8-19 of an internal register. 
Sign extension does not affect the magnitude of the oper­
and. The arithmetic operation is then performed and the 
20-bit result is returned to the destination operand. 
High-order bits are truncated as necessary to fit the result 
in the available space. A carry out of, or borrow into the 
high-order bit of the result is not detected. If the destina­
tion is a register that is larger than the source operand, 
carries will be reflected in the upper register bits, up to 
the size of the register (see Figure 4-4). 

Logical and Bit Manipulation Instructions 

The logical instructions include the boolean operators 
AND, OR and NOT. Two bit manipulation instructions 
are provided for setting or clearing a single bit in memory 
or in an I/O device register. The logical operations always 
leave the upper four bits of the 20-bit destination registers 
undefined (see Figure 4-5). These bits should not be as­
sumed to contain reliable values, or the same values from 
one operation to the next. When a register is specified as 
the destination register for a byte operation, bits 8-15 are 
overwritten by bit 7 of the result. Bits 8-15 can be pre­
served in AND and OR instructions by using word opera­
tions where the upper byte of the source operand is FFH 
or OOH, respectively. 

Program Transfer Instructions 

Register TP controls the sequence in which channel pro­
gram instructions are executed. As each instruction is ex­
ecuted, the length of the instruction is added to TP so that 
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Register is Destination Register is Source 

Tag 19 15 7 0 Tag 19 15 7 o 
Byte r r - - -,-------r--------, 

Operation L 1J LS.:' ~ sis S S S S S S SiR R R R R R R R I ~X J0~~ xix x X X X X X XIT T T T T T TTl 

Word r 1 r - - -.-------,r--------, 
Operation L. 1J LS.:' ~ SiR R R R R R R R I R R R R R R R R I ~X~~~~XIT T T T T T T TIT T T TT TT T I 

T = bit is transferred to destination operand 
R = bit is replaced by source operand 
S = bit is sign extension of high-orderbit transferred 
X = bit is ignored 
1 = bit is unconditionally set 

Figure 4-3 Register Operands in MOV Instructions 

it points to the next sequential instruction. Program trans­
fer instructions can alter this sequential instruction execu­
tion by adding a signed displacement value to TP. The 
displacement is contained in the program transfer instruc­
tion and may be either 8 or 16 bits long. The displacement 
is encoded in two's complement notation with the 
high-order bit indicating the displacement sign (0 = posi­
tive, 1 = negative). The range for an 8-bit displacement 

is - 128 through + 127 bytes from the end of the transfer 
instruction. The range for a 16-bit displacement 
is-32,768 through +32,767 bytes from the end of the 
transfer instruction. An instruction containing an 8-bit 
displacement is called a short transfer, and an instruction 
containing a 16-bit displacement is called a long transfer. 

Register is Destination 

Tag 19 15 7 o 

Each program transfer instruction has an alternate mne­
monic. The alternate mnemonic begins with an "1". This 

Register is Source 

Tag 19 15 7 o 
Byte 

Operation ~xJ ~ ~ ~ R I R R R R R R R R I R R R R R R R R I ~ xJ ~ ~ ~ X Ix X X X X X X X I p p p p p p p p I 

Word 
Operation ~xJ~~~RIRRRRRRRRIRRRRRRRR I ~x~~~~xlpppppp.pplpppppppp I 

X = bit is ignored in operation 
R = bit is replaced by operation result 
p = bit participates in operation 

Figure 4-4 Register Operands in Arithmetic Instructions 
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Register is Destination 

Tag 19 15 7 0 

Byte ___ -r-------r-------, 
Operation [~[u~~ uis S S S S S S siR RRRR RR R! 

Word r;Jr.:-­
Operation Llj C!~~ UIR R R R R R R RIR R R R R R R R I 

x = bit is ignored in operation 

Register is Source 

Tag 19 15 7 o 

[xJ~~~ x!xxxxxxxx!p p p p p p PP! 

[~~~ ~ x!p P P P P P P pip P P P P P P P ! 

U = bit is undefined following operation 
R = bit participates in operation and is replaced by result 
S bit is sign-extension of high-order result bit 
P = bit participates in operation, but is unchanged 

Figure 4-5 Register Operands in Logical Instructions 

indicates the transfer is long and that the distance to the 
transfer target is expressed as a 16-bit displacement re­
gardless of how far away the target location is located. If 
the instruction mnemonic does not begin with an "L" the 
ASM -89 assembler determines whether the transfer is 
long or short. Refer to Volume 1 of this manual for addi­
tional information on this function. 

Processor Control Instructions 

The processor control instructions allow channel pro­
grams to control 8089 lOP hardware facilities such as the 
LOCK* and SINTRI-2 pins, logical bus width selection 
and the initiation of DMA transfers. These instructions 
consist of the test and set while locked instruction (TSL), 
the set logical bus widths instruction (WID), the enter 
DMA transfer mode after following instruction (XFER), 
the set interrupt register bit instruction (SINTR), the no 
operation instruction (NOP) and the halt (HLT) instruc­
tion. 

Instruction Set Reference Data 

Each 8089 instruction is listed alphabetically by ASM -89 
mnemonic in Table 4-3. This table shows the coding for­
mat (see Table 4-4 for an operand identifier explanation) 
along with the instruction name. The instruction execu­
tion time and its length in bytes is shown for every combi­
nation of instruction type (see Table 4-5 for a key). A 
coding example is also shown. 

4-6 

Instruction timing figures are given as the number of 
clock periods that are required to execute the instruction 
with a given combination of operands. When the CPU is 
operating at 5MHz, one clock period is 200ns, at 8MHz 
one clock period is 125ns. When an instruction operates 
on a memory word, two timings are provided. The first 
figure indicates execution time when the word is aligned 
on an even address and is accessed over a 16-bit bus. The 
second figure is for odd-addressed words on 16-bit buses 
and for any word accessed over an 8-bit bus. 

The instruction fetch time (see Thble 4-6) should be added 
to the execution times to determine how long a sequence 
of instructions will take to run. External delays such as 
bus arbitration, wait states and activity on the other chan­
nel will increase the elapsed instruction execution times. 
These delays are application dependent. 

MACHINE INSTRUCTION ENCODING AND 
DECODING 

Normally, programs are written for the 8089 lOP using 
the ASM-89 Assembly Language. However, when debug­
ging programs it may be necessary to work directly with 
the machine language instructions when monitoring the 
bus, reading unformatted memory dumps, etc. The fol­
lowing paragraphs provide the information required to en­
code any ASM-89 instruction into its corresponding 
machine instruction (see Thble 4-7), and also provides the 
information necessary to "disassemble" any machine in­
struction back into its associated assembly language 
equivalent (see Thble 4-8). 
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Table 4-3 Instruction Set Reference Data 

ADD destination, source Add Word Variable 

Operands Clocks Bytes Coding Example 

register, mem16 11/15 2-3 ADD BC, [GA].LENGTH 
mem16, register 16/26 2-3 ADD [GBJ, GC 

ADDB destination, source Add Byte Variable 

Operands Clocks Bytes Coding Example 

register, mem8 11 2-3 ADDB GC, [GA].N_CHARS 
mem8, register 16 2-3 ADDB [PP].ERRORS, MC 

ADDBI destination, source Add Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 ADDBI MC,10 
mem8, immed8 16 3-4 ADDBI [PP+IX+].RECORDS,2CH 

ADDI destination, source Add Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 ADDI GB,OC25BH 
mem16, immed16 16/26 4-5 ADDI [GB].POINTER,5899 

AND destination, source Logical AND Word Variable 

Operands Clocks Bytes Coding Example 

register, mem16 11/15 2-3 AND MC, [GA].FLAG_WORD 
mem16, register 16/26 2-3 AND [GC].STATUS, BC 

ANDB destination, source Logical AND Byte Variable 

Operands Clocks Bytes Coding Example 

register, mem8 11 2-3 AND BC, [GC] 
mem8, register 16 2-3 AND [GA+IX].RESULT, GA 

ANDBI destination, source Logical AND Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 GA,01100000B 
mem8, immed8 16 3-4 [GC+IX], 2CH 
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Table 4-3 Instruction Set Reference Data (continued) 

ANDI destination, source Logical AND Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 IX,OH 
mem16, immed16 16/26 4-5 [GB+IX].TAB,40H 
'---

CALL TPsave, target Call 

Operands Clocks Bytes Coding Example 

mem24, label 17/23 3-5 CALL [GC+IX].SAVE, GET_NEXT 

CLR destination, bit select Clear Bit To Zero 

Operands Clocks Bytes Coding Example 

mem8,O-7 16 2-3 CLR [GAl. 3 

DEC destination Decrement Word By 1 

Operands Clocks Bytes Coding Example 

register 3 2 
mem16 16/26 2-3 DEC [PP].RETRY 

DECB destination Decrement Byte By 1 

Operands Clocks Bytes Coding Example 

mem8 16 2-3 DECB [GA+IX+].TAB 

HLT (no operands) Halt Channel Program 

Operands Clocks Bytes Coding Example 

(no ope'rands) 11 2 HLT 

INC destination Increment Word by 1 

Operands Clocks Bytes Coding Example 

register 3 2 INC GA 
mem16 16/26 2-3 INC [GA].COUNT 

INCB destination Increment Byte by 1 

Operands Clocks Bytes Coding Example 

mem8 16 2-3 INCB [GB].POINTER 
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Table 4-3 Instruction Set Reference Data (continued) 

JBT source, bit-select, target Jump if Bit True (1) 

Operands Clocks Bytes Coding Example 

memB, 0-7, label 14 3-5 JBT [GA].RESULLREG, 3, DATA_VALID 

JMCE source, target Jump if Masked Compare Equal 

Operands Clocks Bytes Coding Example 

memB, label 14 3-5 JMCE [GBl.FLAG, STOP _SEARCH 

JMCNE source, target Jump if Masked Compare Not Equal 

Operands Clocks Bytes Coding Example 

memB, laljel 14 3-5 JMCNE [GB+IX], NEXT_ITEM 

JMP target Jump Unconditionally 

Operands Clocks Bytes Coding Example 

label 3 3-4 JMP READ_SECTOR 

JNBT source, bit-select, target Jump if Bit Not True (0) 

Operands Clocks Bytes Coding Example 

memB, 0-7, label 14 3-5 JNBT [GC], 3, RE~READ 

JNZ source, target Jump if Word Not Zero 

Operands Clocks Bytes Coding Example 

register, label 5 3-4 JNZ BC, WRITE_LINE 
mem16, label 12/16 3-5 JNZ [PPl.NUM_CHARS, PUT~aYTE 

JNZB sou rce, target Jump if Byte Not Zero 

Operands Clocks Bytes Coding Example 

memB, label 12 3-5 JNZB [GAl, MORE_DATA 

JZ source, target Jump if Word is Zero 

Operands Clocks Bytes Coding Example 

register, label 5 3-4 JZ BC, NEXT_LINE 
mem16, label 12/16 3-5 JZ [GC+IXl.INDEX, aUF _EMPTY 
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Table 4-3 Instruction Set Reference Data (continued) 

JZB source, target Jump if Byte Zero 

Operands Clocks Bytes Coding Example 

mem8,Iabei 12 3-5 JZB [PP).LlNES_LEFT, RETURN 

LCALL TPsave, target Long Call 

Operands Clocks Bytes Coding Example 

mem24, label 17123 4-5 LCALL [GC).RETURN_SAVE,INIT_B279 

LJBT source, bit-select, target Long Jump if Bit True (1) 

Operands Clocks Bytes Coding Example 

mem8, 0-7, label 14 4-5 LJBT [GA).RESULT,1, DATA_OK 

LJMCE source, target Long jump if Masked Compare Equal 

Operands Clocks Bytes Coding Example 

mem8,Iabei 14 4-5 LJMCE [GBJ, BYTE_FOUND 

LJMCNE source, target Long jump if Masked Compare Not Equal 

Operands Clocks Bytes Coding Example 

mem8,Iabei 14 4-5 LJMCNE [GC+IX+J, SCAN_NEXT 

LJMP target Long Jump Unconditional 

Operands Clocks Bytes Coding Example 

label 3 4 LJMP GET_CURSOR 

LJNBT source, bit-select, target Long Jump if Bit Not True (0) 

Operands Clocks Bytes Coding Example 

mem8, 0-7, label 14 4-5 LJNBT [GC), 6, CRCC_ERROR 

LJNZ source, target Long Jump if Word Not Zero 

Operands Clocks Bytes Coding Example 

register,label 5 4 LJNZ BC, PARTIAL_XMIT 
mem16,Iabei 12/16 4-5 LJNZ [GA+IX).N_LEFT, PUT_DATA 
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Table 4-3 Instruction Set Reference Data (continued) 

LJNZB source, target Long Jump if Byte Not Zero 

Operands I Clocks Bytes Coding Example 

mem8, label I 12 4-5 LJNZB [GB+IX+].ITEM, BUMP _COUNT 

LJZ source, target Long Jump if Word Zero 

Operands Clocks Bytes Coding Example 

register, label 5 4 LJZ IX, FIRST _ELEMENT 
mem16, label 12/16 4-5 LJZ [GB].XMIT_COUNT, NO_DATA 

LJZB source, target Long Jump if Byte Zero 

Operands Clocks Bytes Coding Example 

mem8, label 12 4-5 LJZB [GAl. RETURN_LINE 

LPD destination, source Load Pointer With Doubleword Variable 

Operands Clocks Bytes Coding Example 

ptr-reg, mem32 20/28' 2-3 LPD GA, [PP].BUF _START 

'20 clocks if operand is on even address; 28 if on odd address 

LPDI destination, source Load Pointer With Doubleword Immediate 

Operands Clocks Bytes Coding Example 

ptr-reg, immed32 12/16' 6 LPDI GB, DISK_ADDRESS 

'12 clocks if instruction is on even address; 16 if on odd address 

MOV destination, source Move Word 

Operands Clocks Bytes Coding Example 

register, mem16 8/12 2-3 MOV IX, [GC] 
mem16, register 10/16 2-3 MOV [GA].COUNT, BC 
mem16, mem16 18/28 4-6 MOV [GA].READING, [GB] 

MOVB destination, source Move Byte 

Operands Clocks Bytes Coding Example 

register, mem8 8 2-3 MOVB BC, [PP].TRAN_COUNT 
mem8, register 10 2-3 MOVB [PP].RETURN_CODE, GC 
mem8, mem8 18 4-6 MOVB [GB+IX+J, [GA+IX+] 

MOVBI destination, source Move Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 MOVBI MC, 'A' 
mem8, immed8 12 3-4 MOVBI [PP].RESULT,O 
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Table 4·3 Instruction Set Reference Data (continued) 

MOVI destination, source Move Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 MOVI BC,O 
mem16, immed16 12/18 4-5 MOVI [GBl. OFFFFH 

MOVP destination, source Move Pointer 

Operands Clocks Bytes Coding Example 

ptr-reg, mem24 19/27- 2-3 MOVP TP, [GC+IX] 
mem24, ptr-reg 16/22- 2-3 MOVP [GB].SAVE_ADDR, GC 

-First figure is for operand on even address; second is for odd-addressed operand. 

NOP (no operands) No Operation 

Operands Clocks Bytes Coding Example 

(no operands) 4 2 NOP 

NOT destination/destination, source Logical NOT Word 

Operands Clocks Bytes Coding Example 

register 3 2 NOT MC 
mem16 16/26 2-3 NOT [GA].PARM 
register, mem16 11/15 2-3 NOT BC, [GA+IX].LINES_LEFT 

NOTB destination / destination, source Logical NOT Byte 

Operands Clocks Bytes Coding Example 

memB 16 2-3 NOTB [GA].PARM_REG 
register, mem8 11 2-3 NOTB IX, [GB].STATUS 

OR destination, source Logical OR Word 

Operands Clocks Bytes Coding Example 

register, mem16 11/15 2-3 OR MC, [GC].MASK 
mem16, register 16/26 2-3 OR [GCl. BC 

ORB destination, source Logical OR Byte 

Operands Clocks Bytes Coding Example 

register, mem8 11 2-3 ORB IX, [PP].POINTER 
mem8, register 16 2-3 ORB [GA+IX+l. GB 

ORBI destination, source Logical OR Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 ORBI IX,00010001B 
mem8, immed8 16 3-4 ORBI [GB].COMMAND,OCH 
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Table 4-3 Instruction Set Reference Data (continued) 

ORI destination, source Logical OR Word Immediate 

Operands Clocks Byles Coding Example 

register, immed16 3 4 ORI MG, OFFODH 
mem16,imioled16 16/26 4-5 ORI [GAl. 1000H 

SETe destination, bit-select Set Bitt01 

Operands Clocks Byles Coding Example 

mem8,0-7 16 2-3 SETB [GA].PARM REG,2 

SINTR (no operands) Set Interrupt Service Bit 

Operands Clocks Byles Coding Example 

(no operands) 4 2 SINTR 

TSL destination, set-value, target Test and Set While Locked 

Operands Clocks Bytes Coding Example 

mem8, immed8, short-label 14/16' 4-5 TSL [GA].FLAG,OFFH, NOT_READY 

'14 clocks if destination *" 0; 16 clocks if destination = 0 

WID source-width, dest-width Set Logical Bus Widths 

Operands Clocks Bytes Coding Example 

8/16,8/16 4 2 WID 8,8 

XFER (no operands) Enter DMA Transfer Mode After Next Instruction 

Operands Clocks Bytes Coding Example 

(no operands) 4 2 XFER 
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Table 4-4 Operand Identifiers Definitions 

IDENTIFIER USEDIN EXPLANATION 

destination data transfer, A register or memory location that may contain data operated on 
arithmetic, by the instruction, and which receives (is replaced by) the result 
bit manipulation of the operation. 

source data transfer, A register, memory location, or immediate value that is used in 
arithmetic, the operation, but is not altereaby the instruction. 
bit manipulation 

target program transfer Location to which control is to be transferred. 

TPsave program transfer A 24-bit memory location where the address of the next sequen-
tial instruction is to be saved. 

bit-select bit manipulation Specification of a bit location within a byte; O=least-significant 
(rightmost) bit, 7=most-significant (leftmost) bit. 

set-value TSL Value to which destination is set if it is found O. 

source-width WID Logical width of source bus. 

dest-width WID Logical width of destination bus. 

Table 4-5 Operand Type Definitions 

IDENTIFIER EXPLANATION 

(no operands) No operands are written 

register Any general register 

ptr-reg A pointer register 

immed8 A constant in the range O-FFH 

immed16 A constant in the range O-FFFFH 

mem8 An 8-bit memory location (byte) 

mem16 A 16-bit memory location (word) 

mem24 A 24-bit memory location (physical address pOinter) 

mem32 A 32-bit memory location (doubleword pointer) 

label A label within -32,768 to +32,767 bytes of the end of the instruction 

short-label A label within -128 to +127 bytes of the end of the instruction 

0-7 A constant in the range: 0-7 

8/16 The constant 8 or the constant 16 
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Table 4·6 Instruction Fetch Timings 
(Clock Periods) 

BUSWIDTH 
INSTRUCTION 

LENGTH 16 

(BYTES) 
8 

(1) (2) 

2 14 7 11 
3 18 14 11 
4 22 14 15 
5 26 18 15 

(1) First byte of instruction is on an even 
address. 

(2) First byte of instruction is on an odd address. 
Add 3 clocks if first byte is not in queue (e.g., 
first instruction following program transfer). 

Almost all 8089 machine instructions consist of from two 
to five bytes (see Figure 4-6). The only exceptions to this 
rule are the LPD! and memory-to-memory forms of the 
MOV and MOVB instructions which are six bytes long. 
The first two bytes are always present and are generally 
formatted as shown in Figure 4-6. See Table 4-7 for the 
exact encoding of every instruction. 

The first byte of the instruction has four fields. Bits 5 
through 7 comprise the R/B/P field. This field identifies a 
register, bit select or pointer register (see Table 4-9). 

Bits 3 and 4 are the WB field. This field indicates how 
many displacement/data bytes are present in the instruc­
tion (see Table 4-10). The displacement bytes are used in 
program transfers. One byte is present for short transfers, 
while long transfers contain two-byte (word) displace­
ment. The displacement is stored on two's complement 
notation with the high-order bit indicating the sign. Data 
bytes contain the value of an immediate constant operand. 
A byte immediate instruction (MOVBI) will have one data 
byte, and a word immediate instruction (ADDI) will have 
two bytes (a word) of immediate data. An instruction may 
contain either displacement or data bytes, but not both 

(the TSL instruction is an exception and contains one byte 
of displacement and one byte of data). If an offset byte is 
present, the displacement/data byte(s) always follow the 
offset byte. 

The AA field specifies the addressing mode that the proc­
essor should use to construct the effective address of a 
memory operand. Four additional address modes are 
available (see Table 4-11). 

The zero bit in the first instruction indicates whether the 
instruction operates on a byte (W = 0) or a wore (W = 1). 

In the second instruction byte, bits 7 through 2 specify the 
instruction opcode (see Table 4-8 for a list of every assem­
bly language instruction in hexadecimal order). The op­
code, in conjunction with the W field of the first byte, 
identifies the instruction. For example, the opcode 
"111011" is the decrement instruction. IfW=O, the as­
sembly language instruction for this opcode would be 
DECB. IfW = 1, the instruction is DEC. 

The MM field in the second byte (bits 0 and 1) indicate 
which pointer (base) register should be used to construct 
the effective address of a memory operand. See Table 
4-12 for MM field encoding. 

When the AA field value is "01" (base register + offset 
addressing), the third byte of the instruction contains the 
offset value. This unsigned value is added to the content 
of the base register by the MM field to from the effective 
address of the memory operand. 

When the AA field is "10", the IX register value is added 
to the content of the base register specified by the MM 
field to provide a 64k range of effective addresses. The 
upper four bits of the IX register are not signed. 

When the AA field value is "11", the IX register value is 
added to the base register value to form the effective ad­
dress as described for the AA field value of "10". In this 
addressing mode the IX register value is incremented by 
one after every byte accessed. 

Table 4·7 8089 Instruction Encoding 
DATA TRANSFER INSTRUCTIONS 

MOY = Move word variable 78543210 76543210 78543210 78543210 7'543210 715.3210 

Memory to register RRROOAA1 100000MM offset if AA==01 

Register to memory RRROOAA1 100001MM offset if AA=01 

Memory to memory OOOOOAA1 100100MM offset it AA=01 o 0 0 0 0 A A 1 11 1 0 0 11M M I offset if AA"01 
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DATA TRANSFER INSTRUCTIONS (Cont'd.) 

Mova .,. Move byte variable 

Memory to register 

Register to memory 

Memory to memory 

MOVSt = Move byte immediate 

Immediate to register 

Immediate 10 memory 

MOVI = Move word immediate 

Immediate to register 

Immediate to memory 

MOVP .,. Move pointer 

Memory to pointer register 

Pointer register to memory 

LPD = Load pointer with doubleword variable 

LPOI • Load pOinter with doubleword Immediate 

ARITHMETIC INSTRUCTIONS 

ADD .. Add word variable 

Memory to register 

Register to memory 

ADDS .. Add byte variable 

Memory to register 

Register to memory 

ADDI = Add word immediate 

Immediate to register 

Immediate to memory 

8089 INPUT/OUTPUT PROCESSOR 

Table 4·7 8089 Instruction Encoding (continued) 

78543210 78543210 78543210 78543210 78543210 78543210 

RRROOAAO 100000MM offset il AA=01 

RRAOOAAO lQOOO1MM offset if AA=OI 

OOOOOAAO 100100MM offset if A.6.=OI OOOOOAAOll10011MMI offset if AA"'OI I 

I p P P 0 0 A Alii 0 0 0 10M M offset If AA=rOI 
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ARITHMETIC INSTRUCTIONS (Cont'd.) 

AD OBI = Add byte immediate 

Immedaite to register 

Immediate to memory 

INC = Increment word by 1 

Register 

Memory 

INCB = Increment byte by 1 

DEC = Decrement word by 1 

Register 

Memory 

CEca = Decrement byte by 1 

8089 INPUT/OUTPUT PROCESSOR 

Table 4-7 8089 Instruction Encoding (continued) 

76543210 7&543210 76543210 76543210 76543210 76543210 

I 0 0 0 0 0 A A 0 I, 1 1 0 ,OM M I ollse! If AA=OI 

10 0 0 Q 0 A A 0 I ' 1 1 0 11M M I offset if AA=OI 

LOGICAL AND BIT MANIPULATION INSTRUCTIONS 

AND = AND word variable 

Memory to register 

Register to memory 

ANoa = AND byte variable 

Memory to register 

Register to memory 

ANDI = AND word immediate 

Immediate to register 

Immediate to memory 

ANDBI = AND byte immediate 

Immediate to register 

Immediate to memory 

OR = OR word variable 

Memory to register 

Register to memory 
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Table 4·7 8089 Instruction Encoding (continued) 

LOGICAL AND BIT MANIPULATION INSTRUCTIONS (Cont'd.) 

ORB = OR byte variable 78543210 78543210 78543210 78543210 71543210 7.143210 

Memory to register 

Register to memory 

ORI = OR word immediate 

Immediate to register 

Immediate to memory 

ORBI = OR byte immediate 

Immediate to register 

Immediate to memory 

NOT = NOT word variable 

Register RRROOOQO 00101100 

Memory OOOOOAAI 110111 M M offset it AA=Ql I 
Memory to register RRROOAAI 1 01 01 1 M M offset if AA=Ol I 
NOTB = NOT byte variable 

Memory 

Memory to register 

SETB :: Set bit to 1 IBBBOOAAO ",1101MM offset if AA=Ol 

eLR = ClearbittoO Fe 0 0 A A 0 l' 1 1 1 10M M offset If AA=Ol 

PROGRAM TRANSFER INSTRUCTIONS 

·CALL = Call I, 0 a 0 1 A A 1 ". 0 0 , 1 1 M M offset if AA=Ql disp-8 

lCALL = Long call 

*JMP = Jump unconditional I, 0001000 I 0 0 1 o 0 0 0 0 disp-8 

LJMP = Long jump unconditional I, 0010001 10 0 1 o 0 0 0 0 disp-lo disA-hi 

"The ASM-89 Assembler will automatically generate the long form of a program transfer instruction when the 

target is known 10 be beyond the byte-displacement range. 
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Table 4·7 8089 Instruction Encoding (continued) 

PROGRAM TRANSFER INSTRUCTIONS (Cont'dJ 

• JZ = Jump if word is 0 

Labe! to register 

76543210 76543210 76543210 76543210 76543210 765.3210 

labet to memory 

LJZ = Long jump if word is 0 

Label to register 

Labella memory 

"JZB = Jump il byte is 0 

LJZB :::: Long jump it byte is 0 

• JNZ = Jump if word not 0 

Labella register 

label to memory 

LJNZ = Long jump if word not 0 

label to register 

label to memory 

• JNZB = Jump if byte not 0 

lJNZB = long jump If byte not 0 

"JMCE = Jump if masked compare equal 

LJMCE = Long jump if masked compare equal 

• JMCNE = Jump if masked compare nol equal 

'JBT = Jump il bit is 1 

'The ASM·89 Assembler will automatically generate the long form of a program transfer instruction when the 

target is known to be beyond the byte-displacement range. 
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Table 4-7 8089 Instruction Encoding (continued) 
PROGRAM TRANSFER INSTRUCTIONS IConl'd.) 

76543210 76543210 78543210 76543210 76543210 76543210 

LJBT = Long jump if bit is 1 

*JNBT = Jump if bit is nol 1 

LJNBT = long jump if bit is not 1 

PROCESSOR CONTROL INSTRUCTIONS 

TSl = Test and set while locked 

WID = Set logical bus widths 11 S O' 0 0 0 0 0 I 0 0 0 0 0 0 0 0 

'S=source width. D:destination width; 0=8 bits, 1=16 bits 

XFER = Enter OMA mode 101100000 100000000 

SINTR = Set interrupt service bit 101000000100'000000 

HLT = Hall channel program 100100000101001000 

NOP = No operation 10000000010000000-0 

'The ASM-89 Assembler will automatically generate the long form of a program transfer instruction when the 

target is known to be beyond the byte-displacement range, 

4.3 DEVICE PIN ASSIGNMENTS 

Figure 4-7 shows the 8089 lOP DIP pin assignments and 
Table 4-13 provides a complete function description of 
each device pin signal and correlates the description to the 
pin number and associated signal symbol. 

4.4 OPERATING MODES 

Communication between a CPU and the 8089 lOP occurs 
in two distinct modes: initialization and command, Initial­
ization is typically performed when the system is 
powered-up or reset. The CPU initializes the lOP by pre­
paring a series of linked message blocks in memory. On a 
signal from the CPU, the lOP reads these blocks and de-

4-20 

termines from them how the data buses are configured 
and how access to the buses is to be controlled. 

After the initialization process is completed, the CPU di­
rects all communications to either of the lOP's two chan­
nels. During normal operations the lOP actually appears 
to be two separate devices, channel I and channel 2. All 
CPU-to-channel communications centers on the channel 
control block (CB - see Figure 4-8), The CB is located in 
the CPU's memory space, and its address is passed to the 
lOP during initialization. Half of the control block is ded­
icated to each channel. Each channel maintains a BUSY 
flag to indicate whether it is in the midst of an operation 
or is available for a new command from the CPU. The 
CPU sets the channel command word (CCW) to indicate 
what kind of operation it wants the lOP to perform. There 
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Table 4-8 8089 Machine Instruction Decoding Guide 

Identifier Explanation 

S Logical width of source bus; 0=8, 1 =16 
D Logical width of destination bus; 0=8, 1 =16 

PPP Pointer register encoded in R/B/P field 
RRR Register encoded in RI B/P field 
AA AA (addressing mode) field 

BBB Bit select encoded in R/B/P field 
offset-Io Low-order byte of offset word in doubleword pOinter 
offset-hi High-order byte of offset word in doubleword pointer 

segment-Io Low-order byte of segment word in doubleword pOinter 
segment-hi High-order byte of segment word in doubleword pointer 

data-8 8-bit immediate constant 
data-Io Low-order byte of 16-bit immediate constant 
data-hi High-order byte of 16-bit immediate constant 
disp-8 8-bit signed displacement 
disp-Io Low-order byte of 16-bit signed displacement 
disp-hi High-order byte of 16-bit signed displacement 
(offset) Optional8-bit offset used in offset addressing 

Table 4-9 R/B/P Field Encoding 

are six different commands that allow the CPU to start or 
stop programs, remove interrupt requests, etc, 

Code 

000 
001 
010 
011 
100 
101 
110 
111 

Register 

GA 
GB 
GC 
BC 
TP 
IX 

CC 
MC 

BYTE 1 

LJ I I I I 

RIBIPI WB I AA I'll 

Bit Pointer 

0 GA 
1 GB 
2 GC 
3 N/A 
4 TP 
5 N/A 
6 N/A 
7 N/A 

BYTE2 

II I II I I 
OPCODE IMM 

When the CPU desires a specific channel to run a pro­
gram, it directs the channel to a parameter control block 

Table 4-10 WB Field Encoding 

Code Interpretation 

00 No displacementldata bytes 
01 One displacement/data byte 
10 Two displacement/data bytes 
11 TSL instruction only 

- ~Y~:" - 4- - .!~~ - -I- - ~~~ --l 

11~111l111~111l111l111~ ..1 
OFFSET I LOW DISPIDATA I HIGH DISPIDATA I 

_____ L _____ ~ _____ ~ 

L BASE REGISTER FOR MEMORY OPERAND 

OPERATION (INSTRUCTION) CODE 

WIDTH (BYTE OR WORD OPERANDS) 

MEMORY ADDRESSING MODE 

NUMBER OF DISPLACEMENT IDATA BYTES 

REGISTER, BIT, POINTER SELECT 

Figure 4-6 Typical 8089 Machine Instruction Format 
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Table 4·11 AA Field Encoding 

Code Interpretation 

00 Base register only 
01 Base register plus offset 
10 Base register plus IX 
11 Base register plus IX, 

auto-increment 

(PB) and a task block (TB). (See Figure 4-8.) The PB is a 
parameter list that contains variable data for the channel 
program to use in carrying out its assignment. The PB 
may also contains space for variables (results) that the 
channel is to return to the CPU. Except for the first two 
words, the format and size of the PB are completely open 
and may be set up to exchange any type of information 
between the CPU and the channel program. 

A task block (TB) is a sequence of 8089 instructions that 
perform an operation (i.e., a channel program). There are 
no restrictions on what a channel program can do. Its 
function may be as simple or as complex as a particular 
application requires. 

Figure 4·7 8089110 Processor Pinout Diagram 

Table 4·12 MM Field Encoding 

Code Base Register 

00 GA 
01 GB 
10 GC 
11 pp 

The CPU links the channel program (TB) to the parameter 
block (PB) before it starts the program (see Figure 4-8). 
This link is accomplished using standard 8086/88 double­
word pointer variables where the lower-addressed word 
contains an offset and the higher-addresses word contains 
a segment base value. A system may have many different 
parameter and task blocks, but only one of each can be 
linked to a channel at any given time. 

When the CPU has filled the CCW and linked the CB to a 
parameter block and task block, it issues a channel atten­
tion (CA). This is accomplished by activating the lOP's 
CA and SEL pins. The state of SEL on the falling edge of 
CA directs the channel attention to either channel 1 or 
channel 2. If the lOP is located in the CPU's 1/0 space, it 
will appear to the CPU as two consecutive I/O ports (one 
for each channel). At this time, an OUT instruction to the 
port functions as a CA. If the lOP is memory-mapped, the 
channels look like two memory locations and any memory 
reference instruction to these locations causes a channel 
attention. 

An lOP channel attention is functionally similar to a CPU 
interrupt. When the channel recognizes the CA, it stops 
what it is doing (it will typically be idle) and examines the 
command in the CCW. If the channel is to start a pro­
gram, it loads the addresses of the parameter and task 
blocks into internal registers, sets the BUSY flag and 
starts executing the channel program. After issuing the 
CA, the CPU is free to perform other functions. The lOP 
channel can perform its function in parallel with the CPU 
(subject to limitations imposed by bus configurations). 

When the channel program is completed, the channel 
clears its BUSY flag in the CB to notify the CPU. The 
channel may also issue an interrupt request to the CPU. 

Most communications between the CPU and lOP take 
place through "message areas" shared in common mem­
ory (see Figure 4-9). The only direct hardware communi­
cations between the CPU and the lOP are channel 
attentions and interrupt requests. 

Each of the lOP channels operates independently and has 
its own register set, channel attention, interrupt request, 
and DMA control signals. At any given point in time a 
channel may be idle, executing a program, performing a 
DMA transfer, or responding to a channel attention. Al­
though only one channel actually operates at a time, the 
channels can be active concurrently, alternating their op­
erations (e.g., channell may execute instructions in the 
periods between successive DMA transfer cycles run by 
channel 2). The lOP has a built-in priority system that 
allows high-priority activities on one channel to prempt 
less critical operations on the other channel. The CPU is 
further able to adjust priorities to handle special cases. 
The CPU starts the channel, can halt the channel, suspend 
channel operation, or cause the channel to resume sus­
pended operations by placing different values in the 
CCw. 
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Table 4-13 8089 DIP Pin Assignments 
.----,--.---------------------~ 

Symbol ~pe Name and Function 

AO-Al51 
00-015 

I/O MuHlplexed Addre .. and Data BUI: The 
function of these lines are defined by the 
state of SO, !1 and ~ lines. The pins are 
floated aftlir reset and when the bus is not 
acquired. A6-A15 are stable on transfers to a 
physical 8-bit data bus (same bus as 8088), 
and are multiplexed with data on transfers to 
a Iii-bit physical bus. 

AI6-AI91 0 Addre •• and Statu.: Multiplexed most 
significant address lines and status in­
formation. The addreas lines are active only 
when addressing memory. Otherwise, the 
status lines are active and are encoded as 
shown below. The pins are floated after reset 
and when the bus is not acquired. 
SlS5S4S3 

S3-Be 

BHE 0 

SO,SI,82 0 

READY I 

1 1 0 0 DMA cycle on CHI 
1 1 0 1 DMA cycle on CH2 
1 1 1 0 Non-DMA cycle on CHI 
1 1 1 1 Non-DMA cycle on CH2 

au. High Enable: The Bus High Enable is 
used to enable data operations on the most 
significant half of the data bus (DS-DI5). The 
Signal is active low when a byte is to be 
transferred on the upper half of the data bus. 
The pin is floated after reset and when the 
bus Is not acquired. BHE does not have to be 
latched. 

Statu.: These are the status pins that define 
the lOP activity during any given cycle. They 
are encoded as shown below: 
121110 
o 0 0 Instruction fetch; I/O space 
o 0 1 Data fetch; I/O space 
o 1 0 Data store; I/O space 
o 1 1 Not used 
1 0 0 Instruction fetch; System Memory 
1 0 1 Data fetch; System Memory 
1 1 0 Data store; System Memroy 
1 1 1 Passive 

The status lines are utilized by the bus 
controller and bus arbiter to generate all 
memory and I/O control signals. The signals 
change during T 4 If a new cycle is to be 
entered while the return to passive stete In T3 
or Tw indicates the end of a cycle. The pins 
are floated after system reset and when the 
bus is not acquired. 

Ready: The ready signal received from the 
addressed device indicates that the device is 
ready for data transfer. The signal is active 
high and is synchronized by the 8284 clock 
generator. 

4-23 

Symbol ~pe Name and Function 

lOCK 0 Lock: The lock output signal indicates to the 
bus controller that the bus Is needed for more 
than one contiguous cycle. It is set via the 
channel control register, and during the TSl 
instruction. The pin floats after reset and 
when the bus is not acquired. This output is 
active low. 

RESET I Re .. t: The receipt of a reset signal causes 
the lOP to suspend all Its activities and enter 
an idle state until a channel attention is 
received. The signal must be active for at 
least four clock cycles. 

ClK I Clock: Clock provides all timing needed for 
internal lOP operation. 

CA I Channel Attention: Gets the attention of the 
lOP. Upon the falling edge of this signal, the 
SEl input pin is examined to determine 
Master/Slave or CH1/CH2 information. This 
input is active high. 

SEl I Select: The first CA received after system 
reset informs the lOP via the SEl line, whe-
ther it is a Master or Slave (0/1 for Mas-
ter/Slave respectively) and starts the in-
itialization sequence. During any other CA 
the SEl line signifies the selection of 
CH1/CH2. (0/1 respectively.) 

DRQI-2 I Data Reque.t: DMA request inputs which 
signal the lOP that a peripheral is ready to 
transfer/receive data using channels 1 or 2 
respectively. The signals must be held active 
high until the appropriate fetch/stroke is 
initiated. 

RQ/GT I/O Request Grant: Request Grant implements 
the communication dialogue required to ar-
bitrate the use of the system bus (between 
lOP and CPU. lOCAL mode) or I/O bus when 
two lOPs share...!t'e same bus (REMOTE 
mode). The RQ/GT signal...!! a.£!ive low. An 
internal pull-up permits RQ/GT to be left 
floating if not used. 

SINTRI-2 0 Signal Interrupt: Signal Interrupt outputs 
from channels 1 and 2 respectively. The 
interrupts may be sent directly to the CPU or 
through the 8295A interrupt controller. They 
are used to i nd icate to the system the 
occurrence of user defined events. 

EXTt-2 I External Terminate: External terminate 
inputs for channels 1 and 2 respectively. The 
EXT signals will cause the termination of the 
current DMA transfer operation if the chan-
nel is so programmed by the channel control 
register. The signal must be held active high 
until termination is complete. 

Vee Voltage: +5 volt power input. 

VSS Ground. 
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CHANNEL CONTROL BLOCK (CB) 

(RESERVED) 14} ~---i I-P~~r:.~1.~ :is~C" J':'~~Hr-
12 
10: CHANNEL 2 

I BUSY CCW 8 

I (RESERVED) 

. ~ } CHANNEL 1 
I ~-{ r-p(~~~':,i1\R 8~~~C&K 6~~:Jf)R-I 
I 
I I BUSY I CCW 

I I ,. 87 0 

I ~--------------~----------, 
~--------l I 

I 
CHANNEL 2 PARAMETER BLOCK (P8) I CHANNEL 1 PARAMETER BLOCK (P8) I f CHANNEL PROGRAM PARAMETERS t, I f CHANNEL PROGRAM PARAMETERS t, I 

I I 
(APPLICATION.DEFINED) I (APPLICATION.DEFINED) I , I 4 I {l- TASK BLOCK POINTER .,: I { l- TASK BLOCK POINTER --12 I i (SEGMENT BASE. OFFSET) 0 .J r (SEGMENT BASE" OFFSET) 0 -+l 

I " 0 ,. 0 

I CHANNEL2TASK BLOCK (TB) CHANNEl1 TASK BLOCK (TB) 
I (CHANNEL PROGRAM) (CHANNEL PROGRAM) 

I 

1 1 
I 
I 
I 
I 1018 801S 

INSTRUCTIONS INSTRUCTIONS 
I (APPLICATION· 

J 
(APPLICATION. 

J 
I DEFINED) DEFINED) 

I 
I 
L_ 

Figure 4·8 Command Communication Blocks 

All channel programs (task blocks) are written in 8089 
assembly language (ASM-89) using the 56 basic instruc­
tions available for these programs. The lOP instruction set 
contains general purpose instructions similar to those 
found in CPU s as well as instructions tailored especially 
for I/O operations (see paragraph 4.4.2 for details on 
these instructions). These instructions operate on bit, 
byte, word and doubleword (pointer) variable types. In 
addition, a 20-bit physical address type (not used by the 
8086/88) can be manipulated. Data may be taken from 
registers, immediate constants and memory. Four mem­
ory addressing modes allow flexible access to both mem­
ory variables and 110 devices located anywhere in either 
the CPU's megabyte memory space or in the 8089's 64k 
I/O space. Data transfer, simple arithmetic, logical and 
address manipulation operations are available, as well as 
unconditional jump and call instructions that allow chan-

CHANNEL ATTENTION 

CPU lOP 

INTERRUPT 

Figure 4·9 CPU/lOP Communications 

nel programs to link to each other. An individual bit may 
be set or cleared with a single instruction. Conditional 
jumps can test a bit and jump if it is set (or cleared), or 
can test a value and jump if it is zero (or non-zero). Other 
instructions are provided to initiate DMA transfers, a 
locked test-and-set semaphore operation and issue an in­
terrupt request to the CPU. 

4.4.1 Interfacing the 8089 to the 8086 and 
80186 

The 8089 lOP is functionally compatible with the iAPX 
86, 88 family, and supperts any combination of 8/16 bit 
buses. lOP hardware and communication architecture de­
sign provides simple mechanisms for system upgrade. 
Channel attention and interrupt lines handle the only di­
rect communication between the lOP and CPU. The 8089 
passes status information, parameters, and task programs 
through blocks of shared memory. This simplifies hard­
ware interface and encourages structured progranuning 
(refer to Volume I of this User's Guide). 

4-24 

The 8089 can be used in one of two system configura­
tions, local mode and remote mode. In the local mode the 
8089 shares the system bus with an 8086/88 or 80186/188 
CPU. In the remote mode the 8089 has exclusive access to 
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o 

READY 

RESET 

'5 lilT 110 r 
ADDRESS DECODE I I 

Figure 4-10 iAPX 86/11, 88/11 Configuration with 8089 in Local Mode 

its own dedicated bus as well as access to the system Bus. 
In either mode, the 8089 can address a full megabyte of 
system memory and 64k bytes of its own 110 space. 

LOCAL MODE 

In the local mode, the 8089 acts as a slave to a maximum 
mode 8086 or 8088 CPU. In this configuration, the 8089 
shares the system address latches, data transceivers and 
bus controller with the CPU (see Figure 4-10). 

Since the lOP and CPU both share the system bus, either 
may have access to the bus at anyone time. When one 
processor is using the bus, the other processor tri-states 
its address/data and control lines. Bus access between the 
lOP and CPU is determined through the request/grant 
function (refer to paragraph 4.6). To gain access to the 
bus, the lOP requests the bus from the CPU, the CPU 
grants the bus to the lOP, and the lOP relinquishes the bus 
to the CPU when it completes its operation. 

NOTE 

The CPU cannot request the bus from the lOP 
(the CPU is only capable of granting the bus 

4-25 

and must wait for the lOP to release the bus). 

Since the request/grant pulse exchange must be synchro­
nized, both the CPU and lOP must be referenced to the 
same clock signal. 

When the 8089 lOP is used in the local mode, it can be 
added to an 8086 or 8088 maximum mode configuration 
with little affect on component count (channel attention 
decoding logic used as required). It offers the benefits of 
intelligent DMA (scan/match, translate, variable termina­
tion conditions), modular programming in a full mega­
byte of memory address space and a set of optimized 110 
instructions that are unavailable to the 8086 CPU. Since 
the system bus is shared in the local configuration, bus 
contention always exists between the CPU and lOP. Using 
the bus load limit field in the channel control word can 
help reduce lOP bus access during task block program 
execution (bus load limiting has no affect on DMA trans­
fers). For 110 intensive systems, the design engineer 
should consider the remote mode. 

REMOTE MODE 

In the remote mode, the 8089 provides a multiprocessor 
system with true parallel processing. In this mode, the 
8089 has a separate (local) bus and memory for 110 pe-
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Figure 4-11 Typical 8089 Remote Configuration 

ripheral communications, and the system bus is com­
pletely isolated from the I/O peripheral(s). In addition, 
I/O transfers between an I/O peripheral and the lOP's lo­
cal memory can occur simultaneously with CPU opera­
tions on the system bus. 

In a typical remote mode configuration, data transceivers 
and address latches (see Figure 4-11) separate the lOP's 
local bus from the system bus. An. 8288 Bus Controller 
generates the bus control signals for both the local and 
system buses and governs the operation of the 
transceivers/latches. Also, an 8289 Bus Arbiter controls 
access to the system bus (each processor in the system 
would have an associated 8289 Bus Arbiter). 1b interface 
the 8089 to its local bus, another set of address latches is 
required (unless MCS-85 mutliplexed address compo­
nents are used exclusively) and, depending on the bus 
loading demands, one (8-bit bus) or two (16-bit bus) data 
transceivers would be used. 

The lOP's local bus is treated as up to 64k bytes of I/O 
space in the remote mode, and the system bus is treated as 
1 megabyte of memory space. The 8288 Bus Controller's 
I/O command outputs control the local (110) bus, and its 
memory command outputs control the system (memory) 

bus. The 8289 Bus Arbiter, which is operated in its 110 
peripheral bus mode, also decodes the 8289's status out­
puts (S2*-SO*). In this mode, the 8289 will not request 
the multi-master system bus when the lOP indicates an 
operation on its local bus. If the lOP's bus arbiter cur­
rently has access to the system bus, the CPU's arbiter (or 
any other arbiter in the system) can acquire use of the 
system bus at this time (a bus arbiter maintains bus access 
until another arbiter requests the bus). 

4.4.2 lOP Initialization 

lOP initialization is generally the responsibility of the 
host processor. The host processor prepares the commun­
ications data structure in shared memory (refer to Volume 
I of this User's Guide). Actual lOP initialization begins 
with activation of the lOP's RESET input. This input, 
which typically originates from an 8284A Clock Genera­
tor, must be held active for at least five clock cycles to 
allow the 8089's internal RESET sequence to be com­
pleted. Like the 8086 CPU, the RESET input to the lOP 
must be held active for at least 50 microseconds when 
power is first applied. When the reset interval is complete, 
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Figure 4-12 RESET-CA Initialization Timing 

the host processor signals the lOP to begin its initializa­
tion sequence by activating the 8089's Channel Attention 
(CA) input. The 8089 does not recognize a pulse at its CA 
input until one clock cycle after the RESET input returns 
to an inactive level. 

NOTE 

The minimum width for a CA pulse does not 
occur prior to one clock. This pulse may go 
active prior to RESET returning to an inactive 
level provided that the negative-going, 
trailing-edge of the CA pulse does not occur 
prior to one clock cycle after RESET goes in­
active (see Figure 4-12). 

The 8089 samples the Select (SEL) input from the host, 
coincident with the trailing edge of the first CA pulse af­
ter RESET, to determine master/slave status for its 
request/grant circuits. If SEL is inactive (low), the 8089 is 
designated a "master". If SEL is active (high), the 8089 is 
designated a "slave". As a master, the 8089 assumes that 
it has the bus initially, and it will subsequently grant the 
bus to a requesting slave when the bus becomes available 
(i.e., the 8089 will respond to a "request" pulse on its 
RQ*/GT* line with a "grant" pulse). A single 8089 in the 
remote configuration (or one of two 8089s in a remote 
configuration) would be designated a master. As a slave, 
the 8089 can only request the bus from a master processor 
(i.e., the 8089 initiates the request/grant sequence by out­
putting a "request" pulse on its RQ*/GT* line). An 8089 
that shares a bus with an 8086 (or one of two 8089s in a 
remote configuration) would be designated a slave. 

NOTE 

Since the 8086 CPU can grant the bus only in 
response to a request, whenever an 8086 and 
an 8089 share a common bus, the 8089 must 
be designated the slave. Also, when the 
RQ*/GT* line is not used (i.e., a single 8089 
in the remote configuration), the 8089 must be 
designated a master. 

The CA pulse input, in addition to determining 
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master/slave status, causes the 8089 to begin execution of 
its internal ROM initialization sequence. The 8089 must 
have access to the system bus in order to perform this 
sequence, therefore, it immediately initiates a 
request/grant sequence (if designated a slave) and, if re­
quired, requests the bus through the 8289 Arbiter. If the 
8089 is designated a master, it requests the bus through 
the 8289 Arbiter. When executing the initialization se­
quence, the 8089 first fetches the SYSBUS byte from lo­
cation FFFF6H. The W bit (bit 0) of this byte specifies 
the physical bus width of the system bus. Depending on 
the bus width specified, the 8089 then fetches the address 
of the system configuration block (SCB) contained in lo­
cations FFFF8H through FFFFBH in either two bus cy­
cles (16-bit bus, W bit equal I) or four bus cycles (8-bit 
bus, W bit equal 0). The SCB offset segment address val­
ues fetched are combined into a 20-bit physical address 
that is stored in an internal register. The 8089 uses this 
address to fetch the system operation command (SOC) 
byte. SOC specifies both the request/ grant operational 
mode (R bit) and the physical width of the I/O bus (I bit­
refer to Volume I of this User's Guide). After reading the 
SOC byte, the 8089 fetches the channel control block 
(CB) offset and segment address values. These values are 
combined into a 20-bit physical address that is stored in 
another internal register. To inform the host CPU that it 
has completed the initialization sequence, the 8089 clears 
the Channel I Busy flag in the channel control block by 
writing data byte "00" into the Busy flag byte. 

After the lOP has been initialized, the system configura­
tion block may be altered to initialize another lOP. When 
an lOP has been initialized, its channel control block, lo­
cated in system memory, cannot be moved since the CB 
address, which is internally stored by the lOP during the 
initialization sequence, is automatically accessed on every 
subsequent CA pulse. 

Generation of the CA and SEL inputs to the lOP are the 
responsibility of the host CPU. These signals typically 
result from the CPU's execution of an I/O write instruc­
tion to one of two adjacent I/O ports (I/O port addresses 
that only differ by AO). A simple decoding circuit that 
could be used to generate the CA and SEL signals is 
shown in Figure 4-13. By qualifying the CA output with 
IOWC*, the SEL output, since it is latched for the entire 
I/O bus cycle, is guaranteed to be stable on the trailing 
edge of the CA pulse. 

4.4.3 Channel Commands 

After initialization, any channel attention (CA) is inter­
preted as a command to channell (SEL = low) or to chan­
nel2 (SEL = high). Depending upon the activities of both 
channels, the CA may not be recognized immediately. 
However, the CA is latched so that it will be serviced as 
soon as priorities allow. 
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Figure 4·13 Channel Attention Decoding 
Circuit 

The channel sets its BUSY flag in the CB to FFH when it 
recognizes the CA. This does not prevent the CPU from 
issuing another CA, but provides status information only. 
When the channel responds to a CA, it reads various con­
trol fields from system memory. The CPU must ensure 
that the appropriate fields are properly initialized before 
issuing the CA. 

The CPU can use the "update PSW" command to alter 
the bus load limit and priority bits in the PSW (see Figure 
4-22) without otherwise affecting the channel. This com­
mand also allows the CPU to control interrupts originat­
ing in the channel. 

The channel reads its CCW from the CB after setting its 
BUSY flag. It examines the command field (see Figure 
4-14) and executes the command encoded there by the 
CPU. 

The channel's response to each type of command is shown 
in Figure 4-15. Note that if CF contains a reserved value 
(0 IO or 100), the channel's response is unpredictable. 

CF COMMAND FIELD 
000 UPDATE PSW 

7 

ICF 

The two "start program" commands differ only in their 
affect on the TP tag bit. If CF-OOI is used, the channel 
sets the tag to I to indicate that the program resides in the 
110 space. If CF-Oll is used, the tag is cleared to 0, and 
the program is assumed to be in the system space. The 
channel converts the doubleword parameter block pointer 
to a 20-bit physical address and loads this into PP. It loads 
the doubleword task block (channel program) pointer into 

o 

CF 

001 START CHANNEL PROGRAM LOCATED IN 1/0 SPACE. 
010 (RESERVED) 
011 START CHANNEL PROGRAM LOCATED IN SYSTEM SPACE. 
100 (RESERVED) 
101 RESUME SUSPENDED CHANNEL OPERATION 
110 SUSPEND CHANNEL OPERATION 
111 HALT CHANNEL OPERATION 

ICF INTERRUPT CONTROL FIELD 
00 IGNORE, NO EFFECT ON INTERRUPTS. 
01 REMOVE INTERRUPT REQUEST; INTERRUPT IS ACKNOWLEDGED. 
10 ENABLE INTERRUPTS. 
11 DISABLE INTERRUPTS. 

B BUS LOAD LIMIT 
o NO BUS LOAD LIMIT 
1 BUS LOAD LIMIT 

P PRIORITY BIT 

Figure 4·14 Channel Command Word Encoding 
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Figure 4·15 Channel Commands 
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Figure 4-16 Channel State Save Area 

TP, updates the PSW as specified by the ICF, Band P 
fields of the CCW and starts the program with the instruc­
tion pointed to by TP_ 

The CPU may suspend a channel operation (either pro­
gram execution or DMA transfer) by setting CF to 110_ 
The channel saves its state (TP, its tag bit, and PSW) in 
the first two words of the parameter block (see Figure 
4-16 for format) and clears its BUSY flag to OH_ In a 
suspended operation: 

• The content of the doubleword pointer to the begin­
ning of the channel program is replaced by the channel 
save data_ Therefore, a suspended operation may be 
resumed, but cannot be started from the beginning 
without recreating the doubleword pointer. 

• TP is the only register saved by this operation. If an­
other channel program is started on this channel, the 
other registers, including PP, are subject to being 
overwritten. In general, suspend is used to temporar­
ily halt a channel, not to "interrupt" it with another 
program. 

• Suspending a DMA transfer does not affect any 110 
devices (an 110 device will act as though the transfer is 
proceeding). The CPU must provide for conditions 
that may arise if, for example, a device requests a 
DMA transfer, but the channel does not acknowledge 
the request because it has been suspended. Similarly, 
an 110 device may be in a different condition when the 
operation is resumed. 

A suspended operation may be resumed by setting CF to 
101. This command causes the channel to reload TP, its 
tag bit, and the PSW from the first two words of PB. Re­
suming an operation that has not been suspended will give 
unpredictable results since the first two words of PB will 
not contain the required channel state data. A resume 
command does not affect any channel registers other than 
TP. 

The CPU may abort a channel operation by issuing a 
"halt" command (CF = 111). The channel clears its 
BUSY flag to OH and then idles. Again, the CPU must be 
prepared for the effect aborting a DMA transfer may have 
on an 110 device. 
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4.4.4 Direct Memory Access Transfers 

The number of bytes transferred during a single DMA 
cycle is determined by the source and destination logical 
bus widths and the address boundary (odd or even ad­
dress). DMA transfers are performed between dissimilar 
bus widths by assembling bytes or disassembling words in 
the 8089's internal assembly register file. The DMA 
source and destination bus widths are defined by the exe­
cution of a WID instruction during task block (channel 
command) execution (refer to Volume I of this User's 
Guide). 

NOTE 

The bus widths specified remain in force until 
changed by a subsequent WID instruction. 

Byte (B) and word (W) source/destination transfer combi­
nations are defined in Table 4-14. These definations are 
based on the specified address boundary and bus widths. 

The 8089 optimizes bus accesses during transfers between 
dissimilar bus widths whenever possible. When either the 
source or destination is a 16-bit memory bus 
(auto-incrementing) that is initially aligned on an odd ad­
dress boundary (causing the first transfer cycle to be 
byte-to-byte), following the first transfer cycle, the mem­
ory address will be aligned on an even address boundary, 
and word transfers will subsequently occur. For example, 
when performing a memory-to-port transfer from a 16-bit 
bus to an 8-bit bus with the source beginning on an odd 
address boundary, the first transfer cycle will be 
byte-to-byte (B --+ B) (refer to Table 4-14), but subsequent 
transfers will be word-to-byte/byte (W --+ B/B). 

All DMA transfer cycles consist of at least two bus cy­
cles.One bus cycle is used to fetch (read) data from the 
source into the lOP, and the second bus cycle stores 
(writes) the data previously fetched from the lOP into the 
destination. For all transfers the data passes through the 
lOP to allow mask/compare and translate operations to be 
optionally performed during the transfer. In addition this 
allows the data to be assembled or disassembled. 

DMA transfers are performed in one of three modes: un­
synchronized, source synchronized, or destination syn­
chronized. The transfer mode is specified in the channel 
control register. The unsynchronized mode is used when 
neither the source or destination devices provide a data 
request (DRQ) signal to the lOP. An example is the case 
of a memory-to-memory transfer. In the synchronized 
transfer modes, the source (source synchronized) or desti­
nation (destination synchronized) device initiates the 
transfer cycle by activating the lOP's DRQI (channel I) 
or DRQ2 (channel 2) input. 
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Table 4-14 DMA Assembly Register Operation 

Address Boundary 
(Source - Destination) 

Even - Even 
Even - Odd 
Odd - Even 
Odd -Odd 

The DRQ input is asynchronous and usually originates 
from an I/O device controller instead of a memory cir­
cuit. This input is latched on the positive transition of the 
clock (CLK) signal and must therefore remain active for 
more than one clock period (more than 200 nanoseconds 
when using a 5 MHz clock) in order to guarantee that it is 
recognized. 

During Tl of the associated fetch bus cycle (source syn­
chronized - see Figure 4-17) or the store bus cycle (des­
tination synchronized - see Figure 4-18), the lOP 
outputs the port address of the I/O device. This address 
must be decoded by external circuits to generate the DMA 
acknowledge (DACK) signal to the I/O controller as the 
response to the controller's DMA request. An I/O con­
troller typically uses DACK as a conditional input for the 
removal ofDRQ. (After receipt of the DACK signal, most 
Intel peripheral controllers deactivate DRQ following re­
ceipt of the corresponding read or write signal.) 

Table 4-15 defines the DMA transfer cycles in terms of 
the number of bus and clock cycles required. 

DACK latency is defined as the time required for the 8089 
to acknowledge a DMA request at its DRQ input, by out­
putting the device's corresponding port address. This re-

logical Bus Width 
(Source - Destination) 

8-8 8 - 16 16 - 8 16 - 16 

B-B BIB - W W- BIB W-W 
B-B B-B W - BIB W- BIB 
B-B B/B-W B-B B/B-W 
B-B B-B B-B B-B 

sponse latency depends on a number of factors that 
include the transfer cycle being performed, activity on the 
other channel, memory address boundaries, wait states 
present in either bus cycle and bus arbitration times. 

Generally, when the other channel is idle, the maximum 
DACK latency is five clock cycles (l microsecond at 5 
MHz), excluding wait states and bus arbitration times. An 
exception occurs when performing a word transfer to or 
from an odd memory address boundary. Since two store 
(source synchronized) or two fetch (destination synchro­
nized) bus cycles are required to access memory, this op­
eration has a maximum possible latency of nine clock 
cycles. When the other channel is performing DMA 
transfers to equal priority ("P" bits equal), interleaving 
occurs at bus cycle boundaries. Therefore, the maximum 
latency is either nine clock cycles when the other channel 
is performing a normal 4-clock fetch or store bus cycle, 
or twelve clock cycles when the other channel is perform­
ing the first fetch cycle of a memory-to-memory transfer. 
If the other channel is performing "chained" task block 
instruction execution of equal priority, maximum latency 
can be as high as 12 clock cycles (channel command in­
struction execution is interrupted at machine cycle bound­
aries which range from two to eight clock cycles). 

/-------TRANSFER CyCLE------.; 
__ FETCH BUS CYCLE-_I __ STORE 8US CYClE-_ 

~ I Q I n I U ~ I Q I n I U 

eLK 

DRQHOLD+-I 
FROM READ 1-C~6~~ES'-I-c~~i:s\-I-c~~~:s'-

DR02 

(FROM 110 DEVICE) 
,----------------------I ORO FOR NEXT TRANSFeR CYCLE , 

(DECODED 1/0 ADD~~~~) --1 VALID 1/0 ADDRESS PRESENT \\.. _________ _ 

NOTES; 

1. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE THE NEXT 
TRANSFER CYCLE BEGINS. IF ORO IS RECEIVED PRIOR TO STATE T4 OF THE CURRENT 
FETCH CYCLE, THE NEXT FETCH CYCLE BEGINS IMMEDIATELY FOLLOWING THE 
CURRENT STORE CYCLE. 

2. IF THE 8089 IS IDLE WHEN ORO IS RECOGNIZED, FIVE IDLE CLOCK CYCLES OCCUR 
BEFORE THE ASSOCIATED TRANSFER CYCLE IS INITIATED. 

Figure 4-17 Source Synchronized Transfer Cycle 
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eLK 
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(FROM tiD DEVICE) ~ ~ • ~ _ 

(DECODED 110 ADD~:i~ _________ -11 VALID 110 ADDRESS PRESENT \ ... __________ ...-1, 

NOTES: 1. FIRST DMA FETCH CYCLE OCCURS IMMEDIATELY AFTER THE LAST TASK BLOCK 
INSTRUCTION IS EXECUTED. 

2. FETCH BUS CYCLE 2 BEGINS IMMEDIATELY FOLLOWING STORE BUS CYCLE 1. 
3. INDICATES THE NUMBER OF IDLE CLOCK CYCLES INSERTED BEFORE STORE BUS 

CYCLE 2 BEGINS. IF ORO IS RECEIVED PRIOR TO STATE T4 OF STORE BUS CYCLE 1, 
STORE BUS CYCLE 2 BEGINS IMMEDIATELY FOLLOWING FETCH BUS CYCLE 2. 

4. IF THE 8089 IS IDLE WHEN ORO IS RECOGNIZED, FIVE IDLE CLOCK CYCLES OCCUR 
BEFORE THE ASSOCIATED STORE 8US CYCLE IS INITIATED. 

Figure 4·18 Destination Synchronized Transfer Cycle 

4.4.5 DMA Termination 

A channel can exit the DMA transfer mode (and return to 
task block execution) on any of the following terminate 
conditions (refer to Volume I of this User's Guide): 

I. Single cycle transfer; 

2. Byte count expired; 

3. Mask/compare match or mismatch; 

4. External event. 

Table 4·15 DMA Ti'ansfer Cycles 

Transfer Mode 

L 

Logical Bus Width 
Unsynchronized Source Synchronized Destination Synchronized 

Source Destination 
Bus Cycles Total Bus Cycles Total' Bus Cycles Total' 
Required Clocks Required Clocks Required Clocks 

8 8 2 (1 fetch, 1 store) 8' 2 (1 fetch, 1 store) 8' 2 (1 fetch, 1 store) 8' 
8 16' 3 (2 fetch, 1 store) 12 3 (2 fetch, 1 store) 16' 3 (2 fetch, 1 store) 12 

16' 8 3 (1 fetch, 2 store) 12 3 (1 fetch, 2 store) 12 3 (1 fetch, 2 store) 16' 
16' 16' 2 (1 fetch, 1 store) 8 2 (1 fetch, 1 store) 8 2 (1 fetCh, 1 store) 8 

Notes: 
1. The "Total Clocks Required" does not include wait states. One clock cycle per wait state must be 

added to each fetch and/or store bus cycle in which a wait state is inserted. When performing a 
memory-to-memory transfer, three additional clocks must be added to the total clocks required (the 
first fetch cycle of any memory-to-memory transfer requires seven clock cycles). 

2. When performing a translate operation, one additional 7-clock bus cycle must be added to the values 
specified in the table. 

3. Word transfers in the table assume an even address word boundary. Word transfers to or from odd 
address boundaries are performed as indicated in table 4-18 and are subject to the bus cycle/clock 
requirements for byte-to-byte transfers. 

4. Transfer cycles that include two synchronized bus cycles (i.e., synchronous transfers between 
dissimilar logical bus widths) insert four idle clock cycles between the two synchronized bus cycles 
to allow additional time for the synchronzing device to remove its initial DMA request. 
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Individual fields in the channel control register specify 
the terminate conditions. More than one terminate condi­
tion can be specified for a transfer (e.g., a transfer can be 
terminated when a specific byte count is reached -+ or-+ 
on the occurrence of an external event). When more than 
one terminate condition is possible, specified displace­
ments (which are added to the task pointer register value) 
cause task block execution to resume at a unique entry 
point for each condition. Three re-entry points are availa­
ble: TP, TP+4, and TP+8. The time interval between 
the occurrence of a terminate condition and the resump­
tion of task block execution is 12 clock cycles for re-entry 
point TP and 15 clock cycles for re-entry points TP + 4 
and TP+8. 

4.4.6 Peripheral Interfacing 

When the 8089 interfaces a peripheral to an 8-bit physical 
data bus, only the lower half of the address/data lines 
(AD7-ADO) are used for the bidirectional data bus. The 
upper half of the address/data lines (ADlS-AD8) are used 
to maintain address information for the entire bus cycle. 
With this bus configuration, only one octal latch is re­
quired since only the lower half of the address/data lines 
are time-multiplexed (unless the address bus requires the 
increased current drive capability and capacitive load im­
munity provided by the latch). 

When a peripheral is interfaced to a 16-bit data bus, both 
the lower and upper halves of the address/data lines are 
time-multiplexed, and two octal latches are required. 
Note that unlike the 8086 CPU, the 8089 does not 
time-multiplex BHE*, this signal is valid for the entire 
bus cycle. Both 8-and 16-bit peripherals can be interfaced 
to a 16-bit bus. An 8-bit peripheral can be connected to 
either the upper or lower half of the bus. An 8-bit periph­
eral on the lower half of the bus must use an even source/ 
destination address, and an 8-bit peripheral on the upper 
half of the bus must use an odd source/destination ad­
dress. To take advantage of word transfers, a 16-bit pe­
ripheral must use an even source/destination address. 

Command and parameter data is written to a peripheral 
device's command/status port (usually by using pointer 
register GC) to prepare the device for a DMA transfer. 
The additional task block instruction executed by the 
8089 following execution of the XFER instruction (the 
XFER instruction causes the 8089 to enter the DMA 
mode) is used to access the command port of an 110 de­
vice. This 110 device immediately begins DMA operation 
on receipt of the last command (the 8271 Floppy Disk 
Controller begins its DMA transfer on receipt of the last 
command parameter). Since a translate DMA operation 
requires the use of all three pointer registers (GA and GB 
specify the source and destination address; GC specifies 
the base address of the translation table), when it is neces­
sary to use the last task block instruction to start the de­
vice, command port access can be accomplished relative 
to one of the pointer registers or relative to the PP regis-
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ter. If the device's data port address (GA or GB) is below 
the device's command port address, either an offset or an 
indexed reference can be used to access the command 
port. 

8089 DMA COMMUNICATION PROTOCOL 

A peripheral's (or peripheral controller's) DMA commu­
nication protocol with the 8089 is as follows: 

• The peripheral (when source or destination synchro­
nized) initiates a DMA transfer cycle by activating the 
8089's DRQ (DMA request) input. 

• The 8089 acknowledges the request by placing the pe­
ripheral's assigned data port address on the bus during 
state Tl of the corresponding fetch (source synchro­
nized) or store (destination synchronized) bus cycle. 
The peripheral is responsible for decoding this address 
as the DMA acknowledge (DACK) to its request. 

• The data is transferred between the peripheral and the 
8089 during the T2 through T4 state interval ofthe bus 
cycle. The peripheral must remove its DMA request 
during this interval. 

• The peripheral, when ready, requests another DMA 
transfer cycle by again activating the DRQ input, and 
the above sequence repeats. 

• The peripheral can, as an option, end the DMA trans­
fer by activating the 8089 's EXT (external terminate) 
input. 

The 8089 supports multiple peripheral devices on a single 
channel if only one device is in the active transfer mode at 
anyone time. To interface multiple devices, the DMA 
request (DRQ) lines are OR'ed together. The external ter­
minate (EXT) lines are also OR'ed together. However, 
unique port addresses are assigned to each device so that 
an individual DMA acknowledge (DACK) returns to only 
the active device. DACK can be decoded using an Intel 
8205 Binary Decoder or a ROM circuit. 

NOTE 

The 8089 can only determine which device has 
requested or terminated service by the context 
of the task block program. 

Most peripheral devices interfaced to the 8089 use the 
decoded DMA acknowledge signal (DACK) as the chip 
select input. Peripheral devices that do not follow this 
convention must use DACK as a conditional input of chip 
select. 

8089 NON-DMA INTERRUPTS 

Most interrupts associated with the 8089 are DMA re­
quests or external terminates, but non-DMA related inter­
rupts can be supported. One technique that can be used 
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for an 8089 configured in local mode (or when an 8086 
and an 8089 are locally connected as a remote module) 
allows the CPU to accept the interrupt and then direct the 
8089 to the interrupt service routine. Another technique 
allows the 8089 to poll the device to determine when an 
interrupt has occurred (most peripheral controllers have 
an interrupt pending bit in a status word). The 8089's bit 
test instructions are ideally suited for polling. 

When configured in remote mode, non-DMA related in­
terrupts can be supported by the 8089 with the addition of 
an Intel 8259A Programmable Interrupt Controller. Sys­
tems that require this type of interrupt structure would 
dedicate one of the 8089's channels to interrupt servicing. 
In this structure, the interrupt output from the 8259A con­
nects directly to the channel's external terminate (EXT) 
input, and the channel's DRQ input is not used. The 8089 
initially executes a task block program to perform a 
source-synchronized DMA transfer (with an external ter­
minate) on the "interrupt" channel to "arm" the interrupt 
mechanism. Since the DRQ input is not used, when the 
channel enters the DMA transfer mode, the channel idles 
while waiting for the first DMA request (which never oc­
curs). Since the interrupt channel is idle, the other chan­
nel operates at maximum throughput. When an interrupt 
occurs, the pseudo DMA transfer immediately termi­
nates, and task block instruction execution resumes. The 
task block program would write a poll command to the 
8259A's command port and then read the 8259A's data 
port to acknowledge the interrupt and to determine the 
device responsible for the interrupt (the device is identi­
fied by a 3-bit binary number in the associated data byte). 
The device number read would be used by the task block 
program as a vector into a jump table for the device's 
interrupt service routine. Pertinent interrupt data could be 
written into the associated parameter block for subsequent 
examination by the host processor. Since it uses the 
8089's external terminate function, this interrupt mecha­
nism provides an extremely fast interrupt response time. 

When using dynamic RAM memory with the 8089, an 
Intel 8203 Dynamic RAM Controller can be used to sim­
plify the interface and to perform the RAM refresh cycle. 
When maximum transfer rates are required, the RAM re­
fresh cycle can be externally initiated by the 8089. By 
connecting the decoded DACK (DMA acknowledge) sig­
nal to the 8203 's REFRQ (refresh request) input, the re­
fresh cycle will occur coincident with the 110 device bus 
cycle and will not impose wait states in the memory bus 
cycle. 

4.4.7 Status Lines 

The lOP sends signals to external devices on the SO*-S2* 
status lines to indicate the type of bus cycle the processor 
is starting (see Table 4-16 for the signals output for each 
type of cycle). These status lines are connected to an 8288 
Bus Controller. The bus controller decodes these lines 
and outputs the signals that control components attached 

Table 4-16 Status Signals SO-S2 

52 S1 SO Type of Bus Cycle 

0 0 0 Instruction fetch from 1/0 space 

0 0 1 Data fetch from 1/0 space 

0 1 0 Data store. to 1/0 space 

0 1 1 (not used) 

1 0 0 Instruction fetch from system 
space 

1 0 1 Data fetch from system space 

1 1 0 Data store to system space 

1 1 1 Passive; no bus cycle run 

to the bus. In the remote configuration, an 8289 Bus Arbi­
ter monitors the SO*-S2 * status lines to determine when a 
system bus access is required. 

Status lines S3 - S6 indicate if the bus cycle is DMA or 
non-DMA, and which channel is running the cycle (see 
Thble 4-17). When the lOP is not running a bus cycle 
(e.g., it is idle or executing an internal cycle that does not 
use the bus), the status lines reflect the last bus cycle run. 
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4.5 BUS OPERATION 

The 8089 uses the same bus structure as a maximum 
mode 8086 CPU. Bus cycles are performed only on de­
mand to fetch an instruction during task block execution 
or to perform a data transfer. The bus cycle itself is identi­
cal to an 8086 CPU's bus cycle. Each cycle consists of 
four T-states and uses the same time-multiplexing tech­
nique for the address/data lines. The 8089 outputs the ad­
dress (and ALE signal) during state Tl for either a read or 
write cycle (see Figures 4-19 and 4-20). Depending on 
the type of cycle indicated, the 8089 tri-states the 
address/data lines during state T2 for a read cycle (see 
Figure 4-19) or outputs data on these lines during a write 
cycle (see Figure 4-20). During state T3, the 8089 main­
tains write data or samples read data and then concludes 
the busy cycle in state T4. 

Table 4-17 Status Signals S3-S6 

56 S5 54 S3 Bus Cycle 

1 1 0 0 DMA cycle on channel 1 

1 1 0 1 DMA cycle on channel 2 

1 1 1 0 Non-DMA cycle on channel 1 

1 1 1 1 Non-DMA cycle on channel 2 
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Figure 4·19 Read Bus Cycle (8·bit Bus) 

The 8089 can transfer data to or from both 8-bit and 
16-bit buses. Therefore, when an 8-bit physical bus is 
specified during the initialization sequence, the lOP 
maintains the address present on the AD15 through AD8 
address/data lines for the entire bus cycle (see Figure 
4-19). Unless added drive capability is required, the asso­
ciated address latch can be eliminated. An 8-bit data bus 
is compatible with the 8088 CPU and with the MCS-85 
multiplexed address peripherals (8155, 8185, etc.). 

8089 operation is identical to the 8086 CPU with respect 
to the use of the low-and high-order halves of the data bus. 
Table 4-18 defines the data bus use for the various combi­
nations of bus width and address boundaries. 

Status lines S2 * through SO* define the bus cycle to be 
performed. These status lines are used by an 8288 Bus 
Controller to generate all memory and 110 command con­
trol signals (refer to Table 4-19 for signal decoding). 

Since the 8288 Bus Controller decodes an input status 
value of zero as an interrupt acknowledge bus cycle, the 
bus controller's INTA* output must be OR'ed with its 
10RC* output to permit fetching of task block instructions 
from local 8089 memory (remote configuration) or sys­
tem I/O space (local and remote configurations). 
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Status lines S2 * through SO* become active in state T4 if a 
subsequent bus cycle is to be performed. The 8089 sets 
these lines inactive (all high) in the state immediately 
prior to state T4 of the current bus cycle (state T3 or Tw) 
and tri-states the lines when the 8089 does not have access 
to the bus. 

Status lines S6 through S3 are multiplexed with the 
high-order address bits (AI9-AI6) and, accordingly, be­
come valid in state T2 of the bus cycle. These status lines 
reflect the type of bus cycle being performed on the cor­
responding channel (Table 4-20). 

Status lines S6 and S5 are always high on the 8089. Since 
these lines are not both high on the other processors in the 
8086 family (S6 is always low on the 8086 CPU), these 
status lines can be used as a "signature" in a multiproces­
sor system to identify the type of processor performing 
the bus cycle. 

The 8089 includes the same provisions for insertion of 
wait states (Tw) as the 8086 CPU. Wait states are inserted 
in a bus cycle when the associated memory or 110 device 
cannot respond within an allotted time interval or in the 
remote mode when the 8089 must wait for access to the 
system bus. An 8284A Clock Generator/ Driver controls 
insertion of wait states. When required, wait states are 
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Figure 4-20 Write Bus Cycle (16-bit Bus) 

inserted between states T3 and T4. Deactivating one of 
the 8284A's RDY inputs, RDYI or RDY2, actually inserts 
the wait states. When enabled by the corresponding 
AENI * or AEN2* input, either RDYI or RDY2 can be 
directly deactivated by a memory or 110 device to extend 
the 8089's bus cycle (i.e., addressed device is not ready to 
present or accept data). The 8284A's READY output (syn­
chronized to the CLK signal) connects directly to the 
8089's READY input. When the addressed device re­
quires one or more wait states to be inserted into a bus 
cycle (see Figure 4-21), it deactivates the 8284A's RDY 
input prior to the end of state T2. The READY output 
from the 8284A subsequently deactivates at the end of 
state T2, causing the 8089 to insert wait state T3. To exit 
the wait state, the device activates the 8284A's RDY input, 
causing the 8089 READY input to go active on the next 
clock cycle. This allows the 8089 to enter state T4. 

Periods of inactivity, or idle states (TI) can occur between 
bus cycles. These idle states result from the execution of a 
"long" instruction or the loss of the bus to another proc­
essor during task block instruction execution. Addition­
ally, the 8089 can experience idle states when it is in the 
DMA mode and it is waiting for a DMA request from the 
addressed 110 device, or when the bus load limit (BLL) 
function is enabled for a channel performing task block 
instruction execution and the other channel is idle. 
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4.6 BUS EXCHANGE MECHANISM 

The 8089 shares the multiprocessing facilities that are 
common to the iAPX 86 family of processors. It has 
on-chip logic for arbitrating the use of the local bus with a 
CPU or other lOP. System bus arbitration is delegated to 
an 8289 Bus Arbiter. 

The 8089's test and set while locked instruction (TSL) 
enables it to share a resource, such as a buffer, with other 
processors by means of semaphore. In addition, the 8089 
can lock the system bus for the duration of a DMA trans­
fer to ensure that the transfer completes without interfer­
ence from other processors on the bus. 

In the remote configuration, the 8089 is electrically com­
patible with Intel's MULTIBUS multimaster bus design. 
Therefore, the power and convience of 8089 110 process­
ing can be used in 8085-or 8086-based systems that im­
plement the MULTIBUS protocol or a subset of it. In 
addition, the lOP can access other iSBC board products 
such as memory and communications controllers. 
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Table 4-18 Data Bus Usage 

Physical Bus Width' 
Logical Address 

BusWidth' Boundary 16 
8 

Byte Transfer Word Transfer 

Even 
AD7-ADO = OAT A AD7-ADO = DATA 

N/A 
(BHE not used) (BHE high) 

8 

Odd 
AD7-ADO = DATA AD15-AD8 = DATA 

N/A -
(BHE low) (BHE not used) 

Even Illegal 
AD7-ADO = DATA AD15-ADO = DATA 

(BHE high) (BHE low) 
16 

Odd Illegal 
AD15-AD8 = DATA 

N/A' (BHE low) 

Notes: 

1. Logical bus width is specified by the WID instruction prior to the DMA transfer. 

2. Physical bus width is specified when the 8089 is initialized. 

3. A word transfer to or from an odd boundary is performed as two byte transfers. The first byte trans­
ferred is the low-order byte on the high-order data bus (AD15-AD8), and the second byte is the high­
order byte on the low-order data bus (AD7-ADO). The 8089 automatically assembles the two bytes in 
their proper order. 

Table 4-19 Bus Cycle Decoding 

Status Output 
Bus Cycle Indicated 

Bus Controller 

S2 S1 SO Command Output 

0 0 0 Instruction fetch from 1/0 space INTA 
0 0 1 Data read from 110 space 10RC 
0 1 0 Data write to 1/0 space 10WC,AIOWC 
0 1 1 Not used None 
1 0 0 Instruction fetch from system memory MRDC 
1 0 1 Data read from system memory MRDC -- --1 1 0 Data write to system memory MWTC, AMWC 
1 1 1 Passive None 

Table 4-20 Type of Cycle Decoding 4.6.1 Bus Arbitration 

Status Output 
S4 S3 

0 0 
0 1 
1 0 
1 1 

Type of Cycle 

OMA on Channel 1 
OMA on Channel 2 
Non-OMA on Channel 1 
Non-OMA on Channel 2 
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The 8089 shares its system bus with a CPU, and may also 
share its I/O bus with an lOP or another CPU. Only one 
processor at a time may drive a bus. When two (or more) 
processors want to use a shared bus, the system must pro­
vide an arbitration mechanism that will grant the bus to 
one of the processors. The following paragraphs describe 
the 8089 bus arbitration facilities and their applicability to 
different lOP configurations. 
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Figure 4-21 Wait State Timing 

REQUEST/GRANT LINE 

When an 8089 is directly connected to another 8089, an 
8086 or an 8088, the RQ*/GT* (request/grant) lines built 
into all of these processors are used to arbitrate the use of 
a local bus. In the local mode, RQ*/GT* is used to con­
trol access to both the system and the 110 bus. 

The CPU's request/grant lines (RQ*/GTO* and 
RQ*/GTI *) operate as follows: 

1. An external processor sends a pulse to the CPU to 
request use of the bus; 

2. The CPU finishes its current bus cycle, if one is in 
progress, and sends a pulse to the processor to indi­
cate that it has been granted the bus; and 

3. When the external processor is finished with the bus, 
it sends a final pulse to the CPU, to indicate that it is 
releasing the bus. 

The 8089' s request/grant circuit can operate in two 
modes. The mode is selected when the lOP is initialized 
(see paragraph 4.4.2). Mode 0 is compatible with the 
8086/8088 request/grant circuit and must be specified 
when the 8089's RQ*/GT* line is connected to 
RQ*/GTO* or RQ*/GTl * of one of those CPU's. Mode 0 
may be specified when RQ*/GT* of one 8089 is tied to 
the RQ* /GT* of another 8089. When mode 0 is used with 
a CPU, the CPU is designated the master, and the lOP is 
designated a slave. When mode 0 is used with another 
lOP, one lOP is the master, and the other is the slave. 
Master/slave designation also is made at initialization time 
as discussed in paragraph 4.4.2. The master has the bus 
when the system is initialized and keeps the bus until it is 
requested by the slave. When the slave requests the bus, 
the master grants it if the master is idle. In this sense, the 
CPU becomes idle at the end of current bus cycle. An lOP 
master, on the other hand, does not become idle until both 
channels have halted program execution or are waiting for 
DMA requests. Once granted the bus, the slave (always an 
lOP) uses it until both channels are idle, and then releases 
it to the master. In mode 0, the master has no way of 
requesting the slave to return the bus. 
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Mode 1 operation may only be used to arbitrate use of a 
private 110 bus between two lOP's. In this instance, one 
lOP is designated the master, and the other is designated 
the slave. However, the only difference between a master 
and a slave running in Mode 1 is that the master has the 
bus at initialization time. Both processors may request the 
bus from each other at any time. The processor that has 
the bus will grant it to the requestor as soon as one of the 
following occurs: 

1. An unchained channel program instruction is com­
pleted, or 

2. A channel goes idle due to a program halt or the com­
pletion of a synchronized transfer' cycle (the channel 
waits for a DMA request). 

Execution of a chained channel program, a DMA termi­
nation sequence, a channel attention sequence, or a syn­
chronized DMA transfer (i.e., a high-priority operation) 
on either channel prevents the lOP from granting the bus 
to the requesting lOP. 

The handshaking sequence in Mode 1 is: 

1. The requesting processor pulses once on RQ* /GT*; 

2. The processor with the bus grants it by pulsing once; 
and 

3. If the processor granting the bus wants it back imme­
diately (for example, to fetch the next instruction), it 
will pulse RQ*/GT* again, two clocks after the grant 
pulse. 

The fundamental difference between the two 
request/grant circuit modes is the frequency with which 
the bus can be switched between the two processors when 
both are active. In mode 0, the processor that has the bus 
will tend to keep it for relatively long periods if it is exe­
cuting a channel program. Mode 1 in effect places un­
chained channel programs at a lower priority since the 
processor will give up the bus at the end of the next in­
struction. Therefore, when both processors are running 
channel programs or synchronized DMA, they will share 
the bus more or less equally. When a processor changes to 
what would typically be considered a high-priority activ­
ity such as chained program execution or DMA termina­
tion, it will generally be able to obtain the bus quickly and 
keep the bus for the duration of the more critical activity. 

8289 BUS ARBITER 

When an lOP is configured remotely, an 8289 Bus Arbiter 
is used to control the lOP's access to the shared system 
bus (the CPU also has its own 8289). In a remote cluster 
of two lOP's and a CPU, one 8289 control access to the 
system bus for both processors in the cluster. The 8289 
has several operating modes. When used with an 8089, 
the 8289 is usually strapped in its lOB (110 Peripheral 
Bus) mode. 

210912·001 



8089 INPUT/OUTPUT PROCESSOR 

Table 4-21 Bus Arbitration Requirements and Options 

Local Remote 
Remote With 

Local CPU 
lOP 

Master/ RQ/GT Master/ RQ/GT Master/ RQ/GT 
Slave Mode Slave 

IOP1 Slave. 0 Master 

IOP2 Slave 0 Slave 

The 8289 monitor's the lOP's status lines. When the status 
lines indicate the lOP needs a cycle on the system bus, 
and the lOP does not presently have the bus, the 8289 
activates a bus request signal. This signal, along with the 
bus request lines of the other 8289's on the same bus, can 
be routed to an external priority-resolving circuit. At the 
end of the current bus cycle, this circuit grants the bus to 
the requesting 8289 with the highest priority. Several dif­
ferent prioritizing techniques may be used. In a typical 
system, an lOP would have higher bus priority than a 
CPU. If the 8289 does not obtain the bus for its processor, 
it makes the bus appear "not ready" as if a slow memory 
were being accessed. The processor's clock generator re­
sponds to the "not ready" condition by inserting wait 
states into the lOP's bus cycle. This will extend the cycle 
until the bus is acquired. 

BUS ARBITRATION FOR lOP CONFIGURATIONS 

When the CPU initializes an lOp, it must inform the lOP 
whether it is a master or a slave, and which request/grant 
mode is to be used. Refer to paragraph 4.4.2 for a de­
scription of how the information is communicated at ini­
tialization time. 

In the local configuration (see Table 4-21 for a summari­
zation of bus arbitration requirements and options by lOP 
configuration), all bus arbitration is performed by the 
request/grant lines without additional hardware. One lOP 
may be connected to each of the CPU's RQ*/GT* lines. 
The lOP connected to RQ*/GTO* will obtain the bus if 
both processors make simultaneous requests. 

Since a single lOP in a remote configuration does not use 
RQ*/GT*, its mode may be set to 0 or 1 without affect. 
The single remote lOP, however, must be initialized as a 
master. If two remote lOP's share an I/O bus, one must be 
a master and the other a slave. Both must be initialized to 
use the same request/grant mode. Normally, mode 1 will 
be selected for its improved responsiveness, and the des­
ignation of master will be arbitrary. If one lOP must have 
the I/O bus when the system comes up, it should be initial­
ized as the master. 
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Mode Slave Mode 

o or 1 Slave 0 

Same as 
N/A N/A 

Master 

When a remote lOP shares its 110 bus with a local CPU, it 
must be a slave and must use request/grant mode O. 

4.6.2 Bus Load Limit 

A locally configured lOP effectively has higher bus prior­
ity than the CPU since the CPU will grant the bus upon 
request from the lOP. In this instance, one or two local 
lOP's can potentially monopolize the bus at the expense 
of the CPU. Of course, if the lOP activities are 
time-critical, this is exactly what should happen. On the 
other hand, there may be low-priority channel programs 
that have less demanding performance requirements. 

In these cases, the CPU sets a CCW bit called bus load 
limit to constrain the channel's use of the bus during nor­
mal (unchained) channel program execution. When this 
bit is set, the channel decrements a 7 -bit counter from 7F 
(127) to OH with each instruction executed. Since the 
counter is decremented once per clock period, the channel 
waits a minimum of 128 clock cycles before it executes 
the next instruction. By forcing the execution time of all 
instructions to 128 clocks, the use of the bus is reduced to 
between 3 and 25 percent of the available bus cycles. 

Setting the bus load limit effectively enables a CPU to 
slow the execution of a normal channel program, freeing 
up bus cycles. This is useful in local configurations, but 
may also be effective in remote configurations, particu­
larly when channel programs are executed from system 
memory. Bus load limit has no effect on chained channel 
programs, DMA transfers, DMA termination, or channel 
attention sequences. 

4.6.3 Bus Lock 

The 8089 has a LOCK* (bus lock) signal, like the 
8086/88 and 80186/188, which can be activated by soft­
ware. The LOCK* output is normally connected to the 
LOCK* input of the 8289 Bus Arbiter. When LOCK* is 
active, the bus arbiter will not release the bus to another 
processor regardless of its priority. A channel automati-
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cally locks the bus during execution of the test and set 
while locked (TSL) instruction and may lock the bus for 
the duration of a DMA transfer. 

If bit 9 of the CC register is set, the 8089 activates its 
LOCK* output during a DMA transfer on that channel. If 
the transfer is synchronized, LOCK* is active from the 
time that the first DRQ is recognized. If the transfer is 
unsynchronized, LOCK* is active throughout the entire 
transfer (there are no idle periods in an unsynchronized 
transfer). LOCK* goes inactive when the channel begins 
the DMA termination sequence. 

A locked transfer ensures that the transfer will be com­
pleted in the shortest possible time and that the transfer­
ring channel has exclusive use of the bus. Once the 
channel obtains the bus and starts a locked transfer, the 
channel, in effect, becomes the highest-priority processor 
on that bus. 

The 8089 test and set while locked instruction (TSL) can 
be used to implement a semaphore. The instruction acti­
vates LOCK* and inspects the value of a byte in memory. 
If the value of the byte is OH, it is changed (set) to a value 
specified in the instruction and the following instruction is 
executed. If the byte does not contain OH, control is trans­
ferred to another location specified in the instruction. The 
byte is locked from the time the byte is read until it is 
either written or control is transferred to ensure that an­
other processor does not access the variable after TSL has 
read it, but before it has updated it (i.e., between bus 
cycles). The following line of code will repeatedly test a 
semaphore pointed to by GA until it is found to contain 
zero: 

TEST_FLAG: TSL [GA],OFFH,TEST_FLAG 

When the semaphore is found to be zero, it is set to FFH 
and the program continues with the next instruction. 
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Figure 4·22 Program Status Word 

4.7 INTERRUPTS 

Each channel has a separate system interrupt line 
(SINTRI and SINTR2). A channel program may generate 
a CPU interrupt request by executing a SINTR instruc­
tion. Whether this instruction actually activates the 
SINTR line, however, depends upon the state of the inter­
rupt bit (bit 3 of the PSW - see Figure 4-22). If this bit is 
set, interrupts from the channel are enabled, and execu­
tion of the SINTR instruction activates SINTR. If the in­
terrupt control bit is cleared, the SINTR instruction has 
no effect and interrupts from the channel are disabled. 

The CPU can alter a channel's interrupt control bit by 
sending any command to the channel with the value of 
ICF (interrupt control field) in the CCW set to 10 (enable) 
or 11 (disable). Therefore, the CPU can prevent inter­
rupts from either channel. 

Once activated, SINTR remains active until the CPU 
sends a channel command with ICF set to 01 (interrupt 
acknowledge). When the channel receives this command, 
it clears the interrupt service bit in the PSW (see Figure 
4-22) and removes the interrupt request. Disabling inter­
rupts also clears the interrupt service bit and lowers 
SINTR. 
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CHAPTERS 
80130 OPERATING SYSTEM FIRMWARE 

5.1 GENERAL INFORMATION 

The 80130 is a component that is designed to work in 
conjunction with the 8086, the 8088, the 80186, and the 
80188 microprocessors. When the 80130 is combined 
with the iAPX 86/10 (8086) microprocessor, the pair of 
components is called the iAPX 86/30 Operating System 
Processor. When the 80130 is combined with the iAPX 
88/10 (8088) microprocessor, the pair of components is 
called the iAPX 88/30 Operating System Processor. In 
order to simplify nomenclature, this chapter uses the term 
asp to refer to either pair of components. You can add the 
8087 Numeric Processor Extension (NPX) to either pair 
of components. 

5.2 80130 ARCHITECTURE 

The 80130 component, shown in Figure 5-1, is internally 
divided into a number of independent units. The Operat­
ing System Unit (OSU) provides the kernel control store, 
while the Control Unit contains hardware facilities that 
support it. Also included in the OSU are the Operating 
System Timers, which are used by the OSP for scheduling 
and timing intervals, the Programmable Interrupt Con­
troller (PIC), which provides seven independent interrupt 
lines and one line for the system timer, and 
User-Programmable Baud Rate Generator for input into a 
USART. 

5.3 DEVICE PIN ASSIGNMENTS 

The 80130 device pin assignments are listed with the ap­
propriate description in Table 5-1. The device pin assign­
ments are shown in Figure 5-2. 

5.4 OPERATING SYSTEM PRIMITIVES 
SUMMARY 

This section contains the calling sequences and other in­
formation about the OSP primitives. The primitives are 
listed in alphabetical order in Table 5-2. the information 
for each primitive is organized into the following 
categories: 

1. Primitive 

2. A description of the effects of the primitive. 

3. The condition codes that can result from using the 
primitive. 
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PLlM-86 and iOSP 86 data types, such as BYTE, WORD, 
SELECTOR, and TOKEN are used in this section. They 
are always capitalized and their definitions can be found 
in Table 5-3. In addition, Table 5-4 lists the mnemonic 
codes for both unavoidable and avoidable exceptions 
along with the numeric values assigned to each mnemonic 
exceptor. If your compiler supports the SELECTOR data 
type, a TOKEN can be declared literally either SELEC­
TOR or WORD. The word"token" in lower case refers to 
a value that the iOSP 86 Processor assigns to an object. 
The OSP returns this value to a TOKEN (the data type) 
when it creates the object. 

5.5 INTERFACING WITH THE 8086/88 

The iAPX 86/30 and iAPX 88/30 are two-chip micropro­
cessors offering general-purpose CPU (8086) instructions 
combined with real-time operating system support. The 
iAPX 86/30 consists of an iAPX 86/10 (l6-bit 8086 CPU) 
and an Operating System Firmware (OSF) component 
(80130). The 88/30 consists of the OSF and an iAPX 
88/10 (8-bit 8088 CPU). The 80130 resides on the CPU 
local multiplexed bus (Figure 5-3). The main processor is 
always configured for maximum mode operation. The 
80130 automatically selects between its 88/30 and 86/30 
operating modes. The 80130 used in the 86/30 configura­
tion, as shown in Figure 5-3 (or similar 88/30 configura­
tion), operates at both 5 and 8 Mhz without requiring 
processor wait states. 

5.5.1 Programming The 80130 OSP's 
Onchip Peripherals 

During norma18086/8088 and 80186/80188 system oper­
ation the 80130's primitives control the onchip program­
mable interrupt controller (PIC) and timers. During this 
operation, to ensure proper system operation, the applica­
tions software should not control the onchip peripherals. 
There are, however, a few special cases when direct con­
trol of the PIC and timers is required. One case occurs 
during initial hardware debugging when the systems soft­
ware is not desired or is not available. Another case is 
when writing diagnostic software, either self-diagnostic 
code or board/ system test software. 

The information necessary to program the 80130's PIC 
and timers in these special cases is provided in the follow­
ing paragraphs. The operation and programming of the 
PIC's is similar to the 8259A programmable interrupt 
controller and the operation and programming of the 
three timers are similar to the 8254 programmable 
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Figure 5-1 80130 Simplified Functional Block Diagram 

interval timer. For additional operation and programming 
information for the onchip peripherals refer to the data 
sheets for the 80130, 8259A, and 8254 devices. 

PROGRAMMABLE INTERRUPT CONTROLLER 
(PIC) 

PIC Commands 

The PIC accepts two types of command words from the 
CPU: 

a. Initialization Command Words (ICW's): Before 
normiu operation can begin, the PIC must be ini­
tialized with a sequence of 3, 4, 5 or 6 bytes. 

b. Operation Command Words OCW: These are 

5-2 

command words sent to the PIC for various forms 
of operation, such as interrupt masking, end of 
interrupt, and interrupt status. 

The OCW's can be sent to the PIC anytime after initializa­
tion. 

Initialization Command Word 1 (ICW1) 

Whenever a command word is sent to address OH with 
roCSI = Oand D4 = 1 with a write 1/0 port bus cycle 
(S21 - SOl = 010), the data is interpreted as Initialization 
Command Word 1. ICWI starts the initialization during 
which the following automatically occurs: 

a. The edge sense circuits are reset, which means 
that following initialization an interrupt request 
(IR) input must make a low-to-high transition to 
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Figure 5·2 80130 OSP Pinout Diagram 

generate an interrupt unless the IR input is pro­
grammed as a level sensitive input in which case a 
high level will generate the interrupt. 

b. The interrupt mask register is cleared. 

c. Status read is set to. interrupt request register. 

d. All interrupts will be acknowledged with URI = 1 
unless I CW 6 is sent. 

5-3 

Sending ICWI, ICW2, and ICW4 is the minImum 
amount of programming needed by the PIC. ICWI speci­
fies whether the remaining control words (ICW3, ICW5, 
and ICW6) will be sent. Once ICWI has been sent, the 
following writes to I/O address 02H from the base I/O 
address must be the sequence of ICW2, ICW3, ICW4, 
ICW5 and ICW6 (with the exception of ICW3, ICW5, 
and ICW6 if not specified in ICWI). The PIC is ready to 
accept interrupts after the last ICW is sent. 

Bits 7-6 = 00: Unused but set to 0 
Bit 5 = 0: All inputs are non-local (URI = 1) and 

ICW6 is not read 
= I: ICW6 is read to specify local/non-local 

inputs 
Bit 4 = I: Indicates ICWI 
Bits 3-2 = 00: Edge triggered interrupts; ICW5 is not 

read 
= 10: Level triggered interrupts; ICW5 is not 

read 
= xl: ICW5 is read to specify interrupt trig­

gering 
Bit 1 = 0: One or more 8259A slaves are con­

nected to IR inputs 
= I: No 8259A slaves are connected to IR 

inputs 
Bit 0 = 1: ICW4 is read. 

Initialization Command Word 2 (ICW2) 

ICW2 contains bits 7-3 of the 8-bit vector that is sent to 
the CPU during the second interrupt acknowledge cycle. 
The remaining 3 bits, 2-0 are generated by the PIC de­
pending on the interrupt request input being serviced. 
ICW2 is sent to I/O address 02H with 10CSI = O. Bits 7-3 
contain the five most significant bits of an 8-bit interrupt 
type number. Bits 2-0 are unused and may be any value. 

Initialization Command Word 3 (ICW3) 

ICW3 is sent only when there are one or more 8259A 
slaves in the system and is sent to 1/0 address 02H with 
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Table 5·1 80130 Pin Descriptions 

Symbol 1)tpe Name and Function 

AD15-ADO I/O Address Data: These pins constitute the time multiplexed memory address (T1) and data (T2, 
T3, Tw, T4) bus. These lines are active HIGH. The address presented during T1 of a bus cycle 
will be latched internally and interpreted as an 80130 internal address if MEMCS or 10CS is 
active. These pins float whenever it is not chip selected, and are driven only during T2-T4 of a 
read or INTA cycle and T1 of an INTA cycle in which a slave 8259A drives the interrupt Pointer 
during T2-T 4. ADO-AD15 are latched by the 80130 on the falling edge of ALE. 

BHE'/S7 I Bus High Enable: The 80130 uses the BHE' and AO signals from the processor to determine 
whether to respond with data on the upper or lower data pins, or both. The BHE' signal is 
active lOW. BHE' is latched by the 80130 on the trailing edge of ALE. It along with AO 
controls the 80130 output data as follows: 

BHE' AO 
0 0 Word on AD15-ADO 
0 1 Upper byte on AD15-AD8 
1 0 lower byte on AD7-ADO 
1 1 Upper byte on AD7-ADO 

52' ,51' ,SO' I Status: For the 80130, the status pins are used as inputs only. 80130 encoding is as follows: 
52 51 SO 
0 0 0 INTA 
0 0 1 lORD 
0 1 0 10WR 
0 1 1 Passive 
1 0 0 Instruction Fetch 
1 0 1 MEMRD 
1 1 X Passive 

ClK I The system clock provides the basic timing for the processor and bus controller. The 80130 
uses the system clock as an input to the SYSTICK and BAUD timers and to synchronize 
operation with the host CPU. 

INT 0 INT is HIGH whenever a valid interrupt request is asserted. It is normally used to interrupt the 
CPU by connecting it to INTR. 

IR7-IRO I Interrupt Requests: An interrupt request can be generated by raising an IR input (lOW to 
HIGH) and holding it until it is acknowledged. 

ACK' 0 Acknowledge: This pin is lOW whenever an 80130 resource is being accessed. It is also lOW 
during the first and second INTA cycles if the 80130 is supplying the interrupt vector 
information. This signaling can be used as a bus-ready acknowledgement and/or bus 
transceiver control. 

MEMCS' I Memory Chip Select: This input must be driven lOW when a kernel primitive is being fetched 
by the CPU. AD13-ADO are used to select the instruction. 

10CS' I Input/Output Chip Select: When this input is lOW, during an lORD or 10WR cycle, the 
80130's kernel primitives are accessing the appropriate peripheral function was specified by 
the table on the following page. 

BHE' A3' A2' A1' AO' 
0 X X X X Passive 
X X X X 1 Passive 
X 0 1 X X Passive 
1 0 0 0 0 Interrupt Controller 
1 0 0 1 0 Interrupt Controller 
1 1 0 0 0 Systick Timer 
1 1 0 1 0 Delay Counter 
1 1 1 0 0 Baud Rate Timer 
1 1 1 1 0 Timer Control 
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Table 5·1 80130 Pin Descriptions (continued) 

Symbol Type Name and Function 

LlR" 0 Local Bus Interrupt Request: This signal is LOW when the interrupt request is for a non-slave 
input or slave input programmed as being a local slave. 

Vcc Power: Vcc is the + 5V supply pin. 

Vss Ground: Vss is the ground pin. 

SYSTICK 0 System Clock Tick: Timer 0 Output. Operating System Clock Reference. SYSTICK is 
normally wired to IR2 to implement operating system timing interrupt. 

DELAY 0 Delay Timer: Output of timer 1. Reserved by Intel for future use. 

BAUD 0 Baud Rate Generator: 8254 Mode 3-compatible output. Output of 80130 timer 2. 

GND Ground: GND is the ground pin. 

10CSI = O. Bit 7 is the specification bit for lR7, bit for 
lR6, ... , and bit 0 for lRO. If no 8258A slave is con­
nected to an IR, the specification bit is O. If a slave is 
connected, the specification bit is O. If a slave is con­
nected, the specification bit is 1. 

Initialization Command Word 4 (ICW4) 

lCW4 is always reguired and selects either the normally 
fully nested mode or the special fully nested mode. lCW4 
is sent to I/O address 02H with 10CSI -0. 

Bits 7-5 = 000: Unused but set to 0 
Bit 4 = 0: Normal fully nested mode 

= 1: Special fully nested mode 
Bit 3 = 1: Buffered mode 
Bit 2 = 1: Master Interrupt controller 
Bit 1 = 0: Normal end of interrupt (EO!) 
Bit 0 = 1: 8086 mode 

Initialization Command Word 5 (ICW5) 

lCW5 is sent only if specified in lCWI and individually 
selects edge or level triggering for each lR input. lCW5 is 
sent to I/O address 02H with 10CSI = O. Bit 7 is the speci­
fication bit for IR7, bit 6 for IR6, ... , and bit 0 for IRO. 
For edge triggering the specification bit is 0 and for level 
triggering the specification bit is 1. 

Initialization Command Word 6 (ICW6) 

ICW6 is sent if specified in ICWI and selects IR inputs as 
being either local of non-local. During an interrupt ac­
knowledge cycle, the URI output is driven to zero in re­
sponse to a local IR input (non-slave input or slave on 
local bus) or driven to 1 in response to a non-local IR 
input (slave on system bus). The URI outputs can be used 
in multimaster systems to control the 8289 Bus Arbiter's 
SYSB/RESW input. ICW6 is sent to I/O address 02H 
with 10CSI = O. Bit 7 is the specification bit for IR7, bit 6 
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for IR6, bit 5 for IR5, ... , and bit 0 for IRO. For 
non-local IR input, the specification bit is 0 and for a local 
IR input, the specification bit is 1. 

Operation Command Word 1 (OCW1) 

OCWI sets and clears the mask bits in the Interrupt Mask 
Register (IMR) and is sent to 1/0 address 02H with 
IOCSI = O. Bit 7 is the specification bit for IR7, bit 6 for 
IR6, bit 5 for IR5, ... , and bit 0 for IRO. To enable 
interrupts on an IR input, the specification bit is O. To 
mask or inhibit interrupts on an IR input, the specification 
bit 1. Masking an IR input does not affect the operation of 
the other IR inputs. 

Operation Command Word 2 (OCW2) 

OCW2 is used to send an end of interrupt (EO!) command 
to the PIC which resets an in-service bit in the In-service 
Register (ISR). OCW2 is sent to 110 address OH with 
IOCSI=O. 

Bits 7-5 =011: Specific end of interrupt 
Bits 4-3 = 00: Indicates OCW2 
Bits 2-1 = 000: End of Interrupt on IRO 

= 001: End of Interrupt on IRI 
= 010: End ofInterrupt on IR2 
= 011: End of Interrupt on IR3 
= 100: End of Interrupt on IR4 
= 101: End of Interrupt on IRS 
= 110: End ofInterrupt on IR6 
= 111: End of Interrupt on IR7 

Operation Command Word 3 (OCW3) 

OCW3 is used to read two ofthe PIC's internal registers: 
Interrupt Request Register (IRR) and In-service Register 
(ISR). IRR is an 8-bit register that indicates which IR in­
puts are waiting to be acknowledged. ISR is an 8-bit 
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Table 5-2 OSP Primitives 

Primitive Description Condition 
Codes 

ACCEPT$CONTROL Requests immediate access to data protected by a E$OK 
region. E$BUSY 

E$EXIST 
E$TYPE 

CREATE$JOB Creates a job containing a single task. E$OK 
E$EXIST 
E$LlMIT 
E$MEM 
E$PARAM 

CREATE$MAILBOX Creates a mailbox. E$OK 
E$LlMIT 
E$MEM 

CREATE$REGION Creates a region. E$OK 
E$LlMIT 
E$MEM 

CREATE$SEGMENT Creates a segment. E$OK 
E$LlMIT 
E$MEM 

CREATE$TASK Creates a task. E$OK 
E$LlMIT 
E$MEM 
E$PARAM 

DELETE$MAILBOX Deletes a mailbox. E$OK 
E$EXIST 
E$TYPE 

DELETE$REGION Deletes a region. E$OK 
E$CONTEXT 
E$EXIST 
E$TYPE 

DELETE$SEGMENT Deletes a segment. E$OK 
E$EXIST 
E$TYPE 

DELETE$TASK Deletes a task. E$OK 
E$CONTEXT 
E$EXIST 
E$TYPE 

DISABLE Disables an interrupt line. E$OK 
E$CONTEXT 
E$PARAM 

DISABLE$DELETION Makes an object immune to ordinary deletion. E$OK 
E$EXIST 
E$LIMIT 

ENABLE Enables an interrupt line. E$OK 
E$CONTEXT 
E$PARAM 

ENABLE$DELETION Enables the deletion of objects that have deletion E$OK 
disabled. E$CONTEXT 

E$EXIST 
ENTER$INTERRUPT Used by interrupt handlers to load a previously E$OK 

specified segment base address into the register. E$CONTEXT 
E$PARAM 
DS 
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Table 5-2 OSP Primitives (continued) 

Primitive Description 
Condition 

Codes 

EXIT$INTERRUPT Used by interrupt handlers when they don't invoke E$OK 
interrupt tasks. This primitive sends an E$CONTEXT 
end-of-interrupt signal to the hardware. E$PARAM 

GET$EXCEPTION$HANDLER Returns information about the calling task's E$OK 
exception handler. 

GET$LEVEL Returns the number of the highest priority interrupt E$OK 
line being serviced. 

GET$TASK$TOKENS Returns the token requested by the calling task. E$OK 
E$PARAM 

GET$TYPE Returns the encoded type of an object. E$OK 
E$EXIST 

RECEIVE$CONTROL Allows the calling task to gain access to data E$OK 
protected by a region. E$CONTEXT 

E$EXIST 
E$TYPE 

RECEIVE$MESSAGE Queues the calling task at a mailbox, where it can E$OK 
wait for an object token to be returned. E$EXIST 

E$TIME 
E$TYPE 

RESET$INTERRUPT Cancels the assignment of an interrupt handler to an E$OK 
interrupt line. E$CONTEXT 

E$PARAM 
RESUME$TASK Decreases by one the suspension depth of a task. E$OK 

E$CONTEXT 
E$EXIST 
E$STATE 
E$TYPE 

SEND$CONTROL Allows a task to surrender access to data protected E$OK 
by a region. E$CONTEXT 

SEND$MESSAGE Sends an object token to a mailbox. E$OK 
E$EXIST 
E$MEM 
E$TYPE 

SET$EXCEPTION$HANDLER Assigns an exception handler to the calling task. E$OK 
E$PARAM 

SET$INTERRUPT Assigns an interrupt handler to an interrupt line and, E$OK 
optionally, makes the calling task the interrupt task E$CONTEXT 
for the line. E$PARAM 

SET$OS$EXTENSION Either enters the address of an entry (or function) E$OK 
procedure in the Interrupt Vector Table or it deletes E$CONTEXT 
such an entry. E$PARAM 

SET$PRIORITY Change the priority of a task. E$OK 
E$CONTEXT 
E$EXIST 
E$LIMIT 
E$TYPE 

SIGNAL$EXCEPTION Invoked by extensions of the OS Processor to signal E$OK 
the occurrence of an exceptional condition. 
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Table 5·2 OSP Primitives (continued) 

Primitive Description 
Condition 

Codes 

SIGNAL$INTERRUPT Used by an interrupt handler to activate an interrupt E$OK 
task. E$CONTEXT 

E$INTERRUPT-
SATURATION 
E$INTERRUPT-
OVERFLOW 
E$LlMIT 
E$PARAM 

SLEEP Puts the calling task to sleep. E$OK 
E$PARAM 

SUSPEND$TASK Increases by one the suspension depth of a task. E$OK 
E$CONTEXT 
E$EXIST 
E$LlMIT 
E$TYPE 

WAIT$INTERRUPT Used by an interrupt task to signal its readiness to E$OK 
service an interrupt. E$CONTEXT 

E$PARAM 

register that indicates which IR inputs are being serviced. 
Upon receiving an EOI command, the specified bit in the 
ISR is rese~ .. OCW3 is sent to 1/0 address OH (with 
10CSI = 0) and during the subsequent read from 1/0 ad­
dress OH, the PIC sends the contents of the specified reg­
ister to the CPU. It is not necessary to send an OCW3 for 
each read register operation provided that the same regis­
ter is being read as the previous read register operation. 
The PIC remembers whether IRR or ISR was previously 
selected by OCW3. 

BitO = 0: Read Interrupt Request Register 
= 1: Read In-service Register. 

Reading the Interrupt Mask Register (IMR) 

The IMR is an 8-bit register that indicates which IR inputs 
are masked (interrupts are inhibited). IMR is read by 
reading from 1/0 address 02H with 10CSI = O. 

Bits 7-5 = xxx: Unused and may be any value 
Bits 4-3 = 01: Indicates OCW3 Differences between 80130 and 8259A 
Bits 2-1 = xx: Unused and may be any value 

The 80130 PIC does not provide: 

Table 5·3 Data Types 

Data Type Definition 

BYTE An unsigned, 8·bit, binary number. 
WORD An unsigned, two-byte, binary number. 
INTEGER A signed, two-byte, binary number that is stored in two's complement form. 
BASE A word whose value represents a 16-byte boundary which defines a 64K-byte segment. 
OFFSET A word whose value represents the distance from the base of a segment. 
TOKEN A word or selector whose value identifies an object. A token can be declared literally a 

WORD or SELECTOR depending upon your needs. 
POINTER Two words containing the base of a segment and an offset, in the reverse order. 
STRING A sequence of consecutive bytes. The first byte contains the number (not to exceed 12) 

of bytes that follow it in the string. 
SELECTOR A word that is useful when used as the base portion of a 32-bit address (in the form 

base: offset) whose offset is zero. 
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E$OK 

E$TIME 

E$MEM 

E$BUSY 

E$LlMIT 

E$CONTEXT 
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E$STATE 

E$NOT$CONFIGURED 

E$INTERRUPT$SATURATION 

E$INTERRUPT$OVERFLOW 

E$ZERO$DIVIDE 

E$OVERFLOW 

E$TYPE 

E$BOUNDS 

E$PARAM 

E$BAD$CALL 

E$ARRAY$BOUNDS = 8006H 

E$NDP$ERROR 
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Table 5-4 Mnemonic Codes for Exceptions 

Mnemonic Codes for Unavoidable Exceptions 

Exception Code Value - 0 
the operation was successful 

Exception Code Value - 1 
the specified time limit expired before completion of the operations was possible 

Exception Code Value - 2 
insufficient nucleus memory is available to satisfy the request 

Exception Code Value - 3 
specified region is currently busy 

Exception Code Value = 4 
attempted violation of a job, semaphore, or system limit 

Exception Code Value = 5 
the primitive was called in an illegal context (e.g., call to enable for an already enabled 
interrupt) 

Exception Code Value - 6 
a token argument does not currently refer to any object; note that the object could have 
been deleted at any time by its owner 

Exception Code Value = 7 
attempted illegal state transition by a task 

Exception Code Value - 8 
the primitive called is not configured in this system 

Exception Code Value - 9 
The interrupt task on the requested level has reached its user specified saturation point 
for interrupt service requests. No further interrupts will be allowed on the level until the 
interrupt task executes a WAIT$INTERRUPT. (This error is only returned, in line, to 
interrupt handlers.) 

Exception Code Value = 10 
The interrupt task on the requested level previously reached its saturation point and 
caused an E$INTERRUPT$SATURATION condition. It subsequently executed an 
ENABLE allowing further interrupts to come in and has received another SIG-
NAL$INTERRUPTcall, bringing it over its specified saturation point for interrupt service 
requests. (This error is only returned, in line, to interrupt handlers). 

Mnemonic Codes for Avoidable Exceptions 

Exception Code Value - 8000H 
divide by zero interrupt occurred 

Exception Code Val ue - 8001 H 
overflow interrupt occurred 

Exception Code Value = 8002H 
a token argument referred to an object tha was not of required type 

Exception Code Value = 8003H 
an offset argument is out of segment bounds 

Exception Code Value = 8004H 
a (non-token,non-offset) argument has an illegal value 

Exception Code Value = 8005H 
an entry code for which there is no corresponding primitive was passed 

Hardware or Language has detected an array overflow 

Exception Code Value = 8007H 
an 8087 (Numeric data Processor) error has been detected; (th" 8087 status information 
is contained in a parameter to the exception handler) 
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Figure 5-3 OSP Typical Configuration With An 8086 

• 8080 and 8085 mode of operation; 

• Slave mode of operation; 

• Automatic EOI; 

• Non-specific EOI; 

• Rotating or programmed priorities; 

• Polling; 

• Special mask mode. 

The 80130 PIC does provide: 

• Individual IR input selection of edge or level trigger­
ing; 

• Local or non-local identification for each IR input. 

PROGRAMMABLE TIMERS 

The 80130 contains three programmable timers, each 
with 16-bits of resolution. Each timer has a fixed mode of 
operation needed by the iRMX 86 nucleus. Timer 0 oper­
ates only in the 8284 compatible rate generator mode 
(mode 2). Timer 1 operates only in the 8254 compatible 
interrupt on terminal count mode (mode O). Timer 2 oper­
ates only in the 8254 compatible square wave generator 
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mode (mode3). Each timer is programmable by sending 
the appropriate control word followed by the least signifi­
cant byte of the count value and then the most significant 
byte. 

The 80130 timers are connected to the lower half of the 
data bus and are addressed at even addresses. The timers 
are read as two successive bytes, with the least significant 
byte always followed by the most significant byte. The 
most significant byte is always latched on a read operation 
and remains latched until operation is complete. The OSP 
uses configuration information to perform all necessary 
initialization of the timers. 

The Baud Rate generator is compatible with the 8254 Pro­
grammable Interval Timer in squarewave mode 3. Its out­
put, BAUD, is initially high and remains high until the 
count register is loaded with a count. The first falling 
edge of the clock after the count register is loaded causes 
the transfer of the internal counter to the count register. 
The output stays high for N/2 (or (N + 1}/2 if N is odd) 
counts and then goes low for N/2 (or (N -1)/2 if N is 
odd) counts. The output returns to the high state when the 
falling edge of the input clock is detected during the final 
count for the output in low state. At this time, the contents 
of the count register are transferred to the internal 
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Table 5-5 Baud Rate Counter Values (16X) 

8 Mhz 5Mhz 
Baud Rate 

Count Value Count Value 

300 1667 1042 
600 833 521 
1200 417 260 
2400 208 130 
4800 104 65 
9600 52 33 

counter. The whole process is then repeated. Baud rate 
count values for 5 and 8 Mhz input are shown in Table 
5-5. 

The baud rate generator's count register is at location 
OCH (12 decimal), relative to the beginning of the 
80130's I/O (designated asp in the following example). 
The timer control word is located at relative address, 
OEH (14 decimal). The I/O space chip select must be 
lower (laCS = 0) in order to access the OSU timers. Tim­
ers 0 and 1 are assigned exclusively to the iOSP processor 
and should not be programmed by any direct commands. 

Programming is performed automatically during the 
80130 Configuration Process. 

The baud rate generator can be programmed. The baud 
rate generator command byte is OB6H (read/write baud 
rate delay value). The following example sets the baud 
rate to 9600. Table 5-5 shows that a count value of 52 
corresponds to 9600 baud at 8 ·Mhz. asp represents the 
base address of the 80130 I/O space. 

MOV AL,OB6H 
OUT asp + 14,AL 
MOV AX, 52 
OUT asp + 12,AL 

XCHGAL,AH 

;Prepare to write delay to timer 3 
;control word 

; Least significant byte written 
first 

OUT asp + 12,AL ;Most significant byte written af­
ter. 

Initializing the Timers 

The 80130 timers are initialized by sending initialization 
words to the control word register at I/O address OEH 
with 10CS/ = O. Due to fixed operation of the counters, 
each counter has only one possible initialization word. 
This initialization word must be sent prior to sending the 
two bytes of the count value. The initialization words and 
the meaning of the encoding is as follows: 

Timer 
o 
1 

Initialization Word 
00 11 0 100B 
01110000B 
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2 
Bits 7-6 = 00: 

=01: 
= 10: 

Select timer 0 
Select timer 1 
Select timer 2 

10110110B 

Bits 5-4 = 11: Least significant byte first then most 
significant byte 

Bits 3-1 = 000: 
=010: 
=011: 

Bit 0= 0: 

Mode 0 (timer 1 only) 
Mode 2 (timer 0 only) 
Mode 3 (timer 2 only) 
Binary count mode. 

After each initialization word is sent, the 16-bit count 
value is sent to the appropriate timer port, least significant 
bit first and then most significant bit. The timer ports for 
timers 0, 1, and 2 are located at I/O addresses 08H, OAH, 
and OCH with IOCS/ = 0, respectively. 

Reading the Count Value 

The count value of each counter is read by sending a latch 
command to the control word register at I/O address OEH 
(with 10CS/ = 0) and then reading the count value bytes 
from the appropriate timer port, least significant byte first 
and then the most significant byte. The timer ports for 
timers 0, 1, and 2 are located at I/O addresses 08H, OAH, 
and OCH with 10CS/ =0, respectively. The latch com­
mand does not stop the timer counting but stores the cur­
rent count value to insure accurate reading of both bytes. 

Timer 
o 
1 
2 

Latch Command 
OOOOOOOOB 
01000000B 
10000000B 

Differences Between 80130 Timers and 
8253/8254 

The 80130 timers do not provide: 

• Programmable modes for each timer; 

• Gate inputs; 

• Programmable Read/Write modes; 

• BCD count mode; 

• Read-Back command (8254 only) 

The 80130 timers do provide: 

• 8 MHz operation; 

• TO output internally connected to T1 clock input. 

5.6 OSP MEMORY USAGE 

The following lists the amount of memory the asp re­
quires for object creation and memory borrowing. The 
asp obtains this memory from the calling task's job 
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memory pool when creating the specified object. The 
asp uses the following amounts of memory when it cre­
ates objects: 

Object Number or 16-Byte Paragraphs 
Required by the OSP 

job 3 + object directory 
+ 1 per entry in the object directory 

task 5 
+ 6 (if the task uses the 8087 NPX) 
+ stacksize/16 (if the asp allocates the 
stack) 

mailbox 2 
+ ((size of high-performance queue)/4)-1 

region 2 

segment 
+ segmentsize/16 

When a job borrows memory from its parent, the asp 
uses three 16-byte paragraphs in addition to the amount it 
uses for object creation. The asp obtains this memory 
from the parent job. 

The asp needs: 

760H bytes + (lOH * the number of Root abject Di­
rectory (Ra D) entries) 

for operating system free space. The asp uses different 
amounts of memory, depending upon whether you include 
parameter validation or not. 

• With parameter validation - 6.8k. 

• Without parameter vaildation - 5.5k. 

5.7 INTERRUPT CONTROLLER 

The 80130 Programmable Interrupt Controller, or PIC, is 
another integral unit of the 80130 component. The asp 
initializes the PIC according to user-supplied configura­
tion information. 

The PIC logic portion of the 80130 component provides 
eight input pins for eight separately-vectored priority in­
terrupts. However, one of these pins is reserved for the 
system timing function. Up to seven external 8259A slave 
interrupt controllers can be used to expand the total num­
ber of asp external interrupts to as many as 56. The de­
fault asp configuration expects INT2 to be connected to 
the SYSTICK output. 

The 80130 component provides two ways of sensing an 
active interrupt request: 

I) a level-sensitive input 
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2) an edge-sensitive input 

The asp initializes each interrupt pin to be either edge-or 
level-sensitive based on user-supplied configuration in­
formation. 

5.7.1 Level-Triggered Mode 

When an IR input pin (IRO through IR7) of the 80130 PIC 
is in the level-triggered mode, the 80130 PIC recognizes 
any active (high) level as an interrupt request. If the IR 
input remains active after the EXIT$INTERRUPT primi­
tive has been executed, another interrupt request is gener­
ated. This will be recognized only if the processor INT 
pin is enabled. Unless repetitious interrupt generation is 
desired, the IR input must be brought to an inactive state 
before the EXIT$INTERRUPT primitive has been exe­
cuted. However, it must not go· inactive so soon that it 
violates necessary timing requirements. The request on 
the IR input must remain until after the falling edge of the 
first INTA pulse. If the request on any IR input becomes 
inactive before the first INTA pulse, the 80130 PIC re­
sponds as if IR7 was active. If this is a possibility in the 
design, the IR7 default feature can be used as a safeguard. 
The IR7 routine is used as a "clean-up routine", which 
rechecks the status of the PIC or merely returns program 
execution to its pre-interrupt location. 

Depending upon the particular design and application, the 
level-triggered mode has the following advantages. 

1) It allows repetitious interrupt generation. This is 
useful in cases when service routine needs to be 
executed continually until the IR input goes inac­
tive. 

2) It allows a number of interrupting devices to use 
the same IR input pin. This cannot be done in the 
edge-triggered mode. Note that when multiple de­
vices use the same IR input pin, the actual request­
ing device has to be ascertained by the interrupt 
handler. 

5.7.2 Edge-Triggered Mode 

When an IR input pin (IRO through IR7) of the 80130 PIC 
is in the edge-triggered mode, it only recognizes 
interrupts that are generated by an inactive (low) to active 
(high) transition. The edge-triggered mode incorporates 
an edge-lockout method of operation. This means that, 
after acknowledgement of a request, the high level of the 
IR input will not generate further interrupts until another 
low-to-high transition occurs. Thus, after acknowledge­
ment, the request does not have to be removed quickly, as 
might be the case in the level-triggered mode. Before an­
other interrupt can be generated, the IR input must be 
returned to the inactive state. 
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The edge-triggered mode, the request on the IR input 
must remain active until after the falling edge of the first 
INTA pulse for that particular interrupt. Because of the 
way the edge-triggered mode functions, it is more con­
venient to use a positive level with a negative pulse to 
trigger the IR requests. With this type of input, the trail­
ing edge of the pulse causes the interrupt, the maintained 
positive level meets the necessary timing requirements 
(by remaining high until after the interrupt is acknowl­
edged.) Note that the IR7 default feature mentioned in the 
level-triggered mode section also works for the 
edge-triggered mode. 

Depending upon the particular design and application, the 
edge-triggered mode has the following advantages: 

1) Because of its edge-triggered operation, it is best 
used in those applications where repetitious inter­
rupt generation isn't desired. 

2) It is very useful in systems where the interrupt re­
quest is a pulse (which should be in the form of a 
negative pulse to the on-chip PIC). 

3) It simplifies your design considerations, because 
the duration of the interrupt request at a positive 
level is usually not a factor. 

5.7.3 Local Interrupt Requests 

In addition to standard PIC functions, the 80130 PIC unit 
provides an output signal (URI) for local bus interrupt 
requests. During an interrupt acknowledge cycle, this sig­
nal indicates whether the interrupt request is from a 
non-slave input or a slave on the local bus (URI = 0), or 
from a slave on the system bus (URI = 1). 

The OSP programs each IR input pin (IRO through IR7) to 
produce URI = 0 or URI = 1 according to user-supplied 
configuration information. This signal can be used in 
multimaster systems to control the 8289 Bus Arbiter's 
SYSB/RESB input and minimizes the number of system 
bus accesses. 

5.7.4 Interrupt Sequence 

The OSP interrupt sequence is as follows: 

1. One or more of the interrupts is set by a low-to-high 
transition on edge-sensitive IR inputs or by a high in­
put on level-sensitive IR inputs. 

2. The 80130 component evaluates these requests, and 
sends an INT to the CPU, if appropriate. 

3. The CPU acknowledges the INT by responding with 
an interrupt acknowledge cycle that is encoded in 
S2/-S0/. 

4. Upon receiving the first interrupt acknowledge from 
the CPU, the 80130 component sets the highest prior­
ity interrupt and resets the corresponding edge-detect 
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latch. The 80130 does not drive the addressldata bus 
during this bus cycle but does acknowledge the cycle 
by setting ACKI to 0 and URI to the level of the IR 
input being acknowledged. 

5. The CPU then initiates a second interrupt acknowl­
edge cycle. During n, the 80130 component either 
supplies the cascade address of the interrupting 
8259A slave on ADlO-AD8 or releases an 8-bit 
pointer onto the local bus to be read by the CPU. If the 
80130 does supply the pointer, the ACKI will be low 
for the cycle. This cycle also has the value URI for 
the IR input being acknowledged. 

6. The in-service register (ISR) bit in the on-chip PIC 
remains set until either the EXIT INTERRUPT or the 
SIGNAL INTERRUPT primitive is called by the IN­
terrupt Handler to complete interrupt processing. 

5.8 TIMING 

System timing analysis typically presents the most diffi­
cult part of digital hardware design, although timing for 
the 80130 is fairly simple. By design the 80130 is compat­
ible with the timing of the host processor. Since the 80130 
interfaces directly with the CPU pins, traditional setup, 
hold, and access times no longer matter. 

Two areas of concern must be taken into consideration 
when analyzing the timing for most OSP systems. Both of 
these areas relate to the user generated chip-select signals. 
Figure 5-4 illustrates the relevant timing signals of a 
standard 8086 four-state Read cycle (memory or I/O), 
along with the timing responses of the 80130. 110 Write 
cycle timing is the same. (Full timing diagrams may be 
found in the respective data sheets.) 

The first area of concern is that MEMCS* and IOCS* 
must be active early in a memory or I/O cycle if the 80130 
is to respond during T3 • In each case, the chip-select sig­
nals must be active T CSCL before the end of state T 2' As­
suming wait states are not desired, addresses generated by 
the CPU must propagate through the address latches and 
be decoded during T] or T 2' 

By convention, TCLAV is the delay from the start of of T] 
until address information is valid on the CPU pins; T1VOV 
is the propagation delay through an 8282 latch; and TCSCL 
is the 80130 chip-select logic propagation delay, after the 
latch outputs are stable. The sum of these four delays 
must be less than two system clock cycles, reduced by the 
clock transition time. 

TCLAV + T1VOV + Tovcs + TcsCL:5TcLcL + TCLCL 
Tovcs:5TcLcL + TCLCL -TCLAV-Tlvov-TcsCL 

:5125 + 125 -60-30-20 (nsec.) 
:5140 nsec. 
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Figure 5-4 80130 OSP Timing Diagram 

The propagation delay numbers used in the preceding 
equation are worst-case values from the appropriate data 
sheets. The CPU is an 8086-2 operating at 8 MHz. This 
means the address decode logic must produce stable CS 
outputs within 140 nanoseconds. Using standard, low 
power Schottky TTL, it will typically not take longer than 
140 nsec. to decode 6 program or 12 110 address bits. 
Even if these timing specifications are not met the 80130 
will work fine, although performance would be degraded 
some because wait states would be needed until the 
chip-select signal became active. 

The second point of concern relates to ready signal tim­
ing. The 80130's acknowledge output signal, ACK*, can 
be used to control the CPU's ready signal. For this case, 
the chip-select signal must be active early in a memory or 
I/O cycle to allow activation of ACK* early enough to 
prevent wait states. There are two schemes for implementc 

ing ready signals; "normally ready" and "normally not 
ready". (For more details, refer to AP-67, "8086 System 
Design.") Chip-select timing is more critical in some 
"normally not ready" systems. 

5-14 

In a "normally not ready" design, acknowledge signals 
are generated when each resource is accessed. The indi­
vidual acknowledgements are combined to form a 
system-wide ready signal which is synchronized by the 
8284A clock generator via the RDY and AEN inputs. The 
8284A can be strapped to accept asynchronous ready sig­
nals (asynchronous operation) or to accept synchronous 
ready signals (synchronous operation). Synchronous 
8284A operation provides more time for address latch 
propagation and chip-select decoding. In addition, invert­
ing ACK off chip produces an active-high ready signal 
compatible with the 8284A RDY inputs, which have 
shorter set-up requirements than AEN inputs. (Also, a 
NAND gate used like this can combine ACK with the 
active-low acknowledge signals from other parts of the 
system.) Based on these assumptions, the time available 
for address latch propagation and chip-select decoding at 
8 MHz is: 

TcLAv + Tovcs + TCSAK +RRIVCLo5TcLCL + T cLcL 
T ovcs o52 TCLCL -TcLAv-TcsAK-TRlvcL 

05250-60-110-35 
0545 nsec. 
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Figure 5·5 Hlgh·Speed Address Decoding Circuit 

A typical circuit (see Figure 5-5) which uses Schottky 
TTL components leaves approximately 15 nanoseconds to 
produce MEMCS* from the high order address bits, more 
than enough for the 74S 138 one-of-eight decoders. This 
type of circuit allows a minimum of time to fully decode 
the 110 bits. Also, a 12-input NAND gate on ADl5-AD4 
could be used. This introduces only a single propagation 
delay, but forces the 110 register to start at OFFFOH. In­
complete decoding is also allowable; it is safe to drive 
IOCS* with the (latched) AD15 signal directly, provided 
all other ports in the system are disabled when this bit is 
low. In this case, the effective address of the I/O block 
(which must be specified during the system configuration 
step) could be OOOOH, or any other multiple of 16 be­
tween OOOOH and 7FFOH. 
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The OSP will still operate even if the memory or 110 de­
coding is slow. The acknowledge signal returned to the 
host CPU would just be delayed accordingly, so unneces­
sary wait states would be inserted in the access cycle, but 
the 80130 would not malfunction. The OSP seldom ac­
cesses resources in its own I/O space. Even if slow decode 
logic were to insert several wait states into every I/O cy­
cle, the overall effect on system performance would be 
insignificant. 

The designer must exercise caution, though, if the 8284A 
is strapped for synchronous operation. In this case, exter­
nal circuits must guarantee that ready-input transitions do 
not violate the latch set-up requirements. Also, the 
chip-select signal must not remain low so long after the 
address changes that the 80130 could respond to a 
non-80130 access cycle. 
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Automatic Initialization, 2-36 
Automatic Rotation - Equal Priority, 1-139 
Auxilary Flag (AF), 1-6 
AX Register, 1-86 
B 
Bank Select Input BS, 2-49 
Bank Selection Decoding and Word Expansion, 2-49 
Base Address, Current Code Segment, 2-9 
Base Address and Base Word Count Registers, 1-146 
Base Point Register (BP), 1-9 
Base Register Sum, 1-18 
Base Register Content, 1-16 
Based Addressing, 1-18 
Based Index Addressing, 1-19, 1-20 
Based Variable Operations, 2-8 
Basic 8086/88 Bus Cycles, 1-80 
Basic 8086/88 Instruction Set, 2-5 
Baud Rate Counter Values (16X), 5-11 
Baud Rate Generators, 2-58, 5-11 
BHE*/S7 Line, 3-3 
Bi-directional Buffer, 2-30 
Binary Numbers 

Divide, 1-14,2-9 
Division, 1-13 
Multiplication, 1-13 
Multiply, 1-14, 2-9 
Signed, 1-13 
Unsigned, H3 

Bipolar PROM Decoder, 1-88 
Bit Manipulation Instructions, 1-14,2-9 

Logicals, 1-14 
Rotates, 1-14 
Shifts, 1-14 

Block Input/Output (INS/OUTS) Instructions, 2-5 
Block Transfer Mode, 1-144 
Block Transfer to 16-bit lIO Using, 1-92 
Block Transfer to 8-bit I/O Using, 1-92 
Boolean Operators 

"and", 1-14 
"inclusive Or", 1-14 
"not", 1-14 

Boundaries 

INDEX 

16-byte, 1-70 
Even Address, 1-70 
Odd Address, 1-70 

Bounds 
Lower, 2-6 
Upper, 2-6 

Buffered Data Bus, 1-93 
Buffered Devices, 2-30 
Buffered Mode, 1-142 
Buffering Devices with OE*/RD*, 1-97 
Buffering Devices Without OE*/RD* And, 1-97, 1-98 
Buffering the 8284 CLK Output, 1-129 
Bus Access Control, 1-64 
Bus Access Request, 2-1 
BUS ACTIVITY DURING a HARDWARE 

INTERRUPT, 1-124 
BUS ARBITRATION, 3-16, 4-37 
BUS ARBITRATION FOR lOP CONFIGURATIONS, 

4-39 
Bus Arbitration Requirements and Options, 4-39 
Bus Contention, 1-96, 2-26 
Bus Control and Command Outputs, 1-60 
BUS CONTROL SIGNALS, 2-25, 3-16 
Bus Cycle Decoding, 4-37 
Bus Cycle Definition, 1-65 
Bus Cycle, 2-36 

Asynchronous Event, 1-65 
Minimum, 1-65 

Bus Cycle T2, 2-23 
BUS DRIVE, 2-30 
BUS EXCHANGE MECHANISMS, 1-110,2-54,3-16, 

4-36 
BUS INTERFACE UNIT, 1-3, H08, 1-110,2-5 
Bus Interface Unit (BID), 2 -1, 4-2 
Bus Interface 

16-bit, 2-1, 2-5 
Bus Load Limit, 4-39 
Bus Lock, 4-39 
Bus Master Peripheral Devices, 2-25 
Bus Master Type Controllers, 1-60 
Bus Masters, 1-110 
Bus Mastership, 2-25 
BUS OPERATION, 1-64,2-24,3-15,4-34 
Bus Parity Detection Logic, 1-120 
Bus Request Line (BREQ*), 1-135 
Bus Time Percentage, 2-24 
Bus Transceiver Control, 1-95 
Bus Usage Amount, 2-24 
Bus 

Address, 1-65 
Command,I-65 
Data, 1-65 
Status, 1-65 
Time-multiplexed, 1-64 
Twenty-bit Time Multiplexed, 1-65 

Business Data Processing, 3-1 
BUSY Signal, 3-8 
Byte Data, 2-7 
Byte Units, 2-3 
C 
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Carry Flag (CF), 1-6, 1-14 
Cascade and Special Fully Nested Mode Interface, 2-69 
Cascade Input Mode, 2-69 
Cascade Mode, 1-141, 1-144 
Cascade-Buffered Mode Example, 1-143 
Cascaded 8237As, 1-145 
Cascaded 8259A's 22 Interrupt Levels, 1-141 
CE to WR* Setup and Hole, 1-94 
Channel Attention Decoding Circuit, 4-28 
Channel Command Word Encoding, 4-28 
Channel Commands, 4-27, 4-29 
Channel Transfer Delay Timing, 1-117 
Channel Register Set, 4-3 
Channel Register Summary, 4-2 
Channel State Save Area, 4-30 
CHANNELS, 4-3 
Chip Enable/select, 1-68 
Chip Enable/select Encoding, 1-68 
CHIP SELECT AND READY GENERATION UNIT, 

2-1 
Chip Select Decoding, 1-64 
Chip Select Generation For Devices Without Output, 

1-83 
Chip Select, 1-97 

Active, 1-64 
High Active, 1-64 
Low Active, 1-64 
Signals, 2-30, 2-31 

Chip Select/Ready Logic and Reset, 2-81 
Chip Select/Wait State Generation Unit, 2-74 
Chip Selection For Devices With Output Enables, 1-84 
Circuit Holding LOCK* Active Until, 2-33 
Circuit to Translate HOLD Into AEN Disable, 1-118 
Classes ofInterrupts, 1-120 
Clear First/Last Flip/Flop, 1-148 
CLOCK GENERATION, 1-125 
CLOCK GENERATOR, 2-3 
Clock Generator/Reset/Ready, 2-79 
Clock High Phase, 2-24 
Clock In/Clock Out Timing, 2-79 
Code For Block Transfers, 1-63 
Column Address Strobe (CAS*) Pair, 2-49 
Coming Out of Reset, 2-81 
Command Activation, 1-65 
Command Communication Blocks, 4-24 
Command Inputs, 1-64 
Command Lines 

1/0, 1-65 
Memory, 1-65 

Command Signals 
Ready, 2-31 
Write, 2-31 

Command Register, 1-146, 1-147 
Commands 

Interrupt Acknowledge, 1-65 
Read, 1-64, 1-65 
Write, 1-64, 1-65 

COMMON CONTROL UNIT (CCU), 4-1 
Common IAPX186 System Components, 2-4 
Common Word Address, 2-33 

INDEX 

Communication Chips, 1-2 
COMPATIBILITY WITH FRSTOR, 3-19 
COMPATIBILITY WITH FSAVE/FNSAVE, 3-19 
Compatible Peripherals For a 5 MHz 8086188, 1-90 
COMPONENT OVERVIEW, 1-1,2-1,3-3,4-1 
Concurrent Execution of Host and Coprocessor, 3-13 
Condition of 8086/88 Bus and Output Signal, 1-119 
Conditional Jumps SHORT, 2-10 
Conditional Transfers, 1-16, 2-10 
Constant Current Power Up Reset Circuit, 1-130 
CONTROL REGISTERS, 2-67, 2-68 
CONTROL SIGNALS, 2-29 

ALE*,2-32 
DEN, 2-33 
DT/R*,2-33 
LOCK*,2-33 
RD*, 2-29, 2-32 
TEST"', 2-33 
WR*, 2-29, 2-32 

CONTROL UNIT, 3-3 
Controlling System Transceivers with DEN and DT/R"', 

1-97 
Count Register (CX), 1-14 
COPROCESSOR CONTROL, 3-13 
COPROCESSOR INTERFACE TO MEMORY, 3-12 
Count Operand Value, 2-8 
CPU Bus Bandwidth, 1-106 
CPU Clock, 1-98,2-3 

50% Duty Cycle, 2-24 
Duty Cycle, 2-3 
Speed, 2-3 

CPU DUTY CYCLE AND CLOCK GENERATOR, 
2-24 

CPU ENHANCEMENTS, 2-4 
CPU Execution Speed, 2-4 
CPU Local Bus, 1-88, 1-131 
CPU Not Ready, 1-66 
CPU Processing Sections, 2-1 
CPU WAIT Instruction, 3-7 
CPU/lOP Communications, 4-22 
Crystal Choice Recomendations, 2-80 
CRYSTAL CLOCK REFERENCE, 1-126, 2-79 
Crystal Oscillator, 2-25 
CS Register, 1-123, 1-124 
CS*/Bus Driving Device Timing, 1-95 
CSYNC Setup and Hold to EPI, 1-116 
Current Address Register, 1-145 
Current Code Segment, 1-5 
Current Extra Segment, 1-5 
Current Word Register, 1-145 
Currently Addressable Segments, 1-8, 1-9 
CX Register, 2-10 
Cycle Dependent Write Parameters For RAM Memories, 

1-84 
D 
D-type Latches, 1-94 
D.C. Characteristics, 1-66,2-23 
Data Access Period, 2-39 
Data Acquistion, 3-2 
Data Buffers, 2-29 
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Data Bus Interface, 8-bit, 2-1, 2-4 
Data Bus Usage, 4-37 
Data Bus 

16-bit, 1-66, 1-67, 1-85, 1-86, 1-123,2-1,2-34 
8-bit, 2-1 
Arithmetic Logic Unit (ALU), 1-3,2-1 
DO-D7,2-34 
D8-DI6,2-34 
Lower 8 Bits, 2-34 
Lower Half, 1-86 
Lower Half (D7-0), 1-67 
Multiplexed Address/data, 2-34 
Upper 8 Bits, 2-34 
Upper Half, 1-86 
Upper Half (DI5-8), 1-67 

Data Byte, 1-13 
Data Element 

16-bit, 1-67 
Eight Bit, 1-67 

Data Hold Time, 1-106 
Data Operands, 1-76 
Data Path, 16-bit, 1-46 
Data Paths 

16-bit External, 1-65 
16-bit Internal, 1-65 

Data Propagation Direction, 2-29 
Data Registers 

16-bit, 1-4 
Lower Half, 1-4 
Two 8-bit, 1-4 
Upper (high) Half, 1-4 

Data Strobe, 1-66 
Data Throughput, 1-142 
Data Tranceivers, 1-117 
Data Transfer, 2-34 
Data Transfer Instructions, 1-13, 1-14,4-4 

Address Object, 1-13, 2-7 
Flag Transfer, 1-13, 2-7 
General Purpose, 1-13, 2-7 
Input/output, 1-13,2-7 

Data Transfers 
16-bit, 1-86 
8-bit, 1-86 

Data Transmit/Receive (DT/R*), 1-93 
Data Word, 1-12 
Data Types, 5-8 
Decimal Operands, 3-1 
Decoding Escape Instructions, 3-12 
Delay Effects of the 8087, 3-17 
Delay of Valid Address, 1-99 
De-multiplexing Address and Data From the Processor 

Bus, 1-96 
Demultiplexing the 80186 Address Bus, 2-44 
DEN*, 3-16 
Decoding Memory and I/O RD* and WR * Commands, 

1-79 
Definition of Register Codes, 1-147 
Demand Transfer Mode, 1-144 
Demultiplexed Address Bus, 1-96, 1-99 
Demultiplexed Buffered System Bus, 1-105 

INDEX 

Destination Index, 1-15 
Destination Synchronized DMA Transfers, 2-56 
Destination Synchronized Transfer Cycle, 4-32 
Device Architecture, 801861188, 2-1 
Device Assignment, 1-91 
Device Output Drivers, 1-92 
DEVICE PIN ASSIGNMENTS, 3-8, 4-20, 5-1 
DEVICE PIN DEFINITIONS, 1-42,2-12 
Device Pin Signal, 1-43,2-12 
Device Reliability, 1-43,2-12 
Device Specifications, 1-43,2-12 
Devices, 8MHz, 2-1 
Devices With Output Enable On the Multiplexed Bus, 

1-93 
Devices With Output Enable On the System Bus, 1-95 
Devices Without Output Enable On the Multiplexed B, 

1-94 
Differences Between 80130 and 8259A, 5-8 
Differences Between 80130 Timers and 8253/8254, 5-11 
Differences, 80186 and 80188, 2-1 
Direct Addressing, 1-18, 1-19 
Direct Input Mode, 2-68 
Direct Memory Access (DMA) Unit, 2-51 
Direct Memory Access Transfers, 4-30 
Direction Controls, 1-99 
Direction Flag (DF), 1-7, 1-15 
Discrete Data Buffer, 2-36 
Displacement Summing, 1-18 
Displacement Value Sum, 1-18 
Divide Error -Type 0, 1-121 
Divide Error Interrupt Service Routine, 1-121 
DMA ACKNOWLEDGE, 2-54 
DMA Acknowledge Synthesis, 2-55 
DMA Assembly Register Operation, 4-31 
DMA Channels and Reset, 2-82 
DMA Control Register, 2-51 
DMA Cycle, 2-3, 2-4 
DMA Latency Time, 2-24 
DMA OPERATION, 1-142 
DMA REGISTERS, 1-145 
DMA Request Inactive Timing, 2-57 
DMA Request Logic, 2-55 
DMA Request Timing, 2-55 
DMA REQUEST TIMING AND LATENCY, 2-54 
DMA Requests, 2-4, 2-53 
DMA Termination, 4-32 
DMA Transfer, 2-24 
DMA TRANSFERS, 2-52 
DMA Transfer Cycles, 4-32 
DMA Unit, 2-24 
DMA Using the 8237-2, 1-114 
DRAM Controller 

8203,2-31 
8207,2-31 

DS Register, 1-18 
DT/R*, 3-16 
Dynamic Code Relocation, 1-11 
Dynamic RAM, 1-81 
Dynamic RAM Controllers 

8202, 1-81 

Index-5 210912-001 



INDEX 

8203, 1-81 
8207, 1-81 
8208, 1-81 

Dynamic Reconfiguration, 1-142 
DYNAMICALLY RELOCATABLE CODE, 1-10 
Dynamically Relocatable Program, 1-10 
E 
Edge Sensitive Input, 1-140 
Edge Triggered Mode, 1-140,5-12 
Effective Address Calculation Time, 1-24 
EFI From 8284A Oscillator, 1-129 
Eight Bit Data Element, 1-67 
Eight Levels of Interrupts, 1-134 
Eight-Bit I/O, 1-86 
Electrical Description of Pins, 1-43,2-12 
Element 

Byte, 2-9 
Word,2-9 

Elementary Maximum Mode System, 1-76 
End of HOLD Timing, 2-48 
End of HOLD Timing Diagram, 2-49 
End ofInterrupt (EOI), 1-139 
End-OF-Interrupt Formats, 1-139 
EOI Formats, 1-139 
ENTER and LEAVE Instructions, 2-6 
ENTER Instruction Algorithm, 2-6 
ENTER Instruction Stack Frame, 2-7 
EPROM/ROM Bus Interface, 1-83 
EPROM/ROM Parameters, 1-82 
ES Register, 1-18 
ESCAPE Instruction, 3-7, 3-8 
ESCAPE INSTRUCTION FORMAT, 3-7 
ESCAPE Instructions Not Used By the 8087 NPX, 3-8 
Escape Opcode, 2-6 
EU,2-1 
EU Bus Request, 1-4 
Even Word Boundaries, 1-109 
Event Counter, 2-59 
Example 2186/80186 Interface, 2-37 
Example 2764/80186 Interface, 2-35 
Example 80186 Buffered/Unbuffered Data Bus, 2-30 
Example 80186 Bus Cycle, 2-43 
Example 8203/DRAM/80186 Interface, 2-38 
Example DMA Transfer Cycle, 2-53 
Example Interrupt Controller Interface Code, 2-71 
Example Timer Interface Code (Sheet 1 of 4), 2-60 
Execution Speed Improvements, 2-4 
EXECUTION UNIT, 1-3,2-23 
EXECUTION UNIT AND BUS INTERFACE UNIT, 2-1 
External Bus 

16-bit 80186, 2-1 
8-bit 80188, 2-1 
External Clock Generator, 2-24 
External DMA Controller, 2-35 
EXTERNAL FREQUENCY CLOCK 

REFERENCE, 1-126,2-80 
External Frequency For Multiple 8284's, 1-128 
External Frequency Source, 1-125 
EXTERNAL INTERFACE, 2-68 
External Interrupt Controller, 2-19 

F 

External Interrupt Sources, 2-66 
External Oscillator, 2-3 
External Ready Signals, 2-3 
External Refresh Requests After RESET, 2-41 
External Synchronization Instructions, 2-11 
External Vectoring, 2-74 
EXTERNALLY SYNCHRONIZED DMA 

TRANSFERS, 2-54 
Extra Segment, 1-8 

F/C* Strapping Option, 1-128 
Faster Effective Address Calculation, 2-4 
FDIV, 3-14 
Field 

D, 1-41 
Immediate, 1-41 
MOD (mode), 1-41 
Optional, 1-41 
R/M (register/memory), 1-41 
REG, 1-41 
REG (register), 1-41 
S, 1-41 
Single-bit, 1-41 
V, 1-41 
W,1-41 
Z, 1-41 

Financial Calculations, 3-1 
Flag Operations, 2-11 
Flag Store Formats, 2-8 
Flag Storage Formats, 1-13 
FLAGS, 1-5 
Flags Register, 1-123, 1-124 
Flags 

Control, 1-3 
Status, 1-3 
Updates, 1-17 

FMUL,3-14 
FSQRT,3-14 
Full Machine Cycle Execution, 1-144 
Fully Buffered System, 1-96 
Fully Nested Mode, 1-136 
Functional Description of All Signals, 1-43,2-12 
FWAIT,3-14 
G 
General Design Considerations, 1-64 
GENERAL INFORMATION, 5-1 
GENERAL REGISTERS, 1-7 
Generating I/O and Memory Read Signals, 2-30 
Generating Queue Status Information, 2-28 
Graphics Terminals, 3-2 
H 
HALT,2-24 
HALT Bus Cycle, 2-23 
Hardware Chip Select Signals, 2-34 
Hardware-initiated Interrupts, 2-11 
HARDWARE LOCK, 1-52 
Hardware-initiated Interrupts, 1-17 
Hardware Trigonometric Support, 3-2 
High-Level Instructions, 2-11 
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High-level Languages, 2-11 
High-Speed Address Decoding Circuit, 5-15 
High Address, 1-7 
Higher Priority Arbiter Obtaining the Bus, 1-135 
HOLD Response, 2-47 
HOLD/HLDA, 3-11 
HOLD/HLDA INTERFACE TO MAXIMUM MODE 

SYSTEMS, 1-115 
HOLD/HLDA Sequence Timing Diagram, 1-112 
HOLD/HLDA Timing, 1-98,2-48 
HOLD/HLDA Timing and Bus Latency, 2-47 
HOLD/HLDA-to/from-RQ*/GT* Conversion Circuit, 

1-116 
HOLD/HLDA-to/from-RQ*/GT* Conversion Timing, 

1-116 
HOLD/HLDA VERSUS RQ*/GT*, 2-26 
HOST ESCAPE INSTRUCTION PROCESSING, 3-12 
Host TEST Pin, 3-8 
Hosts Interrupt Vector Table, 3-2 
I 
110 Address Space, 1-64 
110 BUS MODE, 1-133 
110 Control, 4-3 
110 Device Chip Select Techniques, 1-88 
110 DEVICE COMPATIBILITY, 1-88 
110 Devices 

16-bit, 1-88 
8-bit, 1-86 

110 Input Request Code Example, 1-92 
110 Interfacing, 1-69 
I/O Modules, 1-64 
110 Peripheral Address, 1-64 
110 PERIPHERAL INTERFACE, 1-85 
I/O Port Addressing, 1-20, 1-21 
I/O Port 

Access, 1-21 
Memory Mapped, 1-20 

110 Read, 1-4 
110 Space, 2-3, 2-4 

64K-byte, 1-46 
I/O Write, 1-4 
1I0-intensive Data Processing Systems, 1-1 
I/O-to-memory DMA Transfers, 1-143 
IAPX 186/10 Microprocessors, 3-1 
IAPX 188/10 Microprocessors, 3-1 
IAPX186 Integrated Devices, 3-1 
IAPX 86,88, 186, 188 Base, 3-1 
IAPX 86/10 Microprocessors, 3-1 
IAPX 86/11, 88/11 Configuration with 8089 In Local, 

4-25 
IAPX 86/20,88/20 SYSTEM CONFIGURATION, 3-17 
IAPX 86121,88121 SYSTEM CONFIGURATION, 3-17 
IAPX 86/22 System, 3-20 
IAPX 86/22,88/22 SYSTEM CONFIGURATION, 3-17 
IAPX 88/10 Microprocessors, 3-1 
IAPX 88/21 System Configuration, 3-18 
IAPX186/20 Bus Operation, 3-15 
IAPX186/20 System, 3-11 
IAPX86/20 Bus Operation, 3-15 
Idle Cycle, 1-142 

Idle Cycles (Tl), 1-66 
Idle Status, 1-115 
Idle T States (Ti), 2-19 
IF Flag, 1-122 
Immediate Operand, 8-bit Port Number, 1-21 
Immediate Operands, Limitations, 1-18 
Implicit Use of General Registers, 1-7 
IMUL,2-5 
In-Service Register (ISR), 1-137 
Index Register, Content, 1-18 
Inertial Guidance Systems, 3-2 
Indexed Addressing, 1-19, 1-20 
Inhibit/Enable 8087 Interrupts, 3-23 
Initialization Command Word 1 (ICW1), 5-2 
Initialization Command Word 2 (lCW2), 5-3 
Initialization Command Word 3 (ICW3, 5-3 
Initialization Command Word 4 (ICW4), 5-5 
Initialization Command Word 5 (ICW5), 5-5 
Initialization Command Word 6 (ICW6), 5-5 
Initial Program Loading Routine, 1-76 
Initializing the Timers, 5-11 
Initialization and Processor Reset, 2-81 
Input/output Memory Devices, 2-1 
INPUT/OUTPUT PERIPHERAL CHIP SELECTS, 2-78 
Input/output Peripheral Devices, 2-1 
Input Request, 1-92 
Instruction Execution, 2-23 

Immediate-to-memory, 1-21 
Register-to-register, 1-21 

Instruction Execution Times, 2-4 
Instruction Fetch Bus Cycle, 1-2,2-3 
Instruction Fetch Overlap, 1-2 
Instruction Fetch Timings (Clock Periods), 4-15 
INSTRUCTION FETCH UNIT, 4-2 
Instruction Loop Sequence, 1-111 
Instruction Object Code Byte, 2-1 
INSTRUCTION POINTER, 1-5,2-1,2-9 
Instruction Queue 

4-byte, 1-2 
6-byte, 1-2 

Instruction Set Extension, 1-98 
Instruction Set Reference Data, 1-21, 1-24, 4-6 
Instruction Set Summary, 1-13, 1-21,2-12,2-13,4-3 
Instruction Set 

80186/88,2-1 
Assembly Level, 1-13 
Machine Level, 1-13 
Two Levels, 1-13,2-7 

Instruction Synchronization, 3-13 
Instruction/function Format, 1-1 
Instructions 

80186,2-23 
Actual Execution Time, 1-23 
ADD Immediate, 1-109 
ADD Memory Indirect to AX, 1-109 
Address Object, 2-7 
Arithmetic, 2-7, 2-8 
ASM-86, 1-42 
Assembly-level, 2-7 
Auto-decrement, 1-7 
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Bit Manipulation, 2-7, 2-8 
BOUND, 2-6 
CALL, 1-18 
Clock Cycles, 2-12 
CLI, 1-122 
Conditional, 1-16 
Conditional Repeat, 1-41 
Conditional Transfer, 1-16,2-10 
Control Transfer, 1-23,2-7 
Data, 1-64 
Data Move, 2-23 
Data Transfer, 2-7 
Displacement, 1-18 
Divide, 2-4 
ENTER, 2-6 
ENTER, 2-6 
ESCAPE, 1-52 
Fetch, 1-65 
FWAIT,2-33 
HALT, 1-64, 1-107 
High Level, 2-7 
HLT,2-23 
Immediate-to-memory, 1-41 
IMUL,2-5 
INC, 1-13 
INS, 2-5 
INT Nn, 1-122 
Interrupt, 1-17, 2-11 
Interrupt On Overflow, 1-6 
Interrupt-related, 1-16 
INTO, 1-121 
IRET, 1-122 
Iteration Control, 1-17,2-10 
JC, 1-15,2-9 
JMP, 1-18 
JMP, 1-109, 1-118 
JNC, 1-15,2-9 
LAHF,2-7 
LDS,I-15 
LEA, 1-15 
LEAVE, 2-6 
LES,I-15 
LOCK* Prefix, 1-52 
LOCKED, 2-33 
Locked, 1-64 
Locked Exchange, 1-64 
Logical, 1-14,2-8 
Long, 2-23 
Machine Level, 1-13,2-7 
Master Clear, 1-146 
MOV, 1-13, 1-41, 1-109, 1-122 
MOV Immediate, 1-109,2-9 
MOVS,I-122 
Multibyte, 1-41 
Multiple-bit Shift, 2-4 
Multiply, 2-4 
Non-immediate 16-bit Read/write, 2-1 
OUTS, 2-5 
POP, 1-122 
POPA,2-5 

INDEX 

Prefetched, 1-3, 1-23,2-1,2-23 
Process Control, 1-17 
Processor Control, 2-7, 2-11 
Program Transfer, 2-9 
PUSH AX, 1-109 
PUSHA,2-7 
PUSHI,2-7 
Queue, 1-24 
Reset, 1-146 
RET, 2-6 
Rotate, 1-14,2-4,2-9 
Shift, 2-9 
Shift/rotate, 2-5 
Short, 2-23 
String, 1-15,2-9 
String Manipulation, 2-7 
String Move, 2-4, 2-5 
Target, 1-23 
TEST, 1-14,2-8 
Timing Cycles, 1-12,2-12 
Unconditional, 1-16 
Unconditional Transfer, 1-16,2-10 
WAIT, 1-64, 1-105, 1-122,2-33 

INTO/INTI Control Register Formats, 2-66 
INT2/INT3 Control Register Format, 2-67 
Integer Immediate Multiply (IMUL), 2-5 
Integrated Circuits, 80186/188,2-3 
Integrated DMA Unit, 2-3, 2-26 
Integrated Wait State Generator, 2-4 
Intel Hardware Products, 1-11 
Intel Software Products, 1-11 
Intellec Microcomputer Development System, 1-2 
Interfacing the 8089 to the 8086 and 80186, 4-24 
INTERFACING WITH THE 8086/88,5-1 
Internal 256-byte Control Block, 2-4 
Internal Architecture, 16-bit, 2-1, 2-4 
Internal CPU Registers, 1-118 
Internal Data Path, 1-65 
Internal Interrupt Sources, 2-65 
INTERNAL PERIPHERAL INTERFACE, 2-4 
Internal Pre-fetch Queue, 2-12 
Internal Source Priority Level, 2-65 
Internal Vectoring 

IRMX 86 Mode, 2-73 
Master Mode, 2-73 

Interpolation, 3-2 
Interpretation of Conditional Transfers, 1-17, 2-11 
Interpreting the 80186/80188 Bus Timing Diagrams, 

2-41 
Interpreting the 8086/8088 Bus Timing Diagrams, 1-98 
Interrupt Acknowledge, 1-104, 1-123 

Bus Cycle, 1-17,2-11 
Cycle, 1-118 
Sequence, 1-112, 1-122, 1-123 
Timing, 1-123 
Timing Cycles, 1-104 

INTERRUPT CASCADING, 1-140 
Interrupt Classes, 1-120 
Interrupt Controller, 2-59, 5-10 
Interrupt Controller and Reset, 2-82 
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Interrupt Controller Block Diagram, 2-65 
Interrupt Controller Control Register, 2-68 
Interrupt Controller Operating Modes, 2-19 
Interrupt Controller Pins, 2-19 
Interrupt Controller Registers, 2-3 
Interrupt Enable Flip-flop, 2-26 
Interrupt Instructions, 1-17, 2-11, 3-2 
Interrupt Latency, 2-70 
Interrupt On Overflow -Type 4, 1-121 
INTERRUPT PRECEDENCE, 1-124 
INTERRUPT PRIORITIES, 1-136 
Interrupt Processing, 1-11, 1-76 
Interrupt Processing Timing, 1-121 
Interrupt Request Register (lRR), 1-137 
Interrupt Requests 

External (maskable), 1-7 
External Sources, 2-3 
Internal Sources, 2-3 

INTERRUPT RESPONSE TIMING, 2-73 
Interrupt Service Routine, 1-120, 1-124 
Interrupt Sequence, 5-13 
INTERRUPT SOURCES, 2-65 
Interrupt-related Transfers, 2-9 
INTERRUPT TRIGGERING, 1-140 
INTERRUPT TYPE PROCESSING, 1-124 
Interrupt Types, 1-120 

256 Possible, 1-76 
Interrupt Vector Byte, 1-139 
Interrupt Vector Table, 1-120 
INTERRUPT VECTORING, 1-135 
Interrupt Vectors, 1-64, 3-2 
Interrupt-enable Flag (IF), 1-7 
Interrupt-related Instructions, 1-16 
INTERRUPTS, 1-120, 3-22, 4-40 

CPU, 1-120 
Escape Opcode, 2-6 
Hardware, 1-120 
Hardware-initiated, 1-17, 2-11 
Internal, 1-7 
Internally Generated, 1-7 
Maskable, 1-120 
Non-maskable External, 1-7 
Nonmaskable, 1-120 
Response, 1-11 
Single-step, 1-120 
Software, 1-17, 1-120,2-11 
Software-initiated, 1-120 
Unused Opcode, 2-6 

Intersegment Transfer 
FAR, 1-16 

Intrasegment Transfer 
NEAR, 1-16 
SHORT, 1-16,2-5 

lOP Initialization, 4-26 
IR Level, 1-139 
IR Triggering Timing Requirements, 1-141 
IRMX 86 Interrupt Controller Interconnection, 2-66 
IRMX 86 Mode, 2-19 
IRMX 86 MODE OPERATION, 2-64 
IRMX Mode, 2-70 

INDEX 

IRMX Mode Sources, 2-68 
ISBC 337 MULTIMODULE, 3-3 
ISBC 337 MULTIMODULE Mounting Scheme, 3-3 
ISBC 86/30 Board, 1-24 
ISBC 88/25 Board, 1-24 
Iteration Control, 1-17, 2-10 
J 
JMP Instruction, 1-109 
K 
Key to Flag Effects, 1-23 
Key to Instruction Coding Formats, 1-22 
Key to Machine Instruction Encoding, 1-45 
Key to Operand Types, 1-23 
L 
Language Translators, 1-42 
Late Write Signal, 2-27 
LATENCY OF HLDA TO HOLD, 1-112 
Level Triggered Mode, 1-91, 1-140,5-12 
Linear Select For 110, 1-79 
LINK86 Program, 3-2 
LMCS Programming Values, 2-77 
LMCS Register, 2-77 
Local Bus, 8086, 1-52 
LOCAL BUS CONTROLLER AND CONTROL 

SIGNALS, 2-25 
Local Bus Controller and Reset, 2-81 
Local Bus Controller Outputs, 2-12 
Local Interrupt Requests, 5-13 
LOCAL Mode, 3-11, 4-25 
LOCK*,1-98 
Locked Data Transfer, 2-33 
Locked Exchange Instruction, 1-64 
Logical, 1-14, 2-8 
Lower 8 Data Bits, 2-4 
Logical Addresses, 1-8 
Logical Addresses Sources, 1-10 
Logical and Bit Manipulation Instructions, 4-4 
Logical and Physical Addresses, 1-9 
Lower Bank Write Strobe, 1-81 
Lower Bounds, 2-6 
Lower Memory CS*, 2-76 
Lower Memory For Interrupt Vectors, 2-3 
Lower Memory Starting Location, 2-3 
Lowest-addressed Byte, 1-8 
M 
Machine Instruction Decoding Guide, 1-52 
MACHINE INSTRUCTION ENCODING AND 

DECODING, 1-24,4-6 
Machine Instruction Encoding Matrix, 1-44 
Machine Instruction Formats, 1-24 

8086, 1-41 
8086/8088, 1-42 
8088, 1-41 
Decode, 1-12 
Encode, 1-12 
Length, 1-41 
MOV,2-7 

Machine Language 
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Major Cycle Timing Waveforms, 2-12, 2-27 
M~or Modes of Operation, 2-19 
Mask Bits, 1-148 
Mask Register, 1-147, 1-148 
Master Clear, 1-148 
Master System Interrupt Controller, 2-19 

External, 2-3 
Max Mode 8086 with Master 8259A 1-107, 1-138 
Maximum and Minimum Mode Command Timing, 

1-132 
Maximum CPU Bus Bandwidth, 1-107 
Maximum Mode (RQ*/GT*), 1-113 
Maximum Mode Address and ALE Timing, 1-105 
MAXIMUM MODE BUS TIMING, 1-105 
Maximum Mode Interrupt Acknowledge Timing, 1-106 
Maximum Mode Operation Waveforms, 1-43 
Maximum Mode Read Cycle Timing, 1-105 
Maximum Mode Ready Timing, 1-106 
MAXIMUM MODE SYSTEM INTERRUPT, 1-124 
Maximum Mode System Overview/Description, 1-52 
Maximum Mode System Bus, 2-12 
Maximum Mode Values, 1-105 
Maximum Mode Waveforms, 1-74 
Maximum Mode Write Cycle Timing, 1-106 
Maximum Parameter Values, 1-98 
Maximum Write Data Delay, 1-99 
MCE Timing to Gate 8259A CAS Address, 1-138 
Memory -I/O Block Transfers Example, 1-91 
Memory Address Computation, 1-19 
Memory Address Space, 1-64 
Memory Address, Odd, 1-23 
Memory Addressing Modes, 1-18 
Memory and 110 Peripherals Interface, 1-71, 2-34 
Memory Chip Select Lines, 2-3 
MEMORY CHIP SELECTS, 2-75 
Memory Components, 1-8 
Memory Device, 1-42,2-3 
Memory Even and Odd Data Byte Transfers, 1-81 
Memory Even and Odd Data Word Transfers, 1-82 
MEMORY INTERFACE, 1-78,2-34 
Memory Interfacing, 1-71 
Memory Mapped, 1-64,2-3 
Memory Mapped 8-bit I/O, 1-87 
Memory Mode, Effective Address Calculation, 1-41 
Memory Modules, 1-64 
Memory Operands, 1-17, 2-7 

Displacement Value, 1-41 
Read, 1-18 
Register Indirect Addressing, 1-21 
Write, 1-18 

Memory Organization, 2-4 
Memory Read, 1-4 
Memory Read Signals, 1-105 
Memory Reference Escape Instruction Form, 3-8 
Memory Reference Opcodes, 3-7 
Memory Space, 2-3 

8086, 1-5 
8086/8088, 1-8 
8088, 1-5 

INDEX 

Memory Writes, 1-11,2-31 
Memory 

High, 1-11 
Low, 1-11 

Memory-based Semaphore Variables, 2-33 
Memory-To-Memory Transfer Timing, 1-145 
Memory-to-Memory Transfers, 1-142, 1-145, 1-148 
Microprocessor Control Pins, 1-1 
Microprocessors 

80186,2-1 
80188,2-1 
8080/8085, 1-12 

Mid-Range CS*, 2-76 
Min Mode 8086 with Master 8259A, 1-137 
Minimum Execution Time, 2-12 
Minimum Mode, 1-1 
Minimum Mode (HOLD/HLDA), 1-110 
Minimum Mode 8086 Systems, 1-134 
MINIMUM MODE BUS TIMING, 1-99 
MINIMUM MODE DMA CONFIGURATION, 1-112 
Minimum Mode Interrupt Acknowledge Timing, 1-104 
Minimum Mode Operation Waveforms, 1-43 
Minimum Mode Read Cycle Timing, 1-99 
Minimum Mode Ready Timing, 1-104 
MINIMUM MODE SYSTEM INTERRUPT, 1-124 
Minimum Mode System Overview/Description, 1-44 
Minimum Mode TEST* Timing, 1-105 
Minimum Mode Waveforms, 1-72 
Minimum Mode Write Cycle Timing, 1-104 
Minimum Parameter Values, 1-98 
Minimum/Maximum Mode Pin Assignments, 1-71 
MM Field Encoding, 4-22 
MMCS Register, 2-78 
MN/MX* Input Pin, 1-43 
MN/MX* Pin, 1-7 
Mnemonic Codes For Exceptions, 5-9 
MOD Field, 3-7 
Mode (MOD) Field Encoding, 1-42 
Mode Register, 1-146, 1-147 
MODE SELECTION, 1-7 
Mode 

Addressing, 1-20 
Single-step, 1-7 

Modes of Operation 
IRMX 86, 2-19 
Non-iRMX 86, 2-19 

Modes 
Late Cycle, 2-36 
Pulse, 2-36 

Most-significant Byte, 1-41 
Move Word Immediate to Register, 2-7 
MOVS Instruction, 1-122 
MPCS Programming Values, 2-77 
MPCS Register, 2-77 
Multi-CPU System Performance, 1-131 
Multi-master Bus Arbitration, 1-119 
Multi-master Bus System, 1-134, 2-34 
MULTIBUS APPLICATIONS, 2-33 
MULTIBUS Protocol, 1-98 
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MULTIBUS System Bus, 1-97, 1-107 
MULTIBUS Systems, 1-131 
Multibyte Numbers 

Add, 1-6 
Subtract, 1-6 

Multiple Bit Rotates, 2-5 
Multiple Bit Shifts, 2-5 
Multiple Communications Lines Example, 1-91 
Multiple Processor Considerations, 1-119 
Multiple-processor Designs, 1-1 
Multiplexed Address and Data Bus, 1-64, 1-96, 1-104 
Multiplexed AddresslData Bus, 2-34, 2-36 
Multiplexed AddresslData Bus (186/188), 2-29 
Multiplexed Address/Status Lines, 1-104 
Multiplexed Bus, 1-79, 1-92 
Multiplexed Bus With Local Address Demultiplexing, 

1-96 
Multiplexed Data Bus, 1-93 
Multiprocessing Functions, 1-44 
Multiprocessor Environments, 1-131 
Multiprocessor/Coprocessor Applications, 1-97 
N 
Navigation, 3-2 
NEW 80186/80188 INSTRUCTIONS, 2-4 
New Instructions, 2-1 
NMI ACKNOWLEDGE, 1-124 
NMI During Single Stepping and Normal, 1-125 
NMI, INTR, Single Step and Divide Error, 1-125 
Non-existant Banks, 2-39 
Non-immediate Data Read/write Instruction, 2-4 
Non-integral Values, 3-1 
NON-iRMX 80 MODE, 2-64 
Non-iRMX 86 Mode, 2-19 
Non-Maskable Interrupt -Type 2, 1-121 
Non-memory Reference, 3-7 
Non-Memory Reference Escape Instruction Form, 3-7 
Non-Specific EO! Command, 1-139 
NOP Instruction, 3-3 
Normal Bus Cycle, 2-23 
Normally Not Ready System Avoiding a Wait State, 

1-108 
Normally Ready System Inserting a Wait State, 1-108 
NPX, 3-lNPX Coprocessor Application, 3-1 
NP~CLEAN Code Example, 3-22 
Numeric Control, 3-2 
NUMERIC EXECUTION UNIT, 3-7 
Numeric Instruction Emulation, 3-2 
Numeric Instruction Opcodes, 3-2 
NUMERIC PROCESSOR EXTENSION 

APPLICATIONS, 3-1 
Numerically Based Applications, 3-1 
o 
Odd Address Boundary, 1-117 
Odd Memory Address, 1-23 
Offset, Memory Variable, 1-9 
One Byte Interrupt - Type 3, 1-121 
Opcode Fetch, 1-109 
Opcode Extension 
OPERAND ADDRESSING MODES, 1-18 
Operand Addressing 

INDEX 

Immediate Mode, 1-18 
Register Mode, 1-18 

Operand Identifiers Definitions, 4-5 
Operand Names, 1-14 
Operand Type Definitions, 4-14 
Operands 

16-bit Memory, 1-23 
Additional, 1-23 
Address, 1-71 
Data, 1-71 
Destination, 1-15 
Extension, 2-9 
110 Port, 1-17 
Immediate, 1-21 
Memory. 1-13, 1-18 
Register, 1-13 
Source, 1-15 
Word, 1-21, 1-71 

OPERATING MODES, 1-43,2-12,3-8,4-20 
Maximum, 1-1 
Minimum, 1-1 

OPERATING SYSTEM PRIMITIVES SUMMARY, 5-1 
Operation Command Word 1 (OCWl), 5-5 
Operation Command Word 2 (OCW2), 5-5 
Operation Command Word 3 (OCW3), 5-5 
Operations 

Arithmetic, 1-4, 1-5 
Block Input, 2-5 
Block Output, 2-5 
Byte, 1-41,2-5 
Compare, 1-12 
Logic, 1-4, 1-5 
Move, 1-12 
Scan, 1-12 
Stack, 1-5 
Word, 1-24,2-5 

Oscillator 
Crystal, 2-24 
External, 2-24 

Oscillator to CLK and CLK to PCLK Timing, 1-128 
Oscillators Feedback Circuit, 1-126 
OSP Primitives, 5-1 
OSP MEMORY USAGE, 5-11 
OSP Primitives, 5-6 
OSP Typical Configuration With An 8086, 5-10 
Other Maximum Mode Considerations, 1-107 
Output Request, 1-91 
Outputs 

Local Bus Controller, 2-25 
Queue Status, 2-26 
Status, 2-26 

Overflow Error Service Routine, 1-121 
Overflow Flag (OF), 1-6 
Overlapped Instruction Fetch and Execution, 1-6 
p 
Parallel Priority Resolving Technique, 1-135 
Parity Flag (PF), 1-6 
Parity, Even, 1-6 
Partitioning Memory By Segment, 1-65 
PCLK Output, 2-24 
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Performance Penalty, I-II 
Peripheral Compatibility Parameters, 1-89 
Peripheral Control Block Relocation Register, 2-19 
Peripheral Devices, 2-3 

8086 Family, 1-81 
Peripheral Interfacing, 4-33 
Peripheral Requirements For Full Speed, 1-91 
Peripherals Cycle Dependent Parameter Requirements, 

1-89 
Physical Address, 1-8 
PHYSICAL ADDRESS GENERATION, 1-8, 1-10 
Physical Address, 20-bit, 1-18 
Physical/Logical Bus Combinations, 4-2 
Physical Memory Byte/Word Addressing, 2-35 
PIC Commands, 5-2 
Pin Assignments 

Maximum Mode, 1-43 
Minimum Mode, 1-43 

Pipelined Architecture, 1-1 
Pointer, 2-8, 32-bit, 1-122 
POWER UP RESET, 1-130 
Prefetch Queue 

4-byte, 2-1 
6-byte, 2-1 

Prefetched Instructions, 1-1, 1-2,2-1 
Preventing Erroneous Write Operations, 1-65 
Priority Resolution, 1-65 
Priority Structure Variations -Fully Nested Mode, 1-139 
Process Control, 3-2 
Processor Control Instructions, 1-17, 1-18, 2-11, 4-6 
Processor Extension, 2-19 
Processor Preemption 

(RQ*/GT*), 1-64 
Two Prioritized Levels, 1-52 

Processor Ready Synchronization, 2-3 
Processor 

80186,2-1 
80188, 2-1 

Program Condition, 1-148 
Program Counter (PC), 1-5 
Program Execution Errors, 2-6 
Program Status Word, 4-40 
Program Transfer Instructions, 1-16,2-9,2-10,4-4 

Conditional Transfer, 1-16 
Interrupt-related, 1-16 
Iteration Control, 1-17 
Unconditional Transf, 1-16 

Program Transfers, Four Groups, 1-16 
Programs 

8086,1-7 
8088, 1-7 
Disk-resident, 1-10 
Dynamically Relocatable, 1-10 
Inactive, 1-10 
Position-independent, 1-10 

Programmable 16-bit Timer/counters, 2-3 
PROGRAMMABLE DIRECT MEMORY ACCESS 

UNIT,2-3 
Two Channel, 2-1 

Programmable Interrupt Controller, 2-1, 2-3 
PROGRAMMABLE INTERRUPT CONTROLLER 

(PIC),5-2 
Programmable Ready Bits, 2-3 
PROGRAMMABLE TIMERS, 2-3, 5-8 

16-bit, 2-1 
Programming the 80130 OSP's Onchip Peripherals, 5-1 
PROGRAMMING THE DMA UNIT, 2-51 
Propagation Delay, 1-118 
Protocol 

HOLD/HLDA,2-26 
RQ*/GT*, 2-26 

Push All/Pop All (PUSHA, POPA) Instructions, 2-5 
Push Immediate (PUSH!) Instruction, 2-5 
Q 
QSO, QSI, 1-98 
QUEUE STATUS, 1-52 
Queue Status (QSO, QSl), I-52 
Queue Status Bit Decoding, 1-99 
Queue Status Lines, 2-19 
Queue Status Mode, 2-12 
Queue Status Mode of Operation, 2-12 
Queue Status Outputs, 2-26 
Queue 

R 

4-byte Instruction, 2-3 
6-byte Instruction, 2-1 
8086, 1-3 
8088 Instruction, 1-3 
CPU Instruction, 1-16,2-9 
Depth, 1-52 
Instruction, 1-23,2-1,2-23 
Instruction Object Code, 1-3,2-1 
Instruction Stream, 1-3 
Internal, 1-52,2-23 
Internal Instruction, 1-66, 1-98 
Internal Pre-fetch, 2-12 
Pre-fetch, 2-23 
Prefetch, 2-1 
Sizes, 1-3 
Status, 1-52 

R/B/P Field Encoding, 4-21 
RIM Field Bits, 3-7 
RAM Bank, 2-40 
RAM Interface, 2-36 
RAM Wakeup Cycles, 2-40 
RAS* Drivers, 2-40 
RAS* Strobes, 2-40 
RD*, 3-11, 3-16 
RD* Active to Output Device Valid TRLDV, 1-89 
RD* AND WR*, 2-29 
RD* Status, 2-4 
Read Bus Cycle (8-bit Bus), 4-35 
Read Command, 1-99 
Read Control Signal, 1-64 
Read Cycles, 1-82, 1-99 
Read Cycle Times, 2-37 
Read Cycle Timing, 2-29 
Read Pulse Width TRLRH, 1-89 
READ/WRITE SIGNALS, 2-27 
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Read-from Memory, 1-143 
Reading the Count Value, 5-11 
Reading the Interrupt Mask Register (IMR), 5-8 
Ready Bits, 2-3 
Ready Input 

Asynchronous, 2-24 
Synchronous, 2-24 

OREADY CIRCUIT, 3-16 
Ready Inputs to the 8284 and Output, 1-108 
READY SYNCHRONIZATION, 2-80 
Ready Timing, 1-98 
READY/WAIT STATE GENERATION, 2-78 
Real Time Clock, 2-58 
Recommended Crystal Clock Configuration, 1-127 
Recommended IAPX 186 Crystal Configuration, 2-80 
Recommended Interrupt Configurations, 3-22 
Reducing 8087 Delay Effects, 3-19 
Refresh, 2-40 
Refresh and Control Circuits, 2-37 
Refresh Period Programming Option, 2-40 
REG (Register) Field Encoding, 1-42 
Register Address Coding, 1-147 
Register and Immediate Operands, 1-18 
Register Indirect Addressing, 1-18, 1-19 
Register Operands, 2-7 
Register Operands In Arithmetic Instructions, 4-5 
Register Operands In Logical Instructions, 4-6 
Register Operands In MOV Instructions, 4-5 
Register/Memory Field Encoding, 1-43 
Registers, 4-3 

16-bit, 2-4, 2-7 
16-bit Address, 1-144 
16-bit Base Address, 1-145 
16-bit Base Word Count, 1-145 
16-bit Current Address, 1-145 
16-bit Current Word, 1-145 
16-bit General, 1-4 
4-bit Mask, 1-147 
4-bit Request, 1-147 
6-bit Mode, 1-146 
8-bit Command, 1-146 
8237A Current Address, 1-144 
8237A Current Word Count, 1-144 
8237A Internal Memory, 1-145 
AL, 1-13, 1-67, 1-85,2-7 
AX, 1-13, 1-85,2-5,2-7 
Base, 1-18 
BP, 1-18, 1-20,2-6 
BX, 1-18, 1-91,2-5 
CL, 1-14, 1-15,2-5,2-9 
Clear Mask, 1-148 
Code Segment, 1-118 
Command, 1-148 
Communications, 1-3,2-1 
Count (CX), 1-16 
CS, 1-5, 1-120, 1-123, 1-124,2-9 
Current Address, 1-45 
Current Code Segment, 1-124 
CX, 1-17, 1-68,2-5,2-9 
Data, 1-7 

INDEX 

01, 1-15, 2-5 
DS,I-5 
DX, 1-21, 1-85, 1-91,2-5,2-6 
Eight General, 1-5 
ES, 1-5 
Flag, 1-3, 1-121, 1-122, 1-123, 1-124, 1-125,2-1, 

2-5, 2-6 
General, 1-4, 1-5,2-1 
General Purpose, 2-5, 2-6 
Index, 1-5, 1-18 
Integrated Peripheral, 2-5 
Internal, 2-4, 2-5 
Internal First/Last Flip-Flop, 1-148 
Internal CPU, 1-116 
Interrupt Controller, 2-19 
IP, 1-120, 1-123, 1-124 
Mask, 1-148 
P&I,I-4 
Pointer, 1-4 
Request, 1-148 
Segment, 1-4, 1-5, 1-8, 1-122, 1-124,2-1,2-5,2-26, 

2-33 
SI, 1-15, 1-91,2-5,2-6 
Single, 1-41 
Sp, 1-122,2-5,2-9 
SS, 1-4, 1-122 
Status, 1-148 
Temporary, 1-145, 1-148 
Word Count, 1-144 

Relationship of ALE to READ, 1-94 
REMOTE MODE, 4-25 
Repeat (REP) Prefix, 1-122 
Repeated String Operation, 1-122 
Representative Instruction Execution Sequence, 1-111 
Request Register, 1-147 
REQUEST/GRANT LINE, 3-11, 4-38 
Request/Grant Sequence Timing, 1-117 
Requests 

HOLD, 1-64 
RQ*/GT*, 1-64 

RESERVED MEMORY, 1-11 
Reserved Memory and 110 Locations, 1-12 
Reserved Memory Locations, 1-82 
RESET, 1-118,2-41,2-80 
Reset Bus Conditioning, 1-118 
RESET-CA Initialization Timing, 4-27 
Reset Disable For Max Mode 8086/8088 Bus, 1-119 
Reset Disable For Max Mode 8086/88 Bus, 1-120 
Reset Startup, 1-65 
Resident Bus, 1-134 
Resident Bus (RESB) Mode, 1-134 
Resident Bus Arbitration Logic, 1-64 
Robotics, 3-2 
ROM and EPROM, 1-82 
ROM and EPROM Interface, 2-35 
Rotate In Automatic EOI Mode, 1-139 
Rotate On Automatic EOI Mode, 1-140 
Rotate On Non-Specific EOI Command, 1-139 
Rotate On Specific EOI Command, 1-140 
Rotates, 1-14,2-9 
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Rotation, 3-2 
RQ/GTO, 1,3-11 
RQ/GTI Pins, 3-3 
RQ*/GT* LATENCY, 1-115 
RQ*/GT* OPERATION, 1-114 
RQ*/GT* Timing, 1-98 
RQ*/GT* TO HOLD/HLDA CONVERSION, 1-113 
RQ*/GT* USAGE, 1-113 
S 
S Field, 1-41 
Sample Compatibility Analysis Configuration, 1-84 
Scaling, 3-2 
Schottky TTL Flip-flops, 2-26 
Segment Base Value, 1-8 
Segment Base Values, 1-8 
Segment Locations In Physical Memory, 1-8 
Segment Offset Values, 1-8 
Segment Override Prefix, 1-9, 1-20 
Segment Register Loading Instructions, 1-10 
SEGMENT REGISTERS, 1-5, 1-71,2-1 

CS,2-5 
DS, 2-5, 2-6 
ES, 2-5, 2-6 
SS,2-5 

Segment Values, 2-1 
SEGMENTATION,I-7 
Segments Adjacent, 1-8 

Currently Addressable, 1-8 
CS, 1-5 
Current Code, 1-5 
Current Data, 1-5, 1-15 
Current Extra, 1-5, 1-15 
Current Stack, 1-5 
Disjoint, 1-8 
Fully Overlapped, 1-8 
Locations, 1-8 
Logical, 1-8 
Overlapping, 1-65 
Partially Overlapped, 1-8 

Serial Priority Resolving., 1-136 
Set Priority Command, 1-139 
Seven Contiguous 128 Byte Blocks, 2-3 
Shared Bus Architecture, 1-1 
Shared System Priority, 1-64 
Shifts and Rotates 

Single-bit, 1-41 
Variable-bit, 1-41 
Shifts, 1-14,2-5 
Arithmetic, 1-14 
Logical,I-14 

Shifts/Rotates By An Immediate Value, 2-5 
Sign Flag (SF), 1-6 
Signal Float/HLDA Timing, 2-47 
Signed Binary Numbers (integers), 1-14,2-8 
Single Step -Type 1,1-121 
Single T-State, 2-42 
Single Transfer Mode, 1-144 
Single-Bit Field Encoding, 1-42 

INDEX 

Single-processor Systems, 1-1 
Single-step Flags, 1-124 
Single-step Mode, 1-7 
Sixteen-Bit I/O, 1-88 
Small8088-Based System, 1-2 
SMALL~LOCK-NP~ESTORE, 3-21 
SMALL~LOCK-NPX-SAVE, 3-21 
software Based 8087 Emulator, 3-1 
Software Command Codes, 1~147 
Software Commands, 1-148 
Software Emulator, 3-1 
Software Emulator (E8087), 3-2 
Software Overview, 1-12,2-4,3-7,4-3 
Software Single Stepping, 1-121 
Source & Destination Synchronized DMA, 2-56 
Source Pointers, 2-4 
Source String, 1-15 
Source Synchronized DMA Transfers, 2-54 
Source Synchronized Transfer Cycle, 4-31 
Spare Bus Cycles, 1-1 
Specially Fully Nested Mode, 1-142,2-69 
Special One-byte Prefix, 2-9 
Specific EO! Command, 1-139 
Specific Rotation -Specific Priority, 1-140 
Specified Cycle Termination, 1-64 
SRDY, 3-11, 3-16 
Stack Frames 

Build,2-6 
Tear Down, 2-6 

STACK IMPLEMENTATION, 1-10 
Stack Layout, 2-6 
Stack Operation, 1-12 
Stack Pointer Register (SP), 1-10 
Stack Pointer Registers, 1-122 
Stack Reference Point Offset, 1-20 
Stack Segment's Base Address, 1-10 
Stack 

Current, 1-10 
Directly Addressable, 1-10 

Starting Locations, 1-5 
Standard 5 MHz 8086, 2-1 
Static RAM, 1-79 
Status Bit Decoding, 1-71 
Status Bit Output 

SO*, 1-130 
SI*, 1-130 
S2*, 1-130 

Status Bits, S3-S5, 2-26 
Status Bus, 1-65 
Status Flags, 1-5 
Status Information, 1-72,2-26 
Status Line Activation and Termination, 1-132 
Status Line Decode Chart, 1-131 
Status Line Decoders, 1-52 
Status Line Encodings Interpretations, 2-31 
STATUS LINES, 2-31, 4-34 
Status Read, 1-148 
Status Register, 1-148 
Status Signals 

SO*-S2*, 2-29, 3-3 
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SO-S2,4-34 
S3-S6,4-34 
S3,2-33 
S4,2-33 
S5,2-33 
S6, 2-29, 2-32, 3-3 
S7,2-32 

String Addressing, 1-20 
String Instruction Register and Flag Use, 1-15 
String Instructions, 1-15,2-10 

Compare, 1-15 
Destination Operand, 1-9 
Move, 1-15 
Scan, 1-15 

String Operand Addressing, 1-21 
String Operation 

Interrupted, 1-64 
Repeated, 1-64 

String 
Destination, 1-15 
Source, 1-15 

Strings of Bytes, 2-9 
Strings of Words, 2-9 
Submit File Example, 3-2 
SUPPORT COMPONENTS, 1-125,2-51 
Switch, $modI86, 2-5 
Synchronization, 1-85, 3-13 
SYNCHRONIZER REQUIREMENTS, 2-46 
Synchronizing CSYNC With EPI, 1-128 
Synchronizing Execution With WAIT, 3-15 
Synchronizing Multiple 8284As, 1-129 
Synchronizing the 8086 Or 8088, 1-17 
Synchronous Interface, 2-41 
Synthesizing Delayed Write From the 80186, 2-32 
System Architecture, Minimum Mode, 1-44, 1-46 
System Bus Arbitration, 1-113 
System Bus Control Signals, 2-12 
System Bus Interface, 1-52 
SYSTEM BUS MODE, 1-133 
System Bus Resources, 2-34 
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