A AR

. S005201039A
United States Patent ps (111 Patent Number; 5,201,039
Sakamura 457 Date of Patent: Apr. 6, 1993
[54] MULTIPLE ADDRESS-SPACE DATA 4,574,349 3/1986 Rechtschaffen ... 364/200

PROCESSOR WITH ADDRESSABLE
REGISTER AND CONTEXT SWITCHING

[75] Inventor: Ken Sakamura, Tokyo, Japan
[73] Assignee: Mitsubishi Denki Kabushiki Kaisha,

Tokyo, Japan
[21] Appl. No.: 569,758
[22]) Filed: Aug. 20, 1990

Related U.S. Application Data
(63] Continuation of Ser. No. 173,501, Mar. 24, 1988, aban-

doned.

[30] Foreign Application Priority Data
Sep. 30, 1987 [JP] JAPAN ..oooovovcermsimnrresneee 62247418
[51] Imt. CL3 oo ceresienecns GOGF 9/34
{52 US.CL ccorriiriennnena, 395/375; 395/425;
395/650; 364/247; 364/DIG. 1; 364/933
[58] Field of Search 395/425, 400, 375, 650

[56] References Cited

U.S. PATENT DOCUMENTS
3,614,742 10/1971 Watson et al. ...oeevveenncnens 364/200
4,093,986 671978 Bodnerooiiiiriinnnneens 364/200
4,484,274 11/1984 Berenbanm et al. 364/200
4,500,962 2/1985 Lemaire etal.ccovnreennee 364/200

4,608,632 B8/1986 Kummercoimiennnnnns 364/200
4,654,819 3/1987 Stiffler et al. ..
4,731,736 3/1988 Mothersole et al.
4,761,733 8/1988 McCrocklin et al. 364/200

FOREIGN PATENT DOCUMENTS
62-189537 8/1987 Japan .

OTHER PUBLICATIONS

Caspers et al. “Cache-Resident Processor Registers”,
IBM TDB, vol. 22, No. 6, Nov. 1979, pp. 2317-2318.
VAX Architecture Handbook, Digital Equipment
Corp., 1981, Chap. 8, pp. 125-129, Chap. 10, p. 163.

Primary Examiner—Thomas C. Lee
Assistant Examiner—Paul Harrity
Atrtorney, Agent, or Firm—Townsend and Townsend

(57] ABSTRACT

Two or more address spaces are provided in a data
processor. One of the address spaces comprises control
registers so that the control registers can be accessed
using instructions having an address in the second ad-
dress space. High-speed context switching can be ac-
complished by allotting the context-saving area to the
second address space. The context can be saved in vari-
ous formats specified by a context format register.

16 Claims, 213 Drawing Sheets

SECOND SPACE FIRST SPACE
TS~ PROCESSOR -
\\\~~ “”t
[ADDRESS REGISTER]|
-------- a \| MEMORY
CONTROL A CONTROL \ SPACE
REGISTERS /7 REGISTERS N\
_____ */ . \\
F 4 \
/ \
4 \
7
/
——tl)
GENERAL / GENERAL
PURPOSE / PURPOSE
REGISTERS Vi REGISTERS
II T
4
/
/
7
/
/

5,201,039

Sheet 1 of 213

Apr. 6, 1993

U.S. Patent

vivda

WVd20dd

Jovds Sss3yaav

A S d

d3L5 1938 ss3dqav

d0SS300dd

S¥3LSI93d
asodind
TVIANID

Sd3aLsSI193y
TOALNOD

1y ;o_hm
| *6 1

q

5,201,039

Sheet 2 of 213

Apr. 6, 1993

U.S. Patent

$S3003d LX3IN
JH1l ¥yod vIAV
ONIAVS LX3IINOD

aHl d0d V3N
ONIAVS LX3ILNO

$5$300dd thzxaw

‘!\\I)(.L
AJONIN

__

L

[—— - |
' ! . I
! M I
| e |
@ [;==
!
! I d .m]]
.-_ 1
P
(i as L
- | |
\ .n ,mm lr.
® | | T
L 45 i,
\ L4
=~ 40SS3004d 1X31N0D

SYILS 193y
3sodind
TVY3ANID

SYILS193d
TOYLNOD

14y Joldyg

(v)e°bld

5,201,039

Sheet 3 of 213

Apr. 6, 1993

U.S. Patent

I0VdS AYOWIN)
a33ds HOIH

VIAV ONIAVS
LX3ILNOD

Jovds
AdOWIRN TTVIWAON

d3LS123d4 SS3daay

3dvds ss3ddaav

14y Jo01tldd
(d)¢ *b!d

5,201,039

Sheet 4 of 213

Apr. 6, 1993

U.S. Patent

Jovds
AYON3N

30VdS l1lS¥ld

S33LS 193
350d¥Nd
AL ELEDR

SYILS1D3Y
T0dLNOD

L l"ll-ll

S43LS193y
3sodiand
TYYINID

/
B ey E—
/

/
/
/
/

e gl o = ——— ———— -

d31S 193y Ss3yaav

40SS3004d

Sd3ILSI1O3Y
TOYLNOD

30vVdS QaNO0J3S

5,201,039

Sheet 5 of 213

Apr. 6, 1993

U.S. Patent

vylva

V3Y¥YVY INIAYVS
LX3LNOD

WYdd0dd

30vVdSs LSdld

43ls 193y
350d3Nd IV¥INID
' :
]
K
N3INL3Y ! N3NLI A
1 d _
l/ = : _ \\\I
T e i
/ . L m . l\
JAVS AS d T 3avs
|~)
Il\ ‘
/ 9 d
431S193Y - |
T04LNOD w -
4
LX3LNOD w
405$300¥d

V33V INIAVS
LX3ILNOD

JovVdS QY¥IHL

2N

d

5,201,039

Sheet 6 of 213

Apr. 6, 1993

U.S. Patent

LVWIdO0d LX3LNOD DNIAJIDVdS 404 d3LSI193¥

Z %
440 4 No 7] No
~
. 330 1 [LX3INOD ¥0S53003¥d
s
LX3LNOD LX3LNOD SHILSI19RY
S¥3LS 1934 Awnnnnnnuu 350ddNnd VA ANID ST
350daNnd NO
P ENED)
LX3LNOD
suaLsiogy | {——h LX3LNOD
T03LNOD NO S¥ILS 1934 T0ALNOD
J
405530044
A0VdS ONIAVS
LX3LNOD T

5,201,039

Sheet 7 of 213

Apr. 6, 1993

U.S. Patent

W

Lig 1L23rdo

AVEEV
11d 123r€o MSd
\
wolINga1 T
7, 7
AVIEV ¥3ls1o3y
Auwmmmw““w 11d 1odreo Amwwmmmw“ww ASVHI
AOW NOILON¥LSNI Mw
xuwwmwmmmm \\\ \“ X x X \“m XSVKI
andld atsl
aarLoaddant] ASVA! m>_eommumz& ASVHI
NSVNI ASd

g°614

U.S. Patent Apr. 6, 1993 Sheet 8 of 213 5,201,039

Fig. 7:
? “““““““ S 63 Allocation of 64-
Bit
In the case of Data case
of Data Processor64
of the present
invention <<LX>>
?p 16 43% Allocation of 32-
Bit Data Word (W)
0 15 .
p———— Allocation of 16-
Bit Data Half
Word (H)
l———l Allocation of 8-
Bit Data Byte (B)
CooIIIIir 0
b= - R1
- ———— R2
b — - R3
Fooooo -oos RS 2
R
FoIooiiiis e 2
f‘ _________ R7
e m e — - R8
- m—————— RY
bemmm - - : R10
f. _________ R11
o= - R12
F--------- R13
bmmmmm—— - - FP (R14)
e o e e e e - - SP (R15)
C o _____ I 1T Jre

L T [psB | psw

— PSH —i

U.S. Patent Apr. 6, 1993 Sheet 9 of 213 5,201,039

Fig. 8:
base_a?dress base_addfess+offset/8
v v 49
[MSB 1 oo]fj - -
1< offset >
Related bit
Fig. 9:
base_a?dress base_addrefs+offset/8
....... Y eoz== . S
T wsB T -1 18l | I
'< offset >|(width ——-)'
Related bit field
16
Fig. 10:
base-a?dress base_addre?s+offset/8
.......) S czzzz==dzzc=c==
[WsB [. T Twss 1 -
l(-———-—— offset >|< width —>|

Related bit field
I8

U.S. Patent

Fig.

Apr. 6, 1993 Sheet 10 of 213

Signed 8-bit integer

S: Signed bit

bit0 bit?

tsl 7

Unsigned 8-bit integer 20
bitd bit7 /

L J

Signed 16-bit integer
S: Signed bit

bit0 bit15
(sl |
Unsigned 16-bit integer

bit0 » bit15
L]

Singed 32-bit integer
S: Signed bit

bit0 bit3l
{si |
Unsigned 32-bit integer
bit0 bit3l
L]

Signed 64-bit integer <<LX>>
S: Signed bit

bit0d bit63

sl]

Unsigned 64-bit integer <<LX>»

bit0 bit63

L | il

5,201,039

U.S. Patent Apr. 6, 1993 Sheet 11 of 213 5,201,039

Fig. 12:
- 1-byte (2-digit) unsigned BCD /22
The digit 0 becomes the most significant digit.
bit0 bit?7
[_digit0 | digitl |
- 2-byte {(4-digit) unsigned BCD
The digit O becomes the most significant digit.
bit0 bitlh

[Caigito 1~~~ - T digit3]

- 4-byte (B-digit) unsigned BCD
The digit 0 becomes the most significant digit.
bit0 bit31

[Cdigito | digitt | _ _ _ ~ T digit7]

- 8-byte (16-digit) unsigned BCD <<LX>>
The digit 0 becomes the most significant digit.
bit0 bit63

[digito T digit1 | digitz | _ _ _ _ digitlh
4 g gite , . _ .

- 1-byte (2-digit) signed BCD <<L2>>
bit0 bit?
[_digit0 lsign-digit]

- 2-byte (4-digit) signed BCD <<L2>»

bit0 bit15
{ digit0 | digitl | digit2 ;sign-digit]

- 4-byte (B-digit) signed BCD <<L2>>
bito bit31

[Cdigito_| digitl | _ T T digité_|sign-digit]

- 8-byte (16-digit) signed BCD <<LX>>
bito bit63
[digito_| digitl | digitz | _ _ _ _ | digitld sign-digit]

Multiple length BCD <<Co-processor>

U.S. Patent Apr. 6, 1993 Sheet 12 of 213 5,201,039

Fig. 13:
- 8-bit data string
bit0 bit? /24
L B
L |
L]
- 16~bit data string
bit0 bitlb
|]
[]
L]
- 32-bit data string
bit0 bit3dl
|]
L)
L }
- 64-bit data string <<LX>>
bito0 bit63
L il
L]

r —

U.S. Patent Apr. 6, 1993 Sheet 13 of 213 5,201,039

Fig. 14:

Qgeue header
. <

. (— <—l

§ e

> > ! > . 1 I
] 1] [} L 1]]
Fig. 15:
28
<Serial Bit Nuamber> ’(
0 78 15 16 23 24 31

<Bit Number in Each Byte>

] 70 . 70 70 7
La-z-2- , MM | , bbbbbbbb, | -c-s-c , [RR | , sagagaga, , |
N N+l N+2 N+3
<Address>
<- Low-order address High-order address ~->
<~ MSB side LSB side ->

-~> Direction where the instruction is fetched -->

U.S. Patent

Apr. 6, 1993

Sheet 14 of 213 5,201,039

olooloww lllshw.l 'l'..lﬁwl'l."‘/zg

00000000 00010010

42 +3

S-format
L-format / 30

Extension Portion of Sh '
d A4 A dd i dd i aardraald

Specify the operand size of Sh. The size of

another operand located in the register, is fixed

Specify the source {(destination) operand.

Specify the destination (source) register.

/3I

Fig. 16:
MOV:1
01001000 11110000
<Address> + 0 +1
Fig. 17:
Example: MOV:S Rn,Sh
MOV:L Sh,Rn
byte: 0 1
- Rn RR |-- Sh
RR
to 32 bits.
Sh
Rn
Fig. 18:
Example: AND:R Rm,Rn
byte: 0 1
== | BRn == |-- {-- Ra
Rn Specify the destination register.
Ras

Specify the source register.

The size of the operand is fixed to 32 bits.

U.S. Patent Apr. 6, 1993 Sheet 15 of 213 5,201,039

Fig. 19:
/32
Exapple: ADD:Q #,Sh (#: 3 bits)
byte: 0 1 - 2 c:_-_ _ -Ntz:l- -
=== | #4% |MM |-- sh Extension Portion of Sh K
- el d - ¥ N WS S -t d A d it L dd it st s odrdrodarald
MM Specify the size of the destination operand. (In
the case of BTST:Q, BSET:Q, BCLR:Q and BSETI:Q, it
is an operation code.)
¥ Specify the sowrce operand by a literal.
Sh Specify the destination operand.
Fig. 20:
/33
Example: ADD:1 #,Sh
byte: 0 1 g X _N:2:1- .
------ MM |-- Sh Extension Portion of Sh T
SR U U 2 TS T S T " 4 4 A oddd it diddddiaadda

Immediate Value
-I.—_-l_.l._.‘L_LJ.J..L.L.LJ.

P W NI NS W
byte: N+2 e N+24M-1

MM Specify the size of the operand (common with the
source and destination).

SH Specify the destination operand.

U.S. Patent Apr. 6, 1993 Sheet 16 of 213 5,201,039

Fig. 21:
’(354
Example: NEG Ea
byte: 0 1 . g e §+g-l L.
------ MM Ea Extension Portion of Ea }
S T NS U | A A3 & 4 4 3 4 [T N S T U U RO R W YRR SR WO WY S G |
MM Specify the size of the operand.
(There are instructions which have an extra extension
portion and which do not use MM.)
Fig. 22:
/35
Example: ADD:G EaR,EaM
byte: 0 1 2 ese_ _ _N#2-1
------ RR EaR Extension Portion of EaR T
bt AL A Ad L 4 1 & [T T W T N W W R DR I N R S N Y
------ MM EaM ~ Extension Portion of EaM }
[F U S N 1 S SN WS N S Wt [O TS N N A N T [W S R W G T W |
byte: N+2 N+2+1 N+2+42 e N+24M+2-1

EaM Effective address of the destination operand
MM Specify the size of the destination operand.
EaR Effective address of the source operand
RR Specify the size-of the source operand

(There are instructions which have an extra extension.)

U.S. Patent

Apr. 6, 1993

Sheet 17 of 213

5,201,039

Fig. 23:
Example: SUB:E #,EaM /36
byte 0 1
-------- 1111811
¥ S i L 1 4 | I S IS B | L A 4 e
------ MM EaM Extension Portion of EaM 1
ES W W S A D N T N TN SN WY .L.L.LLJ..L.LLJ-J.J-.L.LJ.J.J
byte: 2 3 M+4-
EaM Effective address of the destination operand
MM Specify the size of the destination operand.
Source operand
Fig. 24:
/37
MOVA:G EaA,EaVW
byte 0 1 ___g__.-___N:Z:l___ _
-------- EaA Extension Portion of EaA T
I S T S T S B | PO W T S S N} 4 dd s s d b drddaraasaada
------ wWW EaW Extension Portion of Eaw 1,
F S Y I G S — A 0 TS S S — — | -I--L-L-LJ»-LJ..LJ..LJ.-L&J..I.J
byte N+2 N+2+1 N+242 N+2+M+2-1
EaW Effective address of the destination operand

LL]

Specify the size of the destination operand.

EaA Effective address of the source operand

U.S. Patent Apr. 6, 1993 Sheet 18 of 213 5,201,039

Fig. 25 38
hyte: 0 1 ___g__.;.___N:z:l__- -
-------- Eal Extension Portion of Eal T
i T S S R W | F I I U G SR T 1 **4;;;44;;;.&;;41.‘.
-------- Ea2 ~ "Extension Portion of Ea2 1
L PR WY W U U N IR T T N N S TR S R R R R NS R S W S N N W U |
byte: N+2 N+2+1 N+2+2 oo N424M42-1
Eal Effective address of the first operand
Ea2 Effective address of the second operand
(There is an extra extension portion in part of
instructions.)
Fig. 26:
Bee:D
byte: 0 1 /39
-- | ccec |-~ * disp:8

ccec Branch éondition

disp:8 Displacement (disp) to the destination to be
Jjumped
When specifying disp with 8 bits, the value of the

bit pattern is doubled and displaced.

U.S. Patent Apr. 6, 1993 Sheet 19 of 213 5,201,039

Fig. 27 40
byte: 0 1) 2 _ e _ _N#2-1
----------- r———— Extension Portion 1
i S S S S S U 1 Ao A 8 A 1 3 [N T R R W G R R W NS G WS W W |
byte: 0 1 o % ... N+2-1_
-------- FRERARAN Extension Portion !
S S W T T 1 y NS [N W T [W TR T T W U W I U R S W N G W |

There is an extra extension portion in part of

instructions.
Fig. 28:
{sh) 01 Rn 4|
oA 1 1 1 /
(Ea) 0001 Rn
Fig. 29:
(sh) 11 Rn
N T 42

(Ea) PO11 Rn

L A AL A

U.S. Patent

Fig. 30:

Fig. 31:

Fig. 32:

(sh)

(Ea)

(Ea)

(sh)

(Ea)

(Sh)

(Ea)

(Sh)

(Ea)

(Sh)

(Ea)

Apr. 6, 1993
10 Rn
PO10 Rn
P100 Rn
00 | 1100
PO0O 1100
00 1001
P000 1001
00 | 1010
P00 1010
00 | 0011
POOD 0011

r————

-—=

e e e

———

-

Sheet 20 of 213

- . e e = m = e - -

imm_data

5,201,039

43
/
.
]
1
- -1

R G U W U N R T R S G |

ims_data

1444441 aaald

9 /{¢H5
i
J
1
i
J
. |
]
404 Jd
. |
'
4 ad
R
]
4 daad
e

U.S. Patent

Fig. 33:

Fig. 34:

" Fig. 35:

Fig. 36:

(Sh)

(Ea)

(Sh)

(Ea)

(sh)

(Ea)

(sh)

(Ea)

(Ea)

Apr. 6, 1993
00 | 1101
P000 1101
00 | 1110
P000 1110
00| 0100
P000 0100
00 | 0101
PO00 0101
P110 Rn

Sheet 21 of 213 5,201,039

,,446
F= "7 Tdisp:le” ~ T]
L4444 a4daaaasal
r= "7 “disp:16” ~ ~)
RO N W U R U G R I |
{ ----- disp:32]

Lt 4444222401 4a2$1ad

/(¢F7

_________ 49
f Additional mode) ... /

. T “Additional mode |
Laasasaaaald

U.S. Patent Apr. 6, 1993 Sheet 22 of 213 5,201,039

Fig. 37:
(sh) 00 | 1111 | | “Additional mode™ }50
- - Laadaaaa2a4al /
‘e { “Additional mode” }
Laad a4 a0a0aaal
(Ea) [POOO [1111 I “Additional mode | ...
Y W T | T T W T G G S G W T |
... I “additional mode |
L4 aaaaasaal
Fig. 38:
(Sh) 00 | 1011 | | “additional mode 7 ... Vi
A M Lie s a4 2ra0aaal

ces f Additional mode
Ltasaasraaaal

(Ea) [P000 | 1011 | | “additional mode] ...
- - Ladd dtaaaaal
.. T “Additional mode™]
Lasdadraasrsraaald

Fig. 39:

(Ea) P101 d4

- | A A A 'l A

U.S. Patent Apr. 6, 1993 Sheet 23 of 213 5,201,039

Fig. 40:

Address where @(d4:4,FP)
_ /53
and €(d4:4,SP) are used

}
Byte variable| — | —] —
Word variable

Half word variable o
Byte variable] — — | —
SP,FP — Word variable
+0 +1 +2 +3
Fig. 41:
/754
(Ea) Pl11 d4
Fig. 42:
byte: 0 | _2_ . !-Hg /
EI | Rx |MS | PXXD d4 r dispx 1
2 L. Y 4.2 1 s e [T R W W R W N |
Fig. 43:

[Continuation and termination of additional mode]

oI [Rx [NS | PXXD a4 I'7 7 7 Next additional mode ~ ~)
y i N i 21 T T | | N R s T R R S O U I N e O O O A |
11 | Bx [MS [PXXD a4

56

U.S. Patent Apr. 6, 1993 Sheet 24 of 213 5,201,039
Fig. 44:
[Size of disp]
El Rx MS | PXXO d4 /57
El Rx |MS | PXx1 | 0001 =77 Taisp:i6” ~ ~ 71
1 P Y A I U Laadas s dsddadaald
El Rx |MS | PXX1 | 0010 r==-=-=-- disp:3z ~ =~~~ H
i I A P Ao i 4 | (TR WS W S A U W W T N U W W R
El Rx |MS | PXXi 0011 Fp=--=-=" disp:64 ~ = T~ T T 7]
1 — " dod A S T N L4 d 4 d A dd i dd d i ddodaaddld
Fig. 45:
/ 60
<page> M-1 >« M
" <address> N-3 N-2 N-1 N N+1 N+2
58} ng MEMORY

U.S. Patent Apr. 6, 1993 Sheet 25 of 213 5,201,039

Fig. 46:
/Gl
bit 0« -»bit 31
[J A 4 1 ¥} L A l 1 N} . J. A A] L A 1 L b | Al i l 1 A 'l L A A i]
b PSM 4t PSB d
4 Pss 3 — PSH J
— | Ps" J
Fig. 47:
: /62
bit 0« ->bit 15
| | R] 1 v 1 1 | L R i '
PSS |SM; RNG XA}~ |- | AT |- }- {- IDB] IMASK
1 1 A 1 1 i | i i 1] 4 1 3
Fig. 48:
bit 16¢ —bit 31 (As PSW)
bit 0« —»bit 15 (As PSH)
' T L] L) [} 1 k] 1 |] L]] L] L} L}
PSH |- | PRNG}- {- |- |- |- |- IP |F IX |V |L M |2
1 L1 1 (] 4 1 1 4 1 1 i 1 1
63’
Fig. 49:
AND:G src/EaR,dest/EaM
---a=- [RR EaR | ------ MM EaM

U.S. Patent

Fig. 50 (a):

Apr. 6, 1993

MOV:L src/ShR,dest/RgWw

00 | RgWw |RR

) | A A__L A

01 .ShR..

A 1 L 1 A A

MOV:S src/RgRw,dest/ShW

RgRw |WW

S - | A

00

lshw' .

A | i Y

10

MOV:Z src/#0,dest/EaW

116001WW

A AL A 2 3 L

. .an. LY

o T W N N T N1

MOV:Q src/#3n,dest/Sh¥W

Sheet 26 of 213

5,201,039

/65

011 #3n |[WW |00 .Sh¥..
MOV:1 src/#iVW,dest/ShW
010010“ 11 .shw.. l.'.‘.#iw L]
MOV:G src/EaR,dest/Eaw
110100RR ..EaR... 100010WW . EaW,...
MOV:E src/#ib,dest/EaW
10111111 .. ¥ib. .. 100010ww ..EaW...

Fig. 50 (b):

/66

Instruction

MOV

U.S. Patent

Fig. 51:

Apr. 6, 1993

MOVU:G src/EaR,dest/EaW

Sheet 27 of 213

5,201,039

110100RR ..EaR... 100011wWW «..Ea¥...
MOVU:E src/#ib,dest/Eaw
10111111 . #ib... 100011ww ..EaW...
Fig. 52:
-« 68
Instruction F IX [V IL [M |2z
MOVU -=- [+ 1- I+ I+
Fig. 53:
PUSH src/EaRL ,r'fﬁa
1011001R ..EaRL..
Fig. 54: 70
Instruction F {X {V IL A

PUSH

U.S. Patent Apr. 6, 1993 Sheet 28 of 213 5,201,039

Fig. 55:

POP dest/EaWL

7i
1001001wW ..EaWL.. ”
Fig. 56:
72
Instruction F |X (Vv
POP - 1=1-1-[|- {-
Fig. 57:
LDM src/EaRmL,reglist/LIRL /73
loollDlR .lEm.Ll ICC‘C‘L]RL...I.O
Fig. 58: /74
Instruction |F [X |V |L IM |2
LDM ~ = 1-1-1- |-
Fig. 59:
MSB& —>LSB
Bit Position 0 1 2 3 4 5 6 718 9 10 11 12 13 14 15
Register RO R1 R2 R3 R4 R5 R6 R7[R8 R9 R10 R11 R12 R13 R14 R15

75/

U.S. Patent Apr. 6, 1993 Sheet 29 of 213 5,201,039

Fig. 60:
STM reglist/LsWL,dest/Eawal /76
1000101u ..an.L. ..'...stL.... L 3
Fig. 61:

_ ,77
Instruction F (X |V IL |M |2

ST™M - f=- |- f- |- -
Fig. 62:
[When EaWaL is in the @-SP mode] /78
MSBée —LSB
Bit Position 0 1 2 3 4 5 6 7|8 910111213 14 15
Register R15 R14 R13 R12 R11 R10 R9 RB|R7? R6 R5 R4 R3 R2 R1 RO
Fig. 63:
(When EaWal ie in another mode) /79
MSB& —>LSB

Bit Position 6 1 2 3 4 5 6 7/8 9 10 11 12 13 14 15
Register RO R1 R2 R3 R4 R5 R6 R7|R8 R9 R10 R11 R12 R13 R14 R15

U.S. Patent

Fig. 64:

Apr. 6, 1993

Sheet 30 of 213

5,201,039

Fig. 65:

Fig. 66:

Fig. 67:

MOVA:R srcaddr/@(#d16,RgRP),dest/RgWP /80
00 | RgWP [11 1100 RgRP cesosc#dlb.r..n.,
MOVA:G srcaddr/EaA,dest/EaW
11011000 ..EaA... 101101+W ..EaW...
» 8l
Instruction |F L IM {2
MOVA - - 1-1-1-
PUSHA srcaddr/EaA
» 82
1010001Ss ..EaA...
/83
Instruction |F VIL |M |2z

PUSHA

U.S. Patent Apr. 6, 1993 Sheet 31 of 213 5,201,039

Fig. 68:

CMP:L srcl/ShR,src2/RgRw

00 | RgRw [RR]0OO .ShR.. / 84
CMP:Z s8rcl/#0,src2/EaR!l
110000SS ..EaR!'I.

CMP:Q srcl/#3n,src2/ShR'1
010 | #3n |RR |00 .ShR'1

i | 4 ;|]

L A 3o

CMP:1 srcl/#iR,src2/ShR!'I
OIOOOORR 11 ‘shR!I ..l'..‘iRI...ll.

A A L A 1 L. i) | AL - ns [] 1 A i A i A L i 'S A 1 AL A L

CMP:G srcl/EaR,src2/EaR!l]

110100RR TEaR. .. 10000055 T EaR'l.
CMP:E srcl/#ib,src2/EaR!'l
10111111 . fib... 1000008 T EsR'I.
Fig. 69:

85

[]

Instruction F |X |V |L
CMP - |- |-+ |- |+

U.S. Patent Apr. 6, 1993 Sheet 32 of 213 5,201,039

Fig. 70:
CMPU:G srcl/EaR,src2/EaR!'l ,,5“5
110100RR ..EaR... 100001SS ..EaR!'I.
CMPU:E srcl/#ib,src2/EaR!'l
10111111 ..4ib... 1000018s ..EaR!'I.
Fig. 71:

/87

Instruction F |X |V L |[M |Z
1 CMPU - l=-1= 1+ |- |+

U.S. Patent Apr. 6, 1993 Sheet 33 of 213 5,201,039

Fig. 72:

/88

CHK bound/EaRdR, index/EaR,xreg/RgWR

110101RR ..EaR... [00 [RgWR [ic . .EaRdR.
c Select whether to subtract the lower bound value
c = 0 Do not subtract the lower bound value. (/N)
¢ =1 Subtract the lower bound value. (/S)
RR Size of upper bound value, lower bound value, and
comparison value

bound Effective address of (upper bound value and lower bound
value)
index Effective address of comparison value

xreg Register that loads the comparison value

U.S. Patent Apr. 6, 1993 Sheet 34 of 213 5,201,039

Fig. 73:

/89

-<
-
=
~

Instruction F X
CHK - |- i% |+ |- |+

L and Z are used for comparison with lower bound value.

Fig. 74:
/90
index < LBV LBV < index
index < UBV UBV < index
L _flag 1 0 0 (note2)

V_flag 1 0 1

U.S. Patent

Fig. 75:

Apr. 6, 1993

ADD:L src/ShRw,dest/RgMw

10 | RgMw |01

il o |

00

A

+ShRw.

A4 4 1

ADD:Q src/#3n,dest/ShM

Sheet 35 of 213

5,201,039

/9I

010 | #3n |MM |01 +ShM. .
ADD:1 src/#iM,dest/ShM
010001MM 11 .ShM.. ervesoiM.L..t.

ADD:G src/EaR,dest/EaM

110100RR

L A i N . Il

..E&R...

i W T W 1

000000MM

1 A i 1 A A

..E&M.-.

¥l v A A i} A

ADD:E src/#ib,dest/EaM

Fig. 76:

10111111 .. #ib... 000000MM ..EaM...
92
Instruction FIX IV IL M
ADD - + j+ |+

U.S. Patent

Apr. 6, 1993

Sheet 36 of 213

5,201,039

Fig. 77:
ADDU:G src/EaR,dest/EaM /93
110100RR ..EaR... 000001MM . .EaM..
ADDU:E src/#ib,dest/EaM
10111111 . #ib... 000001MM ..EaM...
__Li L] A A 1 A 1 1 4 L L A] L 1 L. A A 1 A _} Y L 1
Fig. 78:
/94
Instruction |[F X |V [L 1
ADDU - I+ |+ |0 +

U.S. Patent

Fig. 79:

Apr. 6, 1993

ADDX:G src/EaR,dest/EaM

Sheet 37 of 213

5,201,039

/95

Fig. 80:

110100RR ..EaR... 000100MM ..EaM. ..
ADDX:E src/#ib,dest/EaM
10111111 -!'ibo-c OOOIOOMM lcE‘Mn--
/96
Instruction F |X |V IL M

ADDX

U.S. Patent Apr. 6, 1993 Sheet 38 of 213 5,201,039

Fig. 81:

SUB:L src/ShRw,dest/RgMw 97

10 | RgMw |01 |O1 .ShRw.

Nl IS S A 'l 1 A 'l ' '

SUB:Q src/#3n,dest/ShM

011 | #3n MM |01 .ShM..
SUB:I src/#iM,dest/ShM
oloollm 11 lshMCl l..l..'i"’.".l.

SUB:G src/EaR,dest/EaM

110100RR ..EaR..., 00001 0MM ..EaM..,
SUB:E src/#ib,dest/EaM
10111111 . Rib... 000010MM ..EaM...

Fig. 82:

’(!38

Instruction F X |V IL M |Z
SUB - f+ |4+ |4+ |+ |¢

U.S. Patent Apr. 6, 1993 Sheet 39 of 213 5,201,039

Fig. 83:
SUBU:G src/EaR,dest/EaM / 99
110100RR ..EaR... 00001 1MM ..EaM. ..
SUBU:E src/#ib,dest/EaM
10111111 «#ib... 000011MM ..EaM. ..
Fig. 84:

» 100

Instruction F{X |V IL [M |2
SUBU = |+ [+ |+ |+ |+

U.S. Patent

Fig. B5:

Apr. 6, 1993

SUBX:G src/EaR,dest/EaM

Sheet 40 of 213

5,201,039

/ 10l

A

110100RR

A4) & 2 3

..EB.R...

1 L i Lol i

000110MM

A A V'l 1 A A A

..EaM...

| . 'l A il L

SUBX:E src/#ib,dest/EaM-

10111111 ».#ib. .. 000110MM ..EaM...
Fig. 86:
» 102
Instruction FIX |V IL M
SUBX - l+-l+ |+ |e

U.S. Patent

Fig. B87:

Apr. 6, 1993

MUL:R src/RgRw,dest/RgMw

Sheet 41 of 213

5,201,039

Fig. 88:

/ 103
00 | RgMw |00 | 1101 RgRw
MUL:G src/EaR,dest/EaM
IIOIOORR . lEm. LN] oloooom L] .Em. L
MUL:E src/#ib,dest/EaM
10111111 ..4ib... 010000MM ..EaM...
Instruction |F |X |V |L M
MUL - 1= 1+ |+ |+

U.S. Patent

Fig. 89:

Apr. 6, 1993

MULU:G src/EaR,dest/EaM

Sheet 42 of 213

5,201,039

105
4

110100RR ..EaR... 010001MM ..EaM...
MULU:E src/#ib,dest/EaM
10111111 ..%ib... 010001MM ..EaM. .,
Fig. 90:
Instruction F IX [v L [M
{ MULU - 1= 1+ 10 |+

U.S. Patent Apr. 6, 1993 Sheet 43 of 213 5,201,039

Fig. 91:
/ 107
MULX src/EaR,dest/EaMR, top/RgMR
110101!R ..EaR... 10 | RgWR |10 ..EaMR..
Fig. 92:

o8

Instruction F {X |V IL M |2
MULX x

Sheet 44 of 213 5,201,039

U.S. Patent Apr. 6, 1993

Fig. 93:

DIV:R src/RgRw,dest/RgMw

/IOQ

00 | RgMw JO1 | 1101 RgRw
DIV:G src/EaR,dest/EaM
110100RR «+EaR... 010010MM ..EaM...,
DIV:E src/#ib,dest/EaM
10111111 .. #ib... 010010MM ..EaM. ..
Fig. 94:
Ho
Instruction |F |X [V L |M |2 ’(
D1V - 1= 10 |+ |+ |+
- 1= (1]0 |1]O | => See note 1
= 1= 11 |- = |- => See note 2
Note 1 : In the case of (minimum negative number) ¢ (-1)
Note 2 : Division by zero

U.S. Patent Apr. 6, 1993 Sheet 45 of 213 5,201,039

Fig. 95:
DIVU:G src/EaR,dest/EaM /IH
110100RR ..EaR... 010011MM . .EaM...
| 1 | U S T :l A b1 s A .l L — A A 5 § il 1 A 1 1 L L vl A

DIVU:E src/#ib,dest/EaM

10111111 ‘ .. #ib... 010011MM ..EaM, ..
Fig. 96:
Instruction |F |Xx {v {L M |z /HZ
DIVU - {- 1|0 |0 |+ |+
- 1= 11]- |- {- | <= Division by zero

U.S. Patent Apr. 6, 1993 Sheet 46 of 213 5,201,039

Fig. 97:
/ll3
DIVX src/EaR,dest/EaMR,tmp/RgMR
110101!'R " ..EaR... 10 | RgMR |11 . .EaMR..
Fig. 98:

P P

=> See note 1
=> See note 2
- 1= | => See note 3

Instruction |F X

DIVX %

= | -
11 o]l -
>
S

Note 1 : M and Z are based on dest.
F can be used for testing tmp = 0.
Note 2 : Overflow in dest.

Note 3 : Division by zero

U.S. Patent

Fig. 99:

Apr. 6, 1993

REM:G src/EaR,dest/EaM

Sheet 47 of 213

/ll5

5,201,039

110100RR ..EaR... 010110MM ..EaM...
REM:E src/#ib,dest/EaM
10111111 . #ib... 010110MM ..EaM...
Fig. 100:
Instruction X |viL M|z /"6
REM - 10 [+ [+ |+
0 j- |- |- | <= Division by zero

U.S. Patent

Fig. 101:

Apr. 6, 1993

Sheet 48 of 213

/ Iz

5,201,039

REMU:G src/EaR,dest/EaM
llolooRR ..EaRl.. ololllm ..Ea\MID.

REMU:E src/#ib,dest/EaM

10111111 < #ib... 010111MM ..EaM. ..
Fig. 102:
Instruction |F {X {V [L |M ~1i8
REMU - 10 |0 |+
- 1-10 |- |- <= Division by zero

U.S. Patent Apr. 6, 1993 Sheet 49 of 213 5,201,039

Fig. 103:

NEG dest/EaM

110010MM ..EaM,..

A L A Al A A 1 y A A L L

Fig. 104:

Instruction F IX |V L [M }j2
NEG - 1= |+ |+ |+ |+

U.S. Patent Apr. 6, 1993 Sheet 50 of 213

Fig. 105:

INDEX indexsize/EaR.sﬁbscript/EaRZ.xreg/RgMR

5,201,039

110101'R ..EaR... 11

A 1 il A L A 'l vl " A i A] '

RgMR

A y 3 V'

SS

..EaR2..

b 1 L L 1 " A

R Size of xreg and indexsize

R=0: 32 bits

R 1 : 64 bits <<LX>»

ss Size of subscript

xreg Address calculation accumulator

Fig. 106:

Instruction F X {vIL |M |2
INDEX - 1= j+ |+ |+ I+

M and Z are based on xreg.

’(HZZ

U.S. Patent

Fig. 107:

Apr. 6, 1993

AND:R src/RgRw,dest/RgMw

Sheet 51 of 213

5,201,039

Vs 123

00 | RgMw OO | 1100 RgRw
AND:I src/#iM,dest/ShM
ololoom 11 .shMI. Ill.l#iM..‘l.‘.
AND:G src/EaR,dest/EaM
110100RR ..EaR... 001000MM ..EaM...
AND:E src/#ib,dest/EaM
10111111 «.#ib..., 001000MM ..EaM. ..
Fig. 108:
24
Instruction F [X {V M
AND - |- [~ +

U.S. Patent Apr. 6, 1993 Sheet 52 of 213 5,201,039

Fig. 109:

OR:R src/RgRw,dest/RgMw l(IZES

00 | RgMw |01 | 1100 RgRw

A A i 1 . A L k. o vl

OR:1 src/#iM,dest/ShM

Dlololm 11 'shM". ...‘.I#iM'l..."
OR:G src/EaR,dest/EaM
110100RR ..EaR... 001001MM ..EaM. ..

OR:E src/#ib,dest/EaM
10111111 ..#ib... 001001MM ..EaM...

) W Y S T N | i 4 3 & 2 31 A2 s 1 4 1 1 i 4t 1 2 32

Fig. 110:

Instruction FIX |V IL M|z
M_flag RO
OR ~l-1]-1- |+ |+ Z_flag [RO to d-1) = 0

\ 126

U.S. Patent Apr. 6, 1993

Fig. 111:

XOR:R src/RgRw,dest/RgMw

Sheet 53 of 213

5,201,039

/l27

00 { RgMw |10 | 1100 RgRw
XOR:1 src/#iM,dest/ShM

olollom 11 .shMl. ll‘...#i".l‘.l‘l
XOR:G src/EaR,dest/EaM

110100RR ..EaR... 001010MM ..EaM...
XOR:E src/#ib,dest/EaM

10111111 .. #ib... 001010MM ..EaM...

Fig. 112:

Instruction |F |X |V IL M |2z

XOR - l-1-]- I+ I+

/IZS

M_flag RO
Z_flag

[RO to d-1] = 0

U.S. Patent Apr. 6, 1993 Sheet 54 of 213 5,201,039

Fig. 113:

NOT dest/EaM - 129
110011MM . ..EaM...

A L A 1 i L i 1 L k.l A ;Y 'l

Fig. 114:

Instruction F |[X |V IL (M |2
NOT ~{=-1- |- {+ I+

U.S. Patent

Fig. 115:

Apr. 6, 1993

011

AL

#3c

)

MM

.

11 .ShM..

’i . i

SHA:G count/EaR,dest/EaM

Sheet 55 of 213

5,201,039

/ 13l

SHA:Q count/#3c,dest/ShM (Right shift, count < 0)

110100RR ..EaR... 001101MM ..EaM...
SHA:E count/#ib,dest/EaM
10111111 ..#ib... 001101MM ..EaM...
Fig. 116:
Instruction |F |X {V |]L IM

SHA

U.S. Patent Apr. 6, 1993 Sheet 56 of 213 5,201,039

Fig. 117:
/I33
X_flag dest
:_ — [} &0
MSB LSB
Fig. 118:
/l34
S: Sign bit
| dest X_flag
ad]— [

MSB LSB

U.S. Patent Apr. 6, 1993 Sheet 57 of 213 5,201,039

Fig. 119:
SHL:Q count/#3n,dest/ShM (Left shift, count > 0)

010 | #3n |MM |10 +ShM..

A 'l L il A Lb A ¥l

SHL:C count/#3c,dest/ShM (Right shift, count < 0)

A] 4 i A

- A A A A

SHL:G count/EaR,dest/EaM
110100RR ..EaR... » 001100MM ..EaM...

I B SR B N S) A4 1 3 & 1 1 L4t 2 4 1. .3 IS I U DH N W

SHL:E count/#ib,dest/EaM

10111111 ..#ib... 0013100MM ..EaM...
Fig. 120:
Instruction F |X iV L |M |2 /BG
SHL - {1+ |- |- |+ |+
Fig. 121:
137
X_flag dest /
L)e—{ _] — o0
MSB LSB
Fig. 122:
/l38
dest X_flag
0— [1 — [

MSB LSB

U.S. Patent Apr. 6, 1993 Sheet 58 of 213 5,201,039

Fig. 123:

ROT:G count/EaR,dest/EaM / 139
110100RR ..EaR... 001110MM ..EaM. ..

3 A1 i "3 i 'l A - | " i A L A Lol A A A 'l 1 L b i L L L

ROT:E count/#ib,dest/EaM

10111111 «odib... 001110MM ..EaM...
Fig. 124:
8. e a0
Instruction F |X |v IL |M |2
ROT -1+ |- 1~ [+ |+
Fig. 125:
'
X fla dest
T - |] —
MSB LSB
Fig. 126:
» 142

dest X_flag
.y N

MSB LSB

U.S. Patent Apr. 6, 1993 Sheet 59 of 213 5,201,039

Fig. 127:

SHXL dest/EaMX Pl
000000+X T111-111 T--010+- T EaX.

A 4 1 A A A A L 1 1 L A i A N | A A A 4 A A Nl V'l i] 3. 1

Fig. 128:
'8 a4

Instruction F IX IV IL 1M 12
SHXL -1+ j- - 1+ |+

Fig. 129:

L

. LX-”‘I. dest
— | |

| MSB LS
146 (I45 al47

U.S. Patent Apr. 6, 1993 Sheet 60 of 213 5,201,039

Fig. 130:
148
SHXR dest/EaMX ”~
000000+X 1111-111 1--1104- ..EaMX..
Fig. 131:
Instruction F |[X |V IL |[M |2
SHXR - |+ |- {- |+ |+
Fig. 132:
[X_flag - dest
1 — |] —

MSB LSB

RVBY

U.S. Patent Apr. 6, 1993 Sheet 61 of 213 5,201,039
Fig 133:
/ISI
RVBY src/EaR,dest/EaW
110101RR ..EaR... 010000wWW ..EaW...
Fig. 134:
Instruction |F |X /152

U.S. Patent Apr. 6, 1993 Sheet 62 of 213 5,201,039

Fig. 135:
/|53
RVBI src/EaR,dest/EaW
110101RR ..EaR... 010001ww .. EaW,..
Fig. 136:

Instruction FIX]vIL ¥ |2z
RVBI == q]=-1- |- |-

U.S. Patent Apr. 6, 1993 Sheet 63 of 213 5,201,039
Fig. 137:
’,155
base Bit to be operated
byte
address: I n I n+l ' n+2] n+3
offset: -1 012345678 15 16 23 24
| |
€ offset - |
MSBé— LSB MSB LSB MSB —>LSB
Fig. 138:
Register to Memory to
be operated be operated
Access size .B " OK OK
Access size .H OK OK <<L2>»>
Access size W OK OK <<L2>>
Access size .L <<LX>> <CLX>»>

All the access size in assembler defaults to '.B’.

S 156

U.S. Patent

Fig.

Fig.

Apr. 6, 1993

Sheet 64 of 213

5,201,039

139:
/157
BTST:q@ offset/#3z,base/ShRfq
101 | #3z |01 {11 .ShRfq
BTST:G offset/EaR,base/EaRF
IIOIOORR --EQR.-. 10111138 .oE&Rf-.
BTST:E offset/#ib,base/EaRf
10111111 ..4#ib... 101111BB «..EaRf..
BB: Specify the bit size to be read.
140:
Instruction |F {X (V |L
BTST - - |- }- Z indicates the test result.

158 /

U.S. Patent Apr. 6, 1993 Sheet 65 of 213 5,201,039

Fig. 141:

BSET:Q offset/#3z,base/ShMfq
100 | #3z J01 |10 .ShMfq

A -l L | A A A L A A

BSET:G offset/EaR,base/EaMf

110100RR TTEsR. .. T01100BB TTEaNT..
BSET:E offset/#ib,base/EaMf
10111111 ¥ib... 10110088 T EaNf..

BB: Specify the bit size where the read-modify-write operation
is perforeed.

Fig. 142:

P 160

Instruction FIX IV I|IL IM |2
BSET - {-1]-1- {- 1+ |Z indicates the test result.

U.S. Patent

Fig. 143:

Apr. 6, 1993

BCLR:Q offset/#3z,base/ShMfq

Sheet 66 of 213

/ 161

5,201,039

1 d 2l N A

S SE N N S 1

101 #3z |01 |10 .ShMfq
BCLR:G offset/EaR,base/EaMf
110100RR ..EaR... 101101BB ..EaMf.,.
BCLR:E offset/#ib,base/EaMf
10111111 ..#ib... 101101BB ..EaMf..

BB:
is performed.
Fig. 144:
Instruction F |X L
BCLR - {-1-1-1-

Specify the bit size where the read-modify-write operation

Z indicates the test result.

U.S. Patent Apr. 6, 1993 Sheet 67 of 213 5,201,039

Fig. 145:

I{IE§3

BNOT:G offset/EaR,base/EaMf

110100RR ..EaR... 101110BB ..EaMf..
BNOT:E offset/#ib,base/EaMf
10111111 ..¥ib... 101110BB ..EaMf..

BB: Specify the bit size where the read-modify-write operation

is performed.

Fig. 146:
64
4

Instruction FIX IV IL [M|2Z
BNROT - I=1-1-1- I+

Z indicates the test_result.

18 perforamed.

U.S. Patent

Fig. 147:

BSCH data/EaR,offset/EaM

Apr. 6, 1993 Sheet 68 of 213

110101RR

W G I TS W W

0101bdMM

- | '] 1 L1 4

-oE&R-..

Aol 2 1 i\ cande

data

RR

offset

Fig. 148:

Data to be searched. Since data does not exceed the

word boundary, only the data in the address is
accessed.
Size of data. RR = 00,01 is defined in <<L2>>

bit offset which starts the search operation and
returns the result of the search operation

Size of offset

Bit value to be searched

d=0: Search '0’' (/0).

d=1: Search '1’ (/1).

The direction of search operation

b=0: The direction where the bit number increases {/F).

b=1: The direction where the bit number decreases (/B).

/IGG

Instruction FI|X v I|L M]z

BSCH

- |- |% |- |=

V indicates the search operation is unsuccessful.

5,201,039

U.S. Patent Apr. 6, 1993 Sheet 69 of 213 5,201,039

Fig. 149:
/IG'I
base Related bit field
l | ¢&—— width — |
byte ~-T T T r 1
o,ddress:J n | n+l J l n+2 | J n+3
offset:-1 012345678 15 16 23 24
[|
| ¢ offset > |

MSBée— LSB MSB LSB MSB —>LSB

U.S. Patent Apr. 6, 1993 Sheet 70 of 213 5,201,039

BFINS:G:1.W #src(.BHWL]}, offset[.BHWL], width[.W], base[.W]
BFINS:G:R.W Rs[.W], of fset[.BHWL], width[.W], base[.¥]

BFINS:G:I.L #src[.BHWL]), offset[.BHWL]), width[.L}, base[.L]

BFINS:G:R.L Rs[.L}, offset[.BHWL], width[.L], base{.L]
BFINS:E:1.W #src[.BHWL], #offset, #width, base[.¥W]
BFINS:E:R.¥W Rs[.W], #offset, #width, base[.W]
BFINS:E:1.L #érc[.BHWL], #offset, #width, base[.L])
BFINS:E:R.L Rs[.L], foffset, #width, base[.L)

BFINSU:G:1.W #src[.BHWL], offset{.BHWL), width{.W], base[.W]
BFINSU:G:R.W Rs[.W], offset[.BHWL], width[.W]}, base[.¥]

BFINSU:G:1.L #src[.BHWL], offset[.BHWL], width[.L], base[.L]

BFINSU:G:R.L Rs{.L], offset[.BHWL], width[.L), base[.L]
BFINSU:E:1.W #src[.BHWL], #offset, #width, base[.¥)
BFINSU:E:R.W Rs[.W], foffset, #width, base[-"].
BFINSU:E:1.L #src[.BHWL], #offset, #width, base[.L]
BFINSU:E:R.L Rs({.L], #offset, #width, base[.L]

BFCMP:G:1.W 4#src[.BHWL], offset{.BHWL], width{.W], base[.W]
BFCMP:G:R.W Rs[.W], offset[.BHWL], width[.W], base[.W)

BFCMP:G:1.L #src[.BHWL], offset[.BHWL], width{.L], base[.lL]

BFCMP:G:R.L Rs[.L}, offset[.BHWL]}, width[.L], base[.L]
BFCMP:E:1.W #src[.BHWL]}, #offset, #width, base{.W]
BFCMP:E:R.W Rs[.¥W], #offset, #width, base[.W]

BFCMP:E:1.L #src[.BHWL], #offset, #width, base[.L]

U.S. Patent Apr. 6, 1993 Sheet 71 of 213 5,201,039

Fig. 150 (b):

/frlﬁii

BFCMP:E:R.L Rs|[.L], #offset, #width, base(.L]

BFCMPU:G:1.W #src[.BHWL), offset[.BHWL], width[.W], base[.W]
BFCMPU:G:R.W Rs[.W], offset[.BHWL], width{.W], base{.W]

BFCMPU:G:1.L #src[.BHWL]}, offset[.BHWL], width(.L), basef{.L]

BFCMPU:G:R.L Rs[.L], offset[.BHWL], width[.L], base{.L]
BFCMPU:E:1.W #src[.BHWL], #offset, #width, base[.W]
BFCMPU:E:R.W Rs[.W}, #offset, #width, base[.W)
BFCMPU:E:1.L #src[.BHWL], #offset, #width, base(.L]
BFCMPU:E:R.L Rs[.Li, foffset, #width, base[.L]}

BFEXT:G.W of fset[.BHWL], width[.W], Dbase[.W], Rd[.W]
BFEXT:G.L offset[.BHWL], width[.L], base{[.L], Rd[.L]
BFEXT:E.W foffset, $#width, base[.W]}, Rd[.W]
BFEXT:E.L #offsgt, #width, base[.L], Rd[.L]}
BFEXTU:G.W offset[.BHWL]), width[.W], ©base[.W], Rd[.W]
BFEXTU:G.L offset[.BHWL), width[.L], base[.L]), Rd(.L]
BFEXTU:E.W #offset, #width, base[.W), Rd].¥W])

BFEXTU:E.L toffset, #width, base[.L), Rd{.L)

U.S. Patent

Apr. 6, 1993

Sheet 72 of 213

Fig. 151:
/|69
BFEXT:G offset/EaR,width/RRXw,base/EaRbf,dest/RWXd
110100RR .EaR... 111010+X ..EaRbf.
-7 z= | RRXw '|== | ==== RWXd
- - A I G | e VN S | S
BFEXT:E offset/#ib,width/#6n,base/EaRbf,dest/RWXd
10111111 .. #ib... 1110104X .. EaPbf.
- .#6n.. |== | ==== | RWXd
Fig. 152:
/170
Instruction X {v |L [M |2
BFEXT -1+ |- |+ |+

5,201,039

U.S. Patent Apr. 6, 1993 Sheet 73 of 213 5,201,039

Fig. 153:

’{l7l

BFEXTU:G offset/EaR.width/RRXw,base/EaRbf,dest/RWXd

110100RR . .EaR... 111011+X . .EaRbI .
T T TT== | RRXw [== | ==== | ®wxd
BFEXTU:E o;f;et/a,ib.width/isn.base/sanbr.dest/nwxd
10111111 .- #ib. 111011+X . .EaRbf. _ T
T .#6n.. == | ===z RWXd
Fig. 154: /rr72

Instruction |F [Xx |v IL [M]z
BFEXTU - |-)+ |- 1+ [+

U.S. Patent

Fig. 155:

Apr. 6, 1993

Sheet 74 of 213

s

BFINS:G:R src/RRXs.offsgt/EaR.width/RRXw.base/Eabe

5,201,039

Fig. 156:

110100RR ..EaR... 110010+X . .EaMbf.
- == RRXw == ===z RRXs
BFINS:G:1 src/#iS8,cffset/EaR,width/RRXw,base/EaMbf
110100RR . .EaR... 110110+X . .EaMbf. -
T T 7T=="] RRXw |SS ..#iS8..
BFINS:E:R src/RRXs,offset/#ib,width/#6n,base/EaMbf
10111111 ..#ib... 110010+X . .EaMbf . -7
- .46n.. == ===z RRXs
BFINS:E:]1 src/#iS8,offset/#ib,width/#6n,base/EaMbf
10111111 ..#ib... 110110+X . .EaMbf . -
- .#6n.. [SS ..#iS8..
Instruction F |X jV IL M

BFINS

U.S. Patent

Fig. 157:

Apr. 6, 1993

Sheet 75 of 213

’(T75

BFINSU:G:R src/RRXs,offset/EaR,width/RRXw,base/EaMbf

5,201,039

110100RR

" A A Ll 'l A

L 3 lEmbf.

il A A L A ' 1 -

..EaROD. llooll’x
== RRXw |[== ===z RRXs

BFINSU:G:1 src/#iS8,offset/EaR,width/RRXw,base/EaMbf

110100RR . .EaR... 110111+X . .EaMbf. -
T T TT==] RRXw [SS .. #iSB..

BFINSU:E:R src/RRXs,offset/#ib,width/#6n,base/EaMbf

Fig. 158:

10111111 ..4ib... 1100114X . .EaMbf.
- c‘sn' . == === RRXS
BFINSU:E:1 src/#iS8,offset/#ib,width/#6n,base/EaMbf
10111111 ..#ib... 110111+X . .EaMbf. -
- #6n.. |sS ..#iS8..
,(r76
Instruction F VIL [M |2
BFINSU - 1= j+ |- [+ |+

U.S. Patent

Fig. 159:

Apr. 6, 1993

Sheet 76 of 213

’{fr77

BFCMP:G:R src/RRXs,offset/EaR,width/RRXw,base/EaMbf

5,201,039

Fig. 160:

110100RR ..EaR... 110000+X . EaMbf.
T T TT== | RRXw == s=== RRXs
BFCMP:G:1 src/#iS8,offset/EaR,width/RRXw,base/EaRbf
110100RR ..EaR... 110100+X . .EaRbf. T
T T TTe= T Rexw [ss | ..#iss..
BFCMP:E:R src/Rth,offset/#ib,width/#&n,base/EaRbf
10111111 ..#ib.., 110000+X . .EaRbf. -
- .#6n.. == =z== RRXs
BFCMP:E:]1 src/#iS8,offset/#ib,width/#6n,base/EaRbf
10111111 ..#ib... 110100+X . .EaRbf. -7
- .#6n.. |SS ..#iS8..
‘,rf7ii
Instruction X |v|L

BFCMP

U.S. Patent

Apr. 6, 1993

Sheet 77 of 213

5,201,039

Fig. 161:
179
BFCMPU:G:R src/RRXs,of fset/EaR,width/RRXw,base/EaRbf
110100RR . .EaR... 110001+X . .EaRbf . -
T 7 7J== | RRXw |== | ==== | RRXs
BFCMPU:G:1 src/4#iS8,offset/EaR,width/RRXw,base/EaRbf
110100RR . .EaR... 110101+X . .EaRb{. -
I RRXw |SS ..4is8..

- 0

1 A 1 A

A

] A A L A L

BFCMPU:E:R src/RRXs,offset/#ib,width/#6n,base/EaRbf

10111111 ..%ib... 110001+X . .EaRbf.

- .#6n.. |== | ==== | RRXs
BFCMPU:E:1 src/#i58,0ffset/#ib,width/#6n,base/EaRbf

10111111 ..¢ib... 110101+X . .EaRbf. -

- .46n.. |ss ..#iS8..
Fig. 162:
€ 180
Instruction F |X L Z

BFCMPU

U.S. Patent Apr. 6, 1993 Sheet 78 of 213 5,201,039

Fig. 163 (a):
18!
BVSCH , /
0001bd+X 1111P111

X Size of offset (R1) and width (R2)

X =0 : 32 bits

X 1 : 64 bits <«LX>>
d Bit value to be searched

d = 0 : Search '0’ (/0)

d=1: Search '1’' (/1)
b Search direction

b

0 : Direction of the increasing bit number (/F).

b

1 : Direction of the decreasing bit number (/B).

Parameters for register

RO: base address

R1: offset
Read-modify-write operand. Search start-offset as a
parameter and result-offset as a return parameter are
contained. Until the bit of the value specified by d is
searched, offset exceeds the word boundary. When the
instruction is suspended, the current searching offset is
contained. (negative available)

R2: width
Bit field length which searches offset (number of bits).

Although width (R2) is treated as a signed nusber, if

U.S. Patent Apr. 6, 1993 Sheet 79 of 213 5,201,039

Fig. 163 (b): /IBI

width < 0, only the V_flag is set and the instruction is

terminated.

An EIT does not occur.

Fig. 164:. /IBZ

Instruction F (X |V |L [M }j2
BVSCH - 1= |* {- |- I-

V indicates the search operation is unsuccessfully terminated.

5,201,039

/l83

U.S. Patent Apr. 6, 1993 Sheet 80 of 213
Fig. 165:
BVMAP
0011bQOX 1111P111

N N S T 1

'\ AL A y | 'l A

>¢

[2]

Parameters

Size of src offset (R1), src width (R2), dest offset (R4)

X
X
P

P

0: 32 bits

1: 64 bits <<LX»

bit option for src

bit option for dest

Operation direction

b
b

RO:

R1:

R2:

R3:

R4:

RS:

0: Direction of increasesing bit number (/F) .
1: Direction of decreasesing bit number (/B)

for Register

base address of src bit field

offset of src bit field

Treated as a signed number (negative available).

width

bitfield length to be operated (number of bits)

Although width

(R2) is treated as a signed number, if

width < 0, the instruction is terminated without any

operation.

An EIT does not occur.

base address of dest bit field

offset of dest bit field

Treated as a signed number (negative available).

Type of operation

Lovwer 4 bits are used.

U.S. Patent Apr. 6, 1993 Sheet 81 of 213 5,201,039

Fig. 166:

Instruction F IX |V L IM |2 /'84
BVMAP - 1= 1= |- |-
Fig. 167:
 Lsre
===gg.§-§=£:=====

The result of the operation is assured with /B and /F.

l85/

U.S. Patent Apr. 6, 1993 Sheet 82 of 213 5,201,039

Fig. 168:
/186
The length from base to offset for dest is small.
] src
:::::::::gg§;========:=:=====
The result of the operation is assured with /F.
The result of the operation is not assured with /B.
Page fault may cause the result to change.
Fig. 169:
/ 187
The length from base to offset for dest is large.
Src
=::==::==gg§;’::::::::::::::::

The result of the operation is assured with /B.
However, it is defined in <<L2>>,
The result of the operation is not assured with /F.

Page fault may cause the result to change.

U.S. Patent Apr. 6, 1993 Sheet 83 of 213 5,201,039

Fig. 170:
188
BVCPY
0011bQ1X 1111P111

X Size of src offset(R1), src width (R2), and dest offset (R4)

X 0: 32 bits

X

1: 64 bits <<LX>»
P P bit option for src
Q@ P bit option for dest
b Operation direction
b = 0: Direction of increasing bit number (/F)

b = 1: Direction of decreasing bit number (/B)

Parameters for Register

RO: base address of src bit field

Rl: offset of src bit field
Treated as a signed number

.R2: width
‘bitfield length to be operated (nusber of bits)
Although width(R2) is treated as a signed number, if width
< 0, the instruction is terminated without any operation.
An EIT does not occur.

R3: base address of dest bit field

R4: offset of dest bit field

Treated as a signed number

U.S. Patent Apr. 6, 1993 Sheet 84 of 213 5,201,039

Fig. 171:
Instruction [F [X [V]L M]z] ,~I89
BVCPY - 1= 1- |- I- |-
Fig. 172:
BVPAT
000001+X 1111P111 190
X Size of pattern (R0O), width (R2), and dest offset (R4)
X = 0: 32 bits
X = 1: 64 bits <<LX»

P P bit option for dest

Parameters for register

RO: pattern

R1: Not used

R2: width
Length of bitfield to be operated (number of bits)
Aléfough width (R2) is treated as a signed number, if the
width < 0, the instruction is completed without any
operation.
An EIT does not occur.

R3: base address of dest bit field

R4: offset of dest bit field
It is treated as a signed number.

R5: Type of operation
The lower 4 bits are used. Common with the BVMAP

instruction

U.S. Patent

. 173:

Apr. 6, 1993

Sheet 85 of 213

Instruction

BVPAT

Fig. 174:

ADDDX:G src/EaR,dest/EaM

5,201,039

Fig. 175:

110100RR ..EaR... 000101MM ..EaM...
ADDDX:E src/#ib,dest/EaM
101111111 . #ib... DOOIOIMM ..EaM...
s/ 193
Instruction X |V |L M
ADDDX +]+ |0 4+

U.S. Patent

Fig. 176:

Apr. 6, 1993

SUBDX:G src/EaR,dest/EaM

Sheet 86 of 213

5,201,039

/194

110100RR ..EaR... 000111MM ..EaM...
SUBDX:E src/#ib,dest/EaM
10111111 .. &ib... 000111MM ..EaM...
Fig. 177:
Instruction |[F |X [V |L |M /|95
SUBDX - f+ |+ |+ |+

U.S. Patent Apr. 6, 1993 Sheet 87 of 213 5,201,039

Fig. 178:

/l96
PACKss src/EaR,dest/EaW
110101RR ..EaR... 010010wwW ..EaW...

At 2 A 1 % 3 i U SN SR N W S | | S D S P N S 4 1 1 3 1 i 2

Fig. 179:

Instruction F [X |V |L M |2z
PACKss - = {=-1- |- 1-

U.S. Patent Apr. 6, 1993 Sheet 88 of 213 5,201,039

Fig. 180: ’,E§3

UNPKss src/EaR,dest/EaW,adj/#i¥
110101RR ..EaR... 010011WW .EaW...

—td L AL) Lt 2 X A _ 3 1 I Y T T G R T | F N S T U W S | PU—

NN 21 P

i I N3 'l] ;1 -l A A i 'l i 1 4

Fig. 181:
199

Instruction F |[X v {L IM |2
UNPKss = l-1-i=-1I- |-

U.S. Patent

Fig.

182:

UNPKBH

UNPKHW

UNPKBW

UNPKWL

UNPKHL

Apr. 6, 1993 Sheet 89 of 213

src|[.B),dest[.H],adj[.H]
RR=00,WW=01 tap composes of 16 bits
0 ==> tap[00:15]},

src[00:03] ==> tap[04:07]),
src[04:07) ==> tap[l12:15),
tep + adj ==> dest

src[.H],dest[.W],adj[.W)

RR=01,Ww=10 tmp composes of 32 bits

0 ==> tap[00:31)},

src[00:03) ==> tmp{04:07),
src[04:07) ==> tap[12:15),
src[08:11] ==> tmp[20:23],
srcf[12:15) ==> tmp[28:31],
tap + adj ==> dest
src[.B),dest].W),adj[.W)

RR=00,ww=10 0 ==> tap{00:31],
src[00:03] ==> tmp[12:15),
src[04:07) ==> tmp[28:31],
tap + adj ==> dest

src[.W],destf.L),adj[.L]
src[.H],dest[.L]),adj[.L]

5,201,039

/200

<<L2>»

<«<LX>>

<CLX>»

U.S. Patent Apr. 6, 1993 Sheet 90 of 213 5,201,039

Fig. 183:

Terpination condition Mnemonic Meaning eeee
<R3 LTV less than (unsigned) 0000
2R3 GEU greater or equal {unsigned) 0001
=R3 EQ equal 0010
#R3 NE not equal _ 0011

201 :
<R3 LT less than (signed) 0100
2R3 GE greater or equal {signed) 0101
none N never (or no option) 0110
- - reserved {RIE} 0111
- - reserved {RIE} <<L2>> 1XXX

202}

U.S. Patent Apr. 6, 1993 Sheet 91 of 213 5,201,039

Fig. 184:
SMOV Vs 203
00eeeceSS 1110P1Qb
P P bit option for src
Q P bit option for dest
sS Size of the element and termination conditions {R3 and R4)
b Direction of operation

b

0: Copy the string in the direction the
address increases (/F).

b=1: Copy the string in the direction the

address decreases (/B)

eeee Termination condition of the string instruction

Parameters for register
RO: Start address of src string
R1: Start address of dest string
R2: Length of string and amount of data
" R3: Comparison value of termination condition (1)
R4: Comparison value of termination condition (2) (ATOM does

not use this parameter.)

Fig. 185:

Instruction F X
SMOV * |- |* |-

- 204

<
c
"=
o~

U.S. Patent Apr. 6, 1993 Sheet 92 of 213 5,201,039

Fig. 186:
SCMP
00eeeeSS 1110P0Qb / 205
P P bit option for srcl
Q P bit option for src?
SS Size of the element and termination conditions (R3 and
R4)
b Direction of operation

b = 0: Compare the string in the direction the

address increases (/F).

o
"
—

Compare the string in the direction the
address decreases (/B).

eeee String instruction termination condition

Parameter for register

RO: Start address of srcil string

Rl: Start address of src2 string

R2: Length of string and amount of data

R3: Comparison value of termination condition (1)

R4: Comparison value of termination condition (2) (ATOM does

not use this optionl)

U.S. Patent | Apr. 6, 1993 Sheet 93 of 213 5,201‘,039

Fig. 187:

Instruction |F |X |V [L [M]2 /206
SCMP % *

Fig. 188:
/207
[SCMP termination causes) ' [flags]
Length Not Termination V Z L F M
matched condition X
X O(srcl=src2) 0 1 0 1 *A
0 X(srcl) 0 0 - %C 0 0+
0 O(srcl) 0 0 * 1 *B
X X 1 1 0 0 0+

¥A:
*¥B:

*C:

indicates the termination causes are satisfied.
indicates the termination causes are not satisfied.
indicates the statﬁs is obtained by the rule rather than
the flag's meaning.

Depends on the termination condition srcl = src2.
Depends on the termination condition of srcl.

Depends on srcl < src2 or src2 < srcl.

Although the /B option is defined in <<L2>>, ATOM supports it.

U.S. Patent Apr. 6, 1993 Sheet 94 of 213 5,201,039

Fig. 189:
SSCH /208
00eeeeSS 1111P10r
P P bit option for src
SS Size of the element and termination conditions (R3 and

R4)
eeee String instruction termination condition

r Pointer update method

r = 0: Increpent only by the element size (/F).

1: Specify the increment/decrement value by register

r

R5 {/R).

Parameters for register

RO: Start address of src string

R1: Not used

R2: Length of string and amount of data

33: Comparison value of termination condition (1)
R4: Comparison valué of termination condition (2)

R5: Pointer update value {in the case of /R option)

Fig. 190:
Instruction FI{X v IL M |2
SSCH ¥ |- |% |- |* {-

V indicates the search is unsuccessfully terminated.

U.S. Patent

Fig. 1

Apr. 6, 1993 Sheet 95 of 213 5,201,039

91:

SSTR V4 2lo

- 'l 'l A b | A A A] A I - Y 1

001001ss 1111P111

P

SS

Pa

RO:
R1:
R2:

R3:

Fig. 1

P bit option for dest

Size of data to be written (R3)

rapeter for register

Not used

Start address of de:ct string
String length and amount of data

Data to be written

92:

/ZII

Instruction F {X IV IL M |2

SSTR - - 1-1-1-

U.S. Patent Apr. 6, 1993 Sheet 96 of 213 5,201,039

Fig. 193:
"(232
QINS entry/EaMqP,queue/EaMqP2
11011000 + « EaMqP. 101110+~ + « EaMqP2
Fig. 194:
213
Instruction JF X [V L M 12 1
INDEX SRR

Fig. 195: /2-'4
address_of_queue ==) men[address_of_entry] ==> templ
men[address_of_queue + 4} ==> men[address_of_entry +4] ==>temp2
address_of_entry ==> nen[men[address_of_queue + 4])
address_of _entry ==> men[address_of_queue +4]
if (templ = temp2) then.

1 =212 flag
else

0 ==>17_flag

endif

U.S. Patent Apr. 6, 1993 Sheet 97 of 213 5,201,039

Fig. 196:
215
entry /
)]]
queue
—* . ha % . ———— » —H—
- . . R —_
4 4 I] J- & 4
Fig. 197: /216
entry ueue
—_— : 3 &

|l
al|
|l

U.S. Patent Apr. 6, 1993

Fig. 198:
QDEL queue/EaRqP,dest/EaW!S

Sheet 98 of 213

5,201,039

/¢'2f7

Fig. 199:
» 2i8
Instruction |F |X |V |L Z
QDEL - |- I* |- |- |*
Fig. 200:
mem[address_of_gqueue] ==> successor 219

if(address_of_queue successor) then

1 ==> V_flag
1 ==> Z_flag
else

successor ==> dest

men[successor] ==> mem[address_of_queue] ==> templ

address_of_gqueue ==> mem[mem[successor] + 4] ==> tesp?2

if (templ = ;ean) then

0 ==> V_flag

1 ==>127_flag
else

0 ==> V_flag

0 ==> 2 _flag
endif

endif

U.S. Patent | Apr. 6, 1993 Sheet 99 of 213 5,201,039

Fig. 201:
/220
queue }
1 1 1] 1 3)]
Fig. 202: .
/221
dest successor
. J—[
[} 1
qQueue v
—_— R > ha— - :-.

U.S. Patent Apr. 6, 1993 Sheet 100 of 213 5,201,039

Fig. 203 (a):

222
QSCH /
00eeeeSS 1111P0mb
P P bit option in queue area
Ss Comparison termination conditions (R3, R4) and search
data size

eeee Comparison termination conditions (same as the string

instruction tersination conditions)

| Presence/absence of mask
m =0 Not mask R6 (/NM).
m =1 Mask R6 (/MR).

b Search direction

b =0 Forward (/F)

b =1 Backward (/B)

RO Address of the queue_entry that the search operation starts
with. First, enter the content of the queue head = f{irst
qQueue address.

Rl Used as a return paraseter. Upon completion of the
instruction, the address of the queue_entry just before it

is stored.

U.S. Patent Apr. 6, 1993 Sheet 101 of 213 5,201,039

Fig. 203 (b): | /222

R2
R3
R4

RS

R6

RO

Queue end address

Comparison value (1)

Comparison value (2)

Offset of search data being entered

Offset from the link address of the member being séarched
Mask (when m = 1)

s R2, and R3 (options), R4 {(option), and R5 and R6 (options)

should be set, while the results are stored in RO and Rl1. The

continuous search operation is available.

Fig. 2

04:
/223

Instruction FIX |V IL |M |2z
4

QSCH ¥ |- |* |-

v

indicates that the search operation is unsuccessfully

completed.

U.S. Patent

Fig. 205 (a):

while (1) do

Apr. 6, 1993 Sheet 102 of 213 5,201,039

224
'

RO ==> Rl

if b=0 then

else

men[RO] ==> RO

/* Search the queue along the forward link. */

men[RO+4] ==> RO

/% Search the queue along the backward link. */

if (RO = R2) then

1 ==> V_flag
0 ==> M_flag
0 ==> F_flag

exit

/% Unsuccessfully terminate the search operation. %/

endif

if »=0 then

conpafe men[RO+R5] with R3, R4

and set F_flag, M_flag according to eeee

/% 1f the termination condition is satisfied, F_flag

is set to 1. %/

else

compare (mem[RO+R5] & R6) with R3, R4

and set F_flag, M_flag according to eeee

U.S. Patent Apr. 6, 1993 Sheet 103 of 213 5,201,039

Fig. 205 (b): /224

/% If the termination condition is satisfied, F_flag
is set to 1. &/
endif
if (F_flag = 1) then
0 ==> V_flag
exit
/% Successfully terminate the search operation. */
endif

check_iriterrupt

end_while
Fig. 206:

RO

R2 /225
—— ‘ .)

TO

— «— — -|—

e . T— . T— . — . %5

key | - key | key key

]]] L

key :'Data being seArched’
Queue which satisfies the conditions

U.S. Patent

Apr. 6, 1993

Sheet 104 of 213

5,201,039

!

Fig. 207:

?2 /226

) .

R [
Py]
e Y papny B SN mnseey s HEY hated
key key key key
key :'Data being seirched’ ! ! ! '

Queue which satisfies the conditions

U.S. Patent | Apr. 6, 1993 Sheet 105 of 213 5,201,039

Fig. 208

| 227
BRA:D newpc/#d8 /

10101110 ..#d8...

b [' [S A 4 A od 1 1 1 i

BRA:G newpc/#dS

ooloooss llllplll l..‘.l'ds.‘l'..‘

VW T S T | A A AL 2 1 W U E N N S G S S S I N G S 1

Fig. 209: /228

Instruction F IX |V (L |[M |2
BRA -1-1-1- 1- I-

U.S. Patent Apr. 6, 1993 Sheet 106 of 213 5,201,039

Fig. 210:
/229
Bce:D newpc/#d8
10ccec00 .. #dB. ..
Bece:G newpc/#dS
ooccccss llllpllo oo.oo-‘dS-c---co

ccce @ Specify the conditions

Fig. 211:
230

Instruction FiI{X |V IL M |2Z
Bce -q= = |- }- 1-

U.S. Patent Apr. 6, 1993 Sheet 107 of 213 5,201,039
Fig. 212:
Mnemonic Meaning Condition cccc
XS X_flag set X 0000
23]\ XC X_flag clear °X 0001 /232
EQ equal / Z_flag set z 0010
NE not equal /Z_flag clear ~z 0011
LT less than / L_flag set L 0100
GE greater or equal / L_flag clear "L 0101
LE less or equal L+Z 0110
GT greater than “Lx~Z 0111
VS V_flag set vV 1000
vC V_flag clear v 1001
MS minus / M_flag set M 1010
MC plus / M_flag clear “M 1011
FS F_flag set F 1100
FC F_flag clear “F 1101
{RIE} 1110
{RIE) 1111
If the undefined conditions are specified in Bcc, an RIE

occurs.

U.S. Patent Apr. 6, 1993 Sheet 108 of 213 5,201,039

Fig. 213:

BSR:D newpc/#d8

/233
10101111 ..4#d8...
BSR:G newpc/#dS
oololqss llllplll .“'..’ds....l.'
Fig. 214:

"(253‘¥

Instruction F |X JV IL |M {Z
BSR - - t= i- 1= I-

U.S. Patent Apr. 6, 1993 Sheet 109 of 213 5,201,039

Fig. 215:

JMP newpc/EaA /235

10000010 ..EaA. ..

. 3 i A1 } - i | A 4 A vl J L A

Fig. 216:

Instruction F {X V L [M|Z
JMP -I=1= 1= 1- {-

U.S. Patent Apr. 6, 1993 Sheet 110 of 213 5,201,039

Fig. 217:

JSR newpc/EaA I,fiﬁf?

1010101P ..EaA...

A AL 2)) SIS DS T GEN S S Y

Fig. 218:
,{22“3

Instruction F X |[VIL M]2
JSR -f=-1=-1-1- 1=

U.S. Patent Apr. 6, 1993 Sheet 111 of 213 5,201,039

Fig. 219:

ACB:Q #1,xreg/RgMw,limit/#6n,newpc/#dS8
00 | RgMw |11 1101P001 .#6n.. Ss ..%#dS8..

F S | A A A A i S S A L A il] |) N A

- Al '}

ACB:R #1,xreg/RgMw,1imit/RgRw,newpc/4dS8
00 | RgMw |11] 1101P000 — | Rgiw _|ss _.#ds8..

- 'l A A -] L ol | 2 A '] 1 A A J i 1 A

Al A

ACB:G step/EaR,xreg/RgMX,limit/EaRX,newpc/#dS8
110100RR ..EaR... 11110PXX . .EaRX..

| 4 A 1 V'l A 'l 1 L. A 4 A A i | 4 o i i) A 'l A T A A s

-
-

RgMX S5 «.#dS8.,.

ACB:E step/#ib,xreg/RgMX,limit/EaRX,newpc/#dS8
10111111 . #ib... 11110PXX ..EaRX..
== | RgMX [SS ..#ds8..
Fig. 220: /240

Instruction F |X |V I|L M {2
ACB -1- -1~ - |-

U.S. Patent Apr. 6, 1993 Sheet 112 of 213 5,201,039

Fig. 221:

'KEFQI

SCB:Q #1,xreg/RgMw,limit/4#6z,newpc/#dS8

00 | RgMw |11 1101P011 ¥6z.. |ss T #dsB..
SCB:R #l,xreg/RgMQ,linit/Rng,newpc/#dSB
00 | RgMw |11 | : 1101P0IQ R PV FT .#ds8..
SCB:G step/EaR,xreg/RgMX,limit/EaRX,newpc/#dS8
110100RR Bk, T1111PXX TEaRK..
== | ReNX]SS 71dS8..

SCB:E step/#ib,xreg/RgMX,limit/EaRX,newpc/#dS8

10111111 ..#ib. .. 11111PXX . .EaRX..
== | RgMX [SS ..#dS8..
Fig. 222:
242

Instruction F X |V IL IM |2
SCB -1-1-1-1- |-

U.S. Patent Apr. 6, 1993 Sheet 113 of 213 5,201,039

Fig. 223:
/243
ENTER:E local/#ib,reglist/LnXL
looolllx l.’ib... .'....LnxL......
ENTER:G local/EaR!'M,reglist/LnXL
000000+X 1111P111 1--0118S ..EaR'M.

.o.--aLﬂXL....-.

A 1 el Fl L AL S A B 4 L il [

Fig. 224:
/244
Instruction FI1X |V IL M]|Z
ENTER - i= 1= 1= |-
Fig. 225:
/245
MSBé— —>LSB

Bit position {01 2 3 4 5 6 7|8 91011 1213 1415
Register = = R13 R12 R11 R10 R9 R8|R7 R6 R5 R4 R3 R2 Rl RO

LnXL is located after the EaR extended portion.

U.S. Patent Apr. 6, 1993 Sheet 114 of 213

Fig. 226:

EXITD:E reglist/LxXL,adjsp/#ib

5,201,039

/246

1001111X .o #ib...

..-.--LXXL--.---

2 A F i .l | — A N L 1 A A A A A i A L | 4 4 Al A vl 1L A

EXITD:G reglist/LxXL,adjsp/EaR!'M

000000+X 1111P111 1--11188

- A l A A v "y 'l AL) 'l L il i] "] i A y - e '] 1 A

..EaR!M,

' A A il

PO S b U N N |

-co-..LXXL-...-.

At i A S I | o A

ig. 7:
Fig. 22 /247
Instruction FIX|VIL |[M]2z
EXITD -1-1-1-{- I-
Fig. 228:
/248
MSBée— - —3LSB
Bit position 01 2 3 4 5 6 718 9 10 11 12 13 14 15

Register RO R1 R2 R3 R4 R5 R6 R7

R8 R9 R10 R11 RI12 RI13 = =

LxXL is located after the EaR extended portion.

U.S. Patent Apr. 6, 1993 Sheet 115 of 213 5,201,039

Fig. 229:

RTS "(2¥49
00101011 1101P110

- | A A I 1 AL 1 A i S S T | (]

Fig. 230:
250

Instruction |[F [X |v [L [M [z
RTS === 1= I- [-

U.S. Patent Apr. 6, 1993 Sheet 116 of 213 5,201,039

Fig. 231:

NOP

251
00011011 1101-110 Vi

] 3 A A1 4 [A A H ol vl 1.

Fig. 232:
252

Instruction F IX |V IL [M |2z
NOP = |- 1= |- |-

U.S. Patent Apr. 6, 1993 Sheet 117 of 213 5,201,039

Fig. 233:

PIB

00001011 1101P110 253

—h e A A1} WS W N S U I 1

Fig. 234:

Instruction |F [X [V L |M |z | =254
PIB - 1-1-1-

U.S. Patent Apr. 6, 1993 Sheet 118 of 213

Fig. 235:

/255
BSETI:Q offset/#3z,base/ShMfqi

5,201,039

100 | #3z J01]11 ShMfqi
BSETI:G offset/EaR,base/EaMfi
110100RR ..EaR... 101000BB . .EaMfi.
BSETI:E offset/#ib,base/EaMfi
10111111 ..#ib... 101000BB . .EaMfi.
BB:

Fig. 236:

256

Instruction

BSETI

Z indicates the test result.

Specify the size for the read-modify-write operation.

U.S. Patent Apr. 6, 1993 Sheet 119 of 213 5,201,039

Fig. 237:
“'ZfYT
BCLR1:G offset/EaR,base/EaMfi
110100RR ..EaR... 101001BB . .EaMfi,

BCLRI:E offset/#ib,base/EaMfi

10111111 «o#ib... 101001BB .. EaMfi.
BB:

Specify the size for the read-modify-write operation.

Fig. 238:
258
Instruction F X |V IL M |2z
BCLRI - J=J= 1= |- |+

Z indicates the test result.

U.S. Patent Apr. 6, 1993 Sheet 120 of 213 5,201,039

Fig. 239:
/259
CS!I comp/RMC,update/EaR,dest/EaMiR
110101RR ..EaR... 00 | RMC. |00 . .EaMiR.

RR: Size for comp, dest and update

Fig. 240:

’,fEEGC)

Instruction F X |V IL |[M |2Z
Cs1 i b B i B B

Z indicates that the update operation is successfully

terminated.

U.S. Patent

Fig. 241:

Apr. 6, 1993

Sheet 121 of 213

5,201,039

Fig. 242:

/ZGI
LDC:G src/EaR,dest/EaW¥%

110100RR ..EaR... 100110WW . EawWX..
LDC:E src/#ib,dest/EaW%

10111111 .. #ib... 100110WW ..EaWX..

/262

Instruction F (X |V IL |[M]2

LbC * |# |= |* |* |¥ | « 1f dest is PsW

U.S. Patent Apr. 6, 1993 Sheet 122 of 213 5,201,039

Fig. 243:

/263
STC src/EaRX,dest/EaW

11011000 .+EaRX.. 101010wWw ..EaW,..

W T T W . I N T T S S S N B G T S | b N P R I R SN

Fig. 244:

Instruction |F X [V |L [M |2
STC - 11 1-[-

U.S. Patent Apr. 6, 1993 Sheet 123 of 213 5,201,039

Fig. 245:
265
LDPSB src/EaRh /
11011100 ..EaRh..
Fig. 246:
8 266
Instruction FIX IV L [M |2
LDPSB * [+ [= [+ [= [*

Set by the instruction.

U.S. Patent Apr. 6, 1993 Sheet 124 of 213 5,201,039

Fig. 247:
67
LDPSM src/EaRh Vs 2
11011101 _-EaRh..
Fig. 248:
/268

Instruction F [X |V L |IM |2
LDPSM -I=-1- -]- |-

U.S. Patent Apr. 6, 1993 Sheet 125 of 213 5,201,039

»

Fig. 249:
/269
STPSB dest/EaWh
11011110 . .EaWh..
Fig. 250:
/270

Instruction F IX jV |L [M
STPSB - d=q=- |- |-

U.S. Patent

Apr. 6, 1993 Sheet 126 of 213
Fig. 251:
271
STPSM dest/EaWh vd
11011111 . .EaWh, .
Fig. 262:
/272
Instruction X L 4

STPSM -

5,201,039

U.S. Patent Apr. 6, 1993 Sheet 127 of 213 5,201,039
Fig. 253:
273
LDP:G src/EaR,dest/EaW¥% '{
110100RR ..EaR... 100111ww . .EaWX..

LDP:E src/#ib,dest/EaWX

10111111 . #ib... 100111ww . .EaWX..
Fig. 254: "(zrpq
Instruction F X [V L M]z

LDP

U.S. Patent

Apr. 6, 1993

Sheet 128 of 213

5,201,039

Fig. 255:
/275
STP src/EaRX,dest/EaW
11011000 ..EaRX.. 101011ww ..EaW...
Fig. 256: /276
Instruction F |X M

STP

Z

U.S. Patent Apr. 6, 1993 Sheet 129 of 213 5,201,039

Fig. 257:

277
/

JRNG:E vector/#ib
10111110 ..#ib...

i A 4 A 1 i A '\ A A w3 L L

JRNG:G vector/EaRh'M

1011101P ..EaRh'M
Fig. 258:
’(278

Instruction |F (X |v |[L IM |2

JRNG - - 1-1-1-1-
Fig. 259:

- JRNGVB
/279
JRNGVB

- W
)
[or)

8

] I S T . | L i 2 8 & L 2 A X LA 1 3 i 1 4 3 1 |

U.S. Patent Apr. 6, 1993 Sheet 130 of 213 5,201,039

Fig. 260:
/280
=|VR XJT ==z== =====c== =J1AR =zz== =z======
veC -

VR (Vector RNG):Destination ring No. newly jumped by the

execution of the JRNG instruction

AR (Access RNG):Outermost ring No. where the execution of

the JRNG instruction is permitted.

VX (Vector XA):New XA after the JRNG instruction is

executed. This bit is fixed to 0.

VPC {Vector PC):New PC after the JRNG instruction is

executed.

U.S. Patent Apr. 6, 1993 Sheet 131 of 213 5,201,039

Fig. 261:

ta s} by JRN New Ri

t Low order address

28| AN

PC of next instruction Stack frame by JRNG
SP of old ring

PSW }~ ¢~ SP after JRNG is exected

¢ SP before JRNG is executed

¥ High order address

Fig. 262:

Stack frame where an EIT occurs when using JRNG (Correct)

1 Low order address

282\ PSW & SP after an EIT occurrence
FORMAT/VECTOR Stack frame due to an JRNG
PC of JRNG instruction error such as RTVE
‘Additional informsation, etc.' ¢ SP before JRNG is executed

t High order address

U.S. Patent Apr. 6, 1993 Sheet 132 of 213 5,201,039

Fig. 263:

tack frame if an EIT occurs when usi In

283\1 Low order address

PSW - ¢« SP after an EIT occurrence
FORMAT/VECTOR — Stack frame due to an JRNG error
PC of JRNG instruction such as RTVE

!Additional information, etc.

PSl.i n T sStack frame due to JRNG where an
PC of next instruction ey s
. error occurs (actually, it is not
SP 4 formed).

¢« SP before JRNG is executed

¥ High order address

Fig. 264:

ack frame when jumped to the sa i when

284
1 Low order address /

PSW]— < SP after JRNG is executed

PC of next instruction Stack frame using JRNG

[T— initSp
¢ SP before JRNG is executed

¥ High order address (initSP)

U.S. Patent Apr. 6, 1993 Sheet 133 of 213 5,201,039

Fig. 265:
RRNG /285
00111011 1101P119
Fig. 266:
286
Instruction |F |X |V IL M {Z
RRNG * |x |* [[[z

Return from the stack.

U.S. Patent Apr. 6, 1993 Sheet 134 of 213 5,201,039

Fig. 267:

1 Low order address

287 PSW 4 4 SP after RRNG is executed
\\ FORMAT/VECTOR and an RFE occurs
- Stack frame by REF (FORMAT/VECTOR
PC] and PC represent REF and RRNG
instructions, respectively.)
« SP before RRNG is executed
PC |- Stack frame for a troubled
SP] inter-ring call

PSW where an RFE occurs.

+ High order address

* SP resains unchanged when an inter-ring call is performed.

%+ In PSW, the value before the RRNG instruction is executed
is rewritten by EITVTE of RFE and RTV. PRNG represents
the ring which executed the RRNG instruction. PSW saved
in the stack (PSW where RFE occurs) does not affect PSW

after an EIT occurs.

Fig. 268:

1 Low order address

PSW <~ SP before RRNG is executed
Odd number PC }- Stack frase for a troubled
288 SP inter-ring call
H . Next word 4 <« SP before an inter-ring call

¢ High order address is performed

U.S. Patent Apr. 6, 1993 Sheet 135 of 213 5,201,039

Fig. 269:

1 Low order address

PSW < SP after RRNG is executed
289 and an OAJE occurs
A FORMAT/VECTOR Stack frame by OAJE (FORMAT/VECTOR
PC = 0dd number PC and PC represents an OAJE and

troubled odd nusber PC,
respectively.)

i Next word i < SP before an inter-ring
R e L e et ! call is performed

+ High order address
* SP is restored from the stack when an inter-ring call is

EXPC = PRNG instruction

performed.

* In PSW, the value once restored from the stack is
rewritten by EITVTE of an OAJE. PRN represents the ring
when an inter-ring call is performed. In other words,
unless PRNG is rewritten through software, the value is
the same as that of PRNG before the RRNG instruction is

executed.

U.S. Patent

Apr. 6, 1993

Fig. 270:

Sheet 136 of 213

TRAPA vector/#4:z /290
00 | #4z. |11 1101P101
Fig. 271: /29|
Instruction X |V |JL M |Z

TRAPA

5,201,039

U.S. Patent Apr. 6, 1993 Sheet 137 of 213 5,201,039

Fig. 272:

TRAP /292

00ccccll 1101P100

[S L 1 il L A " | i 1 il

ccce represents conditional specifications.

Fig. 273:
29l

Instruction F {X |V IL |[M 12z
TRAP - = 1= |- 1= |-

U.S. Patent Apr. 6, 1993 Sheet 138 of 213 5,201,039
Fig. 274:
REIT /294
00101111 1101P110
Fig. 275:
/295
Instruction FIX |V IL [M {2
REIT x s = [[(=

Return from the stack

Fig. 276:

1 Low order address

296
/

PSW

FORMAT/VECTOR

PC

PSW

FORMAT/VECTOR

PC

Additional inforsation, etc.]| -

¢~ SP after REFT is executed

and an RSFE occurs
- Stack frame by REF (FORMAT/VECTOR
and PC represent as RSFE and REIT
instructions,respectively.)
¢« SP before REIT is executed
—~ Troubled stack frame

¥ High order address

U.S. Patent Apr. 6, 1993 Sheet 139 of 213 5,201,039

Fig. 277:

WAIT imask/#ih
Vs 297

00001111 1101-110 | #ih.......

i N SN N U S S | A 2 4 1 2 1 WS T U T U SIS SN NN D SR SN D S S 1
-

Fig. 278:

Instruction F |X]V IL M |Z
WAIT - 1= 1- |- 1- |-

U.S. Patent

Apr. 6, 1993 Sheet 140 of 213 5,201,039

Fig. 279:

/ 299
LDCTX ctxaddr/EaA'A
10xx0110 ..EaA'A,

XX

XX

XX

XX

XX

Specify the space where CTXB is placed.

00 Logical space (/LS)
= 01 Control space (/CS)
= 10 reserved

= 11 reserved

Fig. 280:

/300

Instruction FIX |V IL M]|Z

LDCTX 1= I- |- |- |-

U.S. Patent Apr. 6, 1993 Sheet 141 of 213 5,201,039

Fig. 281:

STCTX /301

00xx0111 1101P110

A1 i A il A A A - 'l | 4 'l

xx Specify the space where CTXB is placed.
xx = 00 Logical space (/LS)

xx = 01 Control space (/CS)

xx = 10 reserved

xx = 11 reserved

Fig. 282:
302
/

Instruction F IX iV IL M]Z
STCTX - 1= i-1- 1= }-

U.S. Patent Apr. 6, 1993 Sheet 142 of 213 5,201,039

Fig. 283:
303
ACS chkaddr/EaR /
10000011 ..EaA...
Fig. 284: /304

~

Instruction F |[X |V L |[M
ACS - |- = 1* |* |*

U.S. Patent Apr. 6, 1993 Sheet 143 of 213 5,201,039

Fig. 2B5:
305
MOVPA srcaddr/EaA,deat/EaW!'S }(
11011000 ..EaA... 1010014W ..EaW!S,

Parameter for Register

Rl1: Base address on address translation table

Fig. 286:

/s 306

<
[

Instruction F IX
MOVPA % |- |% |- |-

5,201,039

U.S. Patent Apr. 6, 1993 Sheet 144 of 213
Fig. 287:
/307
V_flag F_flag Result
Normal termination 0 0 Physical address ==> dest
Error 1 0 dest does not change.
Page out(ST,PT,PAGE) 1 1 dest does not change.

"Error" also occurs if an ATE format error {(reserved ATE error)

occurs or if the areas not used are specified by ATE.

Fig. 288:

/308

Address General

Memory Access

MOVPA,LDATE, and

STATE Instruction

H'00000000 to Address translation

R'I{f1£1 1 using UATB

H’80000000 to Address translation

H fELLELL1 using SATB

Address translation

using R1

Address translation

using SATB

U.S. Patent Apr. 6, 1993 Sheet 145 of 213 5,201,039

Fig. 289:
/309
LDATE src/EaR,destaddr/EaA
llolol!R .‘EaRll' loptttoo .Osul..

p Specify the logical space to be purged.

p = 0: All the spaces (/AS)

1: Space containing LSID specified by RO (/58)

P

ttt ttt Specify ATE to be loaded.

ttt = 000: Load to PTE.

ttt

001: Load to STE.

Parameters for Register
RO: LSID of the logical space for TLB to be purged

{(only with /SS).

R1: Base address on the address translation table.

Fig. 290:

/BtO

<
[
=
™~

Instruction F IX
LDATE s |- |% |- |- |-

U.S. Patent Apr. 6, 1993 Sheet 146 of 213 5,201,039

Fig. 291: /3”
V_flag F_flag Result
Normal termination 0 0 ATE is set.
Pl = 0 in ATE being loaded 0 1 ATE is set,
Reserved ATE error for ATE 0 1 ATE is set.
being loaded
Reserved ATE error in the 1 0 ATE is not set.
middle level ATE
PI = 0 in the middle ATE 1 1 ATE is not set.

{page out)

V_flag indicates that the ATE set operation is unsuccessful due

to a reserved ATE error or page out.

U.S. Patent Apr. 6, 1993 Sheet 147 of 213 5,201,039

Fig. 292:
312
STATE srcaddr/EaA,dest/EaW!S 1/,
11011000 ..EaA... 100ttt+w ..EaW!'S.

ttt Specify ATE to be stored

ttt 000 Store from PTE.

ttt

001 Store from STE.

Parameter for Register

Rl1: Base address on the address translation table

Fig. 293:

/3l3

Instruction FIX [V |IL |M |2
STATE * |- |* |- |- |-

U.S. Patent Apr. 6, 1993 Sheet 148 of 213 5,201,039

Fig. 294:
/3I4
V_flag F_flag Result
Normal termination 0 0 ATE ==)> dset
PI = 0 in ATE being read 0 1 ATE ==> dset
Reserved ATE error for ATE 0 1 ATE ==> dset
being read

Reserved ATE error in the 1 0 dest does not

middle level ATE change.
Page out in the middle level 1 1 dest does not

change.

V_flag represents that the ATE read operation is unsuccessful

due to a reserved ATE error or page- out.

U.S. Patent Apr. 6, 1993 Sheet 149 of 213 5,201,039

Fig. 295:

PTLB / 315

00p11111 1101P110

| Al 1 4) A A Dl L

p Specify the logical space to be purged.

p = 0 All the spaces (/AS)

p = 1 Space containing LSID specified by RO (/SS)

Parameter for Register
RO: LSID of the logical spaced of TLB to be purged

{only with /SS)

Fig. 296:

Instruction F X |V IL M]2Z
PTLB ' =1- - 1-1- 1-

U.S. Patent Apr. 6, 1993 Sheet 150 of 213 5,201,039

Fig. 297:

/3I7
PSTLB prgaddr/EaA

000000+- 1111P111 O-pttt-- ..EaA...

A A A 4 il A L A i | A A A —h A A 'l 11 A A i y e AL A vl

p Specify the logical space to be purged.
p =0 All the spaces (/AS)
p =1 Space containing LSID specified by RO (/SS)
ttt Specify the logical address range to be purged.
ttt = 000 Purge the entry where all the logical addresses
(2731 to 212 bits) are matched (/PT).
ttt = 001 Purge the entry where the 231 to 2°22 bits of the
logical address are matched (/ST).
ttt = 110 Purge the entry where the 2°31 bit of the logical

address is matched (/AT).

Parameter for Register
RO: LSID of the logical space of TLB to be purged
{(only with /SS).

Fig. 298:

Instruction F X |V IL M)2
PSTLB - f= = 1= |- |-

U.S. Patent Apr. 6, 1993 Sheet 151 of 213 5,201,039

Fig. 299:
/320 / 319
‘} Meaniﬁ&
00 No address translation, no memory protection

01 TRONCHIP standard address translation and memory

protection <<LA>> (4 KB page ring, 4 rings)

10 No address translation, simple memory protection using
address <<L1R>> (Memory area classification by MSB of

address, 2 rings)

11 Reserved
Fig. 300:
Vs 321 {322
AT Meaning
00 No address translation, no memory protection
01 Reserved
10 No address translation, simple memory protection using

only address <<LIR>»>

(Classification of memory area by MSB of address, 2
rings)

11 Reserved

U.S. Patent Apr. 6, 1993 Sheet 152 of 213 5,201,039

Fig. 301:
CHIP32 CHIP64
1 0000000000000000
323
—_—
4 0000000080000000
00000000
80000000 1——-0“? at this 1 2000000000000000
j___point 1
] [}
FEEFfffr 4 b
l
|
]
!
! : Shared Region 4 LE££££££80000000
| : Unshared Region | i
L eErreeferreares
Fig. 302:
CHIP32 CHIP64 ,
324~ + 8000000000000000

(-)

[
!
]
1
]
|
80000000 4 ££££££££80000000
!
'
!
'

T
|
[}
(-) '
0 1+ 0
(+) >
33388440 T 000000007 f £ 11T

it Shared Region (+)
I: Unshared Region

b

- 1L EE0fffefqes

U.S. Patent

Fig.

Fig.

303:

Apr. 6, 1993

Sheet 153 of 213 5,201,039

/325

Instruction

ry

>
<
| ol
=

™~

Comment

MOV
MOVU
PUSH
POP
STM
LDM
MOVA
PUSHA

LI I I B B IR R
I I O I N B B 4

[20 I O B R B AR

304:

P 326

Instruction

Comment

CMP
CMPU
CHK

1
'

+ s
1

-+

L and 2 serve to compare a
value with the low bound value.

U.S. Patent Apr. 6, 1993 Sheet 154 of 213 5,201,039

Fig. 305:
,(:527
Instruction| F] X| V[L| M| 2{Comment
ADD =1 +| +] +| +| +
ADDU -1 4] #| O] +| +
ADDX =1 +) +] +| +]| ¢
SUB =] #] #] +| +{ +
SUBU =]] #| +] +] +
SUBX =1 +1 +| +| +| +
MUL -1 =] +] +#] +| +
MULU =1 =| +]| O] +] ¢
MULX %| =1 O] Of +] +|M and Z are changed depending
on dest. F is changed if tmp =
DIV -{ O] +| +| +
=] 1] O] 1] O}These flag statuses occur if
(minimum negative value)s (-1).
-1 -] 1] -] -] -|Division by zero.
DIVU -1 ~-| O] O] +] +
-{ -1 1} -} -| ~|Division by zero.
DIVX ¥| -| 0] 0f +4| +|/M and Z are changed depending
gn dest. F is changed if tmp =
-1 -1 1} -| -| -|An overrflow occurrence in
dest.
-} -} 1} -] -] -|Division by zero.
REM- -1 -1 O] +] +} ¢
-1 -} 0] -] -] -|Division by zero.
REMU -] -] O] O] +] +
-] -1 0] -] -} -{DPivision by zero.
NEG =] =1 +] +] +| +
INDEX -] -] +] +| +| +|M and Z are changed depending
on xreg.

U.S. Patent

Fig.

Fig.

Fig.

5,201,039

Apr. 6, 1993 Sheet 155 of 213
306:
/',I3E§3
Instruction| F| X| v{ L] M| Z2|{Comment
AND =] =] -} - +] +
OR -1 = -] -1 +{ +
XOR -F =1 =] - +4] ¢+
NOT -1 =f =] -| ¢|] ¢
307:
114325?
Instruction| F{ X| V| L] M| Z|{Comment
SHL N P I BN N
SHA HEIRIEIEIK:
ROT . ~1 4] =] -| | ¢+
SHXL ~1 #] =4 -] 4| ¢+
SHXR = 4] ~ -] ¢| +
RVBY -l -] -} - -{ -
RVBI -{ -} -} ~-{ -] -
308:
/330
Instruction| F| X| Vi LI M Z‘COIIent
BTST =l =| -{ -} -] +|Z indicates the test result.
BSET =1 = =| - -| +|2 indicates the test result.
BCLR =] =1 -§ -] -{ 4|2 indicates the test result.
BNOT =| =1 =1 -1 -| 4|2 indicates the test result.
BSCH -1 -] ¥ -| -| -|V indicates that the search
operation is unsuccessfully
terminated.

U.S. Patent Apr. 6, 1993 Sheet 156 of 213 5,201,039

Fig. 309:

Ve 331

-<
[
=
[]

Instruction{ F| X Comment
BFEXT
BFEXTU
BFINS
BFINSU -
BFCMP
BFCMPU

)
L+ 44+
P N
L+ 44+
YR

Fig. 310:

{<- =->IBit Field being
src: 555585555555558SS Inserted
base to offset: DDDDDDDDDDDDDDDDDDBBBBBBBDDDDDDD
loffsetiwidthi 332

base

U.S. Patent

Fig.

Fig.

Apr. 6, 1993 Sheet 157 of 213 5,201,039
3i:
,K’EESB
Instruction{ F| X| V{ L{ M| Z|Comment
BVSCH -] -1 *§ -] -| -]V indicates that the search
operation is unsuccessfully
terminated.
BVMAP - - -1 -1 -
BVCPY -l -1 -t -1 -] -
BVPAT - -1 -] -] -
312:
34
Instruction| F| X{ V{ L] M| Z{Comment ‘
ADDDX -] 4} +} O] +] ¢+
SUBDX -1 4] +| 4| #] +
PACKss “1t-1-1 - -1 -
UNPKss -l -l - -{ -1 -

U.S. Patent Apr. 6, 1993 Sheet 158 of 213 5,201,039

Fig. 313:

335
/

Instruction{ F| X| V}{ L] M| Z|Comment

SMOV x| -| | -| x| -

SCMP #| *| x| 4| #] +]X,Land Z are used to compare
the last element.

SSCH %| -| x| -| #| -|V indicates that the search
operation is unsuccessfully

. . terminated.
SSTR -1 -1 -t -1 -} -
Fig. 314:
336

Instruction| F{ X{ v] L{ M| Z|Comment

QINS - -1 -1 -| -] *

QDEL -] - x| -] ~-| =%

QSCH #| -1 x| -| %| -]V indicates that the search

operation is unsuccessfully
terminated.

U.S. Patent

Fig.

Fig.

Fig.

315:

Apr. 6, 1993

Sheet 159 of 213

Instruction

)
¢
-
[

~

Comment

BRA
Bcc
BSR
JMP
JSR
ACB
SCB
ENTER
EXITD
RTS
NOP
PIB

316:

/338

Instruction

Comment

BSET1
BCLR]
CSI

2 indicates the test result.
Z indicates the test result.
Z indicates that the update
operation is successfully
terminated.

317:

/339

Instruction

-
>¢
-
[

™~

Comment

LDC

STC
LDPSB
LDPSM
STPSB
STPSM
LDP
STP

LI I R N N B BN N]
L2 T IR B AR N IR NN |
[0 I I I BN BN AN 2N |
LS B B BN Y 3}

F Y 100 %1 wy

v 1) %1 8

If dest is PSW

Set by the instruction.

5,201,039

U.S. Patent

Fig.

Fig.

318:

Apr. 6, 1993

Sheet 160 of 213 5,201,039

I‘r3¢N3

Instruction

n

e
-
r

[

Comment

JRNG
RRNG
TRAPA
TRAP
REIT
WAIT
LDCTX
STCTX

L1 #0181

170 1 %1 %
LY 1 %1 1 #1
L B B N B B 3 |

[R B B B A |

L1 %11 w1

Restored from the stack.

Restored from the stack.

319:

’,294I

Instruction

-y

>
-
[and

Comment

ACS
MOVPA
LDATE
STATE
PTLB
PSTLB
PLCH
PSLCH

11 1) %8

LI I B B B B 3 |

[I I R B I B

LI T I I IO I T I 4

(2 I R I I N A N)

U.S. Patent Apr. 6, 1993 Sheet 161 of 213 5,201,039

Fig. 320:

<Entrance of Subroutine>

1, Save the current PC and set the new PC.

2. Save the current FP and set the new FP.

3. Keep the area for local variables.

4. Save the registers.

TRONCHIP

1 JSR

ENTER

- e o~ -

<Exit of Subroutine>

5. Restore the register.

6. Release the local variables and restore the FP.

7. Restore the PC and return.

8. Release the parameters in the stack.

TRONCHIP

1
EXITD

]
!
|
|
|
|
|
\

T EXITD #0

ADD **%,SPp

P R S

U.S. Patent

Fig. 321:

HIGH
ADDRESS

343\

LOw
ADDRESS

Fig. 322:

<Calling

PUSH

PUSH
PUSH
JSR
ADD

Apr. 6, 1993 Sheet 162 of 213 5,201,039

parameters

< SP before executing JSR

old PC

¢ SP before executing ENTER

old FP

— FP after executing ENTER

local varjables

b aliada s il .T.- - - ——

saved regsiters

< SP after executing ENTER

-.-.n.-ai-—-L.-.-L.-JL

side>

paraN

para2
paral
sub
#N*4,SP

(STACK TOP)

,(ﬁ3¢h4

<Called side>

sub: ENTER #area,reglist
|
{ Parameters and local variables
| are accessed by @(disp,FP).
t
{

i
EXITD reglist,#0

U.S. Patent Apr. 6, 1993 Sheet 163 of 213 5,201,039

Fig. 323:
345
<Calling side> <Called side>
{ sub: ENTER #area,reglist
|]
PUSH paraN | Parameters and local variables
| | are accessed by €(disp,FP).
PUSH para2 |
PUSH paral i
JSR sub

|
| EXITD reglist,#N%4

U.S. Patent Apr. 6, 1993 Sheet 164 of 213

Fig. 324:

Program Example (Static Scope)

e

— procedure procO {Lexical Level 0};

var var0; .
procedure proclA {Lexical Level 1};
var varla;

(— procedure proc2A {Lexical Level 2};
var var2a;
begin

— end

~ procedure proc2B {Lexical Level 2};
var var2B;
begin

— end

befin {procedure proclA}
— end '
— procedure proclB {Lexical Level 1};
var varlB;
— procedure proc2C {Lexical Level 2};
var varaC;
begin
— end
— procedure proc2D {Lexical Level 2};
var var2D;
begin
— end
begin {procedure proclB}

LI A 3

— end
begin {procedure proc0)

end

5,201,039

U.S. Patent Apr. 6, 1993

Fig. 325:

Sheet 165 of 213 5,201,039

"/'é947

<<Subroutine Call Status>>

<<Display>>
FP R13 R12 R11 R10
lev=X lev=0 lev=1l lev=2 lev=3

proc0
\j
[lev. up, FP = RI12]
proclA
\{
{lev. up, FP = R11]
proc2B
\ |
[lev. same, FP = R11]
proc2A
¢
[lev. down, FP = R13]
procO(recursion)
\j
[lev. up, FP = R12]
proclB
\
{lev. up, FP — R11]
proc2D

t

proc0 proc0 - - -
(var0)

proclA procQ proclA
{varlA)(var0)

proc2B proc0 proclA proc2B
(var2B)(var0) (varia)

proclA proc0 proclA proc2A
(var2A)(var0) (varla)

proc0%* procQ* - -
(var0s)

proclB procO* proclB -
(variB){var0%)

proc2D procO* proclB procZD
(var2D)(var0*)(varlB)

U.S. Patent

Fig. 326:

H’80000000

H’f{f {8000

H'00000000

H'00000180

H' 00000400

H’00000800

H'00000c00

H’00001000

H'00008000

HILLLf1Ef

Apr. 6, 1993

Sheet 166 of 213

Control Space /348

| l

Context Saving
(Extension)Portion

— !

CPU: General Purpose

FPU: General Purpose
Registers

Extension

L

T

Context Saving Portion!é-

!

Registers —-

!

D L D U0 D T YD S R D PG OB G S W 96 WS O WP W M Y i D A R AR W 6 S Y W

FPU: <<LV» Ie——

1]

)
L

5,201,039

--LDCTX/CS,

STCTX/CS

CPU: Control Registers|¢«—+—LDC,STC

U.S. Patent Apr. 6, 1993 Sheet 167 of 213 5,201,039

Fig. 327:
/349
PSS . PSM PSB
Fig. 328:
/350
SEEXRERY *x2x | IMASK EXTXEREX PTIIIII L
Fig. 329:
351
SMRNG| **%%% FTIIIIIL PYYITIIL FYTYTILL
Fig. 330:
/352
CTXBB ===
Fig. 331:
/353
TEEEXREE SEEXEEES SREERRIX £x3% D1

N U S N S W Y —rt Ak) i A X ¢ 0 1 _ 1 b S] it 4

U.S. Patent

Apr. 6, 1993 Sheet 168 of 213 5,201,039
Fig. 332:
/354
------------- DCE S — CTXBFM
Fig. 333: /355
t 2333232 X%%% DCE ¥XEEEXXXE *EBXKEXX
Fig. 334:
356
YT TEERAEAS YTITI1) CTXBFM

L A A] i AL

i Aok 21 {

A i il 1 A A il

. il 1 L

L L A

U.S. Patent Apr. 6, 1993 Sheet 169 of 213 5,201,039
Fig. 335:
£
EITVB ==z
Fig. 336:
/38
JRNGVB ==E
Fig. 337:
739
SPO

Stack Pointer for ring0

SP1 (ATOM does not provide SP1.)

L ¥ A L 1 i il i vl] § S| 1

) | 1 . | 1 i

Stack Pointer for ringl

SP2 (ATOM does not provide SP2.)

—tede b b A A AN A3 3 3 1 & 4 4 & & 0 2 2 5 .2 2 3 A

e il dnad.

Stack Pointer for ring?2

SP3

e A 2 2 & & 2 4 .2 2 A 3 3 3 2 A & A 2 A _1

(] A A L A

Stack Pointer for ringl

\360

SP0 to SP3 are stack pointers used for rings 0 to 3.

U.S. Patent | Apr. 6, 1993 Sheet 170 of 213 5,201,039

Fig. 338:

Y4 36l

Ao 2 4 4 A A 2 1 i A 4 4 0 1 5 1 1

L

'] A A A A | ' 1 '

Stack Pointer for Interrupt

Fig. 339:
/362
10ADDR . szz=zsz======
10 Address
‘10MASK =zs==ss=s====
363
Fig. 340:
/36 I
' STB =z JDLL PI
Fig. 341:
STB ==)DLL PI
Fig. 342:
736
LS1D

U.S. Patent Apr. 6, 1993 Sheet 171 of 213 5,201,039

Fig. 343:
l’r3fﬂ’

<<The stack is directly used.>»

Low Order Address 1

CTXB ————>CSW [32bit]
SPO [32bit] ————>PSW[32bit]
SP1 [32bit) *1,%2 FORMAT/VECTOR[32bit)
SP2 [32bit] *1,%#2 PC[32bit]

SP3 [32bit] *1

UATB[32bit] %2 {(EIT additional information)
LSID[32bit] %3 [32 x n bit]

R14 [32bit] *4

(Used for saving data in the co-processor register) *5

(Used for OS ~ process ID , task ID , etc.)

High Order Address +

Fig. 344:
368

SHEERIE:

U.S. Patent Apr. 6, 1993 Sheet 172 of 213 5,201‘,039

Fig. 345:
/"3f§3
VS ==VX == VAT! === VD VIMASK ==s=z==z== s===s==2=
_
VPC
Fig. 346:
T Low orpER ADDRESS » 370
MSB (+0) - (41) (+2) (+3) LSBS
« SP
AFTER
OLD PsSW EIT PROCESS
. EXECUTION
EITINF | FORMAT TYPE szzzazs VECTOR
OLD PC
: ALl L] L) :
! ADDITIONAL INFORMATION ! «~SP BEFORE
! 'EIT
]]
; + ~ —{ GENERATION

GH ORDER ADDRESS

tli

U.S. Patent Apr. 6, 1993 Sheet 173 of 213 5,201,039

Fig. 347:
i PSW I
iForlatETypeEOOOOODOEVector! /37]
L Pe |
| Other Informstion
PSW: PSW when EIT is detected.
Format: Stack format number (8 bits)
Type: EIT type {8 bits)
Vector: EIT vettor number (9 bits)
PC: Execution restoration address after exiting
from the EIT handler.
Fig. 348:
73
Format No.0 Format No.1 Format No.2 Format No.3
| PSK i psw || PS¥ I PSW |
iFornat and etctiiFornat and etc.ii?ornat and etc.iiFornat and etc.j
| el pc PC | PC |
‘ ‘i EXPC i47 EXPC 1i7 EXPC j
101NF i r SP1 |

Error Data

111 1

|
I Error Addr
|

=3=zss== %] MEL MEC

] 1 .1 ke ' A

- 0
"
o]
"
-
o
-
"
b
— TR
>
-3
wn
"
[]

U.S. Patent Apr. 6, 1993 Sheet 174 of 213 5,201,039
Fig. 350(a) 374
No. Name Content Class Type|Stack
Q00 {FFFFFOOO [R] Reset interrupt(%) Suspend 0| None
01 |FFFFF008 [DE1 DBG external interrupt Completion 3 3
02 |FFFFF010|DTRA DBG trap instruction Completion 1 3
03 |FFFFF018 | DDBE DBG debug exception Cowpletion 2 3
04 |FFFFFOZ0 | DAVE DBG access violation Reexecution 4 3
05| FFFFF028 Reserved
No. [Addr |[Name Content Class Type|Stack
06 |+030 |[Reserved]
"n "y
OF{+078 |Reserved
10|+080 |DBE Debug exception Completion 2 -2
11+0BB |BAE Bus access exception Completion 1 1
(store buffer)
Bus access exception Reexecution | 1
{except store buffer)
12}+090 |ATRE Address translation Completion 1 1
exception{store buffer)
Address translation Reexecution 4 1
exception
(except store buffer)
13]+098|Reserved|Page out exception
14]1+0A0|PIE Reserved instruction Reexecution 4 0
exception
15|+0ABIPIVE Privileged instruction Reexecution 4 0

U.S. Patent

Fig. 350

16
17

18

19
1A
1B
1C

1D
1E
1F
20
21
"y
2F
30

31

{b):

+0BO
+0B8

+0CO

+0C8
+0D0
+0D8
+0EC

+0E8
+0F0
+0F8
+100
+108

+178

+180

+188

+1B8

+1C0
+1C8

REE
RSFE

Reserved

OAJE
IDE
I0E

Reserved

L1E
Reserved
TRAP
TRAP
TRAP

"y

TRAP
CI1E

CIE
L1 ."

ClE

Reserved

Reserved

Apr. 6, 1993

374
r

violation exception
Reserved function exception

Reserved stack format
exception

Ring transition violation
exception

0dd address jump exception
lZero divide exception
I1l1legal operand exception

Decimal illegal operand
exception

<<L1>> function exception

Conditional trap instruction
Trap instruction

Trap instruction

Trap instruction

Co-processor instruction
exception

Co-processor instruction
exception

Co-processor instruction.
exception

Co-processor execution
exception

Co-processor copmand

Sheet 175 of 213

Reexecution

Reexecution

Completion
Completion

Reexecution

Reexecution

Completion
Completion

Completion

Completion

Reexecution

Reexecution

Reexecution

5,201,039

4 0
4 0
1 2
1 2
4 0
4 0
1 2
1 2
1 2
1 2
4]
4 0
L] 0

U.S. Patent

Fig. 350

3A

3F
40

41
"'"
46

47

"‘"

4E

7F
80

{c):

+1D0

+1F8

+200

+208

+230

+238

+240

+277

+278
+280
+288

+2F0
+2F8

+300

+3F8

+400

Reserved

"I“
Reserved

FVE]

FVEI
e

FVET

Reserved

“l!l

Reserved

Reserved
)]

D1

"

D1
Reserved
Reserved

ll'"

Reserved

El

Apr. 6, 1993

Fixed vector

Fixed vector

Fixed vector

Fixed vector

Fixed vector

Fixed vector

Delayed interrupt exception

Delayed interrupt exception

Delayed interrupt exception

Sheet 176 of 213

374
/

exception

external
‘interrupt

external
interrupt

external
interrupt

external
interrupt

external
interrupt

external
interrupt

Delayed context exception

External interrupt

Completion

Completion

Completion

Completion

Completion

Completion

Completion

5,201,039

3 0
3 0
3 0
3 0
3 0
3 0
3 0

U.S. Patent

Fig.

350

wpe

FF
100
"o

IFF

{d):

+7F8
+800

+FF8

Apr. 6, 1993

"l"

EI

Reserved

"|I|

Reserved

External interrupt

374
[/

Sheet 177 of 213

Completion

5,201,039

5,201,039

Sheet 178 of 213

Apr. 6, 1993

U.S. Patent

JLIVH NO1LV33dO , LTVH NO1lvdado
J0¥Y¥3 WILSAS Y0oHYa WALSAS <== [LIJ ut LIA
4 4
{(*Buraws Ruranp s8InH00 JOJJII UIYM) {*8utaws Furanp SINOI0 J0IID UIYN)
A
4 1dS/0dS Aq MSd ‘Od Bulawg
1d$/0dS 49 MSd ‘Od Bulawg (uot3daoxa
vdvidl Jo 113 Suyjaeis Ino 33ed-*8°3) 113 Suryamyg <== SSI004d 113
2 4
A *£171929394402 UO1300JI18UT
N 23N03X33d 07 JaIpdo Ul HNAP
4 Aq poAvs MSd ‘Od 199(ay
4
“ (“8urAws 3ulanp SJINOD0 JOJAI UIYN)
4
4
. h []
4 1dS/0dS Aq MSd ‘Od DNIAVS e NOILNDAXA
4 ONISS300Ud ONUL NOILONYULSNI
4
{vdvil Aq 0 Juta Furaaqua ‘ased uy| [ONdf Aq QRula Burdaquo ‘ased U]
(1se "84

Sheet 179 of 213

U.S. Patent Apr. 6, 1993
Fig. 352:
PC START ADDRESS OF El PROCESS
HANDLER
PSW

SET BY EITVTE OF EIl

T LOW ORDER ADDRESS

STACK | PSW=SET BY EITVTE OF TRAPA
EITINF:El
378 "\ PC:START OF TRAPA PROCESSING

HANDLER

PWS:VALUE BEFORE TRAPA
INSTRUCTION EXECUTION

I\

EITINF:TRAPA

INSTRUCTION

PC:NEXT ADDRESS OF TRAPA

EXPC

lHlGH ORDER ADDRESS

>

5,201,039

r 376

’(3577

SP AFTER TRAPA AND
<¥:El PROCESSING

INFORMATION SAVED BY EI
<:=SP AFTER TRAPA PROCESSING,
BEFORE EI PROCESSING

INFORMATION SAVED BY TRAPA

<F=SP BEFORE TRAPA AND E]
PROCESSING

U.S. Patent

Fig. 353:

Apr. 6, 1993

Sheet 180 of 213

5,201,039

/379

TYPE IN EITINF
POPPED BY REIT INSTRUCTION

EIT TYPE ACCEPTED
JUST AFTER REIT INSTRUCTION

o D N

o1

o4

o LD D =

t
to 4 (Not 2 to 4)
t

Fig. 354:
,380 Pt 38l
IMASK DI TO BE STARTED EXTERNAL INTERRUPT ALLOWABLE

0 — INT 0 (NMI)

1 DI O INT O (NMI)

2 DI 0 to 1 INT O to 1

3 DI 0 to 2 INT 0 to 2

4 DI 0 to 3 INT 0 to 3

5 DI 0 to 4 INT 0 to 4

13 DI 0 to 12 INT 0 to 12
14 DI 0 to 13 INT O to 13
15 DI 0 to 14 INT 0 to 14

5,201,039

Sheet 181 of 213

Apr. 6, 1993

U.S. Patent

LIy
|

(v ¥SvVl 3Lnd3X3 ‘IXAN) ¥I=I1q SV HOLvdSIa
40 1s3nd3¥ ‘SALVLS WSVI 40 IONVHO
ONISS300Ud T11VD WALSAS

LIgg—(uan3ad)——ov

219 *X10q1
ONISS300ud HOLVSIA

e

(uInyax) > |
1d 40 LyviS

Y

FI=MSVKI
Vdvdl Ad ONILYVLS

VI=USVRI
b1Id A9 ONILYVIS

ONISS3I00Ud TIVO WILSAS ONISS3004d HOLVdS1dA

<<S0>>

28¢ /

<<S0>»>

(1192 wa384s)

Ydvil

SI=USVNI SI=)SVNWI

<<H ASVID>><KV NSVL>>

cce b1

U.S. Patent Apr. 6, 1993 Sheet 182 of 213 5,201,039

383
Fig. 356: .l(
CCTASK A>>CCTASK B>> <<OS>> <<EXTERNAL INTERRUPT <<OS>>
PROCESSING>>
DISPATCH PROCESSING SYSTEM CALL PROCESSING
STARTING BY DI14 STARTING BY TRAPA
IMASK=15 IMASK=15 IMASK=14 IMASK=7 IMASK=7
]
(]
INTERRUPT -
(PRIORITY 7)°
]

TRAPA > ‘
{system call)
SYSTEM CALL PROCESSING
CHANGE OF TASK STATUS, REQUEST
OF DISPATCH AS DI=14
(NEXT, EXECUTE TASK A)

¢ RE{T
6 {return)
START OF DI 6 DELAY OF DISPATCH
-2 | € REIT
DISPATCH PROCESSING (return)

LDCTX, etc. ‘
6———-———(return)——ﬁElT

— - W P D T R —— T —— W Wi W W e v s > —
- o o s D O - S WD e P = - -

U.S. Patent Apr. 6, 1993 Sheet 183 of 213 5,201,039
Fig. 357:
7%
VALUE OF DCE MEANING
000 UNCONDITIONAL DCE REQUEST.
IF SM=1, STARTING DCE UNCONDITIONALLY.
001 (RESERVED)
010 (RESERVED)
011 (RESERVED)
100 DCE REQUEST STARTED WHEN RING 1 to RING 3.
101 DCE REQUEST STARTED WHEN RING 2 to RING 3.
110 DCE REQUEST STARTED WHEN RING 3.
111 NOT REQUESTED.
Fig. 358:
/385
D1 EXTERNAL INTERRUPT (EI)

DCE

BECOME PENDING
BY SMRNG VALUE

CONTEXT SUBORDINATE
RELATION BETWEEN

INTERNAL EVENT AND
CONTEXT (SOFTWARE)

BECOME PENDING
BY IMASK VALUE

CONTEXT STAND-ALONE
RELATION BETWEEN

INTERNAL EVENT AND
PROCESSOR (SOFTWARE)

BECOME PENDING
BY IMASK VALUE

CONTEXT STAND-ALONE
RELATION BETWEEN

EXTERNAL EVENT AND
PROCESSOR (HARDWARE)

Apr. 6, 1993 Sheet 184 of 213 5,201,039

U.S. Patent

ONISS3IO0¥d 1Ndlno/LNdNI

uanjaa

|
(1sS3Nd3¥ ON)

. ———— ————— -~ -

*LdNYYILN]I =

111=30d
uanlad J €=
13 h 300 ONILEViS
001=32Q ‘v $5300ud
| €
0=KHS
p8uyra 18uta ghuta

(T04INOD INdLINO/LNANI]

<HONISSIO0H¥d LJNYYIALNI TYNYILXI>>

oe/

<<¥ $8300ud>>

[Wv¥D0¥d ¥dsn])
<<V $S3004d>>

:65¢ 814

U.S. Patent Apr. 6, 1993 Sheet 185 of 213 5,201,039

Fig. 360 (a): 187
[00772727 ’(
CMP:L OORgRwRR 00.ShR..
MOV:L OORgWwRR O1.ShR..
MOV:S OORgRwWW 10.ShW..

*¥xx%% When CMP and MOV occurs simultaneously, 0 is allocated

to CMP, 1 to MOV.

AND:R OORgMwOO 1100RgRw
OR:R 00RgMwO1 1100RgRw
XOR:R 0ORgMw10 1100RgRw
MOVA:R OORgWP11 1100RERP +.....#d16......
MUL:R 0ORgMwO0 1101RgRw
DIV:R 00RgMwO1 1101RgRw

Other Instructions

(5) 00777717 110177272

(6) 007777277 111772727
[017727727

CMP:Q 010§3nRR 00.ShR!1

MOV:Q 01143nWW 00.ShW. .

ADD:Q 010#3nMM 01.ShM..

SUB:Q 01143nMM 01.ShM..

SHL:Q 01043nMM 10.ShM..

U.S. Patent Apr. 6, 1993 Sheet 186 of 213 5,201,039

Fig. 360 (b): | /387
SHL:C 011#3cMM 10,ShM. .
SHA:C 011#3cMM 1T.ShM..
CMP:1 010000RR 11.ShR'I#iR.......
ADD: I 010001MM 11.ShM.. ...o. #iMee.....
MOV:1 010010WW 11,ShW.. HiW. ...,
SUB: 1 010011MM 11.ShM..#iM.......
AND: 1 010100MM 11.ShM..#iM.......
OR:1 010101MM 11.ShM..#iM.......
XOR:1 010110MM 11.ShM..#iM.......
{RIE} 010111MM 11.ShM..#iM.

*xxxx Distinction between CMP and MOV, ADD and SUB is
carried out by 2°3 bit; among AND, OR, XOR, by 2°2 to 2°3 bit;

vhich is common with :I format and :G format.

[10722227
Bee:D 10cccc00 ,.4d8...
ADD:L 10RgMwO01 00,ShRw.
SUB:L 10RgMwO01 01.ShRw.
BSET:Q 10043201 10.ShMfg
BCLR:Q 10143201 10.ShMfq
BSETI:Q 10043201 11ShMfqi

BTST:Q 10143201 11.ShRfq

U.S. Patent Apr. 6, 1993 Sheet 187 of 213 5,201,039

Fig. 360 (c): ’(387
*¥%%%x Further bit allocation.

10777017 Having Ea

10xx0117? Having Ea (LDCTX)

10771117 Having imm8 or disp8

10001?1X ENTER:E,STM (Having register list)-

Enter:G in common
1001171X EXIT:E,LDM (Having register list)-

EXIT:G in common

Patterns of JRNG:E and JRNG:G, BSR:8, and JSR are commonized

as much as possible.

IMP 10000010 . .EaA...
ACS 10000011 ,.EaA...
POP 1001001 . .EaWL..
‘PUSHA 1010001S . .EaA...
PUSH 1011001R ..EaRL..
LDCTX 10xx0110 ..EaA'A.
{RIE} 10440111 . .EaA!A.
STM . 1000101¥ ,.EaWaL.LsWL......
LDM 1001101R ..EaRmL.LIRl......
JSR © 1010101P ..EaA...

JRNG:G 1011101P ..EaRh!'M

U.S. Patent Apr. 6, 1993 Sheet 188 of 213 5,201,039

Fig. 360 (d): ‘/,EQBY
ENTER:E looolllx .‘lib.'. .l‘...L!!xLl.l..l
EXITD:E 1001211X ..$ibees seese LXXLecess.
BRA:D 10101110 ..4#d8...

BSR:D 10101111 ..#d8...
JRNG:E 10111110 ..¢#ib...
(1)General# 10111111 ..#ib... ??7?727?? ,.Ea?...

(11727722
CMP:2 110000SS ..EaR!'l.

MOV:Z 110001WW . .EaW...
NEG 110010MM . .EaM...
NOT 110011MM ..EaM...

(2)General A 110100RR ..EaR... ??7???7?? ,.Ea?...
(3)General B 110101RR ..EaR... 7?7?7777 ..Ea?...

(4)General instruction particular

11011000 ..EaA... ?777?77?7,..Ea?...
{RIE} 11011001 $**x:x*x
{RIE} 1101101% ##x*xxxx
LDPSB 11011100 ..EaRh..
LDPSM 11011101 ..EaRh..
STPSB 11011110 ..Ea¥h..

STPSM 11011111 ..EaWh..

U.S. Patent Apr. 6, 1993 Sheet 189 of 213 5,201,039

387
Fig. 360 (e): ’/
coprocl 11108277 .. Ea?... $¥3%1X%3% SEsxk%%s
coproc?2 1111%%%% x38X%%8%

[(1)(2)General Instruction#/General Instruction Al
{(2) General Instruction A
110100RR ..EaR,.. 77?7?7777 ..Ea?...

(1) General Instruction #

10111131 ,.#ib... ?7?2?7?? ..Ea?... -
ADD:G 110100RR ..EaR... 000000MM ..EaM...
ADD:E 10111111 ,,#jb... 000000MM ..EaM...
ADDU:G 110100RR ..EaR... 000001MM ..EaM...
ADDU:E 10111111 ..#ib... 000001MM ..EaM...
SUB:G 110100RR ..EaR... 000010MM ..EaM...
SUB:E 10111111 ..#jb... 000010MM . .EaM...
SUBU:G 110100RR ..EaR... 000011MM ..EaM...
SUBU:E 10111111 ..#jb... 000011MM ..EaM...

s%2x%x Digtinction between signed and unsigned instruction is
carried out by 272 bit; which is coamon among ADD, SUB, MUL, DIV,
REM, CMP, MOV, BFCMP, BFINS.

ADDX:G 110100RR ..EaR... 000100MM ..EaM...
ADDX:E 10111111 ,.#ib... OO0100MM ..EaM...
ADDX:G 110100RR ..EaR... 000101MM ,.EaM.,.

ADDX:E 10111111 ..4#jb... O0010IMM ..EaM...

U.S. Patent

Fig. 360 (f):

SUBX:G
SUBX:E
SUBDX:G

SUBDX:E

AND:G
AND:E
OR:G
OR:E
'XOR:G
XOR:E
DCX:G

DCX:E

SHL:G
SHL:E
SHA:G
SHA:E
ROT:G
ROT:E
{RIE-X}

{RiE-X}

MUL:G

MUL:E

Apr. 6, 1993 Sheet 190 of 213 3,201,039

387
/

110100RR . .EaR... 00C110MM ..EaM...
10111111 ,.#ib... 000110MM ..EaM...
110100RR ..EaR... 000111MM ..EaM...
10111111 ..#ib... O00111MM ,.EaM...

110100RR ..EaR... 001000MM ..EaM...
10111111 ..#ib... 001000MM ..EaM...
110100RR ..EaR... 001001MM ..EaM...
10111111 ..#ib... 001001MM ..EaM...
110100RR ..EaR... 001010MM ..EaM...
10111111 ..#ib... 001010MM ..EaM...

110100RR ..EaR... 001011MM ..EaM...
10111111 ..#ib... 001011MM ..EaM...

110100RR ,.EaR... 001100MM ..EaM...
10111111 ..#ib... 001100MM ..EaM...
110100RR ..EaR... 001101MM ..EaM...
10111111 ..#ib... 001101MM ..EaM...
110100RR ..EaR... 001110MM ..EaM...
10111111 ..#jb... 001110MM ..EaM...
110100RR ..EaR... 001111MM ..EaM...

10111111 ..4ib... 001111MM . .EaM...

110100RR ..EaR... 010000MM ..EaM...
10111111 ..#ib... 010000MM ..EaM...

U.S. Patent

Fig. 360 (g):

MULU:G
MULU:E
DIV:G
DIV:E
DIVU:G

DIVU:E

{RIE-X}
{RIE-X}
REM:G
REM:E
REMU:G

REMU:E

Apr. 6, 1993

110100RR
10111111
110100RR
10111111
110100RR

10111111

110100RR
10111111
110100RR
10111111
110100RR

10111111

*¥*x¥¥ Patterns of REM, REMU; DIlV,

possible.

DCADD:G
DCADD:E
DCADDU: G
DCADDU:E
DCSQB:G
DCSUB:E
DCSUBU:G

DCSUBU:E

110100RR ..

10111111
110100RR
10111111

Sheet 191 of 213 5,201,039

’(Eﬂ37

‘IE&RIO. olooo]m ..Eg!.ll
'.’ib. L) olooolm * 'gm. e
.lEaRl.. OIOOIOMM lIEaM' []

.l!ibl.: oloolom ..Em!l‘
..EaR... 010011IMM ..EaM...

s #ib... 010011MM ..EaM...

l‘EaR.l. Ololo*MM '.Eml..
..!ib.ll ololo*m .IE&MI.'

..Eg!": olollom .IEaMO..
2 » .bl.‘ olollom llsml..

.'EaRI.. ololllm '.Ew.l‘
..!ibll. Ololllm ‘.EaMI'D

DIVU are commonized as much as

aRll. ollooom .’EaMOCI
..!ib'.. ollooom ..E‘M.Cl

..EaR... 011001MM ..EaM...
..#ib... 011001MM ..EaM...

110100RR ..EaR... 011010MM ..EaM...

10111111 ,.#ib... 011010MM ..EaM...

110100RR ..EaR... 011011MM ..EaM...

10111111 ..#ib... 011011MM ..EaM...

U.S. Patent

Fig. 360 (h):

{RIE-X}

{RIE-X]}

CMP:G
CMP:E
CMPU:G
CMPU:E
MOV:G
MOV:E
MOVU:G

MOVU:E

Apr. 6, 1993

110100RR ..EaR...
10111111 .. #ib...

110100RR ..EaR...
10111111 ..#ib...
110100RR ..EaR...

10111111 ..#ib...

IIOIOORR ® aR. s
]

10111111 ..#ib...

110100RR ..EaR...

10111111 ,.#jb...

Sheet 192 of 213

’(3§37

0111%*MM ,.EaM...

0111%¢MM . .EaM...

100000SS ..EaR!l.
100000SS ..EaR!l.
100001SS ..EaR!1.
100001SS ..EaR!1.
100010WW ..EaW...
100010WW . .EaW...
100011wWW ..EaW...

100011WW . .EaW...

$3¥xx Patterns of CMP, CMPU, BFCMP, BFCMPU, DCCMP, DCCMPU;

5,201,039

MOV, MOVU, LDP, LDC, BFINS, BFINSU are unified as much as

possible.

DCCMP:G
DCCMP:E
DCCMPU: G
DCCMPU:E
LDC:G
LDC:E
LDP:G’

LDP:E

110100RR ..EaR...

10111111 ,.#ib...
110100RR ..EaR...
10111111 ..#ib,..
110100RR ..EaR...

10111111 ..#ib...
110100RR ..EsR...

- 10111111 ..#ib...

100100SS ..EaR!].
100100SS ..EaR!'l.
100101SS ..EaR'].
100101SS ..EaR!'].
100110WW .. EaWX. .
100110WW . .EaWX..
100111%¥ . .EaWX..

100111WW . .EaWX..

s*x2% Distinction of the particular space (LDP and LDC) is

carried out by 272 bit, which is same with the case STP and STC.

U.S. Patent

Fig. 360 (i):

BSETI:G
BSETI:E
BCLRI:G
BCLRI:E
{RIE-X]}
{RIE-X]}
DCCMPX : G

DCCMPX:E

BSET:G
BSET:E
BCLR:
BCLR:
BNOT:
BNOT:

BTST:

M OO M O MmO

BTST:

BFCMP:G:R
BFCMP:E:R
BFCMPU:G:R
BFCMPU:E:R
BFINS:G:R
BFINS:E:R

BFINSU:G:R

Apr. 6, 1993

110100RR ,.EaR...
10111111 ..#jb...
110100RR .. e
10111111 ..#jb...
110100RR ..EaR...
10111111 _.#ib...
110100RR ..EaR, ..
10111111 ..#jb...

110100RR . ,EaR...
10111111 ,.#ib...
110100RR ..EaR...
10111111 ..4jb...
110100RR ..EaR...
10111111 .. #ib..,
110100RR ..EaR...
10111111 .. #jb...

o

110100RR . e
10111111 ..#ib...
110100RR .,

10111111 .. see
110100RR ..EaR...

10111111 ..#ib...

Sheet 193 of 213

/,3587

1010008B ..EaMfi.
101000BB . .EaM{j.
101001BB . .EaMfij.
101001BB ..EaMfj.
10101072 ..Ea?...
10101077 ..Ea?...
101011SS ..EaR!].
10101185 ,.EaR'I.

101100BB . .EaMf. .
101100BB ..EaMf..
101101BB ..EaMf..
101101BB ..EaMf..
101110BB ..EaMf..
101110BB ..EaM{..
101111BB ..EaRf..
101111BB ..EaRf..

5,201,039

110000+X . .EaRbf. *$RRXw** ***aRR)s
110000+X ..EaRbf. ,6#pn..** **s*RRXs
110001+X ..EaRbf. **RRXw** sxs2RR)s
110001+X ..EaRbf. .$6n..%% sxsspR)s
110010+X ..EaMbf. **RRXwt* **ssRRis
1100104X ..EaMb{. .#6n..%% sssspRys
110100RR ..EaR... 1100114X ,.EaMbf. #sRRXw## *E23RR)s

U.S. Patent Apr. 6, 1993 Sheet 194 of 213 5,201,039

Fig. 360 (j): /337
BFINSU:E:R 10111111 ,.#jb... 110011+4X ..EaMbf. .155..13 s¥2%RRXs
BFCMP:G:1 110100RR .. .os 110100+X .,EaRbf. **RRXwSS ..#iS8..
BFCMP:E:1 10111111 ..4ib. 1101004X ..FaRbf. .#6n..55 ..#iS8..
BFCMPU:G:1 ‘ 110100&8 2oEaR... 110101+4X .,EaRb{. **RRXwSS ..#iS8..
BFCMPU:E:1 10111111 ..#4jb... 110101+X ..EaRbf. .4#6n..S5 ..#iS8..
BFINS:G:1 110100RR .2o 1101104X ..EaMbf. **RRXwSS ,.#iS8..
BFINS:E:] 10111111 ,.4ib... 110110+4X ..EaMbf. .#6n..SS ..#jS8..
BFINSU:G: I 110100RR .. .o 1101114X .. . $*RRXwSS .. $i88..
BFINSU:E:1 10111111 ,,.#ib... 1101114X ..FaMbf. .4#6n..SS ..#jS8..
{RIE-X) 110100RR 2oe 11100%4X ,.Ea?bf. $*xszxsx:x tssxsxzx
{RI1E-X) 10111111 ..#ib... 11100%+X .. Ea?bf, s*sssxsx sizxstrx
BFEXT:G 110100RR .. sse 111010+X .,.EaRbf. *$RRXw** s*x*Rw)d
BFEXT:E 10111111 ..4#jb... 111010+4X ..EaRbf. .46n..%* =xs3RWXd
BFEXTU:G 110100RR ..EaR... 111011+X ..EaRbf. *SRRXw#* s*2*RWAd
BFEXTU:E 16111111 ..#ib... 1110114X ..EaRbf. .#6n..%s sssaRk)d
ACB:G 110100RR ..EaR... 11110PXX ..EaRX.. $sRgMXSS .,#dS8..
ACB:E 10111111 ,.#ib... 11110PXX .,.EaRX.. ®$*RgMXSS .,#dS8..
SCB:G 110100RR , . 2o 111111XX ..EaRX.. *3RgMXSS .. .
SCB:E - 10111111 .,.4#jib... 11111PXX .. .o ¥RgMXSS ..# ‘e

[(3)General Instruction B}

U.S. Patent Apr. 6, 1993 Sheet 195 of 213 5,201,039

Fig. 360 (k): /387

{3) General Instruction B

**¥2% Allocation pattern of the second HW.

00<Rn>?? First HW 'RR’, size not specified, register specified.
01?2?7788 First HW 'RR’, size specified, register not specified.
1077?20? First HW '1R’, size not specified, register not specified.
10<Rn>1? First H¥ 'IR’, size not specified, register specified.

11<Rn>SS First HW '1R’, size specified, register specified (INDEX).

Csl 110101RR ..EaR... OORMC.00 ..EaMiR.
{RIE-X) 110101RR .. +vo 00%%%%01 ,.Fa?...
CHK 110101RR ..EaR... OORgWR1c ..EaRdR.
RVBY 110101RR .. .+, 010000WW ..EaW...
RVBI 110101RR ..EaR... O10001WW ..EaW...
PACKss 110101RR . .EaR... 010010WW ..FaW...
UNPKss 110101RR ..EaR... O10011WW ,.FaW... #iW..o00..
BSCH 110101RR .. .es 0101bdMM . .EaW...
DCADJ llOlOlRR...EgR... 011000WW ..EaW...
DCADJU 110101RR ..FaR... 011001WW ..FaW...
{RIETX} 110101RR ..EaR... 011010WW ..EaW...
DCADJX 110101RR ..EaR... 011011WW ,.EaW...
{RIE-X} 110101RR ..EaR... 0111%%?? ,.Ea?...

$x3%% Bit pattern of DC???X instruction is unifed as ??10118S.

U.S. Patent

Fig.

[(4)

360 (L):

LDATE
{RIE-X}

MULX

DIvX

INDEX

Apr. 6, 1993 Sheet 196 of 213 5,201,039

110101'R ,.EaR... 10pttt00

110101'R ..EaR... 10%%%%0Q]

110101!R ..EaR... 10REWR1O

/387

oEaA...
. Ea?,...,

.'EaHRI.

110101!'R ..EaR... 10RgMR11

110101'R ,.EaR... 11RgMRSS

. .EaMR. .

. .EaR2..

General Instruction Particular]

(4) General Instruction Particular

{RIE-X)

STATE

{RIE-X)
MOVPA
STC

STP

QDEL
MOVA:G
QINS

{RIE-X}

{RIE-X}

11011000 ..EaA... 7?77?7727
11011000 ..EaA... O%*%*x??
11011000 ..EaA... 100ttt+W

11011000 ..EaA... 10100077
11011000 ,.EaA... 101001+W
11011000 ..EaRX.. 101010wW

11011000 ..EaRX.. 101011WW

11011000 ..EaRgP. 101100+W
11011000 ..EaA... 101101+W
11011000 ..EaMqP. 101110+-

11011000 ..Ea?... 101111772

11011000 ..EaA... 11%%*%??

. .Ea?o I

..Ea?...

..EaW!Ss..

. Ea8?...
.EaW!'S.
CIan. L K]

..EaW...

.'an!§I

. EaW...

. EaMgP2

..Ea?...

..Ea?...

U.S. Patent Apr. 6, 1993 Sheet 197 of 213 5,201,039

Fig., 360 (m):

[(5)Other Instructions] /387
(5) Other Instructions

0077?72?17 11017227

{RIE} 00**2x10 1101%%x*
ACB:Q 00RgMw11 1101P001 .$6n..SS ..#dS8..
SCB:R OORgMw11l 1101P010 —RgRwSS ..#dS8..
SCB:Q OORgMw11l 1101P0O11 .£6z..SS ..#dS8..
TRAP 00ccccll 1101P100
TRAPA 00#4z.11 1101P101

**¥%x%% Further Allocation.

00770011 1101P110 LVreserved
00?7?1011 1101P110 General Instruction
007270111 1101P110 Privileged Instruction (STCTX)

00771111 1101P110 Privileged Instruction

LVreserved 00%+#0011 1101*310
STCTX : 00xx0111 1101P110
PIB 00001011 1101P110

NOP 00011011 1101-110

U.S. Patent Apr. 6, 1993 Sheet 198 of 213 5,201,039

Fig. 360 (n): /387
RTS 00101011 1101P110
RRNG 00111011 1101P110
WAIT 00001111 1101-110 OOCI'.,ih nnnnnnn
REIT 00101111 1101P110
PTLB 00p11111 1101P110
{RIE) 00*sx%11 1101P111

[(6) Other Instructions]

(6) Other Instructions

SCMP 00eceeeSS 1110P0QL

SMOV 00eeeeSS 1110P1QbL
QSCH OOeeeeSS 1111P0Omb
SSCH 00eeeeSS 1111P10r
Bee:G 00ccccSS 1111P110 #dS. . c.on.

xxx Further Allocation
00077277 1111P111 279 bit of first HW is always '+°’.
0017?27?77 1111P111 279 bit of first H¥ is 0/1

alternative.

PSTLB 000000+~ 1111P111 O-pttt— ..EaA...

U.S. Patent Apr. 6, 1993 Sheet 199 of 213 5,201,039

Fig. 360 (o): -/387
SHXL 0000004X 1111-111 1—010+- .. EaMX..
SHXR 000000+X 1111-111 1—110+- .. EaMX..
ENTER:G 000000+X 11311P111 1—011SS ..FaR'M.LnXL....
EXITD:G 000000+X 1111P111 1—111SS ..EaR'M.LxXL....

*$%%¥% In EaR'M, only Rn and # imm_data are permitted. The size
of EaR!M is specified by SS. The sizes of registers retired, returned

by LnRL, LxRL are specified by X.

BVPAT 000001+X 1111P111

{RIE} 00001*+X 1111P111

BVSCH 0001bd+X 1111P111

BRA:G . DO}OOOSS 1111P111

SSTR 001001ss 1111P111

BSR:G 00101QSS 1111P111 ,.....#dS.......
BVMAP 0011bQOX 1111P111

BVCPY 0011bQ1X 1111P111

U.S. Patent Apr. 6, 1993 Sheet 200 of 213 5,201,039

Fig. 361 (a):
388
/

#3c SHA:C, SHL:C

#3n ADD:Q, CMP:Q, MOV:Q, SHL:Q, SUB:Q

#3z BCLR:Q, BSET:Q, BSETI:Q, BTST:Q

#4z TRAPA

46n ACB:Q, BFCMP:E:I, BFCMP:E:R, BFCMPU:E:1, BFCMPU:E:R,

BFEXT:E, BFEXTU:E, BFINS:E:I1, BFINS:E:R, BFINSU:E:I,

BFINSU:E:R
46z SCB:Q
#d16 MOVA:R

#d8 BRA:D, BSR:D, Bcc:D

#ds BRA:G, BSR:G, Bcc:G

#dS8 ACB:E, ACB:G, ACB:Q, ACB:R, SCB:E, SCB:G, SCB:Q, SCB:R

#iM ADD:1, AND:1, OR:I, SUB:1, XOR:I1, {RIE}

#iR CMP:1

#iS8 BFCMP:E:1, BFCMP:G:1, BFCMPU:E:I, EFCMPU:G:I, BFINS:E: 1,
BFINS:G:1, BFINSU:E:1, BFINSU:G:1

#iw MOV:I, UNPKss

#ib ACB:E, ADD:E, ADDDX:E, ADDU:E, ADDX:E, AND:E, BCLR:E,
BCLRI:E, BFCMP:E:1, BFCMP:E:R, BFCMPU:E:1, BFCMPU:E:R,
BFEXT:E, BFEXTU:E, BFINS:E:1, BFINS:E:R, BFIMSU:E:I,
BéINSU:E:R, BNOT:E, BSET:E, BSETI:E, BTST:E, CMP:E, CMPU:E,
DCADD:E, DCADDU:E, DCCMP:E, DCCMPU:E, DCCMPX:E, DCSUB:E,
DCSUBU:E, DCX:E, DIV:E, DIVU:E, ENTER:E, EXITD:E, JRNG:E,

LDC:E, LDP:E, MOV:E, MOVU:E, MUL:E, MULU:E, OR:E, REM:E,

U.S. Patent Apr. 6, 1993 Sheet 201 of 213 5,201,039

Fig. 361 (b): ,{JSENB
REMU:E, ROT:E, SCB:E, SHA:E, SHL:E, SUB:E, SUBDX:E,
SUBU:E, SUBX:E, XOR:E

#ih WAIT

EaA ACS, JMP, JSR, LDATE, MOVA:G, MOVPA, PSTLB, PUSHA, STATE

EaA'A LDCTX, {RIE)}

EaM ADD:E, ADD:G, ADDDX:E, ADDDX#G. ADDU:E, ADDU:G, ADDX:E,
ADDX:G, AND:E, AND:G, BSCH, DCADD:E, DCADD:G, DCADDU:E,
DCADDU:G, DCSUB:E, DCSUB:G, DCSUBU:E, DCSUBU:G, DCX:E,
DCX:G, DIV:E, DIV:G, DIVU:E, DIVU:G, MUL:E, MUL:G, MULU:E,
MULU:G, NEG, NOT, OR:E, OR:G, REM:E, REM:G, REMU:E,
REMU:G, ROT:E, ROT:G, SHA:E, SHA:G, SHL:E, SHL:G, SUB:E,
SUB:G, SUBDX:E, SUBDX:G, SUBU:E, SUBU:G, SUBX:E, SUBX:G,
XOR:E, XOR:G

EaMR DIVX, MULX

EaMX SHXL, SHXR

EaMbf BFINS:E:1, BFINS:E:R, BFINS:G:1, BFINS:G:R, BFINSU:E:I,
BFINSU:E:R, BFINSU:G:1, BFINSU:G:R

EaMf BCLR:E, BCLR:G, BNOT:E, BNOT:G, BSET:E, BSET:G

EaMfi BCLRI:E, BCLRI:G, BSETI:E, BSETI:G

EaMiR CSI

EaMqP QINS

EaMqPZ QINS

U.S. Patent Apr. 6, 1993 Sheet 202 of 213 5,201,039

Fig. 361 (c): ",3“38

EaR ACB:G, ADD:G, ADDDX:G, ADDU:G, ADDX:G, AND:G, BCLR:G,
BCLR1:G, BFCMP:G:1, BFCMP:G:R, BFCMPU:G:1, BFCMPU:G:R,
BFEXT:G, BFEXTU:G, BFINS:G:1, BFINS:G:R, BFINSU:G:I,
BFINSU:G:R, BNOT:G,'BSCH, BSET:G, BSETI:G, BTST:G, CHK,
CMP:G, CMPU:G, CSI, DCADD:G, DCADDU:G, DCADJ, DCADJU,
DCADJX, DbCMP:G, DCCMPU:G, DCCMPX:G, DCSUB:G, DCSUBU:G,
DCX:G, DIV:G, DIVU:G, DIVX, INDEX, LDATE, LDC:G. LDP:G,
MOV:G, MOVU:G, MUL:G, MULU:G, MULX, OR:G, PACKss, REM:G,
REMU:G, ROT:G, RVBI, RVBY, SCB:G, SHA:G, SHL:G, SUB:G,
SUBDX:G, SUBU:G, SUBX:G, UNPKss, XOR:G

EaR'l CMP:E, CM2:G, CMP:Z, CMPU:E, CMPU:G, DCCMP:E, DCCMP:G,
DCCMPU:E, DCCMPU:G, DCCMPX:E, DCCMPX:G

EaR!M ENTER:G, EXITD:G

EaRX STC, STP

EaR2 INDEX

EaRL PUSH

EaRX ACB:E, ACB:G, SCB:E, SCB:G

EaRbf BFCMP:E:1, BFCMP:E:R, BFCMP:G:1, BFCMP:G:R,
BFCMPU:E:1, BFCMPU:E:R, BFCMPU:G:1, BFCMPU:G:R, BFEXT:E,

" BFEXT:G, BFEXTU:E, BFEXTU:G
EaRdR CHK
EaRf BTST:E, BTST:G

EaRh LDPSB, LDPSM

U.S. Patent Apr. 6, 1993 Sheet 203 of 213 5,201,039

Fig. 361 (d):

EaRh!M JRNG:G V4 388

EaRmL LDM

EaRqP QDEL

EaW DCADJ, DCADJU, DCADJX, MOV:E, MOV:G, MOV:Z, MOVA:G,
MOVU:E, MOVU:G, PACKss, RVBI, RVBY, STC, STP, UNPKSss

EaW!S MOVPA, QDEL, STATE

EaWX LDC:E, LDC:G, LDP:E, LDP:G

EaWL POP

Eawh STPSB, STPSM

EaWalL STM

LIRL LDM

LnXL ENTER:E, ENTER:G

LsWL STM

LxXL EXITD:E, EXITD:G

RMC Csl

RRXs BFCMP:E:R, BFCMP:G:R, BFCMPU:E:R:, BFCMPU:G:R, BFINS:E:R,
BFINS:G:R, BFINSU:E:R, BFINSU:G:R

RRXw BFCMP:G:1, BFCMP:G:R, BFCMPU:G:1, BFCMPU:G:R, BFEXT:G,
BFEXTU:G, BFINS:G:1, BFINS:G:R, BFINSU:G:I, BFINSU:G:R

RWXd BFEXT:E, BFEXT:G, BFEXTU:E, BFEXTU:G

RgMR 6IVX, INDEX

RgMX ACB:E, ACB:G, SCB:E, SCB:G

RgMw ACB:Q, ACB:R, ADD:L, AND:R, DIV:R, MUL:R, OR:R, SCB:Q,

SCB:R, SUB:L, XOR:R

U.S. Patent Apr. 6, 1993 Sheet 204 of 213 5,201,039

Fig. 361 (e): /388

RgRP MOVA:R

RgRw ACB:R, AND:R, CMP:L, DIV:R, MOV:S, MUL:R, OR:R, SCB:R,
XOR:R

REWP MOVA:R

REWR CHK, MULX

RgWw MOV:L

ShM ADD:1, ADD:Q, AND:1, OR:I, SHA:, SHL:C, SHL:Q, SUB:I,
SUB:Q, XOR:1, {RIE} '

ShMfq BCLR:Q, BSET:Q

ShMfqi BSETI:Q

ShR CMP:L, MOV:L

ShR!1 CMP:I, CMP:Q

ShRfq BTST:Q

ShRw ADD:L, SUB:L

Shw MOV:1, MOV:Q, MOV:S

U.S. Patent

Fig. 362:

Apr. 6, 1993

Sheet 205 of 213

/(4389

5,201,039

MNEMONIC Meaning condition cccc
XS X_flag set X 0000
XC X_flag clear X 0001
EQ equal/Z_flag clear 2 0010
NE not equal/Z_flag clear ~Z 0011
LT less than/L_flag set L 0100
GE greater or equal/L_flag clear “L 0101
LE less or equal L+Z 0110
GT greater than “L*TZ 0111
Vs V_flag set v 1000
vC V_flag clear TV 1001
MS minus/M_flag set M 1010
MC plus/M_flag clear “M 1011
FS F_flag set F 1100
FC F_flag clear °F 1101
{RIE) 1110
{RIE}- 1111

U.S. Patent Apr. 6, 1993 Sheet 206 of 213 5,201,039

Fig. 363: /390
termination
condition= optional mnemonic eeee
(escape
condition)
<R3 LTU less than (unsigned) 0000
2R3 GEU. greater or equal (unsigned) 0001
=R3 EQ equal 0010
#R3 NE not equal 0011
<R3 LT less than (signed) 0100
2R3 GE greater or equal (signed) 0101
no termination N never (or having no option) 0110
condition
{RIE} 0111
<R3.or.2R4 OUTU out of (unsigned) <<12>> 1000
2R3.and.<R4 WINU within (unsigned) - <<L2>> 1001
=R3.or.=R4 OEQ or, equal <<L2>> 1010
#R3.and.#R4 ANXE and, not equal <«<L2>> 1011
<R3.or.>R4 OUT out of (signed) <<L2>> 1100
>R3.and.<R4 WIN within (signed) | «<L2>> 1101
=0 z zero <KL2>> 1110

=R3.0r.=0 ZE zero, equal (kLZ)) 1111

U.S. Patent Apr. 6, 1993 Sheet 207 of 213 5,201,039

Fig. 364:
/392 [39

termination
condition= optional mnemonic condition of
{escape M_flag=1
condition) :

<R3.or.>R4 OUTU out of (unsigned) 2R4

=R3.or.=R4 OEQ or, ‘equal =R4

<R3.or.>R4 OUT out of (signed) R4

=0 ¥ zero =0 (always)

=R3.o0r.=0 ZE zero, equal =0

U.S. Patent

Apr. 6, 1993

Sheet 208 of 213 5,201,039

Fig. 365:
/Kr3ﬁ33
operation result of src=0, dest=0 is placed in bit 0
operation result of src=0, dest=1 is placed in bit 1
operation result of src=1, dest=0 is placed in bit 2
operation result of src=1, dest=l is placed in bit 3
0000 F False 0==> dest
0001 NAN NotAndNot “dest.and. src==> dest |
0010 AN AndNot dest.and. src==> dest
| 0011 NS NotSrc “src==> dest
0100 NA NotAnd “dest.and.src=z=> dest
0101 ND NotDest “dest==> dest
0110 X Xor dest.xor.src==> dest
0111 NON NotOrNot “dest.or. src==>dest
1000 A And dest.and.src==> dest
1001 NX NotXor “dest.xor.src==z> dest
1010 D Dest dest==> dest
1011 ON OrNot dest.or. “src ==> dest
1100 S Src srcz=> dest
1101 NO NotOr “dest.or.src==> dest
1110 © Or dest.or.src==> dest
1111 T True 1==> dest

U.S. Patent

Fig. 366 (a):

Apr. 6, 1993

Sheet 209 of 213

objective

general Rn #imm !éP+ @-SP additional instruction

ACS, JMP, JSR,
LDATE, MOVA:G,
PUSHA, MOVPA,
PSTLB, STATE

LDCTX

(1)

EaA 0 X
EaA'A O X
EaM 0 ")
ShM
EaMX
EaMR

(2)
EaMf O 0
ShMfq O 0
EaMbf O <<L2>>

X X
X X
X X
X X
X X
X X

ADD:E, ADD:G,
DIV:E, DI1V:G,
DIVU:E, DIVU:G,
SHA:E, SHA:G,
etc.

ADD:1, ADD:Q,
SHA:C, OR:1,
AND:1, SHL:Q,
SHL:C, SuUB:1,
SUB:Q, XOR:1

SHXL, SHXR
DIVX, MULX

BCLR:E, BCLR:G,
BNOT:E, BNOT:G,
BSET:E, BSET:G

BCLR:Q, BSET:Q

BFINS:E: 1T,
BFINS:E:R,
BFINSU:E: I,
BFINSU:E:R,
BFINS:G:1,
BFINS:G:R,
BFINSU:G:1,
BFINSU:G:R

general Rn #ime €SP+ @-SP additional

objective
instruction

5,201,039

U.S. Patent

Apr. 6, 1993 Sheet 210 of 213 5,201,039

l’-‘ig. 366 (b): 394
objective
general Rn #imm @SP+ @-SP additional instruction
EaMfi O X X X X o} BCLRI:E,
BCLRI:G,
BSETI:E,
BSETI:G
ShMfqi O X X X X 0 BSETI:Q
EaMiR 0O X X X X 0 CSl
EaMqP O X X X X 0 QINS
EaMqp2 QINS
EaR 0 0 0 0 X 0 ACB:G, ADD:G,
ADDDX:G, ADDU:G,
ADDX:G
AND:G, BCLR:G,
BSET:G, etc.
EaRh LDPSB, LDPSM
ShR CMP:L, MOV:L
ShRw ADD:L, SUB:L
EaR2 O 0 0 O X 0 INDEX
EaRX ACB:E, ACB:G,
SCB:E, SCB:G
objective

general

Rn #imm @SP+ @-SP additional instruction

U.S. Patent Apr. 6, 1993 Sheet 211 of 213 5,201,039

. objective
general Rn #ism @SP+ @-SP additional instruction

EaRaL O X X 0 X X ~ LDM
EaRL O 0 0 X X 0 PUSH

EaR!I O

o
>
o
>
o

CMP:E, CMP:G,
CMPU:E, CMPU:G,
CMP:Z

ShR!1 CMP:1, CMP:Q

EaRX © X X X X 0 STC, STP

EaRdR O X X X X 0 CHK

EaRqP O X X X X 0 QDEL

(2)
EaRf O 0 X x X 0 BTST:E, BTST:G

ShRfq O 0 X X X 0 BTST:Q

EaRbf O <«<KL2>> X X X 0 BFCMP:E: 1,
BFCMPU:E:I,
BFCMP:E:R,
BFCMPU:E:R,
BFEXT:E,
BFEXTU:E,
BFCMP:G:1,
BFCMPU:G:1,
BFCMP:G:R,
BFCMPU:G:R,
BFEXT:G,
BFEXTU:G

objective
general Rn #imm @SP+ @-SP additional instruction

U.S. Patent Apr. 6, 1993

Fig. 366 (d):

Sheet 212 of 213 5,201,039

general Rn #imm @SP+ @-SP additional

objective
instruction

EaR!M X 6o 0 X

EaRh!'M

EaW 0 0 X X

EaWh

Shw
EaW!S © 0 X X

EawnlL O X X X

EaWwX O X X X

EaWL O 0 X X

ENTER:G,
EXITD:G

JRNG:G

MOV:Z, MOV:E,
MOV:G, MOVA:G,
MOVU:E, MOVU:G
PACKss, STC,
STP, UNPKss,
RVBY, RVBI
STPSB, STPSM

MOV:1, MOV:Q,
MOV:S

MOVPA, STATE,
QDEL

ST™

LDC:E, LDC:G
LDP:E, LDP:G

POP

general Rn #imm @SP+ @-SP additional

objective
instruction

U.S. Patent | Apr. 6, 1993 Sheet 213 of 213 5,201,039

Fig. 366 (e):
/394

(1) ‘’general’ includes @abs, @(disp, PC), @(disp, Rn), @Rn.
(2) In bit operation instruction to the register, offset is

effective only by low order bit.

5,201,039

1

MULTIPLE ADDRESS-SPACE DATA PROCESSOR
WITH ADDRESSABLE REGISTER AND CONTEXT
SWITCHING
This is a continuation of application Ser. No.
07/173,501, filed Mar. 24, 1988, now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a data proccssor

2. Description of the Prior Art

The address space at the conventional data processor,
as shown in FIG. 1, comprises a memory storing therein
programs and data; Internal registers in the processor
are not mapped in the address space. In this case, it is
required in accessing cach register to use a particular
instruction or specify the register, thereby not control-
ling each register in a unified manner and creating a
problem in expansibility (problem 1).

Context switching of the conventional data processor
is operated between the processor and a saving area in
an external memory. In this case context switching
takes much time. If the saving area is aliotted to a partic-
ular high-speed memory to avoid this problem, the
linearity of address space is deteriorated as shown in
FIG. 2-(B) (problem 2).

Furthermore, in the conventional data processor,
context switching is operated in batch with respect to
all the contexts, thereby creating a problem in that even
a register needless of switching is switched (problem 3).

SUMMARY OF THE INVENTION

In order to solve the above problems, the present
invention has been designed. The first object thereof is
to provide a data processor which is provided with an
address space comprising control registers, thereby
enabling all the control registers to be accessed in batch
by addressing.

The second object of the invention is to provide a
data processor which enables byte address with respect
to the address space of the control register, thereby
enabling the register and memory to be accessed by the
same addressing method and facilitating the correspon-
dence to extension, such as variation in register width.

The third object of the invention is to provide a data
processor which adds a memory stored in a main pro-
cessor to the address space comprising the control reg-
ister, thereby enabling a high speed space for particular
use to be obtained.

The fourth object of the invention is to provide a data
processor which allots the context saving area at the
processor to said space, thereby enabling high speed
context switching.

The fifth object of the invention is to provide a2 data
processor which makes the context variable so as to
effectively utilize the restricted space.

The sixth object of the invention is to provide a data
processor which makes the context variable so as to
omit needless context switching, thereby providing
context switching at high speed.

The data processor of the present invention is first
characterized in that it has a first address space which
byte-addresses a memory storing therein programs and
data and a second address space different from the first
address space so that a register is mapped by byte ad-
dress at part of the second address space, thereby ac-
cessing the register by the byte address. The data pro-

10

15

25

30

35

40

45

55

65

2

cessor of the present invention can similarly address-
specify the register and memory, thereby enabling the
unified control by software.

The data processor of the present invention is se-
condly characterized in that it has a main processor, a
co-processor, a first address space which byte-addresses
a memory storing therein programs and data, and a
second address space different from the first address
space, so that a register is mapped by byte address in
part of the second address space, the register is accessed
by the byte address, and registers at the co-processor
are mapped, by a byte address, to the second address
space.

The data processor of the present invention is thirdly
characterized in that it has a third address space which
byte-address a memory storing therein programs and
data and a fourth address space different from the third
address space, and by having an instruction to save the
context of the processor to the fourth address space and
the same to restore the context from the fourth address
space.

The data processor present invention is fourthly char-
acterized in that it has a third address space which byte-
addresses a memory storing therein programs and data
and a fourth address space different from the third ad-
dress space, and further has an instruction to save the
context of the processor to the fourth address space, the
same to restore the context from the fourth address
space, the same to selectively specify the third or fourth
address space so as to save the context at the processor,
and the same to selectively specify the third or fourth
address space to restore the context.

Furthermore, the data processor of the present inven-
tion is fifthly characterized in that it has an instruction
to save the context at the processor and the same to
restore the context, thereby specifying the format of the
context to be variable.

The above and further objects and features of the
invention will more fully be apparent from the follow-
ing detailed description with accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of address space of the con-
ventional data processor,

FIG. 2(A) and 2(B) are illustrations of the conven-
tional context switching,

FIG. 3 and 4 are illustrations of address spaces at a
data processor of the present invention,

FIG. § is an illustration of the context at the data
processor of the present invention, and

FIG. 6 is an illustration of operation of PSW at the
data processor of the present invention,

FIG. 7 is an illustration of a register set of the same,

FIG. 8 is an illustration of data type of bits of the
same,

FIG. 9 is an illustration of data type as to a bit field of
the same,

FIG. 10 s an illustration of data type as to the bit field
of unsigned number of the same,

FIG. 11 is an illustration of data type as to the integer
of the same,

FIG. 12 is an illustration of data type as to the deci-
mal number of the same,

FIG. 13 is an illustration of data type as to a string of
the same,)

FIG. 14 is an illustration of data type as to a queue at
the same,

5,201,039

3

FIG. 15 is an illustration exemplary of description of
the instruction format of the same,

FIG. 16 shows a bit pattern thereof,

FIG. 17 shows an instruction format of the data pro-
cessor of the invention respectively, 5

FIG. 18 shows an instruction format of the data pro-
cessor of the invention respectively,

FIG. 19 shows an instruction format of the data pro-
cessor of the invention respectively,

FIG. 20 shows an instruction format of the data pro-
cessor of the invention respectively,

FIG. 21 shows an instruction format of the data pro-
cessor of the invention respectively,

FIG. 22 shows an instruction format of the data pro-
cessor of the invention respectively,

FIG. 23 shows an instruction format of the data pro-
cessor of the invention respectively,

FIG. 24 shows an instruction format of the data pro-
cessor of the invention respectively,

FIG. 25 shows an instruction format of the data pro-
cessor of the invention respectively,

FIG. 26 shows an instruction format of the data pro-
cessor of the invention respectively,

FIG. 27 shows an instruction format of the data pro-
cessor of the invention respectively,

FIG. 28 shows the format of the addressing mode of
the data processor of the present invention,

FIG. 29 shows the format of an addressing mode of
the data processor of the present invention,

FIG. 30 shows the format of an addressing mode of
the data processor of the present invention,

FIG. 31 shows the format of an addressing mode of
the data processor of the present invention,

FIG. 32 shows the format of an addressing mode of
the data processor of the present invention,

FIG. 33 shows the format of an addressing 'node of
the data processor of the present invention,

FIG. 34 shows the format of an addressing mode of
the data processor of the present invention,

FIG. 35 shows the format of an addressing mode of 40
the data processor of the present invention,

FIG. 36 shows the format of an addressing mode of
the data processor of the present invention,

FIG. 37 shows the format of an addressing mode of
the data processor of the present invention,

FIG. 38 shows the format of an addressing mode of
the data processor of the present invention,

FI1G. 39 shows the format of an addressing mode of
the data processor of the present invention,

FIG. 40 is an illustration exemplary of arrangement 50
of local variations of the same,

FIG. 41 shows the format of the addressing mode of
the same,

FIG. 42 shows the format of the addressing mode of
the same,

FIG. 43 shows the format of the addressing mode of
the same,

FIG. 44 shows the format of the addressing mode of
the same,

FIG. 45 is an illustration of cautioun at the instruction 60
MOV,

FIG. 46 shows the format of PSW,

FIG. 47 shows the format of PSS,

FIG. 48 shows the format of PSH,

FIG. 49 shows the format of description example of 65
the instruction set,

FIG. $0-(a) shows the format of instruction MOV,

FIG. 50-(b) is an illustration of status flags thereof,

15

20

25

35

45

55

4

§1 shows the format of instruction MOVU,

$§2 is an illustration of the flag change thereof,

53 shows the format of instruction PUSH,

54 is an illustration of the flag change thereof,

§5 shows the format of instruction POP,

56 is an illustration of the flag change,

57 shows the format of the instruction LDM,

§8 is an illustration of the flag change thereof,

§9 is an illustration of bit map specifying,

60 shows the format of an instruction STM,

61 is an illustration of flag change thereof,

62 is an illustration of the bit map specifying,

63 is an illustration of the bit map specifying,

64 shows the format of the instruction MOVA,

65 is an illustration of flag change thereof,

66 shows the format of instruction PUSHA,

67 is an illustration of flag change thereof,

68 shows the format of instruction CMP,

69 is an illustration of flag change thereof,

70 shows the format of instruction CMPU,

71 is an illustration of flag change thereof,

72 shows the format of instruction CHK,
FIG. 73 is an illustration of flag change thereof,
FIG. 74 is an illustration of operation by the instruc-

tion CHK, .

FIG. 75 shows the format of instruction ADD,
FIG. 76 is an illustration of flag change,

FIG. 77 shows the format of instruction ADDU,
FIG. 78 is an illustration of flag change thereof,
F1G. 79 shows the format of instruction ADDX,
FIG. 80 is an illustration of flag change thereof,
FIG. 81 shows the format of instruction SUB,
FIG. 82 is an illustration of flag change thereof,
FIG. 83 shows the format of instruction SUBU,
FIG. 84 is an illustration of flag change thereof,
F1G. 85 shows the format of instruction SUBX,
FIG. 86 is an illustration of flag change thereof,
FIG. 87 shows the format of instruction MUL,
FIG. 88 is an illustration of flag change thereof,
FIG. 89 shows the format of instruction MULU,
FIG. 90 is an illustration of flag change thereof,
FIG. 91 shows the format of instruction MULX,
FIG. 92 is an illustration of flag change thereof,
FIG. 93 shows the format of instruction DIV,
FIG. 94 is an illustration of flag change thereof,
FIG. 95 shows the format of instruction DIVU
FIG. 96 is an illustration of flag change thereof,
FIG. 97 is a view showing the format of instruction

DIVX,

FIG. 98 is an illustration of flag change thereof,
FIG. 99 is a view of format of instruction REM,
FIG. 100 is an illustration of flag change thereof,
FIG. 101 is a view of the format of instruction

REMU,

FIG. 102 is an illustration of flag change thereof,
FIG. 103 is a view of the format of instruction NEG,
FIG. 104 is an illustration of flag change thereof,
FIG. 105 is a view of the format of instruction
INDZX,
FIG. 106 is an illustration of flag change thereof,
FIG. 107 is a view of the format of instruction AND,
FIG. 108 is an illustration of flag change thereof,
FI1G. 109 is a view of the format of instruction OR,
FIG. 110 is an illustration of flag change thereof,
FIG. 111 is a view of the format of instruction XOR,
FIG. 112 is an illustration of flag change thereof,
FIG. 113 is a view of the format of instruction NOT,
FIG. 114 is an illustration of flag change thereof,

FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.

5,201,039

5

115 is a view of the format of instruction SHA,
116 is an illustration of flag change thereof,
117 is an illustration of the left-side shift,

118 is an illustration of the right-side shift,

119 is a view of the format of instruction SHL,
120 is an illustration of flag change thereof,
121 is an illustration of the left-side shift,

122 is an illustration of the right-side shift,

123 is a view of the format of instruction ROT,
124 is an illustration of flag change thereof,
125 is an illustration of counterclockwise rota-

FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
tion,
FIG. 126 is an illustration of clockwise rotation,
FIG. 127 is a view of the format of instruction SHXL,
FIG. 128 is an illustration of flag change thereof,
FIG. 129 is a view of the format of instruction
XHXL,
FIG. 130 is an illustration of flag change thereof,
FIG. 131 is a view of the format of instruction
SHXR,
FIG. 132 is a view of the format of imstruction
SHXR,
FIG. 133 is a view of the format of instruction
RVBY, ’
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
BNOT,
FIG. 146 is an illustration of flag change thereof,
FIG. 147 is a view of the format of instruction BSCH,
FIG. 148 is an illustration of flag change thereof,
FIG. 149 is an illustration of fixed length bit field
operation instruction,
FIG. 150(a) and 150(b) are a view of the format of
instruction of bit field instruction,
FIG. 151 is a view of the format of instruction
BFEXT,
FIG. 152 is an illustration of flag change thereof,
FIG. 153 is a view of the format of instruction
BFEXTU,
FIG. 154 is an illustration of flag change thereof,
FIG. 155 is a view of the format of instruction
BFINS,
FIG. 156 is an illustration of flag change thereof,
FIG. 187 is a view of the format of instruction
BFINSU,
FIG. 158 is an illustration of flag change thereof,
FIG. 159 is a view of the format of instruction
BFCMP,
FIG. 160 is an illustration of flag change thereof,
FIG. 161 is a view of the format of instruction
BFCMPU,
FIG. 162 is an illustration of flag change thereof,
FIG. 163(a) and 163(b) are a view of the format of
instruction BVSCH,
FIG. 164 is an illustration of flag change thereof,
FI1G. 165 is a view of the format of instruction
BVMAP,
FIG. 166 is an illustration of flag change thereof,

134 is an illustration of flag change thereof,
135 is a view of the format of instruction RVBI,
136 is an illustration of flag change thereof,
137 is an illustration of bit operation instruction,
138 is an illustration of bit operation instruction,
139 is a view of the format of instruction BTST,
140 is an illustration of flag change thereof,
141 is a view of the format of instruction BSET,
142 is an illustration of flag change thereof,
143 is a view of the format of instruction BCLR,
144 is an illustration of flag change thereof,
145 is a view of the format of instruction

5

10

15

20

25

30

35

45

55

65

6
FIG. 167 is a view of format of instruction BVMAT,
FIG. 168 is a view of format of instruction BVMAT,
FIG. 169 is a view of format of instruction BVMAT,
FIG. 170 is a view of the format of instruction
BVCPY,
FI1G. 171 is an illustration of flag change thereof,
FIG. 172 is a view of the format of instruction
BVPAT,
FIG. 173 is an illustration of flag change thereof,
FIG. 174 is a view of the format of instruction
ADDDX,
FIG. 175 is an illustration of flag change thereof,
FIG. 176 is a view of the format of instruction
SUBDX,
FIG. 177 is an illustration of flag change thereof,
FIG. 178 is a view of the format of instruction
PACKss,
FIG. 179 is an illustration of flag change thereof,
FIG. 180 is a view of the format of instruction
UNPKss,
FI1G. 181 is an illustration of flag change thereof,
FIG. 182 is an illustration of instruction UNPKss,
FIG. 183 is an illustration of termination condition,
FIG. 184 is a view of the format of instruction
SMOV,
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
FIG.
SSTR,
FIG.
FIG.
FIG.
F1G.

185 is an illustration of flag change thereof,
186 is an illustration of instruction SCMP,

187 is an illustration of flag change thereof,
188 is an illustration of flag change thereof.
189 is a view of the format of instruction SSCH,
190 is an illustration of the flag change thereof,
191 is a view of the format of the instruction

192 is an illustration of the flag change thereof,
193 is a view of the format of instruction QINS,
194 is an illustration of the flag change thereof,
195 is an illustration of the instruction QINS,
FIG. 196 is an illustration of the instruction QINS,
FIG. 197 is an illustration of the instruction QINS,
FIG. 198 is a view of the format of instruction
QDEL,
FIG. 199 is an illustration of the flag change thereof,
FIG. 200 is an illustration of the instruction QDEL,
FIG. 201 is an illustration of the instruction QDEL,
FIG. 202 is an illustration of the instruction QDEL,
F1G. 203(a) and 203()) are a view of the format of
instruction QSCH,
FIG. 204 is an illustration of the flag change thereof,
FIG. 205(a) and 205() are an illustration of the in-
struction QSCH,
FIG. 206 is an illustration of the instruction QSCH,
FIG. 207 is an illustration of the instruction QSCH,
FIG. 208 is a view of the format of instruction BRA,
FIG. 209 is an illustration of the flag change thereof,
FIG. 210 is a view of the format of instruction Bcc,
FIG. 211 is an illustration of the flag change thereof,
FIG. 212 is an illustration of the detail and mnemonic
of the portions,
FIG. 213 is a view of the format of instruction BSR,
FIG. 214 is an illustration of the flag change thereof,
FIG. 215 is a view of the format of instruction JMP,
FIG. 216 is an illustration of the flag change thereof,
FIG. 217 is a view of the format of instruction JSR,
FIG. 218 is an illustration of the flag change thereof,
FIG. 219 is a view of the format of instruction ACB,
FIG. 220 is an illustration of the flag change thereof,
FIG. 221 is a view of the format of instruction SCB,
FIG. 222 is an illustration of the flag change thereof,

5,201,039

7

FIG. 223 is a view of the format of instruction EN-

. 224 is an illustration of the flag change thereof,
. 225 is an illustration of the instruction ENTER,
. 226 shows the format of instruction EXITD,
. 227 is an illustration of the flag change thereof,
. 228 is an illustration of the instruction EXITD,
. 229 is a view of the format of instruction RTS,
. 230 is an illustration of the flag change thereof,
. 231 is a view of the format of instruction NOP,
. 232 is an illustration of the flag change thereof,
FIG. 233 is a view of the format of instruction PIB,
FIG. 234 is an illustration of the flag change thereof,
FIG. 235 is a view of the format of instruction
BSET],
FIG. 236 is an illustration of the flag change thereof,
FIG. 237 is a view of the format of instruction
BCLR],
FIG. 238 is an illustration of the flag change thereof,
FIG. 239 is a view of the format of instruction CSI,
FIG. 240 is an illustration of the flag change thereof,
FIG. 241 is a view of the format of instruction LDC,
FIG. 242 is an illustration of the flag change thereof,
FIG. 243 is a view of the format of instruction STC,
FIG. 244 is an illustration of the flag change thereof,
FIG. 245 is a view of the format of instruction
LDPSB,
FIG. 246 is an illustration of the flag change thereof,
FIG. 247 is a view of the format of instruction
LDPSM,
FIG. 248 is an illustration of the flag change thereof,
FIG. 249 is a view of the format of instruction
STPSB,
FIG. 250 is an illustration of the flag change thereof,
FIG. 251 is a view of the format of instruction
STPSM,
FI1G. 252 is an illustration of the flag change thereof,
FI1G. 253 is a view of the format of instruction LDP,
FIG. 254 is an illustration of the flag change thereof,
F1G. 285 is a view of the format of instruction STP,
FIG. 256 is an illustration of the flag change thereof,
FIG. 257 is a view of the format of instruction JRNG,
FIG. 258 is an illustration of the flag change thereof,
FIG. 259 is an illustration of the instruction
FIG. 260 is an illustration of the instruction JRNG,
FIG. 261 is an illustration of the instruction JRNG,
FIG. 262 is an illustration of the instruction JRNG,
FIG. 263 is an illustration of the instruction JRNG,
FIG. 264 is an illustration of the instruction JRNG,
FIG. 265 is a view of the format of instruction
RRNG,
FIG. 266 is an illustration of the flag change thereof,
FIG. 267 is an illustration of the instruction RRNG,
FIG. 268 is an illustration of the instruction RRNG,
FIG. 269 is an illustration of the instruction RRNG,
FIG. 270 is a view of the format of instruction
TRAPA,
FIG. 271 is an illustration of the flag change thereof,
FIG. 272 is a view of the format of instruction
TRAP,
FIG. 273 is an illustration of the flag change thereof,
FIG. 274 is a view of the format of instruction REIT,
FIG. 275 is an illustration of the flag change thereof,
FIG. 276 is an illustration of the instruction REIT,
FIG. 277 is a view of the format of instruction
WAIT,
FIG. 278 is an illustration of the flag change thereof,

5

10

15

20

25

30

35

45

55

60

65

8

FIG. 279 is a view of the format of instruction
LDCTX,

FIG. 280 is an illustration of the flag change thereof,

FIG. 281 is a view of the format of instruction
STCTX,

FIG. 282 is an illustration of the flag change thereof,

FIG. 283 is a view of the format of instruction ACS,

FIG. 284 is an illustration of the flag change thereof,

FIG. 285 is a view of the format of instruction
MOVPA,

FIG. 286 is an illustration of the flag change thereof,

FIG. 287 is a view of the format of instruction
MOVPA,

FIG. 288 is a view of the format of instruction
MOVPA,

FIG. 289 is an illustration of instruction LDATE,

FI1G. 290 is an illustration of the flag change thereof,

FIG. 291 is an illustration of the flag change thereof,

FIG. 292 is a view of the format of instruction
STATE,

FIG. 293 is an illustration of the flag change thereof,

FIG. 294 is an illustration of the flag change thereof,

FIG. 295 is a view of the format of instruction PTLB,

FIG. 296 is an illustration of the flag change thereof,

FIG. 297 is a view of the format of instruction
PSTLB,

FIG. 298 is an illustration of the flag change thereof,

FIG. 299 is an illustration of an AT field,

FIG. 300 is an illustration of an AT field,

FIG. 301 shows the memory map relative to the
logical address extension of the invention.

F1G. 302 shows the memory map relative to the
logical address extension of the invention,

FIG. 303 is an illustration of the flag change in the
data transfer instruction,

FIG. 304 is an ill'stration of the flag change in the
comparison test instruction,

FIG. 305 is an illustration of the flag change of the
arithmetic operation instruction, ’

FIG. 306 is an illustration of the flag change in the
logical operation instruction,

FIG. 307 is an illustration of the flag change in the
shift instruction,

FIG. 308 is an illustration of the flag change in the bit
control instruction,

FIG. 309 is an illustration of the flag change in the
fixed table bit field instruction,

FIG. 310 is an illustration of the flag change in the
fixed table bit field construction,

FIG. 311 is an illustration of the flag change in the
free table bit field,

FIG. 312 is an illustration of the flag change in the
decimal number operation instruction,

FIG. 313 is an illustration of the flag change in the
string instruction,

FIG. 314 is an illustration of the flag change in the
queue control instruction,

FIG. 315 is an illustration of the flag change in the
jump instruction,

FIG. 316 is an illustration of the flag change in the
multiprocessor instruction,

FIG. 317 is an illustration of the flag change in the
contro! space and physical space control instruction,

FIG. 318 is an illustration of the flag change in the OS
relevant instruction,

FIG. 319 is an illustration of the flag change in the
MMU relevant introduction,

FIG. 320 is an illustration of subroutine call,

5,201,039

9

321 is an illustration of stack frame,

322 is an illustration of instruction sequence,
FIG. 323 is an illustration of instruction sequence,
FIG. 324 is an illustration showing a program exam-

ple, 5
FIG. 325 is an illustration of subroutine call,
FIG. 326 is an illustration of control space,
FIG. 327 is a view of the format of PSW,

FIG. 328 is a view of the format of IMASK,

FIG. 329 is a view of the format of SMRNG,

FIG. 330 is 2 view of the format of CTXBB,

FIG. 331 is a view of the format of DI,

FIG. 332 is a view of the format of CSW,

FIG. 333 is a view of the format of DCE,

FIG. 33 is a view of the format of CTXBFM,

FIG. 335 is a view of the format of EITVB,

FIG. 336 is a view of the format of JRNGVB,

FIG. 337 is a view of the format of SPO to SP3,

FIG. 338 is a view of the format of SP1,

FIG. 339 is a view of the format of I0ADDR and 20
10MASK,

FIG. 340 is a view of the format of UATB,

FIG. 341 is a view of the format of SATB,

FIG. 342 is a view of the format of LSID,

FIG. 343 is a view of the format of CTXB,

FIG. 344 is a view of the format of CTXBFM,

FIG. 345 is a view of the format of EITVTE,

FIG. 346 is an illustration of stack frame,

FIG. 347 is a view of the stack format of EIT,

FIG. 348 is a view of the stack format of EIT,

F1G. 349 is a view of the format of 10 INF,

FIG. 350(a), 350(b), 350(c), and 350(d) are a vector
table of EIT,

FIG. 351 is an illustration of JRNG,

FIG. 352 is an illustration of EIT,

FIG. 353 is an illustration of EIT,

FIG. 354 is an illustration of IMASK,

FIG. 355 is an illustration of system call,

FIG. 356 is an illustration of system call,

FIG. 357 is an illustration of DCE,

FIG. 358 shows comparison of DCE, DI and EI with
each other,

FIG. 359 is an illustration of an example of the use of
DCE,

FIG. 360(a), 360(b), 360(c), 360(d), 360(c), 360(7), 45
360(g), 360(k), 360(i), 360(), 360(k), 360(}), 360(m),
360(n), and 360 (0) are a view of bit allocation,

FIG. 361(a), 361(b), 361(c), 361(d), and 361(e) show
an index of operand field names,

FIG. 362 shows the ccec allocation,

FIG. 363 shows eeee allocation,

FIG. 364 is an illustration of M-flag,

FIG. 365 is a view of operation code of the BVMAP
instruction,

FIG. 366(a), 366(b), 366(c), 366(d), and 366{c) are a S5

view correspondent to the addressing mode.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The characteristic of the data processor of the inven- 60
tion will be summarized as below.

The data processor having the first and second char-
acteristics of the present invention, as shown in FIG. 3,
has a first address space for byte-addressing a memory
storing therein programs and data and a second address 65
space which maps an internal register at the processor
of the present invention and can specify the address in
units of bytes. The register and memory can similarly

FIG.
FIG.

10

15

25

30

35

40

50

10
specify addresses and control them in a unified manner.
Also, it facilitates adding to the register and corre-
sponds to expansion of the co-processor to be housed in
the main processor, thereby solving problem 1.

Next, the data processor of the present invention
having the third and fourth characteristics, as shown in
FIG. 4, has the first address space which byte-addresses
a memory storing therein programs and data and a third
address space, separate from the first address space, for
mapping a context saving area by byte address, and has
an instruction to selectively specify the third address
space to save and restore the context. Hence, for exam-
ple, a memory containing therein chips is mapped in the
third space and the third space is specified as the context
saving area to save or restore the context, thereby en-
abling high speed context switching, in which there is
1o need at all for limiting the first space. The reason for
enabling the space at the context saving area to be byte-
addressed is that mismatching in addressing caused by a
difference between the spaces is avoided and that corre-
spondence to expansion of the width of each register
forming the context is considered. Thus, the second
problem can be solved by the data processor of the
present invention.

The data processor of the present invention having
the fifth characteristic, as shown in FIG. 5, has an in-
struction for dividing the context of the processor into
plural parts so as to selectively save and restore each
part. The selected context structure is called the context
format, which is adapted to be specified through dispo-
sition of the bits in registers. In the example shown, the
context is divided into three: a control register context,
a general purpose register context, and a co-processor
context. In this example, bits relating to the control
register context and general purpose register context
are turned-on at a register for specifying context format
and the bit relating to the co-processor is off at that
register.

Thus, the data processor of the present invention can
solve the third problem, thereby providing context
switching at high speed and restriction of the saving
area.

Furthermore, accessing a particular field at the con-
trol register, must be carried out while preserving val-
ues of other fields, whereby when access is frequent, the
load may increase. Therefore, the data processor of the
present invention maps the particular field of the con-
trol register onto a separate register to thereby make
access to the particular field effective and safe.

PSW is shown in FIG. 6 as an example of a control
register and an explanation will be given of the opera-
tion of changing its particular field. An IMASK field,
often separately accessed is picked up from the PSW
registers to form a separate IMASK register. When the
IMASK field at PSW is intended to change, PSW can
be changed only by writing into the IMASK register,
by the MOV instruction, the content of memory having
an objective bit array at the objective bit field or the
content of a register as shown in the drawing. In this
way, when the IMASK register is accessed, fields other
than the IMASK field at PSW are protected.

The data processor of the present invention will be
fully explained in detail hereunder.

As the following description is voluminous, a table of
contents is attached thereto and the matters requiring
detailed description are entered in the appendix, the
subject of the invention being detailed in the appendix 7.

5,201,039

11

CONTENTS

1. Features of The Data Processor of the Present Inven-
tion
1-1 Basic Design Concept 5
1-2 OS Oriented Architecture
1-3 Instruction Set Being Tuned
1-4 Instruction Set for Compiler
2. The Data Processor 32 of the Present Invention and
Data Processor 64 of the Present Invention
3. Classification of The Data Processor Specifications
of the Present Invention.
4. Register Set .
5. Data Type
5-1 Bit
5-2 Bit Field
5-3 Integer
5-4 Floating Point
5-5 Decimal
5-6 String
5-7 Queue
6. Instruction Format
* 6-1 Two-Operand Short Format
6-1-1 Register and Memory (S- Format and L-For-
mat)
6-1-2 Between Registers (R-Format)
6-1-3 Between Literal and Memory (Q-Format)
6-1-4 Between Immediate and Memory (I-Format)
6-2 One-Operand General Type (G1-Format)
6-3 Two-Operand General Type
6-3-1 First Operand for Memory Read (G-Format)
6-3-2 First Operand for 8-Bit Immediate (E-For-
mat)
6-3-3 First Operand for Address Calculation (GA-
Format)
6-3-4 Other Two-Operand Instructions
6-4 Short Branch
6-5 Others
7. Addressing Mode
7-1 P Bit
7-2 Symbols Used in Format
7-3 Register Direct
7-4 Register Indirect
7-5 Register Relative Indirect
7-6 Immediate
7-7 Absolute
7-8 PC Relative Indirect
7-9 Stack Pop
7-10 Stack Push
7-11 Register Relation Additional Mode
7-12 PC Relative Additional Mode
7-13 Absolute Additional Mode
7-14 FP Relative Indirect
7-15 SP Relative Indirect
7-16 Format of Additional Mode
7-17 Levels of Additional Mode Specification
8. Description Relating to Implementation
8-1 Supporting Virtual Storage
8-2 Rewrite of Instruction
9. EIT Processing
10. Structure of PSW
10-1 Structure of PSS
10-2 Structure of PSH
10-3 Flag Change
11. Instruction Set Description Format
11-1 Outline of Descriptive Format
11-2 Instruction Bit Pattern and Assembler Syntax
11-3 Field Name

10

15

20

25

30

35

45

55

65

12
11-4 Operand Field Name
11-5 Restrictions for Addressing Mode
11-6 Notes for Description
12. Instruction Set of The Data Processor of the Present
Invention
12-1 Data Transfer Instructions
12-2 Comparison and Test Instructions
12-3 Arithmetic Instructions
12-4 Logical Instructions
12-5 Shift Instructions
12-6 Bit Manipulation Instructions
12-7 Fixed-Length Bit Field Operation Instructions
12-8 Variable-Length Bit Field Operation Instruc-
tions
12-9 BCD Arithmetic Instructions
12-10 String Manipulation Instructions
12-11 Queue Manipulation Instructions
12-12 Control Transfer Instructions
12-13 Multiprocessor Support Instructions
12-14 Control Space, Address Space Operation In-
structions
12-15 OS-Support Instructions
12-16 MMU Support Instructions
Appendix 1: Instruction Set Reference of The Data
Processor of the Present Invention
Appendix 2: Assembler Syntax of The Data Processor
of the Present Invention
Appendix 3: Memory Management System of The Data
Processor of the Present Invention
Appendix 4: Flag Change of The Data Processor of the
Present Invention
Appendix 5: Operation between lefcrent Size Data
Sets
Appendix 6: Subroutine Calls for High Level Lan-

guages

Appendix 7: Control Registers and Control Space

Appendix 8: CTXB of The Data Processor of the Pres-
ent Invention

Appendix 9: EIT Processing of The Data Processor of
the Present Invention

Appendix 10: Instruction Bit Pattern of The Data Pro-
cessor of the Invention

Appendix 11: Detail Specification of High Level In-
structions and Register Values in End State

1. Features of The Data Processor of the Present
Invention (The Data Processor of the Present
Invention)

1-1 Basic Design Concept

The data processor of the present invention is not
RISC. The first target of The data processor of the
present invention is to execute basic instructions at a
high speed. In addmon, high level instructions are
added.

The data processor 32 of the present invention, which
is a 32-bit microprocessor, and the data processor 64 of
the present invention, which is a 64-bit microprocessor,
have been developed at the same time as a series. From
the beginning, the expandability to 64-bit addressing has
been considered.

The data processor of the present invention series has
been developed along with the OS, so that I-TRON
(industrial-TRON), which is a real time OS, and B-
TRON (business-TRON}, which is a work-station type
OS, can be executed at a high speed. The data processor
of the present invention meets the data processor of the
present invention < <LIR> > specification. In partic-
ular, it is focused on the high-speed processing in a real

5,201,039

13
storage environment, i.e., virtual memory is not sup-
ported.

The data processor of the present invention is a mi-
croprocessor which will become the core of an ASIC
LSIL

1-2 OS Oriented Architecture

Bit Map Operation Supporting Instructions:

Instructions which serve to move and operate the bit
map necessary for B-TRON

Context Switch Instructions:

Instructions which serve to switch tasks for - TRON
at a high speed ’

Queue Operation Instructions:

Instructions which serve to operate the ready queue
and wait queue for I-TRON

Memory Management Using 2-Level Ring Protec-
tion:

Extra 2-level ring is provided for future expansion.

1-3 Instruction Set Being Tuned

The instruction set is tuned so that frequently used
instructions and addressing modes can be described in a
short format:

Shortening the length of the instructions for opera-
tion between registers and of those for the literal opera-
tion.

1-4 Instruction Set for Compiler

Instruction set being orthogonalized

16 general-purpose registers used for various pur-
poses such as storing data, addresses and index values.

Sophisticated addressing mode:

Additional mode allows index addition and indirect
reference in any level.

Arithmetic operations between different size data
sets: Different sizes can be specified for the source oper-
and and destination operand.

Sophisticated jump instructions suitable for high level
languages

2. The Data Processor 32 of the Present Invention and
The Data Processor 64 of the Present Invention

The data processor of the present invention has a
32-bit version, the data processor32 of the present in-
vention, and a 64-bit version, the data processor64 of
the present invention. From the beginning, expandabil-
ity to the 64-bit version has been considered. The data
processor of the present invention64 can handle 64-bit
integers in addition to the data types handled by the
data processor 32 of the present invention.

The 32-bit mode/64-bit mode of the data processor64
of the present invention is switched in the following
manner:

Data Size of Operand

The 32-bit mode/64-bit mode is selected using the
size specification bit which exists in each instruction and
operand. It is also possible to use an 8-bit mode or a
16-bit mode. The data size is selected from the four
types from a two bit field.

The data processor 32 of the present invention does
not handle 64-bit data. Consequently, if the 64-bit data
size is specified, the instruction in use is treated as an
error.

Size of Pointer

Normally, the data processor 32 of the present inven-
tion uses a 32-bit pointer, while the data processor 64 of
the present invention uses a 64-bit pointer. However,
since the data processor 64 of the present invention
executes an object code for the data processor 32 of the
present invention, it provides a mode which changes the

10

15

20

25

35

45

50

55

65

14
pointer size to 32 bits. Since this mode is specified in
PSW, it is possible to use a 32-bit type program and
64-bit type program in a context (process or task).

As an extension bit for 64-bit addressing, a reserved
bit named “P bit” is provided every operand which
accesses the memory.

Due to the following reasons, the 32-bit size/64-bit
size of the pointer is switched by the mode rather than
every instruction.

It is difficult to use pointers which differ in size, be-
cause they serve to identify the location. If there is a
64-bit size pointer together with a 32-bit size pointer,
the location cannot be identified unless the size of all the
pointers in 64 bits. Therefore, even if a 32-bit pointer
and 64-bit pointer are switched in each instruction, the
same specification is repeated in each context. There-
fore, its efficiency is low. In such a situation, it is suit-
able to switch the bit size of the pointer by using the
mode, rather than in each instruction.

When the bit size of the pointer is switched between
32 bits and 64 bits using the mode bit, a question about
the compatibility between the data processor 32 of the
present invention and the data processor 64 of the pres-
ent invention may arise. However, in the structure
where the bit size of the pointer defaults to 32 bits and
the mode is changed whenever the 64-bit address is
used, a program for the data processor 32 of the present
invention can be directly executed in the data processor
64 of the present invention. Even if the bit size of the
pointer is switched in each instruction rather than by
the mode, OS will know whether the bit size of each
context is 32 bits or 64 bits to set the stack and to deter-
mine whether the bit size of the system call parameters
is 32 bits or 64 bits. A bit size of 32 bits or 64 bits is
determined by observing the mode in PSW (which is
stored in the stack).

3. Classification of The Data Processor Specifications
of the Present Invention

The data processor of the present invention provides
optional implementations to meet various needs such as
expandability to the 64bit version, serialization, adapt-
ability to many applications, and so forth. To clarify the
optional functions of the data processor of the present
invention, the specifications of the data processor of the
present invention are classified as follows.

< <LO0> > Specification (Level 0)

The minimum specification which will satisfy as the
data processor of the present invention requirements:
For example, the programming model viewed from the
user program (most of ISP, general purpose registers
and PSH), bit pattern in machine language, and so forth.
Unless otherwise specified, the specification is
<<LO>>.

< <L1>> Specification (Level 1)

This specification should usually be implemented,
however, when a processor does not have special re-
quirements the < <L1> > specification may not al-
ways need to be implemented. < <L1> > specification
includes high level functional instructions such as string
instructions, additional modes, queue operation instruc-
tions, and bit map instructions. The details of
< <L1>> instructions will be described separately.

< <LIR > > Specification (Level 1 Real)

The < <LIR> > specification excludes the instruc-
tion rerun function and MMU related functions from
the < <L1> > specification. This < <LIR > > speci-
fication is used to effectively operate I-TRON and mi-

5,201,039

15
cro-BTRON with real memory. The instruction set for
< <L1R> > is nearly the same as that for < <L1> >,
so the compiler and user program can be used in com-
mon with < <L1>>. However, part of the instruc-
tions relating to MMU (MOVPA and so forth) and OS
(JRNG and so forth) may not be supported.

< <L2>> Specification (Level 2)

This specification will be introduced in accordance
with an increase of hardware amount in future:

< <L2>> includes the specification which serves
to enhance the symmetry of instructions and are newly
added imstructions to <<LO0>>, <<L1>> or
< <LIR>> for high speed operation.

The former includes the *“/B” option of the BVSCH
instruction, complicated termination conditions of the
string instruction, additional mode in indefinite stages,
while the latter includes the INDEX instruction.

The < <L2>> specification is represented as
“<<L2>>",

< <LX>> Specification (Extension)

This specification will be introduced for the expan-
sion to the data processor of the present invention 64.
Although it has the same content as <<L2>>, it is
treated as a different class because of the expandability
1o the data processor64 of the present invention.

The < <LX>> specification is represented as
“<<LX>>".

< <LU> > Specification (Undefined)

The specification which will be introduced for the
future extension:

At present, the specification details have not been
determined.

< <LV> > Specification (Variable)

The specification which can be freely determined by
each manufacturer:

The < <LV>> specification includes the pin as-
signment of the chip, specification relating to the level
and performance of the pipeline, bit pattern assigned to
each manufacturer, usage of control registers and so
forth. The bit patterns of the instructions assigned to
each manufacturer are represented with LV reserved in
the bit pattern reference.

< <LA> > Specification (Alternative)

Although the < <LA > > specification describes the
standard specification for the data processor of the
present invention (or will describe it), if necessary, it
may be changed. However, if the specification is
changed, the compatibility may be lost. In other words,
the < <LA> > specification does not assure the com-
patibility of the data processor of the present invention.

The < <LA> > specification mainly includes the as
memory management system, control registers, and part
of the privileged instructions. The data processor of the
present invention aims at high speed processing in a real
storage environment without an MMU. Thus, the data
processor of the present invention does not support
most of the < <LA>> specification relating to the
memory management.

4. Register Set 12: see FIG. 7.

The data processor 32 of the present invention pro-
vides 16 32-bit general purpose registers, while the data
processor 64 of the present invention provides 16 64-bit
general purpose registers.

The stack pointer (SP) and frame pointer (FP) are
included in the general purpose registers. SP and FR
are R15 and R14, respectively.

35

45

35

65

16

The program counter (PC) is not included in the
general purpose registers.

The general purpose registers serve to store data and
base addresses as well as serving as an index register
which can be used for many purposes.

A processor status word (PSW) register is provided
to store the status of the processor.

SP is switched according to the context (ring number
or interrupt processing).

PSW consists of four bytes; the low-order first byte
(processor status byte, or PSB) is used to indicate the
status, the low-order second byte (processor status half
word, or PSH, which is used along with PSB) is used to
set the user mode, and the two high-order bytes are
used to indicate the system status.

The data processor of the present invention is called
a “big-endian™ chip. It assigns 8-bit and 16-bit data in
the register starting with the LSB side. Thus, an abso-
lute bit number, irrespective of the data size, cannot be
defined. A bit number can only defined along with the
data size.

8-bit data in the register is assigned 0, 1,..., 7 starting
with the MSB side. In addition, 16-bit data in the regis-
ter is assigned 0, 1, ..., 15 starting with the MSB side.
32-bit data in the register is assigned 0, 1, .. ., 31 starting
with the MSB side. Consequently, bit position 7 of 8-bit
data, bit position 15 of 16-bit data, and bit position 31 of
32-bit data all correspond to the same bit.

In instructions where the register is used as the desti-
nation operand, when the data size of the register is 8
bits or 16 bits, the high-order bytes are not influenced.
They are not changed to comply with the specification
of the operation in the memory. To influence the high-
order bits, use a different data size operation.

Example
MOV #H'12345678, RO.W
MOV #H'aa, RO.B

When the above instructions are performed, RO be-
comes H'123456aa.

When 8-bit data and 16-bit data are placed in a regis-
ter, they are assigned from the LSB side. For example:

MOV.W #H'12345678,RO
MOV.B #H’aa RO
MOV.W #RO,R1

The result of the above instructions is R1=H’123456aa.
When the same operation is performed for the mem-
ory with the following instructions,

MOV.W #H'12345678, @RO
MOV.B #H'sa, @RO
MOV.W @RO, R1

the 8-bit data and 16-bit data are assigned from the MSB
side, resulting in R1=H’'aa345678. Note that the result
in the register differs from that in the memory.

5. Data Type

The data processor of the present invention uses “big-
endian”. In other words, when the byte address or bit

5,201,039

17
number is assigned, the smaller number (address) is
MSB (most significant bit/byte).
In the big-endian structure, the address of some data
in the memory differs depending on whether it is treated
as 8-bit data or 16(32)-bit data. For example, when

address: N N+1 N+2
data: 0 0 0

N+3
H'12

although the content of the address N as 32-bit data is
H'00000012, (where H' represents hexadecimal nota-
tion), when the data of the same content is treated as
8-bit data, it is necessary to refer to the address N+ 3.

However, since 8-bit data and 16-bit data in the regis-
ter are assigned from the LSB side, they can be treated
as different size data. For example,

MOV #0, RO.W
MOV #H'12, RO.B
MOV RO.W, R1.W

The result becomes R1=H'00000012. (For the meaning
of the instructions, see the related chapter.)

On the other hand, when the same operation is per-
formed for the memory.

MOV #0, @RO.W
MOV #H'12, @RO.B
MOV @RO.W, RI.W

cause the 8-bit data H’'12 and MSB of the 32-bit data to
be matched, resulting in R1=H'12000000.

The data types that the data processor of the present
invention supports are as follows.

5-1 Bit

The relates bit 14 is indicated in FIG. 8. In the case of
the bit operation in the memory, offset can be freely
used.

In the case of the bit operation in the register, offset
can be limited in one register (the upper bits of the offset
is ignored).

The bit is assigned using a set of base__address, size of
base_address and offset.

When a bit in the memory is assigned, MSB of the
memory address represented by base_address is the bit
of offset=0. At the time, the assignment of the size of
base_address does not influence the bit which is actu-
ally operated. For the bit operation instruction, to as-
sign the access size for the read-modify-write operation
for the memory, the size of base__address is assigned.
However, the access size does not depend on the bit
actually operated.

On the other hand, when a bit in the register is as-
signed, MSB in the data size which is assigned as the
size of base_address is the bit of offset=0. The bit
actually operated depends on the size of base__address.

5-2 Bit Field

Signed bit field

The related bit field 16 is indicated in FIG. 9.

0<width=32 (< <LX> >0 width=64)

S: Signed bit

The distance between MSB of base__address and that
of the related bit field (signed bit) is offset. In the case of
the bit field operation in the memory using the BF:G
instruction, offset can be freely used. In the case of the
bit field operation in the memory using the BF:E in-

10

25

30

40

45

50

65

18
struction or the bit field operation in a register, the
operation in the bit field which exceeds the one word
(1-long word) of base_address is not assured.

Unsigned bit field

The related bit field 18 is indicated in FIG. 10.

0<width=32 (< <LX > >0<width=64)

The distance between MSB of base_address and that
of the related bit field is offset.

In the case of the bit field operation in the memory
using the BF:G instruction, offset can be freely used. In
the case of the bit field operation in the memory using
the BF:E instruction or the bit field operation in a regis-
ter, the operation in the bit field which exceeds the one
word (1-long word) of base__address is not assured.

Unfixed length bit field

Both offset and width can be freely assigned in the
condition of width>0.

5-3 Integer

The data type of integer 20 is indicated in FIG. 11.

5-4 Floating Point

The floating point operation is processed by a co-
processor. The format of the floating point is specified
by IEEE standard. The details of the floating point will
be separately specified.

Single precision 32-bit floating point < < Co-proces-

sor> >

Double precision 64-bit floating point

processor > >

80-bit floating point < <Co-processor> >

5-5 Decimal

The addition, subtraction, multiplication and division
in multiple length decimal notation are processed by a
co-processor. The main processor of the data processor
of the present invention only processes unsigned fixed-
length PACKED format decimal numbers and signed
PACKED format decimal numbers. However, all the
instructions which process the signed PACKED format
decimal numbers are < <L2> >. The data type 22 is
shown in FIG. 12.

5-6 String

In the string case, the data type 24 is showin in FIG.
13.

5-7 Queue

The data type of linear list 26 connected by double
links is shown in FIG. 14.

6. Instruction Format

< <Co-

Any instruction is written in variable length every 16
bits. However, instructions whose length is odd bytes
are not permissible.

Instructions with two operands are classified into two
types: one is the general type, which has 4 bytes + exten-
sion portion and can use all the addressing modes (Ea),
and another is the abbreviation type, which can use only
frequently used instructions and the addressing mode
(Sh). Depending on the instruction function and code
size being required, the suitable type can be selected.

Although the instruction format of the data processor
of the present invention can be classified into many
types, we will roughly classify and describe the the
types of the instruction format so that the user can easily
understand it. For detail types of the instruction format,
see Appendix 10.

These are the abbreviations used for the codes de-
scribed with the format.

— Portion where an operation code is placed
Portion where a literal or immediate value is placed.

5,201,039

19
Ea General type addressing mode specified with 8 bits

(General Format)

Sh Abbreviation type addressing mode specified with 6
bits (Short Format)
Rn Portion where the register is specified

The format is described assuming that the right side is
LSB and the high-order address (big-endian).

Example of Format Description 28 is shown in FIG.
15. The instruction format can be determined by the
two bytes of the address N and address N+ 1, because
any instruction is fetched and decoded every 16 bits (2
bytes).

In any format, the extension portion of Ea or Sh of
each operand should be located just after the half word
containing the basic portion of Ea or Sh. It has higher
precedence than the immediate data which is implicitly
specified by an instruction and than the extension por-
tion of an instruction. Therefore, the operation code of
an instruction consisting of 4 bytes or more may be
separated by the extension portion of Ea.

If extra extension portion is added to the extension
portion of Ea in the additional mode, the extra extension
portion has higher precedence than the operation code
of the next instruction. ‘

For example, consider a 6-byte instruction which
consists of the first half word containing Eal, the sec-
ond half word containing Ea2, and the third half word.
Since the additional mode is used for Eal, the extension
portion for the addition mode is also added as well as
the conventional extension portion. At the time, the real
instruction bit pattern is assigned in the following order.

First half word of the instruction (including the basic

portion of Eal)

Extension portion of Eal

Extension portion of Eal in the additional mode

Second half word of the instruction (including the

basic portion of Ea2)

Extension portion of Ea2

Third half word of the instruction

When only 8 bits of the 16-bit field are used depend-
ing on the alignment, they are placed in the low order
(to the higher address). It is applied when the #im-
m__data mode is specified to EaR and ShR while the
operand size is 8 bits, when the operand size is 8 bits in
the I- format, or when BRA:G, Bce:G, BSR:G and
SS=00.

For example, in the following case,

MOV:1B #H'12, @RO

The first byte is an operation code of MOV:LB.

The second byte is used to specify both part of the
operation code and ShW(@RO).

The third byte is 0.

The fourth byte is H'12.

The bit pattern 29 is represented in FIG. 16.

In this case, the upper (lower address) 8 bits of the
16-bit field should be filled with 0. When the upper 8
bits are not 0, the data is unstable depending on the
implementation. In other words, in the case of I-Format
or #imm_data mode, the operand depends on the im-
plementation, while in the case of the instructions of
BRA:G,Bcc:G and BSR:G, the destination to be
jumped becomes unstable. In any case, they are not
treated as EIT (exception).

6-1 Two Operand Short Format

6-1-1 Register and Memory (S-format,L-format) 30:
an example is shown in FIG. 17.

25

40

45

55

60

65

20

There are two types of instructions in the L-format
and S-format: one type is where the size can be specified
(MOV:L, MOV:S, CMP:L) and another type is where
the size cannot be specified (ADD:L, SUB:L).

For instructions where the size can be specified, the
specification of the size by RR and the like is only ap-
plied to the memory and the size of the memory is fixed
to 32 bits. If the size of the register differs from that of
the memory while the size of the source is smaller than
another, sign extension is performed. If the size of the
source is smaller than another, the high-order byte is
truncated and overflow check is performed.

On the other hand, for the instructions of ADD:L
and SUB:L where the size cannot be specified, both the
operand sizes of the register and memory are fixed to 32
bits.

Since there is a rule for the data processor of the
present invention where data in the register is usually
treated as a 32-bit signed integer, the size of the register
is fixed to 32 bits. This rule is also applied to the bit field
instructions and instructions with advanced functions
where an operand is placed in the register as well as the
instructions in the L-format and S-format.

6-1-2 Between Registers (R-Format) 31: an example is
shown in FIG. 18.

6-1-3 Between Literal and Memory (Q-Format) 32:
an example is shown in FIG. 19.

6-1-4 Between Immediate and Memory (I-Format)
33: an example is shown in FIG. 20.

The size of the immediate value in the I-format is 8,
16, 32 and 64 bits which are in common with the size of
the destination operand. The zero extension and sign
extension are not performed.

6-2 One Operand General Type (G1-Format) 34: an
example is shown in FIG. 21.

6-3 Two Operand General Type |

Instructions which have two operands in the general
type addressing mode and which are specified with 8
bits. Occasionally, the total number of operands be-
comes 3.

6-3-1 First Operand for Memory Read (G-Format)
35: an example is shown in FIG. 22.

6-3-2 First Operand for 8-Bit Immediate (E-Format)
36: an example is shown in FI1G. 23.

Although the function of this format is similar to that
between the immediate and memory (I-format), their
concepts remarkably differ. Since the E-format is a
derivation of the 2-operand general type (G-format),
the size of the source operand is fixed to 8 bits and the
size of the destination operand is selected from
8/16/32/64 bits. In other words, supposing the different
size operation, for scr consisting of 8 bits, the zero ex-
tension or sign extension is performed in accordance
with the size of dest.

On the other hand, in the I-format, the immediate
pattern which is frequently used in MOV and CMP is
changed to the short type and the size of the source is
the same as that of the destination.

6-3-3 First Operand for Address Calculation (GA-
Format) 37: an example is shown in FIG. 24.

6-3-4 Other Two-Operand Instructions 38: an exam-
ple is shown in FIG. 25.

6-4 Short Branch 39: an example is shown in FIG. 26.

6-5 Others 40: except above described, there are ex-
amples shown in FIG. 27.

5,201,039

21

7. Addressing Mode

The data processor of the present invention provides
two addressing modes: the short format (Sh), which
assigns the address for the memory and registers with a
6 bits field and the general format (Ea), which specifies
with an 8 bits field.

If an addressing mode which has not been defined or
an improper combination of addressing modes is speci-
fied, a reserved instruction exception (RIE) occurs like
an execution of the undefined instruction and it causes
the exception processing to start. It may occur when the
destination is in the immediate mode or when the imme-
diate mode is used for an instruction which calculates
the address.

7-1 P Bit

The data processor of the present invention can as-
sign a one-bit optional function assignment bit for ac-
cessing the memory. This bit is named the P bit. The P
bit is used to add some additional capability whenever
the memory is accessed.

The P bit is independently assigned whenever the
memory is accessed. Therefore, in case of the register
indirect addressing mode, absolute addressing mode,
and the like, one P bit is assigned in accordance with the
operand. In case of the multiple level indirect address-
ing mode where the additional mode is used, the P bit
should be used for the number of times corresponding
to the number of levels. The P bit is expected for tag
checking, logical space switching, and switching be-
tween 32-bit addressing and 64-bit addressing for future
expansion. Therefore, in the current specification, the P
bit is reserved. In the description of the P bit, the posi-
tion of the P bit is represented with ‘P’. However, it
should always be “0”. If the P bit is not “0”, a reserved
instruction exception (RIE) will occur.

The function of the P bit should conform to the
< <LU> > specification.

7-2 Symbols Used in Format
Rn: Assign the register.

P: P bit (always *0")
mem[EA}: Content of the memory at the address repre-
sented with EA

The portion surrounded by dotted lines represents
the extension portion.

7-3 Register Direct
Assembler syntax 41: Rn
Operand: Rn
Format: shown in FIG. 28.

7-4 Register Indirect
Assembler syntax 42: @Rn
Operand: mem[Rn]

Format: shown in FIG. 29.
7-5 Register Relative Indirect

Assembler syntax 43 @(disp,Rn)
@(disp:16,Rn)

@ (disp:32,Rn)

Operand: mem{disp+ Rn]

Format: shown in FIG. 30.

disp should be treated as a signed operand.
7-6 Immediate

Assembler syntax 44: #imm__data

Operand: imm__data

Format: shown in FIG. 31. The size of imm_data is
assigned in an instruction as the operand size.

10

15

20

25

30

35

45

55

65

22
7-7 Absolute
Assembler syntax 45: @abs
@abs:16
@abs:32
@abs:64 <<LX>>

Operand: mem{abs]
Format: shown in FIG. 32.

In the 32-bit addressing mode, the address specified is
extended to the 32-bit signed address. On the other
hand, in the 64-bit addressing mode, the address as-
signed by abs:16, abs:32 is extended to the 64-bit signed
address.

7-8 PC Relative Indirect

Assembler syntax 46: @(disp,PO)
@(disp:16,PC)

@(disp:32,PC)

Operand: mem(disp+ PC]
Format: shown in FIG. 33.

‘The PC value being referenced in the PC relative
indirect mode is the beginning address of the instruction
which includes the operand. Thus, an endless loop can
be produced by the following instruction.

JMF @0, PC)

When the PC value in the additional mode is refer-

enced, the beginning address of the instruction is used as

the reference value of the PC relative indirect mode.
7-9 Stack Pop 47

Assembler syntax: @SP+

mem{SP]
SP is incremented.

Operand: -

Format: shown in FIG. 34

In the @SP+ mode, SP is incremented in accordance
with the operand size. For example, when the data
processor 64 of the present invention processes 64-bit
data, SP is updated by + 8. It is also possible to specify
@SP+ for an operand which is the size of B and H, so
that SP is updated for +1 and +2, respectively. How-
ever, it causes the stack alignment to be disordered,
resulting in a slower processing speed.

If the @SP+ mode is not used for the operand, a
reserved instruction exception (RIE) occurs. Actually,
a reserved instruction exception occurs when @SP + is
used for the write operand and read-modify-write oper-
and.

7-10 Stack Push 48
Assembler syntax: @-SP

SP is decremented.
mem{SP)

Operand:

Format: shown in FIG. 35

In the @-SP mode, SP is decremented in accordance
with the operand size. For example, when the data
processor of the present invention64 processes 64-bit
data, SP is updated by —8. It is also possible to specify
@-SP for an operand which is the size of B and H, so
that SP is updated for —1 and —2, respectively. How-

5,201,039

23
ever, it causes the stack alignment to be disordered,
resulting in a slower processing speed.

If the @-SP mode is not used for the operand, a re-
served instruction exception (RIE) occurs. Actually, a
reserved instruction exception occurs when @-SP is
used for the read operand and read-modify-write oper-
and.

7-11 Register Relation Additional Mode 49

Operand: Rn= = > tmp

Additional mode processing
Format: shown in FIG. 36.
For details of the additional mode, see section 7-16.
7-12 PC Relative Additional Mode 50
Operand: PC= = >tmp
Additional mode processing
Format: shown in FIG. 37.
7-13 Absolute Additional Mode 51
Operand: 0= = >tmp
Additional mode processing
Format: shown in FIG. 38.
7-14 FP Relative Indirect 52

Assembler syntax: @(disp.FP)
@disp:4,FP)

Operand: mem[d4 * 4 + FP]
(disp = d4 * 4)

Format: shown in FIG. 39.

The prescaled displacement, d4, it treated as a signed
operand. It should be used by multiplying by 4 irrespec-
tive of the size. Thus, the memory address of the multi-
ples of 4 in the range from (FP—8%4) to (FP+7*4) can
be referenced. When the address is described in the
assembler representation, the value multiplied by 4
should be described for displacement. This addressing
mode is < <L2>>. Since the data processor of the
present invention does not provide the FP relative indi-
rect mode, when this mode is specified, a reserved in-
struction exception (RIE> occurs.

Since this addressing mode cannot be used in the
short format, for example,

MOV @(disp,FP),R1
becomes 4 bytes as follows.
MOV:G.W @(disp4,FP),R1
MOV:L.W @(disp:16,FP).R1

Thaus, the code is ambiguously selected, so that the
mode is < <L2>>. This mode is expected to effec-
tively use the short format when the rate of usage of the
abbreviations is decreased in the data processor64 of the
present invention. In the modes of @(d4:4,FP) and
@(d4:4,SP) d4 is used by multiplying by 4 irrespective
of the operand size. Therefore, if the modes of
@(d4:4,FP) and @(d4:4,SP) are used with variables of 8
bits, 16 bits and 32 bits lengths in the stack frame at the
same time, it is necessary to left justify each variable to
the word boundary, since the data processor of the
present invention is big-endian.

Example of allocation of local variables for using
modes of @(d4:4,FP) and @(d4:4,SP) 53 is shown in
FIG. 40.

7-15 SP Relative Indirect 54

10

15

25

35

45

55

60

65

24
Assembler syntax: @(disp,SP)
@(disp:4,SP)
Operand: mem[d4 * 4 + SP]

(disp = d4 * 4)

Format: shown in FIG. 41.

The prescaled displacement, d4, is treated as a signed
operand. It should be used by multiplying by 4 irrespec-
tive of the size. However, the operation where d4 is
negative is not described. Thus, the memory address of
the multiples of 4 in the range from (SP) to (SP+7*4)
can be referenced. When the address is described in the
assembler syntax, the value multiplied by 4 should be
described for displacement. This addressing mode is
< <L2>>. Since the data processor of the present
invention does not provide the FP relative indirect
mode, when this mode is specified, a reserved instruc-
tion exception (RIE) occurs.

Like @(disp:4,FP), this mode is expected to effec-
tively use the short format when the rate of usage of the
abbreviations is decreased in the data processor 64 of
the present invention.

7-16 Format of Additional Mode

Complicated addressing can basically be separated
into a combination of operations of addition and indi-
rect reference. Therefore, when assigning the opera-
tions of addition and indirect reference as primitives of
addressing, and combining them freely, any compli-
cated addressing mode can be obtained.

The additional mode will be used for such a purpose.
A complicated addressing mode is especially useful for
data reference between modules and processing systems
for artificial intelligent languages.

However, when the addressing mode is widely used
for the data processor of the present invention, the
processing speed may decrease. Thus, care should be
taken to use the memory indirect addressing mode.

The additional mode is specified every 16 bits and
repeated for the number of times required. With only
one occurrence of the additional mode, the following
operations are performed.

Addition of constant (displacement)

Scalling (x1, x2, x4 and x8) and addition of index

register

Memory indirect reference
With the additional mode in n levels, the indirect refer-
ence of up to (N+ 1) levels can be performed. Processes
of basic additional modes:

tmp + Rx *scale + d4* 4 —
tmp + Rx * scale + displx —
memftmp + Rx * scale + d4 * 4] —
mem{tmp + Rx ® scale + dispx] —

tmp when I=0and D=0
tmp when 1=0and D=1
tmp when I=1and D=0
tmp when I=1 and D=1

Basic format 85: shown in FIG. 42.
EIl=00 Absence of indirect reference; continuation of
additional mode

tmp +disp+ Rx * Scale= = >tmp

EI=01 Indirect reference; continuation of additional
mode

mem(tmp + disp+ Rx * Scale]= = >tmp

5,201,039

25

EI=10 Indirect reference; completion of additional
mode

mem[tmp +disp+ Rx * Scale]= = >operand

EI=11 Dual indirect reference; completion of addi-
tional mode

mem(mem{tmp + disp + Rx * Scale]]= = >operand

M=0 <Rx> is used as an index.

M=1 Special index .
<Rx> =0: The indexes are not added. (Rx=0)
<Rx>=1: PC is used as the index Rx. (Rx=PC)
<Rx> =2 or more: reserved

D=0 4-bit d4 in the additional mode is multiplied by 4,
treated as disp, and then added. d4 should always be
multiplied by 4 and used irrespective of the operand
size.

D=1 dispx (16/32/64 bits) specified by the extension
portion in the additional mode is treated as disp and
then added. The size of the extension portion is speci-
fied by the d4 field.
d4=0001: dispx is 16 bits.
d4=0010: dispx is 32 bits.
d4=0011: dispx is 64 bits. <<LX>>

XX Scale of index (scale=1/2/4/8)

S Size of index register
S$=0 <Rx> is extended to signed 32 bits.

S=1 <Rx> is 64 bits < <LX>>
PPbit <<LU>>

The P bit is placed in each level of the additional
mode.

The P bit can be specified independent from all the
memory references.

Whether the indirect reference is performed or not
can be selected.

The level which does not perform the indirect refer-
ence is used for addition of the base register and index
register with multiple levels (such as
mem[R1+R2+R3)). It may be used for the relocation
base register, etc. by the user.

Size of index register

Since 32-bit data will be frequently used even with a
64-bit address, 32/64-bit address size can be switched in
each level of the additional mode.

@(disp:64,Rn) of the register relative indirect and the
addressing mode of the memory indirect can be ob-
tained by using the additional mode.

If the scaling of x2, x4 and x8 for PC is performed, the
temporary value (tmp) after the processing of the level
is completed, the value, depends on the hardware im-
plementation. The effective address obtained by the
additional mode cannot be predicted. However, an
exception does not occur.

Variation of format 56, 57: shown in FIG. 43, 44,
respectively.

7-17 Levels of Additional Mode Specification

The additional mode is used for normal indirect refer-
ence, as a table reference for external variables for mod-
ular object codes, and execution of Al oriented instruc-
tions. In particular, the applications of AI may use the
indirect reference in many levels. However, the normal
applications use it in 4 or less levels.

When the additional mode in any number of levels
can be used, the classification by the number of levels in
the compiler is not required, thus reducing the load of
the compiler. Even if the frequency of the indirect ref-

10

15

25

35

40

45

55

60

65

26
erence in many levels is very small, the compiler should
always generate correct codes.

However, from the point of view of implementation,
if executing interrupts are accepted in any number of
levels, the load on the compiler becomes heavy. There-
fore, it is necessary to restrict the number of levels.

The versions of the data processor of the present
invention which can use the additional mode with up to
only 4 levels (4 basic formats of the additional mode) is
defined as the < <L1> > specification. Versions that
can use any number of levels are defined as the
< <L2>> specification. Even in the <<LI1>>
specification, it is possible to perform the memory indi-
rect reference up to 5 times. For the additional mode
which exceeds 5 levels (5 half words), a reserved in-
struction exception (RIE) occurs. However, in the for-
mat where any number of levels can be used, the num-
ber of levels will be extended.

The data processor of the present invention can use
the additional mode in any number of levels. However,
when the memory indirect addressing is frequently used
along with the additional mode, the processing speed
may decrease. Especially, if the additional mode with
many levels is used in the second operand, an interrupt
cannot be accepted during the processing of the addi-
tional mode.

Since the data processor32 of the present invention
will use floating point, the scaling of ‘x8' is imple-
mented. The scaling of ‘x8’ is the < <L1> > specifica-
tion rather than the < <LX> > specification.

8. Description Relating to Implementation

8-1 Supporting Virtual Storage

While the data processor of the present invention has
provisions for virtual memory, they are not currentry
implemented on the data processor of the present inven-
tion.

To provide the virtual storage, it is necessary to prop-
erly recover page faults which occur during execution
of instructions. The data processor of the present inven-
tion generally uses the instruction re-execution system.

If a page fault occurs in the instruction re-execution
system, the processor resets all the registers and acti-
vates the page-in process routine. Thus, even if the
execution of instructions are resumed from the begin-
ning, inconsistency does not occur.

In the instruction re-execution system, normally, it is
not necessary to hold the status flags during execution.
Therefore, the system is comparatively simple. When
re-executing instructions, the data processor of the pres-
ent invention does not use the instructions and address-
ing mode (such as auto-increment) which may cause
side effects however, since the re-execution after the
page fault may cause an unnecessary memory access.
Therefore, care should be taken when OS operates the
1/0 device.

For example, if the first operand of a normal instruc-
tion serves to read the 1/0 device and the second oper-
and causes a page fault by the re-executing the instruc-
tion, the 1/0 device is read again. Therefore, inconsis-
tency may occur depending on the type of 1/0 device.
Thus, when an I/0 device causes a side effect is read
and accessed, take care not to cause a page fault by
another operand. Particularly, it is possible that another
operand is always a register or residual page.

If the source operand and destination operand are
partially overlapped, inconsistency will occur when a
simple execution is performed.

5,201,039

27

Example: Moving 2-byte data for 1 byte.

The destination is located at the page boundary:
shown in FIG. 45.

In FIG. 45, if the MOV H instruction causes [N-2:N-
1] to be moved to [N-1:N], the write cycle of the desti-
nation is separated with two sessions. First, the data of
[N-2] 58 is written to [N-1] 59 and the former [N-1] is
written to [N]. If page M-1 60 has a fault while the data
is written to [N-1], after the page-in operation, [N-2:N-
1]->{N-1:N] is retried. Since the content of N-1 has
been rewritten, inconsistency will occur.

For an instruction such as LDM which serves to
transfer data in multiple sessions, if the source and desti-
nation are overlapped, care should be taken that incon-
sistency does not occur during re-execution of the in-
struction. For example, in the following case,

LDM @Ré6, (R6-R10)

when R8 is read after loading R6 and R7, if a page fault
occurs, R6 has been rewritten upon re-execution. Thus,
if the instruction is re-executed from the beginning,
inconsistency will occur. To avoid that, it is necessary
to take the following countermeasures.

Check that a page fault has not occurred at the begin-
ning of the instruction.

Save the temporary value which represents the ad-
dress which is transferred during page fault to the stack
(a kind of instruction continuous execution system).

Store the initial value of R6 and restore it if a page
fault occurs.

These countermeasures should be applied to STM
and other instructions.

To re-execute instructions without inconsistency,
LDM, STM and LDCTX prohibit the additional mode.
On the other hand, ENTER, EXIT and JRNG prohibit
all the addressing modes which access the memory.

8-2 Rewrite of Instruction

Generally, a computer which has the stored program
system can rewrite the instruction program to be exe-
cuted by itself through a program. However, when an
instruction is rewritten in the current high performance
processors which provide prefetch and instruction
cache functions and the operation must be assured, the
load on the hardware is remarkably increased. The
necessity of this function is not high and it is not suitable
for software training. Therefore, the data processor of
the present invention normally prohibits the instruction
codes to be rewritten by software. If the instruction
code is rewritten, its operation will not be assured.

In some special applications, instruction codes are
produced by a user program and they are executed.
Therefore, when some conditions are met, it is neces-
sary to assure the execution operation of instruction
codes being rewritten.

To do that, the data processor of the present inven-
tion has PIB instruction which informs the processor
that instruction codes have been rewritten. By execut-
ing this instruction, the execution operation of the in-
struction codes being rewritten are assured. This in-
struction serves to inform the processor that the instruc-
tion codes to be executed have been probably rewritten
(after the processor has been reset or the former PIB
instruction has been executed). This instruction will
serve to purge the pipeline, instruction queue and in-
struction cache.

9. EIT Processing

5

15

20

25

35

45

50

55

65

28

EIT stands for the initial letters of Exception (excep-
tional interrupt), Interrupt (external interrupt) and Trap
(internal interrupt).

In the data processor of the present invention, a pro-
cess which is asynchronous with the flow of the execu-
tion of the program is termed an EIT process. The EIT
processes are generally called exception and interrupt
processes. The EIT process contains the following
types.

Internal interrupt (call between rings, trap)

It is intentionally generated by the programmer when
issuing a system call. It relates to the context which is
executed at the time,

Exceptional interrupt (exception)

It occurs if some error is generated during execution
of a conventional instruction. It relates to the context
being executed at the time.

External interrupt (interrupt)

It occurs when a signal is generated by external hard-
ware.

It does not relate to the context being executed at the
time. ‘

For details of the EIT processing, see Appendix 9.

10. Structure of PSW

PSW (Processor Status Word) of the data processor
of the present invention consists of 32 bits. The lower 16
bits of PSW (PSH - Processor Status Halfword) is used
for the user program. It can be freely operated by the
user process. On the other hand, the upper 16 bits of
PSW (PSS - Processor Status halfword for System) is
used for the system. Therefore, it cannot be operated by
the user program (ring 3). The upper 8 bits of PSH
serves to set various modes and are named PSM (Pro-
cessor Status byte for Mode). In addition, the lower 8
bits of the PSH serves to display the operation result 43,
which is named PSB (Processor Status Byte): shown in
FIG. 46.

10-1 Structure of PSS 62: shown in FIG. 47.

Reserved to 0.

If ‘1’ is written, a reserved functional exception

(RFE) occurs.

SM,RNG =000 Uses the external interrupt stack
pointer (SPI) at ring O.

SM,RNG =001 reserved

SM,RNG=010 reserved

SM,RNG =011 reserved

SM,RNG =100 Uses the stack pointer for ring 0
(SPO) at ring 0.

SM,RNG =101 Reserved (for ring 1)

SM,RNG=110 Reserved (for ring 2)

SM,RNG =111 Uses the stack pointer for ring 3
(SP3) at ring 3. SM,RNG is < <LA> >.(SM: Stack
Mode, RNG: Ring)

XA =0 32-bit context

XA=1 64-bit context < <LX>>

AT=00 Absence of address conversion

AT=01 Presence of address conversion (the data
processor of the present invention standard MMU
specification)

AT=10 Absence of address conversion, memory
protection by address (< <LIR>>)

AT=11 reserved (AT: Address Translation mode)

DB=0 Context which is not currently debugged

DB=1 Context which is currently debugged

IMASK Interrupt priority which inhibits an external

interrupt and DI (Delayed Interrupt).

5,201,039

29
IMASK =0000 Accepts only NMI (unmaskable in-
terrupt of priority 0)
IMASK =0001 Masked up to priority 1 (conse-
quently, accepts NMI only).

IMASK =0010 Masked up to priority 2. represented
by IMASK.

IMASK=1110 Masked up to priority 14.

IMASK=1111 Not masked

The data processor of the present invention controls
the memory by 4 levels of ring protection as the
< <LA>> specification. (See Appendix.) The data
processor of the present invention controls the memory
by 2 levels of ring protection. The RNG field represents
which rings exist in the current processor. Even if the
ring protection is not performed, this field is used to
switch between the supervisor mode and the user mode.

The XA bit of the data processor of the present in-
vention32 is reserved. If ‘1’ is written to the bit, an
exception occurs.

Since it is difficult to standardize the debug informa-
tion such as trace in detail, it is stored in a different
control register (DCR - Debug Control Register).
However, only the information which represents the
debugging condition is stored in PSW as DB.

The lower priority external interrupts of the data
processor of the present invention are represented with
higher numbers. The priority of the external interrupts
consist of seven levels from 0 to 7. The priority 0 is the
unmaskable interrupt (NMI).

Since it is difficult to completely standardize the
control information of the cache and MMU, it is sepa-
rated from PSW.

Since AT (address translation specified field) is
placed in PSW, it is possible to convert the address any
context, change the memory protection method, and
temporarily stop the address translation only during
execution of the EIT process handler.

When AT (address translation bit) in PSW is changed
from ‘00’ to ‘01’ by starting LDC, REIT, LDCTX or
EIT, TLB and cache purge are automatically con-
ducted, so that TLB and matching with the logical
cache is assured. In addition, when AT is changed from
‘01" to *00’, the matching of the cache (logical cache and
physical cache) is assured.

10-2 Structure of PSH 63: shown in FIG. 48.

Reserved to ‘0

If ‘I’ is written, a reserved functional exception
(RFE) occurs.

PRNG Ring number just before entering this ring.
PRNG is < <LA>>.

P P-bit Error Flag < <LU> >

Set if an error relating to the P-bit function occurs.

Otherwise, it is cleared.

Reserved to ‘0’ at present.

F General Flag
Used to detect the cause of the termination of a high
level instruction.
X Extension Flag

The carry-out of a multiple length operation.
V Overflow Flag

Indicates an overflow occurence.

L Lower Flag
Indicates the contents of thc first operand is smaller
than those of the other operand in a comparison
instruction for both signed with signed comparison
and unsigned with unsigned comparison.
M MSB Flag
Indicates the MSB of the operation result is ‘1’

15

25

30

35

45

55

65

30
Z Zero Flag

Indicates the operation result is *0’.

The “ring just before entering” in the PRNG field
represents a “ring which is placed at one outer location”
or a “ring which requests a service to the ring”. Thus,
when EIT occurs, PRNG changes as follows:

PSW<RNG> == >PSW<PRNG>.
When EIT occurs in the return mode with the REIT
instruction, PRNG changes as follows:

stack = = > PSW (including RNG and PRNG).

In the return mode, it is necessary to return from the
stack rather than copying RNG. The relationship
RNG=PRNG is always satisfied. PRNG is referenced
by the ACS command. Actual ring transition uses the
information of RNG. In instruction flow from com-
pared to the conditional jump, processors other than the
data processor of the present invention usually distin-
guish signed data and unsigned data by using a condi-
tional jump instruction rather than a comparison in-
struction.

For example, unsigned integers are compared using
the following instructions:

CMP
BLTS

srcl,src2

next Branch Lower Than (Signed)

Signed integers are compared using the following in-
structions:

CMP
BLTU

srcl,src2

next Branch Lower Than (Unsigned)

Thus, in this type of flag implementation, information to
distinguish the size of numbers and the presence or
absence of signs is required.

In the data processor of the present invention, how-
ever, the distinction between the presence or absence of
a sign is made by using different compare instructions
such as the CMP and CMPU instructions. On the other
hand, the conditional jump instruction can be used re-
gardless of whether the contents are signed or unsigned.
Thus, the flag structure is simplified.

The carry flag used in conventional processors has
two functions: one serves to compare the size of un-
signed integers and another serves to represent a carry-
out in multiple length operations. However, for the
latter function, since the data processor of the present
invention uses X_flag, the carry flag is used only for
comparing the size of integers. Thus, the carry flag of
the data processor of the present invention is defined as
that which represents the relationship of size and is
named L_flag (Lower Flag). In the case of an unsigned
operation, this flag works as conventional carry flag. In
the case of a signed operation, it represents the true size
since it includes the overflow, unlike conventional
carry flags.

F_flag (general flag), which represents the termina-
tion condition of a string instruction and queue instruc-
tion, and P__flag (P-bit error flag) which represents an
error of the P bit are provided. P_flag is reserved to ‘0’
in the specification at present.

5,201,039

31

Although conventional processors use a carry flag
which can contain the dropped bit from a shift instruc-
tion, the data processor of the present invention has
L _flag rather than a carry flag, so that the dropped bit
is placed in X__flag.

10-3 Flag Change

All the addition, subtraction, comparison and logical
operation instructions are 2-operand instructions which
have the following format:

dest .op. src= = >dest

If the size of dest differs from that of src, the smaller size
operand is sign-extended in accordance with the larger
size operand (ADDU, SUBU and CMPU are zero-
extended), calculated, the result of the operation is con-
verted into the size of dest, and then stored in dest.

In the case of CMP, CMPU, SUB and SUBU, L_flag
indicates that the size of the first operand of the previ-
ous operation is smaller. For CMPU and SUBU, which
are for unsigned operations, L_flag functions like the
carry (borrow) flag of the convention processors. In a
signed operation, L_flag represents the true size be-
cause it includes the overflow, rather than just copying
the M__flag. In the ADD instruction, L_flag indicates
whether the result is negative. It also represents true
positive and negative as well as overflow rather than
copying the M_flag. In the ADDU, since the result
always becomes positive, L__flag is set to ‘0",

V_flag indicates the result of the operation cannot be
shown by the size being specified. In other words, when
the result of an operation cannot be represented by the
signed integer of the size of dest (unsigned integer for
ADDU and SUBU), V_flag is set. In the CMP and
CMPU instructions, the status of the V_flag is un-
changed.

X_flag is used to maintain the status of a carry-out in
multiple length operations. The flag status is changed
regardless of whether the operation is signed or un-
signed. Although it functions similar to the carry flag of
conventional processors, only the addition, subtraction
and shift instructions change X_flag.

In the CMP, SUB, CMPU and SUBU instructions,
the status of L_flag is changed in a similar manner.
While SUB, SUBU and SUBX instructions cause X__.
flag to change, CMP and CMPU instructions do not
cause it to changed.

In the case of MOV, MOVU, ADD, ADDLU,
ADDX, SUB, SUBU and SUBX instructions, the sta-
tuses of M_flag and Z_flag are changed depending on
the value when the operation result is converted in the
size of dest. Thus, if the size of dest is smalier than that
of src, even if the operation result is not 0, Z_flag may
be set. On the other hand, in the CMP and CMPU
instructions, the status of Z_flag is changed depending
on the value of the operation result regardless of the size
of dest.

Example: If @dest.B = 1 -
SUB #H'101.W,@dest.B — Although the operation result 1

- H'101 is not 0, since dest

becomes 0, Z_flag is set.

Since the operation result 1

-H'10lis not 0, Z_flag is

cleared.

CMP #H'101.W,@destB —

In ADDX and SUBX instructions, the flag status is
irregularly changed to some extent, s0 that it can be
used for both the unsigned integer extended operation

10

20

35

55

60

65

32

and signed integer extended operation. In this case,

although it does not completely match the mnemonic of

the conditional jump instruction, since the extended
operation is not frequently used, this irregularity should
be permissible.

L_flag Represents the relationship of size (SUBX)
and positive and negative (ADDX) for signed opera-
tion.

V_flag Represents an overflow for signed operation.

X_flag In ADDX, represents a carry from the size
of dest for the dest+src+X_flag operation. In
SUBX, it represents a borrow from the size of dest for
the dest—src—X_flag operation. However, if the
size of src is smaller than that of dest, src is sign-
extended. In SUBX, if the size of src is the same as
that of dest, X_flag consequently represents the re-
sult of the comparison as unsigned data.

‘When an operation between different size operands is
performed with ADDX and SUBX, the smaller size
operand is sign-extended. However, whether the value
which is sign-extended is operated on as a signed value
or an unsigned value depends on the status of the flag.

In the MOV instruction, MOVU instruction and
logical operation instructions, the statuses of X_flag
and L_flag are not changed.

In the logical operation instructions, the status of
V_flag is not changed.

The details of status flag changes are described in
each instructions description. Special attention should
be given descriptions marked with an astarisk.

11. Instruction Set Description Format

11-1 Outline of Descriptive Format

MNEMONIC:

Represents the same (mnemonic) of the instructions.

OPERATION:

Summarizes the function of the instruction.

OPTIONS:

Represents the types of options available for the in-
struction. The options of the instruction serve to change
the sub-functions of the instruction and are described as
‘/xxx” in the assembler syntax.

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX:

Represents the bit pattern, assembler syntax, size, and
type of the instruction. In the data processor of the
present invention, one instruction mnemonic may have
multiple instruction formats such as the general format
and short format, each of which is used depending on
the addressing mode and size. This paragraph describes
the addressing mode and size used in each instruction
format.

STATUS FLAGS AFFECTED:

Shows how the status flags (PSB) are changed after
the instruction is executed.

DESCRIPTION:

Describes the functions of the instruction. For details
of the assembler mnemonics used in the description, see
the Appendix at the end of the manual.

11-2 Instruction Bit Pattern and Assembler Syntax

The “INSTRUCTION FORMAT AND ASSEM-
BLER SYNTAX™ portion is comprised of the mne-
monic by format, operand name, operand field name
and instruction bit pattern.

Example of Description 64 is shown in FIG. 49.
AND:G . . . Mnemonic-every-Format

5,201,039

33

Represents the mnemonic-every-format of the in-
struction bit pattern to be described (see Appen-
dix).

src,dest . . . Operand Name

Variable which is used to describe the function of the
instruction. This variable is referenced by the *OP-
ERATION” and “DESCRIPTION". The order of
the operands described in this description is that of
the assembler.

Ear,EaM . . . Operand Field Name

Represents the relationship of the bit pattern, avail-
able operand size, available addressing mode, mem-
ory access method, and other restricted informa-
tion. The letters which represent operand field
names relate to their meanings so that various
meanings can be simply represented.

Portion surrounded by lines . . . INSTRUCTION BIT

PATTERN

The “INSTRUCTION BIT PATTERN?” represents
the operand field, size specified field position, and
operation code of the instruction.

The bit represented by **' is the don’t care bit. 0 and
1 of this bit do not effect the instruction decoding.

The bits represented by ‘—’, ‘+’, ‘=" and ‘#’ are
currently not used to distinguish the instruction
function and operand. However, the portions of
‘—* and ‘=" and those of ‘+’ and ‘#’ of the user
program should be filled with 0 and 1, respectively.
If the bit of ‘=" is not 0 or if the bit of ‘+’ is not 1,
a reserved instruction exception (RIE) occurs.

If the bit of ‘=" is not O or if the bit of ‘#’ is not 1, it
is ignored. In other words, as hardware, all ‘*’, ‘="’
and ‘# have the same meaning. However, for fu-
ture extension, it is necessary to instruct in the users
manual that the bits ‘=" and '#" *should be filled
with 0 and 1, respectively.

11-3 Field Name

The INSTRUCTION BIT PATTERN contains the
option field and size specification field as well as the
instruction bit pattern. The data processor of the pres-
ent invention uses the following option and size specifi-
cation field names.

Size Specification Field Names

RR Specifies the size of the operand which performs
read accessing.

wWwW Specifies the size of the operand which per-
forms write accessing.

MM Specifies the size of the operand which per-
forms read-modify-write accessing.

BB Specifies the memory accessing size for bit opera-
tion instructions.

XX Specifies the general size except for the above
items (mainly used for specifying the register size).
SS Specifies the general size except for the above
items (mainly used for specifying the displacement
size, CMP second operand, string instruction which
implicitly specifies an operand, and the MOVA:U

instruction which implicitly specifies a stack).

Be sure to repeat the same upper case letter. How-
ever, if only 32 bits and 64 bits can be specified, use only
one of the two letter.

Option Field Names

The option bit names should mainly be specified by
using lower case letters (except the items concerning P
bit). The optional field names are as shown bellow. In
any case, the assembler defaults to the first description
item (e.g. 0, or 00 . . as option value).
ccce Specifies the conditions for Bcc and TRAP/cc.

10

20

25

40

45

50

60

63

34

ecee Specifies the termination conditions of a string
instruction and QSCH instruction.

P,Q.. Specifies the P bit (Q . . is used to specify the
termination condition for the QSCH instruction).

b /F=0,/B=1(BSCH, BVSCH, BVMAP, BVCPY,
SCMP, SMOV, QSCH)

r /F=0,/R=1(SSCH)

¢ /N=0,/S=1(CHK) .. ‘¢’ for CHK and change
index value

d /0=0,/1=1(BSCH, BVSCH) . . ‘d’ for data

m /NM=0,/MR=1(QSCH). .. ‘m’ for mask

p /AS=0,/858=1 (PTLB, PSTLB, LDATE)..‘p’
for PTLB and specific space

ttt /PT=000,/ST=001,/AT=110,/reserved =010
to 101,111)PSTLB, LDATE,STATE)

xx /LS=00,/CS=01 reserved=10,11

(LDCTX,STCTX)

The field names which are not listed above represent
the operand field names. If possible, the letters should
not have multiple meanings.

11-4 Operand Field Name

The letters which represent the operand field names
have the meanings indicated below. Only these field
names can indicate various information such as avail-
able addressing mode, operand size, and access method.
Basic Addressing Modes
Ea Uses the addressing mode in 8-bit general format.

Sh Uses the addressing mode in '6-bit short format.
Literal

#i Immediate

#d Displacement

Rg Register

L1 Register list (for LDM)

Ls Register list (for STM)

Ln Register list (for ENTER)

Lx Register list (frr EXITD)

Access Method

Part of basic addressing modes defaults to the follow-
ing access method. In this case, the letter which repre-
sents the access method is not assigned.

#,#i,#d Reads from the instruction space.
LsLn Reads from a register.
LLLx Writes to a register.

For other basic addressing modes, the access method
is represented by using the following letters.
R Read
W Write
M Read-modify-write
To abbreviate the field name, RgR, RgW, and RgM
are described as RR, RW, and RM, respectively.
{BF and CSI instructions)
A Only performs address calculation.
f Determines the memory address which is actually
operated in with combination with the bit offset.
(Suffix of R and M) Example: Bit manipulation in-
struction :
Although the bit offset is used, it does not exceed
the byte boundary. The address to be accessed is
determined without referencing the offset. (Suffix of
R and M)
Example: bit operation instruction in short format
Determines the memory address and range actu-
ally operated with a combination of the bit offset and
bit field width. (Suffix of R and M)
Example: Fixed length bit field operation instructions
Performs complicated accessing by the queue in-
struction. (Suffix of other access methods)
Example: QINS and QDEL instructions

fq

bf

q

5,201,039

35

i Performs accessing by bus interlock. (Suffix of M)
% Performs accessing of special space such as con-
trol space and physical space. (Suffix of R, W, and M)
d Operates two data segments (double). (Suffix of R)
Example: CHK instruction
Operates multiple data segments (multiples). (Suf-
fix of R and W)
Example: LDM and STM instructions
Restrictions of Addressing Modes
Once the basic addressing mode and access method
have been determined, the restrictions for the address-
ing mode are automatically determined (such as inhibit-
ing the immediate mode for EaW). However, if other
restrictions besides the above exist, the following letters
should be placed after the instruction.
I Inhibits the immediate mode.

Example: Second operand of CMP instruction
IM Inhibits the addressing mode for the memory.

Example: Local operand of ENTER:G instruction
A Inhibits the additional mode.

Example: ctxaddr operand of LDCTX instruction
Inhibits the stack pop and stack push modes.

Example: dest operand of QDEL instruction

Size Specification

The size should be regularly specified by the follow-

ing fields:

When the access method is R, the size is specified by
the RR field.

When the access method is W, the size is specified by
the WW field.

When the access method is M, the size is specified by
the MM field.

When the access method is R!I, RM, or R2, the size
is specified by the SS field.

When the access method is *f, the size is specified by
the BB field. However, it means the access size for the
memory operation.

When the access method is A, the size is not specified.

If there is an exception for specifying the address, add
the letters listed below to distinguish it. Normally, num-
bers and lower case letters represent the fixed size,
while upper case letters represent the variable size. For
example, ‘w’ represents a 32-bit (word) fixed size, while
‘W’ represents the size specified by the WW field.

w The operand size is always 32 bits.
Example: MUL:R instruction
The operand size is always 16 bits.
Example: WAIT Instruction
The operand size is always 8 bits.
Example: src of MOV:E instruction
S8 The size of the operand (displacement) is specified

by the SS field. However, when SS=00 (i.c. when 8

bits are specified), this operand specification field is

used. Otherwise, the operand is specified by the ex-
tension portion and this field is ignored (it should be

set to 0).

Example: src of BF:I instruction
S The size of the operand (displacement) is specified

by the SS field.

Example: BRA:G instruction
R The operand size is specified by the RR field to-

gether with the size of another operand.

Example: CMP:I instruction
W The operand size is specified by the WW field

together with the size of another operand.

Example: MOV:] instruction
M The operand size is specified by the MM field

together with the size of another operand.

m

1S

h

b

15

20

25

30

s

45

55

65

: 36
Example: Instruction of I format
Since the bit pattern which specifies 8 or 16 bits
has not been assigned as the operand size, only the
operand for 32 or 64 bits can be specified. The size is
specified by the R, M, W, and B fields rather than the

RR, WW, MM, and BB ficlds.

P Since the pointer is used, the size is not specified in
the instruction. The size is actually specified by the P
bit or the mode (XA bit in PSW).

Example: QINS and QDEL instructions

X The operand size is specified by the XX field.
Example: xreg of ACB and SCB instructions

Xw The operand size is specified by the X field
together with another operand. This is used for speci-
fying the width of the BF instruction.

Xs The operand size is specified by the X field to-
gether with another operand. This is used for specify-
ing src for the BF instruction.

Xd The operand size is specified by the X field to-
gether with another operand. This is used for specify-
ing dest for the BF instruction.

C The operand size is specified by the RR field to-
gether with another operand. This is used for specify-
ing the value to be compared in the CSI instruction.

3 3-bit literal

4 4-bit literal
Example: TRAPA instruction

6 8-bit literal

8 8-bit displacement
Example: BRA:8 instruction

16 16-bit displacement
Example: MOV A:R instruction
When the operand size (which is implicitly specified

by a high level instruction such as a string manipulation

instruction) is specified, SS is used as the field name. In
the free-length bit field instruction, X is also used.

Others

Z Indicates O of the bit pattern of the literal accords
with 0 of the operand value. N is the bit number in the
literal.

L

0...000 Q
0...001 1
0...010 2
1...110 2AN-=-2
... 1t 2aN-1

Example: offset of BTST:Q

n Indicates 0 of the bit pattern of the literal accords
with 2 N of the operand value. N is the bit number
in the literal.

0...000 2 AN
0...001 1
0...010 2
1...110 2AN-2
1...111 2aN—1

Example: src of MOV:Q
¢ Indicates the bit pattern of the literal shows the 2’s
complement. N is the bit number in the literal.

0...000 ~2aN
0...001 —(2AN-1)
0...010 ~(2AN-2)

5,201,039

37

-continued

1...110
1...111

-2
-1

Example: Shift count of shift-right operation in
SHA:C and SHL..C
1,2.. If there are two or more operands which are
accessed in the same manner in one instruction, distin-
guish them.

The restrictions for size which specifically relate to
the instruction functions are given in each instruction
rather than the operand field and size specification field
names. They contain the specification of a size which is
not 8 bits for shift count and logical operation in differ-
ent size operands.

11-5 Restriction for Addressing Mode

The following operand field names have restrictions
in the available addressing modes.

EaR,ShR.... @-SP cannot be used.

EaW,ShW.... @imm_data and @SP+ cannot
used.

EaM,ShM @imm_data, @-SP, and @SP+

cannot be used.

EaA.... @SP+, @-SP, Rn, and #imm_data

cannot be used.

The restrictions concerning the addressing mode are
given in “DESCRIPTION’ of each instruction.

11-6 Notes for Description

For the stack operation instructions, TOS represents
the top position of the stack. (1) TOS represents the
pop from the stack, while (|) TOS represents the push
to the stack.

The basic 2-operand instructions (MOV, MOVU,
ADD, ADDU, ADDX, SUB, SUBU, SUBX, AND,
OR, XOR, CMP and CMPU) describe their operations
in the following manner:

The sizes of dest (src2) and src(srcl) (number of bits)
and the value, where src(srcl), dest(src2) is broken
down into individual bits are represented as d and s and
DO, D1,...,Dd-1,80,81, . . ., Ss-1, respectively. Thus,

dest(src2)={D0.D! . . . Dd-2.Dd-1]

sre(src1)=[S0.51 . . . Ss-2.8s-1]

[. .] represent the binary notation and “.’ represents a
delimiter between each digit. The value which is set to
dest as the result of the operation is represented as fol-
lows:

dest .op. src=result=[RO.R1 . .. Rd-2.Rd-1]

Except for MOV, MOVU, CMP and CMPU, the result
is set to dest. In addition, if s >d, only the lower bits of
the operation result are set to dest. The value before the
upper bits of the operation result are removed is repre-
sented as follows:

result=[FO.F1 . . . Fs-2.Fs-1]

The number of bits of R and F are d and s, respectively.

When the bit string [. .] is treated as a signed binary
number, the value of the bit string is represented by S[.
. J. If it is treated as an unsigned binary number, the
value that the bit string shows is represented as U[. .].
On the other hand, if the bit string is treated as a signed
packed type decimal number, the value that the bit
string shows is represented as SDJ. .]. If it is treated as

10

20

25

30

35

40

45

55

60

635

38

an unsigned packed type decimal number, the value that
the bit string shows is represented as UD[. .]. In addi-
tion, *~* and ‘~' represent the logical negation and
power, respectively.

Likewise, “DESCRIPTION" of the fixed length bit
field instruction gives the description of detail operation
in the following notation.

bitfield=[Bo.Bo+1 ... Bo+w-2.Bo+w—1]

[Sn.Sn+1...Sm-2.Sm-1] is abbreviated as [Sn to m-1].
[S0.S1 ... 8d-2.8d-1]={S0 to s-1] may be simply repre-
sented as [S].

This rule is applicable to [D], [R], [B], and [F].

12. Instruction Set of the Data Processor of the Present

Invention
12-1 Data Transfer Instructions
MNEMONIC:
MOV src,dest
OPERATION:

src= = >dest

Move and sign-extend data.
OPTIONS:

None :

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 685: shown in FIG. 50(a)

STATUS FLAGS AFFECTED 66: shown in FIG.
50(5).

DESCRIPTION:

Move data from the source operand (src) to the desti-
nation operand (dest).

If the size of the source operand is smaller than that of
the destination operand, the size of the source operand
is sign-extended.

If the value of the source operand cannot be repre-
sented as a signed integer in the size of the destination
operand because the size of the destination operand is
smaller than that of the source operand, V_flag is set.

Although MOV:Z is a clear instruction, since its
operation and status flags change are the same as those
of the MOV instruction, it is treated as one of the short
formats of MOV,

Although the MOV, ADD, SUB and CMP instruc-
tions serve to perform operations with sign, the literal
contains only the positive range. This is because the
literal which can be used by MOV:Q, ADD:Q, SUB:Q
and CMP:Q is in the range from 1 to 8 (operand field
name: #3n). If src of the MOV and MOVU instruction
is an immediate value, the relationship between the
immediate value and the available format is as follows.

MovV) Z sac =0
Q 1= src =8
:E ~128 = src = 127
:1 &rC is any number.
G arc is any number.
MOVU) E 0= src = 255
G srC is any number.

It is also applicable to the ADD, SUB and CM
instructions. ‘

(If dzs) '
[S0. S1....8-28:-1]—
[S0SO. SO S0. S1....85-285~1] —

5,201,039

39

-continued

1
Sign-extended for d—s bits

[RORY..... Rd—s+1.Rd—sRd—s+1.... Rd-2Rd-1]}
(Set to dest)
(Mfd<s)
[s0S1..... Ss—d—1.5s—d.Ss—d+1....8—2.8s—1] —
[Ss —d.8s—d+1....8—-28—1] -
1
s—d bits (S0.51 Ss—d—1) are truncated.
[RO. Rl....Rd—2.Rd~1]
(set to dest)
M_flag RO
Z_Nag ([(ROtod—1} =0
V. flag* S[S] < —2a(d~-1).or. S{S] & +2a(d-1)
In other words, ifdZ s, they are cleared.
If d>s, when,
SO=8l=..... = $s—d—1 = Ss—d(=R0)

they are cleared. Otherwise, the flag is set.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When WW="11"

When EaR or ShR is @-SP ;

When EaW or ShW is #imm__data or @SP+
MNEMONIC:

MOVU src,dest
OPERATION:

zex(src)= = >dest

Move and zero-extend data.
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 67: shown in FIG. §1.

§2.

DESCRIPTION:

Move the contents from the source operand src to the
destination operand dest.

If the size of the source operand is smaller than that of
the destination operand, the data of the source operand
is zero-extended.

If the value of the source operand cannot be repre-
sented as an unsigned mteger with the size of the desti-
nation operand because the size of the destination oper-
and is smaller than that of the source operand, V_ﬂag
is set.

af d=s)
[SO. ..8s—28s~-1} —
[o. 0.......... 0. S0, Sl....8—28s—~1] —
Zero-extended for d—s bits
[ROR) Rd—s+1.Rd—sRd—s+1.... Rd—2.Rd-1]
(Set to dest)
(if d<s)
{so.s1..... Ss—d—1.8s—d.Ss—d+1....8—28s—1] —
[Ss~d.Ss—d+1....58—28s—1] —
—d bits (S0.S1..... Ss—d—1) are truncated.
{ RO. R1....Rd-2Rd-1}
(set to c!est)
M_flag RO
Z_flag [ROtod—1}=0
V_flag® U[S] Z +2ad
In other words, if ds, they are cleared.
If d=s, when,
S0 =S8!1= ..=8s—d—-1=0

it is cleared. Otherwise, it is set.

PROGRAM EXCEPTION:
Reserved instruction exceptions
When RR="11"

STATUS FLAGS AFFECTED 67: shown in FIG. 3

i0

15

20

25

55

65

40

When WW=‘11"

When EaR is @-SP

When EaW is #imm_data or @SP+
MNEMONIC:

PUSH src
OPERATION:

push to stack
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 69: shown in FIG. 53.

STATUS FLAGS AFFECTED 70: shown in FIG.
54.

DESCRIPTION:

Push the contents of the source operand src to the
stack.

Although this instruction can be considered as a short
form of ‘MOV *, @-SP’, its status flag is not changed
and functions symmetrically to POP, it is treated as a
different instruction.

The @SP+ mode cannot be used in the addressing
mode specified by src/EaRL because the @-SP mode
cannot be used by dest/EaWL of the POP instruction.
PROGRAM EXCEPTION:

Reserved instruction exceptlons

When R="1

When EaRL is @SP+ or @-SP
MNEMONIC:

POP dest
OPERATION:

pop from stack
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER

5 SYNTAX 71: shown in FIG. 55.

STATUS FLAGS AFFECTED 72: shown in FIG.
56.

DESCRIPTION:

Move the contents which are popped from the stack
to dest. This instruction can be considered a short form
of MOV @SP+, *. Since the operation where SP is
contained in src differs from that of MOV @SP+, and
the flag status is not changed, it is treated as a different
instruction.

The @-SP mode cannot be used in the addressing
mode specified by dest/EaWL. If it is specified, a re-
served instruction exception (RIE) occurs. This is be-
cause if the instruction PIP @-SP is executed, it is not
clear when SP is updated.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When W="1"

When EaWL is #imm_data, @SP+ or @-SP
MNEMONIC:

LDM src,reglist
OPERATION:

load multiple registers
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 73: shown in FIG. 57.

STATUS FLLAGS AFFECTED 74: shown in FIG.
58.

DESCRIPTION:

Load the multiple registers from the memory. Spec-
ify the registers to be loaded using the bit map re-
glist/LIRL (register list). LIRL should follow the ex-
tension portion of EaRmL.

5,201,039

41

Specify the bit map of the register list to be loaded 75
in the following manner shown in FIG. 59.

When the addressing mode @SP+ is specified by
EaRmL, the contents are popped in order beginning
with the smallest number register. The contents of SP
increase 4 times (or B times) as fast as the number of
register being loaded. When another addressing mode is
specified, the effective address being obtained points to
the beginning of the memory data to be loaded into the
registers. In any case, the smaller number registers are
located at the smaller number addresses.

The format of the registers’ bit mpa to be loaded is
determined so that the next register where data is
moved can be identified by the same circuit as that used
by the BSCH/F and BVSCH/F instructions. The cir-
cuit where the ‘0’ or ‘1’ bits which occurs next time can
be searched in the MSB direction. For LDM @SP+,
since data is moved from the smaller number registers,
the smaller number registers are on the MSB side. In the
case of other addressing modes, since the start address
of the register save block is treated as an effective ad-
dress, it is necessary to move data from the smaller
number registers. Thus, the same format as LDM
@SP+ is used.

These formats are determined by considering the data
movement order of the registers. If the hardware re-
source is small, the data movement order described
above is very suitable. However, since the real data
movement order is not defined in the data processor of
the present invention specifications, it can be freely
determined when it is implemented.

In the EaRmL addressing mode, the specification of
@-SP, register direct mode Rn, immediate mode #im-
m—data and additional mode are illegal. The additional
mode is inhibited because if an overlap exists between
the registers and register save area which are saved and
restored by LDM and STM and those which are used in
the additional mode, it becomes difficult to reexecute
the instruction.

If the register list is all zeroes, no operation is per-
formed and the instruction is terminated (rather than
flagging the occurrence of an error).

PROGRAM EXCEPTION:

Reserved instruction exceptions

When R="1"

When EaRmL is Rn, #imm_data, @-SP or addi-

tional mode
MNEMONIC:

STM reglist,dest
OPERATION:

store multiple registers
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 76: shown in FIG. 60.

STATUS FLAGS AFFECTED 77: shown in FIG.
61.

DESCRIPTION: .

Store the contents of multiple registers to memory.
Specify the registers to be stored by the bit map re-
glist/LsWL (register list). LsWL should follow the
extended portion. :

Specify the bit map 78, 79 of the register list (reglist)
to be stored in the manner shown in FIG. 62, 63.

When the addressing mode of @-SP is specified to
EaWmL, the contents are pushed in order beginning
with the largest number register. The contents of SP
decrease 4 times (or 8 times) as much as the number of

5

20

30

40

45

5s

65

42
registers being saved. When another addressing mode is
specified, the effective address being obtained points to
the beginning of the memory data to be saved to the
registers. In any case, the smaller number registers are
located at the smaller number addresses.

The format of the registers’ bit map to be moved is
determined so that the next register where data is
moved can be identified by the same circuit as that used
by the BSCH/F and BVSCH/F instructions which
search for the first occurence of ‘0’ or ‘I’ starting with
the LSB and moving toward the MSB.

Since data is moved from the larger number registers,
the larger numbser registers are on the MSB side in STM
@-SP. In other addressing modes, since the start ad-
dress of the register save block is treated as the effective
address, it is necessary to move data from the smaller
number registers, so the smaller number registers are on
the MSB side.

These formats are determined by the data movement
order of the registers. If the hardware resource is small,
the data movement order described above is very suit-
able. However, since the real data movement order is
not defined in the data processor of the present inven-
tion specifications, it can be freely determined when
implemented in hardware.

In the EaWmL addressing mode, the specification of
@SP +, register direct mode Rn, immediate mode #im-
m_data and additional mode are illegal. The additional
mode is inhibited because if an overlap exists between
the registers and register save area, which are saved and
restored by LDM and STM, and those which are used
in the additional mode, it becomes difficult to reexecute
the instruction.

In the LDM and STM instructions, the memory area
is not assigned to the registers where data is not moved.
For example,

STM.W (R1,R3,R9),@-SP

causes the following operation. (However, assume that
the SP value before executing the instruction is initSP.)
R9= = >meml[initSP - 4]
R3==>mem|initSP - §]
Rl==>mem[initSP - 12]
initSP - 12==>S8SP
If the register list is all zeros, no operation is performed
and the instruction is terminated (rather than flagging
the occurrence of an error).
PROGRAM EXCEPTION:

Reserved instruction exception

- When W="1"

- When EaWmL is Rn, #imm_data, @SP + or addi-

tional mode

MNEMONIC:

MOVA scraddr,dest
OPERATION:

address of src= = >dest

Move address of src to dest
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 80: shown in FIG. 64.

STATUS FLAGS AFFECTED 81: shown in FIG.
65.

DESCRIPTION:

Move the effective address of the source operand to
the destination operand.

5,201,039

43

Although the operation of the instruction is equiva-
lent to the MOV instruction, this instruction is treated
as a different instruction. The MOV A instruction fea-
tures the address calculation on the left-side, pointer
operation in high level language and application is an
address calculation circuit, resulting in much faster
calculation.

The following instruction in the short format

MOVAR @(disp:16,Rs),Rd

actually becomes a three-operand addition instruction.
Rs+disp:16->Rd

However, since the status flags are not changed, this
instruction is classified as the MOV A instruction.

When the PC relative indirect mode is specified to
srcaddr and the PC relative displacement is set to 0, the
current PC value, that is, the start address of the
MOV A instruction, is stored in dest. On the other hand,
when the instruction length of the MOV A instruction is
specified as the PC relative displacement, the address of
the instruction following the MOVA instruction is
stored in dest. These functions are useful when the
coroutine process is performed.

In the assembler, the size is specified by the <OPER-
ATION> or dest. srcaddr serves only for caliculating
the address rather than for specifying the size.

In the addressing mode specified by EaA, the imme-
diate, @SP+, and @-SP modes are not used.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When +="0’

When="1"

When EaA is Rn, #imm_data, @SP+ or @-SP

When EaW is #imm_data or @SP +
MNEMONIC:

PUSHA srcaddr
OPERATION:

push address to stack
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER

SYNTAX 82: shown in FIG. 66.

STATUS FLAGS AFFECTED 83: shown in FIG.
67.

DESCRIPTION:

Push the effective address of the source operand
(srcaddr) to the stack.

Although this instruction can be considered as a short
format of MOVA *, @-SP. It is treated as a different
instruction. It features an increase in the execution
speed over the MOV instruction.

PROGRAM EXCEPTION:

Reserved instruction exception

When S="‘1

When EaA is Rn, #imm__data, @SP+ or @-SP

12-2 Comparison and Test Instructions
MNEMONIC:

CMP srcl,src2
OPERATION:

src2-srcl, flags affected

Comparison and sign-extension and comparison
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 84: shown in FIG. 68,

5

10

15

20

25

30

35

45

55

4

STATUS FLAGS AFFECTED 85: shown in FIG.
69.

DESCRIPTION:

Compare the contents of the src] operand to those of
the src2 operand and set PSB (L_flag and Z_flag).

If the size of the srcl operand differs from that of the
src2 operand, the smaller size operand is sign-extended
and both the contents are compared.

In the EaR!I and ShR!I modes, the immediate is inhib-
ited, while in the @SP-+ mode, it is available. In the
‘CMP @SP+, @SP+’, although the stack pointer
changes twice as much as the size of the operand, this
instruction may be used to simulate a stack machine.

Although CMP:Z is one of the test instructions, since
its operation and status flags change are the same as
those of the CMP instruction, it is treated as one of the
short formats of CMP.

The operation of CMP is described using the follow-
ing instructions:

srcl = [S0.S1 ... Ss-2.85—1]
src2 = [DO.D} ... Dd—2.Dd—1}

(fdzs)
[DODI1..... Dd—s—1.Dd-sDd—s+1....Dd-2Dd-1] -
[sosO......... S0, S0. St....S8s—28s—1] —
Sign-extended for d —s bits
[RO.RL Rd—s—1L.Rd—s.Rd-s+1.... Rd—2.Rd-1]
(Not set to any location)
(If d<s)
DODO......... D0. Do Dl....Dd—2.Dd—1]-

Sign-extended for s—d bits

[SO.St..... Ss—d—1.8s-d.Ss—d+1....85—2.8s—1] —
[FO.F1..... Fs—d—1Fs—dFs—d+1....Fs—2Fs—1]
(Not set to any location)
L_flag* S[D] < §[S]
Same as SUB instruction
Z_flag [ROtod—-1]1=0 (IfdZs)
* [Fowos—1)=0 (fd<s)

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When S§S="'11"

When EaR or ShR is @-SP

When EaR!l or ShR!l is #imm_data or @-SP
MNEMONIC:

CMPU srcl,src2
OPERATION:

src2-srcl, flags affected

Zero-Extension and comparison
OPTIONS: ‘

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 86: shown in FIG. 70.

STATUS FLAGS AFFECTED 87: shown in FIG.
71.
DESCRIPTION:

Compare the contents of the srcl operand to these of
the src2 operand and set PSB (L_flag and Z_flag).

If the size of the srcl operand is smaller than that of
the src2 operand, the smaller size operand is zero-
extended and both the contents are compared.

In the EaR!l mode, the immediate is inhibited, while
in the @SP+ mode, it is available. ‘

The operation of CMPU is described using the fol-
lowing instructions:

src] = [S0.81...8s—2.5s—-1]
src2 = [DO.D1...Dd—2.Dd—1]

5,201,039

45
-continued

{fdzs)

[DO.D1 Dd-s—1.Dd—sDd-s+1.... Dd-2Dd-1]-

[00. 0. s0. §1....Ss—28s5—1] —

Zero-extended for d—s bits

[RORI..... Rd—s—1L.Rd—sRd—s+1.... Rd—2Rd~1]

(Not set to any location)

(fd<s)

[00. 0. DoO. D1....Dd-2Dd-1]-

Zero-extended for s—d bits

{[S0.S1..... Ss—d-1.8s~d.Ss—d+1...,85—-2.8s~1] —
{fFO.F1..... Fs—d—-1Fs—dFs—d+1!.... Fs—2Fs-1]}
(Not set to any location)
L_Flag* UD] < U[S]
Same as SUBU instruction
Z_flag [ROtod—1}=0 (Ifds)
* [FOtos—1]=0 (Ifd<s)

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="‘11"

When SS="11"

When EaR is @-SP

When EaR!l is #imm_data or @-SP
MNEMONIC:

CHK bound,index,xreg
OPERATION:

check upper and lower bounds

check the range of the array
OPTIONS:

/S Subtract lower bound value.

/N Do not subtract lower bound value. (Default)

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 88: shown in FIG. 72.

STATUS FLAGS AFFECTED 89: shown in FIG.
73.

DESCRIPTION:

Check the range of the array index and load it into the
register.

At the address specified by bound, a pair of upper and
lower bound values are placed. The upper and lower
bound values are compared to the contents of the com-
parison value operand which is fetched by the index.
The upper bound value is placed at the effective address
of bound, while the lower bound value is located at the
address of: (effective address of bound +operand size).
The comparison is made using signed integers. If the
comparison value is not in the range between the upper
bound value and lower bound value, V_flag is set.
Therefore, by executing the TRAP instruction, it is
possible to start the exception process. When /8 is spec-
ified, the value where the lower bound value is sub-
tracted from the comparison value, is Joaded to the
register xreg. When /8 is not specified, the comparison
value is directly loaded to the register xreg. The com-
parison value being loaded to the register is often used
to calculate the address of the array index.

Operation:

P

tmp = mem{address_of _bound + operand__size]
if (index Z mem{address_of..bound] .or. index = tmp)
then
set V_flag;
if(c == 1)
then
index — tmp — xreg
else
index — xreg

10

15

20

25

30

35

45

55

65

46

Since ‘address_of_’ is the inverse operator of ‘mem[
. . J, the meaning of bound is the same as that of mem-
{address_of _bound).

If the comparison value accords with the lower
bound value, it is treated as being in the range. If the
comparison value accords with the upper bound value,
it is treated as being out of the range. For example, if the
memory of bound is (0,100), CHK treats 0 to 99 of the
index as being in the range.

L_flag and Z_flag are set in accordance with the
result of the comparison to index like CMP. In the
following case, L_flag=1.

index <lower bound value

This relation 90 is tabulated as in FIG. 74.
notel: LBV stands for lower bound value, UBV stands

for upper bound value.
note2: If the upper bound value <lower bound value,

the comparison value may become ‘1’ due to compar-
ison to the lower bound value.

In this case, the flags are set depending on the opera-
tion result of (index - lower bound value). The foliow-
ing three instructions show that L_flag is set if the
contents of the second operand are smaller than those of
the first operand (lower bound value of the first oper-

and bound in CHK).
CMP srcl,src2
SUB src,dest
CHK

bound.index,xreg

The CHK instruction does not check (upper bound
valueZlower bound value). The instruction should
function as described in the “Operation” above regard-
less of the upper bound value and lower bound value.

In the addressing mode specified by EaRdR, the
register direct Rn, @-SP, @SP+ and #imm_data
modes cannot be used. If it is necessary to compare
some value to that in a register, use CMP twice rather
than CHK.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When EaR is @-SP

When EaRdR is Rn, #imm_data, @SP+ or @-SP

12-3 Arithmetic Instructions
MNEMONIC:

ADD src,dest
OPERATION:

dest+src==>dest

Addition or addition with sign-extension
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 91: shown in FIG. 75.

STATUS FLAGS AFFECTED 92: shown in FIG.
76.
DESCRIPTION:

Add the contents of the source operand (src) to those
of the destination operand (dest).

If the size of the source operand is smaller than that of
the destination operand, the source operand is sign-
extended and the contents of the source operand are
added to those of the destination operand.

If the result of the operation cannot be expressed as a
signed integer in the size of the destination operand
because its size is smaller than that of the source oper-
and, V_flag is set.

5,201,039

47
For doing ADD:L @SP+,SP in the L-format, like
ADD:G @SP+,SP, it is recommended that the follow-
ing operation be performed.

(initSP + 4) + @initSP= = > SP

However, it may be difficult to perform such an opera-
tion in the L-format, so the operation of ADD:L
@SP +,SP should depend on the implementation.

af dzs)
[DODI1..... Dd-s—1.Dd—sDd—s+1....Dd—2Dd—1] +
{S0.50. $0. S1....Ss—2.55—1] —

Sign-extended for d — s bits

[RORL..... Rd—s—1LRd—s.Rd—s+1.... Rd—2.Rd—-1)
(Set to dest)
afd<s)
DoDo. DO DO. D1....Dd-2Dd-1] +
Sign-extended for d — s bits
[SOSt..... Ss—d—1ds—d.Ss—d+1....8s~285—1] —
[FOF1..... Fs—d—1.Fs—dFs—d+1....Fs—2Fs—1] —
[RO. R1....Rd=2Rd—1}
(Set to dest)
FOF)..... Fs—d-1

s — d bits are truncated.
L_flag* S[D] + S[S]) < 0
Show a negative result.
(M_flag correctly represents the result as positive or nega-
tive only when there is no overflow.)

M_flag RO
Z_flag [ROtod-1]=0
V_flag S[D} + S[S] < -2 (d—1) .or. S[D)] + S[S] =
+24(d—1)
X_flag* The carry bit is loaded into X_flag. The number of
bits in (size of) dest determines where the carry
bit is needed.
(af d=s)
uDo.DI1 Dd-s—1.Dd—sDd—s+1.... Dd-2.
Dd-1] +
U[S0S0 S0. S0. 8§1....8s—25s—1] 2 +2ad
Sign-extended for d — s bits
(Ifd<s)
Y[Do D1....Dd-2Dd-1] +
Ul[Ss—d.Ss—d+1....8-28s—1] Z +2ad
S0.81..... Ss—d-1

s — d bits are truncated.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR is ‘11’

When MM is ‘11’

When EaR or ShRw is @-SP

When EaM or ShM is #imm_data, @SP + or @-SP.
MNEMONIC:

ADDU src,dest
OPERATION:

dest +src= = >dest

Zero-Extension and addition
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 93: shown in FIG. 77.

STATUS FLAGS AFFECTED 9%4: shown in FIG.
78. ’
DESCRIPTION:

Add the contents of the source operand (src) to those
of the destination operand (dest).

If the size of the source operand is smaller than that of
the destination operand, the source operand is zero-

extended and the contents are added to those of the 65

destination operand.
If the operation result cannot be represented as an
unsigned integer in the size of the destination operand

10

15

25

45

55

60

: 48
because the size of the destination operand is smaller
than that of the source operand, V_flag is set.
Because the operation result always becomes posi-
tive, L_flag of ADDU is always reset to 0.

(If d=s)
oDy, Dd—s—1.Dd—sDd—s+13..... Dd -2
Dd-1] +
{00, 0. S0. St....8s~28s—1] —
Zero-extended for d — s bits
[ROR)..... Rd—s—1.Rd—sRd-s+1.... Rd—2.Rd—1]
(Set to dest)

qfd<s)
[0O0. 0. Do. Dl....Dd-2Dd-1] +
Zero-extended for 5 — d bits '
[SO.S!..... Ss—d—1.8s—dSs—d+1..... Ss—2.Ss—1] —
[FO.F1..... Fs—d-1Fs~dFs—~d+1... . Fs—2Fs—1] —

[RO Rl....Rd—-2Rd-1]
(Set to dest)

FO.Fl..... Fs~d—1
s — d bits are truncated.

L_Flag ©O

M_flag RO

Z_flag [ROtod—1]=0

V_flag U[D] + U[S] 2 +2«d

X_flag* The carry bit is loaded into X__flag. The number of

bits in (size of) dest determines where the carry

bit is needed.

(If dZs)
U[DO0.DI

Dd-1] +
U0O.......... 0 S0 S1....8s—28s—1}Z +2ad
Zero-extended for d = s bits
Same as V_flag of ADDU instruction

Dd-5—1.Dd—sDd—-s+1.... Dd-2

(Ifd<s) -

Ul DO. DI....Dd-2Dd-1] +
[Ss—d.Ss—d+1....85—285—1] =
+2ad

SO0S1..... Ss—d-1

s — d bits are truncated.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When MM ="11"

When EaR is @-SP

When EaM is #imm__data, @SP+ or @-SP
MNEMONIC:

ADDX src,dest
OPERATION:

dest+src+X_flag== >dest

Addition with a carry
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 95: shown in FIG. 79.

STATUS FLAGS AFFECTED 96: shown in FIG.
80.

DESCRIPTION:

Add the contents (X_flag) of the source operand
(src) with the carry to the contents of the destination
operand (dest).

If the size of the source operand is smaller than that of
the destination operand, the source operand is sign-
extended and the contents are added to those of the
destination operand.

The flag value of Z_flag can be accumulated. The
status flags of ADDX, including sign- and zero-exten-
sion, are the same as those of ADD, except for Z_flag.

For the different size operands in ADDX and SUBX,
for example, if the contents of 4 bytes in src are added
to the contents of B bytes in dest2 to destl, this instruc-
tion may be used as ADDX:E #0 in the following:

5,201,039

49

ADD @src. W,@dest]. W
ADDX #0,@dest2. W

{Afdzs)
[DODI..... Dd-s—1.Dd—=s.Dd—s+].... Dd-2Dd—-1] +
[S0.80.. $0. S0. S1....S8s—-2Ss—1] +
X _flag —
Sign-extended for d — s bits
[RORI..... Rd—s—1.Rd—sRd—s+1.... Rd—2.Rd—1]}
(Set to dest)
(fd<s)
[DoDo. DO. D0. D1..... Dd-2Dd-1] +
Sign-extended for s — d bits
[S0.S1..... Ss—d—1.8s—d.Ss—d+1....8-2.8—]] +
X_flag —
FO.F1..... Fs—d—1Fs—d.Fs—d+1.... Fs—2Fs—1] —
[RO R1....Rd—2.Rd-1]
(Set to dest)
FO.F1..... Fs—~d—1

s — d bits are truncated.
L_flag* S[D] +5[S] + X_fag < 0

Assume that the number is signed, perform the opera-
tion, and represent the result as negative. If d+=s, sign-
extend the operand and compare the contents of both
the operands. (M_flag correctly represents the result as

positive or negative only when there is no overflow.)
M_flag RO
Z_flag [ROto d—1} = 0.and. previous Z_ flag
V_flag S[D] + S[S] + X_flag < —~2 (d—1) .0r.
S[D] + S[S]+ X_flag 2 +2 (d—1)
Assume that the number is signed and represent the
result has overflowed. If d = s, the operand is
sign-extended.
X_flag* The carry bit is loaded in X_flag. The number of
bits in (size of) dest determines where the carry
bit is needed.
(Ifdzs)
UDpoDI..... Dd—s—1.Dd—s.Dd-s+1.. .Dd-2.
Dd-1] +
U[SO.80......... S0, SO. S1....8s~28s~1] +

X_flag 2 +2 d
Sign-extended for d — s bits

If d>s, sign-extend the operand so that it is used in
conjunction with other flag setting operations such as
dest. However, the operand is treated as an unsigned
number in the operation is done after the operand is
sign-extended.

(f d<s)

Ul Do. D1....Dd-2Dd-1] +
U[Ss—d.Ss—d+1....8-28s—1] + X _flag =
+2 d

S0.S1..... Ss—d—1

s — d bits are truncated.

PROGRAM EXCEPTION:
Reserved instruction exceptions
When RR="11"
When MM =11’
When Ear is @-SP
When EaM is #imm__data, @SP+ or @-SP

MNEMONIC:

SUB src,dest

OPERATION:
dest - stc= = >dest
Subtraction or subtraction with sign-extension

OPTIONS:

None

-

20

25

30

35

50

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 97: shown in FIG. 81.

STATUS FLAGS AFFECTED 98: shown in FIG.
82.

DESCRIPTION:

Subtract the contents of the source operand (src)
from those of the destination operand(dest).

If the size of the source operand is smaller than that of
the destination operand, the source operand is sign-
extended and the contents of the source operand are
subtracted from those of the destination operand.

If the operation result cannot be represented as a
signed integer in the size of the destination operand,
V_flag is set.

ardzs)
oDI..... Dd-s—1.Dd-sDd~s+1.... Dd—2.Dd—1}
$0.S0......... S0. S0. Si....Ss—25s—1] —

Sign-extended for d — s bits

[RORL..... Rd—s—1.Rd—sRd—s+1 ... Rd—-2.Rd-1}
(Set to dest)

(If d<s)
[DODO......... DO. D0 DI1....Dd-2Dd-1}-

[sO81..... Ss—d—1.8s—d.Ss—d+1....8—285—1} —

[FO.F1..... Fs—d—1.Fs—dFs—d+!... Fs—2Fs—1}] —
[RO. Rl....Rd—2Rd-1]}
{Set to dest)

FOF1..... Fs—d-1

S — d bits are truncated.

L_flag* S[D] - S[S] < O
Show a negative result. (M_flag correctly
represents the result as positive or negative
only when there is no overflow.)

" M_flag RO

Z_flag [ROt0od—-1} =0

V_flag S[D] — S[S] < —24(d—1) .or. S{D} -S[S) 2
+2(d—1)

X_flag The borrow bit is Joaded into X__flag. The number of
bits in (size of) dest determines where the borrow
bit needed.

(If d=s)

yooDI..... Dd—s—1.Dd—sDd—s+1.... Dd—2.Dd-1}
U[S0SD. S0. 80. SI....85-28s-1}<0
Sign-extended for d — s bits

(Afd<s)

U DO DI....Dd-2Dd-1)
USs—d.8s—d+1....85-28s—-1] < 0
S0S81..... Ss—d-1

45

55

65

s — d bits are truncated.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When MM ="'11"

When EaR or ShRw is @-SP

When EaM or ShM is #mm__data, @SP+ or @-SP
MNEMONIC:

SUBU src,dest
OPERATION:

dest - src= = >dest

Zero-extension and subtraction
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 99: shown in FIG. 83.

STATUS FLAGS AFFECTED 100: shown in FIG.
84.

DESCRIPTION:

Subtract the contents of the source operand (src)
from those of the destination operand (dest).

If the size of the source operand is smaller than that of
the destination operand, the source operand is zero-

5,201,039

51
extended and the contents of the source operand are
subtracted from those of the destination operand.
If the operation result cannot be represented as an
unsigned integer in the size of the destination operand,
V _flag is set.

af dzs)
[DODI Dd-s—1.Dd—sDd—s+1. ... Dd—2.Dd~1}-
[0.0. 0. SO 51....Ss—25s5—1]—

Zero-extended for s — d bits
[RO.RI Rd—s~1LRd—sRd—s41.... Rd—2Rd~1]
(set to dest)

dfd<s)

[0.0. 0.

Zero-extended for s — d bits

Dd—2.Dd—1}-

[SOS1..... Ss—d-1.8s—d.Ss—d41....85~2.85~1] —

[FOF1..... Fs—d—1Fs—d.Fs—d+1....Fs—2Fs~1] —
[RO. RIl....Rd—2.Rd-1]j
(Set to dest)

FOFl...... Fs—d~1

S — d bits are truncated.

L_flag* UMD} -UlS] <0
Show & negative result. (M_flag correctly
represents the result as positive or negative
only when there is no overflow.)
M_flag RO
Z_flag [ROtod~1] =0
V_flag U} - U[S} <0
Same as L__flag of SUBU instruction
X_flag* The borrow bit is loaded into X_flag. The number of
bits (size of) dest determines where the borrow
bit is needed.
(Ifdzs)
UDoDI..... Dd—s—1.Dd—s.Dd—s+1.... Dd—2.Dd—1}-
U00. 0. S0 Sl....S8-28s-1]<0

Zero-cxtended for d — s bits
Same as X__flag of SUB instruction and L __flag and
V_flag of SUBU instruction
arfd<s)
Ul DO. Di Dd-2.Dd-1]-
UlSs—dis—d+1....8~2.8—-1] <0

s — d bits are truncated.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When MM ="11"

When EaR is @-SP

When EaM is #imm_data, @SP+ or @-SP
MNEMONIC:

SUBX src,dest
OPERATION:

dest - src - X_flag= = >dest

Subtraction with a carry
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 101: shown in FIG. 8S.

STATUS FLAGS AFFECTED 102: shown in FIG.
86.

DESCRIPTION:

Subtract the contents of the source operand (src)

10

15

20

25

30

35

45

52
(fdzs)
[DoDI. Dd—s—1.Dd~s.Dd—s+1....Dd-2.Dd-1}-
S0S80. S0. SO. SI....Ss-28s-1] —
X_flag —

Sign-extended for d — s bits

[RORI Rd—s—1.Rd—sRd—s+1.... Rd—2.Rd-1]
(Set 10 dest)

(fd<s)
DOD0. DO DO Di....Dd-2Dd-1]}

Sign-extended for s — d bits

[s0.81..... Ss—d—-1Ss—d.Ss—d+1.... 85~2.8s—1] —
X_flag —
[FO.FL..... Fs—d—1.Fs-dFs—d+1....Fs—-2Fs—1] —
[RO. RI....Rd-2Rd-1]
(Set to dest)
FOFl..... Fs—d—1

s — d bits are truncated.

L_flag* S[D] — S[S] — X_flag < 0
Assume that the number is signed and show the
result as negative. If d 5% s, the operand is
sign-extended and then both operands are compared.
(M__flag correctly represents the result as
positive or negative only when there is no overflow.)

M_flag RO

Z_flag [RO to d~1] = 0 .and. previous Z_flag

V_.flag §[D] — S[S] — X_flag < —2 (d-1).or.
S[D] — S[S] — X_flag & +2 (d-1)
Assume that the number is signed and represent
that the result is overflowed. If d 3 s, the
operand is sign-extended.

X_flag* The borrow bit is loaded into X__flag. The
number of bits in (size of) dest determines where the
borrow bil is needed.

(If dZs)

UDoD1..... Dd-s—1.Dd-sDd-s+1.... Dd—-2Dd-1}
U[S0SO. S0. $0. SI....S85-28s-1] —
X_fag <O

Sign-cxiended for 4 — s bits

If d > s, sign-extend the operand so that this operand is
used in conjunction with other flag setting operations
such as dest. However, the operand is treated as an
unsigned number in the operation is done after the oper-
and is sign-extended.

(Ifd<s)
U D0 Di....Dd-2Dd-1]-
U[Ss—d.Ss—d+1....8-28s—1] — X_flag < 0
S0.81..... Ss~d~1

s — d bits are truncated.

PROGRAM EXCEPTION:
Reserved instruction exceptions
When RR="1I"
When MM =‘11"
When EaR is @-SP
When EaM is #imm__data, @SP+ or @-SP

s MNEMONIC:

MUL src,dest
OPERATION:

dest * src==>dest

Multiplication

with the carry from those of the destination operand ¢p OPTIONS:

(dest).

If the size of the source operand is smaller than that of
the destination operand, the source operand is sign-
extended and the contents of the source operand are
subtracted from those of the destination operand.

The flag value of Z_flag can be accumulated. The
status flags of SUBX including sign- and zero-extension
are the same as those of SUB except for Z_flag.

65

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 103: shown in FIG. 87.

STATUS FLAGS AFFECTED 104: shown in FIG.
88.

DESCRIPTION:

Multiply the contents of the destination operand
{dest) by those of the source operand (src). The multi-

5,201,039

53

plication is performed with signed numbers. The con-
tents of the operands are treated as signed integers.

This instruction is useful for high level languages
because the size of the multiplicand is the save as that of
the result.

If the operation result cannot be represented as a
signed integer because the size of the destination oper-
and is small, V_flag is set. Even if an overflow occurs,
M_flag and Z_flag are set depending on the data
which is set to dest (low order bit of correct result). For
example, with RO=H'10000 when executing the fol-
lowing instruction

MUL.W #H’10000,RO

since the product becomes H'100000000, the following
results are obtained:

RO=0 (low order bit), V_flag=1, and Z_flag=1.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When MM ="11"

When EaR is @-SP

When EaM is #imm_data, @SP+ or @-SP
MNEMONIC:

MULU src,dest
OPERATION:

dest * src= = >dest

Unsigned multiplication
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 105: shown in FIG. 89.

MULU:G src/EaR,dest/EaM

STATUS FLAGS AFFECTED 106: shown in FIG.

90.
DESCRIPTION:
Multiply the contents of the destination operand
(dest) by those of the source operand (src). The multi-
plication is performed with unsigned numbers. The
contents of the operands are treated as unsigned inte-
gers.

If the operation result cannot be represented as an
unsigned integer because the size of the destination
operand is smaller than that of the source operand,
V_.flag is set.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR=‘11"

When MM ="11"

When EaR is @-SP

When EaM is #imm_ data, @SP+ or @-SP
MNEMONIC:

MULX src,dest,tmp
OPERATION:

dest * src= = >reg&dest (double size)

Extended multiplication, double size
OPTIONS: ‘

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 107: shown in FIG. 91.

STATUS FLAGS AFFECTED 108: shown in FIG.
92. ’

DESCRIPTION:

Multiply the contents of the destination operand
(dest) by those of the source operand (src). Since the
result of this instruction is double sized, the temporary

5

15

25

35

45

55

65

54
register tmp is specified for placing the high order bits
of the product. The register is fixed to 32 bits (selected
from 32/64 bits). The multiplication is performed with
unsigned numbers. The size of the product is twice as
much as the size of the multiplicand.

[Operation of MULX]

dest[0:31] * src[0:31] — tmp1[0:63)
tmp1{32:63] — tmp(0:31]
tmp1[0:31] — dest[0:31)

Since MULX has two results to be obtained: one is dest
and another is tmp, if the values of two results are over-
lapped (i.e., the same register is used for dest and tmp),
a problem occurs.

Since tmp (high arder digit of MULX) is often used
for a carry out to the next digit, it may not be used for
calculating the last digit. Thus, if both the results are
overlapped, the value which should be set to dest (low
order digit) would be kept.

The status flags of M_flag and Z_flag in MULX are
changed according to dest. The value being set to tmp
does not affect these flags because of the following
reasons:

The status flags are changed in the manner of those of
ADDX and SUBX. (Even if X_flag of ADDX and
SUBX are set, when dest is 0, Z_flag is set.)

In the case of multiple length operations, the status
flags changed only by tmp and dest (tmp&dest) are not
usefull. To change the flags in the proper manner, it is
necessary to determine them in steps rather than one of
them. Even if the status flags are changed by tmp and
dest (tmp&dest), the correct result cannot be obtained.

Example:

[Before Execution)
R1==H'00000000 dest=H'20000000 src=H 40000000
MULX @src,@dest,R1

[After Execution]

tmp=H’
L—JL 1

R1 dest

Since the value to be set to dest is 0, Z_ flag is set.

Unlike ADDX and SUBX, in MULX and DIVYX, the
status of Z_flag is not accumulatively changed.

With F_flag, tmp=0 can be tested.

If 1=0, the operation cannot be assured.

In the data processor of the present invention, if !=0,
the contents of the operand are fetched as IR (8 bits or
16 Dbits) in the src size. It is sign-extended to 32 bits and
the instruction is executed.

However, dest and tmp are always treated as 32 bits
regardless of IR.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When [R="11

Note: If |=0, the instruction is not detected as a re-

- served instruction exception.

When EaR is @-SP

When EaMR is #mm_data, @SP+ or @-SP
MNEMONIC:

DIV src,dest
OPERATION:
= dest/src== >dest

Division

5,201,039

55
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 109: shown in FIG. 93.

STATUS FLAGS AFFECTED 110: shown in FIG.
94,

DESCRIPTION:

Divide the contents of the destination operand (dest)
by those of the source operand (src). The division is
performed with signed numbers. (The contents of the
operands are treated as signed integers.)

Since the size of the dividend of this instruction is the
same as that of the result, this instruction is usefull for
high level languages.

The quotient is rounded off to 0 and the sign of the
remainder becomes the same as that of the dividend.

Example:

10/3 — Quotient = 3, Remainder = 1
(—10)/3 — Quotient = (—3), Remainder = (—1)
10/(—3) -— Quotient = (—3), Remainder = 1

If src =0, a zero division exception (ZDE) occurs. In
the case of division by zero, V_flag is set, so that the
exception process is started. The value of dest is not
changed, however the data processor of the present
invention does not care whether the write access for the
dest is performed or not. In addition, the status flags,
except for V_flag, are not changed, so that it functions
like dest. To analyze the cause where the exception
occurs, it is necessary to keep the previous status (in-
cluding status flags).

Besides division by zero of DIV, only (minimum
negative value)=-(—1), causes an overflow. Unlike
DIVX, since DIV is a conventional operation instruc-
tion which is generated by the compiler, it is recom-
mended they handle overflow the same way. To do
that, the status flags are changed as follows:

V_flag=1, L_flag=0, M_flag=1, Z_flag=0

(Where the minimum negative number +(—1))

An overflow occurs only when the minimum nega-
tive number = (~— 1) occurs. Even if the low order bits of
the correct result are set to dest, the status of dest is not
changed. Even if it becomes the low order bits of the
correct result, the value is not changed.

Example:

If DIV.H is executed while src=H'ffff=(—1) and
dest = H'800000=(— 32768), the following result is ob-
tained.

= =>dest=H'80000, V_flag=1

It is possible to consider H'8000 of dest as the low
order bits of the correct result (H' . . . 008000=32768)
or more simply, dest is unchanged.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR=‘11 ‘

When MM =‘11"

When EaR is @-SP

When EaM is #imm_data, @SP+ or @-SP

Zero division exception

When src=0
MNEMONIC:

DIVU src,dest
OPERATION:

dest/src== >dest

5

25

30

35

45

50

55

65

56

Unsigned division
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 111: shown in FIG. 95.

STATUS FLAGS AFFECTED 112: shown in FIG.
96.

DESCRIPTION:

Divide the contents of the destination operand (dest)
by those of the source operand (src). The division is
performed by unsigned numbers. (The contents of the
operands are treated as unsigned integers.)

If src=0, a zero division exception (ZDE) occurs. In
the case of division by zero, V__flag is set, so that the
exception process is started. The value of dest is not
changed, however the data processor of the present
invention does not care whether the write access for the
dest is performed or not. In addition, the status flags,
except for V_flag, are not changed, so that it functions
like dest. To analyze the ceuse where the exception
occurs, it is necessary to keep the previous status (in-
cluding status flags).

Besides division by zero of DIVU instruction, V__
flag is not reset by an occurrence of an overflow. Ex-
cept for division by zero, V_flag is always cleared.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When MM ="11"

When EaR is @-SP

When EaM is #imm_data, @SP+ or @-SP

Zero division exception

When src=0
MNEMONIC:

DIVX src,dest,tmp
OPERATION:

reg&dest/src= = >dest, reg (quotient, remainder)

Extended division, shortening size, and presence of

remainder ’
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 113: shown in FIG. 97.

STATUS FLAGS AFFECTED 114: shown in FIG.
98.

DESCRIPTION:

Divide the contents of the destination operand by
those of the source operand. Since this instruction be-
comes a primitive of multiple length division, a register
besides src and dest, is used to place the temporary
value (remainder) for the extension operation. The size
is fixed to 32 bits (which is selected from 32/64). The
division is performed with unsigned numbers. The size
of the dividend becomes twice as much as the size of
divider.

{Operation of DIVX]
concatinate(tmp{0:31],dest{0:31]) — tmp1[0:63]
quo({tmp1{0:63),src[0:31]) — dest{0:31]
rem(tmp1{0:63),src{0:31]) — tmp[0:31]

Since the DIVX has two results to be obtained: one is
dest and another is tmp, if the values of two results are
overlapped (if the same register is used for dest and
tmp), a problem occurs. Since tmp (remainder of
DIVX) is often used for a borrow to the next digit, it
may not be used for calculating the last digit. Thus, if

5,201,039

57
both the results are overlapped, the value which would
be sent to dest (quotient of DIVX) would be kept.

Although DIVX is used when the dividend is multi-
ple length, if the divider becomes multiple length,
DIVX cannot be used. The division should be per- 5
formed by repeating the shift operations and subtraction
operations using a subroutine. A multiple length shift
operation is required. To perform the multiple length
shift operation, rotate instructions (SHXR) and SHXL)
are provided using X_flag.

The statuses of M_flag and Z_flag of DIVX are
based on dest (quotient). The value (remainder) which
is set to tmp does not affect such flags. However, with
F_flag, tmp=0 can be tested.

Unlike ADDX and SUBX, Z_flag of MULX and
DIVX is not accumulatively changed.

If an overflow occurs as the result of the DIVX oper-
ation, to match the specification of this instruction to
the overflows of MOV, ADD, SUB and MUL, it is
recommended that the low order bits of the correct
result be set to dest. Unlike ADD and SUB, the low
order bits of the correct result are not automatically
obtained even if an overflow occurs. The division is
calculated from the high order bits, so it is difficult to
obtain the low order bits of the correct result due to the 25
nature of the algorithm. Thus, if an overflow occurs in
DIVX, dest is not changed.

If an overflow occurs because the quotient is not
contained in dest in the DIVX operation, the status
flags, except for the V_flag, are not changed. If an 30
overflow occurs in the DIVX operation, dest is not
changed.

If src =0, a zero division exception (ZDE) occurs. If
division by zero occurs, the contents of dest and tmp are
not changed, however the data processor of the present 35
invention does not care whether the write access of dest
is performed or not. The status flags, except for the
V_flag, are not changed so that they accord with the
contents of dest. It is recommended to keep the previ-
ous status (including status flags) to analyze the cause
the exception by the exception process program.

1f =0, the operation of the instruction is not assured.
In the data processor of the present invention, if 1=0,
the contents of the operand are fetched as IR (8 bits or
16 bits) in the src size. It is sign-extended to 32 bits and
the instruction is executed.

However, dest and tmp are always treated as 32 bits
regardless of 'R.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When =0

When R="1"

When EaR is @-SP

When EaMR is #imm_data, @SP+ or @-SP

Zero division exception

When src=0
MNEMONIC:

REM sre,dest
OPERATION:

dest % src==>dest

Remainder
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 115: shown in FIG. 99.

STATUS FLAGS AFFECTED 116: shown in FIG.
100.

DESCRIPTION:

10

15

20

40

45

50

65

58

Divide the contents of the destination operand (dest)
by those of the source operand (src) and obtain the
remainder. The division is performed with signed num-
bers. (The contents of the operands are tested as signed
integers.)

Since the size of the dividend is the same as that of the
remainder, this instruction is usefull to high level pro-
gramming languages.

The quotient is rounded off toward 0 and the sign of
the remainder becomes the same as that of the dividend.

Example:

10/3 — Quotient = 3, Remainder = 1
(—-10)/3 — Quotient = (—3), Remainder = (—1)
10/(—3) — Quotient = (—3), Remainder = 1

If src=0, a zero division exception (ZDE) occurs.
However, if division by zero is performed in REM, the
overflow is cleared and the exception process is started.
Unlike the DIV instruction, the zero division of the
REM instruction does not cause dest (remainder) to be
overflowed, 50 it is necessary to clear V_flag.

‘When V_flag is cleared, it can be easily distinguished
whether the error is caused by DIV or REM in the
exception process.

When division by zero is performed, the contents of
dest are not changed. Defining whether the memory
access of dest is performed (read or read-modify-write
by the same value) or not causes the implementation to
be restricted, so that it is not defined.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR=*11"

When MM =°11"

When EaR is '@-SP

When EaM is #imm__data, @SP+ or @-SP

Zero division exteption

When src=0
MNEMONIC:

REMU src,dest
OPERATION:

dest % src= = >dest

Remainder by unsigned division operation
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 117: shown in FIG. 101.

STATUS FLAGS AFFECTED 118: shown in FIG.
102.

DESCRIPTION:

Divide the contents of the destination operand (dest)
by those of the source operand (src) and obtain the
remainder. The division operation is performed by un-
signed numbers. (The contents of the operands are also
treated as unsigned integers.) If the size of src differs
from that of dest, the zero-extension is performed.

Since the size of the dividend is the same as that of the
remainder, it is usefull to high level languages.

If src=0, a zero division exception (ZDE) occurs.
When division by zero is performed, the same result as
division by zero in REM occurs.

PROGRAM EXCEPTION:

Reserved instruction exceptions

- When RR="11"

- When MM =“11’

When EaR is @-SP

When EaM is #imm__data, @SP+ or @-SP

5,201,039

59

Zero division exception

When src=0
MNEMONIC:

NEG dest
OPERATION:

0 - dest== >dest

Complimentary operation
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 119: shown in FIG. 103.

STATUS FLAGS AFFECTED 120: shown in FIG.
104. '

DESCRIPTION:

Negate the sign of the operand.

L_flag If the value of dest is negative after the in-
struction is executed, namely, if the initial value of
dest is positive, this flag is set.

M_flag If MSB of dest is | after the instruction is
executed, namely, if the initial value of dest is positive
or the minimum negative value, this flag is set.

Z_flag If the value of dest is 0 after the instruction is
executed, namely, if the initial value of dest is 0, this
flag is set.

V_flag If the initial value of dest is the minimum
negative value (only MSB is 1 and other bits are all 0},
this flag is set.

PROGRAM EXCEPTION:

Reserved instruction exceptions

- When MM ="11"

- When EaM is #imm_data, @SP+ or @-SP
MNEMONIC:

INDEX indexsize,subscript,xreg
OPERATION:

calculate address of array
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 121: shown in FIG. 105.

STATUS FLAGS AFFECTED 122: shown in FIG.
106.

DESCRIPTION:

Maultiply by the scale and add the index for calculat-
ing the address in order to convert a multiple dimen-
sional array into a single dimensional array.

If the size of the subscript is smaller than that of xreg,
the subscript is sign-extended. xreg, indexsize, and sub-
script are treated as signed integers. The multiplication
and addition are performed with signed numbers. If an
overflow is detected in the multiplication or addition
operations, V_flag is set.

Although indexsize is always immediate, to create an
array descriptor in the memory, general purpose ad-
dressing is used.

If the INDEX instruction is executed after the CHK
instruction, it is possible only to specify the register for
the subscript. However, depending on the high level
language specification, the range may not be checked
(namely, the CHK instruction is not executed). There-
fore, in order to use the variable in the memory as a
subscript, it can also be addressed by the general pur-
pose addressing.

[Operation of INDEX]

xreg * indexsize + subscript — xreg

10

15

20

25

30

35

45

55

65

60

In the INDEX instruction, all the operands xreg,
indexsize, and subscript are treated as signed numbers
rather than pointers. Even if they are negative, they are
used directly rather than performing special operations
such as EIT. In addition, the status flags (V_flag, L__
flag, M_flag and Z_flag) are based on the general
arithmetic operation instructions. The operands which
are used in INDEX, are array indexes rather than point-
ers. INDEX transforms the array index into a single
dimension array.

The index becomes the pointer after the scaling, such
as (x4), is performed in the additional mode. Therefore,
it is possible to consider INDEX as signed data. Testing
for pegative indexs can be done if a language cannot
deal with a negative index.

If 1=0, the operation cannot be assured.

In the data processor of the present invention, if =0,
the contents of the operand are fetched as IR (8 bits or
16 bits) in the src size. It is sign-extended to 32 bits and
the instruction is executed.

However, xreg is always treated as 32 bits regardless
of IR.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When —!=0
When R=‘1"
When SS=‘11"

When EaR or EaR2 is @-SP

12-4 Logical Instructions
MNMONIC:

AND src,dest
OPERATION:

dest .and. src= = >dest

AND operation
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 123: shown in FIG. 107.

STATUS FLAGS AFFECTED 124: shown in FI1G.
108.

DESCRIPTION:

AND the contents of the source operand (src) and
those of the destination operand (dest).

If the size of the source operand differs from that of
the destination operand (AND:G RR=£MM and
AND:E MM=£00), the instruction is executed directly
and the reserved instruction exception does not occur.
However, the result which is sent to dest cannot be
assured (it depends on the harware implementation).
The the data processor of the present invention specifi-
cation does not define the logical operation between
different size operands. Although the logical operation
between different size operands does not have meaning,
it is not treated as a reserved instruction exception.
Otherwise, the implementation’s load is increased and
the execution speed is lowered.

RO
ROtod—1] = 0

M_flag
Z_{lag

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When MM =‘11"

When EaR is @-SP

When EaM is #imm_data, @SP+ or @-SP
MNEMONIC:

5,201,039

61

OR src,dest
OPERATION:

dest .or. src= = >dest

OR operation
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 125: shown in FIG. 109.

STATUS FLAGS AFFECTED 126: shown in FIG.
110.

DESCRIPTION: .

OR the contents of the source operand (src) with
those of the destination operand (dest).

If the size of the source operand differs from that of
the destination operand (OR:G RR#MM and OR:E
MM=£00), the instruction is executed directly and the
reserved instruction exception does not occur. How-
ever, the result which is sent to dest cannot be assured
(it depends on the hardware implementation).
PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When MM =*11

When EaR is @-SP

When EaM is #imm_data, @SP+ or @-SP
MNEMONIC:

XOR src,dest
OPERATION:

dest .xor. src= = >dest

Exclusive or operation
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 127: shown in FIG. 111.

STATUS FLAGS AFFECTED 128: shown in FIG.
112.

DESCRIPTION:

Exclusive or the contents of the source operand (src)
with those of the destination operand (dest).

If the size of the source operand differs from that of
the destination operand (XOR:G RR#MM and
XOR:E MM=00), the instruction is executed directly
and the reserved instruction exception (RIE) does not
occur. However, the result which is sent to dest cannot
be assured (it depends on the hardware implementa-
tion).

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When MM ="‘11"

When EaR is @-SP

When EaM is #imm_ data, @SP+ or @-SP
MNEMONIC:

NOT dest
OPERATION:

dest==>dest

Logical not at all bits.

OPTIONS: .

None .

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 129: shown in FIG. 113.

STATUS FLAGS AFFECTED 130: shown in FIG.
114.

DESCRIPTION:

Complement 1 and 0 of each bit of the operand.
M_flag If MSB of dest is 1 after the instruction is

executed, namely, if MSB of the initial value of dest is

0, this flag is set.

10

15

20

25

30

35

40

45

55

60

65

62
Z_flag If the value of dest is O after the instruction is
executed, namely, if the initial value of dest is 0, this
flag is set.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When MM =‘11"

When EaM is #imm_data, @SP+ or @-SP

12-5 Shift Instructions
MNEMONIC:

SHA count,dest
OPERATION:

Shift arithmetic
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 131: shown in FIG. 115.

STATUS FLAGS AFFECTED 132: shown in FIG.
116.

DESCRIPTION:

Arithmetically shift the contents of the destination
operand (dest) for the number of bits specified by the
source operand (count). In the general format instruc-
tion, the shift direction is determined by the sign of
count: if count is positive, a left shift takes place; if
count is negative, a right shift takes place.

The right shift operation in the arithmetic shift opera-
tion causes MSB (sign bit) of the destination operand
not to be changed and the same value to be copied to
the bit to the right of the sign bit. The left shift opera-
tion causes the contents of LSB to shifted into the bit to
the left of the LSB and 0 to be placed in LSB.

The specification of the shift direction by count may
be effective for the emulation of floating point opera-
tion.

Although the left shift operation does not have a
short format of SHA, if the status flags change which
differs from SHA is permissible, SHL:Q which is a
short format of SHL can alternatively be used.

[left shift operation (count>0)]133:
diagrammed in FIG. 117,

[right shift operation (count <0)]134:
diagrammed in F1G. 118.

If count=0, X_flag=0.

In the SHA instruction, only the lower 8 bits are used
to determine the size of count. If RR+400, the operation
cannot be assured. The reason the RR=£00 function
cannot be used is due to the restriction of the implemen-
tation.

If RR=00, the data processor of the present inven-
tion fetches the count operand in the size RR. Only the
lower 8 bits of count are used to execute the instruction.
Since SHA is an arithmetic instruction, it sets L_flag
depending on the sign (MSB) of dest, so that the correct
signs of the result can be obtained even if an overflow
or underflow occurs. In a shift instruction, unless an
overflow occurs, the sign of dest is not changed. In a
right shift operation or if an overflow does not occur in
a left shift operation, L_flag=M_flag. However, if an
overflow occurs in a left shift operation, L_flag may
not be the same as M__flag.

Because the data processor of the present invention is
a big-endian chip, the shift direction differs depending
on whether count is considered as an increase/decrease
of the bit position or as a power of 2. In other words, in
the first case, if count >0, a right shift operation would
take place. In the latter case it is like little-endian; if
count >0, the left shift operation takes place. However,
the shift operations are similar to arithmetic instructions

5,201,039

63

rather than bit operation instructions. Consequently,
count should be considered as powers of 2 rather than
as an increase/decrease of bit position. Thus, the specifi-
cation of the data processor of the present invention
defines that left shift operation takes place if count>0.

In SHL and SHA, even if the absolute value of count
exceeds (dest size+ 1), the shift operation is continued
for the number of times specified. Consequently, the
absolute value of count functions like (dest size + 1). For
example, the following operations take place.

SHA #1313, dest, W
SHL #33, dest, W
SHA #—133, dest,W
SHL # —33, dest, W

:dest = X_flag = 0
cdest = X_flag =0
:dest = X_flag = MSB of a previos dest
:dest = X_flag = 0

Except for X _flag, if the absolute value of count is the
same as (dest size), the same result is obtained.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="1Y

When MM ="1V’

When EaR is @-SP

When EaM or ShM is #imm_data, @SP+ or @-SP
MNEMONIC:

SHL count,dest
OPERATION:

shift logical
OPTIONS:

None :

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 135: shown in FIG. 119.

STATUS FLAGS AFFECTED 136: shown in FIG.
120.

DESCRIPTION:

Logically shift the contents of the destination oper-
and (dest) for the number of bits specified by the con-
tents of the source operand (count). In the general for-
mat, the shift direction is specified by the sign of count.
If count is positive, a left shift takes place. If count is
negative, a right shift takes place.

The right shift operation causes the contents of MSB
to shifted into the bit to the right of the MSB and O to

10

15

25

30

35

be placed. The left shift operation causes the contents of 45

LSB to shifted into the bit to the left of the LSB and 0
to be placed in LSB.

[A left shift operation (count>0) 137}:

diagrammed in FIG. 121.

{A right shift operation (count <0) 138]:

diagrammed in FI1G. 122.

If count=0, X_flag=0.

In the SHL instruction, only the lower 8 bits are used
as the shift count. If RR+£00, the operation cannot be
assured. The reason the RR>:00 function cannot be
used is due to the restrictions of the implementation.

If RR=00, the data processor of the present inven-
tion fetches the count operand in the size RR. Only the
lower 8 bits of count are used to execute the instruction.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11’

When MM =°11"

When EaR is @-SP

When EaM or ShM is #imm_data, @SP+ or @-SP
MNEMONIC:

ROT count,dest
OPERATION:

55

65

64

rotate
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 139: shown in FIG. 123.

STATUS FLAGS AFFECTED 144: shown in FIG.
124.

DESCRIPTION: :

Rotate the contents of the destination operand for the
number of bits being specified by the operand count.

The shift operation is performed by filling the bit
from LSB (MSB) to MSB (LSB).

The direction of the rotation is specified by the sign
of count. If the count is positive, a left rotation takes
place. If the count is negative, a right rotation takes
place.

When a rotation takes place, dest does not rotate
through X_ flag (although it does set it).

[A left rotation (count>>0) 141]:
diagrammed in FIG. 125.

[A right rotation (count>>0) 142}:
diagrammed in FIG. 126.

If count=0, X_flag=0.

In the ROT instruction, only the lower 8 bits are used
as the count. If RR5400, the operation cannot be as-
sured. The reason the RR400 function cannot be used
is due to restrictions of the implementation.

If RR5£00, the data processor of the present inven-
tion fetches the count operand in the size RR. Only the
lower 8 bits of count are used to execute the instruction.
Even if the absolute value of count in ROT exceeds
‘dest size’, the rotation for the specified number is exe-
cuted. Consequently, the result is the same as the re-
mainder where count is divided by ‘dest size' is treated
as count. However, if the contents of count is an integer
times ‘dest size’ (except for count=0), X_flag is set
depending on MSB (in a right rotation) or LSB (in a left
rotation) unlike the case of count=0. For example, in a
left rotation, if the number of bits which are rotated are
the same as the data size, the data is not changed and
dest becomes the same value as when count=0. How-
ever, since LSB of the former data is copied to the
X._flag, the status flags change in the different manner
than when count=0.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When MM =11’

When EaR is @-SP

When EaM is #imm_data, @SP+ or @-SP
MNEMONIC:

SHXL dest
OPERATION:

logical shift left with extend
OPTIONS:

None

Address calculation
Example: MOVA, PUSHA, MOVPA

Operation for control space (control register)
Example: LDC, STC

Decimal operation (unsigned, no data check)
Example: ADDDX, SUBDX

Stack parameter discard process
Example: EXITD

1 Operation performed by locking the bus
Example: BSETI, BCLRI, CSI

Multiple data process
Exampie: LDM, STM

5,201,039

65

-continued

Operation for physical space

Example: LDP, STP
Unsigned data opera

Example: MOVU, ADDU, MULLU, etc.
Extended operation

Example: ADDX, MULX, etc.

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 143: shown in FIG. 127.

STATUS FLAG AFFECTED 144: shown in FIG.
128.
DESCRIPTION:

Shift the contents of dest 145 to the left for one bit
and place the contents of the former X__flag 146 in LSB
147. The bit which is carried out from MSB is placed in
X_flag. This instruction is a primitive for a special
instruction which shifts one bit of multiple words.

The specification of this instruction differs a lot from
those of SHA, SHL and ROT in that the size to be
shifted is fixed at 32 bits and only one bit shift operation
is available.

Although DIVX is used when the dividend is a multi-
ple length number, if the divider becomes a multiple
length number, DIVX cannot be used. The division
should be performed by continuing the shift operations
and subtraction operations. At that time, a multiple
length shift operation is required. This instruction
serves such a purpose: of which diagram is shown in
FIG. 129.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When + =0’
When —=*I"
When X="1"

When EaMX is #imm__data, @SP+ or @-SP
MNEMONIC:

SHXR dest
OPERATION:

logical shift right with extend
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 148: shown in FIG. 130.

STATUS FLAGS AFFECTED 149: shown in FIG.
131.

DESCRIPTION:

Shift the contents of dest to the right for one bit and
place the contents of the former X_flag in MSB. The
bit which is carried out from LSB is placed in the X__
flag. This instruction is a primitive for a special instruc-
tion which shifts one bit of multiple words.

The specification of this instruction differs a lot from
those of SHA, SHL and ROT in that the size to be
shifted is fixed at 32 bits and only one bit shift operation
is available.

Although DIVX is used when the dividend is multi-
ple length number, if the divider becomes a multiple
length number, DIVX cannot be used. The division
should be performed by continuing the shift operations
and subtraction operations. At that time, a multiple
length shift operation 150 is required. This instruction
serves such a purpose: of which diagram is shown in
FIG. 132.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When +=0

When — =1

10

25

35

45

55

60

65

66

When X=*1 ‘

When EaMX is #imm_data, @SP+ or @-SP
MNEMONIC:

RVBY src,dest
OPERATION:

reverse byte order
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 151: shown in FIG. 133.

STATUS FLAGS AFFECTED 152: shown in FIG.
134.

DESCRIPTION:

Reverse the byte order of the contents of src and
place them in dest.

If the size of dest is larger than that of src, the size of
src is zero-extended to that of dest and the reverse byte
order is placed in dest.

If the size of dest is smaller than that of src, the high
order bytes of src are truncated, the size of src is
matched to that of dest, and the reverse byte order is
placed in dest. (Even if the address of src is moved and
then the size of src is matched to that of dest, the same
result is obtained.)

Example:
sre = H'1234
RVBY src,H,dest H — dest = H'3412
RVBY src.H,dest. W — dest = H'34120000
RVBY src.H,dest.B — dest = H'34 (Not H'12)

This instruction serves to eliminate the overhead of
conversion from one endian format to another endian
format.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When MM ="‘11"

When EaR is @-SP

When EaM is #imm_data, @SP+ or @-SP
MNEMONIC:

RVBI src,dest
OPERATION:

reverse bit order
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 153: shown in FIG. 135.

STATUS FLAGS AFFECTED 154: shown in FIG.
136.

DESCRIPTION:

Reverse the bit order of the contents of src and place
them in dest.

If the size of dest is larger than that of src, src is
zero-extended to the size of dest and the reverse bit
order is placed in dest.

If the size of dest is smaller than that of src, the high
order bytes of src are truncated, the size of src is
matched to that of dest, and the reverse bit order is
placed in dest. (Even if the address of src is moved and
then the size of src is matched to that of dest, the same
result is obtained.)

This instruction serves to eliminate the overhead of
conversion from one endian format to another endian
format.

The bit reverse instruction RVBI, which reverses the
bit order, is also necessary for the bit map process.

5,201,039

67

However, since it is less frequently used than the byte
reverse instruction and additional hardware may be
required, the RVBI instruction is defined in
<<L2>>.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When MM ="11"

When EaR is @-SP

When EaW is #imm_ data, @SP+ or @-SP

12-6 Bit Manipulation Instructions

The bit manipulation instructions that the data pro-
cessor of the present invention provides specify the bit
to be operated on by using the two parameters shown in
the following example.

base(base address)

offset(bit address)

In addition, when operating on a bit of a register, the
base size affects the specification of the bit to be oper-
ated.

[When operating on a bit of a memory 155}
diagrammed in FIG. 137.

The general bit manipulation instructions that the
data processor of the present invention provides do not
restrict the value of offset, so it can exceed the byte
boundary. Offset is treated as signed integer.

The bit manipulation instructions are designed so that
they can specify the range for accessing the memory
using the BB field. In other words, the memory address
range can be specified for read operations by BTST and
for read-modify-write operation by BSET, BCLR and
BNOT. The memory address range which is accessed
should take into account the 1/0 and the use of multiple
processors.

Since accessing every byte (“B’) covers all cases,
accessing every halfword and word are defined in
< <L2> > (except for the bit manipulation instruction
for registers). Since accessing every half word and
word is available only when the half word and word
should be aligned, to use the accessing function, an
address which is aligned should be specified as required
s0 that the implementation of the access range is simpli-
fied. To access the memory that contains the related bit
every half word being aligned, it is necessary to specify
a multiple of 2 as base. To access the memory which
contains the related bit every word which is being
aligned, it is necessary to specify a multiple of 4 as the
base. The value of the offset is not restricted. When the
access range of an address which is not aligned is speci-
fied should depend on the implementation.

The data processor of the present invention imple-
ments accessing of the memory every half word and
accessing of the memory every word in < <L2>>. If
an address which is not aligned as base is specified, the
access range is accessed every half word and every
word being aligned.

Example

BSET.B #H'84,@H"100

Since offset % 8=4; base-+offset/8=H'110, bit 4 of
H'110 is set.

BSET.B #H'7C,@H'101

15

20

25

30

35

45

55

65

68
Since the access size is every byte when offset % 8=4;
base + offset/8=H'110, the same operation as BSET.B
#H'84,@H’'100 is performed.

BSET.W #H'84,@H'100

Since offset % 8=4; base+offset/8=H'110, bit 4 of
H'110 is set.

Since base is a multiple of 4, the read-modify-write
operation for 32 bits (H'110 to H’'113) which are aligned
is performed to set the related bit.

BSET.W. #H'7C,@H'101

Since offset % 8=4; base+offset/8=H'110, likewise
bit 4 of H'110 is set. However, since base is not a multi-
ple of 4, the access range for the read-modify-write
operation depends on the implementation.

The size represented by BB is “in what range the
read-modify-write operation is performed” rather than
representing the offset range (for example, if “.B’, the
offset is less than &, and so forth).

In the bit manipulation instructions for registers, since
the bit position of offset=0 (MSB) varies depending on
the access size (base size), the base size is important. If
base is register direct Rn, the base sizes ‘. H’ and *.'W" are
defined in <<L1>>.

In the bit manipulation instructions where the register
Rn is treated as the base, only the low order 3 bits with
“B’, only the low order 4 bits with ‘ H’, only the low
order 5 bits with *. W’, and only the low order 6 bits with
‘L’ are enabled and the high order bits are ignored.
Even if the high order bits are not O, an error or EIT
does not occur. Although it is recommended that the
offset range be checked like the width of the BF instruc-
tion, since the instruction execution time increases due
to the check time, modulo is obtained by the bit size for
offset.

When 8-bit data, 16-bit data or 32-bit data is held in a
register, even if a bit has the same bit position in some
data, it actually represents a different value. To prevent
the specification from getting complicated, the default
of the assembler for the memory and registers should be
‘.B’ 156. The short format should be the specification of
*.B’. Thus, the range of the register which can be ac-
cessed in the short format should be the bits from 2 Oto
2 7. (See FIG. 138)

Example

In BSET:Q #1,R0, since the default of BSET is *.B’,
bit 1 of RO.B is set.

This bit differs from the bit 1 of RO.W and corre-
sponds to bit 25 of RO.W.

For example, when describing the following instruc-
tion to access the bit of 2 17,

BTST #17,R0
actually, it is interpreted as
BTST.B #17,R0

and offset ignores the high order bits, so bit 2 1 is

accessed.

5,201,039

69

To prevent that, it is necessary to describe the follow-
ing instruction.

BTST. W #17,R0

In such a case, it is recommended the assembler gen-
erate an alarm.
MNEMONIC:

BTST offset,base
OPERATION:

bit->Z_flag

Test a bit.

OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 157: shown in FIG. 139.

STATUS FLAGS AFFECTED 158: shown in FIG.
140.

DESCRIPTION:

Complement the bit value being specified and copy
the result to Z_flag.

In the addressing mode specified by EaRf or ShRfq,
the immediate modes #imm_data, @-SP and @SP+
cannot be used. When using the Rn mode, the values of
high order offset bits are ignored.

In the assembler syntax, the memory access size is the
same as base size. With BTST:Q, the memory access
size is fixed at 8 bits. For specifying the size, it is only
possible to describe ‘B’

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR=°11"

When BB="11"

When EaR is @-SP

When EaRf or ShRfq is #imm_data, @SP+ or

@-SP
MNEMONIC:

BSET offset,base
OPERATION:

bit->Z_flag, 1->bit

Set a bit.

OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 159: shown in FIG. 141.

STATUS FLAG AFFECTED 160: shown in FIG.
142

DESCRIPTION:

Complement the bit value being specified, copy the
result to Z_flag, and then set the bitto 1. .

In the addressing mode specified by EaMf or ShMfq,
the immediate modes #imm_data, @-SP and @SP+
cannot be used. When using the Rn mode, the values of
high order offset bits are ignored.

In the assembler syntax, the memory access size is the
same as the base size. With BSET:Q, the memory access
size is fixed at 8 bits. For specifying the size, it is possi-
ble only to describe ‘.B’.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When BB="11’

When EaR is @-SP

When EaMf or ShMfq is #imm_data, @SP+ or

@-SP
MNEMONIC:
BCLR offset,base

10

20

25

30

35

45

50

55

65

70
OPERATION:
bit-> Z__flag, 0- > bit
Clear a bit.
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 161: shown in FIG. 143.

STATUS FLAG AFFECTED 162: shown in FIG.
144,

DESCRIPTION:

Complement the bit value being specified, copy the
result to Z_flag, and then clear the bit to 0.

In the addressing mode specified by EaMf or ShMfq,
the immediate modes #imm_data, @-SP and @SP+
cannot be used. When using the Rn mode, the values of
high order offset bits are ignored.

In the assembler syntax, the memory access size is
specified as the base size. With BCLR:Q, the memory
access size is fixed at 8 bits. For specifying the size, it is
possible only to describe *.B’.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

‘When BB="11"

When EaR is @-SP

When EaMf or ShMfq is #imm_data, @SP4+ or
@-SP :

MNEMONIC:

BNOT offset,base
OPERATION:

bit->Z__flag, bit- > bit

Compliment a bit.

OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 163: shown in FIG. 145,

STATUS FLAGS AFFECTED 164: shown in FIG.
146.

DESCRIPTION: ‘

Complement the bit value being specified, copy the
result to Z_flag, and then complement the bit.

In the addressing mode specified by EaMf{, the imme-
diate modes #imm_ data, @-SP and @SP+ cannot be
used. When using the Rn mode, the values of high order
offset bits are ignored.

In the assembler syntax, the memory access size is
specified to be the same as the base size.

PROGRAM EXCEFPTION:

Reserved instruction exceptions

When RR="11"

When BB="11

When EaR is @-SP

When EaMf is #imm_ data, @SP+ or @-SP
MNEMONIC:

BSCH data,offset
OPERATION:

find first ‘0’ or ‘I’ in the bitfield (within a word)

Search 0 or 1 (in one word).

OPTIONS:

/0O Search ‘0. (default)

/1 Search ‘I’,

/F Search 0 or 1 to the direction where the bit num-

ber increases. (default)

/B Search 0 or 1 to the direction where the bit num-
ber decreases. < <L2> > (the data processor of
the present invention supports this option.)

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 165: shown in FIG. 147.

5,201,039

71
STATUS FLAGS AFFECTED 166: shown in FIG.
148.
DESCRIPTION:

Search for the first bit which is ‘0’ or ‘1’ in a word.

When this instruction is executed, after the bit num-
ber (bit offset) to be searched is set to the offset operand,
the bit number after the search operation is set to the
offset operand. offset is used for the read-modify-write
operation because it is assumed the bit search operation
may be used repetitively.

The bit position to be searched is restricted to the
range from 0 to (data size) of the data operand. It does
not exceed the word boundary.

Although any size can be specified for offset, the high
order bits of the initial value of offset are ignored in the
search operation. The “high order bits” represent the
bits higher than log 2 (the number of bits of data). When
data is 32 bits, the high order bits are in the range from
2 5to2 31

In the standard specification < <L0O> >, the search
operation is performed in the direction of the high order
bits, namely, in the big-endian the data processor of the
present invention, the search operation is performed
toward the LSB direction. This operation is conducted
by the /F option. The search operation in the reverse
direction, namely /B option is defined in the
< <L2>> specification because the search operation
in the normal direction (LSB) differs from the reverse
direction (MSB) in hardware. 8 bits and 16 bits
(RR =00,01 of the data size to be searched are defined
in <<L2>>. v

The data processor of the present invention supports
both the /B option and the data size (RR=00,01) of 8
bits and 16 bits in the < <L2> > specification.

Although BSCH is classified in the same group as bit
manipulation instructions, it provides much different
properties than them. If offset can be freely set in the
BSCH instruction like other bit operation instructions,
the BSCH instruction may be more easily used. To do
that, the BVSCH instruction is provided. Thus, BSCH
is defined as a much lower grade specification and the
range of offset is restricted. The effective range of offset
is the same as that where the register direct mode Rn is
specified by another bit operation instruction. How-
ever, take care that the offset and base of other bit ma-
nipulation instructions are read-only and read-modify-
write, respectively, while offset and data (base address)
of BSCH are read-modify-write and read-only, respec-
tively.

If the specified bit is not found with BSCH/F, offset
of the bit following the last bit (word boundary) is set
and V_flag=1 takes place. If the search operation is
unsuccessfully terminated, an EIT does not occur. The
number of bits being searched is added to offset.

EXAMPLES

When BSCH/0/F @mem1.W,RO is executed with
@mem1=H'00000000, RO=0, and big-endian,
= =>R0=0 remains unchanged and V_flag is set to 0.

When BSCH/0/F @mem1.W,RO is executed with
@mem1 =H'fI7fH, RO=0, and big-endian,
= =>R0=16 takes place and V_flag is set to 0.

When BSCH/0/F @mem1.W,RO is executed with
@mem | =H'fffifife, RO=0, and big-endian,
= =>R0=32 takes place and V_flag is set to 1.

If the specified bit is not bound with BSCH/B, the
offset is set to (—1). In this case, V_flag is also set;
however, an EIT does not occur.

10

15

20

25

35

45

55

65

72

In the BSCH instruction, the high order bits of the
initial value of offset are ignored, while the high order
bits of the offset value (result of the search operation),
which is set after the instruction is terminated, are
meaningful. In other words, after the BSCH instruction
is executed, the high order bits of offset are also rewrit-
ten regardless of what was originally in it. If the search
operation is successfully terminated, the contents of the
offset range from 0 to 31 (when data is 32 bits), for any
case of /F and /B, the high order bits are always 0. In
addition, the search operation is unsuccessfully termi-
nated with /F, the contents of offset become 32. Conse-
quently, the high order bits and low order bits become
00....001 and 00000, respectively. If the search opera-
tion is unsuccessfully terminated with /B, the contents
of offset become (— 1), so that the high order bits and
the low order bits become 11 111 and 11111, re-

spectively.
EXAMPLES

When BSCH/0/F @mem1.W,R0.W is executed with
@mem 1 =H'00000000 and RO=H'00000020,
= = >R0O=H'00000000 takes place. (RO5=H"'00000020)

When BSCH/0/F @mem]1.W,R0.W is executed with
@mem1 =H'fif7{ff and RO=H'00000020,
== >R0=H'00000010 takes place. (ROs£H'00000030)

When BSCH/0/F @mem1.W,R0.W is executed with
@mem1=H'Y and RO=H"12345678, == > Since
the search operation is unsuccessfully terminated,
RO=H'00000020 and V_flag=1 take place.

When BSCH/0/F @mem1.W,R0.W is executed with
@mem | =H'fffifffff and RO=H"'00000020, = = > Since
the search operation is unsuccessfully terminated, V__.
flag is set to 1 and RO=H'00000020 remains unchanged.
(RO5H'00000040 (carry-out))

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When MM =11’

When EaR is @-SP

When EaM is #imm_data, @SP+ or @-SP

12-7 Fixed Length Bit Field Manipulation Instruc-
tions

The bit field is specified by the MSB position and bit
field width. The MSB position of the bit field is repre-
sented by a combination of base and offset. The memo-
ry’'s MSB (bit 0) represented by base is offset=0. The
function of offset is the same as that of bit manipulation
instructions. The relationship among the bit field, base,
offset and width is as follows.

[When the bit field manipulation is performed in the

memory 167]: diagrammed in FIG. 149.

The fixed length bit field manipulation instructions
(BFEXT, BFEXTU, BFCMP, BFCMPU, BFINS,
BFINSU) are especially effective for the Al oriented
tag processing (comparison and separation of tags).

The fixed length bit field instructions have the fol-
lowing two formats.

offset is specified by the 8-bit general addressing
mode, while width is specified by a register. This format
is termed the ‘G:’ format. In the G’ format, the mem-
ory address to be actually accessed is determined by
adding, the value where the content of offset is divided
by 8, to the base. This method allows a bit field consist-
ing of 26 bits and ranging over 5 bytes.

offset is specified by an 8-bit immediate value, while
width is specified by a literal. This format is termed the
“E’ format. In the “E’ format, only a bit field which

5,201,039

73

does not exceed the word boundary is processed in
order to increase the process speed. A result which is
larger than one word of base is not assured. Even if
width + offset Zsize, an EIT does not occur. However,
the value being read and written becomes uncertain.
Since the instruction specification can be obtained by
accessing one word of base, it is possible to determine
the memory address of the bit field to be operated by
referencing only the base. Thus, depending on the im-
plementation, the instruction can be executed at a high

The addressing mode which is available from the base
of BF:E is exactly the same as that of BF:G.

BFINS, BFINSU, BFCMP and BFCMPU have the
following two formats for both :G and :E formats.
Specify the src operand by a register. :R format
Specify the src operand by an immediate. :I format

The value of the width is restricted in the range from
1 to 32 (from 1 to 64 in < <LX> >), so that before
executing the instruction, the value of the width is
checked to determine whether it is in the range of 0<-
width=32 (64). If width=0, an error occurs. If the
value is out of the range, an invalid operand exception
(IOE) occurs. The contents of both offset and width for
all instructions, are treated as signed numbers. How-
ever, since the value available for width is in the range
from 1 to 32 (64), whether it is signed or unsigned does
not affect the actual operation, but a problem in the
specification occurs. Offset of the instruction in the :E
format is treated as a signed number. Offset represents a
value in the range from —128 to +127. (However, as
described later, the bit field which is larger than one
word base to base 4+ 3 of the base address is not assured
in the :E format.)

The operand which is not the bit field of the BF
instruction is treated as a normal integer. For BFEXT,
the bit field being obtained is set to the LSB side of the
register and the sign extension is performed to words
the MSB rather than setting the bit field in accordance
with the bit position=0 (MSB).

If a register is treated as a base, the bit field is re-
stricted in one register range. The data processor of the
present invention supports fixed length bit field instruc-
tions which use registers in the < <L2> > specifica-
tion because at present the bit field operations which
treat these registers can be executed at a much higher
speed by a combination of the shift instruction and the
AND instruction rather than by the BF:E instruction.
In the bit field instructions which use registers
(< <L2>>), :G like :E can not assure the result of an
operation of the bit field which is larger than one word
(register). In BFEXT and BFEXTU, a meaningless
value is obtained, while in BFINS and BFINSU, it is
ignored. If offset + widthZsize, an EIT does not occur.

In the :E format, the result of the operation that has a
bit offset which exceeds the size is not assured. The
result of the operation which has negative bit offset is
also not assured. The operation which contains the base
address in one word is correctly executed. -

[EXAMPLE]
address N-1 N N+1
data Babcdefgh B'ijkimnop B'qrstuvwx
(atox:00r 1),
BFEXT:EW #3,#9,@N,R0 — RO = B'Imnopqrst
BFEXT:E.W #—5#9,@N,RO — RO = B ?77M%jkl

(? is an unstable value.)

25

30

35

65

74
The width, src and dest registers are commonly speci-
fied by the X field. The size specification field X serves
to switch between 32-bit operation and 64-bit operation
(< <LX>>). It functions as follows:
(1) Specify the src (dest) register size (in :R format).
(2) Specify the width register size (in :G format).
(3) Specify the width range.
When X=0, 0<width=32
When X=1, 0<width=64

In the :E:] format, (1) and (2) above do not function.
To distinguish (3), the field is used. In other words, the
X field serves to enhance the compatibility of 32-bit
operation and 64-bit operation.

If SS5400 in the :I format instruction, the #iS8 field is
not used. Even if the #iS8 field is not 0, it is ignored. It
is important that the user note that the field of #iS8
should be filled with zeroes.

The formats and the sizes used for the bit field in-
structions 168 are shown in FIG. 150.

In the bit field instructions, like the bit operation
instructions, the memory range to be accessed should be
considered. However, it depends on the implementa-
tion, so that a strict definition is not required.
MEMONIC:

BEFEXT offset, width, base, dest
OPERATION:

extract bit field (signed)

OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 169: shown in FIG. 151.

STATUS FLAGS AFFECTED 170: shown in FIG.
152.

DESCRIPTION:

Extract the bit field and transfer the result to the
destination.

If the size of the destination is larger than the width of
the bit field, the data is sign-extended. The offset of
BFEXT:G is also sign-extended.

In the EaRbf addressing mode, the @-SP, @SP +
and #imm__data modes cannot be used. Although the
register direct mode Rn of base is specified in
< <L2> >, the data processor of the present invention
supports it.

Operation
Assume that the initial value of dest is

[D0.D1. ... Dd-2Dd-1] d=32,64

the value which is set to dest is

{RORI....Rd-2.Rd-1] d=32,64

offset=o,width=w

offset and width are treated as signed numbers. (If
width=0 or width>d, an invalid operand exception
(IOE) occurs.) The extracted bit field and the flag
change occur as follows:

ardzw)
bit 0 of base

|
[...BOBI....Bo—2Bo—~1Bo.Botl....Bo+w—2Botw—
LBo+w.Bo+w+1...]

This portion is sign-extended and is set to dest.
[Bo. Bo+1....Bo+w—-2Bo+w—1]—
....... Bo. Bo. Bo+l....Bo+w~-2Bo+w—1]—

Sign-extended for d—w bits
fROR1... Rd—w—1LRd—w.Rd—w+1

Rd—2. Rd—1}

5,201,039

75
-continued
(Set to dest)
(f d<w)
It does not occur in the data processor32 of the present invention.
bit 0 of base 5
{
[...BOBI..... Bo-1.Bo.Bo+1....Bot+w—d-—1Botw—

d....Botw—2Botw-1Bo+w...]
This portion is truncated. This portion is set to dest.
[Bo.Bo+1.... Bo+w—d—1.Bo+w—d.... Bo+w-2
Bo+w—1] —
[(Bo+w—d....Bo+w—2Bo+w—1}—
This portion is truncated.
[RO...... Rd—2. Rd—1] (Set to dest)

10

M_flag RO

Qf d=zw) Bo

(If d<w) Bo+w—d 15
Z_flag (ROtod—-1] =0

(fdzw)[Botoo+w—1] =0

(If d<w) [Bo+w—dtwwo+w—-1] =0
V_flag* S{Bo o o+w—1] < —2 (d-1).0r.

S{Bowo+w—1]Z +2 (@-1)

ardzw)o 20

(1f d <w) Cleared when

Bo=Bo+1= ... =Bo+w-—d—I=Bo+w-d.

Otherwise, it is set. 1

In the data processor 32 of the present invention, it is 25
always cleared.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"
When 4 =‘11" 30
When X="11"

When EaR is @-SP

When EaRbf is #imm_data, @SP+ or @-SP

Invalid operand exception

When width=0 or width>32 s
MNEMONIC:

BFEXTU offset,width,base,dest
OPERATION:

extract bit field (unsigned)

OPTIONS: 40

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 171: shown in FIG. 153.

STATUS FLAGS AFFECTED 172: shown in FIG.
154. 45

DESCRIPTION:

Extract the bit field and transfer the result to the
destination.

If the size of the destination is larger than the width of
the bit field, the data is zero-extended. However, offset 50
of BFEXTU:G is also sign-extended.

In the EaRbf addressing mode, the modes of @-SP,
@SP+ and #imm__data cannot be used. Although the
register direct mode Rn of base is specified in
< <L2> >, the data processor of the present invention 35
supports it.

Operation

Assuming that the initial value of dest is

{DO.D1 ... Dd-2.Dd-1] d=32,64 60
the value which is set to dest is

fRO.R1...Rd-2.Rd-1] d=132,64
65
offset=0, width=w
offset and width are treated as signed numbers. (If
width=0 or width>d, an invalid operation exception

76
(IOE) occurs.) The extracted bit field and flag change
occur as follows:

ardzw)
bit O of base

!
[...BO.Bl.... Bo~2Bo—1.BoBo+1....Botw—2Botw_
1Bo+w.Bo+w+1...] ‘
‘This portion is sign-extended and set to dest.

[Bo. Bo+!....Bo+w-2
Bo+w~1] —
[0O0........0. Bo. Bo+1....Bo+w-2
Bo+w—-1]—
Sign-extended for d—w bits
[RORI ... Rd-w—1Rd—wRd—w+1.... .. Rd—2.Rd-1]
(Set to dest)
Md<w)

It does not occur in the data processor32 of the present invention.
bit 0 of base

|
[...BOBL..... Bo-—-1BoBo+l.. . .Botw—d—1Botw—
d.... Botw-—2Botw—1Bo+w...]
This portion is truncated. This portion is set to dest.
{Bo.Bo+1.... Bo+w—d—1.Bo+w—d.... Bo+w—2Bo+
w—l]—»
[Bo+w—d....Bo+w—2Bo+w—1] —
This portion is truncated.

{ RO......Rd—2 Rd-1]
(Set to dest)
M_flag RO
(fd>w)0
{df d=w) Bo

(f d<w) Bo+w-d
Z_flag ROwd—1] = 0
(fdzw)[Botoo+w—1]=0
(Afd<w) [Bo+w—dtoo+w—1] =0
V_flag* UBotoo+w—1]12 +2 d

(fdzw)0
(If d <w) Cleared when
Bo=Bo+1= ... =Bo+w~d—1=0.

It is always cleared in the data processor of the
present inventionl2.

PROGRAM EXCEPTION:
Reserved instruction exceptions

When RR="11"
When +=*0"
When X="1"

When EaR is @-SP

When EaRbf is #imm_data, @SP+ or @-SP

Invalid operand exception

When width=0 or width>32
MNEMONIC:

BFINS src,offset,width,base
OPERATION:

insert bit field (signed)

OPTIONS:
None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 173: shown in FIG. 155.

STATUS FLAGS AFFECTED 174: shown in FIG.
156.

DESCRIPTION:

Insert the contents of the source into the bit field.

If the size of the bit field width is larger than that of
the source, the data is sign-extended. The offset of
BFINS:G is also sign-extended.

In the EaRbf addressing mode, the modes of @-SP,
@SP+ and #imm__data cannot be used. Although the
register direct mode Rn of base is specified in
< <L2> >, the data processor of the present invention
supports it.

Operation

5,201,039

77

Assume that the initial value of src is

[S0.81...8s—2.8s~1] s=8,16,32,64(:1)
s= 32,64 (:R)

offset=o0, and width=w

offset and width are treated as signed numbers. (If
width =0 or width>d, an invalid operation exception
(10E) occurs.) The bit field to be inserted and the flag
change occur as follows:

df wZs)
Bit field change
bit 0 of base
i
{-..BO.Bl....Bo—1.BoBo+!....Bo+w—s—1.Bo+w—
s.Bo+w—s+1... Bo+w—1Bo+w...]—
[..BOBl....Bo—~1.80._ 80 S0. St......

src is sign-extended for w—s bits.
af ws)
Bit field change
bit 0 of base
i
[..BOBl.... Bo—2Bo—-1. Bo. Bo+l....Bo+4+w—
[...BOBIl.... Bo—2.Bo—1Ss—w.Ss—w+1...... Ss—
1.Bo+w...]
[S0.S1. ... Ss—~w~1] of src is truncated.
M_flag Based on the change of MSB (Bo) in the related
bit field
(If wZs) SO
(If w<s) Ss—w
Z_flag Based on the change of [Bo to o+w—1] in the
related bit field
(If wZs) [SO10s5—1] =src =0
Afw<s) [Ss—witos~1] =0
V_flag* S[80tos—1] = src < —2 (w—1) .01
S§[S0t0S—1] =src Z +2 (w--1)
(f w2s)0
(f w<s) Cleared if 80=S1=,.. =Ss—w-—
1=8s—w,

Otherwise, it is set.

PROGRAM EXCEPTION:
Reserved instruction exceptions

When RR=‘11"
When 4 =1’
When X=°1"

When SS="11"

When EaR is @-SP

When EaMbf is #imm__data, @SP+ or @-SP

Invalid operand exception

When width=0 or width>32
MNEMONIC:

BFINSU src,offset,width,base
OPERATION:

insert bit field (unsigned)
OPTIONS:
None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 175: shown in FIG. 157.

STATUS FLAGS AFFECTED 176: shown in FIG.
158.

DESCRIPTION:

Insert the contents of the source into the bit field.

If the width of the bit field is larger than that of the
source, the data is zero-extended. The offset of BFIN-
SU:G is also sign-extended.

In the EaRbf addressing mode, the modes of @-SP,
@SP+ and #imm__data mades cannot be used. Al-
though the register direct mode Rn of the base is speci-

10

15

25

35

45

55

65

78
fied in < <L2> >, the data processor of the present
invention supports it.

Operation

Assume that the initial value of src is

[SO.81...8s—2.8s—1] s=8,16,32,64(:I)

s=132,64(:R)

offset=o0, width=w

offset and width are treated as signed numbers. (If
width=0 or width>>d, an invalid operation exception
(I0E) occurs.)

The bit field to be inserted and the flag change are as
follows:

(If wZs)
Bit field change
bit 0 of base

H
[...BOBl.... Bo—1Bo.Bo+1.... Bo+w—s5—1.
Bo+w—sBo+w-s+1....Bo+w—1Bo+w...]—
[...BOBl....Bo—10.0........... 0.50.81......

Ss—1.Bo+w...]
src is sign-extended for w—s bits.

(If w<s)
Bit field change
bit 0 of base
|

[...BOBl....Bo—2Bo—1.Bo. Bo+1....Bo+w-1
Bo+w...}]—
[...BOBl....Bo—2Bo—18s—w.Ss—w+1...... Ss—1
Bo+w...)
{S0.S1 Ss—w~1] of src is truncated.
M_flag Based on the change of MSB (Bo) in the related bit
field.

dAfw>s) 0

(if w=s) SO

Ifwgs) Ss—w
Z_flag Based on the change of [Bo 10 04w —1] in the related
bit field.

(M wZs) [SOtws~1] =src =0

Afw<s) [Ss—wiwos—-1} =0
V. flag* U[SOtos—1] =src Z +2 w

(fwZs) 0
(If w<s} Cleared if S0=81= ..,
Otherwise, it is set.

=8s—w—1=0

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When + =0

When X="*1"

When SS="11"

When EaR is @-SP

When EaMbF is #imm_data, @SP+ or @-SP

Invalid operand exception

When width=0 or width> 32
MNEMONIC:

BFCMP src,offset,width,base
OPERATION:

compare bit field (signed)
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 177: shown in FIG. 159,

STATUS FLAGS AFFECTED 178: shown in FIG.
160.

DESCRIPTION:

Compare the contents of the source with that of the
bit field.

5,201,039

79

If the width of the bit field differs from that of the
source, the smaller size data is sign-extended and then
both the values are compared. The offset of BFINS:G is
also sign-extended.

In the EaRbf addressing mode, the @-SP, @SP+ 35
and #imm_data modes cannot be used. Although the
register direct mode Rn of base is specified in
< <L2> >, the data processor of the present invention
supports it.

Operation

Assume that the initial value of src is

10

[S0.51....85—25s5—1] s=8,16,32,64(:1)

5= 32,64(:R) 15

offset=o0, and width=w,
offset and width are treated as signed numbers. (If
width=0 or width>d, an invalid operation exception

(@AOE) occurs.) 20

The bit field to be compared and the flag change
occur as follows:
(Ifs=w) 25

bit 0 of base

|
{...BOBIl....Bo—2Bo~1BoBo+1 .. Botw—2
Botw—1.Bo+w.Bo+w.Botw+1...]
This portion is sign-extended and compared with

srC. 30
(f s<w)
bit O of base

!
[...BOBI..... Bo—1BoBo+1.... Botw—s—1

Bo+w—s....Botw=2Bot+w~ 1.Bo+w...]
src is sign-extended and
compared with this portion.

L_flag S[Botoo+w—1] — §[S0tos—1] < O

Set depending on the comparison result.

Z_flag S[Botoo+w—1} — S§[S0105~1) =0

Set depending on the comparison resull.

35

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When + =0’

When — =‘1’

When SS=‘11

When EaR is @-SP

When EaRbf is #imm__data, @SP+ or @-SP

Invalid operand exception

When width =0 or width> 32
MNEMONIC:

BFCMPU src,offset,width,base
OPERATION:

compare bit field (unsigned)

OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 179: shown in FIG. 161.

STATUS FLAG AFFECTED 180: shown in FIG. 60
162.

DESCRIPTION:

Compare the contents of the source with that of the
bit field.

If the width of the bit field differs from that of the 65
source, the smaller size data is zero-extended and then
both the values are compared. The offset of
BFCMPU:G is also sign-extended.

45

55

80
In the EaRbf addressing mode, the @-SP, @SP+
and #imm_data modes cannot be used. Although the
register direct mode Rn of the base is specified in
< <L2> >, the data processor of the present invention
supports it.
Operation

Assume that the initial value of src is

[S0.51...8s—2.5s—1] 5=B,1632,64(1)

3=32,64(:R)

offset=o0, width=2,

offset and width are treated as signed numbers. (If
width=0 or width>d, an invalid operation exception
(IOE) occurs.)

The bit field to be compared and the flag change
occur as follows:

(Ifs2w)
bit O of base

{
[...BO.Bl.... Bo—2Bo-1Bg.Bot!... . Bot+w—2Bo4w—
1.Bo+w.Bo+w+1...]

This portion is zero-extended and compared with

srC.
(f s<w)
bit 0 of base

4
[...BOBl..... Bo—1BoBo+1....Bo+tw—s—1
Bo+w—s... Botw—-2Bot+w—1 Bo+w...]

src is zero-extended and

compared with this portion.
L_flag U{Botoo+w—1} — U[SOtos—1] <O
Set depending on the comparison result.
Z_flag UBotoo+w—1] — U[S0tos—1] =0
Set depending on the comparison result.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR=‘11"

When + =0

When —=*1"

When SS=‘11"

When EaR is @-SP

When EaRbf is #imm__data, @SP+ or @-SP

Invalid operand exception

When width=0 or width>32

12-8 Variable Length Bit Field Manipulation Instruc-
tion

The variable length bit field manipulation instructions
consist of the following instructions.

General operation and transfer BMVAP
Transfer BVCPY
Operation and transfer of repetitive patterns BVFPAT
Search forOor | BVSCH

BVMAP, BVPAT and BVCPY are instructions which
mainly serve for window operations (bitblt) on the bit
map display.

The terms of the bit map display attributes are de-
fined as follows: (color scale, color offset, and bit-dot
polarity)

color scale:

Specifies how many continuous bits one dot repre-
sent.

Examples:

color scale=1

5,201,039

81

1 dot is represented by 1 bit. Continuous 8 dots are
represented by 1 byte. Monochrome bit map display or
bit map display where each bit forming the colors is
banked.

color scale=4

1 dot is represented by successive 4 bits. Successive 2
dots are represented by 1 byte.

It supports 16color bit map display.

bit-dot polarity

The bit-dot polarity is a concept which should be
considered in a combination of a bit map display and
processor. In a general bit map display where the low
order addresses are represented on the left side, if dots
corresponding to smaller bit numbers are represented
on the left side, it is named such that a bit map display
has the positive bit-dot polarity. If dots corresponding
to larger bit numbers are represented on the left side, it
is named such that a bit map display has the negative
bit-dot polarity. In other words, a big-endian processor
has the positive bit-dot polarity only when the MSB is
represented on the left side.

color offset

Specify what bit of multiple bits forming 1 dot is
operated.

The following relationship is obtained.

0= color offset < color scale

This attribute is a parameter for the bit map display
operation rather than an attribute of the bit map display
hardware.

When dots which move horizontally for X (dot off-
set) from the dot corresponding to base address bit
offset in the memory is calculated as follows:

(dot offset is a group of points on the screen, while bit
offset is a group of bits in the memory.)

In positive bit-dot polarity:

bit offset=X * color scale + color offset
In negative bit-dot polarity:
bit offset =(X * color scale +color offset) .xor. 7

The BVMAP, BVCPY and BVPAT instructions
actually used in the data processor of the present inven-
tion have restrictions that affect the implementation.
These instructions can be used only when:

bit-dot polarity is positive.

color scale is 1.

Thus, it is necessary to define the hardware of the bit
map display to some extent. The practical restrictions
are as follows.

Since the bit-dot polarity is positive, when the data
processor of the present invention is big-endian, the
small address and the small bit number (MSB) should be
displayed on the left side of the screen.

Since only color scale=] is available, there are the
following restrictions for the bit map display where
color scales£1.

For the bit map display where color scales£1, the
type of operation cannot be changed every color offset.

Since color scale cannot be changed with the
BVMAP instruction, if color scale of the bit map dis-
play is not 1, unless the internal expression is not the
same content as color scale, the BVMAP instruction
cannot be used. Because the inner expression of the
screen image depends on the hardware, to convert data

25

35

45

55

65

82
between different hardware systems, data format should
be changed.

The variable length bit field manipulation instructions
use many operands and require long execution times.
Thus, mechanisms for accepting interrupts during exe-
cution and for reexecuting the instruction after an inter-
rupt process are required. The data processor of the
present invention uses a fixed number of registers which
specify an operand and represent the progress condi-
tions of the operation. Therefore, even if an interrupt
occurs during execution of a variable length bit field
instruction, if the register is correctly saved and re-
stored in the interrupt process handler, after the inter-
rupt process, the bit field instruction can be restored on
the way. Even if the status is saved or the context is
switched after execution is suspended or the same bit
map instruction is executed with a different process
after the context is switched, when the former bit map
instruction is resumed at the same context, it should
work correctly.

In the BTRON specification, with a conventional
main memory, which is not VRAM, characters and
figures may be described. Consequently, in the variable
length bit field instructions, since a page fault may oc-
cur, like the string instructions, it is possible for a sus-
pension of execution due to the page fault.

In the BVMAP and BVCPY instructions, to move a
figure horizontally with an insert editor the source of
the bit map can be overlapped with the destination of
the bit map. Like the string instructions, the direction to
be operated is specified with the options /F and /B. The
direction to be operated is determined by software so
that the source is not destroyed by the destination.
However, the option /B which can specify the reverse
operation is defined in <21 L2>> to simplity the
complexity >f the implementation.

The data processor of the present invention also sup-
ports the reverse operation for increasing the operation
speed of BTRON.

If src is overlapped with dest and if the length from
base to offset for dest is smaller than that for src, a
smaller offset is first processed so that the content of src
is not destroyed by that of dest. To do that, the /F
option is used. Therefore, the smaller offset side (ad-
dress) is located on the left side. The length from base to
offset for dest is smaller than that for src when the bit
map data is moved on the left side by deleting charac-
ters.

In addition, if the length from base to offset for dest is
longer than that for dest, the larger offset is first pro-
cessed so that the content of src is not destroyed by that
of dest. To do that, the /B option is used. The length
from base to offset for dest is larger than that for src
when the bit map data is moved on the right side by
inserting characters.

If src may be overlapped with dest, the correct option
should be used depending on the decision of software so
that the contents of src is not destroyed by that of dest.
However, since the /B option is defined in < <L2> >,
if /B cannot be used, the contents of src should be tem-
porarily copied to another position and then the opera-
tion with dest should be performed.

If there is no overlap between src and dest, the result
is the same no matter which option is used.

If the /B option is used when the length from base to
offset for dest is smaller than that for src or if the /F
option is used when the length from base to offset for
dest is larger than that for dest, it is necessary to con-

5,201,039

83

sider which operation occurs. Because dest, of the por-
tion which has been operated, destroys the portion
where src has not been referenced, the correct result
cannot be obtained. If an instruction which was sus-
pended is reexecuted due to the algorithm, the result
may change. Since the correct result is not assured, it
does not matter if the result is changed by an execution
suspension. When no execution suspension takes place,
a correct result may be obtained, so that an non-repeata-
ble bug can happen. However, if the error check is
performed completely, overhead increases, resulting in
decreased execution time. The error check is not per-
formed, so the user should take care of it.

In the variable length bit field instructions, only 32
bits or 64 bits < <LX>> can be used for bit offset
(offset), bit width (width), and pattern data (pattern) in
registers. 8 bits and 16 bits can not be specified. The
resister size of 32 bits and 64 bits is selected by the X
field.

In the BVMAP, BVCPY and BVPAT instructions,
the memory access method on the dest side is not speci-
fied except that it be performed by the write or read-
modify-write operation.

If width=0 in the BV instructions, the instruction is
terminated without any operation being performed.
However, an EIT does not occur. In the BVSCH in-
struction, V_flag which represents the completion due
to width (same as search operation failure) is set. In
complex instructions such as the BV instructions and
string instructions, a high level subroutine may be cre-
ated using such an instruction. For example, BVMAP is
repeated for a number of lines to produce the BitBlt
function. It is not necessary to check width every time,
but codes which may be directly generated by the com-
piler should be carefully checked. Thus, detection of
the width of the BF instructions is an exception.

If offset + width overflow in a variable length bit field
instruction, when the execution is suspended by an
interrupt or when the instruction is completed, the off-
set value on the register becomes incorrect, so that the
instruction cannot be correctly executed. In this case,
the operation is not assured. On the architecture, al-
though it is recommended that it be detected and
treated as an invalid operand exception (IOE) when the
instruction is executed, to prevent prolonged execution
time, it is executed without checking. (In string instruc-
tions, since a pointer address rather than an integer
accords with offset, it is not treated as an overflow, but
only as a wraparound of the address.)

MNEMONIC:

BVSCH
OPERATION:

find first ‘0’ or ‘I’ in the bitfield (variable length)
OPTIONS:

/0 Search ‘0’ (default).

/1 Search ‘1’

/F Search for 0 or 1 in the direction of increasing bit

number (default).

/B Search for 0 or 1 in the direction of decreasing bit
pumber < <L2>>. (the data processor of the
present invention supports this option.)

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 181: shown in FIG. 163.

STATUS FLAGS AFFECTED 182: shown in FIG.
164.

DESCRIPTION:

Search for a ‘0’ or ‘1’ in the variable length bit field.

30

45

55

60

65

84

When this instruction is executed after the search
start bit number (bit offset) is set to the offset operand
(R1), the bit number of the search result is set to the
offset operand (R1). In other words, offset is processed
by the read-modify-write operation, so that the bit
search operation can be continuously repeated. Offset is
treated as a signed integer.

After BVSCH is executed, if the search operation is
unsuccessfully terminated, V_flag is set and offset indi-
cates the bit to be searched next. An EIT does not oc-
cur. The offset and V_flag of the BVSCH instruction
are set the same way as the BSCH instruction.

Although the search operation in the reverse direc-
tion using /B is defined in the < <L2> > specification,
the data processor of the present invention supports it.

This instruction can be used to search an empty block
of a disk and memory.

For detailed specification of comlex instructions such
as variable length bit field instructions and string in-
structions as well as the register values after the instruc-
tion is terminated, see Appendix 11.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When 4+ =0

When X=*1"

When P="1"

MNEMONIC:

BVMAP
OPERATION:

bit operation {(one line BitBlt)

OPTIONS:
/F Perform the operation from the smaller offset
(default).

/B Perform the operation from the larger offset
< <L2>>. (the data processor of the present
invention supports it.)

INSTRUCTION FORMAT AND ASSEMBLER

SYNTAX 183: shown in FIG. 165.

STATUS FLAGS AFFECTED 184: shown in FIG.
166.

DESCRIPTION:

The instruction provides for various logical opera-
tions for variable length bit fields src and dest to per-
form the bit map operation on a computer display. The
type of operation is specified by the lower 4 bits of R5.
The following 16 types are provided.

Bit pattern = Mnemonic Function Operation

0000 F False 0 — dest

0001 NAN NotAndNot ~dest .and. ~src — dest
0010 AN AndNot dest and. ~src — dest
0011 NS NotSrc ~src — dest

0100 NA NotAnd ~dest .and. src — dest
0101 ND NotDest ~dest —+ dest

0110 X Xor dest .xor. src — dest
o111 NON NotOrNot ~dest .or. ~src — dest
1000 A And dest .and. src — dest
1001 NX NotXor ~dest .xor. src — dest
1010 D Dest dest — dest

1011 ON OrNot dest .or. ~arc — dest
1100 S Src src —+ dest

1101 NO NotOr ~dest .or. src — dest
1110 o] Or dest .or. src ~» dest
1111 T True 1 — dest

The D (Dest) operation mode is provided for the sym-
metry of operations.

If the high order bits of register R5, which specifies
the operation, are not zeroes, it is not checked. An

5,201,039

85

invalid operand exception (IOE) does not occur in
order to minimize the implementation complexity and
keep the execution speed from being degraded.

/F and /B options serve to specify whether the oper-
ation is performed from the smaller offset or from the
larger offset. If src and est of the bit map are over-
lapped, the contents of dest destroy that of src, so that
the correct result cannot be obtained.

When src and dest are overlapped, if the length from
base to offset for dest is smaller than that for src, the
operation is started from the smaller offset so that the
contents of src are not destroyed by dest. To'do that,
the /F option is used. Generally, the smaller offset (ad-
dress) is placed on the left side as the relationship be-
tween the screen and bit map. Thus, when the bit map
data is moved to the left by deleting characters, the
length from base to offset for dest is smaller than that
for src.

If the length from base to offset for dest is larger than
that for src, the operation is started from the larger
off-set so that the contents of src are not destroyed by
dest. To do that, the /B option is used. The length from
base to offset for dest is larger than that for src when the
bit map data is moved to the right by inserting charac-
ters.

In addition, if the /B option is used when the length
from base to offset for dest is smaller than that for src or
if the /F option is used when the length from base to
offset for dest is larger than that for src, the result (dest)
is not assured. If the instruction reexecution occurs due
to an interrupt and page fault during instruction execu-
tion, the result may change.

If src and dest are overlapped, it is necessary to use
the correct option through software and proceed to the
operation so that the content of src is not destroyed by
that of dest. Since the /B option is defined in
< <L2> >, if it cannot be used, it is necessary to copy
the contents of src to another location and perform the
operation with dest. The data processor of the present
invention supports the /B option.

If not overlap occurs, the result is not changed re-
gardless of which option is used.

«— The length from base 1o offset is small.
The length from base to offset is large. —

[In the case of no overlap 185}
diagrammed in FIG. 167.
The result of the operation is assured with /B and /F.
[In the case of overlap 186):
diagrammed in FIG. 168.
[In the case of overlap 187}:
diagrammed in FIG. 169.
PROGRAM EXCEPTION:
Reserved instruction exceptions
When Q="1"
When X="1"
When P="1"
MNEMONIC:
BVCPY
OPERATION:
bit transfer
OPTIONS:
/F Perform the operation from the smaller offset
(default).
/B Perform the operation from the larger offset
<<L2>>. .

5

15

20

25

30

35

45

50

55

65

86

(the data processor of the present invention supports

this option.)

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 188: shown in FIG. 170.

STATUS FLAGS AFFECTED 189: shown in FIG.
171,

DESCRIPTION:

This instruction serves to transfer bits between vari-
able length bit fields src and dest for bit map operation
on a mornitor screen. This instruction transfers bits with-
out the arithmetic operation function of the BVMAP
instruction so that the bit transfer operation can be
performed at a high speed.

The functions of the /F and /B options are the same
as those of the BVMARP instruction. If src and dest of
the bit map are not overlapped, the results are the same
regardless of which option is used. On the other hand, if
they are overlapped, it is necessary to use the correct
option so that the contents of src are not destroyed by
dest.

When the /B option is used, the offset value, the
maximum number of the bit field to be transferred, is
added to 1. It is specified as the offset value to be placed
in R1 and R4. This function is in accordance with the
specifications of SMOV/B and SCMP/B. Although the
/B option is defined in < <L2> >, the data processor
of the present invention supports it.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When Q="1I"

When X='I"

When P=*1"

MNEMONIC:

BVPAT
OPERATION:

cyclic bit operation

Operation of pattern and bit map
OPTIONS:

None ,

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 190: shown in FIG. 172.

STATUS FLAGS AFFECTED 191: shown in FIG.
173.

DESCRIPTION:

This instruction is used to fill the bit map on a com-
puter screen with some pattern or to perform logical
operations for the bit map on a screen with some pat-
tern. When continuously generating a pattern, perform
logical operations on the bit field.

If the high order bits for the operation specification
(RS5) are not 0, they are ignored.

However, even though they are not checked, for
future expansion, the high order bits should be filled
with ‘0’. This function does not use an invalid operand
exception (IOE) so that the complexity of the imple-
mentation is not increased and the execution speed is
not lowered.

This instruction does not perform a shift operation
during a memory write unlike BVMAP and BVCPY,
The specification of offset only masks pattern. On the
other hand, the BVMAP instruction performs a shift
operation if the offset of src differs from that of dest.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When + =0
When X=*1"
When P=*1"

12-9 Decimal Arithmetic Instructions

5,201,039

87

The data processor of the present invention supports
unsigned PACKED format (BCD) decimal one word
addition/subtraction operation and the PACK/UN-
PACK process according to the < <L1> > specifica-
tion of the main processor and signed PACKED format
decimal one word addition/subtraction operation ac-
cording to the < <L2> > specification. In addition,
the addition, subtraction, multiplication, and division of
long digit decimal numbers are processed by a co-
Processor.

This paragraph described only the addition and sub-
traction of the PACKED formal decimal numbers and
PACK/UNPACK process. The addressing mode of the
decimal arithmetic operations is the same as that of the
conventional instructions.

The data processor of the present invention does not
support the four types of decimal arithmetic operation
instructions described in this paragraph.
MNEMONIC:

ADDDX src,dest (the data processor of the present

invention does not support this instruction.)
OPERATION:

dest+src+ X __flag=32 >dest BCD .

Addition in BCD
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 192: shown in FIG. 174.

STATUS FLAGS AFFECTED 193: shown in FIG.
175.

DESCRIPTION:

Add packed BCD numbers.

This instruction can handle BCD data consisting of 8
bits (2 digits), 16 bits (4 digits), 32 bits (8 digits), and 64
bits (16 digits). However, 64 bits are only handled in the
< <LX> > specification.

If the size of the source operand is smaller than that of
the destination operand, the source operand is zero-
extended and the content of the source operand is added
to that of the destination operand.

Since the sign-extension of a BCD number is not
meaningful, it is treated as an unsigned number and the
flag change of ADDDX is based on that of ADDU.
Like ADDU, V_flag is set if the result is not com-
pletely placed in dest and a carry-out from dest is sent to
X_flag if d <s. However, the status of Z_flag cumula-
tively changes as in ADDX and SUBX rather than
ADDU.

If each digit of src and dest contains a number other
than 0 to 9, in other words, if the contents of each oper-
and of ADDDX and SUBDX are not a number in BCD,
an EIT does not occur. However, the contents of dest
and the results sent to flags are not assured (depending
on the implementation). This function does not use an
invalid operand exception (10E) so that the complexity
of the implementation is not increased and the execution
speed is not lowered.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="1T1

When MM =°1T"

When EaR is @-SP

When EaM is #imm_data, @SP+ or @-SP.

< <L1>> functional exception

When the bit pattern of ADDDX is decoded.
MNEMONIC:

SUBDX src,dest (the data processor of the present

invention does not support this instruction.)

10

15

20

25

35

45

65

88
OPERATION:

dest-src-X__flag= = >dest BCD

Subtraction in decimal BCD
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 194: shown in FIG. 176.

STATUS FLAGS AFFECTED 195: shown in FIG.
177.

DESCRIPTION:

Subtract packed BCD numbers.

This instruction can handle BCD data consisting of 8
bits (2 digits), 16 (4 digits), 32 bits (8 digits), and 64 bits
(16 digits). However, 64 bits are only handled in the
< <LX> > specification.

If the size of the source operand is smaller than that of
the destination operand, the source operand is zero-
extended and the content of the source operand is sub-
tracted from that of the destination operand.

Since the sign-extension of a BCD number is not
meaningful, it is treated as an unsigned number and the
flag change of SUBDX is based on that of SUBU. Like
SUBU, V_flag is set if the result becomes negative and
a borrow from dest is set to X_flag if d <s. However,
the status of Z_flag cumulatively changes like ADDX
and SUBX rather than SUBU.

If the result becomes negative in SUBDX, dest is not
represented as an absolute value, but a complement
(complement of 10). Thus, the value becomes the same
as from the high order digit is dest.

If SUBDX is executed with 16 bits,
dest src
0123 — 0456 = (—0333) dest becomes (—333) = 9667

Example:

If each digit of src and dest contains a number other
than 0 to 9, in other words, if the contents of each oper-
and of ADDDX and SUBDX is not a number in BCD,
an EIT does not occur. However, the content of dest
and the results sent to flags are not assured (depending
on the implementation). This function does not use an
invalid operand exception (IOE) so that the complexity
of the implementation is not increased and the execution
speed is not Jowered.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="‘11"

When MM =°11"

When EaR is @-SP

When EaM is #imm__data, @SP4 or @-SP.

< <L1> > functional exception

When the bit pattern of SUBDX is decoded.
MNEMONIC:

Packss src,dest (the data processor of the present

invention does not support this instruction.)

OPERATION:

pack data
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 196: shown in FIG. 178.

STATUS FLLAGS AFFECTED 197: shown in FIG.
179.

DESCRIPTION:

Pack the content of src in BCD (Binary Coded Deci-
mal) and transfer it to dest. Actually, one of B, H, W

5,201,039

89
and L is placed in s of PACKSss and the following mne-
monic and operation take place.

PACKHB src[.Hl.dest{.B]
RR=01,WW=00 src[04:07] -» dest[00:30},
srcf12:15) — dest[04:07]
PACKWH src[.W]dest[.H] <<L2>>
RR=10,WW=01 src[04:07] — dest[00:03],
src12:15] — dest[04:07]
8rc{20:23] — dest[08:11],
src28:31] — dest{12:15)
PACKWB src.W],dest[.B]
RR=10,WW=00 src[12:15] — dest[00:03),
31c[28:31] — dest[04:07)
PACKLW src.L).dest]. W] <<LX>>
PACKLH src[.L)dest[.H] <<LX>>

Since the mnemonic in PACKss and UNPKss depends
on the size, it is considered that the function of the
instruction significantly changes depending on the size.
In other words, only the zero-extension and sign-exten-
sion are performed in the conventional instructions
depending on the size, while the operations in PACKss
and UNPKss significantly change depending on the
size.

If a combination of sizes which are not listed in the
above table is specified, the result of the operation is not
assured (the value depending on the implementation is
set to dest). Although it is desirable to generate a re-
served instruction exception (RIE) on the architecture,
a reserved instruction exception does not occur. This
concept also applies to the logical operation between
different sizes.

The bits of src which do not affect dest (2 7to2 4
bits of PACKHB), they are not checked for 0 or 1.
Even if they are not O, they are ignored. Since letter
codes are packed directly, for the most part they are not
0.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR=171

When W=‘1"

When EaR is @-SP

When EaW is #imm_data or @SP+

< <L1> > function exception

When the bit pattern of PACKSss is decoded.
MNEMONIC:

UNPKss src,dest,adj (the data processor of the pres-

ent invention does not support this instruction.)
OPERATION:

unpack data
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 198: shown in FIG. 180.

STATUS FLAGS AFFECTED 199: shown in FIG.
181

DESCRIPTION:

Unpack the contents of src in packed form decimal,
add the adjustment value adj to the value being un-
packed, and transfer the result to dest. To directly gen-
erate character codes using the UNPK instruction, the
adjustment value adj is added. Adj is added in binary
rather than in decimal. The adj size is specified by the
WW field together with the dest size.

Actually, one of B, H, W and L is placed in s of
UNPKss and the mnemonic and operation 200 take
place; as described in FIG. 182.

If a combination of sizes which is not listed in the
above table is specified, the result of the operation is not

10

30

45

55

65

90
assured (the value depending on the implementation is
set to dest). Although it is desirable to generate a re-
served instruction exception (RIE) on the architecture,
since it is difficult to detect an RIE by a combination of
the two operand sizes, a reserved instruction exception
does not occur.

An overflow by addition of adj is ignored.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11

When WW="11

When EaR is @-SP

When EaW is #imm_data or @SP+

< <L1> > function exception

When the bit pattern of UNPKss is decoded.

12-10 String Manipulation Instructions

A ‘string’ is a data type where data of 8 bits, 16 bits,
32 bits or 64 bits is continuously aligned for any length.
(Only the SSCH instruction supports data collection
which is not continuously aligned.)

The meaning of string data is not specified. It may be
real character code, integer or floating point, each of
which is interpreted by the user.

The string range can be represented in the following
two manners.

Specify the string length (amount of data).

Specify the character which represents the end of

string (terminator).

It is necessary to select one of the above two methods
depending on the purpose and language in use. In the
string instructions of the data processor of the present
invention, a parameter for the amount of data or the
terminator in the format of the optional termination
condition can be specified. The string instructions of the
data processor of the present invention support both
specification methods.

One of the features of the string instructions of the
data processor of the present invention is the ability to
freely select the amount of incrementation/decrementa-
tion by the pointer. Thus, with the string search instruc-
tions (SSCH instruction) the table can be searched and
a multiple element array can be scanned.

As the termination conditions of the string instruc-
tions SMOV, SCMP and SSCH, various conditions
such as large-small comparison and two-value compari-
son can be specified. The SSCH instruction is used for
searching a string. Since the search condition is speci-
fied as a termination condition, it only works as a termi-
nation condition. Termination conditions 201 (ecee) 202
specified by the string instructions are as seen in FIG.
183.

As applications of the string instructions imply, pro-
cessing of character strings of 8 bits/16 bits, searching
the specific bit pattern, transferring a memory bloc,
inserting a structure, clearing 8 memory area, etc., are
available.

Since the string instructions deal with non-fixed
length data the same as variable length bit field instruc-
tions, the functions of interrupt acceptance during exe-
cution and execution resumption are required. On the
other hand, the string instructions themselves do not
become codes generated by the compiler. Instead, they
are provided as subroutines written by the assembler.
Therefore, the restrictions for symmetry and addressing
mode are not strictly necessary. Thus, the string instruc-
tions of the data processor of the present invention use
the fixed number registers (RO to R4) to keep the oper-

5,201,039

91
and and the status during execution. The major registers
used are as follows.
RO: Start address of the source string
R1: Start address of the destination string
R2: Length of string and amount of data
R3: Comparison value of termination condition (1)
R4: Comparison value of termination condition (2)
R2 represents the length of string using the number of
elements rather than the number of byte. R2 is treated as
an unsigned number. R2=0 indicates the instruction is
not terminated by the number of elements. In other
words, to avoid terminating the instructions by the
number of elements, the instruction should be per-
formed with R2=0. The execution pattern of the string
instruction is described as follows:

do {
RZ - 1—+R2;
check_interrupt;
} while (R2 !1=0);

If R2=0, whether the number of elements is
H’100000000 or more (the number of elements is not
checked) depends on the implementation. In other
words, if the instruction is not terminated even after the
elements are operated on H'100000000 times, the opera-
tion that follows depends on the implementation. How-
ever, if the instruction is terminated due to a cause other
than the number of elements (it generally occurs when
R2=0), the value of R2 (see Appendix 11) after the
instruction is terminated should be correctly set. Except
for a special case where R5=0 is specified by SSCH/R,
an address transfer exception (ATRE) and bus access
exception (BAE) occur when the elements are operated
for H'100000000 times, resulting in the suspension of the
instruction.

Since the string instructions can be terminated by
various causes, flags are used to distinguish them. The
meaning of each flag is as follows:

V._flag Termination by the number of elements (string
length)

F_flag Termination by the termination condition (eeee)
To distinguish multiple termination conditions, M_
flag is used. For the status change of M_flag, see the
related appendix.

In SCMP and SSCH, which do not have other termina-

tion causes, the status changes of V_flag and F_flag

are complementarily performed. The SCMP instruction
may be terminated whether the comparison data is
matched or not.

MNEMONIC:

SMOV
OPERATION:

copy string
OPTIONS:

/F Copy the string in the direction the address in-

creases.

/B Copy the string in the direction the address de-

creases.

/Various termination conditions (ecee)

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 203: shown in FIG. 184.

STATUS FLAGS AFFECTED 204: shown in FIG.
185.

DESCRIPTION:

Transfer the string.

10

15

25

35

45

53

60

65

92

In the string instruction, SMOV/B copies the string
in the direction the address decreases. The addresses
specified by RO and R1 point the maximum address of
the string + 1 and the string copy operation is performed
by decreasing RO and R1.

If one of the /F and /B options is improperly used
when src and dest are overlapped, the result of the
SMOYV operation is not assured. In other words, the
result may depend on the implementation and whether
the instruction execution is suspended or not.

When memory access is conducted using the feature
of the complex instruction in a pipeline manner, the
memory access order may change and the element that
follows is never read after the element that precedes is
written.

The backward string copy option /B is defined in
< <L1> > instead of < <L2> > only in the instruc-
tion SMOV/B.

For a detailed specification of complex instructions
such as variable length bit field instructions and field
instructions as well as the register value after the in-
struction is completed, see Appendix 11.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When SS="11"

When P="1"

When Q="1’

When ecee="0111"~‘1111"

MNEMONIC:

SCMP
OPERATION:

compare string
OPTIONS:

/F Compare the string in the direction the address

increases.

/B Compare the string in the direction the address
decreases. < <L2> > (the data processor of the
present invention supports this option.)

/various termination conditions (eee¢)

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 205: shown in FIG. 186.

STATUS FLAG AFFECTED 206: shown in FIG.
187.

DESCRIPTION:

Compare the contents of string srcl with those of
string src2.

The comparison operation is continued while the
contents of the two strings are matched. If an un-
matched string is found, the operation is terminated.
The SCMP instruction sets the flags depending on the
result of src2 —srcl like the CMP instruction. For exam-
ple, L_flag indicates the contents of src2 are smaller
than those of srcl rather than setting the flag based on
the results of srcl —src2. SCMP has the following three
instruction termination causes which can be distin-
guished from the flag status.

1. Termination by the number of elements (amount of
data) (R2)

V_flag=1
2. Termination by termination conditions

F_flag=1, M_flag is changed by termination causes.
3. Termination by unmatched data being compared

Z_flag=0, L_flag and X_flag are changed by the
comparison result.

L_flag is the comparison result when the comparison
is made by treating the last data as signed data.

X_flag is the comparison result when the comparison
is made by treating the last data as unsigned data.

5,201,039

93

Although 2 and 3 can be checked at the same time,
cause 1 is checked in a different phase than causes 2 and
3. Thus, although causes 2 and 3 may be satisfied at the
same time, causes 1 and 2 and causes 1 and 3 are not
satisfied at the same time. If one or more of the causes
are satisfied, the SCMP instruction is terminated.

As long as the data to be compared is matched, the
value (srcl=src2) is tested as the termination condition.
If data is not matched, srcl represented by RO is tested
as the termination condition.

For M_flag, which does not have meaning unless the
termination conditions are satisfied, if the instruction is
terminated due to a different termination cause, the
result becomes uncertain. The M_flag status should
always be set to 0.

Z_flag, L_flag and X_flag are always affected by
the comparison result of the last data regardless of
whether the result is matched or unmatched. Thus, if
the instruction is completed by a condition other than
cause 3 (when the data is matched), the status flags are
automatically changed as follows.

Z_.flag=1, L_flag=0, and X_flag=0.

Since SCMP deals with both signed data and unsigned
data, the comparison result, where the element is con-
sidered as signed data, is placed in L__flag. The compar-
ison result, where the element is considered as unsigned
data, is placed in X_flag. The character codes of
BTRON should be treated as unsigned data. When
normal integers are encountered, it is also necessary to
use signed data.

The flag change of SCMP 207 is summarized as
shown in FIG. 188.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When SS=‘11

When P=*1"

When Q=1

When eeee="0111"~"‘1117
MNEMONIC:

SSCH
OPERATION:

find a character in a string
OPTIONS:

/F Search a character in a string to the direction the
address increases. (The pointer value increments
by the element size.)

/R The increment value of the pointer is specified by
RS.

/various termination conditions (eeee)

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 208: shown in FIG. 189.

STATUS FLAG AFFECTED 209: shown in FIG.
190.

DESCRIPTION:

Search a string and find an element which satisfies the
conditions. .

When the /R option is used, the elements are com-
pared and RO is updated (by post increment or post
decrement) regardless of whether RS is positive or neg-
ative. :

The size of R5 of SSCH/R is the same as that of the
pointer RO. In other words, the size of R5 in the data
processor32 of the present invention is fixed at 32 bits,
while that in the data processor64 of the present inven-
tion is specified by the P bit or mode independent from
SS (R3, R4 and element size).

5

10

15

20

25

30

35

45

55

60

65

9
PROGRAM EXCEPTION:

Reserved instruction exceptions

When SS="11"

When P=*1

When eeee=‘0111~"1111"

MNEMONIC:

SSTR
OPERATION:

Continuously write the same data (fill data in string).
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 210: shown in FIG. 191.

STATUS FLAG AFFECTED 211: shown in FIG.
192.

DESCRIPTION:

Continuously write the value of R3 to the memory
area being specified by the start address (R1) and the
length (R2).

Since the SSTR instruction does not require any
termination conditions, they are not specified.

When R2=0 in string instructions, the instruction is
not terminated by the number of elements. However, in
the SSTR instruction, the termination by the number of
elements is the only termination cause. When R2=0is
specified, an endless loop is formed. It should be pre-
vented by software rather than hardware. However, it
is possible to accept an interrupt during execution of the
instruction and to reexecute the instruction. Thus, even
if control enters an endless loop, the scheduling of the
task and process is not affected. An endless loop which
is formed by multiple instructions can be summarized
with one instruction. R2=0 is not treated as an invalid
operand exception (IOE) so that the specification is the
same as other string instructions, the implementation’s
complexity is reduced, and the operation speed is not
lowered.

Depending on the parameters and termination condi-
tions being specified, an endless loop may be formed
with the SSCH or QSCH instructions.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When SS="11"

When P=*1" .

12-11 Queue Manipulation Instructions

The data processor of the present invention provides
QINS (insertion of queue being entered), QDEL (dele-
tion of queue being entered), and QSCH (search of
queue being entered) for queue operations. The queues
that the data processor of the present invention supports
are double linked queues where the beginning first and
second data of a queue being entered are link pointers in
the absolute address. The beginning data of the queue
being entered is the pointer to the next queue entry,
while the second data of the queue being entered is the
pointer back to the previous queue entry.

The specification of the queue instructions have been
defined so that the queue header can be employed di-
rectly as an operand of the queue instruction.

1. In QDEL, the queue just after the instruction is
deleted, rather than the queune being specified. If the
queue head is specified as an operand, the beginning
operand being entered is deleted. If the queue being
searched with QSCH/B is deleted or if the last queue is
deleted, an indirect reference is required. However, it is
assumed their operations are not performed as often as
those where the queue being deleted with QSCH/F and
the beginning queue being entered are deleted.

5,201,039

95

2. In QINS, a new queue is inserted just before the
queue being specified. If the queue head is specified as
an operand, the new queue to be inserted follows the
present queue. This operation is performed in one of the
following two ways. To obtain the symmetry with the
QDEL instruction in QINS, it is preferred to insert the
new queue just after the queue being specified (or queune
head) because the same operand can be specified to
delete the new queue being entered with QINS using
QDEL. In addition, this way is preferred where the
queue is used as a stack (LIFO). On the other hand, if
the queue is used for FIFO, with QINS, a new queue is
inserted after the present queue and QDEL is often used
to delete the beginning queue being entered. The latter
is the natural queue operation as exemplified by
ITRON, consequently, the latter specification is em-
ployed.

3. In QSCH, the queue being specified is searched just
after the instruction rather than from the present queue
being entered. If the queue head is specified as an oper-
and, the queue search operation starts from the begin-
ning queue. To search the next queue after the first
search operation is successful, one only has to execute
QSCH again. This way differs from other high level
instructions (string, variable length bit field operation).
In other words, with a string instruction, the queue
search operation starts from the data that the pointer
points at. When the continuous queue search operation
is required, it is necessary to update the pointer with
instructions other than queue instructions. However,
since a different header is used in queues, it is possible to
employ a different specification.

4, Whether the queue is empty or not is determined
by flags. If data is inserted in an empty queue with
QINS and then the queue becomes empty after the
queue being entered is deleted with QDEL, Z_flag is
set. Since an attempt is made to delete from an empty
queue causes an error, the pointer is not changed, but
V_flag is set.

MNEMONIC:

QINS entry,queue
OPERATION:

insert a new entry into a queue
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 212: shown in FIG. 193.

STATUS FLAG AFFECTED 213: shown in FIG.
194.

DESCRIPTION:

Insert a new entry specified by the entry field, just
before the queue represented by the queue field.

If the queue being specified with queue is the queue
header, this instruction causes a new entry to be inserted
at the end of the present queue.

Z_flag is set depending on whether the queue is
empty or not before the instruction is executed.
[QINS instruction operatiop in 32-bit structure 214]:
described in FIG. 195.

[Before execution 215]: diagrammed in FIG. 196.
[After execution 216]: diagrammed in FIG. 197.

In the addressing mode which is specified by EaMgP
and EaMqP2, the register direct Rn, @-SP, @SP + and
#imm_data cannot be used.

In addition, in QINS, the data structure for the por-
tion which is not directly required for executing the
instruction is not checked (such as linking condition for
a new queue being entered just before and after a pres-

20

25

35

45

55

65

96
ent queue). The QINS instruction works as described in
“OPERATION".
PROGRAM EXCEPTION:

Reserved instruction exceptions

When + =0

When —=*1"

When EaMqP is Rn, #imm_data, @SP+ or @-SP

When EaMqP2 is Rn, #imm_data, @SP+ or @-SP
MNEMONIC:

QDEL queue,dest
OPERATION:

remove a entry from a queue
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 217: shown in FIG. 198.

STATUS FLAG AFFECTED 218: shown in FIG.
199.

DESCRIPTION:

Delete the entry following the queue being specified
by the queue field and set the address of the queue being
deleted to dest. The address of the queue being deleted
is set to dest because it may be frequently used.

If the queue header is specified for queue, the begin-
ning queue is deleted. :

If the queue being specified by the queue field is
empty, the instruction cannot be executed. EIT does
not occur, but V_flag and Z_flag are set and the in-
struction is terminated. dest is not changed.

dest/EaW!'S prohibits the @-SP mode. If @-SP is
allocated to dest while the queue is empty, V_flag is
set, and the content of dest cannot be transferred. The
instruction operation becomes ambiguous.

[QDEL instruction operation in 32-bit structure 219]:
shown in FIG. 200

[Before execution 220}: diagrammed in FIG. 201.
[After execution 221): diagrammed in FIG. 202.

In the addressing mode specified by EaRqP, the reg-
ister direct Rn, @-SP, @SP+ and #imm._data modes
cannot be used.

In QDEL, the data structure for the portion which is
not directly required for executing the instruction, is not
checked (such as the linking condition for a new queue
being entered just before and after a present queue). The
QDEL instruction works as described in “OPERA-
TION".

PROGRAM EXCEPTION:

Reserved instruction exceptions

When + =0

When W="1"

When EaRqP is Rn, #imm_data, @SP+ or @-SP

When EaW!'S is #imm _data, @SP+ or @-SP
MNEMONIC:

QSCH
OPERATION:

search queue entries
OPTIONS:

/NM Not mask R6.

/MR Mask R6. < <L2>> (the data processor of

the present invention does not support this option.)

/F Search a queue in the forward direction.

/B Search a queue in the reverse (backward) direc-
tion. < <L2> > (the data processor of the present
invention supports this option.)

/Various termination conditions (eeee)

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 222: shown in FIG. 203.

5,201,039

97 98

STATUS FLAG AFFECTED 223: shown in FIG. When m="1"

204. 12-12 Jump Instructions
DESCRIPTION: MNEMONIC:
Search and find the specified queue being entered. BRA newpc

The backward search operation /B and mask function 5 QPERATION:

/MR are specified in < <L2> >. the data processor of branch always (PC relative)

the present invention supports the reverse search opera- OPTIONS:

tion /B. However, it does not support the mask function None

/MR. INSTRUCTION FORMAT AND ASSEMBLER
Since this instruction requires the operation corre- 10 SYNTAX 227: shown in FIG. 208.

spond to the length of the queue, it is necessary to con-
sider cancelling the operation dynamically like the
string instructions. Thus, the operand and the execution
status during the execution are placed in the fixed num-
ber registers.

The search conditions provide the mask operation
(fetches a specified bit) and comparison operation. The
mask operation is used to search a flag, while the com-
parison operation is used to perform the priority opera-
tion and the like. The comparison conditions are speci-
fied like the termination conditions of the string instruc-
tions.

To determine the end of the queue, the queue entry
address and the queue end address R2 are compared. If
they are matched, the instruction is terminated. If the
instruction is terminated by comparison with R2, in
other words, if the search operation is unsuccessful
because the search conditions are not met, V_flag is set
and the instruction is terminated, but an EIT does not
occur.

Depending on the conditions of the QSCH instruc-
tion being specified, control may enter an endless loop
in the instruction. It should be checked by the program
rather than the hardware. An interrupt during execu-
tion and reexecution are available, so even if control
mistakenly enters an endless loop in the user program, it
does not affect the scheduling of the task and process.
Usually, it is considered that an endless loop which is
composed of multiple instructions is controlled by one
instruction.

Upon completion of the search operation, RO points
at the queue_entry which meets the conditions being
specified, while R1 points at the queue_entry just pre-
ceding the queue that RO points at.

R1 is used to delete the single linked quene. QDEL
deletes the queue_-entry following the queue__entry
being specified. After QSCH/F is executed, it is possi-
ble to execute QDEL with parameter @R 1 rather than
@RO.

Generally, by executing the QSCH instruction by
setting the address of the queue head to RO and R2, the
entire queue (including a case where the queue is
empty) can be searched. ’

QSCH aims to be used in conjunction with the single
linked queue and double linked queue.

[QSCH operation 224]: described in FIG. 205.

‘check__interrupt’ checks whether an interrupt from
the outside occurs or not. If the interrupt occurs, the
execution of QSCH is canceled and the interrupt opera-
tion is started. After the interrupt operation is termi-
nated, the remaining portion of the QSCH instruction is
executed.

[Before execution 225}: diagrammed in F1G. 206.
[After execution 226]: diagrammed in FIG. 207.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When SS=‘11"

When eeee="0111"~‘1111"

15

20

25

30

35

45

50

55

65

STATUS FLAG AFFECTED 228: shown in FIG.
209.
DESCRIPTION:

The BRA instruction serves to support the addressing
only for PC relative. BRA:D can use 8 bits, while
BRA:G can use 8 bits, 16 bits, 32 bits, and 64 bits as the
sizes of the displacement. Since the instructions of the
data processor of the present invention always start
with an even address, with the short format BRA:D
instruction, #d8 is doubled and used. In short,

PC+#dB * 2==>PC

If SS=00 is specified with BRA:G, #dS is not doubled,
but used directly.

If newpc is 16 bits long in BRA:G, although its in-
struction function and code size are the same as those of
JIMP @(#dS:16, PC). However, since it may be possible
to shorten the number of the execution cycles, they are
provided as different instructions.

If newpc is an odd number in BRA:G, since the desti-
nation to be jumped becomes an odd address, an odd
address jump exception (OAJE) takes place like the
Bce:G, BSR:G, JMP, and JSR instructions. In BRA:D,
Bce:D, and BSR:D, since the operand is doubled and
then used, an OAJE does not occur.

If SS=00 in BRA:G, Bce:G, and BSR:G, although
the operand size is 8 bits long, the #dS field becomes 16
bits long. It is necessary to use the low order eight bits
of the #dS field and place O in the high order 8 bits. If
the high order eight bits are not O, the data to be repre-
sented becomes a meaningless value depending on the
implementation. EIT does not occur.

The data processor of the present invention performs
the dynamic branch predict process for this instruction.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When SS§="11"

When P="1

0Odd address jump exception

When jumped to an odd address
MNEMONIC:

Bee newpe
OPERATION:

branch conditionally (PC relative)

OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 229: shown in FIG. 210.

STATUS FLAG AFFECTED 230: shown in FIG.
21

DESCRIPTION:

The Bcc instruction serves to support only the PC
relative addressing mode. Bee:D can use 8 bits, while
Bce:G can use 8 bits, 16 bits, 32 bits, and 64 bits as the
sizes of the displacement. Since the instructions of the
data processor of the present invention always start

5,201,039

99

with an even address, in the short format Bce:D instruc-
tion, #d8 is doubled and used. In short,

if (ccec)
PC + #d8*2 — PC

If SS=00 is specified with Bcc:G, #dS is not doubled,
but used directly.

The detail and mnemonic 231 of the portions where
the conditions are specified in Bce (portion ‘cc’) and the
bit pattern of cccc 232, is shown in FIG. 212.

If the jump operation does not occur because the
conditions are not matched in Bce:G, an OAJE may or
may not occur in the data processor of the present in-
vention. The data processor of the present invention
performs the dynamic branch prediction process for
this instruction.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When SS="11"

When P="1"

When cccc="1110"~1111"

Odd address jump exception

When jumped to an odd address
MNEMONIC:

BSR newpc
OPERATION:

jump to subroutine (PC relative)

OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 233: shown in FIG. 213.

STATUS FLAG AFFECTED 234: shown in FIG.
214.

DESCRIPTION:

The BSR instruction is a subroutine jump instruction
where only the PC relative addressing mode is sup-
ported. The value of PC is saved in the stack.

BSR:D can use 8 bits, while BSR:G can use 8 bits, 16
bits, 32 bits and 64 bits as the sizes of the displacement.
Since the instructions of the data processor of the pres-
ent invention always start with an even address, in the
short format BSR:D instruction, #d8 is doubled and
used. In short,

PC+#d8* 2==>PC

If SS=00 is specified with BSR:G, #dS is not doubled,
but used directly.

As a PC value saved on the stack with the BSR and
JSR instructions, the start address of the instruction that
follows is used. On the other hand, if PC is referenced
for calculating the effective address (including a case
where PC is implicitly referenced in BSR and the like),
note that the start address of the instructions rather than
the next instruction is used as a value of PC.

Although former PC is sgved in the stack with BSR
and JSR, the alignment of SP is not checked. Even if SP
is not a multiple of 4, such instructions are directly
executed.

The data processor of the present invention performs
the dynamic branch prediction process for this instruc-
tion.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When SS="°11

When P=‘1

20

25

30

35

45

55

65

100

When Q="1"

0Odd address jump exception

When jumped to an odd address
MNEMONIC:

JMP newpc
OPERATION:

address of src==>PC

Jjump
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 235: shown in FIG. 215.

STATUS FLAG AFFECTED 236: shown in FIG.
216.

DESCRIPTION:

Jump to an effective address of newpc. The jump
instruction is available in the general addressing mode.

In executing the case statement, the jump table is
referenced to determine the address of the destination to
be jumped. This operation is available by combining the
JMP instruction and the index addressing in the addi-
tional mode.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When EaA is Rn, #imm__data, @SP+ or @-SP

Odd address jump exception

When jumped to an odd address
MNEMONIC:

JSR newpc
OPERATION:

jump to subroutine
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 237: shown in FIG. 217.

STATUS FLAG AFFECTED 238: shown in FIG.
218.

DESCRIPTION: .

Jump to a subroutine at an effective address. A value
of PC is saved in the stack.

As a value of PC saved in the stack with the BSR and
JSR instructions, the start address of the instruction that
follows is used. If PC is referenced to calculate the
effective address (including a case where PC is implic-
itly referenced in BSR and so on), note that the start
address of the instruction rather than the instruction
that follows is used as a PC value.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When P="1"

When EaA is Rn, #imm_data, @SP+ or @-SP

0Odd address jump exception

When jumped to an odd address
MNEMONIC:

ACSB step,xreg,limit,newpc
OPERATION:

add, compare and branch
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 239: shown in FIG. 219.

STATUS FLAG AFFECTED 240: shown in FIG.
220.

DESCRIPTION:

This instruction is a compound instruction composed
of an addition instruction, comparison instruction and
conditional jump instruction. This instruction is used as
a primitive of a loop instruction.

5,201,039

101

The step, xreg and limit are operated and compared
as signed integers. Although step should be a positive
value for a conditional jump operation (xreg varies in
the reverse direction of the end value). This instruction
works as described in “OPERATION", without check-
ing whether step is positive or negative.

In the ACB instruction, to execute a loop instruction
at a high speed, overflow is not checked during the add
step. If an overflow occurs after the step is added and
the sign is changed, the incorrect value where the signal
is changed is directly compared with limit. However,
even if the result of the subtraction of limit— xreg over-
flows, the comparison of xreg <limit is accurate.

In ACB and SCB, the jump operation is conducted in
the PC relative modes. Even if the displacement is 8 bits
when SS=00, like SS§%00, #dS8 is not doubled, but
used directly. When SS3£00, the field of #dS8 is not
used (set to 0), but the data in the size specified by SS
(16, 32 or 64 bits) just follows #dS8.

For example, in ACB:Q #1,R0,#4, label

If the difference between label and ACB:Q instruc-
tion is H'1234, the following bit pattern is obtained. It is
also the same as that in the :I format in the variable
length bit field instruction.

ACB:Q
00RgMw11 110IPO01 .#6n.SS _#dSS.

0000001 11010001 00010001 Q0000000 00010010 00110100
+0 +1 +2 +3 +4 +5
<Address>

[ACB operation]

xreg + step — xreg

/* If an overflow occurs, only the low order
bits are enable. */

if (xreg < limit) then PC + #dS§& — PC endif

If newpc is an odd number, an OAJE occurs. In the data
processor of the present invention, even if the jump
operation does not occur because the termination condi-
tions are satisfied, an OAJE occurs.

If SS§5400 occurs in the ACB and SCB instructions,
the field of #dS8 is not used. At the time, even if the
field of #dS8 is not 0, it is ignored. However, it is neces-
sary to instruct the user that the field of #dS8 should be
filled with zeros.

The data processor of the present invention performs
the dynamic branch prediction process for this instruc-
tion.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR=11"

When XX ="11"

When SS=‘11"

When P=*1"

When EaR is @-SP

When EaRX is @-SP

Odd address jump exception

When jumped to an odd address
MNEMONIC:

SCB step,xreg,limit,newpc
OPERATION:

subtract, compare and branch
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 241: shown in FIG. 221.

10

25

30

35

45

55

65

102

STATUS FLAG AFFECTED 242: shown in FIG.
222.

DESCRIPTION:

This instruction is a compound instruction composed
of an subtraction instruction, comparison instruction
and conditional jump instruction. This instruction is
used for a primitive of a loop instruction.

The step, xreg and limit are operated and compared
as signed integers. Although step should be a positive
value for a conditional jump operation (xreg varies in
the reverse direction of the end value). This instruction
works as described in “OPERATION", without check-
ing whether step is positive or negative.

In the SCB instruction, to execute a loop instruction
at a high speed, an overflow is not checked during the
subtraction step. If an overflow occurs after the step is
subtracted and the sign is changed, the incorrect value
is compared directly with limit. However, even if the
result of the subtraction of limit—xreg overflows, the
comparison or xreg<limit is accurate.

In ACB and SCB, the jump operation is conducted in
the PC relative modes. Even if the displacement is 8 bits
when SS=00, like SS5£00, #dS8 is not doubled, but
used directly. When S$S35200, the field of #dS8 is not
used (set to 0), but the data in the size specified by SS
(16, 32 or 64 bits) follows #dS8.

[SCB operation])
Xreg — step —s Xreg
/* Only low order bits are enabled if an overflow
occurs. */
if (xreg Z limit) then PC + #dS8 — PC endif

If newpc is an odd number, an OAJE occurs. In the data
processor of the present invention, even if the jump
operation does not occur because the termination condi-
tions are satisfied, an OAJE occurs.

If $S500 occurs in the ACB and SCB instructions,
the #dS8 field is not used. Even if the #dS8 field is not
0, it is ignored. However, it is necessary to instruct the
user that the field of #dS8 should be filled with zeros.

The data processor of the present invention performs
the dynamic branch prediction process for this instruc-
tion.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When XX =‘11"

When SS="11"

When P='1

When EeR is @-SP

When EaRX is @-SP

Odd address jump exception

When jumped to an odd address
MNEMONIC:

ENTER local,reglist
OPERATION:

Create a new stack frame and jumps to a subroutine

for a high level subroutine.
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 243: shown in FIG. 223. ‘

STATUS FLAG AFFECTED 244: shown in FIG.
224, :

DESCRIPTION:

Creates a stack frame for a high level language.

5,201,039

103

The local of ENTER is treated as a signed number. If
the size of local is small, the value of local is sign-
extended. If the content is negative, a meaningless stack
frame is created and the instruction works as described
in “OPERATION" without checking the contents like
the ACB and SCB instructions.

OPERATION:

FP-> | TOS

SP->FP

SP-local->SP

registers(mask)-> | TOS
For detail of a stack frame for a high level language, see
the related appendix.

The bit map 245 of the register to be saved, LnXL, is
specified as in F1G. 225.

If bit 0 and bit 1 (SP and FP) are specified with regl-
ist, their specifications are simply ignored. Even if bit 0
and bit 1 are *“1”, SP and FP are not transferred. An
illegal operand exception (IOE) does not occur. How-
ever, the FP and SP bits should be filled with zeroes.

The alignment of FP and SP is not checked. Even if
FP and SP are not multiples of 4, the instruction works
as described in “OPERATION", ‘ ‘

If the local operand of ENTER:G is in the memory
and it is overlapped with the stack frame area which is
formed by the execution of the ENTER instruction, it is
very difficult to reexecute the instruction. In EN-
TER:G and JRNG:G, and the symmetrical instruction
EXITD:G, the addressing modes requiring the memory
access operation (except the register direct Rn mode
and immediate mode) are inhibited. If it is necessary to
set a dynamic value as an operand of the instruction,
one temporary register should be prepared to use the
register direct Rn mode.

The operation where FP and SP are specified as local
depends on the implementation.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When X='1"

When + =*0'

When —=°1"

When P="*1

When S§S="11"

When EaR!M is a mode other than #imm_data and

Rn
MNEMONIC:

EXITD reglist,adjsp
OPERATION:

exit and deallocate parameters
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 246: shown in FIG. 226.

STATUS FLAG AFFECTED 247: shown in FIG.
227.

DESCRIPTION:

Reallocate a stack frame for a high level language and
reset the registers to exit from a subroutine. Add the
content of adjsp to SP and discard the subroutine pa-
rameters on the stack.

The adjsp of EXITD is treated as a signed number. If
the size of adjsp is small, the value of adjsp is sign-
extended. If the value of adjsp is negative, the instruc-
tion performs a meaningless operation. It is not
checked, but works as described in “OPERATION"
like ACB and SCB.

Operation
adjsp= = >tmp

5

10

15

20

25

45

55

65

: 104
| TOS= = >registers(mask)
FP==>SP
| TOS==>FP
| TOS==>PC

sp+tmp==>SP
For the details of stack frame for a high class language,
see the related appendix.

The bit map 248 of the register to be saved, LxXL, is
specified as in FIG. 228.

If bit 14 and bit 15 (SP and FP) are specified with
reglist of EXITD, their specifications are ignored. Even
if bit 14 and bit 15 are “1”, SP and FP are not trans-
ferred. An illegal operand exception (JOE) does not
occur. However, the FP and SP bits should be filled
with zeroes.

The alignment of FP and SP is not checked. Even if
FP and SP are not multiples of 4, the instruction works
as described in “OPERATION".

If EXITD, if the return address restored from the
stack is an odd number, the destination becomes an odd
address, so that an odd address jump exception (OAJE)
occurs.

In the operand adjsp/EaR'M of EXITD, all the ad-
dressing modes which require the memory access oper-
ations except the register direct Rn mode and immedi-
ate mode are inhibited. If the operand of the instruction
should be a dynamic value, one temporary register is
available to use the register direct Rn mode.

If the register direct Rn mode is used and the same
register Rn is used for reglist, a value before restoring
the register is used as adjsp. In other words, the register
value before executing the EXITD instruction rather
than the value after that becomes the content of adjsp.

The operation to specify FP and SP as adjsp depends
on the implementation.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When X="1"

When +=0

When — ="'V’

When P=*1"

When SS=‘11"

When EaR'M is a mode other than #imm__data and

Rn
MNEMONIC:

RTS
OPERATION:

return from subroutine
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 249: shown in FIG. 229.

STATUS FLLAGS AFFECTED 250: shown in FIG.
230.

DESCRIPTION:

Return control from a subroutine.

Operation:

] TOS->PC
If the return address returned from the stack is an odd
number, an OAJE occurs.

PROGRAM EXCEPTION:

Reserved instruction exception

When P=*1"

Odd address jump exception

When the return address is an odd number
MNEMONIC:

NOP
OPERATION:

5,201,039

105

no operation
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 251: shown in FIG. 231.

STATUS FLAGS AFFECTED 252: shown in FIG.
232,

DESCRIPTION:

No operation
PROGRAM EXCEPTION:

Reserved instruction exception

When ‘—'=*1
MNEMONIC:

PIB
OPERATION:

purge instruction buffer
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 253: shown in FIG. 233.

STATUS FLAGS AFFECTED 254: shown in FIG.
234,

DESCRIPTION:

Purge all the buffers of the instruction pipeline, in-
struction queue and instruction cache so that it is as-
sured that the instruction string in the memory matches
the processor internal status. This instruction is used to
acknowledge that the instruction codes may be changed
(after the the processor is reset or the former PIB in-
struction is executed).

In the data processor of the present invention, to
simplify the controls of pipeline, instruction queue and
instruction cache, the instruction codes cannot be
changed through a program. Even if the instruction
codes are changed by a program, their operation is not
assured. However, from a macro view of the OS pro-
cess, a program is first loaded and then executed. In
other words, instruction codes are changed by the OS
program. In special applications, instruction codes cre-
ated by a program are executed.

The purpose of this instruction is to correctly execute
instructions in such a case. When this instruction pre-
cedes the instruction codes being changed, it is assured
that the new instruction codes are correctly executed.
With this instruction, pipeline, instruction queue and
instruction cache are purged.

However, if the pipeline and cache mechanisms pro-
vide the bus monitoring features for rewriting the mem-
ory and the coincidence with the memory is always
assured by hardware, the purge operation by the PIB
instruction is not required. In this case, the PIB instruc-
tion is executed as the NOP instruction. In any case, it
is necessary to assure the coincidence between the pipe-
line and instruction cache with the memory after this
instruction is executed.

If multilevel logical space is formed by using MMU,
the execution of only the instruction codes for the logi-
cal space where the PIB instruction is executed is as-
sured. For example, if the following instruction string is
executed:

Rewrite the instruction codes of context__A
STCTX

LDCTX context__ B

Rewrite the instruction codes of context_ B
PIB

10

15

30

35

45

55

&5

106

The operation of context_B is assured even if the in-
struction codes being changed are executed. After
LDCTX context__A is executed, the execution of the
instruction codes of context_A being changed are not
assured. To assure the execution of the context__A, it is
necessary to execute the PIB instruction again. If LSID
is used in the instruction cache, it is necessary only to
purge the coincident instruction cache entry where
LSID is matched.

In the instruction other than the PIB instruction, even
after the jump instructions and OS related instructions
(LDCTX, REIT, RRNG, TRAP, EIT stat, etc.), the
operation of the portion of the program where instruc-
tion codes are changed is not guaranteed to decrease as
much as the purge operation of the instruction cache.
Thus, when executing the program that OS loads, it is
necessary to execute the PIB instruction {for example,
between LDCTX and REIT).

“Buffer” of the mnemonic PIB (Purge Instruction
Buffer) of the instruction is used in a wide variety of
applications including cache, pipeline and so forth. The
B buffer of PTLB is used in the same manner. The
mnemonic PIB is created from the same association as
PTLB.

This instruction is not a privileged instruction. It can
be used from the user program.

Coincidence of instruction codes

To precisely describe the operation of the PIB in-
struction, the “coincidence of instruction codes” is de-
fined as follows.

The “coincidence of instruction codes” is defined for
each logical address of each logical space. For example,
the “coincidence of instruction codes” is used such that
in the logical space A, the “coincidence of instruction
codes” from H'00000000 to H'O0OfITHT is assured; in the
logical : pace B, the *“coincidence of instruction codes”
from H'00010000 to H'O003fMYT is assured. Only when
the “coincidence of instruction codes” is assured do
these instructions work correctly (including the access
right check operation of execute). Generally, the area
where the “coincidence of instruction codes” is assured
is the instruction code area, but in the data area, the
“coincidence of instruction codes” is not assured.

The “coincidence of instruction codes” is assured in
the following cases.

When the processor is reset:

In all physical spaces (logical spaces), the “coinci-
dence of instruction codes™ is obtained.

When the PIB instruction is executed:

In all the areas of the logical space where the PIB
instruction is executed, the ‘“coincidence of instruction
codes” is obtained. If AT =00, like the reset state, in all
the physical spaces (=logical spaces), the *“coincidence
of instruction codes” is obtained.

The “coincidence of instruction codes™ is lost in the
following cases:

When the memory content is rewritten:

When the memory content is rewritten, the “coinci-
dence of instruction codes” in the area where the con-
tent is rewritten is lost regardless of whether the mem-
ory is accessed by logical address or physical address
(AT =00, LDP instruction, and so forth).

When ATE is updated:

When ATE is updated, the “coincidence of instruc-
tion codes” where the address is converted by ATE is
lost. Thus, for example, if the protection bit during
ATE is LDATE is changed, unless the PIB instruction
is executed, the protection information is correctly

5,201,039

107
checked. (It would be effective to reduce the burden of
the implement for checking the protection information.)

In executing regular instructions which do not relate
to the above items (BRA, JMP, JRNG, RRNG, TRAP,
REIT, LDCTX and starting EIT), the “status of the
coincidence of instruction codes” is not changed.

12-13 Multiprocessor Support Instructions
MNEMONIC:

BSETI offset,base
OPERATION:

bit->Z__flag, 1-> bit (interlocked)
Set a bit (lock the bus).
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 255: shown in FIG. 235.

STATUS FLAGS AFFECTED 256: shown in FI1G.
236.

DESCRIPTION:

Invert the bit value being specified, copy the inverted
bit to Z_flag, and then set the bit value to 1. These two
operations are both performed while the bus is locked.
Consequently, this instruction is used to synchronize
multiple processors.

In the addressing modes specified with ShMfqi and
EaM{fi, the register direct mode Rn, @-SP, @SP+ and
#imm__data modes cannot be used.

In the assembler syntax, the memory access size is
specified as the base size. In BSETL:Q, the memory
access size is fixed to 8 bits, so it is possible to describe
only ‘B’. The assignment of .H and .W for the access
size in BSETI:G and BSETILE is specified in
< <L2>> like BSET and BCLR.

If base is an address which is not aligned while the
access size .H or .\W is assigned in < <L2> > specifica-
tion, the memory access range depends on the imple-
mentation like the bit operation instructions. If an un-
aligned word or half word is accessed, multiple bus
cycles are executed while the bus is locked like the CSI
instruction.

The data processor of the present invention imple-
ments access operations every half word or word, as
specified in < <L2>>. In addition, if an address
which is not aligned is assigned as base, the access oper-
ation is performed every half word or word which is
aligned.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When BB="11"

When EsaR is @-SP

When EaMfi or ShMfqi is Rn, #imm__data, @SP+

or @-SP
MNEMONIC:

BCLRI offset,base

OPERATION:
bit- > 2Z_flag, 0-> bit (interlocked)

Clear a bit (Jock the bus).
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 257: shown in FIG. 237.

STATUS FLAGS AFFECTED 258: shown in FIG.
238.

DESCRIPTION:

Invert the bit value being specified, copy the inverted
bit to Z_flag, and then set the bit value to 0. These two
operations are concurrently performed while the bus is

10

20

25

30

45

S5

65

108
locked. Consequently, this instruction is used to syn-
chronize multiple processors.

In the addressing modes specified with EaMfi, the
register direct mode Rn, @-SP, @SP+ and #im-
m__data modes cannot be used.

In the assembler syntax, the memory access size is
specified as the base size. The assignment of . H and .\W
for the access size in BCLRI:G and BCLRILE is speci-
fied in < <L2> > like BSET and BCLR.

If base is an address which is not aligned while the
access size .H or .W is assigned in < <L2> > specifica-
tion, the memory access range depends on the imple-
mentation like the bit operation instructions. If an un-
aligned word or half word is accessed, multiple bus
cycles are executed while the bus is locked as in the CSI
instruction.

The data processor of the present invention imple-
ments the access operations every half word or word as
specified in < <L2>>. In addition, if an address
which is not aligned is assigned as base, the access oper-
ation is performed every half word or word which is
aligned.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="11"

When BB="1V1’

When EaR is @-SP

When EaMfi is Rn, #imm__data, @SP+ or @-SP
MNEMONIC:

CS1 comp,update,dest
OPERATION:

compare and store (interlocked)

OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 259: shown i1. FIG. 239.

STATUS FLAGS AFFECTED 260: shown in FIG.
240.

DESCRIPTION:

If the dest value is the same as the previous value
(specified by comp), the content is updated.

This instruction can be used when simply structured
data is updated by multiple processors. After the CSI
instruction is executed, if the dest value differs from the
previous value, it means that the content of the data has
been rewritten by another processor. Therefore, the
processor which detects the difference in the dest value
with the CSI instruction should update the content of
the data based on the new dest value. In this manner,
data can be maintained in a multiprocessor environ-
ment.

[CSI Operation]
update — tmp
/* The following operations are conducted while the bus
is locked. */
if (dest = comp)
then

tmp — dest
1—Z flag

dest — comp
00— Z _flag

Due to the restriction of the bit pattern, in CSI, even
if the comparison operation is unsuccessfully termi-
nated, the content of the update operand is read. In
addition, the access right (access permission) of dest in
the CSI instruction is also necessary for the read and

5,201,039

109

write operations. In other words, even if the compari-
son operation is unsuccessfully terminated and data is
not written to dest, unless there is write access permis-
sion for dest, an address translation exception (ATRE)
occurs.

The size of RMC and EaMiR is assigned by RR. In
the addressing mode assigned by EaMiR, the @-SP,
@SP+, Rn and #imm__data modes cannot be used.

If the size .H or .W is assigned in the CSI instruction
and an unaligned address is assigned for the operand,
while the bus is locked, multiple bus cycles are exe-
cuted. In this case, the memory is accessed with two
read operations and two write operations. Conse-
quently, while the bus is locked during the entire in-
struction, four memory access operations are performed
in the order: read, read, write and write operations.

In general instructions except CSI, if the memory is
accessed to an address which is not aligned, the bus is
not locked.

Thus, for example, in the following instruction,

varl EQU H'00000006; Address is not aligned

When the following instruction is executed by proces-
sor A:

MOV.W #H'12345678,@var)

When the following instruction is executed by proces-
sor B:

MOV.W #H’'87654321,@varl.

Depending on the memory write timing, the following
results are obtained.

H’00000006-7=H'8765
H'00000008-9=H'5678

Thus, the result may differ from that where the MOV
instruction of processor A is first executed and that
where the MOV instruction of processor B is first exe-
cuted.

Since data of the variables common to multiple pro-
cessors should be updated (read-modify-write) rather
than only writing data, it is necessary to use the CSI
instruction. However, if a variable which is not aligned
is accessed from multiple processors with any instruc-
tion other than CSI, note that a problem may occur.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When RR="1V"

When EaR is @-SP

When EaMiR is Rn, #imm__data, @SP+ or @-SP

12-14 Control Space, Physical Space Operation In-
structions

In the data processor of the present invention, the
control register group for the main processor can create
one address space named control space as well as con-
trol register group for a co-processor and high speed
memory on the chip bus. This concept is effective when
a co-processor and context-saving high speed memory
(both of which are currently in different chips) will be
combined in a main processor in near future. The con-
trol register operation instructions serve to access the
control space.

Since the general purpose control space operation
instructions such as LDC and STC are privileged in-

5

10

20

25

35

45

50

55

60

65

110
structions, when the user wants to operate PSB and
PSM which are part of the control space, the LDPSB,
STPSB, LDPSM and STPSM instruction should be
used instead.

Since the data processor of the present invention does
not provide the address translation feature, the logical
space address is always the same as the physical space
address. Thus, the functions of the physical space opera-
tion instructions are included in other instructions
which operate the logical space. The data processor of
the present invention which distinguishes between the
logical space and physical space; the data processor of
the present invention supports the physical space opera-
tion instructions.

MNEMONIC:

LDC src,dest
OPERATION:

load control space or register (privileged)
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 261: shown in FIG. 241.

- STATUS FLAGS AFFECTED 262: shown in FIG.
242.

DESCRIPTION:

Transfer the src value to dest in the control space. If
the size of src is smaller than that of dest, the former is
sign-extended.

For dest/EaW%, the register direct mode Rn and
@-SP cannot be specified.

This instruction is a privileged instruction. If this
instruction is not executed from ring 0, a privileged
instruction violation exception (PIVE) occurs.

The data processor of the present invention does not
support the .B and .H access functions for the control
space. In the control space, it only impler.ents the con-
trol register in the CPU. Since Data Processor of the
present invention does not provide UATB and SATB,
UATB and SATB cannot be changed by LDC.

In the operands of the LDATE, STATE, LDP, STP,
LDC, STC and MOVPA instructions which reference
the special space, if an indirect reference occurs by the
additional mode, the logical space (LS) rather than the
special space is referenced. On the other hand, if a stack
pointer (SP) reference occurs, the current ring RNG
rather than PRNG is referenced. The meaningful spe-
cial space address is the only final effective address
which is obtained.

If the control space operand size .B and .H is assigned
in a processor which does not provide the .B and .-H
access functions for the control space, a reserved in-
struction exception (RIE) occurs.

If a control register or an address where a control
register is not provided is assigned by LDC, a reserved
function exception (RFE) occurs. It is also applied to
the area specified in < <LV>>.

In a processor which has some restrictions for the
address in the control space, if the restriction is violated,
a reserved function exception (RFE) occurs. For exam-
ple, there is a restriction as to when the address of the
control register should be multiples of 4. In a processor
which accommodates a high speed memory for saving a
context, there is a case where only the address for the
control register is restricted to multiples of 4 and the
address for the high speed memory is not restricted.
Even in this case, if the restriction is violated, a reserved
function exception (RFE) occurs. In a processor which
can assign .B and .H for part of the address, if the ad-

5,201,039

111

dress where .B and .H cannot be accessed is assigned, a
reserved function exception {(RFE) rather than a re-
served instruction exception (RIE) occurs. This con-
cept is such that if an error is determined only by the
instruction bit pattern (including the assignment of size),
a reserved instruction exception (RIE) occurs; if occur-
rence of an error depends on the address and operand
value, a reserved function exception (RFE) occurs.

If the address of the control space is off-chip (such as
the address of a co-processor) and the area cannot be
accessed due to a restriction in the implementation, a
reserved function exception (RFE) occurs. In LDC and
STC, even if the address of the control space becomes
an address of the co-processor, a co-processor instruc-
tion exception (CIE) does not occur. A co-processor
instruction exception (CIE) occurs only when an in-
struction for the co-processor is executed.

In LDC, if an illegal value is written to the reserved
bits represented with ‘—’ and ‘+° of the control register
or if a reserved value is written to some field, a reserved
function exception (RFE) occurs. If a reserved value
such as ‘001’ is written to the SMRNG field of PSW, a
reserved function exception (RFE) also occurs. On the
other hand, if an illegal value is written to the reserved
bits represented with ‘=" and ‘#’, it is ignored. How-
ever, it is necessary to instruct the user that ‘=" should
be filled with zeroes. In addition, if any value is written
to the bit represented with ‘*’, it is ignored. It is assured
that this bit is not used even if the specification is ex-
panded, unlike ‘=" and ‘#’. Thus, it is not necessary to
mask this bit to ‘0’ before executing the LDC instruc-
tion.

If CTXBB is changed by LDC, the content of
CTXBB in the memory does not match the context in
the chip. However, it should be arranged by the pro-
grammer. From a hardware point of view, only
CTXBB is changed. If CTXBB is changed and the
context is loaded, it is possible to do using LDCTX.
When UATB and SATB are changed with the LDC
instruction, TLB and the logical cache (process equiva-
Jent to PSTLB/AT) are automatically purged. In a
process which provides LSID, the logical space as-
signed by the LSID control register is purged. In this
case, the LDC instruction does not provide the /8S and
/AS options used in the PSTLB instruction due to the
following reasons.

The TLB purge operation using the PTLB and
PSTLB instructions, is not like LDC * and UATB, so
that cache and TLB in another logical space can be
purged, the parameters equivalent to the LSID function
are assigned by a different register (R 1). In this case, the
LSID control register is not used. Thus, it is necessary
to switch the /SS and /AS options to distinguish
whether the parameter is used or not. To prevent data
inconsistency, in LDC * and UATB, the cache and
TLB are purged from the space currently being used.
Thus, the control register of LSID works as it is ex-
pected. In other words, like 2 normal memory access
operation, the logical space which is assigned by the
LSID control register is purged: In a processor which
does not accommodate LSID, the purge operation is
performed in all the logical spaces (actually, one logical

space).

PROGRAM EXCEPTION:
Reserved instruction exceptions
When RR=‘11"

When WW is not ‘10°
When EaR is @-SP

10

15

20

25

30

35

40

45

55

65

112
When EaW% is Rn, #imm__data, @SP+ or @-SP
Privileged instruction violation exception
When the instruction is executed from a ring other
than ring 0

Reserved function exceptions
When a control register which has not been accom-
modated is accessed
When a reserved value is written to a specific field of
the control register (except =, #, and *)
When the word alignment of the address of EaW% is
not obtained
MNEMONIC:
STC src,dest
OPERATION:
store control space or register (privileged)

OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 263: shown in FIG. 243.

STATUS FLAGS AFFECTED 264: shown in FIG.
244.

DESCRIPTION:

Transfer the src value in the control space to dest.
Since the size of src and dest is specified by a common
field, data is not transferred between different size oper-
ands.

This instruction is a privileged instruction. If this
instruction is executed from a ring other than ring 0, a
privileged instruction violation exception (PIVE) oc-
curs.

For src/EaR %, the register direct mode Rn, immedi-
ate #imm_data and @SP+ cannot be specified.

The data processor of the present invention does not
support the .B and .H access functions for the control
space. It only implements the contro! register in the
CPU.

In the operands of the LDATE, STATE, LDP, STP,
LDC, STC and MOVPA instructions, which reference
the special space, if a memory indirect reference occurs
due to the additional mode, the logical space (LS)
rather than the special space is referenced. On the other
hand, if a stack pointer (SP) reference occurs, the cur-
rent ring RNG stack rather than PRNG is referenced.
The meaningful special space address is the only final
effective address which is obtained.

If the control space operand size .B and .H is assigned
in a processor which does not provide the .B and .H
access functions for the control space, a reserved in-
struction exception (RIE) occurs.

If a control register which is not provided or an ad-
dress where a control register is not provided is as-
signed by STC, a reserved function exception (RFE)
occurs. It is also applied to the area specified in
<<LV>>.

In a processor which has some restrictions for the
address in the control space, if the restriction is violated,
a reserved function exception (RFE) occurs. For exam-
ple, there is a restriction as to when the address of the
control register should be multiples of 4. In a processor
which accommodates a high speed memory for saving a
context, there i3 a case where only the address for the
control register is restricted to multiples of 4 and the
address for the high speed memory is not restricted.
Even in this case, if the restriction is violated, a reserved
function exception (RFE) occurs. In a processor which
can assign .B and .H for part of the address, if the ad-
dress where .B and .H cannot be accessed is assigned, a
reserved function exception (RFE) rather than a re-

5,201,039

113

served instruction exception (RIE) occurs. This con-
cept is such that if an error is determined only by the
instruction bit pattern (including the assignment of size),
a reserved instruction exception (RIE) occurs; if occur-
rence of an error depends on the address and operand
value, a reserved function exception (RFE) occurs.

If the address of the control space is off-chip (such as
the address of a co-processor) and the area cannot be
accessed due to a restriction in the implementation, a
reserved function exception (RFE) occurs. In LDC and
STC, even if the address of the control space becomes
an address of the co-processor, a co-processor instruc-
tion exception (CIE) does not occur. A co-processor
instruction exception occurs only when an instruction
intended for the co-processor is executed.

In STC, if the bit of the register represented with ‘—’
is read, ‘0’ is read; if the bit represented with ‘+ is read,
‘I’ is read. If the bit represented with ‘=", ‘#’ or **’ is
read, the value being read is unknown. It depends on the
implementation. To allow for future expansion, it is
necessary that the user not program using bit values
represented with ‘=", ‘#’ and **.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When WW is not ‘10°

When EaR% is Rn, #imm _data, @+ or @-SP

When EaW is #imm__data or @SP+

Privileged instruction violation exception

When the instruction is executed from a ring other

than the ring 0

Reserved function exceptions

When a control register which has not been accom-

modated is accessed

When the word alignment of the address of EaR % is

not obtained
MNEMONIC:

LDPSB src
OPERATION:

load PSB
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 265: shown in FIG. 245,

STATUS FLAGS AFFECTED 266: shown in FIG.
246.

DESCRIPTION:

Transfer the content of src to PSB.

Except when the save operation and restore opera-
tion are performed (regardless of the meaning of each
bit of PSB and PSM in a user’s call routine), in PSM and
PSB, it is often necessary to rewrite only part of the
fields. Therefore, the src operand of the LDPSB and
LDPSM instructions is composed of 16 bits (EaRh)
where the high order byte represents the masking (the
bits to be changed are set to 0) and the low order byte
represents the data being changed.

LDPSB Operation

Assuming .

src=[S0.81 ... 87.88.59. .. §15]

the following result is obtained.

({so.st . . . S87]and.PSB).or.([S0.S1
57).and.[S8.S9 . . . S15])==>PSB

where * ’ represents a negated bit.

For example, the instruction which sets X_ flag at the
position 2 4 is as follows.

LSPSB #H'ef10

10

15

20

25

30

35

45

50

55

65

114

In the high order byte, any bit equal to 0 is changed
and any bit equal to 1 is not changed. When all eight bits
are changed, set all of the high order byte to 0 and
simply write byte data. As described earlier, all the
eight bits should be changed to save and restore PSB
and PSM.

In LSPSB and LDPSM, if the value of a field not
used in PSB and PSM is set to 1, a reserved function
exception (RFE) occurs.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When EaRbh is @-SP
MNEMONIC:

LDPSM src
OPERATION:

load PSM
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 267: shown in FIG. 247.

STATUS FLAGS AFFECTED 268: shown in FI1G.
248.

DESCRIPTION:

Transfer the content of src to PSM.

Except when the save operation and restore opera-
tion are performed (regardless of the meaning of each
bit of PSB and PSM in a user’s call routine), in PSM and
PSB, it is often necessary to rewrite only part of the
fields. Therefore, the src operand of the LDPSB and
LDPSM instructions is composed of 16 bits (EaRh)
where the high order byte represents the masking (the
bits to be changed are set to 0) and the low order byte
represents the data being changed.

[LDPSM Operation]

Assuming

src=[S0.S1 ... S7.S8.89 .. . S15]

the following result is obtained.

([so.s1 . . S7].and.PSM).or.(1S0.S1
$7).and.[S8.59 . . . S15])==>PSM

where * ' represents a negated bit.

In LSPSB and LDPSM, if the value of a field which
is not used in PSB and PSM is set to 1, a reserved func-
tion exception (RFE) occurs.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When EzRh is @-SP
MNEMONIC:

STPSB dest
OPERATION:

store PSB
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 269: shown in FIG. 249. .

STATUS FLAGS AFFECTED 270: shown in FIG.
250.

DESCRIPTION:

Transfer PSB to dest. The high order eight bits
should always be 0.

The dest is structured with 16 bits rather than 8 bits
and the high order eight bits always return 0 so that
PSM and PSB are returned directly in LSPSM and
LDPSB.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When EaWh is #imm__data or @SP+
MNEMONIC:

STPSM dest

5,201,039

115
OPERATION:

store PSM
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER 5
SYNTAX 271: shown in FIG. 251.

STATUS FLAGS AFFECTED 272: shown in FIG.
252.

DESCRIPTION:

Transfer PSM to dest. The high order eight bits 10
should always be 0.

The dest is structured with 16 bits rather than 8 bits
and the high order eight bits always return O so that
PSM and PSB are returned directly in LSPSM and
LDPSB.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When EaWh is #imm__data or @SP+
MNEMONIC:

LDP src,dest
OPERATION:

load physical space (privileged)

OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER 25
SYNTAX 273: shown in FIG. 253.

STATUS FLAGS AFFECTED 274: shown in FIG.
254,

DESCRIPTION:

Transfer the src value to dest in the control space. If 30
the size of src is smaller than that of dest, the former is
sign-extended.

Since the data processor of the present invention does
not provide the address translation feature, the logical
space address is always the same as the physical space
address. Thus, the function of the physical space opera-
tion instruction is included in the MOV instruction. The
data processor of the present invention distinguishes
between the logical space and physical space: Data
Processor of the present invention supports the physical
space operation instruction.

This instruction is a privileged instruction.

For dest/EaW%, the register direct mode Rn and
@-SP cannot be specified.

In the operands of the LDATE, STATE, LDP, STP,
LDC, STC and MOVPA instructions which reference
the special space, if a memory indirect reference occurs
by the additional mode, the logical space (LS) rather
than the special space is referenced. On the other hand,
if a stack pointer (SP) reference occurs, the current ring
(RNG) stack rather than PRNG is referenced. The
meaningful special space address is the only effective
address which is finally obtained.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When S§=°11"

When WW="11"

When EsR is @-SP .

When EaW% is Rn, #imm_ data, @SP+ or @-SP

Privileged instruction violation exception

When the instruction is executed from a ring other

than ring 0.
MNEMONIC:

STC src,dest
OPERATION:

store physical space (privileged)

OPTIONS:

None

15

20

35

40

45

55

65

: 116

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 275: shown in FIG. 255.

STATUS FLAGS AFFECTED 276: shown in FIG.
256.

DESCRIPTION:

Transfer the src value to dest in the control space.
Since the size of src and dest is commonly assigned in
STP, data is not transferred between different size oper-
ands.

Since the data processor of the present invention does
not provide the address translation feature, the logical
space address is always the same as the physical space
address. Thus, the function of the physical space opera-
tion instruction is included in the MOV instruction. The
data processor of the present invention distinguishes
between the logical space and physical space: the data
processor of the present invention supports the physical
space operation instruction.

This instruction is a privileged instruction.

For src/EaR %, the register direct mode Rn, immedi-
ate #imm_ data, and @SP+ cannot be specified.

In the operands of the LDATE, STATE, LDP, STP,
LDC, STC and MOVPA instructions which reference
the special space, if a memory indirect reference occurs
due to the additional mode, the logical space (LS)
rather than the special space is referenced. On the other
hand, if a stack pointer (SP) reference occurs, the cur-
rent ring (RNG) stack rather than PRNG is referenced.
The meaningful special space address is the only effec-
tive address which is finally obtained.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When WW="11"

When EaR% is Rn, #imm__data, @SP+ or @-SP

When EaW is #imm__data or @SP+

Privileged instruction violation exception

When the instruction is executed from a ring other

than ring 0.

12-15 OS-Support Instructions
MNEMONIC:

JRNG vector (the data processor of the present in-

vention does not support it.)
OPERATION:

jump to new ring
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 277: shown in FIG. 257.

STATUS FLAGS AFFECTED 278: shown in FIG.
258

DESCRIPTION:

This instruction performs the transition and jump
operations between rings (an inter-ring call). This in-
struction is used to call a program in a more inner level
than the current ring (including a system call).

To protect the inner ring from the outer ring, the
destination to be jumped to using JRNG is limited to the
specified address. The table containing this address is
named the ring transition tale JRNGVT (JRNG vector
table). In the JRNG instruction, the vector operand is
an index for JRNGVT. One eatry for JRNGVT is
named JRNGVTE.

JRNGVT is a table which has 65535 entries for vec-
tor. The logical address of the base is represented by
JRNGVB 279. The size of vector is composed of 16
bits. JRNGVB is one of the control registers and is
configured as shown in FIG. 259.

5,201,039

117

JRNGVB represents the logical start address of the
vector table (JRNGVT) of the JRNG instruction. The
lower three bits of the base address of the table are fixed
at 0 for alignment.

IfE is 0, the execution of JRNG is inhibited. If JRNG
is executed, a ring transition violation exception
(RTVE) occurs. Since JRNGVB is meaningless, OS
can freely employ such a field.

The bits represented with ‘=" should be filied with
‘0. However, even if these bits are not filled with 0, it
is ignored.

JRNGVTE 280 is composed of 8 bytes in the config-
uration: diagrammed in FIG. 260. It works as a gate for
entering the inner ring.

The AR function indicates from which ring a call can
be issued between rings of the entry represented with
the vector. If the current ring is located at a more outer
position than the ring represented with AR, it is as-
sumed that an inter-ring call (system call) is not permit-
ted, resulting in a ring transition violation exception
(RTVE). AR uses the field relating to the position of
PRNG of PSW from the stand point that each entry of
JRNGVT and EITVT, is basically a subset of
PSW+PC.

The VX function is enabled if the 32/64 bit mode
differs between OS and the user program.

In the fields not used in JRNGVTE (represented
with ‘=") the "VX’ bit should be filled with ‘0". How-
ever, even if they are filled with ‘I’, they are ignored. It
is not a reserved function exception (RFE).

The VPC field of JRNGVTE should be an even
number. In other words, LSB of the VPC field should
be ‘0. When JRNG is executed, an odd address jump
exception (QAJE) occurs if it is violated.

When MSB =0 in JRNGVB, the address is changed
using UATB; when MSB=1, the address is changed
using SATB. JRNGVB uses a logical address for the
following reasons.

(1) The table can be provided every context.

(2) A virtual table can be used. In other words, the table
can be free from paging.

(3) The difference between JRNGVB and TRAPA, is
that EIT can be clarified.

By considering JRNGVB as a logical address, a vir-
tua] table can be created. The data processor of the
present invention uses mostly 16 bits of vector (65536
entries, 512KB table). It does not provide a register
which assigns the upper limit of the vector. However,
since JRNGVB uses a logical address, it can be used
together with the MMU function, so that it is not al-
ways necessary to use the physical memory for the
table. If STE and PTE of JRNGVT are set to areas not
used, it is not necessary to prepare all the table for 16
bits =65536 entries with the physical memory.

JRNGVTE is read in the same manner as the general
memory access operation with a logical address. There-
fore, JRNGVTE is read by the ring access permission
of the program which executes JRNG. If there is per-
mission whereby JRNGVTE of the assigned vector can
be read from the ring which executes JRNG, a ring
protection violation error, ATRE, occurs. On the other
hand, if JRNGVTE of the vector being assigned is an
area not used, a not-used area reference error of an
address translation exception (ATRE) occurs. Al-
though the user would prefer that it be treated in the
same manner as a ring transition violation exception
(RTVE), the specification above is used due to restric-
tions in the implementation. When JRNCVTE isread, a

20

25

35

40

45

50

60

65

118
page out exception (POE) or bus access exception
(BAE) may occur,

With the JRNG function, 512KB of the logical space
is always required for JRNGVT. To prevent an illegal
call between rings, OS should set STE and PTE in the
JRNGVT area before executing the user program.
When the call function between rings is not used, the
entire ring call function can be disabled so that such a
process is not required. To assign this function, the E bit
at the LSB of JRNGBV is used. If the E bit of
JRNGVB is 0, the ring call function cannot be used.
When JRNG is executed, a ring transition violation
exception (RTVE) unconditionally occurs.

To satisfy JRNG, the following conditions should be
met.

E of JRNGVB=1 -

If E=0, it means that JRNGVT is not provided, so that
a ring transition violation exception (RTVE) occurs.

JRNGVTE for the vector being assigned can be read
from a ring before JRNG is executed. If 2 page out
exception (POE) occurs, after a page-in operation, the
instruction is reexecuted. If a not-used area reference
error of an address translation exception (ATRE) oc-
curs, it means that the related table is not provided, so
that an error is returned to the user program.

If there is no read access permission, it means that due
to data protection, the execution of JRNG is inhibited,
so that an error is returned to the user program. It has
the same meaning as the VA field, but it is assigned
every 512 vectors.

If the current ringZ VR

Control does not enter an outer ring. If it is violated,
a ring transition exception (RTVE) occurs.

If the current ring = AR

Whether the ring can be accepted or not is checked.
If it is violated, a ring transition violation exception
(RTVE) occurs. AR represents the AR field of
JRNGVTE.

JRNG Operation ’

If JRNGVB E bit=0 then ring transition violation
exception (RTVE) occurs.

VR, AR and VPC are fetched from the logical ad-
dress mem[vector x 8+JRNGVB]

If old RNG > AR .or. old RNG < VR then ring tran-
sition violation exception (RTVE) occurs.

Old SP==>TOS | (Use & new stack represented
with VR)

Old PC==>TOS |

As old PC, the start address following the JRNG
instruction is pushed to the stack like the JSR instruc-
tion.

Old PSW .and. B'01110000_00000000_.111111-
11_11111111==>TOS |

In the old PSW, the fields which are meaningful in
RRNG, namely, only the RNG, XA, and PSH fields are
pushed directly to the stack and other fields such as SM,
AT, and IMASK are masked to O and then pushed to
the stack, so that the program in an outer ring cannot
read information which should be known only to OS
(such as IMASK). ’

Old RNG == = > New PRNG
==>New PRNG

VPC==>New PC

5,201,039

119

The stack frame 281 formed by the JRNG instruction
is as shown in F1G. 261.

SP of the old ring is placed at the stack of the new
ring to access the stack pointer SP and stack of the old
ring from the new ring. Although the stack can be ac-
cessed as the control register every ring, it is necessary
to use a privileged instruction (STC). Thus, to observe
a parameter placed at the ring 3 stack from ring 1, this
function is required.

In JRNG, only part of PSS and PRNG of PSM
rather than PSB are updated. In addition, unlike EIT,
the inter-ring call function provides only one stack
format, so FORMAT (EITINF) is not placed at the
stack.

In JRNGE:E, vector is zero-extended.

If AT=00 (no address translation), JRNGVB repre-
sents a physical address.

After JRNG is executed, if an instruction reexecu-
tion-type EIT, such as a ring transition violation excep-
tion (RTVE) occurs, the stack frame for an inter-ring
call that JRNG originally provides is not formed. Only
the stack frame for the EIT process is formed. For
example, if JRNG is executed when SMRNG =000 to
jump to RNG =00 and an EIT occurs, the stack frame
282 as shown in FIG. 262, not the stack frame 283 of
FIG. 263 is formed.

The specification as shown in FIG. 262 is used so that
the instruction can be reexecuted after an EIT occurs.
In other words, before entering the EIT process han-
dler, the status of the processor is restored to the status
before the instruction is executed. If the stack used by
EIT differs from that of JRNG, only the stack used by
EIT is changed; the stack SP used by JRNG is not
changed.

In JRNG, it is possible to jump to the same ring as the
current ring. In this case, the stack is not switched by
JRNG. The value to be pushed to the stack as SP is the
value of SP before the instruction is executed 284. It
works in the same manner as if PUSH SP is executed at
the beginning of the JRNG instruction, as shown in
FIG. 264.

When jumping to the same ring as the current ring
using JRNG, if the vector operand of JRNG:G is in the
memory and it overlaps with the stack frame area
which is formed by the execution of the JRNG instruc-
tion, it is very difficult to reexecute the instruction.
Therefore, in the JRNG:G instruction, all the address
modes which require access to the memory, everything
except the register direct Rn and immediate modes are
inhibited. If a dynamic value is set as the operand of the
instruction, it is necessary to prepare one temporary
register and to use the register direct Rn mode.

The inter-ring call function is not included in EIT.

Both TRAPA and JRNG serve to evoke an OS sys-
tem call. Generally, the OS which has many system
calls and uses multiple rings, like BTRON, often em-
ploys JRNG, while that which does not have many
system calls and uses not fnore than two rings, like
TTRON, employs TRAPA.

In TRAPA, control does not enter ring 1 and ring 2.
Therefore, if the outer core is placed at ring 1 in
BTRON, it is necessary to use JRNG.

If the user extends OS for BTRON, it may be neces-
sary to use an outgoing ring call. However, the outgo-
ing ring call is not supported in the instruction set level.
PROGRAM EXCEPTION:

Reserved instruction exceptions

S

10

15

20

25

35

40

45

55

65

120

When P="1

When EaRh/M is not Rn or #imm_data

< <L1>> function exception

When a bit pattern of JRNG is decoded
MNEMONIC:

RRNG (the data processor of the present invention

does not support it.)

OPERATION:

return from previous ring
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 285: shown in FIG. 265.

STATUS FLAGS AFFECTED 286: shown in FIG.
266.

DESCRIPTION:

Return for an inter-ring call.

{RRNG Operation}
t TOS — templ
t TOS — temp2
t TOS — SP of temp] <RNG >
if RNG > temp] <RNG > then ring transition violation execep-
tion
(RTVE) occurs
- templ <RNG> represents the portion equivalent
to the RNG field when considering templ as PSW.
- If this check is not conducted, with the RRNG
instruction, control illegally enters an inner

ring.

if SM = 0 .and. temp] <RNG > == 00 then reserved function
exception (RFE) occurs.

templ <PSH> — PSH (Including PRNG)

templ <RNG > — RNG

templ <XA> — XA

temp2 — PC

When the RRNG instruction is executed, since an
EIT may occur in DCE, it is necessary to check for it.
For detail, see Appendix 9.

The hold PRNG stack pointer is popped from the
RNG stack and it is set as the PRNG stack pointer so
that OS may update the user stack pointer because a
parameter of the system call placed in the PRNG stack
is popped.

With PRMG, if control tries to enter an inner ring, a
ring transition violation exception (RTVE) occurs. If
PC popped from the stack is an odd number, an odd
address jump exception (OAJE) occurs.

If SM of the current PSW is 0 and RNG in the stack
which is popped with the RRNG instruction (temp!
<RNG> in the operation above) is not 0, a combina-
tion of SM and RNG in PSW becomes a reserved pat-
tern. A reserved function exception (RFE) occurs.

In the RRNG instruction, if a ring transition violation
exception (RTVE) or a reserved function exception
(RFE) occurs, each of which is an instruction reexecu-
tion type exception, the stack frame for inter-ring call
remains. Therefore, if the same stack is used for EIT
and inter-ring call, the EIT stack frame is added to the
inter-ring call stack frame. If the stack for EIT differs
from that for the inter-ring call, the contents of the stack
and stack pointer for the inter-ring call are not changed,
similar to a DCE caused by RRNG. In DCE, after the
stack frame for the previous inter-ring is called, a new
stack frame for DCE is formed.
< <Example of a stack 287 when an RFE occurs, if

EIT uses the same stack > >: diagrammed in FIG.

267.

5,201,039

121

On the other hand, OAJE will be an instruction com-
pletion type EIT. In this case, like a DCE, after the
stack frame for an inter-ring call is cleared, the stack
frame for an EIT if formed. If an OAJE occurs with the
RRNG instruction, the stack works as follows.
< <Example of stack when an OAJE occurs, if the

same stack is used for an EIT> >

(Before executing RRNG 288): Shown in FIG. 268.

(After RRNG is executed and an OAJE occurs 289):
shown in FIG. 269.

The fields other than PSH, RNG, and XA of PSW
being popped from the stack with the RRNG instruc-
tion (templ above) are ignored. Between the JRNG
instruction and the RRNG instruction in the program,
except for the fields PSH, RNG and XA, the stack
should not be rewritten.

When control comes back to the same ring with the
RRNG instruction (32 bits), the final value of SP be-
comes as follows.

mem(initSP + 8]= = > SP (‘+ 8 is for PC and PSW)

The above instruction works as POP SP after the PC
and PSW processes are executed.

10

15

20

The E bit of JRNGVB is evaluated irrespective of 25

the operation of the RRNG instruction. Even if the E
bit is 0, the RRNG instruction is executed.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When P="1"

< <L1>> function exception

When a bit pattern of RRNG is decoded
MNEMONIC:

RAPA vector
OPERATION:

TRAP always
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 290: shown in FIG. 270.

STATUS FLAGS AFFECTED 291: shown in FIG.
271.

DESCRIPTION:

Generate an internal interrupt (trap).

This instruction is used to evoke OS from a user
process. Since an EIT occurs with the TRAPA instruc-
tion, control always enters ring 0.

In TRAP and TRAPA, like other EIT processes,
part of PSS and PRNG and PSM are updated. The
fields, except PRNG of PSM (including PSB) are not
updated.)
PROGRAM EXCEPTION:

Reserved instruction exceptions

When P="1

Unconditional trap instruction
MNEMONIC:

TRAP
OPERATION:

TRAP conditionally
OPTIONS:

/various conditional specifications {cccc)

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 292: shown in FIG. 272.

STATUS FLAGS AFFECTED 293: shown in FIG.
273.

DESCRIPTION:

If the conditions being specified are met, an internal
interrupt (trap) occurs.

35

45

55

65

122

Since an EIT occurs with the TRAP instruction,
control always enters ring 0. The conditional specifica-
tions are the same as those of the Bee instruction.

In TRAP and TRAPA, like other EIT processes,
only part of PSS and PRNG and PSM are updated. The
fields other than PRNG of PSM (including PSB) are
not updated.

If a condition which has not been defined in TRAP is
specified, a reserved instruction exception (RIE) oc-
curs.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When P="1

When cccc="1110,1111’

Conditional trap instruction
MNEMONIC:

REIT
OPERATION:

return from EIT (privileged)

OPTIONS:
None
INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 294: shown in FIG. 274.

STATUS FLAGS AFFECTED 295: shown in FIG.
275.

DESCRIPTION:

In the data processor of the preserit invention, excep-
tion, external interrupt and internal interrupt are gener-
ally named EIT (Exception, Interrupt, Trap). The
REIT instruction is used to return from EIT, namely,
return from OS and from an interrupt process.

This instruction is a privileged instruction.

[REIT Operation]

1 TOS — PSW;

t TOS - FORMAT/VECTOR;
t TOS — PC;

Depending on the EIT type, additional information
may be placed on the stack. It is popped to restore the
state before an EIT occurs. Whether there is additional
information of not is determined by FORMAT/VEC-
TOR (EITINF). When the REIT instruction is exe-
cuted, an EIT of DI and DCE may occur and it should
be checked. For details, see Appendix 9.

If a stack format which has not been supported as
FORMAT/VECTOR, a reserved stack format excep-
tion (RSFE) occurs. A stack frame whose format is
illegal remains because there is no way to determine
whether there is additional information or not. It is
added to the stack frame and the stack frame for RSFE
is formed, unlike DI and DCE, since it is started in
REIT. In DI and DCE, the stack frame of the previous
EIT is cleared and the new stack frame for DI and DCE
is formed.
< <RSFE process—If the same stack 296 is used for

RSFE > >: diagrammed in FIG. 276.

In the REIT instruction, if PC which is popped from
the stack is an odd number, an odd address jump excep-
tion (OAJE) occurs. On the other hand, if the reserved
bit (*—") in PSW (including the XA bit) is changed to ‘I’
or if the reserved value is rewritten as SMRNG, a re-
served function exception (RFE) occurs.

Whether the SM bit is changed or not is not checked.
As long as the REIT instruction is used to exit from
EIT, SM is not changed from 1 to 0. However, it is

5,201,039

123 ‘
considered in operation and in the REIT instruction SM
is not checked to see whether it changed from 1 to 0.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When P=1"

Privileged instruction violation exception

When the instruction is executed from a ring other

than ring 0.

Reserved stack format exception

If a stack format which has not been supported is

specified when control exits from an EIT

Odd address jump exception

When the PC being popped from the stack is an odd

number

Reserved functional exception

The value of reserved is written to PSW by another

PSW which is popped from the stack
MNEMONIC:

WAIT imask
OPERATION:

set IMASK and wait (privileged)

OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 297: shown in FIG. 277.

STATUS FLAGS AFFECTED 298: shown in FIG.
278

DESCRIPTION:

Set the IMASK field of PSW, stop executing the
program and restore the execution by an external inter-
rupt or reset.

This instruction is a privileged instruction. Imask is
interpreted as an unsigned number. If imask = 16, a re-
served function exception (RFE) occurs.

If an external interrupt occurs, there is information
which cannot "e settled until an interrupt occurs (stack
selection of SPI/SPO and vector No.). Thus, the infor-
mation is saved to the stack after an external interrupt
occurs in the WAIT instruction.

[WAIT Operation}
imask —3» IMASK
wait for interrupt

«€———— External interrupt

save PC, FORMAT/VECTOR, PSW
external

15

25

30

35

124

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 299: shown in FIG. 279.

STATUS FLAGS AFFECTED 300: shown in FIG.
280.

DESCRIPTION:

Load the effective address represented with ctxaddr
to the CTXBB register and load the contents of the
context block (CTXB) of a task and process to proces-
sor registers. Although the register where the effective
address is loaded depends on whether MMU is used or
not and on the content of CTXBFM, they include SPO
to SP3, UATB, and CSW. For details of the registers
where the effective address is transferred, see Appendix
8.

When the /LS option is specified, ctxaddr represents
an address in the logical space. In this case, CTXB is
placed in the logical space. On the other hand, if the
/CS option is specified, ctxaddr represents an address in
the control space. These options will be used when a
context saving high speed memory is accommodated in
the chip. Currently, it is specified in < <L2> >. These
options are provided to bring flexibility to a space
where CTXB is placed to perform the highest context
switching in accordance with the implementation of the
chip and chip bus.

The data processor of the present invention does not
support the /CS option.

In a processor which accommodates a standard the
data processor of the present invention MMU, UATB is
changed with the LDCTX instruction. As UATB is
changed in a processor which does not accommodate
LSID, TLB and cache (equivalent to PSTLB/AT) are
automatically purged. In the LDCTX instruction, since
the logical space is switched, ctxaddr should point at
SR to allow LDCTX/LS to properly work. The result
of the operation is not assured with LDCTX/LS if
ctxaddr points at UR. (SR: shared region, UR: unshared
region) .

In the LDCTX and STCTX instructions of the data

PC which is the same

interrupt, EIT, represents the

set newPC, new PSW
instruction.

PROGRAM EXCEPTION:
Reserved instruction exceptions
When —=*J1’
Privileged instruction violation exception
When the instruction is executed from ring 0
MNEMONIC:
LDCTX ctxaddr
OPERATION:
load context from CTXB (privileged)
OPTIONS:
/LS Load CTXB from the logical space.
/CS Load CTXB from the control space
< <L2>>. (Data processor the of the present
invention does not support this option.)

55

65

next address of the WAIT

processor of the present invention, data is not trans-
ferred to the general purpose registers RO to R14 due
for the following reasons.

For the general purpose registers, data can be trans-
ferred with the LDM and STM instructions. These
instructions allow a register to be specified. In the real
context switching process, working registers are re-
quired beside the registers where data is changed.
Therefore, it may be necessary not to transfer data to
some of the registers. Consequently, it is preferable to
use more general purpose instructions such as LDM and
STM.

Since it is currently technically difficult to accommo-
date a context saving memory in the chip, an external
memory should be used to save a context. Even if data

5,201,039

125
is transferred to the general purpose registers with
LDCTYX, its speed is nearly the same as that using a
different instruction (LDM).

When all CTXB is accommodated in the chip to
speed up the process, it is necessary to expand the speci-
fication by using the reserved option of LDCTX and
the CTXBFM function.

In the LDCTX and STCTX instructions, data is not
transferred to PC and PSW for the following reasons.

Generally, PC and PSW of a user program, rather
than OS, should be switched by the context switch.
However, PC and PSW of a user program are saved in
the stack when evoking OS. Therefore, when using the
stack of SPO to save PC and PSW, PC and PSW are also
indirectly switched by switching SPO with the context
switch. By using this feature and realizing PC and PSW
are placed in the portion (stack) indirectly referenced
from SPO, it is not necessary to perform the PC and
PSW operations (copy between the stack and CTXB)
with the context switch instruction.

If the context is switched in the last portion of the
process handler of an external interrupt using SPI, it is
necessary to transfer PC and PSW between the SPI
stack and CTXB. However, when the context switch-
ing is deleted during an external interrupt and the con-
text switching is performed with DCE and DI when
exiting from the external interrupt, SPO specified with
DCE and DI aliows the data structure above to natu-
rally be formed.

This instruction is a privileged instruction.

When ‘1’ is loaded from CTXB for the reserved bit
(represented with ‘—) of PSW being set by LDCTX, a
reserved function exception (RFE) occurs. When ‘1" is
loaded from CTXB for the reserved bit (represented
with ‘="), it is ignored acting as if like the control regis-
ter is set with LDC.

In the chip specified in < <L1> >, even if AT=00
(no address translation), UATB is transferred, because it
is assumed that the address translation is temporarily
suspended in OS. However, if AT=00, even if /LS is
specified, ctxaddr is treated as a physical address. To
specify that UATB not be transferred with LDCTX, it
is necessary to use CTXBFM.

In the current specification of LDCTX, data is not
transferred to the general purpose registers. However,
if the specification is expanded or if a context saving
memory is accommodated on the chip in future, the
contents of the multiple general purpose registers will
be loaded with the LDCTX instruction. If the addi-
tional mode is allowed in ctxaddt/EaAlA, like LDM, it
is difficult to reexecute the instruction which has been
suspended. Therefore, in ctxaddr/EaA!A of LDCTX,
the additional mode is inhibited. If the additional mode
function is required, with the following instructions
(including MOV A) the same effect can be obtained.

MOVA @(@(@ .. - »:AR0

-

LDCTX @RO

PROGRAM EXCEPTION:

Reserved instruction exceptions

When xx="01" to ‘11’

When EaAlA is Rn, #imm_data, @SP+, @-SP, or
additional mode

Privileged instruction violation exception

When the instruction is executed from a ring other
than ring O.

5

15

25

30

35

45

58

65

126

Reserved function exception

When the reserved value is written to PSW
MNEMONIC:

STCTX
OPERATION:

store context to CTXB
OPTIONS:

/LS Store CTXB in the logical space.

/CS Store CTXB in the control space < <L2>>.
(the data processor of the present invention does
not support this option.)

INSTRUCTION FORMAT AND ASSEMBLER

SYNTAX 301: shown in FIG. 281.

STATUS FLAGS AFFECTED 302: shown in FIG.
282

DESCRIPTION:

Save the contents of the current context in the pro-
cessor to the area (CTXB) represented by the CTXBB
register. The registers where the contents are saved
depend on whether MMU is used or not and on the
contents of CTXBFM. They include SPO to SP3,
UATB and CSW. For details on the registers where
data is transferred with STCTX, see Appendix 8.

Like LDCTX, the general purpose registers, PC and
PSW are not transferred in STCTX.

The space that CTXBB points at is specified by the
/LS and /CS options. However, the /CS option only
works when the content saving memory is located on
the chip. It is specified in < <L2>>.

The data processor of the present invention does not
support the /CS option.

In a processor which accommodates a standard the
data processor of the present invention MMU, UATB is
saved with the STCTX instruction. CTXBB should
point at SR to allow STCTX/LS to properly work. I is
not checked to determine whether CTXBB points at SR
or UR.

This instruction is a privileged instruction.

For the bits represented with *—’ and ‘+’ in the re-
served bits of the control register saved to CTXB with
STCTX, *0’ and ‘1’ are set to CTXB. For the bits repre-
sented with ‘=", ‘#’ and ‘*, a value being set to CTXB
is meaningless and depends on the implementation like
the STC instruction.

In a chip specified with < <L1> >, UATB is trans-
ferred because the address translation is temporarily
suspended only in OS even if AT =00 (no address trans-
lation). However, if AT=00, CTXBB is treated as a
physical address even if /LS is specified. To specify that
UATB not be transferred with STCTYX, it is necessary
to use CTXBFM.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When xx=not 00

When P="11

Privileged instruction violation exception

When the instruction is executed from a ring other
than ring 0.

12-16 MMR Support Instructions

MNEMONIC:

ACS chkaddr
OPERATION:

test access rights
OPTIONS:

None '

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 303: shown in FIG. 283.

5,201,039

127
STATUS FLAGS AFFECTED 304: shown in FIG.
284.
DESCRIPTION:

Check for ATE of the page containing the address
specified by chkaddr and check that chkaddr can be
accessed by PRNG. The flags are set depending on the
result being checked.

(ATE: Address Translation Table Entry)
Read enable — M__flag
Write ensble — Z _flag
Execute enable — L_flag

This instruction is not a privileged instruction, so it is
available to the user. For example, it is possible to check
the access right (permission) for PRNG =ring3 from
ring 3. Therefore, information managed by OS such as
page-out is not displayed if possible. If a page-out oc-
curs on the section table and page table which are nec-
essary to execute ACS, like regular instructions, the
instruction is reexecuted as a page out exception (POE).
In addition, while referencing the ATE with the ACS
instruction, an address translation exception (ATRE) or
bus access exception (BAE) may occur.

The size of the operand to be tested with the ACS
instruction is a byte. In other words, it is the one byte of
the address represented with EaA which can be ac-
cessed from PRNG. When checking area which is over
multiple bytes, it should be handled with software.

In ACS, when checking the access permission for a
process request from the preceding ring, PRNG can be
used. However, if a process is called from ring3 to ring2
and ring!l is evoked from ring2, it may be necessary to
check the access permission from ring3 at ringl. When
PRNG is at ring 2, the ACS instruction cannot be used.
After PRNG is rewritten for ring3, ACS shuuld be
executed.

To fulfill such a requirement, PRNG is placed at a
PSM the user can operate. PRNG is a field which is
used as a parameter for the ACS instruction. However,
the protection information of ring0 is viewed from ring
3. To prevent the protection information from being
viewed, if PRNG <RNG, set the flags as follows.

L_flag=M_flag=2Z_flag=0

In ACS, if chkaddr is in an area not used (out of the
page range), the instruction is normally terminated as
no access permission with M_flag=0, Z_flag=0 and
L_flag=0 as Read disabled, Write disabled and Exe-
cute disabled. An EIT does not occur.

Since the ring protection is not checked if AT=00
(no address translation), it is assumed that there are
access permissions for all addresses. Actually, when a
bus access exception (BAE) occurs, there are areas
which cannot be accessed. However, they are not
checked. Since the level of the access error caused by
the system bus differs from that caused by the memory
protection, only the latter access error is checked in
ACS. Therefore, if AT =00, after chkaddr is obtained,
no exception occurs and the instruction is terminated as
L_flag=M_flag=Z_flag=1 (presence of access per-
mission).

The ACS instruction can be used when the ring pro-
tection level check should be completely emulated in an
instruction emulation program. Since the emulation
program is normally placed at ring 0, it is normally
executed in a different ring from the instruction being

10

20

25

45

50

65

128
emulated. In other words, for the ring protection level,
the environment of the program to be emulated differs
from that of the emulation program. Therefore, the ring
protection check can be correctly emulated by check-
ing whether the operand can be accessed from the same
ring (PRNG) as the instruction being emulated before
accessing the operand of an instruction to be emulated.

In calculating the effective address of chkaddr of
ACS, if the stack pointer SP is referenced, the stack of
the current ring RNG rather than PRNG is referenced.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When EaA is Rn, #imm__data, @SP+ or @-SP
MNEMONIC:

MOVPA srcaddr, dest (the data processor of the
present invention does not support this instruc-
tion.)

OPERATION:

move physical address (privileged)
OPTIONS:

None

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 305: shown in FIG. 285.

STATUS FLAGS AFFECTED 306: shown in FIG.
286.

DESCRIPTION:

Calculate the effective address (logical address) of
the operand being specified by srcaddr, convert it into
the physical address, and then transfer it to dest. The
address translation method of the effective address is
such that the R1 register rather than the UATB register
is used for the base address of the address translation
table unlike the regular instructions. It allows a space,
except the logical space, where the current program
runs to be operated from OS.

This instruction uses fixed number registers to specify
spaced like high level instructions. Because this instruc-
tion is not directly used in a high level language, more
symmetry for the instruction is not required, and there
is a restriction for bit assignment.

In the MOVPA instruction, if a page out exception or
address translation exception occurs after srcaddr is
obtained until it is translated into the physical address,
such an error affects the flags, but an EIT does not
occur. The error occurs if 1) a page-out occurs on the
section table and page table which are used for address
translation of srcaddr, 2) a page-out occurs on the last
page (not the page table), or 3) there is an error in the
entry (ATE) format of the translation table (reserved
ATE error). Dest is not changed, V_flag is set, and the
instruction is terminated. An occurrence of a page fault
is indicated by F_ flag. If the instruction is terminated
without an error and page fault, V_flag is cleared.
Since this instruction is basically considered to be an
address operation, other flags are not changed.

The flag changes 307 of the MOVPA instruction are
summarized as FIG. 287.

If V_flag=0 and F_flag=1 occur in STATE, a
page out in the next level is included in the page out
where V_flag=1 and F_flag=1 in MOVPA. Thus,
the flag change pattern of STATE differs from that of
MOVPA.

If a page fault occurs to obtain an effective address
such as srcaddr and dest, like regular instructions, a
page out execution (POE) occurs.

This instruction is a privileged instruction.

5,201,039

129
For dest/EaW!S, the @-SP mode is inhibited. If
@-SP is specified to dest while V_flag is set due to an
error and page out and the content of dest cannot be
transferred, the operation of the instruction cannot be
distinguished.

In the operands of the LDATE, STATE, LDP, STP, -

LDC, STC and MOVPA instructions which reference
the special space, if a memory indirect reference occurs
in the additional mode, the logical space (LS) rather
than the special space is referenced. On the other hand,
if a stack pointer (SP) reference occurs, the current ring
RNG stack rather than PRNG is referenced. The mean-
ingful special space address is the only effective address
which is finally obtained.

In the MOVPA, LDATE and STATE instructions
308, if MSB of the related address is 1 (if SR is repre-
sented), the address translation is conducted using
STAB rather than R1, as summarized as in FIG. 288.

In MOVPA, LDATE and STATE, the base register
for the address translation operation is assigned by R1
rather than UATB. Even if the R1 bit corresponding to
the reserved portion of UATB (the bits of 2 4 and
2 5 represented by ‘=’) is not ‘I’, it is not checked.
Even if it is not checked, the bits of 2 4 and 2 §
should be filled with ‘0",

After the effective address of srcaddr is obtained, the
address translation is conducted using R1. The opera-
tion for obtaining the physical address does not affect
the AT bit.

In short, even if AT=00, the address translation for
srcaddr is conducted to obtain the physical address the
same as when AT=01. As a pre-operation for the ad-
dress translation operation, it is assumed that this in-
struction is used. The effective address calculation for
srcaddr and dest (such as an indirect reference) and data
write operation to dest are sent to the physical address
when AT=00.

PROGRAM EXCEPTION:

Reserved instruction exceptions

When + =0

When W="1"

MWhen EaA is Rn, #imm__data, @SP+ or @-SP

When EaW!S is #imm__data, @SP+ or @-SP

< <L1> > function exception

When a bit pattern of MOVPA is decoded
MNEMONIC:

LDATE src,destaddr (the data processor of the pres-

ent invention does not support this instruction.)
OPERATION:

load address translation table entry (privileged)

load ATE (PTE,STE)
OPTIONS:

/AS Purge TLB in all the logical spaces.

/SS Purge TLB in the logical space containing LSID

specified by RO. < <L2>>

/PT PTE (Page Table Entry) operation

/ST STE (Section Table Entry) operation

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 309: shown in FIG. 289.

STATUS FLAGS AFFECTED 310: shown in FIG.
90.
DESCRIPTION: .

Calculate the effective address (Jogical address) of
the operand specified by destaddr and transfer data
obtained by src to the address translation table entry
used for the physical address translation operation. The
address translation method for destaddr is such that the
R 1 register rather than the UATB register is used as the

20

25

30

35

45

50

35

60

65

130
base address (physical address) of the address transla-
tion table unlike regular instructions, so that a space
other than a logical space where a program is currently
executed can be operated through OS. If MSB is de-
staddr is 1 (SR: Shared region), the address translation
is conducted using SATB rather than R1.

With the /PT and /ST options, R1 represents the
base address of the section table.

Consequently, two levels of indirect reference occur
with /PT, while one level of indirect reference occurs
with /ST,

If the ATE set operation is conducted normally, TLB
and logical cache, which are affected by changing the
ATE value, are automatically purged.

If TLB’s for multiple contexts (processes and tasks)
exist, LSID is used to distinguish them. If TLB can
distinguish multiple logical spaces, with the /SS option
being specified, only TLB’s where LSID is matched to
RO can be purged. Although LSID for the logical space
which is currently in use is placed in the LSID control
register, it is not affected by the execution of the
LDATE instruction. Since the memory management
and TLB configuration strongly depend on the imple-
mentation, when this instruction is accommodated, it is
not always necessary to implement the /SS option. The
LSID function is not always required. The /SS option
provids a processor with LSID that is compatible with
others without it. For detail, see the description of
PSTLB.

In this instruction, the fixed number registers are used
to assign spaces like high level functional instructions.
Instructions are thus not required to be symmetrical
because they are not directly used in a high level lan-
guage and because a restriction exists due to the bit
assignment. In this instruction F_flag and V_{flag are
used to distinguish between various cases such as error
of the ATE and page out. The instruction works as
follows:

1. If a format error (reserved ATE error) occurs in
ATE in a higher level than that to be operated on the
section and page tables used for the address translation
of destaddr, the ATE set operation is not conducted and
the instruction is terminated with V_flag=1 and F__
flag=0 since ATE to be operated cannot be obtained.

2. If a page-out occurs on the table containing ATE in
the level to be operated or in a higher level than that on
the section and page tables used for the address transla-
tion of destaddr, the ATE set operation is not also con-
ducted and the instruction is terminated with V__
flag=1 and F_flag=1 since ATE to be operated can-
not be obtained. In addition, if both a reserved ATE
error and next level page-out occur at ATE in the mid-
dle level, a reserved ATE error has 2 higher priority
than the next level page out and the flag status becomes
V_flag=1 and F_flag=0.

3. Otherwise

Otherwise, data in src is set to ATE and V_flag is set
to 0. When the PI bit of the data set to ATE becomes 0
because of LDATE, F__flag becomes 1 to indicate a
page-out in the lower level. If setting data causes re-
served ATE error to occur, F_flag is set to 1. In both
cases, if the address translation is conducted with ATE
having set, an exception occurs. If there is no error in
ATE set and the PI bit is ‘1°, F_flag is set to ‘0.

The flag change 311 of the LDATE instruction is
summarized as shown in FIG. 291

Since this instruction is basically considered an ad-
dress operation, the statuses of M_flag and Z_flag are

5,201,039

131
not changed. If a page fault occurs while the effective
address for src and destaddr is obtained, a page out
exception (POE) occurs as in regular instruction.

This instruction is a privileged instruction.

With LDATE/ST, the process equivalent to
PSTLB/ST is automatically conducted, the process
equivalent to PSTLB/PT is automatically conducted
with LDATE/PT.

In the operands of the LDATE, STATE, LDP, STP,
LDC, STC and MOVPA instructions which reference
the special space, if a memory indirect reference occurs
because of the additional mode, the logical space (LS)
rather than the special space is referenced. On the other
hand, if a stack pointer (SP) reference occurs, the cur-
rent ring RNG stack rather than PRNG is referenced.
The meaningful special space address is the only effec-
tive address which is finally obtained.

In MOVPA, LDATE and STATE, the base register
for the address translation operation is assigned by R1
rather than UATB. Even if the R1 bit corresponding to
the reserved portion of UATB (the bits of 2 4 and
2 5 represented by ‘=") is not ‘I’, it is not checked.
Even if it is not checked by the hardware, the bits of
2 4and2 5 should be filled with ‘0",

In executing LDATE when AT =00, the contents of
src are fetched and the effective address of destaddr is
calculated without the address translation operation like
other instructions. However, the LDATE instruction
itself does not depend on the value of AT. In short, even
if AT =00, the effective address of destaddr being ob-
tained is interpreted as a logical address and the con-
tents of src are transferred to ATE which is used to
translate the logical address into the physical address. It
is assumed that this instruction is used as a pre-operation
for the address translation.

The specification of LDATE, STATE and MOVPA
when AT =00 are determined so that they conform to
the specifications when AT =01, so that OS can be used
to initially set the operation environment of MMU, and
so that they can be used consistently when a user pro-
gram works with AT=01 and OS works with AT=00.
PROGRAM EXCEPTION:

Reserved instruction exceptions

When !R="‘11" (Not detected when !="0")

When P="1"

When ttt="'010" to ‘111’

When EaR is @-SP

When EaA is Rn, #imm_data, @SP+ or @-SP

< <L1> > function exception

When a bit pattern of LDATE is decoded
MNEMONIC:

STATE srcaddr,dest (the data processor of the pres-

ent invention does not support this instruction)
OPERATION:

store address translation table entry (privileged)

store ATE (PTE,STE)
OPTIONS:

/PT PTE (Page Table Entry) operation

/ST STE (Section Table Entry) operation

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 312: shown in FIG. 292.

STATUS FLAGS AFFECTED 313: shown in FIG.
293.

DESCRIPTION:

Calculate the effective address (logical address) of
the operand specified by srcaddr, read the address trans-
lation table entry (ATE) which is used to convert the
effective address into the physical address, and set it to

25

30

35

45

55

60

65

132

dest. The address translation method for srcaddr is such
that the R1 register rather than the UATB register is
used as the base address (physical address) of the ad-
dress translation table unlike regular instructions, so
that a space other than a logical space where a program
is currently executed can be operated through OS. If
MSB is srcaddr is 1 (SR: Shared Region), the address
translation is conducted using SATB rather than R1.

With the /PT and /ST options, R1 represents the
base address of the section table.

Consequently, two levels of indirect reference occur
with /PT, while one level of indirect reference occurs
with /ST. In this instruction, the fixed number registers
are used to assign spaces like high level functional in-
structions. This is due to the fact that the symmetry of
instructions is not required because it is not used di-
rectly in a high class language and because a restriction
exists due to the bit assignment. In this instruction F_.
flag and V_flag are used to distinguish various cases,
such as an error in ATE and page out. The instruction
works as follows:

1. If a reserved ATE error occurs in ATE in a higher
level than that to be operated on the section and page
tables used for the address translation of srcaddr,

The ATE read operation is not conducted and the
instruction is terminated with V_flag=1 and F_.
flag=0 since ATE to be operated on cannot be ob-
tained.

2. If a page-out occurs on the table containing ATE in
the level to be operated or in a higher level than that on
the section and page tables used for the address transla-
tion of srcaddr,

Since ATE to be operated cannot be obtained, the
ATE read operation is also not conducted and the in-
struction is terminated with V_flag=1 and F_flag=1.
In addition, if both a 1eserved ATE error and next level
page-out occur at ATE in the middle level, a reserved
ATE error has a higher priority than the next level
page-out and the flag status becomes V_flag=1 and
F_flag=0.

3. Otherwise

Otherwise, ATE is read, and it is set to dest and V_
flag is set to 0. To represent the page-out in the lower
level, F_flag is set to 1 when the PI bit of ATE read by
STATE becomes 0. If data being read causes an re-
served ATE error to occur, F_flag is set to 1. In both
cases, if the address translation is conducted with ATE
being read, an exception occurs. If there is no error in
when ATE is being read and the PI bit is ‘1", F_flag is
set to ‘0.

The flag change 314 of the STATE instruction is
summarized as shown in FIG. 294.

A reserved ATE error occurs when the ATE re-
served bit is used. By considering the flag status change,
F_flag .or. V_{lag of STATE is equivalent to V_flag
of MOVPA. Therefore, the flag change pattern of
STATE differs from that of MOVPA.

Since this instruction is considered basically an ad-
dress operation, the statuses of M_flag and Z__flag are
not changed.

If a page fault occurs while the effective address for
srcaddr and dest is obtained, a page out exception
(POE) occurs as in the regular instructions.

This instruction is a privileged instruction.

For dest/EaW!S, the @-SP mode is inhibited. The
operation of the instruction cannot be distinguished. If
@-SP is specified to dest while V_flag is set due to an

5,201,039

133
error or page-out and the content of dest cannot be
transferred.

In the operands of the LDATE, STATE, LDP, STP,
LDC, STC and MOVPA instructions which reference
the special space, if a memory indirect reference occurs
in the additional mode, the logical space (LS) rather
than the special space is referenced. On the other hand,
if a stack pointer (SP) reference occurs, the current ring
RNG stack rather than PRNG is referenced. The mean-
ingful special space address is the only effective address
which is finally obtained.

In executing STATE when AT=00, the effective
address of srcddr and dest is calculated without the
address translation operation like other instructions.
However, the STATE instruction itself does not de-
pend on the value of AT. In short, even if AT =00, the
effective address of srcaddr being obtained is inter-
preted as a logical address and ATE is transferred to
dest which is used to translate the logical address into
the physical address. It is assumed that this instruction is
used as a pre-operation for the address translation.

In MOVPA, LDATE and STATE, the base register
for the address translation operation is assigned by R1
rather than UATB. Even if the R1 bit corresponding to
the reserved portion of UATB (the bits of 2 4 and
2 5 represented by ‘=") is not ‘1, it is not checked by
the hardware. Even if it is not checked, the bitsof 2 4
and 2 5 should be filled with ‘0".

PROGRAM EXCEPTION:

Reserved instruction exceptions

When + =0’

When W="T"

When EaA is Rn, #imm_data, @SP+ or @-SP

When EaW!S is #imm_data, @SP4+ or @-SP

< <L1> > function exception

When a bit pattern of STATE is decoded
MNEMONIC:

PTLB (the data processor of the present invention

does not support this instruction.)
OPERATION:
purge TLB (privileged)
OPTIONS:

/AS Purge TLB in all the logical spaces.

/SS Purge TLB in the logical space containing LSID

specified by RO.

INSTRUCTION FORMAT AND ASSEMBLER
SYNTAX 315: shown in FIG. 295.

STATUS FLAGS AFFECTED 316: shown in FIG.
296.

DESCRIPTION:

Purge TLB.

The control register is used to perform miscellaneous
operations for TLB such as TLB lock operation and
TLB enable operation. However, only the TLB purge
operation is required, the TLB purge instruction is used,
rather than adding the control register which would
otherwise cause the burden on the hardware implemen-
tation to increase.

If TLB’s for multiple contexts {processes and tasks)
exist, LSID is used to distinguish them. If TLB can
distinguish multiple logical spaces, only TLB’s where
LSID is matched to RO can be purged with the /SS
option specified. Although LSID for the logical space
which is currently in use is placed in the LSID control
register, it is not affected by the execution of the PTLB
instruction.

The PTLB instruction does not have a function
which purge only TLB at a specified logical address.

20

25

35

45

50

55

65

134
All TLB’s in the specified logical space are purged.
When purging TLB at a specified logical address, the
PSTLB instruction is used. However, when the /SS
option is specified, only TLB or UR in the specified
logical space is purged rather than purging SR.

To purge SR, it is necessary to use the /AS optnon

This instruction is a privileged instruction.

Since the memory management and the TLB config-
uration strongly depend on the implementation, this
instruction is specified in < <L2> >. When accommo-
dating this instruction, it is not always necessary to
implement all the options. In addition, the LSID func-
tion is not always required. In PTLB, the purge opera-
tion is executed even when AT=00 as well as when
AT=01. It is assumed that the PTLB instruction is used
as a pre-operation for address translation.

PROGRAM EXCEPTION:

Reserved instruction exceptions
MNEMONIC:

PSTLB (the data processor of the present invention

does not support this instruction.)
OPERATION:
. purge specific TLB
OPTIONS:

/AS Purge TLB in all the logical spaces.

/SS Purge TLB in the logical space containing LSID
specified by RO.

/PT Purge the entry where all the logical addresses
(2 31to2 12 bits)accord with prgaddr. In other
words, the portion which is af’fected when PTE is
changed is purged.

/ST Purge the entry wherethe 2 31to2 22 bits of
the logical address accord with prgaddr. In other
words, the portion which is affected when STE is
changed is purged.

/AT Purge the entry where the 2 31 bit of the logi-
cal address accords with prgaddr. In other words,
the portion which is affected when UATB or
SATB is changed is purged.

INSTRUCTION FORMAT AND ASSEMBLER

SYNTAX 317: shown in FIG. 297.

STATUS FLAGS AFFECTED 318: shown in FIG.
298.

DESCRIPTION:

Purge TLB of the specified logical address.

TLB which is in the related logical space and where
the logical address equivalent to the indexes from STE
to PTE (namely, all the logical addresses) accords with
prgaddr is purged with the /PT option. With the /ST
option specified, TLB, which is in the related logical
space and where the logical address equivalent to the
index of STE accords with prgaddr, is purged. With the
/AT option specified, all the entries are purged which
are in the cache in the related logical space and where
MSB of the logical address accords with prgaddr.

If TLB's for multiple contexts (processes and tasks)
exist, LSID is used to distinguish them. If TLB can
distinguish muitiple logical spaces, with the /SS option
specified, only TLB's where LSID is matched to RO
can be purged. Although LSID for the logical space
which is currently used is placed in the LSID control
register, it is not affected by the execution of the PTLB
instruction.

This instruction is a privileged instruction.

Since the memory management and the TLB config-
uration are strongly dependent on the implementation,
this instruction is specified in < <L2>>. When ac-
commodating this instruction, it is not always necessary

5,201,039

135
to implement all the options. In addition, the LSID
function is not always required.

The /AS and /SS options are provided to maintain
the compatibility of whether LSID is used or not. Func-
tionally, when PSTLB issued, it is possible to specify
only /SS. However, if /SS is always specified, the com-
patibility may be lost depending on whether LSID is
used or not. For example, if a processor which does not
have the LSID function is produced, a program work-
ing on the processor will execute the PSTLB instruc-
tion rather than setting LSID to RO. If the same pro-
gram is executed in a future processor which has the
LSID function, due to remaining data in RO, PSTLB
will be executed by a completely incorrect LSID. To
prevent that, if RO has not been set with an option, /AS
should be set. If RO will be included in the near future,
it will be necessary to set /SS. The specification of /AS
in PSTLB has such a meaning.

Thus, in PSTLB, all the combinations that follow are
allowed.

/AS/PT

/7AS/ST

/SS/PT

/S8S/ST

/SS means to purge TLB or UR in the logical space
specified by RO.

/AS means to purge TLB in all the logical spaces or
TLB in a processor which does not have the LSID
function (/PT and /ST options are also enable. RO
is not used.)

With the /AS option, a program can be created for both
a processor which has LSID and that which does not.
On the other hand, although the LSID function can be
used with the /SS option, in a processor which does not
have LSID, an error (reserved instruction exception)
occurs because the option has not been accommodated.

In the PTLB and PSTLB instructions, if the /SS
option is specified, only TLB of UR in the specified
logical space is purged, rather than TLB of SR. To
purge TLB from SR, it is necessary to use /AS. The
operation when the /SS option is specified in PTLB and
PSTLB are summarized as follows.

PSTLB/SS

Purge UR in the logical space specified by RO.
PSTLB/SS/AT @uraddr; uraddr is UR.

Purge UR in the logical space specified by RO.
PSTLB/SS/AT @sradder; sraddr is SR.

Since SR is specified with /SS, no operation takes
place. To purge all SR, use PSTLB/AS/AS
@sraddr.

PSTLB/SS/PT @uraddr; uraddr is UR.
Purge part of UR in the logical space specified by

RO.
PSTLB/SS/PT @sraddr; sraddr is SR.

Since SR is specified with /SS, no operation takes

place.

To purge part of SR, use PSTLB/AS/PT @sraddr.
If it is difficult to accommodate the /ST option in
PSTLB, reduce the function to maintain the compatibil-
ity so that the instruction can be simply executed and an
EIT does not occur. Practically, the operation equiva-
lent of /AT rather that /ST is performed.

If PSTLB is executed at AT=00, the effective ad-
dress of prgaddr is calculated without an address trans-
lation like other instructions. However, the instruction
operation of PSTLB does not depend on the value of
AT. In other words, even if AT=00, the effective ad-
dress of prgaddr obtained is interpreted as a logical

5

10

20

25

45

50

55

60

65

136

address and the purge operation is executed like
AT =01 because it is assumed the PSTLB instruction is
used as a pre-operation for address translation.
PROGRAM EXCEPTION:

Reserved instruction exception

APPENDIX 1

Instruction Set Reference of the Data Processor of
the Present Invention

* means the instruction that the data processor of the present
invention does not support.

(Date Transfer Instructions)
MOV src,dest Move and sign extend data
MOVU src,dest Move and zero-extend data
PUSH src Push to stack
POP dest Pop from stack
STM reglist,dest Store multiple registers
LDM src,reglist Load multiple registers
MOVA srcaddr,dest Obtain effective address
PUSHA srcaddr Push address to stack
(Comparison and Test Instructions)
CMP srcl,src2 Comparison and sign
extension and
CMPU srcl,src2 Zero-extension and
comparison
CHK bound,index,xreg Check upper and lower
bounds
(Arithmetic Instructions)
ADD src,dest Addition and addition with
sign-
extension
ADDU src,dest Zero-extension and addition
ADDX src,dest Addition including a carry
in from
X flag
suB src,dest Subtraction and subtraction
with sign-extension
suUBU src,dest Zero-extension and
subtraction
SUBX src,dest Subtraction including a
carry in from X_flag
MUL src,dest Multiplication
MULU src,dest Unsigned multiplication
MULX src,dest,imp Extended multiplication,
double precision
DIV src,dest Division
DIVU src,dest Unsigned division
DIVX src,dest,tmp Extended division, double
precision, and presence of
remainder
REM src,dest Remainder
REMU src,dest Remainder by unsigned
division operation
NEG dest Compiementary operation
<<L2>> INDEX indexsize, Calculate address of array
subscript,xreg
{Logical Instructions)
AND src,dest AND operation
OR src,dest OR operation
XOR srcdest XOR operation
NOT dest Not all bits
(Shift Instructions)
SHL countdest Shift logical
SHA countdest Arithmetic shifi operation
ROT countdest Rote
SHXL dest Shift left and extend with
X_flag
SHXR dest Shift right and extend with
X_flag
RVBY src.dest Reverse byte order
<<L2>> RVBI srcdest Reverse bit order
(Bit Operation Instructions)
BTST offset,base Test a bit
BSET offset,base Set a bit
BCLR offset,base Clear » bit
BNOT offset,base Complement a bit
BSCH dstaoffset Search 0 or 1 (in one word)
(Fixed Length Bit Field Operation Instructions)
BFEXT offset,width,base.dest Extract bit field
(signed)
BFEXTU offset,width,base,dest Extract bit field

5,201,039

137

APPENDIX l-continued

138
APPENDIX l-continued

Instruction Set Reference of the Data Processor of
the Present Invention

Instruction Set Reference of the Data Processor of
the Present Invention

BFINS

BFINSU

BFCMP

BFCMPU

src,offset, width,base
src,offset, width,base
src,offset, width,base

src,offset, width,base

(unsigned)

Insert bit field
(signed)

Insert bit field
(unsigned)
Compare bit field
(signed)
Compare bit field
(unsigned)

(Variable Length Bit Field Operation Instructions) .

BVSCH Find first ‘0’ or ‘1’ in the bitfield
(variable length)
BVMAP Bit map operation
BVCPY Bit transfer
BVPAT Operation of pattern and bit map
(Decimal Arithmetic Instructions)

* ADDDX src,dest Addition in BCD
* SUBDX src,dest Subtraction in BCD
* PACKss src,dest Pack string into BCD
* UNPKss srcdest,adi Unpack BCD

{String Instructions)
SMOV Copy string
SCMP Compare string
SSCH Find a character in a string
SSTR Continuously write same data

(fill data in string)

{Queue Operation Instructions)

QINS entry.queue Insert a new entry into a
queue
QDEL queue,dest Remove an entry from a queue
QSCH Search queuc entries
(Jump Instructions)
BRA newpc Branch always
(PC relative)
Beo newpc Branch conditionally
(PC relative)
BSR newpc Subroutine jump
(PC relative)
JMP newpc Jump
JSR newpe Jump to subroutine
ACB step,xreg limit,newpe Add, compare and
branch
SCB step,xreg limit,newpc Subtract, compare,
and branch
ENTER local,reglist Create new stack
frame (High level
language subroutine
jump)
EXITD reglist,adjsp Exit and deallocate
parameter
(High level language
subroutine return and
parameter release)
RTS Return from
subroutine
NOP No operation
PIB Purge instruction

buffer (instruction
cache and pipeline
arrangement)

(Multiprocessor Instructions)

BSETI offset,base Set » bit (Jock the bus)
BCLRI offset,base Clear a bit (lock
the bus)
CSI comp,update,dest Compare and store
(lock the bus)

{Control Space, Physical Space Opération Instructions)

LDC

STC

LDPSB arc

LDPSM src

STPSB dest

STPSM dest

STP
{OS-Support Instructions)

* JRNG

* RRNG

src,dest Load control space or register
src,dest Store control space or register

Load PSB

Load PSM

Store PSB

Store PSM LDP src,dest
Load physical space

src,dest Store physical space

Jump to new ring
Return from previous ring

vector

10

15

25

35

45

65

TRAPA vector Trap always
TRAP Trap conditionally
REIT Return from EIT
WAIT imask Set IMASK and wait
LDCTX pcbaddr Load context from CTXB
STCTX Store context to CTXB
(MMU Support Instructions)
ACS chkaddr Test access rights
* MOVPA srcaddr,dest Move physical address
* LDATE srcdestaddr Load address
translation table entry
* STATE srcaddrdest Store address
transiation table entry
<<L2>> * PTLB Purge TLB
<<L2>>
* PSTLB prgaddr Purge specific TLB

(Signed Decimal Arithmetic Operation Instructions)

<<L2>>* DCADD srcdest Signed addition in BCD
<<L2>>* DCADDU srcdest Unsigned addition in BCD
<<L2>>*" DCSUB src,dest Signed subtraction in BCD
<<L2>>* DCSUBU srcdest Unsigned subtraction
in BCD
<<L2>>* DCX src,dest Addition and subtraction
in BCD including a carry
<<L2>>* DCADJ src,dest Signed complement
in BCD
<<L2>>* DCADJU srcdest Unsigned complement
in BCD
<<L2>>* DCADJX srcdest Complement in BCD with
a carry
<<L2>>* DCCMP srcl,src2 Signed comparison
in BCD
<<L2>>* DCCMPU srclsre2 Unsigned comparison
in BCD
<<L2>>* DCCMPX srclsrcl Comparison in BCD with
a carry

Appendix 2 Assembler Syntax of the Data Processor of
the Present Invention

A2-1 Outline

This appendix describes the definitions of instruction
mnemonics and addressing mode mnemonics for the
data processor of the present invention.

A2-1-1 Symbol Syntax in this Document

< D> Indicates a meta character.
[A] A is omissible.
{A}* A is either not used or repeated one or
more times.

{A}+ A is repeated one or more times
A:=B C AisBorC
A= BC B and C are connected to A.

A2-1-2 Determining Mnemonics

(1) “General mnemonic” and “Mnemonic-every-for-
mat” are provided. '

The general mnemonic is a mnemonic which corre-
spond with each instruction. Even if instructions have
multiple formats the number of general mnemonics of
the instruction is only one. On the other hand, the mne-
monic-every-format, is used to distinguish the different
formats. By determining a character which represents
an instruction format, the mnemonic every format is
systematically created from the general mnemonic.
When creating an assembler source program, the pro-
gramrer regularly uses the general mnemonic. The
format most suitable for the general mnemonic is se-
lected by the assembler.

5,201,039

139

(2) A Unified rule for data type parameters is pro-
vided. The data type parameters are required to specify
the data type for the arithmetic operation, the same size
operand for the entire instruction, and the size of every
operand.

(3) The mnemonics attempt to follow the IEEE Mi-
croprocessor Assembly Language Standard (page 694)
as closely as possible. However, since it is not com-
pletely compatible with the architecture of the data
processor of the present invention, these mnemonics are
used only for reference to determine individual names.
The concept and rule for the mnemonics used for the
data processor of the present invention do not com-
pletely conform to the IEEE standard.

(4) Special symbolic characters should not be used is
possible.

In the assembler defined here, special symbolic char-
acters should not be used if possible. Otherwise, special
symbolic characters in the assembler may contend with
them in numerical expressions in operands and in an
extended assembler. In addition, to create software
through a host computer which does not provide many
character sets, it is recommended not to use many spe-
cial symbolic characters. To avoid using many special
symbolic characters, only one type bracket is used in
the assembler. The special symbolic characters such as
> and ‘&’ are not used.

A2-1-3 Assembler Instructions

Each instruction of the data processor of the present
invention assembly language is described by one opera-
tion mnemonic and zero or more operand mnemonics.
An opcode mnemonic and operand mnemonic are de-
limited with one or more blank characters (space or
tab). Two operand mnemonics are delimited with one
command, seperated by ‘..

< Assembler instruction> =

<Operation > [<Operand > {, <Operand > }*]

A2-1-4 Operand Order

Although the operand order is determined every
instruction, it is generally described as follows.

More Instruction (MOV)

The first operand and the second operand become the
source and destination, respectively.

In short,
First operand = = > Second operand

It is the same as the IEEE standard.

Two-operand instruction for dyadic (two-term) in-
structions (such as SUB)

The first operand becomes the second source and the
second operand becomes the first source and destina-
tion.

In short,

Second operand .op. First operand == Second
operand

It differs from the IEEE standard but, it is widely used
in many processors and it is popular.

A2-2 Operation Mnemonics

A2-2-1 Mnemonic Generation Rule

Although a verb which describes an operation in the
IEEE standard is often placed at the beginning of the
mnemonic, in the data processor of the present inven-
tion, a data type parameter precedes such a verb. The

35

45

55

65

140
mnemonics for the operations are nearly the same as the
IEEE standard.
The instruction mnemonics for the data processor of
the present invention are generated in the following
rule.

<Operation> u=
[<Data type >} < Operation > { < Variation > }*{/ < Option > }*
{: <Format> }*[. <Size>}

Example:

MOV

SMOV/NE.W

MOV.W

MOV:L

MOVQW

Data Type

The data type which significantly affects the opera-
tion method (which is irrespective of the <Opera-
tion>) is specified at the beginning of an instruction.
This data type includes a string, queue, bit field, etc.

The data size (8, 16, 32 and 64 bits for an integer and
32 and 64 bits for floating point) is specified in <Size>.
Signed, unsigned and address operations are specified in
< Variation>.

Operation

The operation itself is specified in accordance with
the IEEE standard. Although the conditions of condi-
tional jump instructions should be specified as options,
they are customarily included in the basic portion of the
< Operation>.

Variation

Detailed controls and attributes for an operation are
specified.

Option

Instruction options represented with several bits in
the instruction format are represented. The options
include the termination conditions of the string instruc-
tions and the search conditions of queues.

Format

A format for the short type and general type is speci-
fied. Generally, it is omissible. If it is omitted, the gen-
eral mnemonic is used. If the general mnemonic is used
without <Format> in an assembler source program,
the assembler automatically selects the suitable format.
If <Format> is described, the mnemonic-every-for-
mat is described. If the user describes <Format> in an
assembler source program, it means to use the described
format compulsorily. The mnemonic-every-format
specified by <Format>> is used to distinguish instruc-
tion formats in descriptions of the specification, manual
or disassembler.

Size

The operand size is specified. The instruction with
<Size> mainly uses integers and floating point.
<Size> is closely related to <Operation> unlike
<Data Type>.

A2-2-2 Data Type

The following characters are used to represent
<Data type>.

None Integer operation, address operation, miscella-
neous operation, etc.

F Floating point

S String

Q Double-linked queue

B One-bit operation

BF Fixed length bit field operation

5,201,039

141

BV Variable length bit field operation

A2-2-3 Operations

The following instructions of the data processor of
the present invention assembler conform to the IEEE
mnemonics. ADD, SUB, MUL, DIV, CMF, NEG,
AND, OR, XOR, NOT, LD, ST, MOV, PUSH, POP,
WAIT, NOP

Note:

Usage of MOV, LD, and ST:

MOV Transfer data between registers and between

memories.

LD Transfer data from a memory to a register.

ST Transfer data from a register to a memory.

LD and ST are used for the instructions where the

direction is a consideration.

The shaft operations do not directly conform to the
IEEE mnemonics because their left and right assign-
ment method for the data processor of the present in-
vention assembler differs from that for the IEEE stan-
dard. However, by using the IEEE rule, SHA, SHL,
and ROT are used.

If the branch (conditional jump) instructions form to
the IEEE standard, ‘BV’ has a different meaning. In
addition, for easier distinctions between comparisons of
signed integers and unsigned integers, the condition
specification portion does not conform to the IEEE
standard.

JMP, JSR, and RTS do not conform to the IEEE
standard due to symmetry of the branch instructions.

Since the extension operations are uniformly repre-
sented with ‘X' of <Variation>, ADDX, SUBX,
MULX, and DIVX do not conform to the IEEE stan-
dard.

A2-2-4 Variation

< Variation> serves to specify the attributes for
operations and uses the following characters. t,3990

A2-2-5 Format

< Format> serves to distinguish the instruction for-
mat in detail and uses the following characters.

E 8-bit immediate of two-operand instructions in
general format
Example: ADD:EW #100.B,@abs2
General format of two-operand instructions
Example: ADD: G.W #absl,@abs2
ACB:G @absl,R1,@abs2,icop3
] Short format of immediate
Example: ADD:LW #100000,@abs2
Short format of operation between memory and register
Example: ADD:L.W @abs,R2
MOV:LW @(disp,R2),R3
Literal short format
Static format of bit field instruction
Literal short format of loop instruction
Example: MOVQW #3,@abs
BTSTQ.B #4,@abs
ACBQ #1,R1,#5,loop!
Short format of operation between registers
Short format of register of loop instruction
Example: AND:RW R1,R2
MOVARW @(disp:16,R2),R3
ACBR #1,R1,R2,loop2
s Short format of operation between register and memory
(only MOV)
Example: MOV SW
8 newpc is B bits.
Example: ACB:G
newpc is 16 bits.
Example: BEQ:G
newpc is 32 bits.
Example: BNE:G
newpc is 64 bits.

R2,@abs
@abst,R1,@abs2,loopi:8
error:16

pext:32

15

25

35

45

35

65

142

-continued
loop:64

Example: BRA:G

The format specifications such as “Q’, “G’, . . . are used
to distinguish the formats with in one instruction (gen-
eral mnemonic) and create mnemonics-every-format. In
short, it is used to specify a format in the assembler
syntax. On the other hand, G-format, E-format, . . .
described in “Instruction Format” are used to describe
the formats in all the instructions. Therefore, while the
%G’ in ‘MOVA:G’ is the general format, GA, of the
MOVA instruction, the ‘g’ in ‘MOV:G’ is the general
format, G, of the MOV instruction.

A2-2-6 Size

Since the IEEE standard does not consider 64 bit
integers, the data size handled also differs from that of
the IEEE standard.

In the case of integers

4 types of sizes are symmetrically supported and the
data type can be specified with the operand.

Since the same data is written on both the operation
side and the operand side, it is delimited with *’. The
following characters are used for <Size>.

B Byte B.bit long integer

H Half word 16-bit long integer
w Word 32-bit long integer
L Longword 64-bit long integer

‘L’ cannot be used in the data processor 32 of the pres-
ent invention.

In the case of floating point

It is will be separately defined.

A2-3 Operand Mnemonics

Operands are classified into those where the general
addressing mode or its subset can be used (the general
operands are named) and those where special specifica-
tion is made depending on the instruction (the special
operands are named). For the special operands, the
format is defined every-instruction. The following in-
structions use the special operands.
BRA, Bcc, BSR, ACB, SCB (newpc operand)
LDM, STM (reglist operand) i
etc.

< Operand > ::= < General operand >
operand >

< Special

The general operands are such that the data size can
be specified every operand. This feature is available for
the general operand description in the assembler. In
addition, operands have also the general mnemonic and
the mnemonic-every-format.

The general operand mnemonic is composed of a real
operand value (effective address), specification of addi-
tional mode format, and size.

< General operand > :=
<Operand value >{: < Additional mode
specification > }[. <Size>}

A2-3-1 Rule for Addressing Mode Notation

Since conventional processors do not have many
addressing modes, their modes are individually consid-
ered and it is possible to assign unique symbols to them.
In addition, the notation of the addressing modes does

5,201,039

143
not accord with the real addressing operations. For
example, although in some processor, the addressing
mode of the register relative indirect may be repre-
sented with disp(Rn), its operation is only mem[-

disp+Rn and the disp portion and Rn portion are not 5

symmetrically handled. Although it can be used with-
out a problem, if it is used to create a complicated mode,
an inconsistency may occur.

Since the data processor of the present invention has
a function named “additional mode”, the addressing
should be uniformly and regularly described to prevent
confusion. To do that, Data Processor of the present
invention has a naming convention for real operations
and their notations. In Data Processor of the present
invention, the addressing mode including the additional
mode will be uniformly described.

The addressing is basically composed of addition
operations and indirect references, each of which is
repeated. Thus, it is necessary to represent these two
types of operations. The rule of notation for the data
processor of the present invention is summarized as
follows:

[Rule of Notation of the data processor, of the present
invention Addressing Modes)

@A or @(A) Reference the content of the memory of
address A. mem[A]

@ABC,...)Add A, B, C, ..., and reference the content of
memory of the address which contains the result of the
addition operations.
mem [A+B+C+ . ..1]

‘() in the data processor of the present invention does
not have a special meaning such as indirect reference.
Like general numerical expressions, it simply represents
the order of connection. Thus, the meaning of @A is
the same as that of @(A). Even if ‘(..)’ is used, if there is
only one term, it is possible to omit it.

In conventional processors, ‘(..)’ may mean an indi-
rect reference and it is customarily used in the notation.
However, with such a notation, the following misun-
derstandings can occur.

Example:

Customer notation Operand value

Rn Rn

(Rn) mem(Rn)

abs mem[abs] or abs

(abs) mem[mem[[abs]] or mem[abs]

To present such cases, in the data processor of the pres-
ent invention, an indirect reference is always repre-
sented with ‘@".

On the other hand, since there is not such a rule for
the immediate reference, (the addressing mode for stack
operation and index scaling process), their notations
should be determined by referencing the rule.

A2-3-2 Specifying Additional Mode

< Additional mode specification>::=A N

‘A’ is specified when emphasizing that the format of
the additional mode is used. On the other hand, ‘N’ is
specified when emphasizing that the format of the addi-
tional mode is not used. These specifications are equiva-
lent to the mnemonic-every-format. If neither “N’ nor
A’ are written, the assembler determines whether the
addressing can be realized in a short mode other than

10

15

20

35

45

50

35

60

65

144
the additional mode and if it can be realized, it uses the
mode. If it determines that it cannot be realized unless it
is in the additional mode, it uses the additional mode.

Example:
@(disp,PC):A The PC relative additional mode is always
used. Even if disp is 32 bits or less,
the additional mode is used.
@(disp,PC):N The PC relative indirect mode is always
used. If disp is 64 bits, an error occurs.
@(disp,PC) If disp is 32 bits, the PC relative in-
direct mode is used. If disp is 64 bits,
the PC relative additional mode is used.
A2-3-3 Size

< Size> represents the operation size of an operand.
It serves to specify the real operation size of an operand
along with the size represented with the mnemonic of
the operation. The characters used to specify the size
are the same as those used for the operations.

The relationship between < Size> of an operand and
< Size> of an operation is regular:

If <Size> is specified in any Operation, <Size>
becomes the default size for all operands except oper-
ands whose size cannot be specified: immediate oper-
ands, and operands having special meaning.

If < Size> is specified for an operand, it becomes the
size of the operand. Even if a different size is specified
in an operation, the <Size> specified in the operand
has a higher priority than any other sizes.

If the <Size> which is specified for an operand
cannot be used, an error occurs.

Example:
MOV.W @src,@dest Both src and dest are
W(WORD) type.
MOV.W @src.B,@dest src is B(BYTE) type,
while dest is W(WORD) type.
MOV @src.B,@dest. W src is B(BYTE) type,

while dest is W(WORD) type.

A2-3-4 Operand Value

The assemblers syntax for general operands each
addressing mode is described in the following.

Numeric characters, variable names and numeric
expressions can be described as the contents of <Im-
mediate value> and <Absolute value>. Their syntax
will be determined separately. <Format> is described
to clarify the format selection of the addressing mode. It
is mainly used to specify the size of the extension por-
tion of the addressing mode. It is omissible. However, if
it is omitted, the assembler automatically selects the
suitable format (size). <Format> is used to distinguish
the format in the addressing portion for the description
of the specification, manual or disassembling.

<Format>:=4 16 32 64

4 4-bit long addressing modification portion

16 16-bit long addressing extension portion
Example: @(disp:16, Rn),abs:16

32 32-bit long addressing extension portion
Example: @(disp:32,Rn),abs:32

64 64-bit long addressing extension portion
Example: abs:64

< Format> only specifies the size of an instruction
format. On the other hand, < Size> specifies the

5,201,039

145

size of an operand. Except in the immediate mode,
< Format> differs completely from <Size>.

146

has a flexibility for size, the minimum size is automati-
cally selected.

Example: 5
MOV ROW,@addr:16,W

This instruction transfers the content of RO to the mem-
ory represented with ‘addr’. The absolute addressing
mode is used.

*:16’ indicates the ‘addr’ is represented with 16 bits.
Thus, the range of ‘addr’ is $ffff8000 to SO0008fIf. On
the other, *. W’ indicates that the operation is performed
with words (32 bits). In short, this instruction transfers 15
4 bytes of data.

<Register No.> is used to describe a mnemonic of
the general purpose registers.

10

<Register No.>> ::= 20
RO R1 R2 R3 R4 RS RS
R7 R8 R9 R10 RIt R12 R13
R4 RIS FP SP
25

FP and R14; SP and R15 are exactly the same.
A2-3-4-1 Register Direct

Operand = Rn
<Operand value> ;:=
< Register No.>

Example: R1

A2-3-4-2 Register Indirect
35

Operand = mem(Rn]
<Operand value> ::=
@ < Register No.>

Example: @R2

A2-3-4-3 Register Relative Indirect

Operand = mem[displ6 + Rn]
mem[disp32 + Rn]
< Operand value> =
@(< Displacement > [: < Format >}, <Register No.>)
<Format>::=16 32
Example: @(disp:16,R3)

45

A2-3-4-4 Literal and Immediate

Operand = imm__data
< Operand value> =
<Literal value>
<Operand value> ::=

< Immediate value>

55

When the use of the literal instruction format is clearly
described, it should be described in the mnemonic of an
operation.

In the case of an immediate, since the size of the
extension portion is determined by the size of an oper-
and, the meaning of <Format> becomes the same as
that of < Size>. In the assembler, the size can be speci-
fied as either <Format> or <Size>.

If the size is not specified on the operand side of the
immediate operand and the function of the instruction

65

Example:
ADD:Q.W #1LRO Use the literal format (2 bytes).
ADD:IW #1,RO Use the immediate type format (6 bytes).

The source oeprand ‘1 is represented
with 32 bits.
Use a short format (6 bytes).
Specify an 8-bit immediate as the source
operand.
Use a general format (6 bytes). Spec-
ify an 8-bit immediate as the source
d.

‘1’ is represented with the low order 8
bits in the 16 bit ficld. ‘I’ is sign
-extended to 32 bits.
Use a general type B-bit immediate format
(4 bytes). ‘1’ is sign-extended to 32 bits.
Since the size is not specified for #1 and
the :G format is used, there is a flex-
ibility in size. Thus, the minium size
is automatically selected. The instruc-
tion becomes equal to the following in-
struction.

ADD:G #1.B,R0.W (6-byte instruction)
rather than the following instruction.

ADD:G #1.W RO.W (8-byte instruction).
Select an instruction by using < Format >
rather than <Size>.
This instruction becomes equal to the
following instruction.

ADD:G.W #1.H,R0
In the general mnemonic, if simply described as follows,

ADD.W #1,R0
the shoriest code is selected as follows.
ADD:Q.W #1,RO

ADD:L.W #1,R0

ADD:G.W #1.R,RO

ADD:EW #1,R0

ADD:G.W #1,R0

ADD:G.W #1:16,R0

Although the number of sizes is not limited to one,
part of them actually uses only one size. For these in-
structions, unless < Size> is placed on the operand size,
the default size which is specified is applied depending
on the instruction. It is an exception to the rule where
the mnemonic of < Operation> is applied to all of the
operands.)

Example

In the access size of the bit operation instruction (BB
is specified), the default size is 8 bits (.B).

*H’ and ‘W’ are specified in < <L2> >, while ‘L’ is
specified in < <LX>>.

In the register size of the fixed length bit field opera-
tion (X is specified), the default size is 32 bits (W).

*H' and ‘B’ cannot be used. ‘L’ is specified in
<<LX>>.

BTST.W RO, @addr=BTST RO.W, @addr.B

A2-3-4-5 Absolute

Operand = mem|[abs16]
mem{abs32]
mem{abs64]

<Operand value> ::=

@ < Absolute address >[: <Format>]
<Format>»:= 16 32 64
Example: @abs:32

A2-3-4-6 PC Relative Indirect

Operand = mem|displ6 + PC)
mem|[disp32 + PC]
< Operand value > 1=
@([<Displacement > [: < Format > }},PC)
< Format>::= 16 32

5,201,039

147

-continued

148

-continued

Example: @(disp.PC)

—

Index

A2-3-4-7 Stack Pop

Operand = mem{SP+ +]

< Operand value> 1=
@SP+

Example: @SP+

A2-3-4-8 Stack Push

Operand = mem(--SP]

<Operand value> 1=
@-SP

Example: @-SP

A2-3-4-9 FP Relative Indirect

Operand = mem(disp4 + FP]
<Operand value> ::= -

@([< Displacement > [: < Format >]], < Register No.>)
<Format>:= 4
<Register No.>:= FP
Example: @(disp4:4,FP)

R14

In this addressing mode, although the disp value being
specified in the bit pattern is quadrupled to produce the
real displacement, the value being quadrupled is used in
the assembler syntax.

Since the assembler syntax is the same as that in the
register relative indirect mode, if <Format> is not
specified the assembler selects the suitable mode. In
short, in an operand described as @(disp,Rn), when Rn
is R14 or RP, and then disp is a multiple of 4 in the range
from —32 to 31, the FP relative indirect mode is se-
lected. Otherwise, the register relative indirect mode is
selected.

A2-3-4-10 SP Relative Indirect

Operand = mem{disp4 + SP]
< Operand value> 1=

@([< Displacement > [: < Format >]], < Register No.>)
<Format>:= 4
< Register No.>::= SP
Example: @(disp4:4,SP)

RIS

Although the disp value specified in the bit pattern is
quadrupled to produce the real displacement in this
addressing mode, the value being quadrupled is used in
the assembler syntax.

A2-3-5 Additional Mode

In the additional mode, there are the general mne-
monics which represent functional requirements and
the mnemonic-every-format, which symbolizes format
and bit pattern.

General Mnemonic

An indirect reference is represented with @ or @(. .
.). An addition of address is also represented with (. .

. 'i‘ile order of syntax is usually as follows.

Base mode or current additional mode temp value
Displacement

—

10

15

25

30

35

40

45

55

60

65

In this manner, the flow of the effective address calcula-
tion from the left to the right becomes simple. The
information necessary for the earlier level additional
mode and that for the later level additional mode are
grouped to the carlier side and the later side, respec-
tively. In order words, the order of the general mne-
monic syntax becomes the same as that of the machine
language bit pattern in the additional mode. Therefore,
the general mnemonic syntax corresponds properly
with the mnemonics-every-format and real machine
language additional mode, so that the assembler can be
simplified and easily understood.

Mnemonic-every-Format

By using the following three characters for specify-
ing & format, the syntax which corresponds to the ma-
chine language bit pattern can be obtained.

:B Indicates the process of the specified portion is

performed by the base mode.

:B Indicates the process until the specified portion is
performed by the general additional mode.

:N Indicates the process of the specified portion is
performed by the addition mode in the next level
(the portion specified with “A”).

“Process of the specified portion” means the addition
process of the value if the format specification character
is assigned to the displacement and register. However, it
means the indirect reference process if the format speci-
fication character is assigned to a closed parenthesis ‘).
In addition, “Process until the specified portion” in “A’
indicates that the process of the :A’ portion and the “N’
portion on the left side are performed at the same time.

In all the formats are specified, the number of A’
becomes the number of levels of the additional mode.
Usually, one “:A’ corresponds with one level indirect
reference. However, when adding the contents of multi-
ple index registers (“:A’ is required even if there is no
indirect reference), there is an exception where a dual
indirect at the last level is performed (even in two level
indirect references, it is possible to use only one “A").

If there is no format syntax, the additional mode

which can perform the general mnemonic (represented
as the general mnemonic) is automatically selected.
If the format which cannot be obtained in the real addi-
tional mode is specified to the mnemonic-every-format,
an error occurs. If a format specification character is
removed from the format specification mnemonic, it
becomes the general mnemonic like the general rule of
the mnemonic every format.

General Format

It multiple address additions are not performed, pa-
rentheses of @(. . .) are omissible. Thus, @(@(@(R1)
of triple indirect reference used in the additional mode
can be described as @@@R1. This rule applies to all
the addressing modes except the additional mode and is
a so-called syntax sugar.

Although the IEEE standard uses the size specifica-
tion characters such as “B’ and ‘W’ for the index scale
values, since it is supposed that larger values may be
placed in the scale value in future, the numeric charac-
ters are directly described to the scale value. The char-
acter used to specify the scaling should be ‘*’ rather
than * in the IEEE standard because .’ is used to spec-
ify a format.

5,201,039

149

150

-continued

Example:

@(offset, PC)
mem{offset + PC]
General mnemonic. If offset is represented in 32
bits or less, the process is performed in the PC
relative indirect mode. If offset is over 32 bits,
the process is performed in the additional mode.
@(offset, PC):N
mem(offset + PC]
The process should be performed in the PC relative
indirect mode rather than the additional mode. In
the data processor64 of the present invention, if .
offset is over 32 bits, an error occurs.
@(offset[:N],PC[:N]):A
mem{offset + PC)
The process should be performed in the additional
mode. Since there is no portion which specifies the
base mode, the process is performed in the
absolute sdditional mode
+ additional mode EI = 10, disp = offset, index == PC,
and scale = 1.
@(PCI:B),offset[:ND[:A]
mem[offset + PC]
The process should be performed in the PC relative
additional mode
+ additional mode EI = 10, disp = offset, index = 0,
and scale = *.
@(@(@(R3[:B],base 1[:N],R4*4[:N])[:A),basec2[:N],R5[*1:]
[:ND:NDE:A)
mem{mem[mem[R3 + basel + R4*4] + base2 + RS]]
R3 relative additional mode
+ additional mode E1 = 01, disp = base], index = R4,
and scale = 4
+ additional mode EI = 11, disp = base2, index
and scale = 1
@(R3[:B],base 1[:N],R4*4[:A},R5*2[:N])[:A]
mem[R3 + base]l + R4*4 + R5*2]
R3 relative additional mode
+ additional mode EI = 00, disp = basel, index = R4,
and scale = 4
+ additional mode EI = 10, disp
and scale = 2
@(R3[:B],base]: A, R4*4:A)A
mem[R3 + basel + R4*4]
R3 relative additional mode
+ additional mode EI = 00, disp
and scale = *
+ additional! mode EI
and scaie = 4
+ additional mode EI
scale = *
This example uses three levels of additional modes
by specifying the format although it can be specified
in one level of the additional mode.

RS,

base2, index

RS,

basel, index = 0,

00, disp = O, index = R4,

10, disp = O, index = 0, and

The syntax of the additional mode is summarized in the
following, however, abbreviated syntax omitting paren-
theses and the syntax for commas *," which delimited
each portion are excluded.

Operand =
mem[mem][...} + disp + Rn * Scalel + Rm * Scale2
< General operand > ::=
< Operand value > [:N][. <Size>]
< Additional mode operand value >[. <Size>]
< Additiona] mode operand value> ::=
@(< Additional mode intermediatz value >, [<disp value>
[:ND.
[Index value >[:N]Df:A]
Accords with EI = 10
@(@(< Additional mode intermediate value> [<disp value>
[:N1],
[<Index value> [NID[:N]:A]
Accords with EI = 11
It represents the last level of the additional mode.
< Additional mode intermediate value> ::=
< Additional mode intermediate value >, <disp value >[:A)
< Additional mode intermediate value>, [<disp value>

[:N]}.

10

15

20

25

30

35

45

50

55

65

<Index value>[:A)
Accords with EI = 00
@(< Additional mode intermediate value >, [<disp value>

I,

[<Index value>[:NID[:A]

Accords with El = 01

It represents one middie level of the sdditional mode.
< Additional mode intermediate value > =

{0f:B] Accords with the absolute additional mode.

<Register No. >[:B] Accords with the register relative

additional mode.

PC[:B] Accords with the PC relative additional mode.
It represents the base mode (distinction of register
relative additional mode, PC relative additional mode,
and absolute additional mode.

<disp value> =

< Displacement > [: < Format >}

Accords with D,dddd field.

<Format >:= 4 16

<Index value> =
(Register No.){. <Size>]['*’ < Scale value>]

PC[. <Size>][**" < Scale value>]

Accords with S, M, Rx, and XX fields.
<Size>u=W L
<Scale value>z=1 2 4 8

32 o

‘** represents that an asterisk ‘* is used for a character.
It does not mean “repetition”.

<Size> of <Index> is the effective data size of the
index register. If *.“W” is specified in the data processor
64 of the present invention, the low order 32 bits of the
register are sign-extended to 64 bits.

If <Scale> of <Index> is omitted, ‘1’ is assumed.

A2-3-6 Special Operands

For the operands which are specified in other modes
except the general addressing modes (special operands),
the following syntax is used, however, the syntax for
the commands ‘,” which delimit each portion are not
excluded.

reglist (LDM,STM,ENTER,EXITD instructions)

<Register No.> or <Register No.>-<Register
No.> is delimited with ‘,’ and then parenthesized (. . .
).

< Special operand > =
({ <Serial register No.>,}*)

< Serial register No.> u=
<Register No.> Specify the numbered
register.
<Register No.>- <Register No.>> Specify all the registers
Example:
ENTER.W #10,()

LDM.W @block,(SP)
STM.W (R1,R3,R9-R13,FP),@-SP

newpc (BRA,Bcc,BSR,ACB,SCB instructions)

The available addressing mode is only the PC relative
mode. As the operand, only the label to be jumped is
described. In this case, the assembler sets the difference
between the start address of the instruction and the
address to be jumped as the bit pattern of nepc so that
control can jump to the specified label when the instruc-
tion is executed.

< Special operand > ::=

(label of destination)
Example:

BEQ nextaddr

ABC.B #1,R1,@limit,Joopaddr

Jump to nextaddr.
Jump to loopaddr.

5,201,039

151

In the BRA, Bcc, BSR, ACB and SCB instructions,
because the special addressing mode (only PC relative)
is often used and because it is preferred to directly writ-
ing a destination label, by describing only < Destination
label >, the difference between < Destination label >
and the address where the instruction is placed in auto-
matically set to the displacement. Only on <Destina-
tion label>, does a symbol name (except registers) ap-
pear without ‘#’ and ‘@".

For example: The following instruction

BRA label

represents the same meaning as the following instruc-
tion.

IMP @(label-5,PC)
‘$’ represents the start address of the instruction con-
taining ‘$’ (in this case, JMP instruction).

adj (UNPKSss instruction)
‘#’ is placed at the beginning of the instruction.

< Special operand > =
<offset > Directly set the value.
Example:
UNPKBW @src,@dest,#H'23302330

vector (TRAPA instruction)
‘#' is placed at the beginning of the instruction.

< Special operand > =

<Vector> Directly set the value.
Example:
TRAPA #1

Others

The literal specification for the bit field instructions
are represented like the short format literal specifica-
tion.

< Literal value>

The register specification for the bit field instructions
such as CHK, INDEX, ACB and SCB is represented
like the general address register direct mode.

<Register No.>

A2-4 “Mnemonic-Every-Format” and *General
Mnemonic”

The “General mnemonic” and ‘“Mnemonic-every-
format” are some features of the assembler of the data
processor of the present invention. Although a similar
feature is present in some instructions of conventional
processors (for example, MOV and MOVQ in the 68020
processor), the data processer of the present invention
completely systematizes both types of mnemonics, so
that the same concept is applied to both the operations
and descriptions of operands.

There are following relationship between the mne-
monic-every-format and the general mnemonic.

With the general mnemonic, user is released from
various restrictions caused by the implementation and
format. As long as the general mnemonic is used, the

assembler selects the suitable codes.

10

15

25

30

35

45

55

65

152

Instructions which have the same function and flags
whose status was changed in the same way, should be
unified under one general mnemonic.

The mnemonic-every-format corresponds with the
bit pattern of the machine language.

Even if the mnemonic-every-format is changed, it
only affects the object size and the number of execution
cycles, but to the user, the instruction function includ-
ing the flag status is not changed. Therefore, the format
parameters basically differ from the size parameters. In
the case of the size parameters, when the operation size
is changed, the instruction function appears to the user
to also change, so that in the conditional jump instruc-
tions a format parameter such as “BRA label:32” is
used, while in the addition instruction, a size parameter
such as “ADD src.B,Dest. W” is used.

The user usually employs the “general mnemonic™.
The “mnemonic-ever-format” is not used for describing
the format in the specification and for disassembling.
Thus, although occasionally it seems to be redundant, it
makes sense when considering the purpose of their
usage. The “general mnemonic” and “mnemonic-every-
format” are only two extremes of syntax. There is an
intermediate syntax which specifies part of the format.
For example, if “169 (offset,PC) is described in the
additional mode and the formats of each level of the
additional mode are not specified, the following de-
scription is used:

@(offset, PC):A

Although the “mnemonic-every-format™ is used, it is
possible to specify only the portion where the format is
required, so that the instruction being described is not
so long.

The “mnemonic-every-format™ can be converted into
the “general mnemonic” by simply deleting “: X . Con-
versely, the “general mnemonic” can also be converted
into the “mnemonic-every-format™ by adding “:X” in
the range where the format is allowed. The order of
operands is not changed. Although it can be used to
change symbols and order of the mnemonic-every-for-
mat, the relationship between the mnemonic-every-for-
mat and the general mnemonic can become compli-
cated. (Various types of classification are required and
the expandability is also degraded.)

If part of a format like “@(offset,PC)” is specified, it
is desired to uniformly distinguish the “mnemonic-
every-format” and the “general mnemonic™.

The interface requested by the user is the general
mnemonic, while the interface restricted by the ma-
chine language is the mnemonic-every-format. Both are
arranged by the X' format specification character and
assembler.

When both the mnemonic-every-format and the gen-
eral mnemonic are used at a time, the assembler must
unfortunately be more complicated. However, it is pref-
erable to have the format processed by the assembler
than the user, even if the assembler’s process is compli-
cated to some extent.

Even if the bit pattern is similar, if the machine lan-
guage and flag status are changed, a different general
mnemonic is used.

For the above reasons, it is preferable that the use of
the mnemonic-every-format and the format to be used
should be clarified. To do that, the portion which repre-
sents the format should consistently be fixed to “X’.

5,201,039

153

The portion of ‘[. . .] in the syntax is omissible. How-
ever, it is not necessary to uniformly determine whether
it is omitted or not. For example, some ‘(. . .]’ can be
omitted, while another °[. . .]’ can remain.

A2-5 Assembler as Language

The assembler syntax described above is the syntax
for using the mnemonics as instructions for the machine
language bit pattern and is the core of the assembly
language. In the data processor of the present invention,
this syntax is specified in < <LO>>.

The following items should be defined. They should
conform to the IEEE standard if their application
causes no inconsistency with the architecture of the
data processor of the present invention.

Whether upper case characters and lower case char-
acters are used

How many symbolic characters can be used?

Whether an expression can be described in symbolic
characters and what syntax is used

What label format is used (whether ‘ following a
label is used)?

What syntax is used for binary, octal, decimal and
hexadecimal?

What syntax is used for comments?

What syntax is used for strings?

What syntax is used for special characters (example,
line feed character * n’)?

What detail syntax and characters are available?

What assembler pseudo instructions are used ?

What about macros?

The syntax for binary, octal, decimal and hexadecimal
in IEEE is specified as follows.

B’ Binary Example: B'00010010 = H'12
Q' Octal Example: Q22 = H12
D’ Decimal Example: D'ig = H'I2
H’ Hexadecimal

this specification uses “H’xx” for hexadecimal notation
and “B’xx” for binary notation.

A2-5-1 Upper Case Characters and Lower Case
Characters

Although the IEEE standard does not differentiate
between the upper and lower case characters, the data
processor of the present invention treats the upper and
lower case characters for mnemonics and reserved
names equally. In short, programming examples written
in upper case characters in this document can be de-
scribed in Jower case characters. However, for vari-
ables that the user defines, the upper case characters and
lower case characters are generally distinguished.

A2-5-2 Symbol Value

In items such as <Displacement>, <Literal val-
ue>, <Immediate value>, and < Absolute address>
(named < Symbol value>, expressions of arithmetic
operations including constants and labels can be de-
scribed. To change the priority order in the expressions,
it is possible to use ‘(. . . However, for an expression
containing an unstable value (such as a label which is
defined by an external name or defined later), the for-
mat of the arithmetic expressions can be restricted to
obtain correct relocation.

In addition, it is possible in expressions to use ‘§’
which represents the address of the instruction cur-
rently under consideration.

The PC relative indirect mode is represented as fol-
lows. @(disp.PC)

10

20

25

30

35

45

55

60

65

154

The disp value is set directly in the displacement.
However, if a prograim which is PC relative and reloca-
table is described, it is necessary to set the difference
between the operand address and the instruction ad-
dress as the disp value rather than setting the operand
address as the disp value. To do that, ‘$’ can be used. In
other words, it is possible to set (operand-$) as the disp
value.

Example of a program with ‘§$’

< < Address> >
H'00FE
H'0100
H'0104
H'0108
H'010C

MOV.B #1,@(loc—5:16,PC)
MOV.B #2,@(8:16,PC)

H0180 loc:

In the second operand @(loc-$:16,PC) of the MOV .B
instruction at the address H’0100, the value being set for
the bit pattern of the real disp becomes H'0180-
H’0100=H’0080. With this invention, 1 is set to loc at
address H'0180. On the other hand, with the MOV.B
instruction at H'0104, 2 is set at address
H0104+8=H’010C.

Syntax of an operand with both additional mode and

@(@([0:B,] label1-$[:N],PC[:N])[:A},1abel2-
$[:N],PC[:N])[:A]represents
mem[mem{displ 4+ PC] + disp2PC]
However,
disp1 is the difference between the address that labell
represents and the current address.
disp2 is the difference between the address that label2
represents and the current address.
The extension portion of the additional mode is com-
posed of the following:
Absolute additional mode
+additional mode EI=01, disp=displ
and scale=1
+additional mode EI=10, disp=disp2, index=PC,
and scale=1
This mode can be used when a relocatable table (such as
a jump table for the case statement) is placed in the
program area.
The following PC relative indirect in the first level is
used to make the table reference for the case statement
relocatable.

‘$

, index=PC,

mem|disp! + PC)

The following PC relative indirect in the second level is
used to make the decision of the address to be jumped
relocatable.

mem[mem]. . . J+disp2+PC]

Appendix 3 Qutline of Memory Management Method
_ of Data Processor of the Present Invention

It is assumed that there will be chips which contain
the data processor instruction sets of the present inven-
tion without memory management hardware (MMU),
depending on the applications.

Thus, the memory management mechanism of the
data processor of the present invention is not always
defined in the < <LO> >specification, but in the

5,201,039

155
< <LA>> specification which only lists the standard
specification. The paragraphs that follow describe the
standard memory management method of the data pro-
cessor of the present invention in the < <LA> >s-
pecification.

A3-1 Memory Management Method Selection and
< <LIR>> Specification

The data processor of the present invention provide
the standard specifications of address translation and
memory management methods by hardware (named
MMU) in the < <LA>> specification. However,
where ITRON and micro-BTRON are accommodated
in the data processor of the present invention, MMU is
not required for the most part. Even if an application
requires MMU, until the execution environment con-
cerning MMU (such as page table) is terminated, it is
necessary to execute the instructions without address
translation.

To do that, the data processor of the present inven-
tion provides a field in PSW which indicates whether
the MMU mechanism is used or not and whether the
address translation is performed or not. By rewriting
this field, the address translation and memory protec-
tion availability can be specified. This field is named the
AT (address translation) field. AT is placed at bits 6 and
7 of PSS. With AT provided in PSW, the context
switch by LDCTX, EIT process operation, and switch-
ing of address translation are available, even if a return
is made from the EIT process handler by REIT instruc-
tion are available.

The meaning 319 of the AT field 320 is as in FIG.
299.
For the data processor of the present invention which
accommodates the standard memory management in
the < <LA> > specification, AT=00 and 01 can be
used. For the data processor of the present invention
which acommodates the memory management speci-
fied in < <LIR>>, AT=00 and 10 can be used. Al-
though memory protection every page cannot be con-
ducted because MMU is not implemented, when
AT=10in the < <LI1R> > specification, only ring 0
and ring 3 of the four rings in < <LA > > are enabled
for simple memory protection by address.

The MSB=1 address area (SR in < <LA>>) can
be accessed from ring 0; however, it cannot be accessed
from ring 3. Usually, OS is placed in the area of
MSB=0, but the area of MSB=0 (UR in < <LA>>)
can be accessed from ring O and ring 3. Usually, the user
program is located in the area of MSB=0. Although the
memory protection between user programs is not avail-
able because MMU is not accommodated, OS can be
protected from the user program.

If at =00 (no address translation), the ring protection
for accessing the memory cannot be checked.

Thus, page out exception (POE) and address transla-
tion exception (ATRE) do not occur.

However, even if AT =00, a privileged instruction is
checked. It is preferred that the operation at AT=00 in
< <L1> > be the same as that in < <LIR> >. How-
ever, in instructions such as LDATE, they are practical
instructions for setting the MMU environment, while
they are meaningless in < <LIR> >. In addition, in-
structions such as PTLB have meaning at AT=00 in
<<Ll>>, while they are meaningless in
< <LIR>> because of the absence of TLB itself.
Thus, in the < <L1R> > specification, sach MMU
related instructions are not provided. If execution of
these instructions is attempted in < <L1R> >, regard-

20

25

50

55

65

156
less of the value of AT, a reserved instruction exception
(RIE) occurs,

A3-2 Memory Management Method of the Data Pro-
cessor of the Present Invention

The data processor of the present invention is the
Data processor in the < <L1R> > specification.

The AT field of the data processor of the present
invention 321 has meaning 322 as in FIG. 300.

A3-3 Accessing 1/0 space of The Data Processor of
the Present Invention

If an instruction fetch operation for the I/0 space
represented with IOMASK and IOADDR and an oper-
and fetch operation in the memory indirect addressing
mode are conducted, an address translation exception
occurs.

In the memory indirect addressing mode, the 1/0
space is not accessed. However, when an instruction is
fetched, the access operation is performed. Thus, it is
necessary to lock out any external 1/0 device when the
bus access type (BAT) signal is the instruction fetch.
Since the 1/0 space is usually located in the ring O area,
it is handled such that if data is accessed from ring 3, a
ring protection violation occurs. A ring protection vio-
lation can be rapidly detected, so that the memory is not
accessed. Although an address translation exception
occurs, if data is accessed over the 1/0 space and non-
1/0 space, the reexecution operation cannot be assured.

A3-4. Expandability of 64 Bits

If a switch bit of SR/UR is fixed to MSB of the logi-
cal address, there is the problem when expanded to 64
bits. The data process or of the present invention will
solve of the problem by treating the logical address as
the signal number.

In order to expand both SR and UR from 32 bits to 64
bits, the address space needs only to expand in the two
directions. Hence, the address is assumed to be the
signed number and the UR region is assumed to expand
in the positive direction and the SR region in the nega-
tive direction, thereby solving the problem. Concretely,
the logical address is kept to sign-extend with respect to
expansion of 32 10 64. A memory map 323 is as shown
in F1G. 301.

Or, depiction 324 can be also shown as in FIG. 302.

The address is assumed to be the signed number,
thereby keeping continuity with respect to expansion at
both the SR and UR regions.

Instead, the address space is split into OS region and
user region at the address of H'80000000 for the 32 bits
processor and the both two regions are placed away
from the 64 bits, which is considered non-problematical.

In addition, at the 16-bits absolute addressing mode(-
@ads:16) of the data processor of the present invention,
the logical address is adapted to be sign-extended, to
which an idea of address with signed number is applied.

Appendix 4 Status Flag Changes of the Data Processor
of the Present Invention

The syntax of flag changes in each instruction are as
follows.
N change
+ The flag is changed depending on its meaning.
* The flag is changed irrespective of its meaning.
0 Cleared to 0.
1 Settol

A4-] Data Transfer Instructions 325: shown in FIG.
303.

A4-2 Comparison and Test Instructions 326: shown in
FIG. 304.

5,201,039

157

A4-3 Arithmetic Operation Instructions 327: shown
in FIG. 30S.

X_flag of ADDX and SUBX indicate a carry or
borrow in the size of dest. If the size of arc in SUB is the
same as that of dest, X__flag indicates the comparison of
two sizes in an unsigned operation.

On the other hand, L__flag indicates the comparison
of two sizes in a signed operation.

M_flag and Z_flag in MUL, MULU, MULX, DIV,
DIVU, DIVX, REM, REMU and NGE are set depend-
ing on the set value of dest irrespective of whether an
overflow occurs or not.

M_flag and Z_flag in MULX and DIVX are irre-
spective of the set value of reg.

V_flag in DIV is set in division by zero or “(mini-
mum negative number)+(— 1) occurs.

V_flag in DIVU is set in the case of division by zero.

V_flag is DIVX is set in the case of division by zero
or the quotient is out of the dest size.

V_flag in NEG is set if dest is the minimum negative
number.

M_flag and Z_flag in INDEX are changed depend-
ing on the set value of xreg (part of the result). L_flag
indicates that the result is negative, while V_flag indi-
cates that an overflow occurs in multlphcauon or addi-
tion.

A4-4 Logical Operation Instructions 328: shown in
FIG. 306.

M_flag and Z_flag in NOT are changed depending
on the set value of dest (reversed result).

A4-5 Shift Instructions 329: shown in FIG. 307.

M__flag and Z_flag are changed depending on the set
value of dest (shift result).

The last shift out value is placed in X _flag.

If count of SHA, SHL and ROT is 0, X_flag is set to
0.

In SHA, only if the sigu is changed while count >0
is V_flag set to 1. Otherwise, V_flag is set to 0.

A4-6 Bit Operation Instructions 380: shown in FIG.
308.

Ad4-7 Fixed Length Bit Field Instructions 331: shown
in FIG. 309.

In the fixed length bit field instructions, the status
flags of BFCMP and BFCMPU are changed similar to
these of CMP and CMPU. The status flags of other
instructions are changed similar to those of MOV and
MOVU. In BFINS and BFINSU, the status flags are
changed depending on BBBBBBBB 332 in FIG. 310.

In BFEXT and BFEXTU, the status flags are
changed depending on the set value of the destination
rather than the bit field being fetched, so that it accords
with the MOV instruction and so forth where the status
flags are changed depending on the value being set on
the destination.

A4-8 Variable Length Bit Field Instructions 333:
shown in FIG. 311.

A4-9 Decimal Operation Instructions 334: shown in
FIG. 312.

Sign-extension does not hdve meaning in BCD num-
bers. Basically, they treat unsigned numbers. Their sta-
tus flags are changed similar to ADDU and SUBU.
However, since ADDX and SUBX treat both unsigned
and signed numbers, their status flags change irregu-
larly, unlike those of ADDU, ADDDX, SUBU and
SUBDX.

The data processor of the present invention does not
support decimal operations.

A4-10 String Instructions 335: shown in FIG. 313.

5

10

15

20

25

30

35

45

55

65

158

F_flag in SMOV, SCMP and SSCH indicates that
the operation is terminated by the termination condition
(in the case of SSCH, it indicates that the search opera-
tion is successfully terminated).

V_flag indicates that the instruction is terminated by
the number of elements.

M_flag is used to distinguish multiple termination
conditions. If the operation terminates in a condition
relating to R3, M_flag is set to 0. If the operation is
terminated by another 0 or in a condition relating to R4,
(only available in < <L > >), the flag is set to 1.

X_flag, L _flag and Z__flag in SCMP are set depend-
ing on the result of comparison in the last element.

X_flag indicate the comparison when the element is
considered as unsigned data, while L_flag indicate the
comparison when the element is considered as signed
data.

A4-11 Queue Operation Instructions 336: shown in
FIG. 314.

Z_flag is QINS indicates that data is placed in an
empty queue.

Z_flag in QDEL indicates that after an entry is de-
leted, the queue becomes empty, while V_flag in
QDEL indicates that an attempt was made to delete an
entry from an empty queue.

F_.ﬂag in QSCH indicates that the operation is termi-
nated in the termination condition (the search operation
is successfully terminated).

V_flag indicates that the opcranon is terminated by
the queue termination value R2 (the search operation is
unsucocssfully terminated).

M_flag is used to dlstmguxsh multxp]e termination
conditions. If the operation is terminated in a condition
relating to R3, the flag is set to 0. If the operation is
terminated by another O or in a condition relating to R4
(available only in < <L2> >), the flag is set to 1.

A4-12 Jump Instructions 337: shown in FIG. 315.

The flags in the jump instructions are never changed

A4-13 Multiprocessor Instructions 338: shown in
FIG. 316.

A4-14 Control Space, Physical Space Operatlon In-
structions 339: shown in FIG. 317.

If PSW is specified to dest with LDC, all the flags are
changed.

A4-15 OS Related Instructions 340: shown in FIG.
318.

The data processor of the present invention does not
support JRNG and RRNG.

A4-16 MMU Related Instructions 341: shown in
FIG. 319.

M_flag, L_flag and Z_flag in the ACS instruction
indicates the read permission, execute permission and
write permission, respectively.

V_flag in MOVPA indicates the physical address has
not been obtained due to a page fault or error.

F_flag indicates that a page fault occurs.

V_flag in LDATE and STATE indicates that ATE
cannot be transferred due to a page fault or error.

The data processor of the present invention does not
support the MMU related instructions except for the
ACS instruction.

Appendix 5 Operation between Different Size Data Sets

The data processor of the present invention can per-
form various operations with different size (in byte
increments) integers. It is called “operation between
different size data sets”. Currently only integers are
treated in “different sizes”. Data size are converted by

5,201,039

159

simple processes such as zero-extension and sign exten-
sion. For example, if an 8-bit signed integer is added to
a 32-bit integer, the signed bit (MSB) of the 8-bit integer
is extended to the high order bit and the addition opera-
tion is performed. Since the sign-extension process is
available in 1 and 2 levels of gates, it is not much more
complicated than regular addition instructions.

AS5-1 Availability of Different Size Operation

The different size operations are used in the following
cases.

(1) When one operand is an immediate:

When a variable and constant are the operands, since
the size of the constant can be obtained during the com-
piling operation, if the constant is treated as the smaller
size, it can be effective in reducing the length of the
instruction. For example, when an 8-bit constant, 100, is
added to a 32-bit register, if a 32-bit addition instruction
is used, a 32-bit field is required.

However, the instruction which adds 8 bits to 32 is
used, since the field which specifies a constant of 100
only needs 8 bits, the length of the instruction can be
shortened.

In a multiplication or division operation, the different
size operands affect the performance of such an opera-
tion as well as its length. Since it is difficult to provide
a 32 to 64 bit parallel multiplier in microprocessors,
multiplication operations are conducted with addition
and shift operations. However, the amount of multipli-
cation operations is proportional to the product of two
operand sizes. Thus, it is profitable to have one of two
operands small. Without the different size operation
function, for multiplying a 32-bit variable by 3, for ex-
ample, it is necessary to perform a multiplication opera-
tion of 32 bits * 32 bits.

(2) Address Calculation

In an address calculation, it is necessary to match the
size of the destination with the address length. Thus, in
the case of a 32-bit processor, operations between a
32-bit operand and a different size operand are often
conducted. For example, in a character conversion
table, if the index range of the table is 8 bits or less, an
addition operation of the index and base address is con-
ducted as an addition of an 8-bit unsigned integer and a
32-bit integer.

(3) High Level Language

Generally, in a high level language, the size of sub-
routine parameters is often extended to the machine’s
basic size (for example, 32-bits) because the subroutine
parameters are transferred using a stack, or because the
divided compile operation can be simplified. In the C
language, the evaluation of expressions is always done
in the machine’s basic size irrespective of the data size of
variables in the expression. On the other hand, the size
of variables in the memory, arrays in particular, is usu-
ally minimized to save the memory area. Thus, in a
program which uses arrays and subroutines at the same
time, their size should be converted when data is moved
or while the operation is executing. To evaluate an
expression and covert the size of operands at a time,
different size operations like the data processor of the
present invention is convenient.

AS5-2 Real Operations in the Data Processor of the
Present Invention

In the data processor of the present Invention, to
support different size operations, the independence for
specifying the data size has been enhanced so that dif-
ferent size operations are available in most of the 2-ope-
rand, general-format basic operation instructions. In

10

20

25

30

35

45

50

55

65

160

short, with 2-operand general-format basic operation
instructions, the source size and destination size can be
independently specified. If necessary, sign-extension,
zero-extension, round-off of the high order bits, and so
forth are available. Even if the destination size is smaller
than the source size, the operation is executed and an
overflow is detected depending on the destination size.

The different size operation of each instruction is
exemplified in the following.

8 bits
16 bits
32 bits

Byte
Halfword
Word
src.B,dest W
Sign-extend 8-bit src and transfer it to dest.
src. W dest.B

Transfer low order 8 bits of src to dest.

If the value of src as a 32-bit signed integer differs
from the value of dest as an 8-bit signed integer, an
overflow occurs.

src. B, dest. W

Sign-extend B-bit src to 32 bits and add it to dest.

src. W,dest.B

The value which is sent to dest is the same as that
where the low order 8 bits of src are added to dest.
However, the instruction means that the coments of src
(32 bits) are added to the contents of dest (the B-bit
operand is sign-extended to 32-bits), the result is
converted into an 8-bit signed integer, and then it is
stored in dest. Thus, if the sum of the 32-bit op-
eration cannot be expressed by 8 bits of dest, an over-
flow occurs.

B:

H:

W
MOV

MOV

ADD

ADD

In the data processor of the present invention, if the
source data size differs from the destination data size,
normal sign extension is performed. However, for in-
structions which may require a zero-extension opera-
tion MOV, CMP, ADD, SUB), the zero and sign ex-
tension can be switched at the instruction level.
MOVU, CMPU, ADDU and SUBU instructions are
used. In MOVU, CMPU, ADDU, SUBU, MULD and
DIVU, if the destination size is larger than the source
size, the zero-extension operation is performed and an
overflow is detected assuming that the result is treated
as an unsigned integer.

A5-3 Different Size Logical Operations

Since each bit is completely independent in logical
operations, different size operations are meaningless,
i.e,, they are the same as small size operations except
that the flags are changed in a different manner. Zero-
extension and sign-extension operations for operands of
logical operations differ also.

If the following function is described using the C
language, the sign-extension operation and logical oper-
ation should be performed (although they are meaning-
less).

foo(){
short int16; /* 16-bit signed integer */
int int32; /* 32-bit unsigned integer */
int32 &= intl6; /* int16 is sign-extended. */

Such an example is included for regularity and symme-
try for the language. It is hardly used except as part of
programming tricks.

Problems of whether different size operations in logi-
cal operations are supported or not are summarized as
follows.

(1) During execution

5,201,039

161

Logical operations with different size operands are
not performed often and they do not have logical
meaning. Practically, they can be substituted with
other instructions and are only used for program-
ming tricks.

(2) During compiling

Even in logical operations in the C language, zero
extension and sign extension operations may be
required. Even if they are not used often, the com-
piler should generate correct codes, so that the
symmetry of instructions is maintained.

(3) Implementation for chip

While the distinction of sign extension and Zero ex-
tension operations is the same in all instructions due
to the regularity of implementation, even in the
logical operations, the introduction of zero exten-
sion and sign extension operations is benefited.
However, to do that, many bit patterns are re-
quired for assigning the instructions, resulting in
complex encoding of the instructions. Practically,
the sign extension and zero extension operations
cannot be distinguished in logical operations, so
that the regularity of implementation for sign ex-
tension and zero extension operations in logical
operations is not benefited. In addition, since this
matter may differ according to manufacturer, it is
difficult to unify the specifications.

Although the problem is determining whether to focus
on (2) or (3), for maximum performance enhancement,
it is preferable to select (3).

In short,

In different size logical operations, it is not desirable
to degrade the performance enhancement by operations
which are hardly executed.

Since the different size logical operations for item (2)
(including the sign extension operation) are not often
used, it is possible to slightly lower their execution
speed. For example: although the following instruction

AND src.B,dest W Sign-extend src.

is replaced with the following instructions.

MOV
AND

src. B.@—SP.W
@SP+.W,dest. W

Sign-extend src.

the execution speed is slightly lowered, but the symme-
try for the sign-extension and logical operations can be
performed. With this operation, the burden on the com-
piler does not increase.

The data processor of the present invention specifica-
tion does not support different size logical operations. If
the instruction bit patterns are different sizes, logical
operations are not assured.

AS5-4 Summary of Different Size Operation Function

The paragraph that follows summarizes the relation-
ship between instructions supported by the data proces-
sor of the present Invention and integer data types.

Supports 8-, 16-, 32-, and 64-bit long instructions.

Supports signed integers with higher priority.

For arithmetic operations of signed integers, different
size operations in 2-operand instructions are sup-
ported.

The source size and destination size can be indepen-

dently specified without restriction due to the size. If
the source size is smaller than the destination size, the

45

55

65

162
sign extension operation is performed. The result is
treated as a signed integer and the flags are set accord-
ingly.

Unsigned integer operations are supported only in
part of instructions (MOV, CMP, ADD, SUB, MUL
and DIV). The source size and destination size can be
independently specified. If the source size is smaller
than the destination size, the zero extension is per-
formed. The result is treated as an unsigned integer and
the flags are set accordingly.

The operations which include signed and unsigned
integers cannot be performed. However, in the case of
an addition instruction, the presence or absence of the
sign of the destination only affects the flags. If the flags
do not need to be observed, the operation can be re-
placed with ADD or ADDU.

The different size logical operations are not sup-
ported.

Appendix 6 Subroutine Calls for High Level Languages

In subroutine cells in high level languages, it is neces-
sary to save the return address, set the frame pointer,
keep the local variable area, and save the contents of the
general purpose resisters. Although these operations
can be broken down into instructions such as JSR and
STM, they are usually lumped as one instruction (EN-
TER, EXITED).

A6-1 Subroutine Cells in the Data Processor of the
Present Invention

In subroutine cells of high level languages (C and
PASCAL in particular), the process 342 is performed as
in FIG. 320.

The paragraph that follows describes the subroutine
instruction ENTER and return instruction EXITD that
the data processor of the present Invention provides for
high level languages.

FP (frame pointer) and displacement

The language which provides a static scope like PAS-
CAL employs a display register which accesses vari-
ables in the intermediate level (which is located be-
tween the level of the local variables and the level of the
global variables). For processors which use many regis-
ters like the data processor of the present invention, it is
effective to provide such a display register in the gen-
cral purpose registers. It means that these processors
have multiple FP’s (for implementation, see the descrip-
tion in A6-2).

Parameters

When parameters are passed, they are grouped as a
packet and the start address is passed with a register or
parameters are placed in the stack. In high level lan-
guages, the latter method is often used. To access pa-
rameters in the stack by the called subroutine, the FP
relative mode is used.

After a subroutine is executed, the parameters in the
stack should be released by the called side. Depending
on the language, the number of parameters (value to be
added to SP) to be released can be specified in the re-
turn instruction, unless partitioned compiling is per-
formed. To do that, the data processor of the present
invention provides the EXITD instruction. Since the
number of parameters may be automatically determined
(when the specific register and stack are used to inform
the subroutine of the number of parameters), it is possi-
ble to use a value in the register as well as the immediate
value, as the value to be added to SP.

5,201,039

163

However, in languages where the number of parame-
ters cannot be determined, as in the C language, the
subroutine side does not known the number of parame-
ters which is determined by the side which calls the
subroutine. Thus, in the EXITD instruction which is
executed on the called side, the number of parameters to
be released cannot be specified. In this case, the side
which calls the subroutine should execute the instruc-
tion “ADD #n,SP” to release the parameters.

The ENTER instruction and EXITD instruction of
the data processor of the present invention perform the
processes 2 to 4 in the schematic on the preceding page
and the processes 5 to 7 or 5 to 8, respectively. (How-
ever, the number of parameters being released in pro-
cess 8 is specified on the subroutine side.) Process 1 is
the same as JSR, while process 8 serves to the perform
“ADD *** SP” on the side which calls the subroutine.

The stack frame 343 in high class languages for the
data processor of the present invention is as in FIG. 321.

To place the local variables and parameters near FP,
the register saving operation precedes the local variable
keeping operation.

The EXITD instruction includes the restore (RTS)
operation.

Practical Instruction Sequence 344, 345

(If the subroutine side does not known the number of
parameters): shown in FIG. 322.

(If the subroutine side knows the number of parame-
ters): shown in FIG. 323,

A6-2 Examples of Configuration of Display Register
for Block Structural Language

To use the FP register, which is used in ENTER-
EXITD as a dynamic link, it is necessary to assign the
FP register to the frame pointer for the internal block
(maximum lexical level).

For frame pointers in other lexical levels, R13, R12,
Rl11..., are used in the order of smaller value change
to match the content of the smallest number register
with FP.

After the ENTER instruction is executed in each
subroutine, FP is copied to the frame pointer register
corresponding to their own lexical level. The register
corresponding to their own lexical level. The registers
larger than the number are used for the displacement
registers and those smaller than the number are used for
the saving registers. However, the contents of the regis-
ters newly rewritten should be saved.

Program Example (Static Scope) 346: shown in FIG.
3.

Example of Execution Statuses (Dynamic Link and
Display registers) 347: shown in FIG. 325.
procO?*,var)*

procQO has a different frame from the former proc)
because of a recursive call.

For the registers whose contents are destroyed by the
FP copy operation, the contents should be saved
with the ENTER instruction before the copy oper-
ation. If the contents of the registers are saved,
when the control returns the function just before
executing the subroutine, the contents of the dis-
play registers return to the former values irrespec-
tive of whether the lexical level is high or low.

In the preceding example, the following relationship
can be obtained depending on how the registers are
used.

For the execution of subroutines in the lexical level n,
the following items are required.

10

15

20

25

30

35

45

55

60

65

164

(1) n registers from R13 to R13-n+1 are only refer-
enced: they are not written.

(2) Since the R13-n registers are used for displaying the
local variables in this level, it is copied from FP after
ENTER is executed. This display is used to access
the variables in this level from the called subroutine
when the higher level subroutine is called during the
subroutine execution. To access the variables in this
level from the subroutine, it is preferable to use FP
which has the same content.

(3) The (13-n) registers, from R13-n—1 to RO, are used
for the register variables and for their evaluation.
(4) the contents registers R13-n—1 to RO, should be
saved with the ENTER instruction. The contents of

all the registers should be stored.

Appendix 7 Control Registers and Control Space

Since the specifications for the control registers
closely relate to the chip bus (which is connected to the
coprocessor, cache, TBL, and so forth) and the imple-
mentation method, they are specified in < <LA> >.

A7-1 Concept of Control Space

In the data processor of the present Invention, a
unique address is assigned to all the registers, MMU,
cache, control registers (such as TLB of the main pro-
cessor and coprocessor on the chip bus) and context
switch high speed memories on the chip bus. It is called
the control space. The control space of the data proces-
sor of the present invention is such that the address
space (co-processor -ID) for conventional processors
and the control register address of the main processor
are unified and generalized. In features the following:

The control space in the data processor of the present
Invention contains the following:

(1) Main processor control registers . .
pointer of each ring, etc.

(2) MMU control registers (the data processor of the
present invention does not provide either or MMU.)
... UATB, SATB, etc.

Registers depending on the implementation
(3) [Co-processor control registers]

(4) [Context saving high speed memory]. . . For further
chips

(5) [General purpose registers and temporary registers
in processor). . . Remote diagnosis and debugging
The control space is the common space between

contexts (processes and tasks). The control space is

accessed at high speed by a simplified protocol because
address conversion is not required. This function is also
used for the high speed context switching.

The concept of the control space will only become a
reality when a co-processor and context saving memory
are built in the future. For the first version chips, since
it may be difficult to unify the operation of the control
space, only the address assignment is determined for
further use and some of the control space operation
instructions can be used with some restrictions.

Practically, there are the following restrictions:

Although the control space addresses are assigned
from RO to R15 with PC used for diagnosing the pro-
cessor, they are specified in < <L2> > and the data
processor of the present invention does not provide
them.

LDC and STC are generally used to access the main
processor control registers, FPU control registers and
context saving memories. However, in the data proces-
sor of the present invention, only the control registers
with the effective addresses H'0 to H’O7ff (main proces-

. PSW, stack

5,201,039

165
sor control register) can be accessed with LDC and
STC.

In the addresses of the control space in the data pro-
cessor of the present invention, the byte and half-word
accesses cannot be used. The word access is automati-
cally specified.

The context saving memory cannot be located in the
area where the control registers are located (from H’0).
Since the addresses from H'ffff8000 to H'ffffffif are
assigned (and also the extension area from H’80000000)
as the context saving memory, if LDCTX/CS or
STCTX/CS is executed while a value other than
H’80000000 to H'fIHIIIIY is set to CTXBB, an error oc-
curs. The function of LDCTX/CS and STCTX/CS is
specified in < <L2>>.

The data processor of the present invention does not
support LDCTX/CX and STCTX/CS.

—: Required specification < <L1> >

. .. : Only address assignment < <L2> >

Although the byte access and half word access are not
available in the control space 348 diagrammed in FIG.
326, the byte addressing mode is used because the exe-
cution address can be specified using the general pur-
pose addressing mode. Confusion will occur unless the
byte address is the same type as used in the logical
space. To save the context in the control space, the
general purpose addressing mode can be used in the
control space.

If only the control registers in the main processor can
be accessed with LDC and STC, the byte addressing
mode loses its meaning and the specification becomes
unnatural. In order to accommodate further plans, such
unnaturalness for part of the functions is now unavoida-
ble.

A7-2 Main Processor Control Registers

The mnemonics and addresses of the control] registers
are as follows. The address of the control register is
placed at 8n+4, because of the expandability of the
registers to 64 bits.

H’0000 to H'03ff
H'0400 to H'07fT
H'0800 to H'Obff
H'0c00 10 H'Offf

Main processor, MMU (TRON reserve)
Main processor, MMU < <LV> >
FPU (TRON reserve)

FPU < <LV>>

* means the register provided every context.
/ means the register which will not always be pro-
vided (address assigned).

Address Register

reserved

PSW

reserved

SMRNG

reserved

IMASK

reserved

reserved

reserved - EITVBH

H'0000
H'000c
*)
H'0018
H'0024 EITVB

15

20

25

30

35

45

55

60

166
-continued

Address Register

H'0048 reserved - UATBH

H'004c * the data processor of reserve - UATB
the present invention

H'0050 reserved

H'0054 * the data processor of reserved - LSID
the present invention

H'0058 reserved

H'005c reserved

H'0060 reserved - IOADDRH

H'0064 / JIOADDR

H'0068 reserved — IOMASKH

H'006c / IOMASK

H'0060 to H'007f reserved

H'0080 reserved

H'0084 (*) the data processor of reserved — DCE
the present invention

H'0088 reserved

H'008c DI

H'0090 reserved

H'0094 * the data processor of reserved - CSW
the present invention

H'0098 rescrved

H'009¢ (*) the data processor of reserved - CTXBFM
the present invention

H’00a0 to H'00ff reserved

H'0100 reserved - SPIH

H'0104 SPI

H'0108 to HO1If reserved

H'0120 reserved - SPOH

H'0124 . SPO

H0128 reserved - SP1H

H'012¢ * the data processor of reserved - SP)
the present invention

H'0130 reserved - SP2H

H'0134 * the data processor of reserved — SP2
the present invention

H'0138 reserved -- SP3H

H'013¢ . SP3

H'0140 to H'01701 reserved

H'0180 reserved - ROH

H'0184 * the data processor of reserved - RO
the present invention

Ho188 reserved — R1H

H'018¢ * the data processor of reserved — R1
the present invention

H01e0 reserved - R12H

H'Ole4 * the data processor of reserved -~ R12
the present invention

H'Ole8 reserved - R13H

H'Olec * the data processor of reserved - R13
the present invention

H'01f0 reserved — R14H

H'01f4 * the data processor of reserved - R14
the present invention

H'01f8 reserved - PCH

H'0lfc * the data processor of reserved —~ PC
the present invention

H'0200 to H 4 03ff reserved

(H'0400 to H'OMY <<LV>>)

H'0424 BBC

H'042C BBP

H'0534 DBC

H'0484 XBPO

H'048C XBP1

H'0504 OBPO

H'050C OBP1

A7-3 Unused Bits in Control Registers

H'0004 .
H'0008
®)
H'0010
H'0014
H'001c R
H'0020
H'0028
H'002c

H0030
H'0034 .
H'0038
H'003¢c
H'0040
H'0044

the data processor of

the present invention -

the data processor of
the present invention

reserved ~ JRNGVBH
reserved - JRNGVB

reserved - CTXBBH
CTXBB

reserved

reserved

reserved - SATBH
reserved —~ SATB

65

If “1” is written to the unused bits in the control
registers, it is preferable to check them and to cause an
EIT to occur. If they are improperly checked, it is
difficult to maintain the compatibility (especially, with
lower grade chips) and an overhead for checking the
bits takes place. Thus, except for PSW, the data proces-
sor of the present invention does not check the unused
bits.

5,201,039

167

Even for a chip with the registers whose functions
are specified in < <L2> > (like CTXBFM), it does not
check an error and does not always read data which is
written.

Although the bits are not checked, it is important for
the user to note that the bits which are not used should
be filled with *0'.

A reserved function exception (RFE) occurs for
PSW, if ‘I’ is written to the unused bit ‘—".

Bits ‘—°, =", and ‘*’ in the description of the control
registers mean the following:

‘—’ Reserved to ‘0’ (An exception occurs if violated.)
‘4’ Reserved to ‘I’ (An exception occurs if violated.)

Although ‘0’ or ‘I’ can be written to this bit, a re-

served function error (RFE) in the instructions (such

as LDC and LDCTX) occurs.
‘=" Reserved to ‘0’ (It is ignored if violated.)
‘#’ Reserved to ‘1’ (It is ignored if violated.)

Even if ‘1’ or ‘0’ is written to this bit, it is ignored. The
operation when ‘0’ or ‘1’ is written is the same as
that when ‘1’ or ‘0’ is written.

‘** Any value can be written.

The operation of hardware is the same as that when
‘=" or ‘#' is written. Regardless of the value writ-
ten, it is ignored. Unlike ‘=" and ‘#’, this bit will
not be used even if the function of the chip is ex-
tended in further. Thus, the user can write any
value to this bit. It is important for the user to note
that this bit should be ignored and the bit mask
process should be omitted.

In IMASK, SMRNG, DI, DCE and CTXBFM, the
unused bits are represented by “*’. In PSW, the unused
bits are represented by ‘—’. In other control registers,
the unused bits are represented by ‘=".

In PSB and PSM, the unused fields are also repre-
sented by ‘—’. Thus, in LDPSB and LDPSM, a re-
served function exception (RFE) occurs.

If the bit being read is ‘—', ‘0’ is read. If the bitis ‘="
or ‘*, the value obtained is unknown. Thus the cur-
rently read value may be different fom the previously
read value.

A7-4 Contents of Control Registers PSW 349: shown
in FIG. 327.

Processor Status Word

For details, see the related chapter in this specifica-
tion.

PSM,PSB

These registers are the only user accessible low order
two bytes which are extracted from PSW. They are
accessed with the LDPSB, LDPSM, STPSB and
STPSM instructions. Only PSB and PSM of the control
registers can be accessed from any ring other than ring
0

IMASK 350: shown in FIG. 328.

This IMASK field, which can be independently ac-
cessed, is extracted from PSW for a different register. It
is used to simplify the operation of IMASK and to
enhance its performance. Even if data is written to fields
other than IMASK, it is ignored.

SMRNG 351: shown in FIG. 329.

This SMRNG field, which can be independently
accessed, is extracted from PSW for a different register.
It is used to simplify the operation of SMRNG and to
enhance its performance. Even if data is written to fields
other than SMRNG, it is ignored.

CTXBB 352: shown in FIG. 330.
Context Block Base

10

20

25

35

45

50

$5

65

168
This register points at the base address of CTXB. It is
used in the LDCTX and STCTX instructions. For ex-
pansion to the data processor of the present Invention
64, as well as in the data processor of the present Inven-
tion 32, 8-byte alignment of CTXBB is required. Thus,
the lower three bits of CTXBB are represented with
‘== =" In other words, although they are reserved as
0, violations are ignored.
D1 353: shown in FIG. 331.
This register shows DI (delayed interrupt) requests.

DI = 0000 DI request after external interrupt (NMI) process
with priority 0.

DI request after external interrupt process with
priority 1.

DI request after external interrupt process with

priority 2.

Dl = 0001

DI = 0010

DI request after external interrupt process with
priority 15.

DI = 1111 No DI request

DI (delayed interrupt) is 8 mechanism which gencrates ex-
ternal interrupt by software. It is effective for suspending
various process requests which asynchronously occur and

to serialize the process order. If there is a process to be
started after an external interrupt with higher priority,

the process can be automatically started by sending the
request to DI. .

DI performs the same parocess as DCE for an external inter-
rupt. When IMASK of PSW is changed by an instruction like
REIT, the EIT process of D1 is started if DI < IMASK.

DI = 1110

Even if the data is written to a field other than DI of
the register, it is ignored.

CSW 354: shown in FIG. 332.

Context Status Word

This register gathers the information which should be
switched every context and which is not nested This
register is composed of the DCE field which represents
the DCE (delayed context exception) request and the
CTXBFM field which represents the CTXB format.
For the CTXBFM function, see Appendix 8.

In the function of CTXBFM is not implemented,
since the DCE register and CSW register deal with the
same information, the CSW register may be not also
implemented (an RFE occurs when accessed). At the
time, although the CSW register is formally placed in
CTXB, the DCE register is actually placed in CTXB.

The relationship between CSW and DCE and be-
tween CSW and CTXBFM is similar to that between
PSW and IMASK and between PSW and SMRNG.
CSW which compresses the information such as DCE
and CTXBFM is placed to CTXB. In the data processor
of the present invention, DCE="111’ is fixedly used.

DCE 355: shown in FIG. 333.

Delayed Context Exception

The DCE field can be independently accessed is
extracted from CSW for a different register. It is used to
simplify the operation of DCE and to enhance its per-
formance. Even if data is written to fields other than
DEQC, it is ignored. When the context is switched, it is
transferred between CTXB and the DCE register in-
stead of the CSW register if the CSW register is not
implemented. When the context is saved, the bits repre-
sented with ‘** become all ‘0’ and are written to CTXB.
When the context is loaded, the bit values represented
with ‘*’ are not checked.

CTXBFM 356: shown in FIG. 334.

Context Block Format

5,201,039

169

The CTXBFM field, which can be independently
accessed, is extracted from CSW for a different register.
It is used to simplify the operation of CTXBFM and to
enhance its performance. Even if data is written to fields
other, it is ignored.

This register is specified in < <L2>>.

EITVB 357: shown in FIG. 335.

EIT Vector Base

The register represents the start of the physical ad-
dress of EIT (exception and interrupt) vector table. The
data processor 32 of the present invention, as well as the
data processor 64 of the present invention, require 8-
byte alignment for EITVB. Thus, the lower three bits
of EITVB are represented with ‘===". In other
words, although they are reserved as 0, they are ignored
if they are violated.

JRNGVB 358: shown in FIG. 336.

JRNG Vector Base

The register represents the start logical address of the
vector table of the JRNG instruction. The table base
address in JRNGVB, the data processor 32 of the pres-
ent invention, as well as the data processor 64 of the
present invention, require 8-byte alignment. Since the
LSB of JRNGVB is an enable bit, when E is ‘0", the
execution of JRNG is inhibited. Thus, the low order 3
bits of JRNGBYV are represented with ‘==E’. Al-
though the bits represented with ‘=" are reserved as 0,
it is ignored when violated.

SPO 359 to SP3 360: shown in FIG. 337.

SPI 361: shown in FIG. 338.

IOADDR 362, IOMASK 363: shown in FIG. 339. 10
Mask

5

10

20

25

When the address translation is not performed (AT of 45

PSW =00, 10), this register specifies the physical ad-
dress of the I/0 area.

If the address translation cannot be performed when
the system is started, the 1/0 area is specified using the
two registers IOADDR and IOMASK, although in the
address translation with MMU, the 1/0 area is specified
by the NC bit of PTE.

When the logical product by the physical address and
IOMASK is equal to IOADDR, it is treated as the /0
area if the memory is accessed without address transla-
tion. The data of the area is not fetched and pre-fetched
to the cache and the memory access that the instruction
requires just accords with the practical physical mem-
Ory access.

If the address translation is performed, the IOADDR
and IOMASK registers are not used. If data cache and
data prefetch are not conducted by the processor, it is
not always necessary to use the IOADDR and
IOMASK registers.

UATB 364: shown in FIG. 340.

Unshared region Address Translation Base

For detail, see Appendix 3.

SATB 365: shown in FIG. 341.

Shared region Address Translation Base

For detail, see Appendix 3.

LSID 366: shown in FIG. 342.

Logical Space 1D

A unique number which identifies the multiple logical
spaces is placed. If TLB and logical caches in multiple
logical spaces are used at the same time, this number is
used. The number of bits available for LSID depends on
the implementation.

40

45

55

65

170

Appendix 8 CTXB of the Data Processor of the Present
Invention A8-1 What is CTXB?

The data processor of the present invention does not
provide an MMU. The CTXB format that Data Proces-
sor of the present invention will support has not yet
between completely decided.

If OS supports parallel processes such as tasks, pro-
cesses and cell routines, the information on the hard-
ware resource is required every program for parallel
processes. Since such hardware resources are used in a
time sharing manner, the hardware resource informa-
tion for programs which are currently executed should
be saved in the memory.

In the data processor of the present invention, a pro-
gram flow which is a unit of the parallel processes is
named a context. The total hardware resource informa-
tion saved in the memory is named a context block
(CTXB).

The CTXB space can be selected from logical space
(L'S) and control space (CS) as options of LDCTX and
STCTX instructions. For ease of describing the OS, it is
acceptable to use LS. For high speed operation of the
contact switch and for accommodating the context
switch in order to save memory in the chip, CS can be
also used. However, CS will be specified when the
context memory will be accommodated in future chips.
Currently, the specification of CS8 is specified in
< <L2> >, the data processor of the present invention
has a CTXB base register (CTXBB) which stores the
start address of CTXB for the currently executing con-
text.

Part of the CTXB format is supported by hardware
with the LDCTX and STCTX instructions.

The Data Processor 32 of the of the Present Inven-
tion Standard CTXB Format 367: shown in FIG. 343.

Generally, PC and PSW of the user program should
be switched rather than those of the OS. However, PC
and PSW of the user program are routinely saved in the
stack when OS is evoked, because PC and PSW are
placed in the stack in the above CTXB format.

If the context is switched directly at the end of the
external interrupt process handler which uses SPI, to
realize the preceding CTXB format, it is necessary to
transfer PC and PSW with different instructions. How-
ever, in this case, with DCE and DI, when exiting from
the external interrupt, the context can be switched.
With this method, by specifying SPO using DCE and
DI, the preceding data structure can be naturally real-
ized

A8-2 Variation of CTXB

The portions with **1’ to **5’ of information in CTXB
vary depending on the system configuration. They are
described as follows:

The content and format of CTXB may be dynami-
cally varied by the following causes (or every context).

Configuration of OS and Presence/Absence of MMU
(*1 to *3)

Since the switching of SP1 to SP3 with the context
switch may be meaningless, it may be not necessary to
save SP! to SP3. In addition, it is not necessary to
switch UATB and LSID in applications which do not
use an MMU.

(*1) Since in JRNG to RRNG an outer ring is saved in
the stack of the inner ring, a value of SP for a more
outer ring than the current ring is meaningless. For a
contest switch which is executed only in ring 0, the
value of SP1 to SP3 is meaningless. As SPO is

5,201,039

) |

switched, SP1 to SP3 are also indirectly switched
since SP1 to SP3 are directly or indirectly saved in
the stack of SP0. On the other hand, if the context is
switched in TRAPA to REIT, SP1 to SP3 should be
also switched. Thus, there are two cases where SP1
to SP3 are included in CTXB.

(*2) MMU is not accommodated. In the < <L1R>>
specification, UATB is not required.

(*3) LSID serves to identify multiple logical spaces.
LSID is provided in the < <L2> > specification, so
that there are two cases where LSID is inclined in
CTXB.

Assignment of General Purpose Registers to be Sa-
ved(*4) If registers, which are not used for context
and the working registers used for OS, are not
saved and restored for CTXB, wasteful data trans-
fer can be prevented, so that the context switch
time is shortened.

Presence/Absence of Co-Processor (*5)

Although registers of FPU differ from the general
purpose registers, it should be provided for context
information. Thus CTXB may dynamically vary
depending on whether the context uses FPU or
not.

For a CTXB which varies, the data processor of the

present invention performs the following way.

In the first version < <L1> > chips, only CSW, SO
to SP3, and UATB are transferred with LDCTX and
STCTX, while RO to R14 are transferred with the in-
structions LDM and STM, so that (*4) is satisfied.

The register (CTXBFM) which identifies the current
CTXB format is provided for other variations of
CTXB. This register holds the information of what
CTXB contains and what LDCTX and STCTX trans-
fer. The information of CTXBFM and that of DCE are
treated as the CSW register.

[CTXBFM]368: shown in FIG. 344.

FR Save the contents of the FPU registers.

Save the contexts of the FPU registers which are pro-
vided in the standard the data processor of the present
invention. Especially, this function will be used when
FPU will be accommodated in future chips.

Save the contents of RO to R14.

This function will especially be used when the context
saving memory will be accommodated in the chip in fu-
ture.

Save the content of SP.

SP = 00 Save the contents of SPQ, SP1, SF2 and SP3.
SP = 0l Reserved

SP = 10 Save the contents of SPO and SP3 (for the

< <LIR> > specification).

SP = 11 Save only the contents of SPO.

This function is sued when OS is evoked by JRNG and to
prevent wasteful data transfer of SP1 to SP3. In addi-
tion, it is used when SP1 and SP2 are not provided in
<<LIR>>.

Save the MMU related registers.

MM = 00 Save the contents of UATB.

MM = 01 Save the contents of UATB and LSID.

MM = 10 Do not save the contents of the MMU related
registers (for < <LIR>>).

MM = 11 Reserved .

[The details of CTXBFM are still under consideration.]

RG

SP

MM

In CTXB (in the standard format of < <L1>>), the
contents of CSW (DCE, CTXBFM), SPO to SP3, and
UATSB are transferred with LDCTX and STCTX. This
operation is specified by setting CTXBFM to all zeros.
In the LDCTX instruction, the format following
CTXB is determined by CTXBFM in CSW (in the new
context being fetched from CTXB) and is loaded.

10

15

20

25

30

35

45

S5

65

172

In the STCTX instruction, the specified value of the
current CTXBFM is saved in CTXB. However, the
function of CTXBFM is specified in < <L2>> for
compatibility with future upgrades.

In short, the fixed CTXB is specified in < <L1>>,
while the variable CTXB (upgrade compatible) is speci-
fied in <<L2>>.

Since it is not necessary to transfer the contents of
SP1, SP2 and UATRB, these values are not included in
CTXB for the < <LIR> > chips. The values of these
registers includes in CTXB, can be selected by
CTXBFM, however, the accommodation of CTXBFM
becomes a burden to the chip. It is possible to directly
specify the CTXB format by extra options for the
LDCTX and STCTX instructions and to specify the
availability of CTXBFM by extra options for the
LDCTX and STCTX instructions.

AB8-3 Software Context

Even process and every task includes the information
where the OS is controlled by software. Since such
information depends on the OS, it cannot be supported
by hardware (LSTCTX and STCTX instructions).
Such information is named the software context. In the
case, of ITRON, for example, the task status, address of
process routine upon termination, address of exception
process, wakeup count, ring area for queue configura-
tion, and so forth are included in the software context.

If CTXB is placed in the logical space (LS), the hard-
ware context such as general purpose registers can be
treated as the software context. However, if a different
space such as CS is used as the hardware context, it is
necessary to place the software context at CS (in this
case, the LDC and STC instructions are available) or to
indirectly reference both the software context and hard-
ware context by connecting the pointer.

Appendix 9 EIT Process of the Data Processor of the
Present Invention

The outline of the EIT process is as follows, how-
ever, the detail is still under consideration.

The process which causes a regulator program execu-
tion flow to be suspended by the hardware mechanism,
and then which is asynchronously started, is called the
EIT process in the data processor of the present Inven-
tion. The EIT process breaks down into the following.

Internal interrupt (trap)

Exception Interrupt (exception)

External interrupt (interrupt)

The trap, exception and interrupt are classified depend-
ing on where an EIT occurs from the programmer's
viewpoint, rather than the mechanical differences in the
implementation (differences in information saved in the
stack).

If the processor detects an EIT while executing the
instructions, it suspends the execution of sequential
instructions and starts the EIT process. When the hard-
ware of the processor detects an EIT, it causes the
status of the processor to be saved in the stack and starts
the EIT handler. On the other hand, the EIT process
handler serves to recover the error depending on the
EIT, display the error message and perform the emula-
tion. The EIT process handler is implemented in soft-
ware. Most of the EIT processes issue the REIT in-
struction at the end of the EIT process handler, exits to
the former instruction queue being suspended and re-
stores the process.

Instructions which have not been defined, error de-
tection for incorrect instructions, and emulation mecha-

5,201,039

173

nisms will all be enhanced by considering future up-
grade compatibilities. Thus, if incorrect combination of
instruction formats or an attempt to execute unimple-
mented functions is made, they are treated as an error,
so that an exception interrupt occurs.

A9-1 Types of EIT

The data process of the present invention generates
the following types of EIT.

[For memory and address)

Page out exception (POE) The data processor
of the present invention does not generate it. This EIT
occurs if the PI bit of UATB, SATB, STE and PTE is
0. It includes a page out, page table out, and section
table out. It is a page fault exception.

Address Translation Exception (ATRE)

This EIT occurs if an error occurs during address
translation. If the reserved bit pattern is used in STE
and PTE, if the portion which is not used by UATB,
SATB, STE and PTE or if the memory is referenced by
violating the ring protection, EIT detailed information
is distinguished by the information in the stack when an
ATRE occurs.

Bus Access Exception (BAE)

This EIT occurs if no response takes place from the
bus within a specified time while accessing an instruc-
tion or operand or if the memory cannot be accessed. It
is a bus error.

Odd Address Jump Exception (OAJE)

This EIT occurs if the jump address is odd. This
exception occurs in instructions where the jump address
is directly assigned as an operand (such as JMP and
ACB), in instructions where the return address is ob-
tained from the stack (RTS, EXITD, RRNG, and
REIT) and in the JRNG instruction. However, this
exception does not occur when starting the EIT pro-
cess. If the new PC is odd when the EIT process is
started, a system error exception (SEE) occurs. [JRNG
and EIT are still under development.]

[For Instructions and Arithmetic Operations]

Privileged Instruction Violation Exception (PIVE)

This exception occurs if a privileged instruction is
executed from a ring other than ring O.

< <L1>> Function Exception (L1E)

This exception occurs if the < <L1> > function is
executed in a processor which does not implement the
< <L1> > function. In a processor which implements
the < <L1> > function, this exception does not occur
and the vector number for this EIT is reserved.

Reserved Instruction Exception (RIE)

This exception occurs if an instruction and the bit
pattern of an addressing mode which are currently not
assigned is executed. It is an undefined instruction ex-
ception. This exception occurs. If: 1) the 64-bit size is
assigned in data processor 32 of the present invention, 2)
P bit is set to ‘1’, 3) and < <L.2> > instruction which
has not been implemented is executed, or 4) an option
which has not been defined and implemented is as-
signed. This exception also occurs if an addressing
mode which is inhibited by’ an instruction (such as an
assignment of immediate by the JMP instruction) is used
or if an additional mode in any level which has not been
implemented.

Reserved Function Exception (RFE)

This exception occurs if the function being reserved
for future extension is used in a bit pattern other than
the instruction and addressing modes.

A reserved function exception occurs. if: 1) ‘1’ is
written 10 XA and the reserved (‘—’) bit for PSW, 2)

......

20

30

35

40

50

55

60

65

174

the reserved value (such as SM, RNG =001) is written
to the field of SMRNG, or 3) ‘1’ is written to the PSM
and PSB reserved (‘—’) bits with the non-privileged
instructions (LDPSB and LDPSM). In addition, if a
control register which has not been implemented is
accessed or if “imask Z 16 is assigned with the WAIT
instruction, a reserved function exception (RFE) oc-
curs.

The exception where an error can be determined
using only an instruction bit pattern (including the as-
signment of addressing mode and size), is treated as a
reserved instruction exception (RIE). However, The
exception where the status is changed depending on
address and operand value is treated as a reserved func-
tion exception (RFE) when an error occurs.

Co-processor Instruction Exception (CIE)

This exception occurs if an instruction which is as-
signed to the co-processor is executed while the co-
Pprocessor is not connected.

Co-processor Command Exception (CCE)

... Data Processor of the
present invention does not generate it.

This exception occurs if an error is detected in the
interface with the co-processor.
Co-processor Execution Exception (CEE)

... Data Processor of the
present invention does not generate it.

This exception occurs if an error occurs in the execu-
tion of a co-processor instruction.

Illegal Operand Exception (IOE)

This exception occurs if an illegal operand is as-
signed. It also occurs if the width exceeds 32 (64) bits
when a fixed length bit field instruction is assigned.

Although a jump to an odd address and zero division
are considered part of the illegal operand exception, it is
broken down into different exceptions, Illegal operand
handling other than illegal operand exception and zero
division exception, are not performed (comparison of
upper bound and lower bound in the CHK instruction),
An instruction is executed directly with a proper inter-
pretation (if the count is larger in the shift instruction).
However, if the result of the instruction being executed
is illegal (such as an overflow), an EIT does not occur.
In this case, V_flag is set and the instruction is termi-
nated (instructions such as ADD and MOV) or no oper-
ation is performed (such as an overflow in UNPKss).

Decimal Illegal Operand Exception (DDE)

In the signal decimal arithmetic operation instruc-
tions, this exception occurs if data other than 0 to 9 is
assigned as an operand.

Although this exception is a quasi-illegal operand
exception (IOE), it is classified as a different exception.

Reserved Stack Format Exception (RSFE)

This exception occurs if the number which represents
the format of the EIT stack frame (FORMAT) cannot
be processed by the REIT instruction when the contro
exits from EIT. 8

Ring Transition Violation Exception (RTVE)

. .. the data processor of the

5,201,039

175

-continued

present invention does not generate it.

This exception occurs if an illegal ring transition is
attempted, such as a transition to an outer ring with the
JRN instruction or a transition to an inner ring with the
RRNG instruction.

If the page containing JRNGVTE is referenced with
the JRNG instruction in an area which is not used, a
not-used area reference error of the address translation
exception (ATRE) rather than a ring transition viola-
tion exception (RTVE) occurs.

Zero Divide Exception (ZDE)

This exception occurs if the division by zero is per-
formed.

For Debug

Debug Exception (DBE)

This exception occurs in debugging operations. It is
an exception for executing the single step and setting a
breakpoint of an instruction. The details of the specifi-
cation are in <<LV> >,

For Trap

Trap Instruction (TRAPA)

This trap occurs with the TRAPA instruction. There
are 16 types of EIT vectors for TRAPA in accordance
with the operand vectors of TRAPA.

Conditional TRAP Instruction (TRAP)

This trap occurs with the TRAP instruction.

DCE, DI

Delayed Context Exception (DCE)

This exception occurs if the value of the DCE field in
the CSW register (or DCE register) is smaller than that
of the SMRNG field in PSW. This exception is effective
for processing various asynchronous events (comple-
tion of 1/0) depending on the context.

Delayed Interrupt (DI)

This interrupt occurs if the value of the DI field in the
DI register is smaller than that of the IMASK field in
PSW. This EIT is effective in processing an asynchro-
nous event which is independent of the context.

There are 15 types of EIT vectors for the DI process
every interrupt priority.

Although this EIT is an exception because it occurs
by executing an instruction such as the REIT instruc-
tion, it is an interrupt because it is started irrespective of
the context being executed.

Although PSW (which includes the IMASK field)
depends on the context, only the IMASK field is usually
used independent of the context.

Others

Reset Interrupt (RI)

This interrupt is set by an external reset signal.

System Error Exception (SEE)

This exception occurs if a fatal error occurs during
the EIT process.

Interrupt

External Interrupt (EI)

This interrupt is set by & hardware signal from an
off-chip sourse. Generally, the external interrupt is
checked at the end of each instruction. However, in
Data Processor of the present Invention, there are high
level instructions where the upper limit of the execution
time is not determined (variable length bit field instruc-
tions, string instructions and the QSCH instruction). In
these instructions, an external interrupt can be accepted
during execution of an instruction.

Fixed Vector External Interrupt (FVEID)

5

10

20

25

30

40

45

55

65

176

This interrupt is set by a hardware signal from off-
chip. Each EIT vector is determined for every priority.
It is an auto vector interrupt.

Reserved exceptions, illegal exceptions, and violation
exceptions are distinguished as follows.

Reserved XXX Exceptions

These exceptions may be removed in future expan-
sions, They may differ depending on the manufacturer’s
implementation.

Illegal XXX Exceptions

Unlike reserved exceptions, even with future function
extension, these exceptions will remain. They are the
same regandless of the manufacturer’s implementation.

XXX Violation Exceptions

In order to protect rings, the execution is restricted.

Others

Exceptions include such as the OS and system config-
uration and those over multiple classifications.

A9-2 Operations of EIT

When a processor detects an EIT, EIT processing is
performed under the following procedures, where reset
interrupt (RI) and system error exception (SEE) are
different in operation from the above. The following
description is limited to the data processor 32 of the
present invention, the data processor 64 of the present
invention having possibility to differ in parameters or
the like.

(E1) Formation of Vector Number

A processor forms therein the vector number corre-
sponding to its EIT, where for external interrupt (EI),
the EIT vector number is obtained from the off-chip,
such as a peripheral LSI.

(E2) Read of EITVTE

In the data processor of the present invention, a table
showing correspondence of the head address of the EIT
process handler with the EIT vector number is called
the EIT vector table (EITVT), one entry of which is
called EITVTE. The EITVTE in the data processor of
the present invention consists of 8 bytes in consideration
of the degree of freedom and expansion/ in the EIT
processing. In the EITVTE not only the head address
(PC) of the EIT process handler but also partial field of
PSW can be set. Hence, EITVTE is of quasi-structure
to PC+ PSW. Format of EITVTE 369 is as shown in
FIG. M5.

VS (Vector (SM): SM after the EIT processing,
where VS is not directly SM after the EIT processing.
Details will be discussed below.

VX (Vector XA): XA after the EIT processing,
which is now reserved to 0 at present (negligible
when contrary).

VAT (Vector AT): AT after the EIT processing.

VD (Vector DB): DB after EIT processing.

VIMASK (Vector IMASK): IMASK after the EIT
processing, where VIMASK is not directly
IMASK. Details will be discussed below.

VPC (Vector PC): PC after the EIT processing.

‘=": reserved to 0. (negligible when contrary)

*’: reserved to 0. (system error exception occurs

when contrary)
The processor reads EITVTE presented by the physi-
cal address of “(EIT Vector Number) x 8+ EITVTB.”
The EI vector number formed at (E1).

(E3) Update of PSW

PSW, on the basis of EITVTE, is updated as follows:

5,201,039

177

[Except for External Interrupt)

min (VS, old SM) = => new SM

Selection of stack pointer. When the stack pointer other
than SPI is used prior to EIT generation, a stack pointer
(SPO or SPI) which is used at the EIT process handler
is selected by BS. When SPI is already used prior to
EIT generation, SPI is used for EIT process handler
regardless of VS. Such specification is because of con-
sideration of a case where EIT nests.

Oid RNG = = > new PRNG
00 == > new RNG

. EIT process handler is inevitably executed by the
ring 0.

EITVTE has unused bits so that it is possible to spec-
ify in the future EIT entering into a ring other than the
ring O in the future.

VX ==> New XA
At present, fixed to 0.
VAT ==> New AT

During the execution of EIT process handler, the exis-
tence of address conversion can be switched.

-

VD ==> New DB

During the execution of EIT process handler, the envi-
ronment of debug can be changed-over.

min (VIMASK, Old IMASK) == > New IMASK

Even when the exception interrupt or the internal inter-
rupt causes EIT, IMASK can be operated in the EIT
processing. Using this function, the external interrupt
can be inhibited simultaneously with start of EIT pro-
cessing. Accordingly, this function is available for a
process (for example, transfer of stack frame formed by
EIT) which is carried out inseparately from EIT pro-
cessing.

[External Interrupt]

min (VS, old SM) ==> new SM
Old RNG ==> New PRNG
==> New RNG
VX ==> New XA
VAT ==> New AT
VD ==> New DB
min (VIMASK, Priority of the generated external
interrupt) = = > New IMASK

Only this portion is differem from the case other than
the external interrupt.

This function can inhibit multiple interrupts of low
priority. In addition, by the function of interrupt mask,
the relation of the priority of generated external inter-
rupt <old IMASK should hold.

(E4) Save of Processor Information to Stack

Old PC, old PSW prior to EIT generation and the
various information (including EITNIF-EIT vector
and stack format regarding the generated EIT) are

15

20

25

35

45

55

65

178
saved to the stack. The stack used for the save is se-
lected by new SM and new RNG (=00), the stack
frame 370 formed at this time is as shown in F1G. 346.

EITINF charges into 32 bits the information, such as
stack frame format (FORMAT), EIT type (TYPE) and
EIT vector number (VECTOR) formed by generated
EIT. The existence and the contents of the added infor-
mation are different in the kind of EIT from each other.
The REIN instruction is performed using the FOR-
MAT in the EITINF obtaining the information for
returning to the instruction sequence prior to EIT.

In addition, the EIT stack frame formed in the data
processor 64 of the present invention, is expected to
consist of two long words; one long word for old PC,
one long word for old PSW and EITINF.

EITINF is placed adjacent to PSW in consideration
of maintaining alignment for the data processor 64 of
the present invention. The reason for placing PSW at
the stack top is that the XA bit saved in the stack is
adapted to be readable, even when the data processor 64
of the invention has 32 bit context and 64 bit context
mixed with each other in the future.

(ES) Start of EIT Process Handler

Transfer VPC to PC so as to start EIT process han-
dler. If an EIT occurs at the instruction prefetch, the
EIT processing is delayed until the instruction to be
fetched is required.

On the contrary, REIT instruction at the last of EIT
process handler is processed as follows and then re-
tuned to the prior instruction sequence.

(R1) Read from Stack

Old PSW nd EITINF are read from the stack. When
XA bit in the PSW is 0, the context (task or process)
generating EIT consists of 32 bits, whereby oil PC is
continuously read at 32 bit width from the stack. In
addition, the data processor 32 of the present invention
has all 32 bit contexts.

Furthermore, the existence of the added information
is decided By FORMAT in EITINF, so that when the
same exists, it is read from the stack. The added infor-
mation includes EXPC, IOINF, ERADDR, ERDATA
and SPI, the detailed meaning thereof depends on the
implementation.

When FORMAT is of a value not supported by the
processor (a value not to be generated by EIT), re-
served stack format exception (RSFE) occurs.

(R2) PSW Restoration

Using the old PSW read from the stack, all the fields
(SMRNG, XA, AT, DB, IMASK, PSW and PSB) of
PSW is restored to the prior value of EIT generation, at
which time if the old PSW includes the reserved value,
the reserved function exception (RFE) occurs.

(R3) Reexecution of Storage Buffer (depending on
the implementation)

Reexecution of write cycle caused by the storage
buffer generating the former EIT in the REIT instruc-
tion may be carried out depending on the values of
FORMAT and added information, ERADDR and ER-
DATA in the added information of the stack are used as
the address and data information for execution of write
cycle. Refer to item of EIT type description in detail.

In addition, it depends on the implementation of the
processor to reexecute the storage buffer.

(R4) Return to Instruction Sequence executed when
EIT is detected.

Restore oil PC read from the stack to PC and restart
the instruction included by PC.

5,201,039

179

At this time using the TYPE field in EITINF, the
EIT type is changed to be next accepted. Such function
is utilized for consistently performing the multiple EIT
processing and for exactly carrying out single step oper-
ation of instruction inclusive of execution by emulation.

In addition, the VECTOR field in EITINF is not
particularly used for the REIT instruction. In spite of
this, VECTOR is included in EITINF because the in-
formation is provided with respect to the program of
EIT processing handler.

A9-3 Types of EIT

EIT of the data processor of the present invention is
classified paying attention to the position of PC when
the execution is restarted after completion of EIT pro-
cessing and to the priority of EIT processing, the fol-
lowing classification is obtained, which corresponds
directly to a value of the TYPE field in EITNIF.

Instruction Interrupt Type EIT (Type=0, PC unde-
fined)

When the EIT occurs, the EIT is immediately de-
tected to enter into the EIT processing. In the case of
this EIT type, returning to the instruction sequence is
not possible. RI, SEE correspond to the EIT.

Instruction Completion Type (Type=1 to 3, PC next
Instruction)

The EIT, when generated, is detected after the in-
struction processing under execution at that time, and
then enters the EIT processing. Generally, REIT in-
struction is executed at the last of EIT process handler
for the EIT, thereby enabling the next instruction to
that executed during generation of EIT to start reexecu-
tion. In addition, TYPE=1 to 3 is distinguished by the
relation of priority, to which TRAP, TRAPA, DBE,
DI and DCE correspond.

Instruction-Reexecution-Type REIT (TYPE=4, PC
preseat instruction)

In this EIT case, the statuses of the processor and the
memory are restored to the prior statuses of the instruc-
tion interrupted by the EIT. Generally, REIT instruc-
tion is executed at the last of EIT process handler for
the EIT, whereby the instruction execution can be re-
started from the instruction executed when EIT oc-
curred, to which POE, ATRE, BAE, RIE, RFE, PIVE
and 10E correspond.

The instruction-completion-type EIT relates to the
instruction previously executed, and the instruction-
reexecution-type EIT relates to the instruction under
the present execution. Accordingly, when a plurality of
EITs are generated simultaneously, the instruction-
completion-type EIT must be processed in advance of
others. The instruction interrupt type EIT has high
priority. When such EIT is detected, it is not reasonable
to process other EITs.

Hence, when the instruction-interrupt-type-EIT and
other EIT are simultaneously generated, the instruc-
tion-interrupt-type-EIT must firstly be processed. After
all, the priority, when plurality EITs are simultaneously
generated, is given .

instruction interrupt type <instruction completion
type < instruction reexecution type,

resulting in that TYPE=0 to 4 of EITINF directly
indicate the priority of EIT.

The correspondence of the kind of EIT to TYPE is
clearly decided as for RI, TRAP, but it depends on the
implementation somewhat.

10

25

35

40

45

50

65

180

Accordingly, when the factor of EIT is analyzed by
software, it is better not to be referred or rewritten the
TYPE field.

For example, the page out exception (PDE) is the
instruction-reexecution-type-EIT, which usually be-
comes TYPE=4. However, in the processor which
implements a store buffer for memory write, when POE
occurs at the last write cycle in a instruction (using the
store buffer), the instruction need not be reexecuted
from the beginning, but the last write-in cycle only is
corrected, whereby no conflict occurs in processing.
Hence, POE at such case is of instruction-completion-
type so that the processing of the last write cycle caus-
ing an error may be carried out in REIT instruction. In
this case, POE is classified into the TYPE=1 troup. PC
stacked by EIT processing is not the PC of the POE
occurring instruction but the next instruction.

In the instruction-reexecution-type, when an error
occurs during the execution of instruction, it is the prin-
ciple to restore the state as before instruction execution
and start the EIT process (TYPE=4). However, when
an error occurs just before completion of instruction,
the instruction is assumed to be once completed to start
EIT of TYPE=1 and the remaining processing (write
cycle of storage buffer)depends on REIT instruction,
such implementation being possible. If such method is
utilized, TYPE in POE includes two of 1 and 4. In this
case, since the processing necessary for REIT instruc-
tion depends on the TYPE, the REIT instruction
should correspond to the EIT type.

For this method, the data processor does not reexe-
cute the instruction entirely with respect to the EIT
caused by the error occurring at the last write cycle of
the instruction, but reexecutes the last write cycle only.
In this case, ERADDR or ERDATA saved in the stack
as the EIT added information corresponds to the inter-
nal information saved for executing the instruction con-
tinuously.

A9-4 Stack Format of EIT

When an EIT is detected, the information for the EIT
process is saved in the stack. The stack format 371 is
shown in FIG. 347.

“Other information” depends on the stack format of
each EIT. It includes the information which is used to
analyze the cause of EIT and which is restored from the
EIT handler. The stack format correspondence 372 is as
shown in FIG. 348.

PC: Start address of the instruction to be executed

after exiting from EIT by the REIT instruction.

EXPC: PC of the instruction which is executed when

an EIT is detected. If a debug exception relating to
the PC breakpoint occurs, the PC value of the
instruction just preceding the instruction whose
PC value is the same as the breakpoint to be exe-
cuted.

JOINF: Information relating to 1/0

Error Addr; Address of the bus cycle which causes

an EIT to occur.

Error Data: Bus cycle data which causes an EIT to

occur (only write).

SPI: SPI value if an EIT is detected

Format No. 0: Reserved instruction exception, re-

served function exception, reserved stack format
exception, ring transition violation exception, odd
address jump exception, < <L1>> function ex-
ception, co-processor instruction exception, fixed
vector external interrupt, delayed interrupt excep-
tion, external interrupt

5,201,039

181

Format No. 1: Bus access exception, address transla-

tion exception

Format No. 2: Debug exception, privileged instruc-

tion violation exception, zero divide exception,
illegal operand exception, conditional trap instruc-
tion, trap instruction

Format No. 3: All DBG EIT’s

EXPC is introduced for the following purposes:

Provision of error analysis information

When EIT of TYPE =1 occurs during the write-in of

storage buffer, EXPC specifies the instruction car-
rying out the write-in, PC having proceeded ahead.

In debug exception, PC specifies the next instruciton,

EXPC species the former instruction. Accord-
ingly, for example, when the debug exception is
adapted to start during the execution of jump in-
struction, a value of PC before the jump can be
obtained by EXPC and that after the jump by PC.

Multiple EIT Processing

In the case of EIT, such as TRAPA of TYPE=1, the
information of EXPC is not required in the process
handler. However, when EIT (such as TRAPA) of
TYPE=1, and EIT (such as debug exception) of TY-
PE=2 occur simultaneously, in EIT of TYPE=1,
EXPC used as TYPE=2 must be saved. For this pur-
pose, EPC is saved even in TRAPA. ’

In this case, EXPC after execution of REIT instruc-
tion with respect to TRAPA processing does not spec-
ify the start address of REIT instruction, but must spec-
ify the restored value of old EXPC popped up from the
stack. In other words, when the pending debug excep-
tion starts just after starting the REIT instruction,
EXPC saved to the stack does not specify the PC of
REIT instruction but must specify the PC of TRAPA
instruction (this example assumes that the debug excep-
tion is masked by EIT"/TE of TRAPA). Also, structure
373 of IOINF is as shown in FIG. 349.

=; reserved to ‘0",

W1 indication of write retry at REIT instruction

This bit is available for EIT of memory access series

(TYPE=1)
wWi1=0
Wi=1

MEL:

write retry necessary
Write Tetry unnecessary
the state where address translation exception
occurs
0000 no error
0001 error regarding access right
0010 to 1110 (reserved)
1111 access error regarding 1/0 region
MEC: error code of error related to memory access

0000 no error
0001 unused region reference error
0010 (reserved)
0011 (reserved)
0100 ring protection violation error regarding read
0101 ring protection violation error regarding write
0110 ring protection violation error regarding
execution
0111 (reserved)
1000 unable bus access when read
1001 unable bus access whep writing
1010 (reserved)
1011 (reserved)
1100 (reserved)
1101 memory indirect addressing in [/0 region
1110 instruction execution in 1/0 region
1111 read access scross 170 region and other regions
write across 1/0 region and other region
RW: bus cycle type
RW=0 write
RW=1 read
BL: bus lock condition

BL=0 not under bus locking

5

10

15

20

25

35

45

35

65

182

-continued

BL=1 under bus locking
space specification
PA=0 (reserved) . . . logical space (address
conversion)
PA=1 physical space (non address conversion)
access type of bus cycle in which EIT occurs
AT=000 Data
AT=001 Program
AT=010 Interrupt vector feich
AT=0I11 to 111 (reserved) :
Data size when write retry is carried out
(reserved)
1 byte
2 bytes
0011 3 bytes
0100 4 bytes
0101 to 1111 (reserved)

PA:

AT:

S1Z:
0000
0001
0010

A9-5. EIT Vector Table 374 of the Data Processor of
the Present Invention: refer to FIG. 350.

Entry of EIT table regarding the reset interrupt and
EIT (No. 0 to 5) of DBG mode comprises an SPI value
and a PC value. Entry of EIT table regarding other
EITs comprises a PSW value and the PC value.

"An initial value of EITVB is ‘FFFFF000’ at the reset
state, whereby the reset interrupt fetches entries (SPI,
PC) from physical address ‘FFFFF000".

A9-6. Error during EIT processing

When a serious error such that another EIT occurs
during the EIT processing (from the occurrence of EIT
to the setting of new PSW through save in condition),
system error exception (SEE) is provided. Bus access
exception accompanied by EITVTE, old PC, page
absence exception of stack accompanied by save of old
PSW, and address translation exception have possibility
of being system error exception (SEE). Also, when
LSB of a word including VPC of EITVTE is ‘I’, the
system error exception is provided.

The system error exception (SEE) occurs regardless
of the use of stack of either of SPI and SPO. When the
page out exception occurs at the stacks SPO, the EIT
processing does not continue by changing over to the
stack SPI or the stack specified by EITVTE of the page
absence exception.

Meanwhile, since ring transition by JRNG is not
EIT, when the page out exception occurs during the
JRNG processing, the stack specified by EITVTE of
page out exception is used to carry out the EIT process-
ing of page out exception. At this point, it is necessary-
to take care because TRAPA included in EIT process-
ing and JRNG not included therein are different by one
level in the step to be a system error 375 (refer to FIG.
351).

Anyway, it is necessary for OS programming to as-
sign the stack region specified by SPI to the permanent
region of the memory and also the stack region speci-
fied by SPO except for the particular use too.

A9-7. Multiple EIT

Detection of EIT and processing with respect to
thereto, except for EIT of TYP=0, are carried out at
the end of each instruction. Accordingly, there is possi-
bility of simultaneously detecting a plurality of EITs at
the end of instruction in certain cases, which is called
the multiple EIT. Herein, the multiple EIT processing
order will be described.

For example, in the case where TRAPA of TYP=0
and external interrupt (EI) of TYP=3 simultaneously
occur, at first, EIT processing is carried out with re-
spect to TRAPA and the EIT processing continues

5,201,039

183
with respect to EI. As a result, stack PC 376, PSW 377
and stack 378 are as shown in FIG. 352.

Hence, in this example, after the end of EIT process-
ing, at first EI process handler is executed. After the
end of EI process handler, the REIT instruction placed
at the last thereof, the step transfers to the TRAPA
processing handler at a lower level. In other words, the
TRAPA process handler of higher priority is deferred.

However, since EIT processing of TRAPA precedes
in the above example, PSW is changeable to mask EI. In
other words, when EITVTE of TRAPA specifies
VIMASK <EI Priority, IMASK is changed in the EIT
processing TRAPA, thereby not performing the EIT
processing with respect to El. In this case, the TRAPA
process handler is executed. When IMASK is restored
to the original value by the last REIT instruction of the
handler, the EI masked is started.

Thus, EI masked by up-date of PSW during the EIT
processing of high priority (of small number TYPE)
comprises TYP=2 to 3 of EIT, such as, DBE, EI, D],
and DCE. On the contrary, EIT capable of being
masked (EIT capable of holding processing demand) is
of TYP=2 to 3 of low priority.

On the contrary, for TRAPA, the register and for
holding request of EIT processing are not at all pre-
pared. Since PC proceeds to the next instruction,
TRAPA instruction cannot be reexecuted. Hence, un-
less the EIT processing is performed just after execu-
tion of TRAPA instruction, the request for EIT pro-
cessing is lost. For the purpose of preventing this,
TRAPA is TYP=1 of high priority.

The EIT of TYP =4 is for reexecuting the instruction
so the when the same instruction is once more executed
after completion of processing with respect to other
EIT, the same EIT again occurs, whereby EIT of in-
struction-execution-type (TYP=4) is o. the lowest pri-
ority. Accordingly, for the multiple EIT, EIT of
TYP=4 need not be performed. The request of starting
EIT of TYP=4 is canceled by detection of TYP=1 to
3 | simultaneously occurring.

The above is different from EIT accepted just after
REIT instruction execution. The REIT instruction
adjusts EIT accepted just after completion of REIT
instruction by TYPE of EITINF hopped from the
stacks. The TYPE of EIT accepted 329 after REIT
instruction execution is as shown in FIG. 353.

Among the above, TYPE=2 is debug exception
(DBE). It is meant that the debug exception is not ac-
cepted just after completion of REIT instruction execu-
tion during the EIT processing with respect to the
debug exception. It is for single step execution every 1
instruction that treatment of debug exception of TY-
PE =2 is different as to whether or not the debug excep-
tion is just after REIT instruction execution. In this
case, if the debug execution again occurs just after
REIT instruction with respect to the debug exception,
the debugged program is not at all promoted of execu-
tion resulting in that the debug exception only continu-
ously occurs. Accordingly, the above-mentioned mech-
anism is adapted not to create the debugging exception
just after REIT instruction, but to create the same after
one instruction execution.

Generally, it is necessary for single step execution to
have two internal conditions of executing the next in-
struction or starting the debugging exception. The data
processor of the present invention is considered to rep-
resent the two conditions by combination of the internal

25

35

45

55

65

184
condition as to whether or not it is just after REIT
instruction execution with TYPE of EIT.

In addition, the single step execution on the basis of
such consideration is applicable to the occurrence of
other EIT simultaneously with the occurrence of debug
exception.

When the EIT process handler of reserved instruc-
tion exception (RIE) carries out instruction emulation,
differently from the process handler with respect to
other EIT (such as page out), the debug exception
should start before and behind the RIE process handler.
For example, when usual instructions—and debug ex-
ception—page out exception is after the single step
execution, it is necessary to nextly execute the usual
instruction, but when usual instruction —debug excep-
tion—reserved instruction exception (emulation),
nextly the debug exception starts. The reason for this is
that while the debugger or debug objective program
does not at all view the page out exception, the emula-
tion exception must be viewed as “execution of one
instruction” for the debugger objective program.

For the data processor of the present invention,
TYPE of EITINF is adjusted in the EIT process han-
dler of reserved instruction exception so as to enable the
aforesaid operation.

A9-8 DI of “Data Processor of the Invention”

A9-8-1 DI Operation

DI (delayed interrupt) of the data processor isan EIT
occurring when the DI field in the DI register is of
smaller value than that of IMASK field in PSW. Such
function is effective when the asynchronous matter
independent of the context is made pending so as to
register the processing request only or when the process
order is serialized.

The EIT vector for DI processing is prepared of 15
kinds every interrupt priority. The relation between the
IMASK value 380 and the external interrupt allowable
381 when the flag variation occurs is as shown in FIG.
354, :

It is necessary when IMASK is larger or DI is smaller
to check whether or not DI is started. Accordingly, the
following instructions correspond to the above:

LDC src, @ psw; psw is address of PSW in the
control space.

imask is address of imask in the
control space.

LDC src, @ imask;

LDC src, @ di; di is address of DI in the
control space

REIT

WAIT

Among the above, for other than LDC src, @di, a
value of DI field prior to execution of these instructions
becomes the level of started DI (priority) . The DI level
affects the vector member of EIT started as DI. Also,
when LDC src, @di starts DI, the DI level to be started
is not the DI field value prior to LDC execution but the
DI field value (src) newly set by LDC.

In addition, IMASK may change even when EIT has
started (entirely including external interrupt, exception
and TRAP), in which DI is not started because the
IMASK value does not.increase. '

When DI is started, DI field is reset to 1111 (non
request). Also, the IMASK field changes similarly to
the occurrence of external interrupt to treat the ac-
cepted DI level as priority.

In brief,

5,201,039

185

186

min (VIMASK, accepted DI level) == > new IMASK, is
obtained.

A9-8-2 Example of Using DI

Example; delayed dispatch of the Data Processor of
the present invention

The Data Processor of the present invention, when
the system call issued from the external interrupt pro-
cess handler changes the state of ready queue, delays
until the following dispatching (such as replacement of
the register or the like) returns from the interrupt pro-
cess handler, which is for avoiding conflict accompa-
nied by the multiple interruption. Such delay is realized
by D1 function.

Prerequisite

System call specified VIMASK =14 at EITVIE of
TRAPA, which is for carrying out the last dispatching
of system call processing by the D1 function.

The portion for processing dispatching is started by
DI14.

| represents the state under execution and *
state of intermitting execution.

General System Call Processing 382

This is shown in FIG. 355.

System Call from External Interrupt Handler 383

This is shown in FIG. 356.

If D1 function is used, the delayed dispatch process-
ing can readily be realized, and can easily cope with the
occurrence of the multiple interrupt or the next of sys-
tem call.

A9-9 DCE of DATA Processor of the Present Inven-
tion

A9-9-1 Operation of DCE

DCE (Delayed Context Exception) is an EIT occur-
ring when smaller in a value than the DCE field in the
DCE register (or CSW register). This function is effec-
tive when the processing of asynchronous matter (com-
pletion of input output or the like) regarding the context
is made pending so as to register the processing request
only, or when the process order is serialized.

DCE field in DCE register (or CSW register) is the
field for accepting the DCE request.

Since the DCE register (or CSW register) is an inher-
ent register every context, it is possible to give separate
DCE request to each context. Since DCE follows each
context, DCE is not started during the processing of
external interrupt independent from the context.

Also, even when DCE of higher priority is request by
other context A, unless dispatched by the context A,
DCE of context A is not started. Even if the DCE
request from another context B is lower in priority than
the above, DCE of context B is firstly started.

The relation 384 between the value of DCE field and
DCE started at that time is as shown in FIG. 357.

In every case, DCE is started in SMRNG > DCE.

When (reserved) is specified, it actually acts as the
same as DCE =000, where the programming utilizing
this function should not be performed for the future
extension.

When SMRNG is larger or the value of DCE field is
smaller, there is possibility to start DCE. Accordingly,
for the following instruction corresponding to the
above condition, it is necessary to check whether or not
DCE starts.

* the

10

15

20

25

30

35

40

45

50

55

60

65

LDC src @ psw; psw 15 address of PSW in the control
space.
smmg is address of SMRNG in the

control space.

LDC src @ smmg;

LDC src @ csw; csw is nddress of CSW in the control
space, where CSW may not be provided.

REIT

RRNG

In addition, when EIT starts (including all the exter-
nal interrupt, exception and TRAP) and JRNG is exe-
cuted, SMRNG may change, but for EIT or JRNG, the
value of SMRNG does not increase, whereby DCE is
not started.

DCE is started as one EIT processing. When EIT of
DCE is started, DCE field is reset to 111 (no request).
the SMRNG field, as the same as general EIT process-
ing, changes following EITVTE allotted to the vector
number of DCE. Since DCE is processed every con-
text, the started EIT process handler usually uses not
SPI but SPO. It is possible to enter MS=0 (using SPI)
at DCE processing due to setting of EITVTE, which is
disposed as the problem on equipment operation and
hardware is not particularly checked. When DCE is
started by the REIT instruction or the RRNG instruc-
tion, the actual processing to start DCE may be per-
formed simultaneously with REIT or RRNG, but in
specification of operation, EIT is adapted to start after
REIT or RRNG is once executed. For example, when
DCE=110, RRNG returns from ring 1 to ring 3, then
DCE is started to enter ring 0, at which time RRNG
must be ring 3 but not ring 1. DCE is compared with DI
or external interruption 385 as shown in FIG. 358.

In the case where the input-output is informed of
completion, the flow of starting the corresponding con-
text DCE in the external interrupt processing routine
may be caused.

It is not impossible to simulate DCE by software, but
since generally PSW or PC saved on the stack must be
changed, the simulation is fairly troublesome, because
the interrupting program must be informed of all the
stack format of the interrupted program.

A9-9-2 Nest of DCE

DCE, if the multiple next is formed, is more effective.
Hence, when a plurality of DCE requests occur, it is
problematical how they are processed.

The data processor of the present invention is in-
tended to process the nest by software.

< <plura! DCE request queuing processing example > >
[when setting DCE request]

if (DCE=111), then

new DCE request == > DCE field

/* when DCE request only /*

else,

newly created DCE request enters into DCE request queue
constituted in the order of rings.

endif
{when processing DCE]}

/* when DCE starts, 111==2> DCE is obtained by

hardware.

if (DCE request queue is not empty), then the next
entry of DCE request queue is set to the DCE field.

endif

A9-9-3 DCE Using Example

Example: start of input-output management program

The input-output completion is informed by external
interrupt so that the input-output management unit (ring

5,201,039

187
1) 386 is to be started asynchronously with respect to
the process A (refer to FIG. 359). ‘|’ represents condi-
tion during the execution, and * ’ represents condition
of intermitting the execution.

Starting address of (1) is to be specified every process
(context), but actually the EIT processing vector at
DCE in common to the processes, whereby it is neces-
sary that DCE request table every process is analyzed
by OS and jumps thereto.

In this drawing, when the external interrupt occurs,
the process A happens to be executed. When the exter-
nal interrupt of input-output occurs during the execu-
tion of other processes, the start of input-output man-
agement unit at the ring 1 is delayed until dispatch to
the process A is carried out.

Appendix 10 Instruction Bit Pattern of Data Processor
of the Invention

Cautions Regarding Notation
The notation of the instruction bit pattern is as fol-
lows:

reserved to O (exception occurs when contrary)
reserved to 1 (exception occurs when contrary)
If the bit is (1), the processing is normal and if
it is 1(0), the reserved instruction exception (RIE)
occurs.

reserved to 0 (negligible when contrary)

*** at Ver 0.87.

reserved to 1 (negligible when contrary)

In the user’s manual it is written clearly to keep the
bit 0(1) for the furture expansion, where actually the
operation is the same even when the bit is 0(1) or 1(0).

The “negligible when contrary” is not so preferable
for the architecture, which may be inevitable for the
instruction bit pattern allocation, future expansibility
and high speed execution of the instruction.

* ' reserved to O (operation is not guaranteed when
contrary)

‘I’: reserved to 1 | (operation is not guaranteed when
contrary)

In the user’s manual, it is written clearly to keep the
bit O(1) for future expansion. The operation is normal
when the bit is 0(1), but if the bit is 1(0), the operation is
depend on the implementation.

The “operation is not guaranteed when contrary” is
not so preferable for the architecture, which may be
inevitable for the implementation, instruction bit pat-
tern allocation and high speed execution of instruction.
For example, a first halfword “IR” at LDATE and
MULX corresponds thereto.

A10-1 Bit Allocation to Every Instruction Format

Caution regarding Bit Allocation

The data processor of the present invention is fairly
different in addressing mode from each instruction,
which should be checked. The bit pattern is allocated
for easily distinguishing the allowable addressing mode
in order to facilitate the check. An operand inhibitting
the particular addressing mode is adapted to be clarified
in principle only by a halfword including the operand.

P-bit is separately placed in one-by-one every oper-
and (except for the register direct specification and
immediate specification) and as to the implied stack
reference, which is represented by ‘P’ or ‘Q’ in the
instruction pattern.

However, when covered by the general instructiion,
the P-bit may not be placed in the instruction pattern at
the abbreviation of the same instruction {only PUSH,

15

25

30

45

50

55

65

. 188
POP and PUSHA do not have a P-bit for the stack
reference).

The instruction bit pattern freely usable by each
maker is shown by LV reserved, which can be utilized
as the instruction not released to the user for making an
interface with, for example, ICE.

The bit patterns 387 are shown in FIG. 360.

A10-2 Regarding Detection of Reserved Instruction
Exception

The patterns shown by RIE in FIG. 360 are the re-
served bit pattern for future expansion. When the in-
struction bit pattern shown by RIE is executed, a re-
served instruction exception occurs. Beside this, when
the not-implemented option and size (inclusive of not-
provided < <L2> >) are specified, an undefined op-
tion is specified, the ‘—’ portion in the instruction bit
pattern is made ‘1’, the ‘4’ portion in the instruction bit
pattern is made ‘0’, the ‘P’ and ‘Q’ bits in the instructiion
are made ‘l’, and the reserved condition (cccc) and
termination condition (eeee) are specified, all the re-
served instruction exceptions (RIE) occur. At present,
except for exceptions LDATE and MULX or the like,
all the instruction patterns are checked in principle as to
the first to forth bytes, so that the pattern, when differ-
ent, is treated as RIE. The fifth and sixth bytes are not
checked so that the pattern, even if different, is not
treated as an error.

If the first HW includes a general addressing mode
and, RIE is to be detected at second HW, the second
HW is placed after the extension of Ea of the first HW.
This bit pattern is indicated by {RIE-X}. Regarding the
patterns expected to be provided with the future func-
tion expansion and the patterns which may be different
in operation from other makers’ chips, exception detec-
tion should be especially carried out.

The reason to prevent the error occurrence when
such an instruction pattern is executed. Considering the
above purpose, the priority of checking for the reserved
instruction exception (RIE) is as follows:

{ High priority

(The meaning is already decided)
Specifiying the not-implemented < <L2> > function.
Specifying the 64 bit size (PR, MM, WW, S§=11)

(The possibility to be utilized for instruction expansion is high).
Specifying the instruction pattern represented as RIE.
‘4+'of ‘“4+X’ in BVPAT to BVSCH.
‘— of the second HW at the group of PSTLB to EXITD:G.
Specifying P-bit.

(Almost not-utilized for instruction expansion)
¢ of the first HW’IR" at the group of LDATE to INDEX.
‘4 of the second HW’+ W’ at the group of STATE to QINS.
‘4 of the first HW'+ X’ at the group of PSTLB to
EXITD:G. -
‘—* of the second HW in ACB;R, SCB:R.

| Low priority

The bit pattern to be checked is as described in the
aforesaid specification. However, in the future the de-
tailed specification related to detection of the reserved
instruction exception is adjusted on the basis of the
above purpose so that the specification may be subject
to change.

In addition, it is not particularly ruled to start EIT
when the instruction is read to a certain extent. Hence,
even when only the first HW is apparent to start EIT,
the instruction may be read up to the second HW. Also,
when EIT is seen to start only by an ope-code portion

5,201,039

189 190
(the reserved instruction exception), it is allowable to
process up to the Ea extension portion.
A10-3 Index of Operand Field Name 388: shown in ——IE—'J—_— —[Shl__.
FIG. 361. praotibeli pegiboit
A10-4 Bit Allocation of Addressing Mode 5 0000 1000 00 1000
Common Bit Pattern 0101 **** (only when < <L2> > is not provided)
0111 **** (only when < <L2> > is not provided)
l.‘. L1213
Regarding the size
?(1; ;g ::z 10 Even if the reserved pattern is specified in the additional
1 4 bits mode, the reserved instruction exception (RIE) occurs.
Addressing Mode RIE also occurs in the following cases;
00: @reg+ or the like < Rn > #0000,0001 at M=1; other than
o1: 16 bit relative indirect mode <d4>#0001,0010 at D=1; P=1; and XX=11.
10: 32 bit relative indirect mode 15 At alevel in the additional mode, if the scaling other
Resinr Soccificatic Huonal mode than X2, X4 and X8 is specified, an indefinite value is
egister Specification . s
00 (particular) placed.as a temporary vahfe depending on the qnple-
ol (SP) mentation after the processing at that level. EIT is not
10 abs or 0 provided. Also, when a < <2> > instruction is not
1 PC 0 implemented and the additional mode of five levels or
more is specified, the reserved instruction exception
Additional Mode (RIE) occurs. (under adjustment in detail, and the re-
served function exception may be provided). If an un-
reasonable combination of addressing mode is specified
EI<RX>MS PXXD<dé> 23 (such as, IMP #imm-data, CMP#, #1), the reserved
.7, Is 8 bit reserved 10 0. instruction exception (RIE) is provided. The case
**<RN>0* hhdah il Rn is index. L R
w__p1e o_veene absence of index. where combination of addressing mode not-executable
L R PC is index. due to the unprovided < <L2> > instruction is speci-
Scaling by XX 7 00isnot .. fied, is included in the above (a bit field instruction for
cesonses a0 <> :"b‘l‘,:‘;f-hmm specifying the register is applicable thereto).
serasnse sae1_01° 1bit disghumem A-10-5 Bit Allocation of Instruction Option
ssennses sesy 10 32 bit displacement In any case, the initial value (an option value of 0, 00
seer soe *ee 1 64 bit displacement ...) provides the default at the assembler.
35

The size specifying portion of <d4> and specifying
portion of disp:16, disp:32 of MISC mode are positioned
at the same bit.

Basic Mode
POD0 xxxx MISC P=0:SH
0000 {RIE}
0001 {RIE}
0010 {RIE}
0011 {RIE} —@ads:64

0100 @SP +(read:@SP +, write:illegal, rmw:illegal)
0101: @—SP(read:illegal, write:@ — SP, rmwrillegal)
0110 {RIE}
onl {RIE}
1000 {RIE}
1001 {@ads:16
1010 ‘@ads:32
1011 absolute additional mode
1100 Imm(read @PC +, write:illegal, rmw:illegal)
1101 @(disp:16, PC)
1110 : @disp: 32, PC)
1111 : PC relative additional mode
000t <Rn> Rn Sh
1001 xxxx {RIE}
POI0 <Rn> @(disp:16, Rn) P=0:8h
POl <Rn> @Rn . P=0:Sh
P100 <Rn> @(disp:32, Rn)
P10l <d4> @Xdisp4 FP) <<L2>>
P110 <Rn> Register relative additional mode
P11l <d4> @(disp4, SP) <<L2>>

For ***1**%* pattern, the extension portion is not attached.

When the undefined addressing mode is specified (in-
cluding P-bit=1 in EA), the reserved instruction excep-
tion (RIE) occurs. Concretely, RIE is provided in the
case of following patterns:

45

55

65

Condition specification 1t Bec, TRAP/cc,
Termination condition specification at the string
instruction and QSCH instruction,
: P-bit specification (Q . . . when necessary
operands indicates plural operands for P bit)
b: /F=0, /B=1 (BSCH, BVSCH, BVMAP, BVCPY, SCMP,
SMOV, QSCH), .
/F=0, /R=1 (SSCH),
/N=0, /§=1 (CHK)~CHK, ‘c’ of change index value,
/0=0, /1=] (BSCH, BVSCH)~ ‘d’ of data,
/NM=0, /MR=1 (QSCH)— ‘m’ of mark,
/AS=0, /SS=1 (PTLB, PSTLB, LDATE)
—PTLB, ‘p’ of specific space,
/PT =000, /ST=001, /AT=110, {RIE}=010 1o 101,
111 (PSTLB, LDATE, STATE),
/L8 =00, /CS=01, {RIE}= 10, (LDCTX, STCTX).

3

A10-6 Condition Specification (cccc) for Bec and
TRAP/cc Instructions

The allocation 389 of cccc value is shown in FIG.
362.

A10-7 Termination Condition Specification (eeee)

The allocation 390 of the eeee value is shown in FIG.
363.

In the <<L2>> termination conditions which
have two conditions coupled with .or., M_Flag is used
to indicate either one termination condition. The M__.
Flag 391 is set when the condition 392 ends in compari-
son with R4, which is concretely shown in FIG. 364.

When the condition of M__flag =1 is not satisfied and
the termination condition other than the above ends,
M-flag=0 is obtained. If the termination condition of
< <L2>> is not implemented, M-flag=0 is always
obtained.

A 10-8 Operation Code of BVMAP Instruction 393

5,201,039

191

This is an operation code to be placed in the low
order 4-bits at R5 1, which is shown in FIG. 365.

A10-9 Addressing Mode Correspondence 394

Corresponding of the operand at each instruction
with the inhibited addressing mode is shown in FIG.
366. For combination of mark O, the addressing mode
thereof is usable.

For combination of mark X, if it is executed, the
reserved instruction exception (RIE) occurs.

Appendix 11 Detail Specification of High Level
Instructions and Register Values in End State

In the instruction descriptions, the detail of high level
instructions, and their register values upon completion,
have not been completely described. They are summa-
rized in the following

All-1 Convention for Determining Specification of
High Level Function Instructions

In SMOV/B , SCMP/B, BVMAP/B and
BVCPY/V, there are two types of processes; one is the
format of pre-decrement in accordance with @-SP, the
other is the format of the post-decrement in accordance
with SMOV/F and SSCH/R. While the area of H’'100
to H'1ff is transferred with SMOV/B.B, if SMOV/B is
specified in pre-decrement, the initial value of the regis-
ter becomes H’'200. If SMOV/B is specified in post-
decrement, the initial value of the register becomes
H'1Iff.

Drawbacks of Post-Decrement

The symmetry between SMOV/F and SMOV/B and
that between SCMP/F and SCMP/B breaks down. For
example, if SMOV/B is executed on the string which
uses the area up to H’000000ff, while with SMOV/B.B.,
H’0000001T is set as the initial value of the pointer. With
SMOV/B.W, H'000000fc should be set as the initial
value of the pointer.

Drawbacks of Pre-Decrement

The consistency of search instructions such as SSCH
and BSCH breaks down. After the instruction is exe-
cuted, if the last value of the pointer always points at an
element which satisfies the termination condition (the
element of the search result) because SSCH is used, the
pre-update/post-update cannot be changed based on the
process direction of /F, /B and /R. Thus, it is impossi-
ble to pre-decrement only /B. (Although SSCH/B does
not exist, it is similar to the specification of BSCH/B.)

In the data processor of the present invention, the
drawbacks of post-decrement should be thoroughly
considered, so that SMOV/B and SCMP/B are speci-
fied in the pre-decrement.

There is another problem to be considered. There is
some ambiquity as to whether SMOV, SCMP and
SSCH termination conditions should end the instruction
before or after the pointer is updated.

Drawbacks of terminating the instruction before the
pointer is updated

If an instruction is terminated based on the element
size, the pointer is updated and the instruction is termi-
nated after the pointer points at the next element (in the
case of /F, an element which is not processed), so that
it does not conform to the specification. In other words,
updating the pointer depends on whether the termina-
tion condition is satisfied or not. Therefore, the specifi-
cation becomes complicated and it is difficult to obtain
a high speed implementation.

If a search operation is successively performed after
another search operation is satisfied, the pointer must be

10

45

50

55

60

65

192

updated before the second search is perform. It also

applies to SMOV and SCMP.

Drawbacks of terminating the instruction after the
pointer is updated

Since the pointer value changes from that of the ele-
ment which satisfies the termination condition (search
condition) after an instruction is executed, this type of
specification is not simple for the SSCH instruction. It is
also difficult to specify the BVSCH and BSCH instruc-
tions.

In the data processor of the present invention, the
drawbacks of termination an instruction before the
pointer is updated has been given much consideration.
The specification is defined in such a manner that an
instruction is terminated after the pointer is updated.

Thus, after the SMOV/F, SCMP/F SSCH/F and
SSCH/R instructions are terminated, the pointer points
at the element following the element which satisfied the
termination condition. Since the pointer is updated in
the pre-decrement manner for the SMOV/B and
SCMP/B instructions, after an instruction is completed,
the pointer points at the element where the termination
condition is satisfied.

To match the specifications of BVMAP/B and
BVCPY/B with those of SMOV/B and SSCMP/B, the
maximum offset + 1 in the bit field is specified by R1 and
R4.

Since it is convenient for BVSCH and BSCH that the
bit offset after the execution of the instruction directly
points at the bit to be searched, /F and /B should be
specified in the same manner. Since the pointer for
QSCH is structured in the pre-update manner, it differs
from SSCH and BSCH in the pointer update timing.
The search patterns of BSCH/F (BVSCH/F), SSCH/F
and QSCH/F are summarized as foliows.

BSCH/F Search data starting from where t)e pointer
currently points. After the search operation is com-
pleted, the pointer points at the data that was
searched.

SSCH/F Search data starting from where the pointer
currently points. After the search operation is com-
pleted, the pointer points to the data following the
searched data.

QSCH/F Search the data following that where the
pointer is pointing. After the search operation is com-
pleted, the pointer points at the data that was
searched.

In a string instruction, the element number R2 is
treated as an unsigned number. By considering R2 as an
unsigned number and assigning R2=0 , the element
number is interpreted as H'10000000 to prevent termi-
nation. This function can be used for the strcmp func-
tion in the C language. In the implementation, by con-
sidering R2 as an unsigned number, the determination of
termination by the number of elements becomes easy.

On the other hand, the width of the bit field instruc-
tion is treated as signed data irrespective of the fixed
length bit field instructions and variable length bit field
instructions.

When executing a bit field instruction, its width is
added to the offset; however, offset is signed data. If the
width is unsigned data, a complicated situation such
that a signed number is added to an unsigned number
takes place. The element size of the string instruction is
multiplied and then the result is added to the pointer,
unsigned number is proper.

If the width of a variable length bit field instruction is
in the range from H'80000000 to H'ffffffff, the execution

5,201,039

193
of an instruction is affected by whether data is signed or
unsigned. If the data is signed, the instruction is termi-
nated by setting V_flag. If the data is unsigned, even if
the width of the data is within the range, the bit field
operation is conducted. However, while the content of
width is in the range from H’80000000 to H’ffTffY¥Y, if the
result of offset + width is treated as singed data, an over-
flow already occurs. Even if the result of offset + width
is treated as unsigned data (33-bit signed data), an over-
flow occurs depending on the value of offset. Since it is
defined so that if the result of offset + width causes an
overflow, the operation is not guaranteed. Even if the
data is treated as unsigned data, the cases where the
operation is not assured may increase. If the data is
unsigned data and the operation of width > H’80000000
is to be assured, the burden on hardware will increase.

Since string instructions may be terminated by termi-
nation conditions, it is possible to prevent them from
getting terminated by the element size. To represent
infinity (H'10000000) using ‘0, it is necessary to treat
the element size as unsigned data. Since there is no
instruction termination element except the width for
BVMAP and BVCPV, it is necessary to assign it a
meaningful value. In this case, the rule where “the val-
ues in the registers are treated as signed numbers”
should be applied.

Summary of Basic Rules for String Instructions and
Variable Length Bit Field Instructions

In search type instructions, the timing for updating
the pointer does not depend on the direction where data
is searched.

In both /F and /B options of BSCH and BVSCH,
after the search operation is completed, the pointer
points at the bit which has been found.

After the search operation is completed in both /F
and /R options of SSCH, the pointer points at the ele-
ment following that which is found.

For instructions with the /F option, post-increment is
performed; with the /B option, the pre-decrement is
performed.

This method applies to SMOV/ SCMP, BVMAP and
BVCPY. Although SSTRA nd BVPAT have only the
/F option, the same rule applies to them.

In the string instructions, the element size is treated as
unsigned data. If it is ‘0’, it represents H’10000000. In
the variable length bit field instructions, width is treated
as signed data. Only if the content of width is in the
range from H’00000001 to H’7ffYYffY, is an actual bit field
operation performed.

A11-2 Detailed Specification of String Instructions

SMOV :

The operation of SMOV is summarized as follows. If
the final result is the same, it is possible to change the
following memory access order (it applieds to other
high level instructions). If an incorrect option is used,
the operation when option /F is used (if src < dest) and
that when option /B is used (if src>dest) can differ as
follows. ‘

{Operation of SMOV/F]
O==>V_flag
repeat
R-1==>R2
mem[RO} == > mem|[R1] ==> temp
RO + size ==> RO
Rl + size ==> RI
compare temp with R3, R4 and set F_flag, M_flag
according to ecee

15

20

45

194

-continued

/* If the termination condition is
satsified, F__flag is set 1o 1. */

if (F—flag = 1) then exit
check_interrupt
until (R2 = 0)
l==>V_flag
[Operation of SMOV/B]

O==> V_flag
repeat
R2 - 1==>R2
RO — size ==> RO
Rl — size ==> R1
mem{R0] = => mem{l]==> temp
compare templ with R3, R4 and set F_flag, M__flag
according to ecee
/* If the termination condition is
satisfied, F_flag is set to 1. */
if (F_flag = 1) then exit
check _interrupt

until (R2 = 0)
1==> V_flag

In SMOV, one or more elements are processed re-
gardiess of what the initial value of R2 is. The termina-
tion factors of SMOV are summarized as follows.

1. Termination by the number of elements (data) (R2)

If an instruction is terminated by the number of ele-

ments, V_flag is set to ‘1’. This case and the fol-
lowing case do not occur at the same time.
2. Termination by the termination condition
When F_flag is set to 1, the elements where the
termination condition is satisfied are also trans-
ferred.

SCMP

SCMP may be terminated by mismatched data being
compared, in addition to instruction terminations by the
number of elements and by the termination condition. If
the instruction is terminated by mismatch of two pieces
of data in SCMP, as the instruction is terminated by the
termination condition, after the pointer is updated, the
instruction is terminated. It is possible to satisfy both the
termination condition and the termination factor due to
the mismatch of two pieces of data at the same time in
SCMP.

If SCMP is terminated by the number of elements, the
next element is not compared. On the other hand, if the
next element is mismatched or the termination condi-
tion is satisfied, the instruction is terminated as V__.
flag=1, F_flag =0 and Z_flag=1.

If the final result is the same, the memory access
order can be changed from the following order, i.e.

50
only the equivalent operation is necessary.

55

65

{Operation of SCMP/F]
O ==>V_{lag
repeat
R-1==>R
mem[RO] = = > templ
mem{R1] = => temp2
RO + size ==> RO
Rl + size ==> RI
compare temp! with temp2 and set Z_ flag,
L_flag, X_ flag
/* If data is mismatched, Z_flag is set to 0. */
compare temp] with R3, R4 and set F_flag,
M__flag according to eeee
/* If the termination condition is satisfied,
F_flagissetto 1. */
if F_flag = 1 .or. Z_flag = 0) then exit
/* The instruction is terminated if the
termination condition is satisfied or
data is mismatched.

*/

5,201,039

195 196
-continued -continued
check.interrupt mem[RO] == > temp
until (R2 = 0) RO+ RS ==> RO
1==> V_flag compare temp with R3, R4 and set F._flag, M_flag
[Operation of SCMP/B] 5 according to ecec
O ==> V_{lag /* If the termination condition is satisfied,
repeat F_flagissetto 1. */
R2_1,==>R2 if (F_flag = 1) then exit
RO — size == > RO /* The instruction is terminated by the
R1 — size ==> RI termination condition (search condition). */
mem[RO] ==> templ 10 check__interrupt
mem[R]] ==2> temp2 until (R2 = 0)
compare templ with temp?2 and set Z_flag, l==>V_flag
L_flag, X flag
/* If data is mismatched, Z_flag is set to 0. */
compare temp] with R3, R4 and set F_flag, M_{flag The termination factors of SSCH are summarized as
according to eeee 15

/* If the termination condition is satisfied,
F_flag is set to 1. */
if (F_flag = 1 .or. Z_flag = 0) then exit
/* The instruction is terminated if the
termination condition is satisfied or
date is mismatched.
check _interrupt
until (R2 = 0)
1 ==> V_{lag

*/

The termination factors of SCMP are summarized as
follows.

1. Termination by the number of elements (data) (R2)

The status flags are set as follows. Z_flag=1, F_.
flag=0 and V_flag=1. Cases 2 and 3 can not occur at
the same time as this one.

2. Termination by the termination condition

F_flag is set to ‘1’ and V_flag is set to ‘0’. The ele-
ments which satisfy the termination condition are also
compared. The result of comparison is sent to Z_flag,
L_flag and X_flag. If the result is mismatched, it
means that the two termination factors 2 and 3 are satis-
fied at the same time.

3. Termination by mismatch of elements being com-
pared

The comparison result of mismatched elements is set
to Z_flag (=0), L_flag and X_flag. V_flag is set to
0.

SSCH

If SSCH is terminated by the termination condition
(search condition), in both options /F and /R, the
pointer points at the element following that where the
termination condition is satisfied. If SSCH is terminated
by the number of elements, the pointer points at the next
element after the instruction is executed.

The operation of SSCH is summarized as follows.

[Operation of SSCH/F]
O==>V_{lag
repeat
R2-1==>R2
mem({RO] == > temp
RO + size ==> RO
compare temp with R3, R4 and set F_flag, M_flag
. according to eeee
/* If the termination condition is satisfied,

F_flag is set to 1. */
if (F_flag = 1) then exit
/* The instruction is terminated by the
termination condition (search condition). */

check__interrupt
until (R2 = 0)
l==> V_flag
[Operation of SSCH/R]
O==>V_{flag
repeat

R2—1==>R2

25

35

45

50

55

65

follows.

1. Termination by the number of elements (data) (R2)

V_flag is set to ‘I’. The cases 1 and 2 do not occur at
the same time.

2. Termination by termination condition (search con-
dition)

F_flag is set to ‘I’,

SSTR

In SSTR, the status flags are not changed. The opera-
tion of SSCH is summarized as follows.

[Operation of SSTR)

repeat
R2-1==>R2
R3 ==> min[R]]
Rl 4 size ==> Rl
check__interrupt
until (R2 = 0)

All-3 Register Values upon Completion of High
Level Instructions

If a high level function instruction is executed in data
processor of the present invention, when the instruction
is terminated, the value of each register changes as
follows. RXinit represents the value of register RX
before the instruction is executed. In addition, RX end
represents the value of register RX after the instruction
is executed.

{BVSCH]}

If /F is used, the offset range from Rlinit to Rlinit +
R2init — 1 is scarched.

If /B is used, the offset range from Rlinit to Rlinit —
R2init + 1 is searched.

If R2init(width) = O, V_flag is set and the instruc-

tion is terminated. However, R1 snd R2 are not changed.

If the search operation is successfully terminated:

RO (base address): Not changed

R1 (offset): Search result. Bit offset of the bit being
found.

R2 (width): Total bit field length. In short, in /F, R2i-
nit+Rlinit—Rlinit—Rlend; in /B, R2init—-
Rlinit+Rlend.

If the search operation is not successfully terminated:

RO (base address): Not changed

R1 (offset): Offset of the bit following that which is last
searched. In short, in /F, Rlinit+ R2init; in /B, R1i-
nit—R2init. This is the same as BSCH.

R2 (width): 0

[BVMAP], [BVCPY]

5,201,039

197

If /F is used, the area with a bit offset of R1linit to
R1linit + R2init — | becomes src; the area with a bit offset
of R4init to R4init +R2init— 1 becomes dest.

If /B is used, the area with a bit offset of R linit—1 to
R1init —R2init becomes src; the area with a bit offset to
R4init —1 to R4init—R2init becomes dest.

If R2init (width)=0, the instruction is terminated,
R1, R2 and R4 are changed.

RO (src base): Not changed

R1 (src offset): If /F is used, Rlinit+R2init; if /B is
used, Rlinit —R2init

R2 (width): 0

R3 (dest base): Not changed

R4 (dest offset): If /F is used, R4+ R2init; if /B is used,

R4init — R2init.

R5 (type of operation): Not changed (only for

BVMAP)

[BVPAT]

The area with the bit offset of R4init to Réinit+-
R2init— 1 becomes dest.

If R2init (width) =0, the instruction is terminated. R2
and R4 are not changed.

RO (pattern): Not changed

R2 (width): 0

R3 (dest base): Not changed

R4 (dest offset): R4init+ R2init

R5 (type of operation): Not changed

[SMOV]

If /F is used, the area with the following addresses is
srC;

ROinit to ROinit + R2init * element__size — 1
the area with the following addresses is dest;

Rlinit to Rlinit+ R2init * element__size —1

If /B is used, the area with the following addresses is
sIC;

ROinit — ! to ROinit —R2init * element_size

the area with the following addresses is dest;

Rlinit—1 to Rlinit —R2init * element__size

For example, when the string from H'0000 to H’00fT is
transferred to H'0300 to H'03ff, if it is copied using
SMOV/F.W, registers are as follows;

RO=H"0000, R1=H'0300 and R2=H'0040

It if is copied using SMOV/B.W, registers are as
follows;

RO=H'0100, R1=H"0400 and R2=H"0040.

However, if the termination condition is satisfied, the
process is canceled immedigtely. The data which satis-
fies where the termination condition is transferred to
dest. :

If the instruction is terminated by the number of ele-
ments (V_flag=1):

RO (src address): If /F is used, ROinit + R2init * element
size. If /B is used, ROinit — R2init * element_size
R1 (dest address): If /F is used, Rlinit+R2init * ele-

ment size. If /B is used, Rlinit—R2init * element _
size.
R2 (number of elements): 0

10

15

25

30

35

40

45

55

65

198

R3 (termination condition 1): Not changed

R4 (termination condition 2): Not changed
If the instruction is terminated because the termina-

tion condition has been satisfied (F_flag=1):

RO (src address): If /F is used, the address of the ele-
ment following that of src where the termination
condition is satisfied.

If /B is used, the address of the element of src where the
termination condition is satisfied.

R1 (dest address): If /F is used, the address of dest
where the element following the src which satisfied
the termination condition should be transferred.

If /B is used, the address of dest where the element of
src which satisfied the termination condition should
be transferred.

With both /F and /B, R1init + ROend — R0init.

R2 (number of elements): The number of elements
which has not transferred.

If /F is used, R2init — (ROend — ROinit)/element_size.

If /B is used, R2init — (ROinit — ROend)/element_size.

R3 (termination condition 1): Not changed

R4 (termination condition 2): Not changed
[SCMP)

If /F is used, the area with the following addresses is
srcl;

ROinit to ROinit+ R2init * element_size—1

the area with the following address is src2;
Rlinit to Rlinit+R2init * element__size— 1}

If /B is used, the area with the following addresses is
srcl;

ROinit — 1 to ROinit—R2init * clement_size

the area with the following addresses is src2;

Rlinit— 1 to Rlinit—R2init * element__size

For example, If SCMP/F.W is used to compare the
string of H'0000 to H'00ff with that of H’0300 to H'03ff,
registers are as follows;

RO=H"0000, R1=H"0300, and R2=H'0040

When they are compared using SCMP/B. W, registers
are as follows;

RO=H0100, R1=H"0400, and R2==H"0040

However, if the termination condition is satisfied, the
process is canceled midway. When the termination
condition is satisfied, the elements are compared and the
result is set to L__flag, X_flag and Z_flag: In addition,
if a mismatched element is found during the comparison
operation, the process is canceled midway.

If the instruction is terminated by the number of ele-
ments (V_flag=1):

RO (srcl address): If /F is used, ROinit+ R2init * ele-
ment size; if /B is used, ROinit — R2init * element__
size.

However, if R2init <0, it is not changed.

R1 (src2 address): If /F is used, Rlinit+ R2init * ele-
ment size; if /B is used, Rlinit —R2init * element__
size.

R2 (number of elements): 0

R3 (termination condition 1): Not changed

5,201,039

199
R4 (termination condition 2): Not changed
If the instruction is terminated because the termina-
tion condition has been satisfied or because there is a
mismatch of the element value (F_flag=1 .or. Z_.
flag=0): 5

RO (srct address): If /F is used, the address of the
element following the srcl where the
termination condition is satisfied (or
by mismatch). 10
If /B is used, the address of the ele-
ment of scr] where the termination
condition is satisfied (or by mis-
- match).
R1 (src2 address): If /F is used, the address of the
element of src2 which correspond to 15
the element following the srcl where
the termination condition is sat-
isfied (or by mismatch).
If /B is used, the address of the cle-
ment of src2 which corresponds to
the srcl where the termination con- 20
dition is satisfied (or by mismatch).
With both /F and /B, Rlinit +

ROend — ROinit.
R2 (number of elements): The number of elements which are
not compared.
If /F is used, R2 init — (ROend — 25

ROinit)/element_size; if /B is
used, R2 init — (ROinit —
ROend)/element_ size.

R3 (termination condition 1): Not changed
R4 (termination condition 2): Not changed

[SSCH]

The area with the following addresses is searched if
/F is used;

ROinit to ROinit 4 R2init * element__size — 1 35

The area with the following addresses is searched every
RS, if /R is used,

ROinit to ROinit+RS5 * R2init—1 40

However, if the termination (search) condition is satis-
fied, the process is canceled midway.

If the instruction is terminated by the number of ele-
ments (V_flag=1): 45
RO (src address): If /F is used, ROinit + R2init * elemen-

t_size; if /R is used, ROinit+ R2init * R5 R2 (number

of elements): 0
R3 (termination condition 1): Not changed
R4 (termination condition 2): Not changed 50
R5 I (pointer update value): Not changed

If the instruction is terminated by satisfying the termi-
nation (search) condition (F_flag=1):

RO (src address): The address of the element following

the src which satisfies the termination condition 35
R2 (number of elements): Number of elements which

have not been searched. If /F is used, R2init—(-

ROend —ROinit)/element.size. If /R is used, R2i-

nit — (ROend — ROinit)/RS
R3 (termination condition 1): Not changed 60
R4 (termination condition 2): Not changed
RS (pointer update value): Not changed

[SSTR]

Data which is assigned by R3 is repeatedly written to
the area with the following address; 65

Rlinit to Rlinit + R2init * element_size —1

200

Unlike other instructions, the termination condition is
not assigned. In addition, the flags are not set. If R2init
(width)=0, the instruction is immediately terminated.
R! and R2 are not changed.

R1 (dest address): R 1init+ R2init * element size
R2 (number of elements): 0
R3 (write data): Not changed

[QSCH]

If the instruction is terminated by the queue termina-
tion value (R2) (V_flag=1):

RO (entry address): R2init
R1 (previous entry): The address of the entry just be-
fore (in the case of /F) or just after (in the case of /B)
the entry represented with ROend.
R2 (queue termination value): Not changed
R3 (termination condition 1): Not changed
R4 (termination condition 2): Not changed
RS (offset): Not changed
R6 (mask): Not changed

If the instruction is terminated because the termina-
tion condition (search condition) has been satisfied (F_
flag=1):

RO (entry address): The address of the queue entry
because the termination condition has been satisfied.
R1 (previous entry): The address of the entry just be-
fore the entry (in the case of /F) represented by
ROend or just after the entry (in the case of /B) repre-
sented with ROend.
R2 {queue termination value): Not changed
R3 (termination condition 1): Not changed
R4 (termination condition 2): Not changed
RS5 (offset): Not changed
R6 (mask): Not changed

As this invention may be embodied in several forms
without departing from the spirit of essential character-
istics thereof, the present embodiment is therefore illus-
trative and not restrictive, since the scope of the inven-
tion is defined by the appended claims rather than by
the description preceding them, and all changes that fall
within the meets and bounds of the claims, or equiva-
lence of such meets and bounds thereof are therefore
intended to be embraced by the claims.

What is claimed is:

1. In a data processor for processing data according
to a program which includes a plurality of executable
instructions, the data processor having a plurality of
registers, apparatus for storing information comprising:

a first portion of byte-addressable memory for storing

data and programs, at least some of the byte-
addresses for said first portion of byte-addressable
memory forming a first address space in which
programs and data are mapped, each address in
said first address space is either an operand address
or an instruction address of at least one of said
plurality of instructions; and

a second portion of byte-addressable memory, at least

some of the byte-addresses for said second portion
forming a second address space different from said
first address space, at least some addresses of said
second address space being addresses which also
occur in said first address space, wherein at least a
first of said registers has a byte address, said first
register being mapped by said byte address to said
second address space such that said first register is
accessible using a second instruction which has an
operand address in said second address space, said
byte address of said first register in said second
address space being identical to said operand ad-

5,201,039

201

dress or instruction address of said one of said in-
structions in said first address space
whereby said data processor accesses said operand
address or said instruction address in said first ad-
dress space by executing said one of said instruc-
tions having said operand address or said instruc-
tion address in said first address space; and

whereby said data processor accesses said first regis-
ter in said second address space by executing said
second instruction having said operand address in
said second address space.

2. The apparatus as set forth in claim 1, wherein:

at least one of said plurality of instructions is an in-

struction to save a context of said data processor
into said second address space; and

at least one of said plurality of instructions is an in-

struction to restore a context from said second
address space.

3. The apparatus as claimed in claim 2, wherein said
context includes the contents of at least a first of said
registers.

4. The apparatus as set forth in claim 1, wherein said
first register is mapped to a first address in said second
address space and wherein said first register comprises a
plurality of independent fields, at least one of said inde-
pendent fields of said first register being mapped to a
second address in said second address space different
from said first address of said first register.

5. The apparatus as claimed in claim 1, wherein all of 3
said plurality of registers are mapped to said second
address space.

6. Apparatus, as claimed in claim 1, wherein substan-
tially all addresses in said second space occur in said
first address space.

7. In a data processing system for processing data
according to a program which includes a plurality of
executable instructions, the data processing system hav-
ing a main processor and a co-processor, said main
processor having at least a first associated register and
said co-processor having at least a second associated
register, apparatus for storing information, comprising:

a first portion of byte-addressable memory for storing

data and programs, at least some of the byte ad-
dresses for said first portion of byte-addressable
memory forming = first address space, each address
in said first address space is either an operand ad-
dress or an instruction address of at least one of said
plurality of instructions; and

a second portion of byte-addressable memory, at least

some of the byte addresses for said second portion
of byte-addressable memory forming a second ad-
dress space, different from said first address space,
at least some addresses of said second address space
being addresses which also occur in said first ad-
dress space, at least said first register associated
with said main processor having a first byte address
and said second register associated with said co-
processor having a second byte address, said first
and second registers being mapped to said second
address space by said first and second byte ad-
dresses, said first and second registers being acces-
sible using a respective second of said plurality of
instructions which has an operand address in said
second address space, at least one of said first and
second byte addresses of said first and second regis-
ters in said second address space being identical to
said operand address or instruction address of a

—

2

3

5

10

5

20

5

0

5

45

5

60

202

respective one of said plurality of instructions in
said first address space

whereby said main processor and said co-processor
access a respective said operand address or said
instruction address in said first address space by
executing said respective one of said plurality of
instructions having said operand address or said
instruction address in said first address space; and

whereby said main processor and said co-processor
access said first and second registers in said second
address space by executing said respective second
of said plurality of instructions having said operand
address in said second address space.

8. In a data processor for processing data according
to a program which includes a plurality of executable
instructions, apparatus for storing information compris-
ing: .
a first portion of byte-addressable memory for storing

data and programs, at least some of the byte-
addresses for said first portion of byte-addressable
memory forming a first address space in which
programs and data are mapped, each address in
said first address space is either an operand address
or an instruction address of at least a first of said
plurality of instructions;

a second portion of byte-addressable memory, at least
some of the byte-addresses for said second portion
forming a second address space different from said
first address space, at least some addresses of said
second address space being addresses which also
occur in said first address space;

the data processor executing at least a first of said
plurality of instructions to save a context of said
data processor into said second address space;

the data processor executing at least a second of said
plurality of instructions, different from said first
instruction, to restore said context from said sec-
ond address space;

the data processor executing at least a third of said
plurality of instructions, different from said first
instruction, to save a context of said data processor
into said first address space; and

the data processor executing at least a fourth of said
plurality of instructions, different from said second
instruction, to restore said context from said first
address space.

9. The apparatus as set forth in claim 8, further com-

prising:

register means for specifying a format for storage of
said context.

10. The apparatus as claimed in claim 8, further com-

prising:

means for specifying a format from among at least
three formats for storage of a context block;

wherein said first instruction is an instruction to save
a context according to the format specified in said
means for specifying a format; and

wherein said second instruction is an instruction to
restore a context according to the format specified
in said means for specifying a format.

11. In a data processor for processing data according
to a program which includes a plurality of executable
instructions, including instructions for saving and re-
storing a context, apparatus for storing information

65 comprising:

a first portion of byte-addressable memory for storing
data and programs, at least some of the byte-
addresses for said first portion of byte-addressable

5,201,039

203
memory forming a first address space in which
programs and data are mapped, each address in
said first address is space is either an operand ad-
dress or an instruction address of at least a first of
said plurality of instructions;

a second portion of byte-addressable memory, at least
some of the byte addresses for said second portion
forming a second address space different from said
first address space, at least some addresses of said
second address space being addresses which also
occur in said first address space, said second ad-
dress space being accessible using said instructions
for saving and restoring a context;

means for specifying into which address space a con-
text block is to be stored according to one of said
plurality of instructions;

the data processor executing at least a first of said
plurality of instructions to save the context of a
process into said address space specified by said
means for specifying; and

the data processor executing at least a second of said
plurality of instructions, different from said first
instruction, to restore said context from the address
space specified by said means for specifying.

12. In a data processor for processing data according
to a program which includes a plurality of executable
instructions, the data processor having a plurality of
registers, a method for storing information comprising:

providing a first portion of byte-addressable memory
for storing data and instructions, at least some of
the byte-addresses for said first portion of byte-
addressable memory forming a first address space
in which data and instructions are mapped;

accessing at least a first address in said first address
space by executing at least one of said instructions
having an operand address in said first address
space;

providing a second portion of byte-addressable mem-
ory, at least some of the byte-addresses for said
second portion forming a second address space
different from said first address space wherein at
least a first of said registers is mapped by a byte
address to said second address, at least some ad-
dresses of said second address space being ad-
dresses which also occur in said first address space;
and

accessing said first register by executing a second of
said instructions having an operand address in said
second address space, said address of said first reg-
ister in said second address space being identical to
a data address or instruction address of said at least
one instruction in said first address space.

13. The method as set forth in claim 12, further com-

prising:

exccuting an instruction to save a context in said data
processor into said second address space; and

executing an instruction to restore a context from said
second address space. ,

14. In a data processing system for processing data
according to a program, which includes a plurality of
executable instructions, the data processing system hav-
ing a main processor and a co-processor, said main
processor having at least a first associated register and
said co-processor having at least a second associated
register, a method for storing information, comprising:

providing a first portion of byte-addressable memory
for storing data and programs, said byte-addressa-
ble memory having a plurality of storage locations

5

25

3

35

60

65

204
addressable by a plurality of byte addresses at least
some of the byte addresses for said first portion of
byte-addressable memory forming a first address
space;

executing at least one of said instructions, stored at an

instruction address and having an operand address
in said first address space;

providing a second portion of byte-addressable mem-

ory, at least some of the byte addresses for said
second portion of byte-addressable memory form-
ing a second address space, different from said first
address space, at least some addresses of said sec-
ond address space being addresses which occur in
said first address space, at least said first register
associated with said main processor having a first
byte address and said second register associated
with said co-processor having a second byte ad-
dress, said first and second registers being mapped
to said second address space by said first and sec-
ond byte addresses;

accessing at least one of said first and second registers

by executing a second of said plurality of instruc-
tions having an operand address in said second
address space, the byte address of said one register
in said second address space being identical to said
operand address or instruction address of said one
of said instructions in said first address space.

15. In a data processor for processing data according
to a program which includes a plurality of executable
instructions, including instructions for saving and re-
storing a context, a method for storing information
comprising:

providing a first portion of byte-addressable memory

for storing data and programs, at least some of the
byte-addresses for said first portion of byte-
addressable memory forming a first address space
in which data and programs are mapped, each
address in said first address space is either being
usable as an operand address or an instruction ad-
dress of at least a first of said plurality of instruc-
tions;

providing a second portion of byte-addressable mem-

ory, at least some of the byte-addresses for said
second portion forming a second address space
different from said first address space, said second
address space being accessible using said instruc-
tions for saving and restoring a context, at least
some addresses of said second address space being
addresses which also occur in said first address
space;

specifying, in a first of said plurality of instructions,

into which address space a context block is to be
stored;

saving the context of a process into said specified

address space in response to said first instruction;
and

restoring said context from the specified address

space in response to a second instruction, different
from said first instruction.

16. The method as claimed in claim 15, further com-
prising:

specifying a format from among at least three formats

for storage of a context block;

wherein said step of saving includes saving a context

according to said specified format; and

wherein said step of restoring includes restoring 2

context according to said specified format.
& 5 * % 23

