
!mm1
Applied
Microsystems
Corporation

ES 1800 Emulator
User's Manual
80186/88,80C186/C188
and 80C186EB/C1 BBEB
Microprocessors

January 1992
p~ 922-17003-00
Replar.es P~ 922-00003-06
Copyright © 1992 Applied Microsystems Corporation.
All rights reserved.

DEC and VAX are trademarks of Digital Equipment Corporation

Ethernet is a trademark of Xerox Corporation

GeneProbe II, GeneLink, and ACCESS are trademarks of Genesis Microsystems
Corporation.

Hewlett-Packard is a registered trademark of Hewlett-Packard Corporation

Intel and Link-86 are registered trademarks of Intel Corporation

InterTools is a trademark of Intermetrics Systems Software, Inc.

Lattice is a trademark of Lattice Corporation

Meta Ware and High Care registered trademarks of Meta Ware Incorporated

Microsoft, MS-DOS, and Code View are registered trademarks of Microsoft Corporation.

PC, IBM XT and IBM AT are trademarks of IBM Corporation

Phar Lap is a trademark of Phar Lap Software.

Soft-Scope is a registered tradmark of Concurrent Sciences

Sun, Sun-3, Sun-4, NFS, and PC-NFS are trademarks of Sun Microsystems, Inc.

Turbo C is a registered trademark of Borland International, Inc.

UNIX is a registered trademark of AT&T.

VALIDA TE is a registered tradmark of Applied Microsystems Corporation

376, 386, 387, 486, and iRMX are trademarks of Intel Corporation

ES 1800 EMULATOR USER'S MANUAL
FOR THE 801 Sx, 80C1 ax AND 80C1 SxEB

CONTENTS

PREFACE
Unpacking and Inspection ... i
Service .. ii
Limited Hardware Warranty ... ii
Hardware Extended Warranty .. ii
Hardware Service Agreements .. iii
Warning ... iii

Section 1
INTRODUCTION

How to Use This Manual ... 1-1
Introduction to the ES 1800 ... 1-2
System Configuration .. 1-2
System Overview ... 1-5

ES Language .. 1-5
Real Time Operation .. 1-5

Steps for Using an ES 1800 Emulator ... 1-6
Establishing Communications ... 1-8
Setting Up the Target Environment. 1-8
Run Program .. 1-9
Break Emulation .. 1-10
Setting Up Breakpoints and Conditional Tracing 1-10
Isolating the Problem ... 1-11
Modifying Your Program .. 1-12
Using Shortcuts .. 1-12
Bringing up Prototype Hardware ... 1-13

Software Options ... 1-15
ES Driver Emulator Control Software 1-16
High Level Language Debuggers .. 1-16
Compilers and Assemblers .. 1-18

Section 2
GETTING STARTED

Introduction .. 2-1
Emulator Setup•... 2-2
Target System Setup .. 2-3

Emulating in Targets with Attached CPUs (80C18x) 2-4
Power-Up Sequence ... 2-4

Target System Present ... 2-4

Contents

No Target System .. 2-5
Getting Started with ESL ... 2-5
Test Run of System .. 2-6

1. Initialize The ES 1800 ... 2-6
2. Map Overlay Memory ... 2-7
3. Test RAM .. 2-7
4. Enter Program , .. 2-7
5. Verify The Program ... 2-8
6. Run The ES 1800 ... 2-8
7. Stop The Program .. 2-8
8. Display The Trace Buffer .. 2-9
9. Set A Breakpoint. ... 2-9
10. Initialize Peripheral Control Registers

8018x, 80C18x only ... 2-9
11. Initialize Peripheral Control Registers

80C18xEB only .. 2-14

Section 3
HARDWARE

Emulator Chassis ... 3-1
System Grounds ... 3-1
Emulator Control Boards ... 3-1
ES 1800 Chassis Front Panel ... 3-5
ES 1800 Chassis Rear Panel .. 3-5

Pod ... 3-7
Saving Desk Space ... 3-9

Time Stamp Module .. 3-11
Logic State Analyzer (LSA)•................................ 3-12

LSA Timing Strobe .. 3-12
Ports ... 3-14

Serial Ports ... 3-14
Data Requirements ... 3-15

Maintenance•.. 3-17
Cables ... 3-17
Probe tip ... 3-17
Clea.1iug the Fa.1 Filter ... 3-17
Parts .•... 3-19

Troubleshooting•... 3-20
ES 1800 Emulator Specifications .. 3-21

Input Power .. 3-21
Environmental .. 3-21
Physical .. 3-21

Contents

Section 4
PREPARING FOR EMULATION

Terms ... 4-2
Establish Communication with the Emulator 4-3

Serial Communication ... 4-3
Setup Commands ... 4-5
Port Dependent Commands ... 4-5
SCSI Communication .. 4-5

Set Up Target Environment ... 4-6
Map Overlay Memory ... 4-7
Download Files .. 4-9
Check Registers , .. 4-11
Set Up Soft Switches ... 4-27

Run YourProgram ... 4-29
Break Emulation .. 4-30

Set Up Breakpoints .. 4-32
Set Up the Event Monitor System 4-32
Structure ... 4-33
Define Events ... 4-34
Define WHEN{fHEN Statements 4-40
Event Monitor System Examples 4-41
Using Software Debuggers .. 4-45

Isolate a Problem ... 4-47
Run Program from Overlay ... 4-48
Examine the Trace Memory .. 4-48
Check CPU Registers ... 4-49
Single Step Through Program .. 4-50
Miscellaneous Useful Commands 4-50

Modify Your Program ... 4-51
Memory Commands .. 4-52
Line Assembler•.............................•.......... 4-53
Memory Mode ... 4-54
I/O Mode .. 4-55

Shortcuts .. 4-56
Use Symbols Rather than Addresses 4-57
Repeat Operators•.................................. 4-61
Macros ... 4-62
General Purpose Registers ... 4-63
Save Setup to EEPROM •..•............ 4-63
Configure System for Two Users .. 4-63
Clear Commands .. 4-64

Contents

Section 5
BRINGING UP HARDWARE

RAM Tests ~ .. 5-2
Scope Loops ... 5-2
Miscellaneous Special Functions ... 5-3

Section 6
TIME STAMP MODULE

Possible Measurements .. 6-1
Using the Time Stamp Counter Value as a Condition 6-2

Installation ... 6-3
Hardware Installation ... 6-3

Software Installation ···'············ 6-4
Using the Time Stamp Module .. 6-5

Getting Started ... 6-5
Steps for Using the Time Stamp Module 6-6

Examples .. 6-12
Measuring Elapsed Time ... 6-12
Counting Occurrences .. 6-20
Using the Time Stamp Counter Value as a Condition 6-24

Section 7
ALPHABETICAL COMMAND REFERENCE

Introduction•... 7-1
@: Readtwrite iviemory .. 7-2
': Symbol and Section Definition .. 7-4
/: Repeat Command Line ... 7-6
*:Repeat Command Line•... 7-7
_: Define/l]se Macros .. 7-8
ASM: Line Assembler ... 7-9
BAS: Set/Display Register Default Base ... 7-12
BKX: Break On Instruction Execution .. 7-13
BMO: Block Move .. 7-14
BRK: Break Emulation ; .. 7-16
BUS: Display Status Of Bus Status Lines 7-18
BTE: Bus Timeout Enable (80C18x and 80C18xEB only) 7-19
BTO: Bus Timeout Register (80C18x and 80C18xEB only) 7-20
BYM: Set Global Data Length .. 7-21
CCT: Computer Port Control.•.. 7-23
CDH: Clear DMA Halt (8018x and 80C18x only) 7-24
CES: Clear When(fhen Statements ... 7-25
CK: Internal/External Clock•....................... 7-26
CLK: Read Target System Clock .. 7-27
CLM: Clear Memory Map ... 7-28

Contents

CLR: Clear CPU Registers .. 7-29
CMC: Clear Macros ... 7-30
CNT: Decrement Hardware Counter ... 7-31
COM: Communication With Target Programs 7-34
CPY: Copy Data To Both Ports ... 7-38
CRC,CRE,CRO: Target Cyclic Redundancy Check 7-39
CTS: Convert Time Stamp .. 7-40
DB: Display Memory Block .. 7-41
DEL: Delete A Symbol Or Section .. 7-43
DES: Display Event Specifications ... 7-44
DFB: Default Base ... 7-45
DIA: Display Character String .. 7-46
DIS: Memory Disassembler ... 7-48
DM: Display Memory Map ... 7-49
DME: Enable Data (8018x and 80C18x only) 7-50
DNL: Download File ... 7-51
DNV: Verify Download Data (80C18x and 80C18xEB only) 7-52
DR: Display/Load Microprocessor Registers 7-53
DRT: Display Raw Trace Bus Cycles ... 7-55
DT: Disassemble Trace Memory ... 7-59
DTB, DTF: Disassemble Trace Page ... 7-61
FIL: Fill Operator ... 7-62
FIN: Find Pattern In Memory .. 7-63
FSI: Force Special Interrupt.. ... 7-64
FSX: FSI On Instruction Execution ... 7-66
GD: General Purpose Data Registers ... 7-67
GR: General Purpose Address Registers ... 7-68
GRO: Change Event Groups ... 7-69
IDP: Interrupts During Pause (80C18x and 80C18x EB only) 7-70
IHE: Ignore Halt Errors (80C18x and 80C18x EB only) 7-72
IOP: I/O Mode Pointer ... 7-73
LD: Load System Variables From EEPROM 7-74
LDV: Load Reset Vectors .. 7-75
LOV: Load Overlay Memory .. 7-76
M: Enter Memory Mode•...................•.................. 7-77
MAC: Display Defined Macros ... 7-79
MAP: Set Memory Map .. 7-80
MIO: Enter I/0 Mode ..•..................... 7-83
MMP: Memory Mode Pointer•.................. 7-85
ON/OFF: Switch Setting ...•...................... 7-87
OVE: Overlay Memory Enable ... 7-92
OVS: Overlay Memory Speed (80C18x and 80C18xEB only) 7-93
PCB: Display PCB Registers ... 7-95
PCS: Enable Chip Selects (80C18x and 80C18xEB only) 7-98
PPT: Trace Peeks and Pokes (80C18x and 80C18xEB only) 7-99

Contents

PRE: DRAM Refresh During Pause
(80C18x and 80C18xEB only) ... 7-100

PUR: Delete All Symbols And Sections .. 7-102
RBK: Run Target Program .. 7-103
RBV: Run Target Program .. 7-104
RCS: Read Chip Select 8018x and 80C18x only 7-i05
RCT: Reset Hardware Coun.ter .. 7-106
RDY: Select Internal or External Ready Signal 7-107
RET: Display A Blank Line ... 7-108
REV: Display The Software Revision Dates 7-109
RNV: Run Target Program•... 7-110
RSS: Read Serial Status 80C18xEB only 7-111
RST: Reset•.. 7-112
RUN: Run Target Program .. 7-113
SA V: Save System Variables In EEPR OM 7-114
SEC: Display Section ... 7-115
SET: Set Up Parameters .. 7-116
SF: Special Functions List ... 7-120
SF 0: Simple RAM Test, Single Pass .. 7-121
SF 1: Complete RAM Test, Single Pass .. 7-123
SF 2: Simple RAM Test, Looping ... 7-124
SF 3: Complete RAM Test, Looping ... 7-125
SF 4: Toggle Data At Address ... 7-126
SF 5: Peeks Into The Target System .. 7-127
SF 6: Pokes Into The Target System ... 7-128
SF 7: Write Alternate Patterns ... 7-129
SF 8: Write Pattern Then Rotate .. 7-130
SF 9: Write Data Then Read•... 7-132
SF 11: Write Incrementing Value .. 7-133
SF 12: Read Data Over An Entire Range 7-134
SF 13: Cyclic Redundancy Check ... 7-135
SF 24: Toggle Data At Address ... 7-136
SF 25: Peeks Into The Target System .. 7-137
SF 26: Pokes Into The Target System ... 7-138
SF 27: Write Alternate Patterns ... 7-139
SF 28: Write Pattern Then Rotate .. 7-140
SF 29: Write Data Then Read•... 7-142
SF 31: Write Incrementing Value .. 7-143
SF 32: Read Data Over An Entire Range 7-144
STI: Step Through Interrupts ... 7-145
STP: Stop And Step Target System ... 7-146
SYM: Display Symbols ... 7-147
TCE: Dynamic Trace Capture Enable ... 7-148
TCT: Terminal Port Control .. 7-149
TE: Timers ... 7-150

TGR: Send Trigger Signal ... 7-152
TOC: Toggle Hardware Counter ... 7-153
TOT: Toggle Trace .. 7-154
TRA: Transparent Mode .. 7-156
TRC: Trace Events ... 7-157
TST: Test Register ... 7-159
UPL: Upload Serial Data•............ ~ 7-160
UPS: Upload Symbols ... 7-161
VBL: Verify Block Data .. 7-162
VBM: Verify Block Move ... 7-163
VFO: Verify Overlay Memory .. 7-164
VFY: Verify Serial Data , ... 7-165
WAI: Wait Until Emulation Break .. 7-166
WDM: Set Global Data Length ... 7-167
WHEN: Begin WHEN!THEN Statement 7-169
X: Exit Memory, 1/0 Modes, and Line Assembler 7-170

Section 8
ES LANGUAGE

Structure of the ES Language .. 8-1
Notes on ESL ... 8-5
Help .. 8-16
Log In Banner .. 8-19
Prompts .. 8-21
Special Modes .. 8-22
Special Characters .. 8-24
Errors ... 8-25
ES Language Error Messages .. 8-26

Appendix A
ERROR MESSAGES

Target Hardware Error Messages ... A-1
Emulator Hardware Error Messages•...................................... A-4
Target Software Error Messages•...................... A-5

Appendix B
SERIAL DATA FORMATS

MOS Technology Format .. B-2
Motorola Exorcisor Format ... B-3
Intel lntellec Fonnat. .. B-4
Signetics/Absolute Object File Format .. B-5
Tektronix Hexadecimal Format ... B-6
Extended Tekhex Format ... B-7

Contents

Contents

Variable-Length Fields .. B-8
Data and Tennination Blocks .. B-8
Symbol Blocks ... B-9

Motorola S-Record Format .. B-14
S-Record Content ... B-14
S-Record Types .. B-15
Creation of S-Records .. B-16

Intel Hex Format .. B-18
Symbol Record .. B-18
Segment Base Address Record .. B-18
Data Record ... B-19
Starting Address Record .. B-19

Appendix C
JUMPER DEFINITIONS

8018x Pod Jumpers .. C-1
Accessing the Jumpers ... C-1
Setting the Jumpers .. C-1

80C18x and 80C18xEB Pod Jumpers .. C-3
Accessing the Jumpers ... C-3
Setting the Jumpers .. C-3
80C18x, 80C18xEB Pod Jumper JPS .••...•..•..•••••..•••.••.•..••••.. C-5

80C186EB/Cl88EB Adapter Board Jumper C-7
A,...,.o.~~;,...n f-h,._,, Tu.....-._,.,.,..,.. r" "7

".:&.'-"""""'"'"'"J.AO L4.IY _, U&.1.Jp""'.1"•••'-'- /

Setting the Jumpers .. C-7

Appendix D
APPLICATION NOTES

AppendixE
SERIAL COMMUNICATONS INTERFACE

PC 25-Pin Serial Cable .. E-1
PC 9-Pin Serial Cable .. E-2
Sun 25-pin Serial Cable ... E-3

PREFACE

Unpacking and Inspection

Your ES 1800 emulator has been inspected and tested for electrical and mechanical defects
before shipping, then configured for the line voltage requested. Although the emulator was
carefully packed, check it for possible transit damage and verify that the following
components are present.

If you find any damage, file a claim with the carrier and notify Applied Microsystems
Corporation. In the United States and Canada, call Customer Support at 800-ASK-4AMC
(206-882-2000 in Washington). Outside the U.S. and Canada, please contact your local sales
office or representative. Before turning on the emulator, please follow the instructions in
Section 2, Getting Started.

Standard Equipment

1. Emulator chassis with power cord, includes two boards: main control board and
trace and break board

2. Processor specific equipment: emulation board and either an 80186/188 pod. an
80C186/C188 pod, or an 80C186EB/C188EB pod.

3. ES 1800 Emulator User's Manual for 8018X, 80Cl8X and 80Cl8XEB
Microprocessors

Optional Equipment

1. Overlay memory board (choice of 128K, 256K, 512K, lM or 2M)
2. Symbolic debug
3. Dynamic trace board
4. Time stamp module and manual addendum
5. Logic state analyzer pod
6. SCSI high speed communications: includes SCSI board, terminator resistor

network, SCSI cable and manual. PC version includes a Future Domain card.
7. ES Driver emulator control software, ES Driver User's Manual and cable
8. Software debugger with associated manuals and cables
9. Compiler, assembler and associated manuals
10. Carrying case
11. Additional processor support: additional control board and pod

Preface

Service

Service
If the ES 1800 unit needs to be returned for repairs, please follow these instructions:

Jn the United States and Canada Call 800-ASK-4AMC (in Washington, 206-882-
2000) and ask for Customer Support. They will give
you a return authorization number and shipping
information.

Outside the U.S. and Canada Please contact your local sales office or
representative for repair procedures.

After the expiration of the warranty period, service and repairs are billed at standard hourly
rates, plus shipping to and from your premises.

Limited Hardware Warranty

Applied Microsystems Corporation warrants that all Applied Microsystems manufactured
products are free from defects in materials and workmanship from date of shipment for a
period of one (1) year, with the exception of mechanical parts (such as probe tips, cables, pin
adapters, test clips, lead.less chip sockets, and pin grid array adapters), which are warranted
for a period of 90 days. If any such product proves defective during the warranty period,
Applied Microsystems Corporation, at its option, will either repair or replace the defective
product. This warranty applies to the original owner only and cannot be transferred.

To obtain warranty service, the customer must notify Applied Microsystems Corporation of
any defect prior to the warranty expiration and make arrangements for rep:iir and for prepaid
shipment to Applied Microsystems Corporation. Applied Microsystems Corporation will
prepay the return shipping to US locations. For international shipments, customer is
responsible for all shipping charges, duties and taxes. Prior to returning any unit to Applied
Microsystems Corporation for warranty repair, a return authorization number must be
obtained from Applied Microsystems Corporation's Customer Service Department (see
Service section).

This warranty shall not apply to any defect, failure, or damage caused by improper use,
improper maintenance, unauthorized repair, modification, or integration of the product.

Hardware Extended Warranty
Applied Microsystems Corporation's optional extended warranty is available for all
hardware products for an additional charge at the time of the original purchase. The extended
warranty may be purchased to extend the warranty period on mechanical parts normally
restricted to 90 days to a total of one (1) or two (2) years and to extend the warranty on
electrical parts and all other mechanical parts to two (2) years.

ii Preface

Hardware Service Agreements

Hardware Service Agreements

Service agreements are available for purchase at any time for qualified Applied
Microsystems Corporation manufactured products. The service agreement covers the repair
of electrical and mechanical parts for defects in materials and workmanship. For
information, contact your local sales office.

Warning

This equipment generates, uses, and can radiate radio frequency energy and if not installed
and used in accordance with the instructions manual, may cause interference to radio
communications. It is temporarily permitted by regulation and has not been tested for
compliance with the limits of Class A computing devices pursuant to Subpart J of Part 156
of FCC Rules, which are designed to provide reasonable protection against such interference.
Operation of this equipment in a residential area is likely to cause interference. It is up to the
user, at his own expense, to take whatever measures may be required to correct the
interference.

Preface lll

Section 1

INTRODUCTION

This section provides an overview of the manual, an introduction to the ES 1800, and a
description of all the hardware and software features and options available with the ES 1800.

How to Use This Manual

The manual is organized as follows:

Section 1: Introduction introduces Applied Microsystems Corporation's ES 1800 emulator
for the 8018x, 80C18x and 80C18xEB microprocessors. It explains possible configurations,
and provides an overview of how the ES 1800 is used in debugging. ES 1800 features and
options which can be used at various stages of debugging are described.

Section 2: Getting Started provides a checklist for setting up the emulator and target system,
starting and testing the ES 1800, and storing customized system variables in EEPROM.

Section 3: Hardware contains all the information on the ES 1800, the control boards, the
rear panel, the pod, and the serial ports, as well as information on maintenance and
troubleshooting.

Section 4: Preparing for Emulation explains the steps required to use the ES 1800 to debug
a problem in software or hardware. It is organized sequentially, taking you through
establishing communications, setting up your target environment, running your program,
breaking emulation, examining the results and making modifications to your program.

Section 5: Bringing Up Hardware shows you how to use the ES 1800 when bringing up
target hardware.

Section 6: Performance Analysis, explains how to decide where to optimize your code
based on time stamp information.

Section 7: Alphabetical Command Reference provides an alphabetical reference to all
emulation commands.

Section 8: ES Language is a reference for the structure of the language that controls the
ES 1800, with explanations of the help menus, prompts, special modes and characters, and
language related error messages.

Appendix A provides explanations of the hardware error messages and serial data formats.

Appendix B describes the object module formats available for uploading and downloading
files.

Appendix C describes jumpers on the 8018x, 80C18x and 80C18xEB pods which can be
used to control chip selects and clock circuitry.

Appendix D lists the available application notes.

Appendix E supplies diagrams for the communication interface connections.

Introduction 1-1

Introduction to the ES1800

Introduction to the ES 1800
The ES 1800 emulation system allows you to analyze and control a target environment,
consisting of hardware or software, in real time. To use the ES 1800 with your target
hardware, remove the target system's microprocessor and plug in the ES 1800 emulator.
Your system uses the emulator in place of the microprocessor and behaves as if the target
microprocessor were there. The ES 1800 emulator also allows you to debug software without
being physically connected to the target system. In this configuration, the ES 1800 uses its
own real-time clock feature combined with overlay memory capabilities.

During the integration and debugging process you can read and write to the microprocessor
registers or memory locations and execute programs resident in the target system or overlay
memory. A program will run until you manually stop it, until it encounters a user-defined
stop condition, or until it encounters an error condition. A predefined condition can be in the
form of single-step operation statements or more complex statements.

Information in this manual applies to the Intel 8018x, 80C18x, and 80C18xEB
microprocessors only. For more complete information on these chips, refer to the Intel
hardware reference manuals: iAPX 86188, 1861188 User's Manual, 186EB/188EB User's
Manual, and 16132-Bit Embedded Processors, published by Intel Corporation.

System Configuration
The ES 1800 can be used to help integrate and debug software and hardware. There are
several configurations depending on what stage of integration you are at, and what debugging
software you are using.

In each configuration, there is a target system, which can be hardware, software alone (if you
are using the emulator's overlay memory to debug software), or a combination of the two.
The target system is the environment you intend to emulate.

The ES 1800 emulator consists of a chassis which houses the control boards and an ES 1800
pod which houses the emulating microprocessor. The emulator can be controlled from a
dumb terminal or a host computer, or you can use a software package on the host computer
to control the emulator. These two basic environments are described below.

ESL Control

1-2

In this environment (refer to diagram in Figure 1-1),
you use the ESL language to control the emulator.
Access to the emulator is either via a dumb terminal,
or via a terminal emulation program on your host
computer, such as kermit, tip or cu. This environment
requires an ES 1800 and a either a dumb terminal or
a host computer connected to the ES 1800 terminal
port.

When used with a dumb terminal, this configuration
is useful for debugging target systems with software
already installed or short, hand-entered routines.

Introduction

System Configuration

When used with a host computer, you can load data
from the host computer's data files. By attaching a
printer, data and code from the target system can be
printed out in assembly language. You can also print
all emulator commands and their results.

Figure 1-1: ES 1800 Controlled via ESL

ow

TERMINAL

0 = ::::;;;;:::
lllltlltllllllllllllllllllllltlllltl r---; i
~l™Q~

Host Computer Software Package Control

1 ntroduction

The ES 1800 can also be totally controlled by a host
system. This hosted software environment requires
special host resident software: either the ES Driver
emulator control software, or a high level language
debugger.

ES Driver emulator control software provides
symbolic debugging, and a convenient menu-driven
interface to the ES 1800. The various high level
language debuggers have been integrated with
the ES 1800, providing a flexible integration
environment that provides high and low level
language control and debugging, and still allows
direct access to the ES 1800 via ESL.

1-3

System Configuration

ES Driver control software and high level language
debuggers are available from Applied Microsystems
for most languages and host systems. For a complete
list of software products that work with the 8018x,
80C18x and 80C18xEB processors, see the
"Software Options" information at the end of this
section.

Figure 1-2: ES 1800 Run Via Host Computer Software

~·· c.=-----,--;il:JI

ii.!
I '-----· - .. , IW

_L mil _i #'4~~~
HOST TERMINAL

EMULATOR

POD

1-4 Introduction

System Overview

System Overview

The ES 1800 has two basic operational modes: emulation and pause. Pause mode is generally
used to set up the system configuration and to display information after exiting emulation.

Emulation, or run mode, means that the microprocessor in the ES 1800 pod is running a
program in the target system. Emulation stops when (1) you stop it, (2) user-defined
breakpoints are enabled and occur, (3) you reset the emulator with <ctrl-z>, or (4) errors
occur in the target system. During run mode, you have access to commands which let you
view the target system.

When you manually stop emulation or a breakpoint is reached, you enter pause mode. In
pause mode, all commands for viewing the target system are available, including commands
to view the trace history of performance of the microprocessor. A command language allows
you to start emulation and leave emulation when the desired combination of events are
detected in the target.

ES Language

The ES 1800 uses its own command language called Emulator Satellite Language (ESL). To
take full advantage of the ES 1800, you must understand the general concepts of the ESL
language.

The ES 1800 operates in response to command statements composed of command
mnemonics and, for some commands, arguments. The command statements form a control
language, similar to high-level computer languages.

An argument to a command is an additional value entered as part of the command sequence,
such as an address range or data value. Arguments can consist of single values, expressions,
or lists. Like a computer language, the operators and values can be combined to form
complex expressions. Statements have a maximum length of 76 characters and can be
extended by the use of macros.

The ES language contains registers, counters, and conditional statements allowing you full
control over the operation of the target system. To complete the language, a full set of error
messages is provided for (1) target hardware, (2) ES 1800 hardware, (3) target software, and
(4) ESL command language syntax.

Real Time Operation

Since the pod processor is identical to the target microprocessor, the target system runs in real
time. No wait states are inserted by the ES 1800 emulator during run mode while accessing
code, memory or I/O in the target. Note that one wait state is inserted if running above
12 MHz in standard (not high speed) overlay memory. See the discussion of the OVS
command in Section 7 for wait states as they apply to overlay memory.

Introduction 1-5

Steps for Using an ES1800 Emulator

Steps for Using an ES 1800 Emulator

This section explains the process of using an emulator, and describes the main features and
optional accessories used at each step. Detailed explanations of each step are provided in
Section 4, Preparing for Emulation. Since debugging is an iterative process, these steps are
meant only as a rough sequence of typical tasks, rather than a step-by-step guide.

In order to provide a complete embedded system development environment, Applied
Microsystems Corporation regularly adds new software and hardware options for the
ES 1800, so this list may not be comprehensive. Please contact your local sales office or
representative if you are interested in extending the capabilities of the ES 1800 in ways not
listed here. Phone numbers of all our offices are on the last page of this manual.

1-6

1. Establishing communications with the emulator.
Features:

Two convenient setup menus
Communications setup can be saved between sessions
Variety of configurations supported
Two serial ports

Options:

SCSI high speed communications

2. Setting up the target environment.
Features:

Built in download commands
Convenient commands for manipulating information in memory and 1/0
space
Convenient access to registers, including PCB registers

Options:

Overlay memory
ES Driver control software

3. Running your program from overlay or target memory.
Features:

Clock choices
Choice of run commands
Force special interrupt to enable safe shutdown of equipment

Introduction

Steps for Using an ESI 800 Emulator

4. Setting up breakpoints or tracing conditions.
Features:

Event Monitor System

Options:

Logic State Analyzer Pod

5. Isolating a problem by examining the trace memory, checking registers or
single stepping.

Features:

Trace memory
Registers

Options:

Dynamic trace
Time Stamp Module

6. Modifying your program, either in the target or overlay memory.
Features:

Built-in single line assembler
Disassembler for trace and memory
Single address and block memory manipulation commands

7. Using shortcuts.
Features:

Repeat commands, macros, general purpose registers
Saving setups between sessions for multiple users

Options:

Symbolic debugging

8. Bringing up prototype hardware.
Features:

Special functions (RAM tests, scope loops ...)

9. Measuring code performance.
Options:

Time stamp module

Introduction 1-7

Steps for Using an ES1800 Emulator

Establishing Communications

How you establish communications depends on the configuration of your debugging
environment: whether you are using the ES 1800 from a dumb terminal, from a host
computer without a software debugger, or controlled by a software debugger on the host
computer, and whether you are using serial or SCSI communications between your host
computer and the ES 1800.

System setup is accomplished from two menus which contain all external communication
variables and the control switches for emulation. Both setups can be saved to EEPROM and
automatically loaded at power-up.

SCSI High Speed Communications (Optional)

Standard communications is via an RS-232 serial port, at speeds up to 19,200 baud. SCSI
communications provides faster download speeds. Data can be transferred at rates of up to
l .5MB/second.

Setting Up the Target Environment

This step includes downloading your code to either target memory or overlay memory,
verifying that the program is where you want it and making sure that everything is set up
correctly to begin emulating.

The ES 1800 provides convenient commands for all these tasks, including:

- soft switches to control using the emulator with target hardware

- overlay memory, so that you can run code before hardware is available or
use a combination of existing hardware and new code

- memory commands to examine and compare memory regions in overlay
and target memory

Overlay Memory (Optional)

Overlay memory is ES 1800 working memory, which can be used in a variety of ways. When
debugging software without target hardware, the target program is loaded into overlay
memory, where it can be edited and positioned in the target system address space as desired
(null target mode). The program executes in real time as if it resided totally in the target
system. Overlay memory is also useful when a target is connected, for loading portions of
software, making patches, and checking programs not yet committed to PROM.

The overlay memory is RAM with appropriate address and control logic. Overlay memory
comes on a separate board that is inserted into the ES 1800 chassis. You have a choice of a
128K, 256K, 512K, IM or 2M Overlay Memory board. Overlay is mappable in 2KB
segments. Each segment can be assigned one of four attributes: target, read/write, read-only,
or illegal.

1-8 Introduction

Steps for Using an ESJ 800 Emulator

When a segment of memory is mapped, program accesses in that memory range are directed
to the overlay instead of the target. Overlay memory accesses occur in real time at speeds up
to 16 MHz with the high-speed overlay memory board, and 12 MHz with the standard board.
0-15 wait states can be optionally inserted for overlay access.

ES Driver Control Software (Optional)

ES Driver software provides a simple, menu-driven interface to the ES 1800. ES Driver
provides convenient menu access for common tasks such as configuration, uploading and
downloading files and diagnostics, and allows transparent access to the full range of ESL
commands. It also includes on-line help for each function, simplifying operation for new
users.

Run Program

You can run your program using either target memory, overlay memory, or a combination of
both. If you are not using a target, the ES 1800 provides an internal clock. There are a variety
of run commands which you can use, depending on what information you are looking for.

Internal Clock

When there is no target system, you may select the internal clock feature, which places the
ES 1800 in null target mode. Overlay memory can then be used to develop code as if a target
system were attached.

Introduction 1-9

Steps for Using an ES1800 Emulator

Break Emulation

Emulation can be halted in three ways: by you, by the Event Monitor System, or by a program
error. You can enter a command to stop emulation at any time the emulator is running. You
can set up the Event Monitor System to break emulation at a particular program state. If your
target program commits an access or write violation in overlay memory, emulation breaks
automatically. The force special interrupt command offers a way to safely stop equipment
that requires a special shut-down routine.

Setting Up Breakpoints and Conditional Tracing

The primary way you determine where to break emulation is by setting up the Event Monitor
System to detect a particular program state, and then perform a specific action.

Event Monitor System

The Event Monitor System is structured in three basic units:

Events Events identify specific target conditions. When
these conditions are encountered, actions can be
performed.

Actions

WHEN/THEN Statements

Actions are what the emulator does when an event is
detected. There are many actions that the event
system can take, including standard features such as
forcing a special interrupt to jump to a soft shutdown
routine before stopping the target program,
sophisticated trace control and breaking emulation.

Statements coordinate the events and actions.

You define statements that specify single or multiple events that are logical combinations of
address, data, status, counter, and optional logic field states. When those events are
encountered in the target system program, the ES 1800 can break emulation, trace specific
sequences, count events and trigger outputs, allowing you to analyze the cause-effect
relationship established by the event/action sequences defined.

There are four event groups which provide the logical structure necessary for tracking
deeply nested bugs. This structure lets you debug any problem you can imagine, using a
combination of events and actions.

Figure 1-3 shows the structure of the Event Monitor system.

1-10 Introduction

Figure 1-3: Event Monitor System Structure

Events
(input)

CPU Bus Comp rators

Address ACl

AC2

Data
DCl

DC2

Status Sl
S2

Logic LSA
State Count
Probe Limit

Logic State Analyzer LSA (Optional)

Steps for Using anES1800Emulator

Actions
(output)

WHEN/THEN
STATEMENTS Group

Select

Counter
Control

The optional logic state analyzer pod (LSA) allows tracing of additional signals in the target
system. It provides 16 additional input lines, giving access to signals other than the normal
address, data. and control signals of the microprocessor. It also provides one trigger output
line, which can be used with an oscilloscope or with another emulator for multiprocessor
development.

In the simplest form, specific bit patterns at the LSA inputs can cause a breakpoint. The LSA
comparator can detect arbitrarily complex event specifications as well. This is useful when
monitoring (1) buffers suspected of failure, (2) decode logic, (3) memory management circuit
translations, and (4) asynchronous external events.

Isolating the Problem

Breakpoints are used to stop program execution at specific times in order to track down a
hardware or software problem. After a break you can disassemble the trace memory, look at

the LSA bits in the raw trace, check the CPU register values, or begin stepping through your
code.

Trace Memory

Trace memory contains a history of the target system program's execution. This memory can
record 2046 bus cycles and can be displayed in raw bus cycle data or disassembled into
instructions. All address lines, data lines, processor status lines, and 16 bits of external logic
input are traced. If something unexpected happens during program execution, trace memory

Introduction 1-11

Steps for Using an ES1800 Emulator

can be reviewed to determine the sequence of instructions executed by the CPU prior to the
unexpected event. When used in conjunction with the trace disassembler, hardware and
software problems can be quickly tracked down.

The Dynamic Trace feature of the ES 1800 allows you to read trace while the target is
running. Dynamic Trace is a standard feature in performance packages, and is optional
otherwise. With Dynainic Trace, yoi.J can trace in target systems which require the program
to remain running, such as control systems. With targets using multiple multiprocessors,
dynamic trace lets you examine trace from one processor without shutting down all
processors.

If you have the Dynamic Trace feature, you can view trace without stopping emulation.
Without the Dynamic Trace feature, you can stop the program to read trace with either an
asynchronous stop or by using the Event Monitor System to stop at the exact program state
you are interested in.

Registers

The registers can be logically divided into four groups:

1. Microprocessor registers
2. General ES 1800 registers
3. Target Peripheral Control Block (PCB) registers, including registers used only in

iRMX (slave) mode and registers used in non-iRMX (master) mode
4. Event Monitor System registers

These registers can be viewed and modified using the ES 1800. Each register accepts either
integer values or a choice of integer, range and don't care values. Registers can be displayed
in your choice of base, and can be saved between emulation sessions.

Modifying Your Program

Once you have run your program, stopped at a particular place, and isolated the problem by
looking at trace memory, the next step is to design and test possible solutions to the problem.
The ES 1800 emulator lets you easily modify memory in either your target or the emulator
overlay memory to make changes to your program or data.

Using Shortcuts

There are many shortcuts to shorten your setup time and reduce the number of keystrokes you
must use.

Symbolic debugging

1-12

The symbolic debug option allows . you to assign
frequently used values to symbol names. These can
either be the same symbol names you use in your
program, or an easy-to-remember name to use while
debugging. Symbols can be used as arguments to all
commands.

Introduction

Repeat commands

Macros

General Purpose Registers

Saving setups

Symbolic Debugger {Optional)

Steps for Using an ESJ 800 Emulator

Repeat commands let you repeat a command line a
specified number of times or indefinitely.

Up to 10 macros can be set up for lists of commonly
used commands or expressions.

You can set these registers to commonly used
addresses or expressions, and then use them as
arguments to commands.

Emulation setups for two users can be saved between
sessions. There are six categories of information
which may be saved separately: the setup menu,
emulator registers, Event Monitor System WHEN/
THEN statements, overlay map, software switch
settings and macros.

The symbolic debug option allows you to assign frequently used values to symbol names that
make sense. Features include:

1. Reference to an address by a name instead of a value.
2. Display of all symbols and sections with their values.
3. Editing (entry and deletion) of symbols and their values.
4. Automatic display of symbolic addresses during disassembly.
5. Section (module) symbols that can be used as range arguments and for section

offsets in trace disassembly.
6. Upload and download of symbol and section definitions using standard serial

formats.

Bringing up Prototype Hardware

The ES 1800 includes a set of commands specifically used for bringing up target hardware,
called the diagnostic functions.

Diagnostic Functions

Diagnostics available in the ES 1800 emulator include RAM/ROM tests and scope loops.
RAM test routines verify that RAM is operating properly. They can be run on the target or
ES 1800 overlay memory and may be executed in either byte or word mode. ROM tests
include a built-in CRC algorithm.

High speed memory and 1/0 scope loops for troubleshooting with an oscilloscope are built
into the ES 1800 firmware. They can be used for locating stuck address, data, status or control
lines, and generating signatures using signature analysis equipment.

Introduction 1-13

Steps for Using an ES1800 Emulator

The firmware that generates the scope loops is optimized for maximum speed of execution.
This short cycle time allows the hardware engineer to review the timing of pertinent signals
in the target system without using a storage oscilloscope. The scope loops can be executed
in either byte or word mode.

Time Stamp Module (Optional)

The Time Stamp Module adds performance analysis capabilities to the ES 1800. This module
is standard with performance packages, and optional otherwise. With it, you can measure the
elapsed time your program spends in a module, outside of a module or between modules for
up to 4 modules at once. This helps provide a picture of where your program spends the most
time, so you can choose the areas which benefit most from optimization.

The Time Stamp Module also allows you to count the number of times a module or address
range is accessed in order to troubleshoot iteration problems and help with optimization
decisions.

You can measure the time from a hardware interrupt to a software service routine. A direct
electrical connection between the interrupt line on your target processor and the Time Stamp
Module lets you avoid delay in measuring interrupts.

1-14 Introduction

Software Options

Software Options

You have a choice of software options, including emulator control software, symbolic
debuggers, high level language debuggers and a wide range of compilers and assemblers.
Applied Microsystems Corporation's goal is to provide you with a complete microprocessor
development environment for both software and hardware design and debugging.

Figure 1-4: Microprocessor Development Environment

Software Debuggers:
high level language

assembly level
symbolic level

Software Utilities: l
compilers, assemblers, ~'- /

linkers, loaders ~ /

1
Hosts:

IBM PC
(and compatibles)
VAX, MicroVAX

Sun, Apollo

Unified Data Base

Emulator:
ES 1800

(ESL)

_1
Targets:

Intel, Motorola
Zilog 16 and 32 bit

The key to this development environment is the shared information provided in the object
module format. Applied Microsystems products use a variety of object module formats,
including most popular standards. However, to choose a complete development environment,
your compiler and assembler must produce an object module format that the assembly level
or high-level language debugger and ES 1800 emulator can use.

Software options for Intel 16-bit microprocessors include:

ES Driver Emulator Control Software

High level language debuggers

Introduction

GeneProbe Symbolic Debugging

VALIDA TE/Soft-Scope Debugger

VALIDATE/Soft-Scope 286 Debugger

XDB

1-15

Software Options

Compilers and Assemblers

ES Driver Emulator Control Software

ES Driver software provides a simple, menu-driven interface to the ES 1800, with
convenient access for common tasks such as configuration, uploading and downloading files
and diagnostics, and allows transparent access to the full range of ESL commands. It also
includes on-line help for each function, simplifying operation for new users.

An RS-232 cable and a manual are provided with ES Driver. The manual depends on the host
computer: ES Driver/PC User's Manual and ES Driver/Sun User's Manual.

Intel: 808x, 80C8x, 8018x, 80C18x,
Microprocessors supported: 80C18xEB, 80286

Motorola: 68000/08, 68010, 68020
Zilog: Z8001;Z8002

Hosts supported: PC, Sun

Object module formats supported: Extended Tekhex, Intel OMF, Intel Hex,
Motorola S-Records, Microtec

High Level Language Debuggers

GeneProbe Symbolic Debugging (Intel processors only}

The GeneProbe debugger provides debug support for source level problems involving CPU
registers and memory or I/O ports. It has been integrated with the ES 1800 emulator, in order
to provide access and control of your target. The debugger displays trace history and memory
disassembly on a split screen. You can use high-level language symbols, line numbers,
procedure names, code labels and variable names in place of absolute addresses.

GeneProbe executes on the IBM PC and compatibles to debug programs written in C, PL/M,
FORTRAN and assembly language.

Microprocessors supported: Intel: 808x, 80C8x, 8018x,
80C18x, 80C18xEB

Hosts supported: PC

Object module formats supported: Intel OMF

1-16 Introduction

Software Options

VALIDATE/Soft-Scope Debugger (Intel only)

The VALIDA TE/Soft-Scope debugger includes two versions: an integrated tool designed to
work with the ES 1800, and a simulator version. Both versions provide high level language,
assembly level and symbolic debugging. The program allows easy access to high level
language data, such as structures, arrays and dynamic variables.

The trace display is available in many forms, including display of source lines only, source
lines with disassembled instructions and source lines with all associated machine cycles.

A format converter called MSOMF is included with VALIDA TE/Soft-Scope, so that you can
use the Microsoft C compiler. Other linkers are also available which let you use a variety of
other popular C compilers.

Microprocessors supported: Intel: 808x, 80C8x, 8018x, 80C18x,
80C18xEB, 80286 (real mode only)

Hosts supported: PC

Object module formats supported: OMF86

VALIDA TE/Soft-Scope 286 Debugger (80286 only)

The VALIDA TE/Soft-Scope 286 debugger provides protected-mode support for the 80286.
with all the same features as VALIDA TE/Soft-Scope.

Microprocessors supported: Intel: 80286 (protect mode only)

Hosts supported: PC

Object module formats supported: OMF 286

Introduction 1-17

Software Options

XDB Source Level Debugger

The XDB debugger provides high-level language support for C and Pascal for both Motorola
and Intel microprocessors. You can step over functions, and set breakpoints on line numbers
or procedures. When a breakpoint is reached, you can use the emulator's trace memory to
analyze exactly what led up to the breakpoint. XDB includes a powerful assertion feature to
specify conditions to be tested after execution of each high level language statement.

Intel: 808x, 80C8x, 8018x, 80Cl8x
Microprocessors supported: 80286 (real mode only)

Motorola: 68000/08, 68010, 68020

Hosts supported: PC, Sun, VAX (UNIX and VMS)

Object module formats supported: Intermetrics

Compilers and Assemblers

A wide range of compilers and assemblers are available through Applied Microsystems.
Please consult a current price list, or contact your sales office or representative for
information.

1-18 Introduction

Section 2

GETTING STARTED

Introduction
This section provides a step-by-step guide for setting up the ES 1800 and target system,
starting and testing the ES 1800 and storing customized system variables in EEPROM. You
should bring up the ES 1800 in stand-alone mode, using RS-232 communications to verify
that it is working before trying to set it up to work with a software debugger or with SCSI
communications.

For specific getting started information on using the ES 1800 controlled from a host
computer via ES Driver or a software debugger, please see your appropriate software manual.

Detailed information on the hardware referred to in this section can be found in Section 3,
and complete descriptions of the steps can be found in Section 4.

For a complete description of commands referenced, see Section 7.

The instructions provided in this section apply to ES 1800 emulators purchased in 1988 or
later. If your ES 1800 was purchased before 1988, and has not been brought up to the current
revision, there will be minor variations. Please follow the instructions provided at the time of
purchase.

NOTE
If you are using the 80C186/C188 pod or the 80C186EB/C188EB pod, you
may need to reconfigure the pod with several jumpers before attempting
operation. Failure to properly set the jumpers results in inability to correctly
run the target. See Appendix C for instructions. There are also five jumpers in
the 80186/188 pod. See the 801861188 Pod Jumpers portion of this section
for more information on these jumpers.

Getting Started 2-1

Getting Started with ESL

No Target System

1. Verify that the pod is connected to the ES 1800.
2. Be sure there is nothing in contact with the probe tip.
3. Power-up the ES 1800.
4. The power-up banner should be displayed. Select the internal clock source by

typing Y. If a "NO TARGET POWER" error message appears, then type
<ctrl-z> to reset the emulator. The power up banner will be redisplayed. Type Y
again and the emulator prompt (>)will appear.

When you power-up the ES 1800, all registers, maps, event clauses, and system variables are
either cleared or set to default values. Examine the SET and ON menus (see Section 7) and
configure the system to your liking. Your special setup can then be stored in EEPROM (see
the SA V command in Section 7). By setting the thumbwheel switch on the MCB controller
board to the proper position, your set-up can be automatically loaded on power-up, (see page
3-4), or you can load it manually with the LD command.

The ES 1800 emulator system is now running and ready to accept ESL commands.

Getting Started with ESL

ESL is extremely easy to use. The rest of this section shows you exactly which ESL
commands to type as you use your ES 1800 for the first time.

If the ESL command interpreter detects an illegal statement, it beeps and places a question
mark under the command line at the position the error was detected. Entering a ? following
an error will cause the appropriate error message to be displayed.

There are two pages of help information available. Enter a ? as the first character of a
command line to display the first help page. This page gives examples of the most commonly
used commands and their meanings. The second page describes the Event Monitor System
registers and commands. Enter a <return> at the end of the first page to move to the second
page. The menus are shown on pages 8-18 and 8-19.

Information on switch settings, configuration settings, and special· functions is available
without using the ? help menus.

Software Switches Enter either ON or OFF to display the current settings
and definitions of all software switches. (See ON in
Section 7.)

Communications Set-up

Special Diagnostic Functions

Enter SET to display the current configuration
settings and possible values. (See SET in Section 7.)

Enter SF to display a list of the available special
functions (RAM/ROM tests, scope loops, etc.) (See
SF in Section 7 .)

For complete information on ESL syntax, see Section 8.

Getting Started 2-5

Emulator Setup

Emulator Setup

2-2

1. Refer to page 3-1 and verify that proper grounding and power requirements have
been met.

2. Verify that the emulator has been configured for the correct voltage by checking
the fuse on the back of the ES 1800. Pull out the fuse holder: you'll see one
functional fuse and one spare fuse. The functional fuse should be 3 amps for 115
volt, and 1.5 amp for 220 volt. Replace the fuse holder with the correct fuse in
place.

3. Remove the front cover of the ES 1800 by turning the two release screws
counterclockwise. The pod and LSA pod may need to be unplugged in order to
do this.

4. If you are not using SCSI communications, verify that the MCB controller board
is in the top slot of the ES 1800 chassis. (See page 3-1 and page 3-3 for
descriptions of each board and board positions). Verify also that the shorting
jumper block is installed across Jl.
If you are using SCSI communications, the SCSI board should be in the top slot,
and the MCB controller board should be in the second slot. Make sure the shorting
jumper block is not installed across Jl.

5. Verify that the trace/break board is in the third bus slot of the ES 1800 chassis.
6. If you are using overlay memory, verify that the RAM overlay board is inserted

under the trace and break board. Note that the 2MB overlay board requires a slave
board.

7. Verify that the correct ES 1800 board for your target microprocessor is in the
bottom slot.

8. Verify that all boards are firmly seated.
9. Set the thumbwheel switch on the MCB controller board for your particular

system variables. See Table 3-1 on page 3-4 for switch settings.
System default variables in switch position 0 are:

- 9600 baud - 8-bit word length
- One stop bit - No parity
- Full duplex -No echo
- Terminal control - XON and XOFF are recognized

- 8th data bit set to 0 (space)

10. Verify that the three-position toggle switch on the MCB controller board is in the
center position.

Getting Started

Target System Setup

11. Set the pod jumpers as appropriate for your target. (Skip this step if you are
running the emulator with no target system.) The jumpers are located in the pod,
and you can get to them by removing the four screws on the bottom of the pod to
open the cover. See Appendix C to determine if you need to change any of the
jumpers from their factory-configured positions.

12. Replace the front panel and attach the pod for the microprocessor you are
emulating. The pod must be connected to the ES 1800 even if you are not
connecting it to a target system.

13. Check that the pod cable is securely connected.

14. OPTIONAL: Connect optional accessories such as the Logic State Analyzer pod
or Time Stamp module. (see Section 3 for details)

15. Connect the RS-232 cable to the TERMINAL port and to your terminal. For other
setups, please see Section 4, Serial Communications.

16. Verify that the RS-232 baud rates and data requirements are set the same on both
the ES 1800 and the terminal. See page 3-4 for thumbwheel switch settings.

17. If using communications without a modem, you may need a null modem cable. If
you purchase a null modem cable, it is likely to have the following configuration:

Figure 2-1. Null Modem Cable Wiring Diagram
1 1

~ x ~
~ x ~
6==1 ~6*
8X8*

20 20*
7 7

Check the specifications in your terminal manual before reversing the pins.

* Note that pins 6, 8, and 20 are not used and are unaffected by the cable configuration.

Target System Setup
1. Check that the target has a 68 contact lead.less chip carrier socket. An adapter,

Part No. 210-00023-00, is available for plastic leaded chip carriers. For the
80C18xEB microprocessor, make sure the target has an 84-pin PLCC socket.

2. Using an ohmmeter, check that a good ground exists at the microprocessor socket.
Measure from pin 26 and 60 to power supply ground on the target board.

3. Verify that all the power supplies in the target system are functioning properly.
4. Check for a valid clock signal at the target microprocessor socket.
5. Turn off target system power and ES 1800 power.
6. Plug in the probe tip. (See Section 3 for probe tip precautions.)

Getting Starred 2-3

Power-Up Sequence

Emulating in Targets with Attached CPUs (80C18x)

When your target CPU is soldered directly to the PCB, it is necessary to place the attached
CPU in ONCE mode before emulating. The ONCE mode on the 80C18x processor causes all
CPU output lines to be tristated. You can enter ONCE mode by pulling the LCS- and UCS­
signals low during a reset.

To do this with the 80C18x emulator, follow these steps:

1. Power off the target and emulator.
2. Attach the 80C18x emulator pod to the target CPU with the special adaptor.

3. Jump the LCS- and UCS- lines from the target CPU to target ground.
4. Apply target power. The target-mounted CPU will come up in ONCE mode.
5. Apply emulator power and wait for the normal prompt.
6. Remove the jumpers from the target UCS- and LCS- pins.

NOTE
1. The procedure above assumes your target asserts a power-on reset to the 80C18x.
2. Any emulator operations which cause a target reset, such as ON CK, OFF CK, or

RST will cause the target to exit from ONCE mode. If you want to perform such
operations and remain in ONCE mode, set the LCS- and UCS- jumpers as
described above, set the PCS softswitch to OFF, and enter PAUSE mode to
perform the reset operations. Never leave the LCS~ and UCS~ jumpers
attached during run mode.

A target system generated RESET during RUN mode will bring the CPU
out of ONCE mode and into immediate contention with the emulator,
causing unpredictable results.

Power-Up Sequence

Target System Present

2-4

1. Turn on the target system.
2. Turn on the ES 1800.
3. Reset the target system. (<ctrl-z> default)

NOTE
When you turn off the emulator, you should also turn off power to your target.
The target VCC is fed to the pod and emulator, and can cause heat problems
in the emulator if the target is left on.

Getting Started

Test Run of System

Test Run of System

Use this test guide after the system configuration is correct and the ES prompt is displayed
(>).

A system test run consists of the following 10 steps:

1. Initialize ES 1800.
2. Map overlay memory.

3. Test overlay memory.
4. Enter a program.
5. Verify a program.
6. Run the ES 1800.
7. Stop the program.
8. Display the trace buffer.
9. Set a breakpoint.
10. Initialize PCB registers.

This test requires an optional overlay memory board, but does not require a target system.

If you suspect trouble with the ES 1800 hardware, call Applied Microsystems Corporation
Customer Service at 800-ASK-4AMC for assistance.

1. Initialize The ES 1800

You should initialize the ES 1800 the first time it is powered up, or after changing any part
of the system.

Enter the following to initialize the ES 1800 for two users.

>SAV

>SET 1,1

>SAV

>SET 1,0

save setup for user o.
The following commands apply to user 1.

save setup for user 1.

The following commands apply to user 0.

This will ensure that all necessary emulator firmware parameters have been loaded into the
EEPROM on the MCB controller board. These paramters will be used anytime the MCB
rotary switch is positioned to select EEPROM control. This EEPROM initialization should
be done whenever:

1. The emulator board is changed to a different ESL revision or processor family.
2. At initial power-up of a newly purchased or rented emulator.

3. If the emulator experiences communication anomalies with the host computer.

The EEPROM initialization must be done with the MCB controller board switch in one of
the factory default positions (e.g., 0 for 9600 baud, or B for 19.2 Kbaud)

This operation can take up to four minutes if major changes have been made. Do not interrupt
the operation.

2-6 Getting Started

Test Run of System

2. Map Overlay Memory

Map all of the overlay memory available to the ES 1800.

>MAP 0 to XXXX XXXX is the ending address (in hex) of the
amount of overlay memory installed.

The following table provides a quick reference for hex values corresponding to overlay
memory sizes:

Hex Value

lFFFF
3FFFF
7FFFF

OFFFFF
lFFFFF

For example, to map 128K, enter:

>MAP 0 to lFFFF

3. Test RAM

Overlaz Mem01

128K

256K

512K

IM

2M

lFFFF is 128K in hex.

Test all overlay memory installed by entering:

>SF 1,0 to XXXX XXXX is the ending address (in hex) of the
amount of overlay memory installed.
e.g., SFl,O to lFFF (for 128K)

If there is a failure, repeat mapping and testing.

4. Enter Program

Enter a short program by invoking the line assembler and entering 8018x op codes. See the
ASM command in Section 7 for more information.

>ASM 1000 Enter line assembler at address 1000.

**** 8086/88/186/188 LINE ASSEMBLER VX.XLA ****
CSEG = 0000

1000> NOP

1001>/

1002>/

1003>/

1004>/

1005>.JMP lOOOH

1007>X

Getting Started

Set code byte segment window.

Enter NOP instruction.

Repeat previous NOP

Enter jump instruction.

Exit line assembler.

2-7

Test Run of System

NOP is a null operation. Each time you type the slash (I), you repeat the previous
command, so you have entered the equivalent of five lines ofNOPs. The X at the end exits
the assembler.

5. Verify The Program

Singie step through the program to verify that it works, by entering:

>CS = 0

>IP = 1000

>STP;DT

>/

>/

>/

>/

>/ •••••

Set the CS register to 0.

Set the IP to 1000.

Single step, and display trace.

Repeat previous command.

The disassembled trace should show that NOPs were executed and that the jump was taken
correctly.

6. Run The ES 1800

Enter RUN.
>RUN

R>

Begin running the emulator.

The prompt will change to indicate run
mode.

The R> prompt should be displayed with no error messages. This indicates the ES 1800 is
running in real time, executing the program.

7. Stop The Program

Enter STP to stop.

R>STP The STP command from run mode stops
emulation.

The ES 1800 should stop running and display the CS:IP register value and Group 1. The
CS:IP value should not exceed 0:1005.

2-8 Getting Started

Test Run of System

8. Display The Trace Buffer

Enter DRT to display the execution history of the program.

>DRT

>DTB

9. Set A Breakpoint

Display raw trace. The display should show
sequence numbers between 0 and 20, and
address values between 1000 and 1007.

This should show a disassembled trace of
the program with NOPs and .JMP 10s.

Verify that the Event Monitor System halts execution when a defined condition is met by
setting a breakpoint. In this case, the ES 1800 executes 100 (hex) bus cycles, then breaks.

>DCl OXXXX

>CTL = 100

>WHEN DCl THEN CNT

WHEN CTL THEN BRK

>RBK

R>

Set up data comparator 1 to be OXXXX.

Set up the counter limit to be 100.

Start counting at data bus value OXXXX.

When count limit is reached, break
emulation.

Run until a breakpoint is reached.

This causes the counter to increment each time data comparator 1 sees a data bus value
between 00000 and OFFFF. When the count limit of 100 is reached, emulation breaks.

If a break does not occur:

1. Set CS to 0 and IP to 1000.
2. Enter DES 1 and verify that you have entered the WHEN/THEN statement and

comparator values as shown above.

3. Type RBK again.

If no break occurs call Applied Microsystems Applications Engineering at 800-ASK-4AMC
for assistance.

10. Initialize Peripheral Control Registers
801 Bx, 80C1 Bx only

Go to page 3-14 for instructions on initializing registers for the 80C18xEB processor.

The ES 1800 emulator enables you to modify PCB register values by ESL commands (e.g.,
LMCS = lFFF). If your PCB initialization code is already resident in your target, you do not
need to set it up manually with ESL commands: you can skip this section and just run your
code.

If your PCB code is not resident in the target and you need to access target memory to
download your code, then you must manually set up the PCB using ESL commands, and
execute at least one STP to load the emulator's copy of the PCB into the pod CPU.

Getting Started 2-9

Test Run of System

Tables listing all PCB registers are located in Section 4.

2-10

1. Set up the PCB relocation register. If you do not relocate the peripheral control
block from $FFOO in I/0 space, then go to step 2.

>REL = <register value>Set the REL register

Refer to the Intel iAPX 86188, 1861188 User's Manual for the proper way to set
up the PCB relocation register.

2. Set up the read-chip-select switch (RCS). All the chip selects will be read and
activated when RCS is turned on. If you do not set up all the chip selects, this
switch should remain OFF. If you do not use on-chip chip selects, then go to
step 3.

>ON RCS Enal:>l.es the displ.ay of the PCB chip
select register val.ues.

With RCS set to ON, the following will be true:

Pause-to-run transitions will write the ES 1800 chip select PCB values into
the target PCB.

Run-to-pause transitions will read the ES 1800 chip select PCB values
from the target PCB.

>UMCS <register val.ue> Set UMCS register.

>LMCS <register value> Set LMCS register.

>MPCS <register val.ue> Set MPCS register.

>MMCS <register value> Set MMCS register.

>PACS <register value> Set PACS register.

Refer to the Intel iAPX 86188, 1861188 User's Manual for the proper way to set
up the registers.

3. Set up the on-chip DMA peripheral. If on-chip DMA circuitry is not used, then
go on to step 4.

>USRCO = <register val.ue>

>SRCO = <register val.ue>

>UDSTO = <register value>

>DSTO = <register value>

>XCO <register value>

>CWO <register val.ue>

Refer to the Intel iAPX 86188, 1861188 User's Manual for the proper setup.

If you do not need DMA active while paused, then go on to step 4.

>ON DME Set DMA controllers activ~ during pause
mode.

Getting Started

Test Run of System

4. Set up the on-chip timer peripheral. If on-chip timer circuitry is not used, then
go on to step 5.

>TCO <register value>

>TC1 <register value>

>TC2 <register value>

>MAO <register value>

>MA1 <register value>

>MA2 <register value>

>MBO <register value>

>MB1 <register value>

>MB2 <register value>

>MCWO <register value>

>MCW1 <register value>

>MCW2 <register value>

Refer to the Intel iAPX 86188, 1861188 User's Manual for the proper setup.

If you need a timer circuit active while paused, then turn on the appropriate
emulator software switch, as follows:

>ON TEO

>ON TE1

>ON TE2

This will turn on timers zero, one, and two respectively.

5. Set up the on-chip interrupt control peripheral. If on-chip interrupt control
circuitry is not used, then proceed to step 6.

>INTO <register value>

>INT1 <register value>

>INT3 <register value>

>EOI <register value>

>POL <register value>

>POS <register value>

>MSK <register value>

>PLM <register value>

>ISV <register value>

>IRQ <register value>

>IST <register value>

>TCR <register value>

>DMAO <register value>

>DMA1 <register value>

Getting Started 2-11

Test Run of System

2-12

>DMA2 = <register value>

Refer to the Intel iAPX 86188.1861188 User's Manual for the proper setup.

6. Display the status of the PCB registers.
>PCB Display PCB registers.

The screen displays the current contents of the PCB registers.

7. Set up overlay and a minimal program. This step assumes you have neither target
memory nor a valid program located at the startup location (*FFFFO). If you have
target memory and a valid program, then go on to step 8.

>MAP $FF800;DM

>ON RDY

>ASM

>CSEG OFFFF

>NOP

>NOP

>NOP

>NOP

>X

This maps in overlay from $FF800 to $FFFFF
and displays the memory map.

This ensures that reads and writes to
overlay memory use the ES 1800's internal
ready signal.

This invokes the single-line assembler to
enter a sequence of NOP instructions.

This sets the assembler to an absolute
address of $FFFFO.

This throw-away program initializes the on­
chip peripheral circuitry.

Exit the line assembler.

8. Activate the on-chip peripherals. The following tasks should have been
accomplished before reaching this point:

The state of all on-chip peripherals should have been set up via the PCB
registers.

The ES 1800's ON and OFF software switches have been properly set up.

A program resides at the start up location ($FFFFO).

>AC1 = <stopping point>
Set address comparator 1 to the end of the
program. This should follow the initialize
section.

Getting Started

Test Run of System

The on-chip peripherals are activated by either aread from, or write to appropriate
registers. The setting of the ES 1800's switches to ON guarantees the chosen
peripheral registers will be written and read following the execution of at least one
instruction cycle. Therefore, set up ACl, as either:

ACl = $FFFF2

or

If manually initializing and using NOP
program in step 7,

ACl = <stopping point>if using your own PCB initializing
program.

WHEN ACl THEN BRK Set up WHEN/THEN statement. This allows a
breakpoint when ACl is recognized during
emulation.

>RST;RBV

Getting Started

RST sends a reset signal to the target
system via the RESET OUT line. RBV sets
CS:IP registers to the absolute address of
$FFFFO, activates the Event Monitor System,
and initiates a real-time run.

2-13

Test Run of System

11. Initialize Peripheral Control Registers
80C18xEB only

The ES 1800 emulator enables you to modify PCB register values by ESL commands (e.g.,
LCST = lFFF). If your PCB initialization code is already resident in your target, you do not
need to set it up manually with ESL commands: you can skip this section and just run your
code.

If your PCB code is not resident in the target and you need to access target memory to
download your code, then you must manually set up the PCB using ESL commands, and
execute at least one STP to load the emulator's copy of the PCB into the pod CPU.

Tables listing all PCB registers are locateq in section 4.

2-14

1. Set up the PCB relocation register. If you do not relocate the peripheral control
block from $FFOO in I/0 space, then go to step 2.

>REL = <register value> Set the REL register

Refer to the Intel 80Cl86EBl80CJ88EB User's Manual for the proper way to set
up the PCB relocation register.

2. Set up the on-chip chip select peripheral. If you do not use on-chip chip selects,
then go to step 3.

>UCT <register value> Set UCT register.

>UCP <register value> Set UCP register.

>LCT <register value> Set LCT register.

>LCP <register value> Set LCP register.

>STRO <register value> Set STRO register.

>STPO <register value> Set STPO register.

>STRl <register value> Set STRl register.

>STPl <register value> Set STPl register.

>STR2 <register value> Set STR2 register.

>STP2 <register value> Set STP2 register.

>STR3 <register value> Set STR3 register.

>STP3 <register value> Set STP3 register.

>STR4 <register value> Set STR4 register.

>STP4 <register value> Set STP4 register.

>STRS <register value> Set STRS register.

>STPS <register value> Set STPS register.

>STR6 <register value> Set STR6 register.

>STP6 <register value> Set STP6 register.

>STR7 <register value> Set STR7 register.

>STP7 <register value> Set STP7 register.

Getting Started

Test Run of System

Refer to the Intel 80Cl86EB/80Cl88EB User's Manual for the proper way to set
up the registers.

3. Set up the on-chip timer peripheral. If on-chip timer circuitry is not used, then go
on to step 4.

>TCO <register value>

>TCl <register value>

>TC2 <register value>

>MAO <register value>

>MAl <register value>

>MA2 <register value>

>MBO <register value>

>MBl <register value>

>MB2 <register value>

>MCWO <register value>

>MCWl <register value>

>MCW2 <register value>

Refer to the Intel 80Cl86EB/80Cl88EB User's Manual for the proper setup.

If you need a timer circuit active while paused, then tum on the appropriate
emulator software switch, as follows:

>ON TEO

>ON TEl

>ON TE2

This will tum on timers zero, one, and two respectively.

4. Set up the on-chip interrupt control peripheral. If on-chip interrupt control
circuitry is not used, then proceed to step 5.

>INTO <register value>

>INT1 <register value>

>INT2 <register value>

>INT3 <register value>

>INT4 <register value>

>EOI <register value>

>POL <register value>

>POS <register value>

>MSK <register value>

>PLM <register value>

>ISV <register value>

>IRQ <register value>

Getting Started 2-15

Test Run of System

2-16

5.

>J:ST

>TCR

>SCR

<register value>

<register value>

<register value>

Refer to the Intel 80Cl86EB/80CJ88EB User's Manual for the proper setup.

Set up the refresh registers. Refer to the Intel 80CJ86EBl80CJ88EB User's
Manual for the proper setup.

>RFBS <register value> Set the refresh base register

>RFTM <register value> Set the ref re sh time register

>RFCN <register value> Set the refresh control register

>RFAD <register value> Set the refresh address register

6. Set up the 1/0 port and serial port registers. Refer to the Intel 80Cl86EBI
80Cl 88EB User's Manual for the proper setup.

>PDRl <register value>

>PPNl <register value>

>PCNl <register value>

>PLTl <register value>

>PDR2 <register value>

>PPN2 <register value>

>PCN2 <register value>

>PLT2 <register value>

>SBDO <register value>

>SCTO <register value>

>SCNO <register value>

>SRBO <register value>

>SBDl <register value>

>SCTl <register value>

>SCNl <register value>

>SRBl <register value>

7. Set up the power management register. Refer to the Intel 80Cl86EB!80Cl88EB
User's Manual for the proper setup.

>PMC = <register value>

Getting Started

Test Run of System

8. Display the status of the PCB registers.
>PCB Display PCB registers.

The screen displays the current contents of the PCB registers.

9. Set up overlay and a minimal program. This step assumes you have neither target
memory nor a valid program located at the startup location (*FFFFO). If you have
target memory and a valid program, then go on to step 10.

>MAP $FF800;DM

>ON RDY

>ASM

>CSEG

>NOP

>NOP

>NOP

>NOP

>X

OFFFF

This maps in overlay from $FF800 to
$FFFFF and displays the memory map.

This ensures that reads and writes to
overlay memory use the ES 1800's
internal ready signal.

This invokes the single-line assembler
to enter a sequence of NOP
instructions.

This sets the assembler to an absolute
address of $FFFFO.

This throw-away program initializes
the on-chip peripheral circuitry.

Exit the line assembler.

10. Activate the on-chip peripherals. The following tasks should have been
accomplished before reaching this point:

The state of all on-chip peripherals should have been set up via the PCB
registers.

The ES 1800's ON and OFF software switches have been properly set up.

A program resides at the start up location ($FFFFO).

>AC1 = <stopping point> Set address comparator 1 to the end of
the program. This should follow the
initialize section.

Getting Started 2-17

Test Run of System

2-18

The on-chip peripherals are activated by either a read from, or write to appropriate
registers. The setting of the ES 1800's switches to ON guarantees the chosen
peripheral registers will be written and read following the execution of at least one
instruction cycle. Therefore, set up ACl as either:

ACl = $FFFF2

or

If manually initializing and using NOP
program in step 6,

ACl = <stopping point> if using your own PCB initializing
program.

WHEN ACl THEN BRK

>RST;RBV

Set up WHEN/THEN statement. Thia
allows a breakpoint when ACl is
recognized during emulation.

RST sends a reset signal to the target
system via the RESET OUT line. RBV sets
CS:IP registers to the absolute address of
$FFFFO, activates the Event Monitor System,
and initiates a real-time run.

Getting Started

Section 3

HARDWARE

This section describes the emulator chassis, control boards, pod, optional hardware (Time
Stamp Module and Logic State Analyzer pod), ports, maintenance, troubleshooting and
emulator specifications.

Emulator Chassis

The ES 1800 chassis is the metal enclosure housing the control boards for the target system.
This rack-mountable chassis houses up to six boards as shown in Figure 3-1. The ES 1800
power supply is also in this chassis. A power switch on the rear panel is the only external
panel control.

WARNING

A cooling fan and vent for the ES 1800 are located on the left side panel of the
chassis. The warm air exhaust vent is in the right side panel. Blocking either
of these panels may cause the ES 1800 to overheat.

Always turn off target power when the emulator is off, and vice versa.
Damage can occur to the pod by leaving target power on when the emulator
is turned off.

System Grounds

The ES 1800 emulator has three grounding systems:

1. A chassis ground from the metallic enclosure of the unit to the power filter.
2. An AC protective ground from the green ground wire of the AC power cord and

the chassis ground at the power filter.
3. A signal ground connected by means of a jumper at the power supply terminal

strip to the chassis ground. The ES 1800 has a three-wire power cord with a three­
terminal polarized plug. The ground terminal of the plug is connected internally
to the metal chassis parts of the ES 1800.

WARNING

Failure to ground the system properly may create a shock hazard.

Emulator Control Boards

Removing the front panel of the ES 1800 chassis exposes the chassis card cage as shown in
Figure 3-1. Follow these steps to open the ES 1800 chassis:

1. Tum off the emulator.

Hardware 3-1

Emulator Chassis

2. Disconnect it from the power source.
3. Remove the front panel. Depending on the version of your emulator, you have one

of two types of front panel.
If you have the molded-plastic front panel, the release tabs are located at the
bottom left and right sides. Press the left release tab, while pulling the left side of
the panel slightly outward. Then press the right release tab, and pull outward until
the bottom of the panel is completely free. Slide the panel down to remove it.
Finally, disconnect the SCSI cable (if applicable).

If you have the metal front panel, disconnect the cables from the front of the
emulator (if applicable). Then loosen the thumbscrews in the upper comers of the
front panel and remove it.

Verify that all boards are seated properly before turning on power to the emulator.

3-2

SCSI Board The SCSI board is required in order to use SCSI
communications between the ES 1800 and host
computer. If present, it should be in the top slot in the
chassis. The SCSI port is discussed in detail under
Ports, later in this section and in the ES Driver User's
Manual.

MCB Controller Board

NOTE
When you set up the emulator for SCSI
communications, the shorting jumper block J 1 on the
MCB controller board must be removed or set in the
storage position.

The MCB controller board holds the controlling
6809 CPU for the ES 1800, the EEPROM, two serial
ports, RAM, the memory management logic and
optional symbolic memory.

The 16-position thumbwheel switch on this board
determines the system variables and serial line baud
rates for autoloading on power-up. Refer toTable 3-
1 on page 3-4 for switch position setup. Switch
position 0 automatically loads default system
variables.

The three-position toggle switch must be in the
center position. If the toggle switch is in either of the
other two positions, the ES 1800 will not work
properly.

Hardware

Trace/Break Board

RAM Overlay Board(s)

Emulation Board

Figure 3-1: Control Boards

MCB TOGGLE SWITCH

THUMBWHEEL SWITCH

COOLING FAN

Hardware

Emulator Chassis

If there is no SCSI board, this board should be in the
top slot in the chassis. When the MCB controller
board is in the top slot, make sure the Jl shorting
jumper block is in the active position.

The trace/break board holds trace memory, the Event
Monitor System, and the logic state analyzer (LSA)
interface.

The RAM overlay board is optional and can hold
128K, 256K, 512K, lM or 2M of memory. 2M of
memory requires a slave board.

The emulation board depends on the target
microprocessor you are using. It contains the target
processor specific logic.

TRACE/BREAK BOARD

3-3

Emulator Chassis

3-4

POSITION

0

1

2

3

4

5

6

7

8

9

A

B

C,D,E,F

Table 3-1: MCB Controller Board
Thumbwheel Switch Settings

PARAMETERS BAUD RATE

Factory Default* 9,600

User "O" defined User defined
Terminal control

User "1" defined User defined
Terminal control

User "O" defined User defined
Computer control

User "1" defined User defined
Computer control

Factory Default* 110

Factory Default* 300

Factory Default* 1,200

Factory Default* 2.400

Factory Default* 4,800

Factory Default* 7,200

Factory Default* 19,200

Reserved for factory use

*Factory Default Parameters
8-bit word length one stop bit
no parity full duplex

Terminal control XON and XOFF are recognized
no echo baud rate the same for both terminals

8th data bit set to 0 or a space

Hardware

Emulator Chassis

ES 1800 Chassis Front Panel

The front panel of the ES 1800 is shown in Figure 3-1.

Release screws

LSAport

SCSI port

Unscrewing these two screws makes it possible to
remove the front panel of the ES 1800 to get access
to the control boards. If you have a molded plastic
front panel, there are no release screws. See page 3-1
for instructions on removing the front panel.

The LSA port is used for either the Logic State
Analyzer pod or the Time Stamp module.

The SCSI port is used only if you are using SCSI
communications.

Pod connection The pod is attached here.

ES 1800 Chassis Rear Panel

The rear panel of the ES 1800 is shown in Figure 3-2.

Serial Ports

Trigger Output

Hardware

The two serial ports are RS-232C ports labeled
TERMINAL and COMPUTER. Serial ports are
discussed in detail under "Ports" later in this section.

The ES 1800 emulator provides a TIL trigger strobe
output controlled by the Event Monitor System. The
trigger output is available at a BNC connector on the
rear panel of the chassis and on a clip lead attached to
the optional logic state analyzer (LSA) pod. See
Figure 3-8 for timing information on the trigger
output, and refer to Section 4 for information on
Event Monitor System actions.

The trigger can be used for such things as:

1. Synchronizing an oscilloscope to the execution
of an 1/0 routine.

2. Measuring the duration of a routine by asserting
the trigger for its duration and using a timer­
counter.

3. Cross-coupling two or more ES 1800s so that an
event in one can control events in the others.

3-5

Emulator Chassis

Power Switch

Line Fuse

Figure 3-2: Rear Panel

3-6

Before powering up, two items should be checked:

1. Proper grounding of power cable (see page 3-1).

2. Proper power-up sequence of ES 1800, target
system, and/or peripheral equipment. (See
Power-Up Sequence, page 2-4.)

A 3 amp slo-blo fuse for 11 OV operation or a 1.5 amp
slo-blo fuse for 220V operations. Remove the fuse
by turning the fuse holder counterclockwise.

115V/230 Switch
line fuse

Hardware

Pod

Pod

The pod is the link between the ES 1800 emulator and the target system. A 40-inch ribbon
cable connects the pod to the ES 1800 board. An 11-inch ribbon cable ends in a probe tip
that is normally inserted into the microprocessor socket in the target system.

The proper pod is determined by the microprocessor being emulated. Three pods are
available from Applied Microsystems Corporation: one for the 80186 and 80188, one for the
80C186 and 80C188, and one for the 80C186/88 EB.

The 80186 and 80188 microprocessors can be emulated with the same pod, but with different
microprocessors in the pod. The pod should have been shipped from the factory with the
correct microprocessor installed.

80186

80188

80186/188 pod, with 80186 processor

80186/188 pod, with 80188 processor

The 80C186 and 80C188 can be emulated with the same pod, but with different
microprocessors in the pod.

80C186

80C188

80C186/Cl88 pod, with 80C186 processor

80C186/C188 pod, with 80C188 processor

The 80C186EB and 80C188 EB can be emulated with the same pod and same microprocessor
in the pod. A jumper setting determines which microprocessor is being emulated.

To install the probe tip into your target system:

80186/188, C186/C188 Remove the retainer clip from the LCC socket, place
the probe tip in the socket as you would the
microprocessor, then replace the retainer clip.
Always check that pin 1 is aligned correctly.

80C186EB/C188EB Remove the microprocessor chip from your target
and plug the probe tip into the PLCC socket. Always
check that pin 1 is aligned correctly.

For the 8018x/80C18x, check that the target has a 68 contact leadless chip carrier (LCC)
socket. An adapter, Part No. 210-00023-00, is available for plastic leaded chip carriers
(PLCC) . For the 80C18xEB, check that the target has an 84-pin PLCC socket.

Hardware 3-7

Pod

Figure 3-3: 8018x, 80CJ 8x and 80Cl Bx.EB Pod Assemblies

3-8 Hardware

Pod

Saving Desk Space

To save limited desk or table space, the 80C186/C88 pods can be supported from walls, an
overhead hook, or other non-horizontal surfaces either by velcro tape or by a hanging strap.

Velcro Tape

To support the pod using velcro tape, you must first attach the 5" long bracket to the bottom
sheet metal of the pod (you may need to bend the bracket slightly). Figure 3-4 shows bracket
placement. When the bracket is in place, simply peel off the adhesive backing on the velcro
tape strip and firmly press the tape onto the bracket as shown in Figure 3-4. You can now
attach the 80C186/Cl88 pod to any surface that adheres to velcro, such as many types of
office partitions.

Figure 3-4: Velcro Tape Support

5" long bracket

Velcro tape strip , I

:(i

61,
11

:1

~·

Bottom view of pod

Hanging Strap

The hanging strap can be threaded through either set of eyelets on the bottom sheet metal of
the pod. The 5" long bracket is not needed when using the hanging strap. Figure 3-5 shows
both of these configurations. After threading the strap through the eyelet, bend the strap back
on itself and fasten it with the enclosed fasteners. Make sure the fasteners on both sides are
firmly closed before hanging the pod from the strap.

Hardware 3-9

Pod

Figure 3-5: Hanging Strap Support

Fastener Hanging strap

e =
OCOCOOC'COC'.'C

Bottom view of pod
Eyelets

3-10 Hardware

Time Stamp Module

Time Stamp Module
An optional feature, the Time Stamp Module, adds performance analysis capabilities to the
ES 1800. This module allows you to measure the elapsed time your program spends in a
module, outside of a module or between modules for up to 4 modules at once. This can
provide a picture of where your program spends the most time, so you can choose the areas
which benefit most from optimization.

The Time Stamp module also allows you to count the number of times a module or address
range is accessed in order to troubleshoot iteration problems and help with optimization
decisions. The time from a hardware interrupt to a software service routine can be measured.
A direct electrical connection between the interrupt line on your target processor and the
Time Stamp Module lets you avoid delay in processing interrupts.

The time stamp module connects directly above the ES 1800 pod to the connector labelled
LSA Pod. You cannot use both the LSA pod and time stamp module at the same time.

For complete information on setting up and using your Time Stamp Module, see Section 6.

Figure 3-6: Time Stamp Module

Hardware

·•111111
11111111

Ar>Died
Microsystems
Ccrpcration

TIME STAMP MODULE
p
' .

Reset button

Trigger input TGR

3-11

Logic State Analyzer (LSA)

Logic State Analyzer (LSA)

An optional feature, the logic state analyzer (LSA) pod, connects directly above the ES 1800
pod. The LSA includes a pod, cables, and probe clips. The LSA pod provides 16 input lines
and one trigger output line.

The one trigger output line behaves the same as the BNC signal on t.':!e rear panel of the
ES 1800 and can be used with an oscilloscope. This allows triggering an oscilloscope or
external logic analyzer for events that are set up in the Event Monitor System with a 'then
TGR' statement.

To use the pod, you plug it in to the port on the front of the ES 1800 labeled "LSA." The 16
input clips can be attached anywhere in your target. Then you use the LSA comparators in
the Event Monitor System to monitor the input pulses from the Logic State Analyzer.

Figure 3-7: Logic State Analyzer Pod

LSA Timing Strobe

The ES 1800 uses a bus request signal, shown in Figure 3-8, to generate a trigger which is
sent to the LSA pod and to the BNC connector on the rear panel. The trigger is a low-going­
high signal for approximately one bus cycle, and is generated approximately 70 ns after an
event.

3-12 Hardware

Figure 3-8: LSA and Trigger Timing

CPU State

CPU Clock

BCR

11

Logic State Analyzer (LSA)

T2 T3 14

Bus Cycle Request

------- Event ------1.,

Hardware 3-13

Ports

Ports
There are two serial ports and one optional SCSI port on the ES 1800. The SCSI option
requires installation at both the host computer and emulator sides. On the host side, the
installation depends on which host computer you are using. For PCs and compatibles, a SCSI
board such as the Future Domain TMC 800 line must be installed in order to add a SCSI port
to the PC. For Sun workstations, a new SCSI device driver must be installed. The SCSI option
is not available on VAX and Apollo computers. On the emulator side, the SCSI board must
be installed in the ES 1800. A special SCSI cable is also provided with the option to connect
the ES 1800 to the host computer.

For information on the SCSI port, see either your SCSI Addendum for ES I 800 Emulators or
your ES Driver/Sun user's manual.

Serial Ports

Both the terminal port and the computer port end in standard RS-232C female connectors.
Make sure peripheral hardware is connected to the correct port.

Baud rate Baud rates and data lengths for each port are
independent. Refer to the SET command in Section
7 for available baud rates on each port.

Port Control

Upload/Download

Serial Port Pin Configurations

Only one port can be the controlling port. Either port
can give control to the other port. For complete
information, see Serial Communications in Section
5.

The ES 1800 accepts commands to begin uploading/
downloading from either port. However, the
ES 1800 uploads/downloads hex format data files
only through the computer port.

The pin configuration of your equipment (terminal, PC or host) may not match that of the
ES 1800. It is important to be familiar with the pin configurations of all peripheral equipment
you intend to use with the ES 1800 emulator.

The ES 1800 emulator is configured as Data Terminal Equipment (DTE). Before powering
up, make sure the ES 1800 emulator system and peripheral hardware are compatible. Pins 1,
2, 3 and 7 must be connected to peripheral hardware. Pins 4 and 5 need to be connected if
peripherals attached to the ES 1800 use these pins.

3-14 Hardware

Ports

Both ES 1800 serial ports use the same pin assignment. All pin assignments and voltage
levels conform to Electronics Industries Association (EIA) RS-232C standards. The
following chart lists the signals present on each pin.

Pin

2

3

4

5

6

7

8-25

Name

Protective Ground

Serial Data Out

Serial Data In

Request to Send (Output)

Clear to Send (Input)

Not Used

Signal Ground

Not Used

Data Requirements

Description

Connected in the ES 1800 emulator to
logic ground.

This signal is driven to nominal 12 voltage
levels by an RS-232C compatible driver.

Data is accepted on this pin if the voltage
levels (12V) are as specified by RS-232C
specifications.

This signal is driven to nominal 12V levels
by an RS-232C compatible driver. It signals
other equipment that the ES 1800 emulator
is ready to accept data at this port.

An input signal to the ES 1800 emulator
indicates another piece of equipment in the
system is ready to accept data. This signal is
terminated so the ES 1800 emulator operates
with the signal disconnected.

Connected in the ES 1800 emulator to the
system logic ground.

These pins are not used by the ES 1800
emulator but may be required by your
peripheral hardware.

The data requirements are set in the SET menu. See Section 7 for details on using the SET
menu.

Stop Bits

Parity

Hardware

The ES 1800 software transmits and receives 8-bit
ASCII characters. The number of stop bits is
determined by SET parameter #11 for the terminal
port and #21 for the computer port. (Section 7).

The ES 1800 sends and checks parity according to
system SET parameter #12 for the terminal port and
#22 for the computer port.

3-15

Ports

Hardware Handshake

Software Handshake,

3-16

Each character consists of a start bit followed by 8
data bits. When no data is being transmitted, the
serial data out pin (pin #2) will be at the 12V level.

When the ES 1800 is ready to receive data, it asserts
the Request To Send line (pin #4). When a receive
buffer is nearly full, the ES 1800 deassens the
Request To Send line.

When the ES 1800 is ready to transmit data. it checks
the status of the Clear To Send line (pin #5). Data is
transmitted only when Clear To Send is high.

XON XOFF . The ES 1800 uses normal flow control
codes to control software handshaking. The default
values are XON (DCl) and XOFF (DC3).

The ES 1800 serial 1/0 system contains internal
buffers to smooth the transmission of data via the
serial ports. If an input buffer becomes nearly full.
the system immediately transmits an XOFF
character. When the software empties the input
buffer, the system transmits an XON character.

Although the user cannot overfill the input buffer
from a controlling terminal, a controlling computer is
quite capable of doing so. The input buffer for the
computer port is 64 characters deep. When eight
characters have been placed in the computer input
buffer, the XOFF character is transmitted. Allowing
two character times for skew, the computer must
transmit no more than 54 characters until the next
XON from the ES 1800.

The RTS hardware handshake follows the software
handshake described above. When an XOFF is
transmitted, RTS is dropped on that 1/0 port; when
an XON is transmitted, RTS is reasserted.

Hardware

Maintenance

Maintenance

Maintenance of the ES 1800 emulator has been minimized by the extensive use of solid-state
components throughout the instrument. There are three areas where you need be concerned:
cables, probe tip and cleaning the fan filter.

Cables

The cables are the most vulnerable part of the instrument, due to constant flexing during
insertion and extraction. First, inspect the cables for any obvious damage, such as cuts,
breaks, or tears. Even if you have thoroughly inspected the cables and cannot find any
damage, there may be broken wires within the cables (usually located close to the ends). A
broken wire within the cable will cause the instrument to run erratically or intermittently if
the cables are flexed during emulation. By swapping the cables in question with a known
good set of cables, you can easily isolate the faulty cable.

Probe tip

The probe tip for the 8018x and 80C18x consists of a ceramic leadless chip, four ribbon
cables and an adapter board. The probe tip for the 80C18xEB consists of a 114-pin grid array
with an 84-pin PLCC adapter. The adapter board is inside the pod case. When the ES 1800
is not in use, the protective cover should be installed over the probe tip to prevent cable
abrasion and to protect it from being damaged by other objects. Folding or kinking of the
ribbon cables may result in premature failure. Check that the probe tip is clean and well
seated.

Cleaning the Fan Filter

NOTE
Units with part numbers in the range 750-00500-xx do not have fan filters.

If you have an emulator with a fan filter, it should be cleaned regularly. The recommended
interval is every 90 days. If you are working in a dusty environment, you may need to clean
the filter more frequently.

1. Unplug the ES 1800.

WARNING

Electrical shock and moving fan parts are dangerous. Make sure you unplug
the unit before proceeding.

2. Remove the front cover of the ES 1800. (Loosen the two release screws.)
3. Remove the top cover of the ES 1800. (Unscrew six screws, and lift the cover

off.)

4. Unscrew the two screws at the top of the chassis which hold the fan in place.

Hardware 3-17

Maintenance

Figure 3-9: ES 1800 Fan Mounting

3-18 Hardware

Maintenance

5. Tilt the fan towards the boards in the chassis.

Figure 3-10: ES 1800 With Fan Tilted for Easy Access to Filter

FAN FILTER

6. Remove the fan filter.
7. Rinse the fan filter in cold water. Thoroughly shake out the excess water.

8. Replace the fan filter.
9. Tilt the fan back into the correct position.
10. Replace the screws connecting the top of the chassis to the fan.
11. Replace the top and front covers.

Parts

The following parts are available for you to order:

Hardware

Probe tip

Short cable set

Long cable set

3-19

Troubleshooting

Troubleshooting
Check that the cables are installed properly, that the probe tip is plugged into a compatible
target system, with power applied to both the target system and the ES 1800 before starting
troubleshooting procedures.

The most common problems encountered are listed below. We recommend that you contact
Customer Service at Applied Microsystems Corporation if you experience any problems that
do not fall within this range of items. Before you call our service department, display your
software revision number by typing REV and record the serial number located on the back
of the chassis. You will be asked for the revision number and serial number when you call.

We do not recommend a component-level repair in the field, unless performed by a qualified
service engineer.

Troubleshooting

SYMPTOM POSSIBLE CAUSES

Target system 1. Faulty cables.
runs erratically

2. Broken pin on adapter.

3. ES 1800 emulator and target system not compatible.

4. LDV not executed before RUN (vector not loaded).

5. The probe tip is not making good contact.

Emulator will 1. Baud rate set incorrectly.
not communicate
over RS-232 2. Target system requires "null" modem cable

(pin 2 and pin 3 of RS-232 connector reversed).

3. For terminal operation, thumbwheel switch located
on the top card is not in the "O" position or the cable
is not properly attached to the terminal port in the
back of the ES 1800.

4. Cable not going to correct port of the terminal or PC.

5. Toggle switch located on the second card from the
top in the ES 1800 not in the middle position.

6. Power is not on, or a fuse has blown.

7. Control boards not seated properly.

3-20 Hardware

ESJ800 Emulator Specifications

ES 1800 Emu later Specifications

Input Power

Standard

Optional

Environmental

Operating Temperature

Storage Temperature

Humidity

Physical

Mainframe

80186/188 Pod

80C186/C188 Pod

80C186EB/C188EB Pod

Target System Connection
(total length including pod)

LSAPod

Hardware

90 to 130 V AC, 47 to 60 Hz consumption less than
130W

180 to 260 VAC, 47 to 50 Hz consumption less than
130W

0 C to 40 C (32 F to 104 F)

-40 C to 70 C (-40 F to 158 F)

5% to 95% relative humidity, noncondensing

13.2 cm x 43.18 cm. x 34.29 cm.
(6.2 in. x 17 in. x 13.5 in)

22.6 cm. x 12.9 cm. x 4.1 cm.
(8.9 in. x 5.1 in. x 1.6 in.)

21.6 cm. x 27.9 cm. x 2.2 cm.
(8.5 in. x 11.0 in. x 0.85 in.)

21.6 cm. x 29.7 cm. x 5.1 cm.
(8.5 in. x 11.7 in. x 2 in.)

1.5 m
(60 in.)

12.4 cm. x 7.9 cm. x 2.3 cm.
(4.9 in. x 3.1 in. x .9 in.)

3-21

Section 4

PREPARING FOR EMULATION

This section guides you through the steps required to use the ES 1800 emulator to debug
hardware and software problems. The general steps are:

establishing communication with the emulator

setting up your target environment by mapping overlay memory, checking
registers, setting up soft switches, and downloading program

running your program

breaking emulation

isolating a problem by examining the trace memory, checking registers or single
stepping

modifying your program, either in the target or overlay memory

using shortcuts, such as symbols, repeat commands, macros, saving setup
between sessions, maintaining different setups for multiple users and clear
commands

Each step includes a summary of the commands used during that step and examples of using
groups of commands to do useful tasks.

Section 7 provides a detailed alphabetical reference for all the commands mentioned in this
section.

Preparing for Emulation 4-1

Terms

Terms

Before using this section, you should be familiar with the following terms:

target Generally, the target is the hardware and software that you are
debugging. If there is no target hardware available, the target may
be just a program, downloaded into the overlay memory.

run mode Indicates that emulation has begun. The microprocessor in the pod
is running a program in the target. The run mode prompt is R>.

pause mode Indicates that emulation is not talcing place. The pause mode prompt
is >.Many commands can only be used in pause mode.

transparent mode Transparent mode is used to communicate with a host computer or
any other peripheral you attach to a serial port on the ES 1800. In
transparent mode, the two ES 1800 serial ports (TERMINAL and
COMPUTER) are connected.

peek/poke Peeks and pokes are single bus cycle reads and writes to target or
overlay memory. When a peek/poke is requested during run mode.
we break emulation (you don't see this) and do a single target bus
cycle, then go back into emulation.

4-2 Preparing for Emulation

Establish Communication with the Emulator

Establish Communication with the Emulator

How you establish communication depends on the configuration of your debugging
environment and whether you are using serial or SCSI communication between your host
computer and the ES 1800.

This section describes establishing communication when you are using the emulator with a
dumb terminal or with a terminal and a host computer. For information on establishing
communication from ES Driver or one of the VALIDA TE software debuggers, please use the
appropriate software manual.

Note that Section 2 of this manual provides quick instructions to get you started, whereas this
section provides a more complete explanation of the process.

Command

CCT
SET
TCT
TRA

Commands Used to Establish and Verify Communication

DescriDtion

Control emulator from COMPUTER port
Set up port parameters
Control emulator from TERMINAL port
Enter transparent mode

Serial Communication

The ES 1800 can communicate through both DB-25 connectors on the chassis rear panel
using standard RS-232C serial protocol. The ports can be independently configured for baud
rate, data length, and number of stop bits.

From a Terminal or Host Computer

When using a dumb terminal to control the ES 1800, you connect a terminal to the
TERMINAL port on the back of the ES 1800 using an RS-232 cable. When the ES 1800 is
shipped, it is configured for TERMINAL port control.

One common development configuration is with a terminal connected to the TERMINAL
port of the ES 1800 and a host development system connected to the COMPUTER port. The
ES 1800 provides a transparent mode that essentially connects your terminal to the computer.
The ES 1800 also has a special download command to load modules from the host system
and commands to upload data and symbols to the host system.

In configurations where the ES 1800 is connected directly to a host computer, there are a few
details that need to be considered.

Preparing for Emulation 4-3

Establish Communication: Serial

Data Buffering and Baud Rate

When downloading from a computer, the ES 1800 buffers all the data bytes until the end of
record. If the checksum is correct, the data are then loaded into target memory. During this
load time, the host computer may start sending the next data record. The serial data buffer in
the ES 1800 is 64 bytes deep. When the sixth character is placed in the buffer, an XOFF
character is sem to the host computer. This means that the host computer must transmit no
more than 58 characters after the XOFF. Some multi-tasking development systems or
systems using networks may not be capable of quickly stopping character transmission. For
these systems, it may be advisable to lower the COMPUTER port's and host computer's baud
rates.

The XON/XOFF problem described in the above paragraph can also happen in the reverse
direction. If the ES 1800 is uploading data to the host, it may be able to overrun the host's
ability to receive characters. While lowering baud rates may help, there are probably
commands available on the host to solve the problem. You should also make sure that the
host does not echo characters sent to it while uploading data. If the characters are echoed,
the ES 1800 will quickly send an XOFF to the host while continuing to send normal upload
characters. The host system will then probably send an XOFF to the ES 1800 because the
host's buffers are full. The result of this situation is that both systems will lock up waiting
for the other to send an XON. See your system administrator or call Applied Microsystems
Corporation Customer Service department at 800-ASK-4AMC for help.

XON and XOFF characters can be used to control either output port on the ES 1800. These
characters can be redefined using the SET command.

Communication with the Host Computer

While in transparent mode, the ES 1800 passes characters between the computer and
TERMINAL ports. There is a user definable two-character escape sequence to exit
transparent mode, set with the SET command (<esc><esc> default). If the first character of
the escape sequence arrives at either port, the ES 1800 holds it until it receives another
character from the same port. If the second character matches the second character of the
escape sequence, transparent mode is terminated. If the second character is not part of the
escape sequence, then both the character being held and this second character are sent to the
proper port.

While in transparent mode, the only characters that are meaningful to the ES 1800 are XON,
XOFF, the first character of the escape sequence, and the reset character. The reset character
may be sent from the host as part of a command sequence to the terminal. You should define
the reset character (<ctrl-z> default) using the SET command to be a character that will not
normally be used by the host system or an editor.

4-4 Preparing for Emulation

Establish Communication: Setup Command

Controlled by Host Computer

In this configuration, a software package on the host computer actually controls the ES 1800.
Please see your ES Driver or VALIDA TE debugger manual for information on setting up
communication.

Setup Commands

The SET menu contains all of the external communication variables such as baud rates,
parity, and upload/download data format. Some SET parameters require a reset before
becoming effective. You can set the serial communication parameters and save them to
EEPROM without affecting the parameters currently in use.

The three categories of parameters are summarized in the following table:

Category

System

Terminal port

Computer port

Parameters

User number, reset character, XON/XOFF characters, LSA
display
Baud rate, stop bits, parity, screen display length, transparent
mode escape sequence
Baud rate, stop bits, parity, transparent mode escape sequence,
command terminator sequence, record length, download/
upload data format, acknowledge character.

Port Dependent Commands

The 'controlling' port is determined at power-up by the setting of the thumbwheel switch on
the controller board (see Section 3). After power-up, the commands CCT and TCT switch
control from one port to the other. TCT entered to the TERMINAL port acts like a null
command as does a CCT entered at the COMPUTER port. All commands except UPL, DNL
and UPS respond in the same manner if entered from either the computer port or the
TERMINAL port.

Transparent Mode

Entering transparent mode from either port causes both ports to be 'connected' to each other.
If transparent mode is terminated from either port, control returns to the port that initiated the
transparent mode (TRA) command.

SCSI Communication

For information on the SCSI port, see either your SCSI Addendum for ES 1800 Emulators or
your ES Driver/Sun user's manual.

Preparing for Emulation 4-5

Set Up Target Environment

Set Up Target Environment

After you have established communication with the emulator, you must download your code
to either target or overlay memory. Once the code is downloaded, you will want to verify that
the program is where you want it, and that everything is set up correctly to begin emulating.

The ES 1800 provides convenient commands for all ihese tasks, including:

4-6

overlay memory commands, so that you can run code before hardware is available
or use a combination of existing hardware and new code

download commands to load code into target or overlay memory

memory commands to examine and compare memory regions in overlay and
target memory

register commands to examine and modify registers

soft switches to control using the emulator with target hardware

Commands Used to Set Up Target Environment

Command DescriDtion

Overlay Memory Commands

CLM Clear memory map
DM Display memory map
LOV Load overlay memory from target
MAP Set memory map
OVE Enable overlay memory
OVS Overlay memory speed
VFO Verify overlay memory

Clock Commands

CK
CLK

Choose target clock
Read target clock frequency

Download Commands

DNL
SET
TRA
VFY

Download file to target or overlay
Set up communication parameters
Enter transparent mode
Verify serial download data

Preparing for Emulation

Set Up Target Environment: Map Overlay

Command

Command Used to Set Up Target Environment (cont)

Description

Memory Commands/JO Commands

ASM
DB
DIS
M
MIO

Register Commands

Enter single line assembler
Display memory block
Memory disassembler
Enter memory mode
Enter IJO mode

BAS Set/display default register base
CLR Clear CPU registers
DFB Display default register base
DR Display microprocessor registers
LD 1 Load registers from EEPROM
LDV Load reset vectors into CPU registers
PCB Display PCB registers
SA V 1 Save registers to EEPROM

Softswitch Commands

LD 4 Load soft switch settings from EEPROM
ON/OFF Soft switch menu
SA V 4 Save soft switches to EEPROM

Ma!J Overlay Memory

Overlay memory can be used to debug target hardware and software. It can be used to create
and verify programs before hardware is available, determine whether the program is making
illegal accesses, and patch target PROM code quickly and easily.

Overlay memory is available in memory ranges from 128K to 2M and can be mapped in
segments as small as 2K bytes. Each segment can be assigned one of four attributes; target,
read/write, read only, or illegal. If memory is mapped, it means that you have assigned at least
one segment of overlay as read/write, read only, or illegal memory. Unmapped memory is
assigned the target attribute. Memory mapped as target or illegal does not use up overlay
memory.

You can always modify overlay memory mapped as read-only. However, if a program tries
to write to read-only overlay, emulation stops and an error message is displayed. Overlay
memory mapped as read/write can be written to or read from. If a program attempts to read
or write to memory mapped as illegal, emulation stops and an error message is displayed.

Preparing for Emulation 4-7

Set Up Target Environment: Map Overlay

Overlay memory is mapped with the MAP command, and the map is displayed with the DM
command. Once you have memory mapped, you can move a program from target memory to
overlay with the LOV command. The VFO command lets you compare a range of memory
in your target to the same range in the overlay memory.

When a segment of memory is mapped, program accesses in that memory range are directed
to the overlay instead of the target. The overlay can be further qualified by the overlay enable
switch (OVE). This register indicates whether code, data, or all accesses in a mapped
memory range should be directed to the overlay memory.

Overlay memory accesses occur in real time at speeds up to 16 MHz with the high-speed
overlay memory board, and 12.5MHz with the standard board. To operate at speeds greater
than 12.5MHz using the standard board, you will need to add wait states using the OVS
command. The OVS command requires the RDY switch to be set: this switch selects an
internally generated ready signal to complete memory accesses. OVS is automatically set to
1 if CLK (clock frequency) is greater than 12.5 MHz and you are using a standard overlay
memory board. If you are using a fast overlay memory board, OVS is set to zero.

Since the contents of overlay memory are not affected by changing the overlay map, you can
compare the operation of a program in target memory with one in overlay memory.

The following examples show using overlay memory to patch a program.

4-8

>CLM

>MAP 1000 to 7FFF:RO

>LOV 1000 to 7FFF

>ASM 2000

(Assembler commands)

>RNV

>STP;MAP 1000 TO 7FFF:TGT;RUN

>STP;MAP 1000 to 7FFF:RO;RNV

Clear any previous
mapping.

Map ROM over existing
target program.

Copy target program into
overlay memory.

Use line assembler to
make a patch.

Run patched version.

Stop, remove map, run
normal version.

Stop, restore map, run
patched version.

Preparing for Emulation

Set Up Target Environment: Download Files

Download Files

You can enter the download command from either the TERMINAL port or COMPUTER
port, but download data is always received by the emulator through the computer port. The
data will be written to the target system memory, or to overlay memory if it is mapped.

Before downloading, you should verify the following:

Overlay is mapped to the appropriate address range.

The start address of the file is the address to which you expect to download (see
TRA in Section 7).

The data format of the host system matches that used by the ES 1800 emulator
(see SET parameter #26 and TRA in Section 7).

Download from Terminal Port

When you type DNL from the TERMINAL port, the ES 1800 automatically enters
transparent mode. Because the ES 1800 expects data records to arrive at the COMPUTER
port, transparent mode allows you to send commands to the host system using the
TERMINAL port.

When you are ready to download a file, enter the proper command for your system which
causes the host system to display a file to the terminal (commands such as copy, type, or cat).
Terminate the command with the transparent mode escape sequence (<esc><esc> is the
default), not a <return>. The command terminator sequence, which is user definable, is sent
to the host system (<return>,null,null is the default).

The ES 1800 is now ready to read the data records the host system will be sending. Data
records are displayed as they are received by the ES 1800. Each data byte is verified with a
'read after write' cycle. If an error is detected, the download is aborted. Checksums are
verified and if a checksum error occurs, the download is aborted with an error message. The
data in the erroneous record will not be written to memory. No special characters are sent to
the host, however, so it is likely that the next time you enter transparent mode, the host will
send the remainder of the download data records.

The host system responds by sending the data records from the formatted object file. Any
characters sent by the computer are echoed to the TERMINAL port. All valid data records
are copied into internal buffers and the data written into target memory. When the End of
File (EOF) record is received, the download process terminates and a normal ESL prompt is
displayed.

Download from Computer Port

If the download command is entered from the COMPUTER port, the process is different. In
this case, the ES 1800 does not enter transparent mode. The DNL command can be
immediately followed by data records.

Preparing for Emulation 4-9

Set Up Target Environment: Download Files

After the host sends the download corrimand, the emulator waits for data at the COMPUTER
port. The host computer should then send the downloadable records followed by an end of
file record. After the end of file record, the system prompt (>) is sent to the COMPUTER
port.

Each data record is acknowledged with an ACK (6) character if its checksum is correct and
correctly written into target memory (verified with read-after-write cycles). The EOF record
is also acknowledged if valid. If an error occurs during a download, the first character sent
back to the host will be the BEL (7) code. Programs written on the host system can use these
two characters to handshake the data records in an automatic download routine.

There are some differences between COMPUTER port control and TERMINAL port control
during the downloading process. Under COMPUTER port control:

1. All good records are acknowledged with an ACK $6.
2. All error messages from bad records are received on the COMPUTER port;

therefore the host program that is controlling the ES 1800 will need to be able to
interpret error messages.

3. Records are not echoed.

Return Control to ES 1800

Once the download command (DNL) is entered, control is returned to the emulator in one of
three ways:

Errors

1. An end of file record is received. If an end of file record is not recognized by the
ES 1800, control will not be returned to the emulator TERMINAL port. This can
be caused by:

Using a <return> instead of the proper escape sequence to terminate the
command line to the host computer.

Selecting the incorrect data format.

2. An ES 1800 reset is executed (default is <ctrl-z>).
3. An error is detected.

CHECKSUM ERROR IN THE DATA RECORD

The download process is aborted because the checksum sent with a record file is not the
same as the checksum calculated by the ES 1800.

READ-AFTER-WRITE VERIFY ERROR

Every byte in a data record is verified after it is stored. This error indicates that the data
in memory does not match the data that was stored.

4-10 Preparing for Emulation

Problem

Emulator does not return a prompt

Read-after-write verify error

Checksum error

Display of data does not begin
after entering transparent mode
escape sequence

Set Up Target Environment: Check Registers

What to Check

1. Serial data format - SET menu.
2. No end of file (EOF) record.
3. You entered a <return> instead of

the transparent mode escape
sequence after entering the host
copy command.

1. Target hardware problem.
2. Overlay memory not mapped in

download range. Address is
indicated by message.

1. Improperly formatted record sent
by host.

2. Noisy serial data lines.
3. Host computer is not responding to

XON/XOFF protocol.

1. Host not responding to user defined
command terminator sequence - see
SET menu.

If the ES 1800 does not return a prompt, you will need to reset the system (default is <ctrl­
z>) in order to enter any other ES 1800 commands.

If the host computer does not respond to the XON/XOFF protocol fast enough, you may
need to lower the baud rate on the COMPUTER port and the host computer.

Symbolic Download

The download command accepts symbolic definition records as well as data records when
the symbolic debug option is used and the ES 1800 download format variable is set to 5
(Extended Tekhex). (See SET parameter #26).

Symbols can be verified with memory using the VFY command. VFY will verify that the
symbols in the ES memory match the symbols in the download file.

Check Registers

Before going into run mode, you will want to be sure that the code segment and instruction
pointer (CS:IP) contain the correct values. You may also want to set a valid stack pointer,
initialize the CPU status register (FLX) or some of the PCB registers.

Preparing for Emulation 4-11

Set Up Target Environment: Check Registers

You can either set registers by hand or use the LDV command to load them with their power­
up values.

This section includes information on using the registers and a complete list of all the registers
in the ES 1800.

The registers can be logically divided into four groups:

1. microprocessor registers
2. general ES 1800 registers
3. Peripheral Control Block (PCB) registers, those used only in iRMX mode and

those used in non-iRMX mode
4. Event Monitor System registers

Each ES 1800 or Event Monitor System register accepts one or two of three value types:
integer values, range values or don't care values. The value of any register can be displayed
by_ entering its name on the command line. Register values can be modified using the syntax
register= value.

Registers that accept range and don't care types can also be assigned integer values. Each
register has a separate display base. The display base is viewed and changed with the BAS
command. Display bases are often changed for registers such as the Event Monitor LSA
comparators, which you might like to see in binary, and the count limit (CTL) register, which
you might want to see in decimal.

The CPU registers and the Event Monitor registers can be displayed as a group by using the
DR and DES n commands.

The complete register set can be loaded from or saved to EEPROM. Executing a SA V or LD
copies all system variables. A SA V 1 or LD 1 copies only the register group.

Registers In Run Mode

Setting and displaying the microprocessor registers during run mode can lead to unexpected
results because the ES 1800 keeps a RAM image of the microprocessor registers. This image
is copied to the processor whenever run mode is entered. The image is copied from the
processor when emulation is stopped by the STP command or the Event Monitor System.

Because of this, modifying these registers during run mode simply alters the ES 1800's image
of the registers. The ES 1800 does not copy the new values of the registers to the
microprocessor. When emulation is broken, the current values of the microprocessor
registers are copied and the RAM image is overwritten. Thus, you cannot dynamically
change the value of the microprocessor registers while emulating, and a display register
command entered after emulation has begun will show you the register values upon entry to
emulation, not the values the registers currently contain.

4-12 Preparing for Emulation

Set Up Target Environment: Check Registers

Peripheral Control Block (PCB) Registers

Because of the dynamic nature of some PCB registers, they are handled slightly differently
than regular CPU registers. The following sections describe the problems and their solutions.

General PCB Handling

When the ES 1800 exits run mode, all memory and 1/0 space is searched for the PCB. When
the PCB is located, it is moved to locations $FFOO-$FFFF in 1/0 space. All register values
are then copied to a table in internal RAM and uploaded to the ES controller. These register
values are the ones displayed in response to the PCB command. The values in this table are
modified by commands such as:

>MCW0=$1234

or
>IST=$5678

Relocation of the PCB

The PCB is completely relocatable in memory or 1/0. It contains an interrupt controller. two
timers, three counters, two DMA channels (8018x and 80C18x) and chip select circuitry for
decoding memory and 1/0 space. For the 80C18x and 80C18xEB, the PCB also contains a
dynamic RAM refresh controller and a power save mode controller. The SOC 186EB/C I 88EB
also contains two serial communications channels and two general purpose 1/0 ports. There
are many details to understand and remember when dealing with the PCB. These details are
pointed out in the following subsections.

Since the PCB is relocatable, there are several things that need to be understood concerning
the registers in the PCB. On a run-to-pause transition the firmware takes a copy of the CPU
registers and the registers in the PCB and stores them first in a RAM table on the ES 1800
board and then passes a copy of the registers to ESL. The copy that is sent to ESL is what is
shown to you. When you make a change to any of the registers, that change is simply stored
in the RAM table kept by ESL. If you then ask to look at those registers you see the change
made, but the change is only to the RAM table and not to the CPU.

Prior to a pause-to-run transition, the registers are passed from ESL to the firmware. The
registers are then loaded into the CPU, and control is turned over to the target. So if you want
to load a register into the CPU, you first need to equate the register to the correct value and
then put the ES 1800 into either run mode or execute a single step command (STP).

On a run-to-pause transition, the firmware locates the PCB and moves it back to the power­
up location of OFFOO in 1/0 space. This is done because some users actually move the PCB
to some other location. The firmware moves the PCB to its default location so that it will not
write over the top of the PCB while in pause mode.

Preparing for Emulation 4-13

Set Up Target Environment: Check Registers

If you use the MIO command to write to the PCB and change the contents of the registers,
the following situations may cause confusion:

Situation Resolution

1. You can't find the PCB at The PCB is moved to the default location, so you
the location you expect it. will not find the PCB in the spot you moved it to.

The PCB is always moved back to the correct
location on a pause-to-run transition. Look for it
at OFFOO in 1/0 space.

2. If you modify a PCB The values in the ESL RAM table are only loaded
register directly, using the from the PCB on a run-to-pause transition. Also,
MIO command, and then the values loaded back into the PCB on a pause-
look at the PCB registers to-run transition are from the ESL RAM table and
through the ESL command therefore write over the top of anything that you
(PCB) you will find that the put into the PCB. To avoid this problem, change
register you changed in the the PCB registers using the ESL command format
PCB was not changed in the register= value.
ESL RAM table.

3. If you modify a PCB Commands do not modify the current contents of
register directly, by using the physical PCB until the next pause-to-run
the MIO command, and transition.
then go into run mode, you
will find that the CPU did
not use the value you
changed in the PCB.

When the ES 1800 enters run mode, the PCB register values contained in the RAM table
mentioned above are reloaded into the physical PCB. The PCB is then moved back to its
location in the target address space and the ES 1800 enters the target system.

Using Peripherals During Pause

The ES 1800 may be configured to allow some or all of the integrated peripherals controlled
by the PCB to continue operating during pause mode. See the ON/OFF menu.

The dynamic RAM refresh registers are controlled by the PRE switch, and can be used to
enable continuous refresh of target RAM during pause mode.

Timers

The ON/OFF TE switches are used to enable/disable the integrated timers during pause
mode.

4-14 Preparing for Emulation

Set Up Target Environment: Check Registers

If the switch is set to ON, on a run-to-pause transition, the timer registers are handled as
described in the General PCB Handling section. On a pause-to-run transition, none of the
timers' values are reloaded to the physical PCB, as this would destroy the data generated
during pause mode.

If the switch is set to OFF (disable timer during pause mode), the mode control (MCWO) for
the particular timer is copied to the RAM table upon run to pause; the timer is then disabled
by clearing bit 15 of the mode control word. Upon a pause-to-run transition, the value in the
RAM table is reloaded to the physical PCB. This restores the timer to its configuration when
last running in the target system.

DMA Controllers (not applicable to the 80C18xEB)

The ON/OFF DME switch enables/disables DMA operation during pause mode. Note that
all DMA cycles are disabled immediately upon a run-to-pause transition by the assertion of
an NMI to the CPU, which then sets bit 15 of the IST register (DHL T bit).

If the switch is set to ON DME, the IST register is copied to the RAM table. The DHL T bit
is then cleared, causing DMA cycles to resume. All DMA cycles are steered to the target
system.

Upon a pause-to-run transition, the RAM table value of the IST register is reloaded to the
physical PCB. If you want DMA activity to continue when reentering run mode, be sure the
CDH soft switch is turned on.

No DMA register values are reloaded to the physical PCB with this setting.

If the switch is set to OFF DME, the DMA registers are handled as described in "General
PCB Handling."

Chip Select Registers (801 Sx and 80C1 ax only)

The ON/OFF RCS switch controls the emulator's reading of the LMCS, MMCS, MPCS, and
PACS registers upon a run-to-pause transition.

If the switch is set to ON RCS, all chip select registers are read and restored as described in
"General PCB Handling."

If the switch is set to OFF RCS, these chip select registers are read and copied to the RAM
table only if you have manually set the register value during pause mode (e.g., LMCS=1234).
This is necessary because reading of these chip select registers enables them to drive the
80186/188/C186/Cl88's chip select lines.

Upon a pause-to-run transition, only the registers that have been modified during pause mode
are reloaded to the physical PCB. Note that when the switch is OFF, the displayed values of
the chip select registers (LMCS, MMCS, MPCS, PACS) do not show what is actually in the
PCB.

Preparing for Emulation 4-15

Set Up Target Environment: Check Registers

When attempting to peek and poke into target space it is necessary to set up the CS registers
first so the address is decoded and the correct CS line toggled. The CS registers can be set
up either by running the code in the target system or by setting up each of the registers using
ESL and then executing an STP to load them into the CPU.

The LMCS register is especially critical to emulator operation because the NMI vector is
located in L'1e LMCS memory area. When making a run-to-pause transition, whether from a
run or step command, the CPU picks up its NMI vector from the emulator's internal memory
space, but it uses the target's RDY line to complete the bus cycle. IfLMCS is not setup when
you enter a step command or go into run mode with a breakpoint set, the emulator may hang
up waiting for a target RDY signal.

When reading the contents of the CS registers the value returned is often different from the
value written into the register. This is because the CS registers have some read-only bits.

LMCS register bits 3, 4 and 5 are always high.
MMCS register bits 3 through 8 are always high.
PACS register bits 3 through 5 are always high.
UMCS register bits 3 through 5, 14 and 15 are always high.

Chip Select Registers (80C1 SxEB only)

Upon a pause-to-run transition, all registers are reloaded to the physical PCB.

When attempting to peek and poke into target space it is necessary to set up the CS registers
first so the address is decoded and the correct CS line toggled. The CS registers can be set
up either by running the code in the target system or by setting up each of the registers using
ESL and then executing an STP to load them into the CPU.

The LCS registers are especially critical to emulator operation because the NMI vector is
located in the LCS memory area. When making a run-to-pause transition, whether from a run
or step command, the CPU picks up its NMI vector from the emulator's internal memory
space, but it uses the target's RDY line to complete the bus cycle. If LCS is not set up when
you enter a step command or go into run mode with a breakpoint set, the emulator may hang
up waiting for a target RDY signal.

When reading the contents of the CS registers the value returned is often different from the
value written into the register. This is because bits 4 and 5 of the chip select registers are
undefined when read, and must be written as 0.

Interrupt Controller Registers

Upon a run-to-pause transition, the poll status register (POS) is read and its value stored both
to its own RAM table entry, and to the polling register (POL) table entry. The emulator does
not read the poll register as this would cause any pending interrupt to be treated as if it had
been serviced. When you enter the PCB command, POL and POS will contain the same
value.

4-16 Preparing for Emulation

Set Up Target Environment: Check Registers

Because POL and POS are read-only registers, they are not reloaded to the physical PCB
upon a pause-to-run transition.

For the 8018x processors, on a run-to-pause transition all interrupts are disabled because
there is no way for the ES 1800 to handle interrupts during pause. This means that both
externally generated and chip generated interrupts are ignored during pause mode.

For the 80C18x and 80C18xEB processors, on a run-to-pause transition all interrupts are
disabled unless the IDP switch is set to ON. This is true for all interrupts except INT4 on the
80C18xEB processors. INT4 cannot be used during pause mode.

Interrupts are restored to their previous condition upon a pause-to-run transition. If interrupts
occur during pause and are still pending upon a pause-to-run transition, they are serviced at
that time.

Serial Controller Registers (80C18xEB only)

Upon a run-to-pause transition, the serial registers, except for the status registers, are read and
their values stored in the RAM table. Any access to the status registers, whether read or write,
causes the registers to be cleared. The status registers are only read if the RSS softswitch is
set to ON.

Upon a pause-to-run transition, the status registers are not written to the physical PCB. The
transmit buffer registers are not written back to the physical PCB because this would initiate
a transmission if the serial port were configured.

Since the serial communications are interrupt driven, the IDP switch can be used to run the
serial unit during pause mode.

Preparing for Emulation 4-17

Set Up Target Environment: Check Registers

Register Lists

This section lists all the registers:

Microprocessor Registers

Target Peripheral Control Block (PCB) Registers

PCB Registers Used Only in iRMX (slave) Mode

PCB Registers Used in Non-iRMX (master) Mode

PCB Registers Used in Enhanced Mode (80C18X Only)

Event Monitor System Registers

General ES 1800 Registers

4-18 Preparing for Emulation

Set Up Target Environment: Check Registers

Name

AX, AL, AH

BP

BX, BL, BH

cs
CX,CL, CH

DI

DS

DX,DL,DH

ES

FLX, FLL, FLH

IP

SI

SP

SS

Table 4-1: Microprocessor Registers
8018x, 80C18x and 80C18xEB

Description Type

accumulator (low and high) Integer

base pointer Integer

base (low and high) Integer

code segment Integer

count (low and high) Integer

destination index Integer

data segment Integer

data (low and high) Integer

extra segment Integer

flags (low and high) Integer

instruction pointer Integer

source index Integer

stack pointer Integer

stack segment Integer

Length (bits)

16,8,8

16

16,8,8

16

16,8,8

16

16

16,8,8

16

16,8,8

16

16

16

16

Table 4-2: Target Peripheral Control Block (PCB) Registers
8018x and 80C18x only

Name Description

REL relocation register

UMCS upper memory chip select control

LMCS lower memory chip select control

MMCS mid-range memory chip select control (base address)

MPCS mid-range memory chip select control (block size)

PACS peripheral chip select control

Preparing for Emulation 4-19

Set Up Target Environment: Check Registers

4-20

Table 4-2: Target Peripheral Control Block (PCB) Registers
8018x and 80Cl8x only

Name Description

TCO timer #0 count register

TCl timer #1 count register

TC2 timer #2 count register

MAO timer #0 max count A register

MAI timer #1 max count A register

MA2 timer #2 max count A register

MBO timer #0 max count B register

MBl timer #1 max count B register

MCWO timer #0 mode control word register

MCWl timer #1 mode control word register

MCW2 timer #2 mode control word register

USRCO dma #0 upper 4 bits of source address

USRCl dma #1 upper 4 bits of source address

SCRO dma #0 lower 16 bits of source address

SCRl dma #1 lower 16 bits of source address

UDSTO dma #0 upper 4 bits of destination address

UDSTl dma #1 upper 4 bits of destination address

DSTO dma #0 lower 16 bits of destination address

DSTI dma # 1 lower 16 bits of destination address

xco dma #0 transfer count

XCl dma #1 transfer count

CWO dma #0 control word

CWl dma #1 control word

Preparing for Emulation

Set Up Target Environment: Check Registers

Table 4-3: Target Peripheral Control Block (PCB) Registers
80C18xEB only

Name Description

Interrupt registers

EOI End of Interrupt

POL Poll

POS Poll Status

MSK Interrupt Mask

PLM Priority Mask

ISV In-Service

IRQ Interrupt Request

IST Interrupt Status

TCR Timer Control

SCR Serial Control

INT4 INT4 control

INTO INTO Control

INTI INTI Control

INTI INTI Control

INT3 INTI Control

Timer registers
(Common to all: 8018x, 80C18x and 80C18xEB)

TCO timer #0 count register

TCI timer #1 count register

TC2 timer #2 count register

MAO timer #0 max count A register

MAI timer #1 max count A register

MA2 timer #2 max count A register

MBO timer #0 max count B register

Preparing for Emulation 4-21

Set Up Target Environment: Check Registers

4-22

Table 4-3: Target Peripheral Control Block (PCB) Registers
80Cl8xEB only

Name Description

MBl timer #1 max count B register

MCWO timer #0 mode control word register

MCWJ timer #1 mode control word register

MCW2 timer #2 mode control word register

Port control registers

PDRl port 1 direction

PPNl port 1 pin

PCNl port 1 control

PLTl port 1 latch

PDR2 port 2 direction

PPN2 port2 pin

PCN2 port 2 control

PLT2 port 2 latch

SBDO serial 0 baud

SCTO serial 0 count

SCNO serial 0 contra 1

SSTO serial 0 status

SRBO serial 0 RBUF

STBO serial 0 TB UF

SBDl serial 1 baud

SCTl serial 1 count

SCNl serial 1 control

SS Tl serial 1 status

SRBl serial 1 RB UF

STBl serial 1 TBUF

Pre paring for Emulation

Set Up Target Environment: Check Registers

Table 4-3: Target Peripheral Control Block (PCB) Registers
80Cl8xEB only

Name Description

Chip Select Registers

STRO GSCO start

STPO GSCO stop

STRI GSCI start

STPI GSCI stop

STR2 GSC2 start

STP2 GSC2 stop

STR3 GSC3 start

STP3 GSC3 stop

STR4 GSC4 start

STP4 GSC4stop

STRS GSC5 start

STP5 GSC5 stop

STR6 GSC6 start

STP6 GSC6 stop

STR7 GSC7 start

STP7 GSC7 stop

LCT LCSstart

LCP LCS stop

UCT UCSstart

UCP UCS stop

Refresh and power registers

REL relocation

RFBS refresh base

RFTM refresh time

RFLN refresh control

Preparing for Emulation 4-23

Set Up Target Environment: Check Registers

Table 4-3: Target Peripheral Control Block (PCB) Registers
80C18xEB only

Name Description

RFAD refresh address

PMC power management control

Table 4-4: PCB Registers Used Only in iRMX (slave) Mode (8018x and 80C18x only)

Name Description

EOI specific end of interrupt register

MSK mask register

PLM priority level mask register

ISV in service register

IRQ interrupt request register

IST interrupt status register

N interrupt vector register

DMAO level #2 interrupt control register (dma #0)

DMA1 level #3 interrupt control register (dma #1)

TMRO level #0 interrupt control register (timer #0)

TMRI level #4 interrupt control register (timer #0)

TMR2 level #5 interrupt control register (timer #0)

Table 4-5: PCB Registers Used in Non-iRMX (master) Mode (8018x and 80C18x only)

Name Description

POL poll register

POS poll status register

MSK mask register

PLM priority level mask register

ISV in service register

4-24 Preparing for Emulation

Set Up Target Environment: Check Registers

Table 4-5: PCB Registers Used in Non-iRMX (master) Mode (8018x and 80Cl8x only)

Name Description

lRQ interrupt request register

IST interrupt status register

EOI end of interrupt register

TCR timer interrupt control register

DMAO dma #0 interrupt control register

DMAl dma #1 interrupt control register

INTO interrupt control register #0

INTI interrupt control register #1

INTI interrupt control register #2

INT3 interrupt control register #3

Table 4-6: PCB Registers Used in Enhanced Mode (80C18x Only)

Name Description

MDR DRAM memory partition register

CDR DRAM clock pre-scalar register

EDR DRAM enable RCU register

PDC Power save control register

Table 4-7: Event Monitor System Registers

Name Description Type Length (bits)

ACl.1-ACl.4 address comparator Range 24

AC2.1-AC2.4 address comparator Range 24

CTL.1-CTL.4 count limit comparator Integer 16

DCl.1-DCl.4 data comparator Don't care 16

DC2.1-DC2.4 data comparator Don'tcare 16

LSA.1-LSA.4 logic state comparator Don't care 16

Sl.1-Sl.4 status comparator Don'tcare 16

Preparing for Emulation 4-25

Set Up Target Environment: Check Registers

Table 4-7: Event Monitor System Registers

Name Description Type Length (bits)

S2.l-S2.4 status comparator Don'tcare 16

SIA special interrupt address Integer 32

Table 4-8: General ES 1800 Registers

Name Description 'l)'pe Length (bits)

BTO ms to wait before NO BUS Integer 8
CYCLES error

DFB default base Integer 8

GDO-GD7 general purpose data Don't care 32

GRO-GR7 general purpose range Range 32

IDX repeat index register Integer 32

IOP 1/0 mode pointer Integer 16

LIM repeat limit register Integer 32

MMP memory mode pointer Integer 32

OVE overlay enable Don't care 8

TST terminator for repeats Integer 32

4-26 Preparing for Emulation

Set Up Target Environment: Soft Switches

Set Up Soft Switches

If you have target hardware, the ON/OFF menu contains switches which allow you to
configure the emulation environment to your liking. For example, you can run the ES 1800
without a target system by using the ES 1800-supplied clock signal, an emulator-generated
ready signal and overlay memory. The copy switch (CPY) copies data to both serial ports for
obtaining hard copy of your emulation session.

The ON/OFF menu can be saved to EEPROM with the SA V 4 command. These values may
then be automatically loaded into the ES 1800 on power-up by setting the thumbwheel switch
to the appropriate value, or manually by typing the load command (LD 4) to the ES 1800
after power-up.

The following chart summarizes the switches. More information can be found in Section 7
under each switch name.

Table 4-9: Soft Switches

Name Description 8018x 80Cl8x 80Cl8xEB

BKX Break on instruction execution (not x x x
prefetch)

BTE BUS(RDY) timeout enable x x x
CDH Clear DHLT bit in IST register on a x x

pause-to-run

CK Select internal clock x x x
CPY Copy data to TERMINAL & COM- x x x

PUTERports

DME Enable DMA during pause x x
FSX FSI on instruction execution (not x x x

prefetch)

IDP Enable interrupts during pause x x
IHE Ignore halt errors x x x
PRE Refresh enable during pause x x
PPT Enable peek/poke trace x x x
RCS Enable chip select registers display x x
RDY Select internal ready when access- x x .x

ing overlay

Preparing for Emulation 4-27

Set Up Target Environment: Soft Switches

Table 4-9: Soft Switches

Name Description 8018x 80C18x 80C18xEB

RSS Enable reading of serial status x
STI Enable step through interrupts x x x
TCE Enable trace memory during run x x x
TEO Enable timer 0 during pause x x x
TEl Enable timer 1 during pause x x x
TE2 Enable timer 2 during pause x x x

4-28 Preparing for Emulation

Run Program

Run Your Program
This section explains how to run and stop your program.

To run your program, you must put the emulator into run mode. You can enter run mode by
executing any of four run commands. You can also single step your program using the STP
command. The STI switch controls whether the emulator should recognize or ignore
interrupts while single stepping.

Emulation can be halted in one of four ways, single stepping, manual reset, reaching an error
or reaching a breakpoint preset with the Event Monitor System. Before running your
program, you should choose a method for stopping emulation. The method you choose
depends on what data you want to look at when emulation stops.

Event monitor system breakpoints may be enabled or disabled during run mode. Even when
breakpoints are disabled, all other Event Monitor System functions are active.

Command

Start Emulation

LDV
RBK
RBV
RNV
RUN
STI
STP

Stop Emulation

BKX
BRK
FSI
FSX
RST
SET#2
WHEN

Commands Used to Start and Stop Emulation

Description

Load reset vectors
Run with breakpoints enabled
Run, load reset vectors, breakpoints enabled
Run, load reset vectors, breakpoints disabled
Run with breakpoints disabled
Step through interrupts
Step through target system

Break on instruction execution or address
Break emulation
Force special interrupt
FSI on instruction execution
Reset pod microprocessor, load reset vectors
Set reset character
Enter when/then statement

Two of the run commands load the reset vectors before entering run mode, and two of them
enable the breakpoints in the Event Monitor System. The reset vectors are defined by Intel as:

CS =FFFFH
IP =0
FLX=F002H

The reset vectors cannot be loaded during run mode. RUN and RBK are typically used in run
mode to disable and enable break points. The following chart is a quick reference to the RUN
commands.

Preparing for Emulation 4-29

Run Program: Break Emulation

~ommand::i lls~d 10 S1ar1 Emyla1ion
Run Load Reset Breakpoints Valid in
CQmmand VectQrs Enabled Run mQde

RUN NO NO YES
RNV YES NO NO
RBK NO YES YES
RBV YES YES NO

Some commands need to communicate with the pod processor, and many of these commands
cannot be entered during run mode, because emulation must stop in order to complete the
command. If you are unsure whether a command may be entered during run mode, just enter
it. An error message is displayed if it is not valid.

The following commands may be entered in run mode, but do halt emulation briefly in order
to read or write data to the target system or overlay memory.

M Memory mode
MIO l/Omode
@ Indirection operator
DB Display block of memory
ASM In-line assembler
DIS Memory disassembler
NXT Memory mode
LST Memory mode

If there are target hardware problems, it may not be possible to enter run mode. In these
cases, error messages are displayed describing the problem. Some error conditions may
require a reset to bring the system back into command entry mode.

Break Emulation

Emulation can be halted in one of four ways. Before running your program, you should
choose a method for stopping emulation. The method you choose depends on what data you
want to look at when emulation stops.

4-30

1. Enter the stop emulation command, STP. When this command is entered during
run mode, emulation is stopped and the values of the microprocessor registers are
copied into ES 1800 memory. The current CS:IP and event monitor group number
are displayed.

2. The Event Monitor System can stop emulation if you have set up breakpoints and
the breakpoints are enabled. When a breakpoint condition occurs, emulation is
halted, the microprocessor registers are copied into ES 1800 memory, and the
CS:IP and event monitor group number are displayed.

Preparing for Emulation

Run Program: Break Emulation

3. Issuing the reset character (<ctrl-z> default) stops emulation. After the reset
character is issued, the ES 1800 registers have the same value they had before
emulation began. You should check those values or load the reset vectors (LDV)
before restarting emulation.

4. Emulation breaks automatically if the target program commits an access or write
violation in overlay memory. The condition that caused the error is displayed.

Breaking can also be qualified by the softswitch BKX. This soft switch determines if breaks
will occur only on instruction execution, or on any access to an address, including prefetches.

Preparing for Emulation 4-31

Set Up Breakpoints

Set Up Breakpoints
Once you have run your program, and discover a problem, the next step is typical! y to decide
where to break so that you can find the problem. This section describes using the Event
Monitor System to break emulation and to perform other actions. It begins with an overview,
and then describes each unit of the Event Monitor System in detail. The end of t.J-ie section
includes a variety of useful examples.

Commands Used to Decide Where to Break Emulation

Command Description

Setup/Display/Clear Advanced Event System

CES [l-4]
DES [1-4]
WHEN

Clear event monitor system setup
Display event monitor system setup
Enter when/then statement

Advanced Event System Actions

BRK
CNT
FSI
GROn
RCT
TGR
TOC
TOT
TRC

Break emulation
Count bus cycle
Force special interrupt
Change event group
Reset count value
Output trigger signal
Toggle count state
Toggle trace state
Trace bus cycle

Set Up the Event Monitor System

The ES 1800's Event Monitor System provides extremely flexible system and breakpoint
control, enabling you to isolate or break on any predefined series of events and then perform
various actions. You control and monitor the target by entering commands that define events
as logical combinations of address, data, status, count limit, and optional Logic State
Analyzer pod inputs. When an event is detected, the ES 1800 can break emulation, trace
specific sequences, count events, execute user supplied target routines, and trigger TTL
outputs.

The Event Monitor System monitors target information at the bus cycle level, including every
read or write cycle that the microprocessor executes. The Event Monitor system 'sees' every
signal that can affect the target system. It can also monitor inputs from the logic state analyzer
probe.

4-32 Preparing for Emulation

Set Up Breakpoints: Event Monitor System Structure

The Intel 8018x/C18x/C18xEB microprocessors multiplex address and data lines. The
ES 1800 demultiplexes those signals so that the Event Monitor System sees all signals at the
same time. The Event Monitor system essentially takes a picture of the microprocessor's
signals at the beginning of every T 4 state (refer to the Intel manuals iAPX 86188, 1861188
Users Manual, iAPX C86/C88, CJ86/CJ88 Users Manual and the 80Cl86EBIC188EB
Users Manual). The information that is recorded into trace memory is the same information
that the Event Monitor system is monitoring.

The address comparators in the 80186/188, C186/C188 and C186EB/Cl88EB may need to
be specially set up. These are 16-bit chips, with a prefetch QUE and byte based instructions.
This causes problems when breaking on instructions that occur on odd boundaries.

You can enter Event Monitor System WHEN/THEN statements while in run mode. You can
also modify the event comparator values during run mode.

These new statements and values will not go into effect until you stop and
restart run mode.

NOTE: Simultaneous use of the Dynamic Trace feature and the Event monitor system is not
possible. (See TCE in Section 7).

Structure

The Event Monitor System is structured in three basic units:

Events

Actions

WHEN/THEN Statements

Events identify specific target conditions. When these
conditions are encountered, actions can be performed.

Actions are what the emulator does when an event is
detected. There are many actions that the event system
can take, including standard features such as forcing a
special interrupt to jump to a soft shutdown routine
before stopping the target program, sophisticated trace
control and breaking emulation.

Statements coordinate the events and actions.

You define statements that specify single or multiple events that are logical combinations of
address, data, status, counter, and optional logic field states. When those events are
encountered in the target system program, the ES 1800 can break emulation, trace specific
sequences, count events and trigger outputs, allowing you to analyze the cause-effect
relationship established by the event/action sequences defined.

There are four event groups which provide the logical structure necessary for tracking deeply
nested bugs. This structure lets you debug any problem you can imagine, using a combination
of events and actions. Figure 4-1 shows the structure of the Event Monitor system.

Preparing for Emulation 4-33

Set Up Breakpoints: Events

Figure 4-1: Event Monitor System Structure

Events
(input)

CPU Bus

Address ACl

AC2

Data
DCl

DC2

Status Sl

S2

LSA Logic
State Count
Probe Limit

Actions
(output)

WHEN/THEN
STATEMENTS Group

Select

Break
Trace
Control
Trigger
FSI

Counter
Control

There can be several actions for any event. There can be many WHEN(fHEN statements in
effect at any time.

The basic Event Monitor System WHENffHEN statement is of the form:

[Group] WHE[N] event THE[N] action

The system only recognizes the first three letters of any word in a control statement (e.g.,
WHEN=WHE; THEN=THE).

Define Events

You can define an event to be some combination of address, data, status, count, and Logic
State Analyzer pod conditions. Numerous Event Monitor System WHEN(fHEN statements
may be entered and in effect simultaneously. Conflicting statements may cause unpredictable
action processing. Parentheses are not allowed in event specifications.

The NOT operator reverses the sense of the comparator output. NOT has higher precedence
than either of the conjunctives (AND and OR).

WHEN ACl AND NOT DCl TBBN BRK

means break whenever any data pattern other than that in DCl is read from or written to an
address in AC 1.

4-34 Pre paring for Emulation

Set Up Breakpoints: Events

AND and OR can be used to form more restrictive event definitions. AND terms have higher
precedence than OR terms. For example:

WHEN ACl AND DCl OR DC2 THEN BRK

is the same as

WHEN ACl AND DCl THEN BRK

WHEN DC2 THEN BRK

If you are looking for two different data values at an address, you would use

WHEN ACl AND DCl OR ACl AND DC2 THEN BRK .

The OR operator is evaluated left to right and is useful for simple comparator combinations.
For complex event specifications, OR combinations can be replaced with separate WHEN/
THEN statements for clarity.

WHEN ACl AND Sl OR AC2 AND S2 THEN BRK

is the same as

WHEN ACl AND Sl THEN BRK

WHEN AC2 AND S2 THEN BRK

There are eight comparator registers for each of the four event groups. These event registers
are listed in the following table.

address comparators

data comparators

status comparators

count limit

LSA registers

Preparing for Emulation

Used to detect discrete addresses or addresses inside or
outside a specified range.

Used to detect specific data patterns (can ignore specified bit
positions)

Monitor all of the status signals from the microprocessor as
well as some generated by the ES 1800. The status
comparators can also ignore bit positions.

Used to detect when an event has occurred more than a
specified number of times.

Detect bit patterns in the inputs from the logic state probe.
Specified bit positions can be ignored.

4-35

Set Up Breakpoints: Events

The following table describes the available event comparator registers

Register Size Name by Group
De:;criation fug_ (bits) l l J. 1.
Address I Range,Int 24 AC! or ACl.I ACl.2 ACl.3 ACl.4
Address 2 Range,Int 24 AC2orAC2.I AC2.2 AC2.3 AC2.4
Data I Don't Care,Int 16 DC! or DC!. I DCl.2 DCl.3 DCl.4
Data2 Don't Care,lnt 16 DC2orDC2.I DC2.2 DC2.3 DC2.4
Status I Don't Care,lnt 16 SI or SI.I Sl.2 Sl.3 Sl.4
Status 2 Don't Care,Int 16 S2 or S2.I S2.2 S2.3 S2.4
LSA Don't Care,Int 16 LSA orLSA.I LSA.2 LSA.3 LSA.4
Count Int 16 CTLorCTL.l CTL.2 CTL.3 CTL.4

Address Comparators

. Address comparators may be assigned integer values or range values. Ranges may be either
internal (IRA) or external (XRA). If a range is specified without IRA or XRA operators, the
default range type will be IRA. The following are examples of valid address comparator
assignments.

>AC1=2000

>AC2=1000 LEN 20

>AC2.2=XRA 1100 TO 1250

>ACl.4 = IRA $FF006 LEN $FF

>ACl.l = @SS:SP

>AC2='Symbol

>ACl =IP + 200

>ACl.2 = !ACl.4

Odd Address Boundaries

The address comparators in the 80186 family processors may need to be specially set up.
These are 16-bit chips, with a prefetch QUE and byte based instructions. This causes
problems when breaking on instructions that occur on odd boundaries.

This section describes three distinct conditions, and suggestions for resolving them. Any
remarks about the 8018x apply to the 80C18x and 80C18xEB as well.

4-36

1. 8018xprefetches an instruction.

When the 8018x prefetches an instruction, it outputs the even address. Both bytes
are fetched, and the actual (odd) address of the byte in question is never seen.
This means that you can't set the Event Monitor System to break on the odd
address.

Preparing for Emulation

Set Up Breakpoints: Events

2. 8018xjumps to an odd address.

When the 8018x jumps to an odd address, the odd address does appear on the bus,
and only that byte is fetched. In this case, the Event Monitor System works as
expected.

3. Only the low byte is read.

If only the low byte is read, the even address appears on the bus, and the odd byte
is not read. This means you can't set the Event Monitor System to break on the
odd address.

The ES 1800 Event Monitor System can be set up to resolve conditions 1 and 3, and to
guarantee correct operation in condition 2.

Assume the byte in question is at $4001. This byte could be accessed by the address $4001
or $4000.

If the address $4001 is on the bus, then the byte is accessed.

If the address $4000 is on the bus, and the bus cycle is a 16-bit cycle, then the byte
is accessed.

If the address $4000 is on the bus, and the bus cycle is an 8-bit cycle, then the byte
is not accessed.

This Event Monitor System setup handles this condition:

>AC1=4000

>AC2=4001

>S1=WRD

>WHEN AC1 AND S1 OR AC2 THEN BRK

A Cl contains the even address. S 1 is the word bus cycle condition. If both are true. the high
or odd byte has been accessed. AC2 contains the actual odd address. If it is true, then the byte
is always being accessed. If neither is true, then the byte is not being accessed.

Data and LSA Comparators

The data comparators monitor the data bus for specified patterns. The LSA comparators
monitor the input signals from the Logic State Analyzer pod.

Data and LSA comparators may be assigned integer values or don't care values. Don't care
values may be assigned in two ways.

1. The first is to specify the value followed by the don't care mask

2. The second is to specify the value using X in the don't care positions.

The following are examples of valid data and LSA comparator assignments.

>DC1=237F

>LSA=5300 DC $FF

Preparing for Emulation 4-37

Set Up Breakpoints: Events

>LSA.3 = 53XX

>LSA = %110101 DC $FF00

>DC2.2 = 42 DC %101

>DC2 = GDO + $F

>DCl.4 = @'data_table + 56

The fo!!owing exan1p!e shows turning on trace when an activity occurs and turning off the
trace when the activity finishes. Note the use of two event groups to specify the on/off
conditions. This setup waits for the logic state analyzer bit 0 to go low, and then uses the
toggle trace command (TOT) to turn on trace memory, and GRO 2 to switch groups. In group
2, all bus cycles are traced until LSA pod bit 0 goes high. Then emulation is broken.

>WHEN LSA THEN TOT, GRO 2

>2 WHEN LSA THEN BRK

>LSA = 0 DC $FFFE

>LSA.2 = l DC $FFFE

Status Comparators

The status comparators are assigned values from the list of status constants. Many of these
constants can be combined to specify a complex comparator value. The list on the next page
shows the available mnemonics. Any of these status lines can be used in event specifications.

ALT
BYT
COD
DAT
HLT
IAK
IF
IOA
MEM
NMI
OVL
OMA

STATUS MNEMONICS

Alternate Data Access QD 1-6
Byte Access QF
Code Access RD
Data access RIO
Halt Status RM
Interrupt Acknowledge Status ST A
Instruction Fetch Status TAR
IO Access WIO
Memory Access WM
NMI Cycle WR
Overlay Access WRD
DMA Cycle (8018x and 80Cl8x only)

Queue Depth (1-6)
Queue Flush Cycle
Read
Read IO Status
Read Memory Status
Stack Access
Target Access
Write IO Status
Write Memory Status
Write
Word Access

The status mnemonic table shows which status values can be assigned to the comparators.
You may assign a status comparator a single mnemonic, or you may combine a mnemonic
from each of the columns 2-8 and any or all from column 9. Mnemonics are combined using
an addition operator (+) as a Boolean AND.

4-38 Pre paring for Emulation

Set Up Breakpoints: Events

STATUS MNEMONIC TABLE

1 2 3 4 5 6 7 8 9
Sl = TAR + RD + BYT + MEM + ALT + HLT + QDl + QF
S2 OVL WR WRD IOA COD lAK QD2 NMI

Some examples of status comparator assignments:

>S1=BYT

>S2=0VL+RD+DAT

>SL 3=WR+IOA

>S2.4=RIO

>S1.2=QF

Figure 4-2: Status Translation Table

DAT RIO QD3 DMA
STA RM QD4

WIO QD5
WM QD6
IF

115 INl~II 131121111 10 I 9 I 8 II 7 I 6 I 5 I Q~ I M.,,1~"'-~"'-T-'i"-'2~'""'---"'""'-'-'"-'=
I I
SEGMENT

NMl=O ALT=O
STA=l
COD=2
DAT=3

~-~" I I ___ _
CPU STATUS

IAK=O
RIO=l
Wl0=2
HLT=3
IF=4
RM=5
WM=6

QUE DEPTH EMULATOR STATUS
QDl=l MEM=l TAR=! RD=! BYT=l
QD2=2 QF=O IOA=O OVL=O WR=O WRD=O
QD3=3
QD4=4
QD5=5
QD6=6

When you display the value of the status comparators, you will see a 32-bit don't care value
rather than the mnemonics you originally assigned them. The Status Translation Table is
provided to aid you in decoding the numbers back into the mnemonics.

The don't care mask is the value to the right of the DC. A 'O' in a mask bit position enables
the status bit in the same position on the left side of the DC, and a '1' in a mask bit position
masks or disables the corresponding bit on the left side of the DC.

Determine which bit positions are unmasked (those containing O's in the mask value). It may
be easier to do this by setting the status comparator's display base to binary (BAS Sl = 2).
Then refer to the translation table and find the unmasked bit positions. Look at the value
contained on the left side of the DC and match it with the corresponding value shown
underneath the bit position in the table.

>S1

$00000504 DC OOOOBBFB

Preparing for Emulation 4-39

Set Up Breakpoints: WHEN/THEN Statements

All bits except bits 2, 8, 9, 10 and 14 are masked. Bit 14 is enabled and a 0 is in the bit 14 of
the status value, so NMI was entered.

Bits 8,9, and 10 are enabled and there is a 101 (5) in those bits in the status value so RM was
entered.

Bit 2 is enabled and there is a 1 in bit 2 of the status value so TAR was entered.

Therefore, the original input was:

>Sl=NMI+RM+TAR

NOTE

Although it may be tempting to use the NMI status to break on NMI, do not
use this status with the break action. Setting a breakpoint on an NMI fetch will
cause the emulator to hang, requiring a reset (<ctrl-z>) to recover. To break
on an NMI, set the event system to break on the starting address of the NMI
interrupt routine. The NMI status may be used as a qualifier for other actions.

Count Limit Comparator

The count limit comparator, CTL, is used to detect when events have occurred a cenain
number of times. The CTL value for group 1 is loaded into a hardware counter which is
decremented whenever the action CNT is executed (see Define Action Lists). If a group
switch occurs, the hardware counter can be loaded with the new group's count limit by
executing the RCT (Reset Count) action. Otherwise, the hardware counter will not change
its limit value when switching groups.

Define WHEN/THEN Statements

The syntax of WHEN(THEN statements is:

[group] WHE <events> THE <action>, <action> ... ,

This will cause the emulator to take the specified actions when the events are reached.

The Event Monitor System is arranged in four independent groups. Each WHEN(THEN
statement is associated with one of the four groups. If no group numbers are mentioned in
the WHEN(THEN statement, the statement is assigned to group 1. There are two ways to
override this default selection of group 1. You can begin the WHEN(THEN statement with
a group number, or you can add a group number to any one of the event comparator names.
For example: 3 WHEN A Cl THEN BRK is functionally the same as WHEN AC13 THEN
BRK. You cannot mix group numbers within a single WHEN(THEN statement.

Define Action Lists

The action list in a WHEN(THEN statement defines what the ES 1800 does when an event is
detected. Actions are specified in an action list separated by commas. The action list may
have one or more actions defined.

4-40 Preparing for Emulation

Set Up Breakpoints: Examples

The following table lists all possible actions. Each action is described in detail in Section 7:
"Alphabetical Command Reference."

Event Monitor System Actions

Action

BRK
CNT
FSI
GROn
RCT
TGR
TOC
TOT
TRC

Descriotion

Break emulation
Count bus cycle
Force special interrupt
Change event group
Reset count value
Output trigger signal
Toggle count state
Toggle trace state
Trace bus cycle

For details on the actions, see Section 7, Alphabetical Command Reference.

The Event Monitor System resolves conflicting WHEN{fHEN statements. For example, the
TOC action in the first statement is ignored.

>WHEN ACl THEN TOC

>WHEN ACl THEN CNT

Event Monitor System Examples

There are three examples shown on the following pages:

1. Using the trigger out action to display the duration of a software routine on an
oscilloscope.

2. Using the force special interrupt action to safely stop a mechanical system.
3. Debugging a suspected problem in a belt jam routine that uses reentrant code.

Example 1

The trigger out action (TGR) can be used to trigger a logic analyzer, oscilloscope or counter­
timer. In this example, it is used to display the duration of a software routine on an
oscilloscope.

Three actions are done at the same time in this example. When the routine starts, trace is
turned on (TRC), the trigger out is started (TGR), and we switch to event group 2 (GRO 2).
Note the use of symbols: the symbols 'sub _start and' sub _end.

>ACl = 'sub_start

>ACl.2 'sub_end

Preparing for Emulation

Set an address comparator in
group 1 (ACl) to the subrou­
tine's start address.

Set an address comparator in
group 2 (ACl.2) to the subrou­
tine's end address.

4-41

Set Up Breakpoints: Examples

>DCl.2 oxxxx

>WHEN ACl THEN TRC, TGR, GRO 2

>2 WHEN DCl THEN TRC, TGR

>2 WHEN AC1 THEN GRO 1

Set a data comparator (DCl.2)
to don't cares (XXXX) to keep
the trigger high.

In group 1, at the beginning of
the subroutine, start the trace
(TRC), set the trigger high
(TGR) and switch to group 2
(GRO 2).

In group 2, use DCl as a dummy
value, used to keep the trace
on and the trigger high during
the subroutine.

At the subroutine end (AC1.2),
return to group 1 and stop the
trace and trigger pulse.

Figure 4-3: Display the Duration of a Software Routine on An Oscilloscope Using the Trig­
ger Out

ACl.1 ACl.2

l l
I DCl.2 I

Trigger ----------------~------

Program Routine of
interest

Example2

The problem with debugging a mechanical system like a robot arm is that any interruption to
the controlling software may cause the system to crash. The Event Monitor System provides
a special interrupt system so that when a specified breakpoint is reached, a soft shutdown
routine can safely stop the mechanical system, and only then is the program stopped to locate
the problem.

>SIA = 'shut_down

>ACl $7F4B2

>AC2 'shut_down + 4B

4-42

Set the special interrupt ad­
dress (SIA) to the address of
the soft shutdown routine,
specified by the symbol 'shut_ -
down.

Set the first address compara­
tor (AC1) to the address of the
suspected problem where you
want to break emulation.

Set the second address compar­
ator (AC2) to. the end of the
soft shutdown routine

Preparing/or Emulation

>WHEN ACl THEN FSI

>WHEN AC2 THEN BRK

>RBK

Set Up Breakpoints: Examples

When you get to the address
where you want to break, first
execute the forced special in­
terrupt (FSI).

When you get to the end of the
'shut_down routine, break emu­
lation (BRK) .

Run to the breakpoint.

Figure 4-4: Safely Debug a Problem with a Robot Arm by Jumping to a Specified Address
and Executing a Soft Shutdown

A Cl SIA AC2

1 1 l
Routine with Soft

Program suspected shutdown
problem routine

Example 3

In this example, debugging a suspected problem in a belt jam routine requires debugging
reentrant code. The state diagram identifies the route of suspected trouble: the problem
occurs only after initialization, when the specified belt is stuck (belt C on conveyor 2), and
the jam routine is called with a particular value.

Note that the program continues to execute in real-time while several events isolate the
problem. The breakpoint is set only after the exact program state is identified.

Preparing for Emulation 4-43

Set Up Breakpoints: Examples

Figure 4-5: Debugging a Problem in a Belt Jam Routine

4-44

ACl

..
\

'end_init

Conveyor#l

WHE ACl THE GRO 2

ACl.2 = 'conveyor2
2 WHE ACl THE GRO 3

AC1.3='checkbelts

DCl.3 0004 DC 0FFF7

Sl.3 RD

3 WEE ACl AND DCl AND Sl
TEE RCT, GRO 4

..... ······ .. ~

Group 1 is used to step
over the initialization
routine.

This is done to make sure
that initialization is
complete.

Group 2 is used to
specify that you are only
interested in when
conveyor#2 calls the
routine that checks the
belts.

Group 3 is used to
specify that the
checkbelt routine has
identified that belt C is
the one with the problem.
This is specified in your
code by bit 3 at the
address 'checkbelts.

Use the data comparator
(DCl. 3) to specify the
value read at the address
AC1.3. 0004 DC 0FFF7
means to check bit 3 of
the data word (0004), and
ignore the other bits (DC
0FF7).

Use the status
comparator (Sl.3) to
qualify only reads from
address ACl. 3.

When all these
conditions are met, it is
time to go to group 4
(GRO 4) and to reset the

Preparing for Emulation

ACl.4 'beltjam LEN 400

Sl.4 IF

CTL.4 #100

4 WHE ACl AND Sl THE CNT

4 WHE CTL THE BRK

RBK

Using Software Debuggers

Set Up Breakpoints: Using Software Debuggers

counter (RCT) so you can
use it in group 4. Group
4 is used to identify the
portion of the beltj am
routine which you
suspect contains the
problem.

Set the address
comparator in group 4
(ACl.4) to a range which
starts at the beginning
of the beltjam routine.

Use the status
comparator (Sl.4) to
monitor for an
instruction fetch (IF)
from the range ACl.4.

set the count limit to
100, so that you can
break after the first 100
instruction in the
routine. This assumes
that you suspect the
problem is in these
instructions.

When you're in the
beltjam routine,
increment the counter at
every instruction fetch.

When the count limit is
reached, then break.

Run to the breakpoint.
The events leading up to
the breakpoint are
checked while the
software is running in
real time.

There are some constraints and differences in operation when using the Event Monitor
system with some software debuggers.

ES Driver

The Target Emulation menu allows transparent access to setting up the event monitor system:
in transparent mode, you enter ESL commands just as you would when using the ES 1800
without a host computer.

The Event Monitor System menu provides a convenient display of the set up. For 68020
processors, the Event Monitor System menu also provides a convenient way to set up the
Event Monitor System without typing in ESL commands.

Preparing for Emulation 4-45

Set Up Breakpoints: Using Software Debuggers

VALIDATE/XEL

When you use VALIDA TE/XEL, you must enter ICE mode in order to access the Event
Monitor System and ESL. Once in ICE mode, you enter ESL commands just as you would
when using the ES 1800 without a host computer. To return to V ALIDATE/XEL, type
NOICE.

v ALIDA TE/Soft-Scope

When you use VALIDA TE/Soft-Scope or VALIDATE/Soft-Scope 286, you must use the
CONSOLE command in order to access to the Event Monitor System and ESL. Once
connected, you enter ESL commands just as you would when using the ES 1800 without a
host computer. Use a Q to return to VALIDA TE/Soft-Scope.

XDB

When you use XDB, you must use the "Interactive Transparency Mode" in order to access
the Event Monitor System and ESL. The o command enters interactive transparency mode.
Once connected, you enter ESL commands just as you would when using the ES 1800
without a host computer. Use a <ctrl-d> to return to XDB.

GeneProbe

When using ESL with GeneProbe, you can suppress GeneProbe's command processing by
prefixing the line with a semicolon (;). This allows you to use ESL expressions if you need
to use them. For example:

;AC1=$FDE02

4-46 Preparing for Emulation

Isolate a Problem

Isolate a Problem

There are two parts to isolating a problem:

1. If you can't make your target program run, you can often use overlay to determine
if the problem is in software or hardware.

2. Once you have an idea of where a problem is occurring, you can use the
breakpoints of the Event Monitor System to stop program execution at specific
times and then disassemble the trace memory, look at the LSA bits in the raw
trace, check the CPU register values, or begin stepping through your code.

This section describes the commands used to examine trace memory, registers and other
status information.

Command

Commands Used to Isolate a Problem

Description

Run Program from Overlay Commands

LOV Load overlay from target memory
MAP Map overlay memory

Trace Commands

DRT
DT
DTB
DTF
TCE
TRC

Register Commands

Display raw trace bus cycles
Disassemble trace memory
Disassemble previous page of trace memory
Disassemble next page of trace memory
Trace capture enable
Trace events

BAS Change default register display base
CLR Clear CPU registers
DR Display registers
LD 1 Load register set from EEPROM
LDV Load reset vectors
ON/OFF Control various registers
PCB Display PCB registers
SA V 1 Save register set into EEPROM

Single Step Commands

STI Single step through interrupts
STP Single step through program

Preparing for Emulation 4-47

Isolate Problem: Run Program from Overlay

Command

Commands Used to Isolate a Problem (cont)

Descrintion

Miscellaneous Useful Problem Isolation Commands

BUS Display status of bus status lines
COM Communication with target programs
CPY Copy data to both ports
DIA Display character string
RET Insert a blank line in display
TGR Send trigger signal
WAI Wait until emulation break

Uploading Data to Host Computer Commands

UPL Upload data to host
UPS Upload symbol table to host

Run Program from Overlay

If your program doesn't seem to run correctly in your target system, you can try running it
from overlay instead. Map the appropriate address range using the MAP command, and load
the program from your target memory using LOV.

This can help isolate target hardware problems such as addresses not being decoded properly,
timing problems, or memory accesses not being terminated properly.

Examine the Trace Memory

Trace is your window to the activity of the microprocessor. You can disassemble the trace
buffer to see assembly instructions or you can look at raw trace to see the status of the CPU
during each bus cycle. You will probably need to use both of these commands to get enough
information to solve a problem.

During emulation, the activity of the executing program is recorded and stored in trace
memory. All address lines, data lines, processor status lines, and 16 bits of external logic­
state are traced. This record becomes a history of the program. If something unexpected
happens during program execution, trace memory can be reviewed to determine what exactly
took place. When used in conjunction with the trace disassembler, hardware and software
problems may be found.

Trace memory is 71 bits wide and 2046 bus cycles deep. Some bus cycles may be used for
marks to identify start and stop points within the trace buffer. An unqualified trace contains
all bus activity for the last 2046 bus cycles.

4-48 Preparing for Emulation

Isolate Problem: Check Registers

There are several commands available to display trace in different formats: DRT for raw
trace, and DT for disassembled trace. You can scroll the trace buffer with the DTB and DTF
commands. The WAI command is used to wait until execution stops to execute a particular
command.

The DIA command can be used to check the contents of any null terminated string in target
memory. One common use is for test purposes in target systems that have no human-readable
1/0 channels. When a test routine detects a problem, it can load a register with the address of
a null terminated error message. The routine then jumps to an address that causes the
ES 1800 to break emulation. The DIA command can then be used to display the error
message.

You cannot access trace memory during emulation unless you have the Dynamic Trace
feature. Therefore, you must stop program execution before reading the trace. You can stop
the program either manually or by using the Event Monitor System to stop at the exact
program state you are interested in. After program execution is stopped, you may review the
address, data and control signals of the most recently traced cycles.

Dynamic Trace (Optional)

The Dynamic Trace feature of the ES 1800 allows you to read trace while the target is
running. You can trace in target systems which require the program to remain running. such
as control systems. With targets using multiple multiprocessors, dynamic trace lets you
examine trace from one processor without shutting down all processors.

Simultaneous use of the Dynamic Trace feature and the Event Monitor System is not
possible. Refer to the Dynamic Trace Capture Enable command (f CE) in Section 7 for more
information.

Check CPU Registers

Before going into run mode, you will want to be sure that the code segment and instruction
pointer (CS:IP) contain the correct value. You may also want to set a valid stack pointer.
initialize the CPU status register (FLX) or some of the PCB registers.

You can either set registers by hand or use the LDV command to set them to the values
defined by Intel at power-up.

Each register has a separate display base. The display base is viewed and changed with the
BAS command. Display bases are often changed for registers such as the Event Monitor LSA
comparators, which you might like to see in binary, and the CTL register, which you might
want to see in decimal.

The CPU registers and the Event Monitor registers can be displayed as a group by using the
DR and DES n commands.

The complete register set can be loaded from or saved to EEPROM. Executing a SA V or LD
copies all system variables. A SA V 1 or LD 1 copies only the register group.

Preparing for Emulation 4-49

Isolate Problem: Single Step

Single Step Through Program

From pause mode, the STP command executes one instruction. To receive visual feedback,
combine this command with a trace display command such as STP;DT.

Stepping through code is a common way to locate software bugs. The STI switch allows you
to ignore interrupts while debugging higher level routines, or to step thJough a...11d debug t.'1e
interrupt routine itself.

Miscellaneous Useful Commands

The COM command establishes a 'transparent communication mode' between the running
target program and the controlling port of the ES 1800. An address is specified from which
ASCII characters can be passed from the user to the target program and from the target
program to the user. For example,

The target program can ask the user a question, and the user can type an answer
at the terminal.

You can simulate 1/0 before hardware is read

You can use COM in test situations

The BUS displays the status of several bus lines: NMI, ARDY, SRDY, INTO, INTl, INT2/
INT AO, INT3/INT Al, and TEST. This command may be entered in run mode.

The ON CPY soft switch provides a way to make a hard copy of emulation data. It is also
useful for monitoring computer control commands.

4-50 Preparing for Emulation

Modify Program

Modify Your Program

Once you have run your program, stopped at in a particular place, and isolated the problem,
the next step is to design and test possible solutions to the problem. The ES 1800 emulator
lets you easily modify memory either in your target or in the emulator overlay memory to
make changes to your program.

This section includes information on memory commands, memory mode and I/0 mode. The
term 'memory' is used here to describe memory in the target system or the ES 1800's overlay
memory.

Memory commands allow you to modify and display memory in five different ways.

1. Copy blocks of memory, fill blocks with a constant data pattern, search for a
pattern or a particular block, and load or verify memory using memory
commands.

2. Directly modify single lines in memory using the line assembler.
3. View data from memory using the memory disassembler.
4. View and modify memory using a simple scrolling scheme using memory mode.

5. View and modify I/0 address space data using I/0 mode.

Preparing for Emulation 4-51

Modify Program: Memory Commands

Command

Commands Used to Modify the Emulation Environment

Description

Memory Commands

@ Read/write memory
BMO Move memory block to new address
BYM Set default data length to byte
DB Display memory block
DIS Disassemble memory
FIL Fill memory with constant
FIN Find pattern in memory
LOV Load overlay memory from target
VBL Verify pattern in memory
VBM Verify block move
WDM Set default data length to word

Line Assembler Commands

ASM
END
x

Line assembler
Exit line assembler
Exit line assembler

Memory Mode Commands

M Enter memory mode
MMP Display/set memory mode pointer
X Exit memory mode

110 Mode commands

IOP
MIO
x

Display I/O mode pointer
Enter I/O mode
Exit I/0 mode

Memory Commands

If the overlay memory is mapped (mapped memory will have the RW, RO or ILG amibutes
assigned to it), read and write accesses are directed to it. Mapped memory is modified by a
memory command even if it is mapped as read only. If memory is unmapped, (memory with
the TGT attribute assigned to it), memory command accesses are directed to the target system
memory. Mapped and unmapped memory may be interleaved in any way you desire. See the
Overlay Memory section for details on mapping overlay memory.

The default data length affects most memory commands. There are two data lengths to
choose from: byte mode (BYM) and word mode (WDM). Commands that accept data
parameters truncate the data entered to the current default data length. If you enter FIN O
LEN 20, 23F6 and the default data length is byte mode, the find command truncates the
data field to F6 and searchs the range for that byte. Commands that display data use the

4-52 Preparing for Emulation

Modify Program: Line Assembler

current data length.

Some memory commands may be executed during run mode. These commands halt
emulation for a brief time in order to read from or write to memory. If memory commands
are executed while in run mode, remember that you are not emulating in real-time.

The following table shows the target-related commands that can be entered in run mode and
the commands that are affected by the default data length.

Command

DB
FIN
FIL
BMO
VBL
LOV
VFO
ASM
DIS
M
MIO
@

Line Assembler

Legal in Run Mode?

YES
NO
NO
NO
NO
NO
NO
YES
YES
YES
YES
YES

Uses Default Data Length?

YES
YES
YES'
NO
NO
NO
YES
N/A
NIA
YES
YES
YES

The line assembler is used to make small modifications to your program. For example, if you
wanted to branch when a variable was equal to 0, and you realize your code inadvertently
checked to see if the variable was not equal to 0.

All instructions can be entered from line assembly mode. The instructions are converted to
machine code and are loaded into memory at the address specified in the prompt. See Section
7, ASM, for information on how to use the line assembler.

Preparing for Emulation 4-53

Modify Program: Memory Mode

The assembler directives are:

'symbol
<return>
$
CSEG
DB
DW
END
EQU
FAR
LO-L9
NEAR
ORO
PRE
x

Memory Mode

Print value of symbol
Disassemble one instruction
Display current assembler offset address
Set 64K byte code segment.
Define consta.11t byte data
Define constant word data
Exit line assembler
Define local symbol
Outside current line assembly segment
Print value of local symbol
Within current line assembly segment
Set 64K byte offset into code segment window.
Toggle preview mode
Exit line assembler

If you need to modify data space, memory mode is convenient. It allows you to view and
modify memory using a simple scrolling scheme. Enter memory mode by executing the M
command. The current address and associated data are displayed. If the first character entered
on a memory mode command line is a <return> , the next address and its data are displayed.
If a value is entered before the <return> , that value is written to the current address before
displaying the next address. A list of up to nine values separated by commas may be entered
after a memory mode prompt. This data is stored to consecutive addresses.

The scroll direction is determined by two commands, NXT and LST. NXT (next)
increments the address and LST (last) decrements the address. Entering either of these
commands during run or pause mode sets the scroll direction and enters memory mode. The
scroll direction can also be changed after you have already entered memory mode by
executing the appropriate command. The scroll direction can be manually overridden at any
time by using the period (.) and comma (,) keys. A period increments the address; a comma
decrements it.

The MMP register (Memory Mode Pointer) is always set to the current address being
accessed. If memory mode is entered without specifying an address, the value in this register
specifies the starting address. On power-up, MMP is set to zero.

The @ command is a shorthand command for reading and writing to memory. It uses the
default data length. See page 7-2 for a description of the@ command

4-54 Preparing for Emulation

Modify program: 110 Mode

1/0 Mode

1/0 mode allows viewing and modification of the data in 1/0 address space. 1/0 mode is
entered with the MIO command. Data is not automatically read from an 1/0 address on entry
to 1/0 mode. Many 1/0 ports are write only ports, and trying to read from them may cause
hardware problems. In order to read data from an 1/0 port, you must enter a <return> as the
only character on the line. The data is displayed, but the address is not automatically
incremented. You must manually change the address while in 1/0 mode using the period and
comma keys. A period (.) increments the address and a comma (,) decrements the address.
Up to nine values separated by commas can be entered in response to the 1/0 mode prompt.
All of the values in the list are written to the same 1/0 address.

IOP

The IOP register (1/0 Pointer) is always set to the current 1/0 address being accessed. If 1/0
mode is entered without specifying an address, the value in this register will determine the
starting address. On power-up, IOP is set to zero. (See IOP in Section 7).

Preparing for Emulation 4-55

Shortcuts

Shortcuts
There are many shortcuts to shorten your setup time and reduce the number of keystrokes you
must use. They include:

Using symbols rather than hex addresses.

Repeating a command indefinitely or a specified number of times.

Creating and storing macros to use for common command sequences.

Using general purpose emulator registers for common addresses or data values.

Saving setup information to ES 1800 EEPROM and reloading it later for one or
two users.

Using clear commands for registers, memory maps, macros and symbols.

Command

Symbol Commands

DEL
PUR
SEC
SYM

Repeat Commands

I
*
<Cfrl·Z>
IDX
L™
TST

Macro Commands

CMC
MAC

4-56

Commands Used in Shortcuts

Description

Define symbol or section
Delete symbol or section
Clear all symbols and sections
Display all sections
Display all symbols

Repeat last command line (no <return>)
Repeat operator
Reset emulator (terminates repeat)
Counter register (can be used to terminate repeat)
Limit register (can be used to terminate repeat)
Test variable (can be used to terminate repeat)

Define macros
Clear macros
View macros

Preparing for Emulation

Command

Commands Used in Shortcuts (cont)

Description

General Purpose Register Commands

BAS Set/display register default base
DFB Display default base
G DO-7 General purpose data registers
GR0-7 General purpose address registers

Saving and Loading Setup Commands

LD Load setup from EEPROM
SA V Save setup to EEPROM
SET Determine configuration for two users

Clear Commands

CES
CLM
CLR
CMC
DEL
OFF-I
PUR

Clear When{fhen statements
Clear memory map
Clear CPU registers
Clear macros
Delete section or symbol
Set all on/off switches to off
Delete all symbols and sections

Miscellaneous Useful Commands

REV Display revision level

Use Symbols Rather than Addresses

Shortcuts :symbols

Symbol definitions allow you to refer to addresses or data values using names rather than
numbers. Section definitions allow you to refer to a range of addresses and data values using
names rather than addresses. Symbols and sections are sometimes collectively referred to as
symbols.

Symbols are 32-bit integer values and sections are 32-bit ranges. To determine approximately
how many symbols you can define, use this formula:

(64x 1024)
(average symbol name length + 6)

Symbols are not typed within the ES 1800, so all symbols are global. This implies that a
symbol and a section may not be defined using the same name. Duplicate symbol names are
not allowed. Section range values may not overlap.

Symbols may be redefined by assigning a new value to the symbol name. If you want to
reassign a symbol name to a section value, or if you want to change the range value of a
section, you need to delete the symbol or section name before assigning the new value.

Preparing for Emulation 4-57

Shortcuts:symbols

Most compilers and assemblers create symbol tables from the symbols defined in the
program. These symbols can be easily downloaded. If you have a linker and convener that
can create Extended Tekhex serial data records, you can download the symbol table using the
DNL command. If your linker produces another type of object module format, you must
either use a format converter to convert to Extended Tekhex, or use ES Driver. ES Driver
accepts a variety of object module formats. See Appendix B.

If you are going to download sections that have already been defined (perhaps from a
previous download of the same file), purge all symbols or delete the section definitions from
memory before downloading. If you do not, an error occurs when you attempt to redefine the
value of a section, and the download aborts.

Symbols may be used as parameters to any ESL commands. The only limitation on symbols
is that they cannot be used meaningfully with the colon operator (:). The single line
assembler accepts symbols as address references and data values. ·

Memory and trace disassembly display symbol names in place of absolute values for address
fields. The following examples illustrate the difference when the same program is
disassembled with and without symbol definitions.

First, define the symbols and sections:
>SYM $00000480 csr

$00000486 sh_csr

$00001000 CMND

$00001022 Tauc

$00000004 busy

$00000002 got_it

$00000080 action

$00004020 eslO

>SBC

$00001000 TO $0000104F monitor

The following example shows memory disassembly with symbol definitions.

>GR0=1000 LBN 2A

>D:IS GRO

CMND

1000 F70680048000 TEST WORD PTR csr,0080

1006 74F8 JE SBORT CMND

1008 C606800402 MOV BYTE PTR csr,02

lOOD C606860402 MOV BYTE PTR sh_csr,02

1012 A02040 MOV AL,BYTE PTR eslO

1015 800B860404 OR BYTE PTR sh_csr,04

101A 8A268604 MOV AB,BYTE PTR sh_csr

101B 88268004 MOV BYTE PTR csr,AB

Tauc

4-58 Preparing for Emulation

Shortcuts :symbols

1022 F70680048000 TEST WORD PTR csr,0080

1028 75F8 JNE SHORT Tauc

The following example shows trace disassembly with symbol definitions.

>DTB

>PARTIAL T.M. MAP: PASS 1 PASS 2

FULL T.M. MAP: PASS 1 PASS 2

SEQ# ADDR OPCODE MNEMONIC OPERAND FIELDS BUS CYCLE DATA

SEC:monitor

0038+CMND

0038+0000 F7068004800 TEST WORD PTR csr,0080

0034+0006 74F8 .:ra SHORT CMND

0033+0008 C606800402 MOV BYTE PTR csr,02

0031+000D C606860402 MOV BYTE PTR sb_csr, 02

0027+0012 A02040 MOV AL,BYTE PTR es10

0026+0015 800E860404 OR BYTE PTR sb_csr,04

0021+001A 8A268604 MOV AH,BYTE PTR sb_csr

0018+001E 88268004 MOV BYTE PTR csr,AH

0014+Tauc

014+0022 F70680048000 TEST WORD PTR csr,0080

0010+0028 75F8 JNE SHORT Tauc

0008+002A EBD4 .:IMP SHORT CMND

0005+CMND

0005+0000 F706 TEST WORD PTR 0000,06F7

The following example shows trace disassembly without section definitions.

>DEL 'monitor;DTB

FULL T.M. MAP: PASS 1 PASS 2

SEQ# ADDR OPCODE MNEMONIC OPERAND FIELDS BUS CYCLE DATA

0038 CMND

0038 1000 F7068004800 TEST WORD PTR csr,0080

0034 1006 74F8 .:ra SHORT CMND

0033 1008 C606800402 MOV BYTE PTR csr,02

0031 100D C606860402 MOV BYTE PTR sb_csr,02

0027 1012 A02040 MOV AL,BYTE PTR es10

0026 1015 800E860404 OR BYTE PTR sb_csr,04

0021 101A 8A268604 MOV AH,BYTE PTR sb_csr

0018 101E 88268004 MOV BYTE PTR csr,AH

0014 Tauc

0014 1022 F70680048000 TEST WORD PTR csr,0080

Preparing for Emulation 4-59

Shortcuts:symbols

0010 1028 75F8

0008 102A EBD4

0005 CMND

JNE

JMP

SHORT Tauc

SHORT CMND

0005 1000 F706 TEST WORD PTR 0000,06F7

The following example shows a memory disassembly with both sections and symbols
purged, followed by a trace disassembly wiLh no section or symbol definitions.

>PUR

>SYM;SBC

>

>DIS GRO

1000 F70680048000 TEST WORD PTR 0480,0080

1006 74F8 .JE SHORT 1000

1008 C606800402 MOV BYTE PTR 0480,02

lOOD C606860402 MOV BYTE PTR 0486,02

1012 A02040 MOV AL,BYTE PTR 4020

1015 800E860404 OR BYTE PTR 0486,04

101A 8A268604 MOV AB,BYTE PTR 0486

101E 88268004 MOV BYTE PTR 0480,AB

1022 F70680048000 TEST WORD PTR 0480,0080

1028 75F8 JNE SHORT 1022

>

>DTB

FULL T.M. MAP: PASS 1 PASS 2

SEQ# ADDR OPCODE MNEMONIC OPERAND FIELDS BUS CYCLE DATA

--
0038 1000 F7068004800 TEST WORD PTR 0480,0080

0034 1006 74F8 .JE SHORT CMND

0033 1008 C606800402 MOV BYTE PTR 0480,02

0031 lOOD C606860402 MOV BYTE PTR 0486,02

0027 1012 A02040 MOV AL,BYTE PTR 4020

0026 1015 800E860404 OR BYTE PTR 0486,04

0021 101A 8A268604 MOV AH,BYTE PTR 0486

0018 101E 88268004 MOV BYTE PTR 0480 ,AB

0014 1022 F70680048000 TEST WORD PTR 0480,0080

0010 1028 7SF8 JNE SHORT 1022

0008 102A EBD4 JMP SHORT 1000

0005 1000 F706 TEST WORD PTR 0000,06F7

4-60 Preparing for Emulation

Shortcuts: Repeat Operators

Repeat Operators

The command repeat feature provides a way to repeat a command line a specified number of
times or indefinitely.

I Repeat the last command one time. No <return> is necessary.

* [n] Repeat the last command n times. If no number is specified, repeat command
indefinitely. If n=O, *does not cause the command to be repeated.

In these three equivalent examples, the STP;DT command is repeated five times.

>*SSTP;DT

>*5 STP:DT

>* 5 STP;DT

If the slash key is typed after one of the above examples is input, the entire line is repeated,
causing five more STP;DT commands to be executed.

There are four rules for using the repeat operators:

1. Repeat commands must be the first character on a line.
2. The repeat argument must be entered as a number. The number will be interpreted

as a decimal value. Do not enter a base prefix before entering the repeat value.

When no repeat argument is specified, it is assumed to be 4,294,967,295(232 - 1).
3. You cannot use a register, variable or symbol as the repeat argument.
4. There must be a space following the repeat count if the next character is a decimal

digit.

You can always use the system reset character to stop the repeat if the specified test
conditions are never reached. However, this will also abort emulation, if it is in progress,
without saving the state of the CPU.

The TST variable terminates a repeat when it becomes zero. It is used in an expression on the
command line. It is tested just before the command line is executed and if it has become zero,
the command buffer is not executed and the repeat halts.

To single step and disassemble until a specified address is reached:

>*STP;DT; TST=CS:IP-$C324

If you are waiting for an overlay memory location to be cleared:

>*STP;DT;TST=@87020

The TST variable is set to all l's at the start of a repeat. This is necessary so that the register
is in a known state at the start of a repeat loop.

Repeats can also be terminated by the states of the limit (LIM) and index (IDX) registers. Just
before execution begins, the values of LIM and IDX are compared. If IDX is greater than or
equal to LIM, the repeat is terminated. The LIM register is initialized to the number of times
the loop will execute, which is the decimal loop count you specified in the command line.

Preparing for Emulation 4-61

Shortcuts: Macros

IDX is a counter. It starts at zero and is incremented every time the repeat loop is executed.
You may assign new values to these registers within repeat command lines if you wish.

For example, if you need a decimal counter:

>BAS l:DX=#lO

>*#3 l:DX

#0

#1

#3

<ctrl-z> stops the repeat early.

Initialize a block of memory to a decrementing count ending in zero, then display it.
>BYM; M $1000

$001000 $34 >*4 Ll:M-l:DX-1

Old data in memory.

$001001 $CO

$001002 $BF

$001003 $00

$001004 $21 >M MMP-4

$001000 $03 >*4

$001001 $02

$001002 $01

$001003 $00

$001004 $21 >

Macros

New data written to

memory with repeat

command

A macro defines a list of commands or expressions that are executed with one command key
word. This allows you to execute repetitive operations quickly and easily. You can define up
to ten macros using the underscore (_I). Macros are referred to by the decimal numbers #0-9.

Macros can be saved in the ES 1800 EEPROM with the SA V 5 command, and reloaded using
the LD 5 command.

The ten macros are linked in one buffer with #1 first, #2 ... #9, and #0 last. If the lengths of all
ten macros exceeds the buffer length of 125 characters, the highest numbered macro is
truncated. Spaces are also considered characters, so use them only when required, to save
macro buffer space.

Once the buffer is full, attempting to add a macro with a higher numbers will result in those
macros remaining null. For example, if macros #1 to #8 are defined and in this process use
up all of the space in the buffer, then an attempt to define macro #9 and #0 results in those
macros remaining null. Also, if the length of any macro from #1 to #7 is increased after
filling the buffer, then macro #8 will be truncated. If the increase is more than the size of
macro #8, macro #8 becomes null and macro #7 is truncated.

4-62 Preparing for Emulation

Shortcuts: General Purpose Registers

When you define a number of long macros. execute the MAC command to determine if the
macros of the highest numbers are still intact. Using the general purpose registers in macros
helps minimize the number of characters you need to use.

WARNING

There are no warnings when truncation or nullification of a macro occurs.

General Purpose Registers

There are two sets of general purpose registers: 8 data registers and 8 general purpose
registers. These registers can be used as integer or range arguments to commands to save
keystrokes when using values repeatedly. They can also be used to save space in macro
definitions.

Save Setup to EEPROM

The SET menu, registers, Event Monitor System setup, overlay map, ON/OFF switches and
macros can be saved to EEPROM. them with the SA V command. These values may then be
automatically loaded into the ES 1800 on power-up by setting the thumbwheel switch to the
appropriate value, or loaded manually after power-up by typing a load command (LD).

The EEPROM is divided into two groups of six sections. Each section within a group may be
loaded and saved individually. The two groups designate two users, referred to as user 0 or
user 1 in the SET menu. This allows two users to save complete information about their
emulation session, and reload it later. The six sections of information are:

Section#

0
1
2
3
4
5

Descriotion

SET menu
Registers
Event Monitor WHEN/THEN clauses
Overlay map
ON/OFF menu
Macros

Configure System for Two Users

In the SET menu, you can specify whether the setup you are doing is for user 0 or user 1. Any
configuration changes you make to registers, Event Monitor System setup, overlay map, ON/
OFF setup and macros will only apply to whichever user you have specified.

Preparing for Emulation 4-63

Shortcuts: Clear Commands

This allows you to create two completely different setups. These can be saved in EEPROM
between emulation sessions using the SA V command, and reloaded with the LD command.
The default is user 0. To save the configuration for user 1:

>SET 1,1

>SAV

>SET 1,0

Clear Commands

Change to second user

Save configuration

Change back to first user

There are commands to clear WHEN{fHEN statements, 1/0 map, memory map, CPU
registers, macros, symbols and sections, and to set all ON/OFF soft switches to either ON or
OFF. These are handy when you want to set your target environment to a known state.

The CES command clears only the WHEN{fHEN statements, and leaves the comparators
unchanged.

The l/O and memory map clear commands assign all overlay memory the target attribute.

The CLR command clears the CPU registers AX, BX, CX and DX. The segment registers,
flags, CS:IP and stack registers remain unchanged.

4-64 Pre paring for Emulation

Section 5

BRINGING UP HARDWARE

The diagnostic functions (also called special functions or SFs) are a group of utility routines
and special tests. They are valuable for locating address, data, status or control line problems.
There are three categories:

1. RAM tests
2. Scopeloops
3. Miscellaneous special functions

Command

SF
SFO
SF 1
SF 2
SF 3
SF4
SF5
SF6
SF7
SF8
SF9
SF 11
SF 12
SF 13
SF 24
SF 25
SF 26
SF 27
SF 28
SF 29
SF 31
SF32
BUS
BYM
CLK
CRC
CRE/CRO
WDM

Bringing Up Hardware

Commands Used for Diagnostic Functions

Description

Display list of special functions
Simple RAM test, single pass
Complete RAM test, single pass
Simple RAM test, looping
Complete RAM test, looping
Toggle data at address
Peeks into the target system
Pokes into the target system
Write alternate patterns
Write pattern then rotate
Write data then read
Write incrementing value
Read data over an entire range
Cyclic redundancy check
Toggle data at address
Peeks into the target system
Pokes into the target system
Write alternate patterns
Write pattern then rotate
Write data then read
Write incrementing value
Read data over an entire range
Display status of bus status lines
Set global data length to byte
Display target clock frequency
Calculate CRC of specified range
Calculate CRC of even/odd bytes only
Set global data length to word

5-1

Scope Loops

RAM Tests
The RAM tests (SF 0 to SF 3) check that RAM is operating properly. They can be run on the
target or overlay memory and may be executed in either byte or word mode. You must use
the BWM or WDM commands to specify byte or word mode before initiating the SF test.

If you are going to test a large section of RAM, it may take a significant amount of time. If
you attach a printer to the computer port and turn on the copy switch (ON CPY) you can let
the test run while you do something else. The printer will record any errors that may occur in
your absence.

SF 1 and 3 are modeled after a study by Abraham, Thatte, and Narir titled Efficient
Algorithms for Testing Semiconductor Random-Access Memories [IEEE Transaction on
Computers, vol. c-27, no. 6June1978]. Refer to this publication for background information
on these two diagnostics. Reprints are available from the Applied Microsystems Applications
Engineering department.

Scope Loops
Scope loops are diagnostic routines for use when troubleshooting with an oscilloscope. Uses
include locating stuck address data, status or control lines, and generating signatures using
signature analysis equipment.

There are two types of scope loops: memory and 1/0. Memory scope loops (SF 4-12) access
the memory space defined by the current MMS (Memory Mode Status) register. 1/0 scope
loops (24-32) access the target system's 1/0 space.

The scope loops are optimized so that they execute at maximum speed. This short cycle time
allows you to review the timing of pertinent signals in the target system without using a
storage oscilloscope. All of these routines must be terminated by resetting the emulator with
the reset character (<ctrl-z> default). The scope loops can be executed in either byte or word
mode.

5-2 Bringing Up Hardware

Scope Loops

Miscellaneous Special Functions

There are additional special functions for:

1. CLK: Reading the target system clock frequency.
2. CRC, CRE/CRO: Calculating a cyclic redundancy check on all, or just even or

odd addresses in a range.
3. BUS: Displaying the status of bus status lines.
4. BYM, WDM: Set global data lengths to byte or word.

Bringing Up Hardware 5-3

Section 6

TIME STAMP MODULE

This section describes what the Time Stamp Module does, and how to install and use the
module. Complete examples are provided for using the module to do each possible type of
measurement.

The Time Stamp Module adds performance analysis to the ES 1800 Series emulators for 16
bit microprocessors. You can use this module when you use your ES 1800 from a dumb
terminal or host computer, or from your host computer using ES Driver control software.
Differences in operation for these two configurations are noted where appropriate.

There are two ways the module can be used:

1. To measure elapsed or absolute time.
2. To trigger the Event Monitor System to cause an action such as breaking

emulation once a time stamp counter value is reached.

Command

SET#9
CTS
WHEN
MAP
OVE
ovs
VFO

Commands Used to Set Uo Time Stamp

Description

Choose timestamp or LSA
Convert timestamp value
Event monitor system statements
Set memory map
Enable overlay memory
Overlay memory speed
Verify overlay memory

Possible Measurements

There are eight distinct measurements that can be made using the Time Stamp Module:

Elapsed Time Measurements

Measure time spent in a module

Measure time spent between modules

Measure duration of time when memory is accessed (opcode or data)

Measure duration of time when code is accessed (opcode only)

Measure interrupt response time directly

Time Stamp Module 6-1

Measurements

Count Occurrences

Count number of times address or range of memory is accessed (opcode or data)

Count number of times code is accessed (opcode only)

Count module linkage activity (the number of times one module calls another)

Each time measurement can be based on one of five scales: .luS, luS, .OlmS, .lmS or lmS,
so you can collect your data using the appropriate time scale. The maximum number of
counts for any time base is 65,535 so you have a maximum period of 65 seconds without
overflow.

Time can be measured on an absolute time frame, or on a relative time frame. When you use
the absolute time frame, the measurement is from when the counter is reset. When you use
the relative time frame, the measurement is from one traced cycle to the next traced cycle.
For example, if you were measuring the elapsed time for entering and exiting a module, the
time displays would show as follows:

enter
exit
enter
exit
enter
exit

Absolute
3000
3005
3007
3012
3014
3019

Relative
3000t
5
2
5
2
5

t The first line on the relative trace screen shows the absolute count.

Using the Time Stamp Counter Value as a Condition

The ES 1800 Event Monitor System lets you specify complex program states, using WHEN­
THEN statements:

WHEN conditions THEN actions

You can use the absolute value of the time stamp counter as one condition. For more details
on using CTS, see the example on page 6-28.

6-2 Time Stamp Module

Installation

Installation

Hardware Installation

The Time Stamp Module consists of the module and the cable to connect it to the emulator.

There are three steps to hardware installation:

1. Turn the emulator off.

CAUTION

The ES 1800 emulator must be off before plugging in the Time Stamp Module,
or the cable and module may be damaged. Do not plug in or unplug the Time
Stamp Module with power turned on .

2. Connect the module to the LSA port on the front of the ES 1800 emulator as
shown in the following illustration. Note that you cannot use the Logic State
Analysis pod and the Time Stamp Module at the same time.

Figure 6-1: Connecting the Time Stamp Module to the ES 1800

Time Stamp Module 6-3

Installation

3. The Time Stamp Module requires a certain revision of ESL (the Emulator
Standard Language). To check your revision:

ESL command Type REV from the ES 1800 prompt.

from ES Driver Enter the Target Emulation menu, and type REV from the ES 1800
prompt.

If you have an ESL equal to or greater than that shown in the chart below, you can use your
Time Stamp Module as is. If your ESL is below the revision shown below, please contact
your local sales office or representative, or call the Order Administration department at
800-ASK-4AMC for information on upgrading your ESL revision.

Product
8018X
80C18X

Software Installation

Minimum Revision Level
ESL3.2
ESL 1.0

No software changes are required to operate the Time Stamp Module for any of the following
software packages available from Applied Microsystems Corporation.

6-4

ES Driver

V ALIDATE/XEL

VALIDA TE/Soft-Scope

GeneProbe

Time Stamp Module

Using the Time Stamp Module

Using the Time Stamp Module
This section explains the meaning of the labels, buttons, switches and LEDs on the Time
Stamp Module, and then provides complete information on how the unit works.

Figure 6-2: Time Stamp Module

Getting Started

•111111
.1111111

Applied
Microsystems
Corporation

TIME STAMP MODULE
1' . ,

Trigger input TGR

Look at the end of your Time Stamp Module and identify the trigger inputs, reset button,
switch and overflow indicator LED as shown in the following diagram.

Figure 6-3: End View of Time Stamp Module

switch

TGR TGR AST / . . :()": O/F

reset button overflow light

Time Stamp Module 6-5

Using the Time Stamp Module

TGR

RST

Switch

O/F

The TGR input is used to measure interrupt latency directly. You
connect the TGR input directly to the interrupt line in your target
circuit, avoiding any logic delays due to use of the Event Monitor
System. It is designed for processors that pull lines low for
interrupts. (Motorola and Zilog processors) (see page 6-17)

The TGR input is used to measure interrupt latency directly. You
connect the TGR input directly to the interrupt line in your target
circuit, avoiding any logic delays due to use of the Event Monitor
System. It is designed for processors that pull lines high for
interrupts. (Intel processors) (see page 6-17)

The reset button is used to reset the time stamp counter to 0.

The switch is used to determine the time base and the type of
counting done. (see page 6-7)

The overflow LED is lit when the counter overflows the 65,535
limit.

The examples of each type of measurement give complete information on when to use the
manual reset button, TGR and TGR, and how to use the switch to choose the time stamp
mode and time base.

CAUTION

Do not plug in or unplug the Time Stamp Module when power is turned on to
the emulator.

Steps for Using the Time Stamp Module

In order to make a measurement, there are seven steps you must follow:

1. Set the ESL SET flag 9 to the appropriate position for the measurement you want
to make.

2. Choose a switch setting on the Time Stamp Module.
3. Set up your trigger inputs.
4. Set up the Event Monitor System to trigger the Time Stamp Module at the

appropriate program states.

5. Run your program.
6. View the time stamp information.
7. Interpret the time stamp information.

Each step is described in detail below.

6-6 Time Stamp Module

Using the Time Stamp Module

Step 1 : Set ESL Flag 9

ESL flag 9 controls the LSA display of information coming in on the LSA port. Settings 1
and 2 are used with the Time Stamp Module. Setting 0 is used when you use the LSA pod.

0 Default: LSA value shown as 16 bits

1 Display the absolute time value

2 Display the relative time value

Absolute time values are used when you want to measure the total amount of time spent or
the number of occurrences. Relative time values are used when you are interested in the time
spent between points A and B in your code, but are not interested in how long it talces to get
to point A.

To get to ESL flag 9:

Type SET 9, n, where n is 0, 1 or 2. ESL commands

from ES Driver Select Target Emulation mode, and type SET 9, n, where n is 0, 1 or
2.

Step 2. Set Time Stamp Module Switch

Choose a switch setting on your Time Stamp Module based on your measurement type and
preferred time base. We recommend starting with the slowest time frame: 1 mS. The table
below shows the maximum measurable time period for each switch setting.

Time Base
0.1 us
1.0 us
.01 mS
0.1 mS
1.0mS

Maximum Measurable Time Period
6.5 milliseconds
65 milliseconds
.65 second
6.5 seconds
65 seconds

IMPORTANT

If the counter overflows, the yellow overflow LED will be lit. Check to see if
you are using the correct time base for the duration of your measurements.
When the counter overflows the 65 ,355 limit, it starts again at 0.

When the emulator is paused, no TGR is generated by the Event Monitor
System in positions 0-4, so the counter is not reset and is likely to overflow.
This is not a problem.

Time Stamp Module 6-7

Using the Time Stamp Module

For example, the DRT display might be as follows. The highlighted counter value in the last
line of the example shows the counter overflow.

LINE ADDRESS DATA R/W M/IO BCYC QUE ABS TIME

#20 000344 > E2FD R TAR M IF 2 #63590

#19 000346 > 80F9 R TAR M IF 2 #64592

#18 000342 > 754B R TAR M IF F3 #65032

#17 000344 > E2FD R TAR M IF 2 #01222

The following table summarizes the switch positions.

The trigger to start and stop the counter in the Time Stamp Module is either the TGR signal
from the Event Monitor System (Step 4), or the TGR or TGR direct input from your target
interrupt line (Step 3).

Position Time Base

0 .1 us
1 1 us
2 .01 ms
3 .1 mS
4 1 ms

5 .1 us
6 1 us
7 .01 ms
8 .1 ms
9 1 ms

A .1 us
B 1 us
c .01 mS
D .1 ms
E 1 ms

F n.a.

Effect ofTGR on Time Stamo Counter Useful Measurements

Any TGR high causes the time stamp
counter to be reset to 0. No manual
reset is required in this mode for either
absolute or relative time stamping .

While the TGR is held high by the
Event Monitor System, the time stamp
counter counts. Manual reset is required
in this mode for absolute time stamping,
but not for relative time stamping.

In this mode, a long TGR signal1 from
the Event Monitor System resets the
counter. After that, successive short TGR
signals turn the counter on and off. Manual
reset stops the counter and sets it to zero.

This setting is used to count occurrences.
Each time the TGR signal goes high, the
time stamp counter is incremented.
Manual reset is required.

Elapsed time

Elapsed time

Elapsed time

Count
occurrences

A long TGR is defined as being longer than 1.6 uS. This is the only mode where the length of the TGR
matters. The following diagram shows what happens to the counter depending on the TGR signal.

6-8 Time Stamp Module

Using the Time Stamp Module

Figure 6-4: Positions A-E: Effects of Multiple TGR Signals

1.6uS

count=n count=O counting stop counting
counting

Step 3. Set Up TGR Input

The counter in the Time Stamp Module can be controlled in one of three ways:

1. The Event Monitor System TGR action.
2. The TGR input.

3. The TGR input.

stop
counting

The default is the Event Monitor System trigger input. No additional wires are necessary.

To use the TGR and TGR lines to measure interrupt latency, you must connect one of these

lines to an interrupt line on your target. Use of the TGR and TGR external inputs is described
fully in the example on page 6-20.

Step 4. Set up the Event Monitor System

In this step, you set up the Event Monitor System to selectively trace the memory, program
activity, or modules you are interested in time stamping. Setting up the Event Monitor
System can be done through ESL or through the Target Emulation menu in ES Driver.

There are three steps to setting up the Event Monitor System:

1. Decide what condition you want to look at, and what actions to take when that
condition is reached.

2. Set up the comparators to isolate that condition.
3. Set up WHEN{fHEN statements using the appropriate conditions and actions.

For more information on using the Event Monitor System, please see Section 4 of this
manual. The examples beginning on page 6-14 provide examples of using the Event Monitor
System to specify conditions appropriate for time stamping.

Time Stamp Module 6-9

Using the Time Stamp Module

Step 5. Run your Program

ESL commands

from ES Driver

Run the program using the RUN command, or run to a breakpoint
using RBK.

Select the Target Emulation menu, and the Run or Run-to­
Breakpoint command.

Step 6. View Time Stamp Information

There are several ways to display the time stamp information.

ESL commands The first step is to display the trace by either:

- stopping emulation with the STP command
- using the Event Monitor System to break emulation
- if you have Dynamic Trace available, you can use the OFF TCE

command to view the trace while your program is still running

Then view the trace, using the DRT command. The last column
shows the absolute or relative time stamp, depending on the position
you specified with the SET command.

from ES Driver Enter the Target Emulation menu, and do the same commands as
listed in stand-alone mode.

Step 7. Interpret Time Stamp Information

The time stamp information is always given as a number of units: the units are the ones you
specify when you set the switch on the Time Stamp Module.

6-10

IMPORTANT

You must multiply this number by the time base you selected on the Time
Stamp Module switch in order to determine the elapsed time in seconds.

Time Stamp Module

Using the Time Stamp Module

Collecting Time Stamp Information in a File

After setting up your Event Monitor System and Time Stamp Module to provide just the
information you need, you can use ES Driver to save the specific DRT displays to an ASCII
file. Once the information is stored in the file, you can use a spreadsheet or data base
management program to analyze the data.

While in Target Emulation mode,

1. Press <F3> to open a file to save the session record in. You will be prompted to
enter a file name. The default extension for this file is .rec.

2. Run the ORT command to print the trace. It will appear on the screen, and also be
stored in the file. Note the prompt on the bottom of the screen
"SAVE file .rec <F8>::::close."

3. Press <F8> to close the session record file.

Time Stamp Module 6-11

Examples

Examples
There are two basic measurement modes: Elapsed Time and Counting Occurrences. The
examples are organized as follows:

Measuring elapsed time

measuring the time it takes to go from event A to event B

measuring the time the program is in the specified range

measuring the time between an interrupt and interrupt servicing

Counting occurrences

counting the number of times the program transitions from event A to event B

counting the number of accesses to a memory location or range

Measuring Elapsed Time

The elapsed time measurement can be used to measure in-module time, out-of-module Lime.
inter-module time, and memory and program access time. These measurements use switch
positions 0 to E.

Conceptually, there are three types of elapsed time measurements:

1. Measuring the time from event A to event B

used for measuring program time, out-of-module execution time. and inter­
module execution time

2. Measuring the time spent in an address range

used for measuring memory time and program time (excluding calls to other
modules)

3. Measuring the time between an interrupt and interrupt servicing

used for measuring interrupt latency

Ato B Mode

To measure the time it takes a program to get from event A to event B, the easiest way is to
set up the Event Monitor System so only event B appears in the trace display.

Step 1. Set LSA Display Type

SET 9, I Set display format to absolute time stamp

Step 2. Select Time Stamp Module Switch Setting

Use positions 0-4, depending on your preferred time base. In positions 0-4, the TGR from
the Event Monitor System resets the time stamp counter to 0.

6-12 Time Stamp Module

ELAPSED TIME: A to B

If you're not sure which time base to use, use position 4 for the slowest. If the counter
overflows, the yellow overflow LED will light. See page 6-9 for a chart of maximum time
periods per setting.

Step 3. Set up the Trigger Input

To measure elapsed time, use the Event System Trigger input.

Step 4. Set up the Event Monitor System

ACl = 'a Specify address comparator 1 in group 1 to be event A

AC2 = 'b Specify address comparator 2 in group 1 to be event B

WHEN ACl THEN TGR
The TOR action resets the time stamp counter to 0 at event A

WHEN AC2 THEN TRC
Trace event B

Step 5. Run your Program

ESL commands

from ES Driver

Step 6. Stop Emulation

ESL commands

RUN

Target Emulation Menu

STP

Step 7. View Time Stamp Data

ESL commands

from ES Driver

DRT

Trace Menu:

Step 8. Interpret Time Stamp Information

Run program

Run

Stop emulation

Display the trace

Display the trace

The last column of the trace display gives you the absolute time stamp information. Note
that if event A and B are called more than once, you will get the time between events for
each occurrence.

IMPORTANT

You must multiply this number by the time base you selected on the Time
Stamp Module switch in order to determine the elapsed time in seconds.

The following screen shows the raw trace display. Since the Time Stamp Module switch
was set to position #1 (1 uSec), the time to go from A to Bis shown to be 4 uSec.

Time Stamp Module 6-13

ELAPSED TIME: A to B

Figure 6-5: Sample DRT Screen/or Measuring Time from A to B

)DRT
LINE ADDRESS DATA R/W M/IO 8CYC QUE ABS TIME

1120 00111A > 9090 R OYL M IF 5 #40
#19 00111A > 9090 R OYL M IF 5 #40
#18 00111A > 9090 R OYL M IF 5 #40
#17 00111A > 9090 R OYL M IF 5 #40
#16 00111A > 9090 R OYL M IF 5 #40
#15 00111A > 9090 R OYL M IF 5 #40
#14 00111A > 9090 R OYL M IF 5 #40
#13 00111A > 9090 R OYL M IF 5 #40
#12 00111A > 9090 R OYL M IF 5 #40
#11 00111A > 9090 R OYL M IF 5 #40
#10 00111A > 9090 R OVL M IF 5 #40

#9 00111A > 9090 R OYL M IF 5 l40
#8 00111A > 9090 R DYL M IF 5 #40
#7 00111A > 9090 R DYL M IF 5 l40
#6 00111A > 9090 R DYL M IF 5 #40
#5 00111A > 9090 R DYL M IF 5 l40
#4 00111A > 9090 R DYL M IF 5 #40
#3 00111A > 9090 R DYL M IF 5 #40
#2 00111A > 9090 R OYL M IF 5 #40
#1 00111A > 9090 R OYL M IF 5 #40
#0 BREAK F 5

6-14 Time Stamp Module

ELAPSED TIME: Range Mode

Range Mode

In range mode, the trace display will show the amount of time the program is in the specified
range.

The manual reset button should be pressed prior to performing this measurement.

Step 1. Set LSA Display Type

SET 9, 1 Set display format to absolute time stamp

Step 2. Select Time Stamp Module Switch Setting

Use positions 5-9, depending on your preferred time base. In these positions, the Event
Monitor System TGR enables the counter.

If you 're not sure which time base to use, use position 9 for the slowest. If the counter
overflows, the yellow overflow LED will light. See page 6-9 for a chart of maximum time
periods per setting.

Step 3. Set up the Trigger Input

To measure elapsed time, use the Event System Trigger input.

Step 4. Set up the Event Monitor System

ACl ='range Specify address comparator 1 in group 1 to be the specified address
range

ACl.2 ='range Specify address comparator 1 in group 2 to be the specified address
range

WHEN ACl THEN TGR,GRO 2
While the range is being accessed, enable the counter and go to

group 2

WHEN ACl.2 OR NOT ACl.2 THEN TGR
Keep counter enabled while in group 2

WHEN NOT ACl.2 THEN GRO 1
Disable counter when not accessing range

Step 5. Run your Program

ESL commands

from ES Driver

Step 6. Stop Emulation

ESL commands

RUN

Target Emulation Menu

STP

Step 7. View Time Stamp Data

ESL commands DRT

from ES Driver Trace Menu:

Time Stamp Module

Run program

Run

Stop emulation

Display the trace

Display the trace

6-15

ELAPSED TIME: Range Mode

Step 8. Interpret Time Stamp Information

The last column of the trace display gives you the amount of time accumulated while the
program was in the specified range.

Th1PORTANT

You must multiply this numbe; by the time base you selected on the Time
Stamp Module switch in order to determine the elapsed time in seconds.

The following screen shows the raw trace display, for the above example using a range
of $1106 to $1115. Since the Time Stamp Module switch was set to position #5
(0.1 uSec), the time spent in this range was 3.4 uSec.

Figure 6-6: Sample DRT Screen for Measuring Time in Range

>DRT
LINE ADDRESS DATA R/W M/IO BCYC QUE ABS TIME
#19 001100 > 9090 OVL M IF F 0 #0
#18 001102 > 9090 OVL M IF 2 #0
#17 001104 > 9090 OVL M IF 3 #0
#16 001106 > 9090 OVL M IF 4 #0
#15 001108 > 9090 OVL M IF 4 #1
#14 00110A > 9090 OVL M IF 5 #5
#13 00110C > 9090 OVL M IF 5 #9
#12 00110E > 9090 OVL M IF 5 #12
#11 001110 > 9090 OVL M IF 5 #16
#10 001112 > 9090 OVL M IF 5 #20

#9 001114 > 9090 OVL M IF 5 #24
#8 001116 > 9090 OVL M IF 5 #27
#7 001118 > 9090 OVL M IF 5 #31
#6 00111A > 9090 OVL M IF 5 #34
#5 00111C > 9090 OVL M IF 5 #34
114 00111E > 9090 OVL M IF 5 #34
#3 001120 > DEEB OVL M IF 5 #34
112 001122 > C004 OVL M IF 5 #34
#1 001124 > 96FB OVL M IF 5 #34
#0 BREAK F 4

6-16 Time Stamp Module

Interrupt Latency

Interrupt Latency

To measure the amount of time between when an interrupt is detected and when it is serviced,

you must connect your target interrupt line directly to the TGR or TGR lines on the Time
Stamp Module. As you can see in Figure 6-7, these lines perform exactly the same function
as the Event Monitor System TGR signal, but the direct trigger bypasses the delays inherent
in going through the additional Event Monitor System logic.

Figure 6-7: Trigger Input Logic

ES 1800

Event System TGR

TGR

Time Stamp Module

TGR
Logic

There are two external TGR inputs: TGR and TGR. The external TGR is used with Motorola

and Zilog processors: when the line is pulled low, the interrupt is asserted. The external TGR
is used with Intel processors: when the line is pulled high, the interrupt is asserted.

Figure 6-8 shows the trigger pattern for the TGR and TGR inputs.

Time Stamp Module 6-17

Interrupt Latency

Figure 6-8: Trigger Pattern for TGR and TGR

0-4 5-9 A·E F

TGR

Step I. Set LSA Display Type

SET 9, 1 Set display format to absolute time stamp

Step 2. Select Time Stamp Module Switch Setting

Use positions 0-4, depending on your preferred time base. In positions 0-4, the TGR from

the external TGR, external TGR or Event Monitor System TGR resets the time stamp
counter to 0.

If you 're not sure which time base to use, use position 4 for the slowest. If the counter
overflows, the yellow overflow LED will light. See page 6-9 for a chart of maximum time
periods per setting.

Step 3. Set up the Trigger Input

Connect either the TGR or TGR input on the Time Stamp Module to the interrupt line on
your target that you want to check. For example, to check the interrupt latency for
interrupt INTO on the 80186, use the setup shown in Figure 6-9.

6-18 Time Stamp Module

Interrnpt Latency

Figure 6-9: Target Setup for Measuring Interrnpt Latency

Target connect target interrupt to TGR input r Time Stamp Module

1----1--/ __ -f I TGR

INTO

Step 4. Set up the Event Monitor System

ACl = 'intservice_start

TGR

Specify address comparator in group 1 to be the start of the
interrupt service routine

WHEN ACl THEN TRC
Start tracing at the beginning of the interrupt service routine

Step 5. Run your Program

ESL commands RUN

from ES Driver Target Emulation Menu

Step 6. Stop Emulation

ESL commands STP

Step 7. View Time Stamp Data

ESL commands DRT

from ES Driver Trace Menu:

Step 8. Interpret Time Stamp Information

Run program

Run

Stop emulation

Display the trace

Display the trace

The Event Monitor System traces the first cycle of the interrupt service routine. The last
column of the trace display shows the amount of time elapsed between the start of the
interrupt service routine and the actual interrupt processing.

™PORT ANT

You must multiply this number by the time base you selected on the Time
Stamp Module switch in order to determine the elapsed time in seconds.

Time Stamp Module 6-19

COUNTING OCCURRENCES: A to B

Counting Occurrences

The number of occurrences measurement can be used to measure memory and program
activity, module linkage activity and program flow activity. Use switch position F (count
TOR pulses) for all counting measurements.

Conceptually, there are two types of counting occurrences measurements:

1. Counting the number of times the program transitions from event A to event B

used for measuring module linkage activity

2. Counting the number of accesses to some memory location(s).

used for measuring memory program activity

A to B Mode

This mode records the number of times the transition from event A to event B occurs. Trace
is only recorded on exit from module B. The manual reset button should be pressed prior to
performing this measurement.

Step 1. Set LSA Display Type

SET 9, 1 Set display format to absolute time stamp

Step 2. Select Time Stamp Module Switch Setting

Use position F. For counting occurrences, the time base is irrelevant. In position F, when
the TOR from the Event Monitor System goes high, the time stamp counter increments.

Step 3. Set up the Trigger Input

To count occurrences, use the Event System Trigger input.

Step 4. Set up the Event Monitor System

ACI.1 ='start-a Specify address comparator 1 in group 1 to be the start of module A

ACI.2 = 'start·b Specify address comparator 1 in group 2 to be the start of module B

AC2.2 = 'end·b Specify address comparator 2 in group 2 to be the end of module B

WHEN ACI THEN GRO 2
Go to group 2 while in module A

WHEN ACI.2 THEN TGR
Increment counter when entering module B from module A

WHEN AC2.2 THEN TRC, GRO 1
Exit module A, record count in trace memory

6-20 Time Stamp Module

COUNTING OCCURRENCES: A to B

Step 5. Run your Program

ESL commands RUN Run program

from ES Driver Target Emulation Menu Run

Step 6. Stop Emulation

ESL commands STP Stop emulation

Step 7. View Time Stamp Data

ESL commands DRT Display the trace

from ES Driver Trace Menu: Display the trace

Step 8. Interpret Time Stamp Information

The last column gives you the number of times module B was entered from module A.
Note that only the locations 'start-a (1100) and 'end-b (2008) are traced. In the following
screen we see that module B is called once each time from module A. The total number
of calls is 16.

Figure 6-IO: Sample DRT Screen for Counting Occurrences

>DRT
LINE ADDRESS DATA R/W M/IO BCYC QUE ABS TIME
/#20 001100 > 9090 R O\IL M IF F 4 1#6
/#19 002008 > C3C3 R O\IL M IF 4 /#7
/#18 001100 > 9090 R O\IL M IF F 4 /#7
:#17 002008 > C3C3 R O\IL M IF 4 :#8
:#16 001100 > 9090 R O\IL M IF F 4 :#8
:#15 002008 > C3C3 R O\IL M IF 4 :#9
:#14 001100 > 9090 R O\IL M IF F 4 :#9
:#13 002008 > C3C3 R O\IL M IF 4 :#10
:#12 001100 > 9090 R OVL M IF F 4 :#10
:#11 002008 > C3C3 R OVL M IF 4 :#11
:#10 001100 > 9090 R OVL M IF F 4 :#11

:/19 002008 > C3C3 R O\IL M IF 4 112
:#8 001100 > 9090 R OVL M IF F 4 :#12
:#1 002008 > C3C3 R OVL M IF 4 1113
:#6 001100 > 9090 R O\IL M IF F 4 1113
:#5 002008 > C3C3 R O\IL M IF 4 1114
114 001100 > 9090 R OVL M IF F 4 1114
113 002008 > C3C3 R O\IL M IF 4 1115
112 001100 > 9090 R O\IL M IF F 4 1115
#1 002008 > C3C3 R O\IL M IF 4 #16
#0 BREAK F 1

Time Stamp Module 6-21

COUNTING OCCURRENCES: Range Mode

Range Mode

This mode records the number of accesses to some memory location(s). Trace is always
recorded. The last trace cycles recorded show the accumulated access counts. The manual
reset button should be pressed prior to performing this measurement.

Step 1. Set LSA Display Type

SET 9, 1 Set display format to absolute time stamp

Step 2. Select Time Stamp Module Switch Setting

Use position F. For counting occurrences, the time base is irrelevant. In this position,
when the TGR from the Event Monitor System goes high, the time stamp counter
increments.

Step 3. Set up the Trigger Input

To count accesses, use the Event System Trigger input.

Step 4. Set up the Event Monitor System

ACl.1 = 'here TO 'there
Specify the range to be monitored

WHEN A Cl THEN TGR
Increment counter whenever range is accessed

Step 5. Run your Program

ESL commands RUN Run program

from ES Driver

Step 6. Stop Emulation

ESL commands

Target Emulation Menu

STP

Step 7. View Time Stamp Data

ESL commands

from ES Driver

DRT

Trace Menu

Step 8. Interpret Time Stamp Information

Run

Stop emulation

Display the trace

Display the trace

The last column of the last line of the trace display gives you the number of times the
range was accessed. In the following sample screen, the range is set from $2000 to $2006.

6-22 Time Stamp Module

COUNTING OCCURRENCES: Range Mode

Figure 6-11: Sample DRT Screen Counting Occurrences in a Range

)DRT
LINE ADDRESS DATA R/W M/IO BCYC QUE ABS TIME
120 001108 > 9090 R OYL M IF 4 #30
119 00110A > F3E8 R OYL M IF 5 1130
118 00110C > 900E R OYL M IF 5 1130
117 00110E > 9090 R OYL M IF 5 #30
116 002000 > 9090 R OYL M IF F 4 1130
115 003FFE < 1100 w OYL M \TIM 2 :/130
114 002002 > 9090 OYL M IF 1 #31
113 002004 > 9090 DYL M IF 2 #31
112 002006 > 9090 OYL M IF 3 #31
111 002008 > C3C3 OYL M IF 4 #31
110 00200A > ED17 OYL M IF 4 #31

119 00200C > 0040 OYL M IF 5 #32
118 003FFE > 1100 OYL M RM F 5 1132
111 00110D > 90 OYL M IF F 0 #32
116 00110E > 9090 OYL M IF 1 :/132
115 001110 > 9090 OYL M IF 2 #32
114 001112 > 9090 OYL M IF 3 #32
113 001114 > 9090 OYL M IF 4 #32
#2 001116 > 9090 OYL M IF 4 #32
111 001118 > 9090 OYL M IF 5 #32
110 BREAK F 5

Time Stamp Module 6-23

Using Counter as Condition

Using the Time Stamp Counter Value as a Condition

The ES 1800 Event Monitor System lets you specify complex program states, using WHEN­
THEN statements:

WHEN conditions THEN actions

You can use the absolute value of the time stamp counter as one condition.

Conditions are defined as logical combinations of address, data and status comparators. The
comparator LSA reads the value of the time stamp counter.

Due to the sequencing of the bit information from the Time Stamp Module, the count value
needs to be converted to the same format used by the ES 1800, using the CTS (convert time
stamp) command.

Sample Situation:

Suppose you want to break 2 seconds after reaching a specified address. If the pod is set to
the 1 millisecond setting, this is 2000 counts. It would make sense to say 'LSA=#2000' as
the Event Monitor System condition, but as we've explained above, this value must be
converted.

Step I. Set LSA Display Type

SET 9, 1 Set display format to absolute time stamp

Step 2. Select Time Stamp Module Switch Setting

Use position 4 to count every millisecond. In this position, the TOR from the Event
Monitor System resets the counter.

Step 3. Set up the Trigger Input

To measure elapsed time, use the Event System Trigger input.

Step 4. Convert Value

CTS#2000 Convert time stamp value for ES 1800. The ES 1800 responds with
$0438. This is the value the LSA port actually sees when the pod has
counted 2000 times

Step 5. Set up the Event Monitor System

ACl = address to reset counter
Specify the address at which to reset the counter

WHEN ACl THEN TGR,GRO 2
Reset counter and switch to group 2 when ACl is reached

LSA.2=$0438 Specify the converted time stamp value to break at

2 WHEN LSA THEN BRK
Break when counter value is reached.

6-24 Time Stamp Module

Using Counter as Condition

IMPORTANT

The ES 1800 Event Monitor System samples address, data and status once
every processor bus cycle. If the time base is shorter than the bus cycle, then
a particular LSA value may be missed by the Event Monitor System.

For most processor systems, a time base of 0.01 mS, 0.1 mS or I mS is slow
enough to prevent this problem.

Step 6. Stop Emulation

ESL commands STP Stop emulation

Step 7. View Time Stamp Data

ESL commands DRT Display the trace

from ES Driver Trace Menu Display the trace

Step 8. Interpret Time Stamp Information

In this setup, you chose to break when a timestamp count limit was reached. At this point,
you could do any of the steps listed in Section 4: Isolating the Problem.

Figure 6-12: Sample DRT Screen After Breaking at Time Stamp Counter Value

>DRT
LIHE ADDRESS DATA R/W M/IO BCYC QUE ABS TIME
#20 001122 > C004 R OVL M IF 5 #1999
#19 001124 > 96F8 R OVL M IF 5 #1999
#18 001100 > 9090 R OVL M IF F 4 #1999
#17 001102 > 9090 R OVL M IF 2 #1999
#16 001104 > 9090 R OVL M IF 3 #1999
#15 001106 > 9090 R OVL M IF 4 #1999
#14 001108 > 9090 R OVL M IF 4 #1999
#13 00110A > F3E8 R OVL M IF 5 #1999
#12 00110C > 900E R OVL M IF 5 #1999
#11 00110E > 9090 R OVL M IF 5 #1999
#10 002000 > 9090 R OVL M IF F 4 #1999
#9 003FFC < 1100 w OVL M WM 2 #1999
IB 002002 > 9090 R OVL M IF 1 111999
#7 002004 > 9090 R OVL M IF 2 11999
16 002006 > 9090 R OVL M IF 3 #2000
15 002008 > C3C3 R OVL M IF 4 12000
#4 00200A > ED17 ff OVL M IF 4 #2000
13 00200C > 0040 R OVL M IF 5 #2000
#2 003FFC > 1100 R OVL M RM F 5 #2000
#1 001100 > 90 R OVL M IF F o· #2000
#0 BREAK F 1

Time Stamp Module 6-25

Section 7

ALPHABETICAL COMMAND REFERENCE

Introduction

This section contains all the ESL commands, listed in alphabetical order.

Commands which begin with non-alphanumeric keys are at the beginning of the section, in
the following order:

@

I

*

' < register >

The following syntax is used:

bold type

italic type

< angle brackets >

[square brackets I

Alphabetical Command Reference

Type the command exactly as printed.

A substitution is required.
For example, if you see file, you must specify a file
name.

These indicate mandatory arguments.
Do not type the brackets.

These indicate optional arguments.
Do not type the square brackets.

7-1

@:Read/Write Memory

@: Read/Write Memory

Command

@<address>

@ <address>=value

Result

Read data from memory at <address>.

Write value to memory at <address>. No read­
after-write verify occurs.

Comments

The @ command provides a quick way to read from or write to memory in the target. It
functions in much the same way as memory mode, but it is a simple command, rather than an
operating mode.

Two system parameters affect the operation of the @ command.

The default data length determines whether a byte or word access is made. (BYM
andWDM)

The value in the MMS register specifies the memory space accessed.

The @ command will read from or write to the overlay memory if the specified address is
mapped. If the address is not mapped, the access will occur in the target system memory.

<address> and <value> may be any valid ESL expression. This means you may use registers,
symbol names or numeric values as the address or value.

You may execute this command while in run mode, but if you do, emulation will be halted
briefly in order to complete the command. You will not be executing in real-time if you
enter@ commands while in run mode.

7-2 Alphabetical Command Reference

Examples

>WDM

>@0

$00001012

>@SS:SP

$00003F01

>

@:Read/Write Memory

Set default data length to word.

Read word of data from address O.

The emulator will respond with the data
followed by a new prompt.

Read word of data pointed to by stack
pointer.

Emulator responds with data.

Use the @ command to patch program data.

>@DS:DI=l02F

>@(DS:DI-2)=44E2

>@DS:DI;@(DS:DI-2)

$0000102F

$000044E2

>

Alphabetical Command Reference

overwrite the word pointed to by DS:DI

overwrite the next lower word on the stack

Verify the data changes (The semicolon
separates multiple commands on a single
line)

7-3

': Symbol and Section Definition

':Symbol and Section Definition

Command

'<symbol>

'<section>

'<symbol> =<value>

'<section> =<range>

Comments

Result

Display value of specified symbol.

Display value of specified section.

Assign <value> to the symbol .

Assign <range> to the section . Section range values
cannot overlap.

A space indicates the end of the symbol or section name. Names can be up to 64 characters
long, but only 16 character names can be uploaded and downloaded.

<symbol>

<value>

<range>

Any combination of ASCII characters with decimal
values in the range 33-126. This range includes all of
the printable ASCII characters.

A 32-bit integer value.

A 32-bit integer range. Ranges can to specified as
follows:
start_address LEN length
start address TO end address - -

Be sure to end a symbol name with a space when assigning a value. If a space is not entered
as the last character of a symbol name, the characters that follow are recognized as a
continuation of the symbol. Once you type the single quote, the ES 1800 displays what you
type in lower case letters, unless you explicitly type upper case letters (using the shift key).
After you end the symbol name by typing a space character, the display reverts to all upper
case letters.

If a symbol name is assigned a value that is a range, it is assumed that you are defining a
section.

74 Alphabetical Command Reference

Examples

>'testing =2000

>'end_loop =GRO

': Symbol and Section Definition

Set symbol to 2000.

Set symbol to value in general purpose
register O.

>'section_3 =10000 TO lFFF
Define section range using start/end
syntax.

>'main_loop ='prog_start TO 'RAM_START-1
Define section range using symbols for
start and end addresses

>'section_4 =1000 LEN lF Define section range using start/length
syntax.

Alphabetical Command Reference 7-5

/:Repeat Command Line

/: Repeat Command Line

Command

I

Comments

Result

Re-execute the previous command line. No <return>
is necessary.

In order to be recognized as the repeat character, the slash must be the first character on a line.

Examples

This causes the system to single step and disassemble the instruction

just executed.
>STP;DT

>/

>/

>/

>/

Single step and disassemble instruction.

Repeat previous command.

The next example causes the system to single step and disassemble memory starting at the
instruction pointer (IP) location.

>STP;DIS CS:IP LEN 10

>/

7-6

Single step, then disassemble memory
beginning at CS:IP location.

Repeat previous command.

Alphabetical Command Reference

*: Repeat Command Line

*· Repeat Command Line

Command

* [n]

Comments

Result

Repeat the last command n times. If no number is
specified, repeat command indefinitely. If n=O, *
does not cause the command to be repeated. * must
be the first character on a line.

You cannot use a register, variable or symbol as the repeat argument. The repeat argument
must be entered as a number. The number will be interpreted as a decimal value. Do not enter
a base prefix before entering the repeat value. When no repeat argument is specified, it is

assumed to be 4,294,967,295(232 - 1).

Examples

In these three equivalent examples, the STP;DT command is repeated five times.

>"5STP;DT

>"5 STP:DT

>" 5 STP;DT

To single step and disassemble until a specified address is reached:

>"STP;DT; TST=CS:IP-$C324

Alphabetical Command Reference 7-7

_:Define/Use Macros

· Define/Use Macros

Command

_ <0-9>=<com, exp, op>

_ <0-9>

Comments

Result

Define the specified macro.

Use the specified macro.

Use macro 1. Must be first character on line.

Use macro 2. Must be first character.

When a macro is defined, there is no display on the screen, the syntax is not checked. Macros
are expanded when they are executed, not when they are defined. A space between the
underscore, digit, or equals sign causes an error.

Examples

In this example, four macros are defined. Macros #1 and #2 can be executed independently.
Macro #3 contains two nested macros (#1 and #2).

>_1=STP;DT Set macro 1 to single step and display
trace.

>_2=GR1=GR1+1 Set macro 2 to increment a general purpose
register.

>_3=_1;_2 Set macro 3 to do macro 1, then macro 2.

>_1= DB SS:SP LEN 20;RET;DIS CS:IP LEN 12
Display the first 20B bytes on the stack,
skip a line for readability and disassemble
the next instructions that will be
executed.

In the next example, macros one and three are executed.

>1

>_3

7-8

Execute macro 1. Could also use _1

Execute macro 3.

Alphabetical Command Reference

ASM: Line Assembler

ASM: Line Assembler

Command

ASM

ASM <arg>

Comments

>ASM

Result

Begin assembly at the last address displayed during a
previous assembly session. At power-up the start
address is zero.

**** 8086/88/186/188 LINE ASSEMBLER Vx.xLA ****
CSEG = :X:XXX
0000 >X
>

Begin assembly at the specified address.

>ASM <address>
**** 8086/88/186/188 LINE ASSEMBLER Vx.xLA ****
CSBG = XXXX
0000 >END
>

Modification of the line assembler address is a two-step process.

1. To change the segment, use the CSEG directive after entering line assembly
mode.

2. To change the offset, enter the assembler using a 16 bit address parameter, or use
the ORG directive after entering the assembler.

All instructions can be entered from line assembly mode. The instructions are converted to
machine code and loaded into memory at the address specified in the prompt.

The following pages describe the supported assembler directives.

Alphabetical Command Reference 7-9

ASM: Line Assembler

Directive

CSEG

ORG

ENDorX

DB

DW

PRE

EQU

7-10

Result

Set 64K byte code segment window:

1012 >CSEG D400B
1012 >

Set 64K byte offset into the code segment window:

1012 >ORG 3ACB
03AC >

Exit line assembler and return to the command level:

58FD >X
**** END OF L~NB ASSEMBLY ****
>

Define constant byte data:

58FD >DB 1,2,3,4, "TEST", 0
58FD 01 02 03 04 54 45 53 54 00
5907 >

Define constant word data: (Note: odd length text
strings are padded with nulls)

58FD>DW 1,2,3,4, "TEST", 0
58FD 0100 0200 0300 0400 4554 5453 0000 590D
>

Toggle to preview mode (causes next instruction to
be disassembled):

6590 >PRE
6590 C6470234 MOV BYTE PTR
[BX+2B] , 34B

Toggle out of preview mode:

6590 C6470234 MOV BYTE PTR [BX+2B],34B
>PRE
6590>

Define/redefine local symbol (LO-L9):

6590 >L3 BQU 7A44B
6590 >

Alphabetical Command Reference

LO,Ll...L9

'symbol

<return>

$

NEAR

FAR

ASM: Line Assembler

or if symbolic debug hardware is installed:

6590 > 'Unit EQU OFDEOH
6590 >

Print value of local symbol:

756A >L3
h
756A >

Print value of symbol. This is only valid if symbolic
debug hardware is installed:

756A >'Unit
756A >'Unit EQU FDEOH
756A >

Disassemble one line at current address.

5DOA >
5DOA 3306AD78
PTR 781DH

XOR AX,WORD

5DE >

Current assembler offset address.

Within current line assembly segment.

Outside current line assembly segment.

Alphabetical Command Reference 7-11

BAS: Set/Display Register Default Base

BAS: Set/Display Register Default Base

Command

BAS <register>

Result

Display the decimal base of the specified register.

#0 - default
#2 - binary
#8 - octal
#10 - decimal
#16 - hexadecimal

If the register has not been assigned a separate
display base, the current default base is displayed.

BAS <register>=<base value> Set the display base of the register to the base value.

Comments

If the base value for a register is set to 0, the current
default base is used for display.

Base values may be stored in EEPROM and automatically loaded on power-up or manually
retrieved using the LD or LD 1 command.

Be careful when setting private display bases to unusual bases such as 4, 7 or 11. The ES 1800
operates correctly, but the results may be confusing. If you set the base value to a value other
than hexadecimal, decimal, octal, or binary, the ES 1800 displays a question mark (?)
preceding the base value when asked to display the base in effect.

Refer to the default base command, DFB to display the system global default base.

Examples
>BAS FLX

>#16

Display default base of FLX register.

In the next example, the value of general data register GD3 is displayed in binary until you
change its display base or power down the ES 1800.

7-12

>GD3

$0000AA55

>BAS GD3 = 2

>BAS GD3

#2

>GD3

Display GD3 using default base.

Set base of GD3 register.

Display new base of GD3 registers.

Display register

%00000000000000001010101001010101

Alphabetical Command Reference

BKX: Break On Instruction Execution

BKX: Break On Instruction Execution

Command

ONBKX

OFFBKX

Comments

Result

The Event Monitor System breaks on the execution
of the instruction rather than the instruction pre­
fetch.

The Event Monitor System breaks whenever an
address is seen on the bus.

Default: OFF

The 80186 family microprocessors prefetch instructions. Because of this, an address can be
detected on the address bus before the instruction is actually executed. If you set a breakpoint
on an address that immediately follows a branch, the ES 1800 may break before the
instruction is executed (it was prefetched). Set this switch to force the break to occur only on
address execution.

Alphabetical Command Reference 7-13

BMO: Block Move

BMO: Block Move

Command

BMO<range>,<address>

Result

Moves <range> to the new <address>. The current
value of MMS specifies the relocation register used
during the transfer.

BMO<range>,<space>,<address>
Moves <range> to the new <address>. The
<space> argument specifies the memory mode
status to use during the transfer.

BMO<range>,<address>,<space>
Moves <range> to the new <address>. The range
is read from the space specified in the MMS register.
The block is written to <space>.

BMO<range>,<space>,<address>,<space>
Moves <range> to the new <address>. The range
is read from <space> specified in the argument
following the range. The block is written to <space>
specified in the argument following the address.

Comments

This command is valid in pause mode only.

The following rules of thumb may make the numerous forms of this command less confusing.

7-14

1. If there is no space specified for the source argument, MMS is always used.
2. If no space is specified for the destination address, the source space is always

used.
3. A non-overlapping block move can be verified using the VBL command.

Alphabetical Command Reference

BMO: Block Move

Examples

The examples show two ways to move a range to a new location in data space, and moving
a range from the stack space to data space.

or

>MMS=DAT Set the MMS to data space

>BMO 100 TO 500, 1000 Move a range to the new location.

>BMO 100 to 500, DAT, 1000
Same effect as two commands above.

>BMO SS:SP LEN 20, STA, DX, DAT
Move 20 bytes from the stack in stack space
to the value pointed to by the data register
in data space.

Alphabetical Command Reference 7-15

BRK: Break Emulation

BRK: Break Emulation

Command Result

WHE <events> THE BRK, <action>, •••

Comments

If all of the conditions specified in the event portion
of the WHEN!THEN clause are satisfied, the BRK
action stops emulation, returning the system to pause
mode. When a break event is detected and emulation
is broken, the current CS:IP and event group are
displayed on the terminal. Emulation begins at the
values displayed if the registers are not altered and
you run or step following a break. When entering
emulation, the Event Monitor System always begins
looking for events specified in group 1.

Breakpoints stop program execution at specific times. After a break you can disassemble the
trace memory, look at the LSA bits in the raw trace, check the CPU register values, or begin
stepping through your code.

Breakpoint actions may be enabled or disabled by selecting the appropriate run commands.
If you enter emulation with the RBK or RBV run commands, breakpoints are enabled. If you
enter emulation with the RUN or RNV commands, breakpoints are disabled, even if there are
event statements specifying the BRK action. If emulation is entered with breakpoints
disabled, you can enable them while running by entering the RBK command. If you enter
emulation with breakpoints enabled, you can disable them while running by entering the
RUN command. The RNV and RBV commands are not allowed during emulation. These
commands load the reset vectors, which cannot be done during emulation.

Breaking can also be qualified by a soft switch, BKX. This switch determines if breaks will
occur on instruction execution, or on any access to an address, including prefetches.

7-16 Alphabetical Command Reference

BRK: Break Emulation

Examples

The first example shows breaking when the instruction at address $3000 is executed.

>ON BKX

>AC1=3000

>WHEN ACl THEN ERK

>RBK

R>

Enal:>le breakpoints on instruction
execution.

Set address comparator to 3000.

Break when ACl is accessed.

Run til breakpoint.

Run mode prompt will appear.

The next example shows tracing a limited range of accesses, and breaking after ten accesses
to the range. Trace only accesses between 1000 and 113C; break after ten accesses to this
address range.

>AC1=1000 to 113C

>CTL=#lO

>WHEN ACl THEN CNT,TRC

>WHEN CTL THEN ERK

>RBV

R>

Set up range.

Set up counter limit.

Set up WHEN/THEN to trace only accesses in
range, and begin counting whenever range is
accessed.

Break after 10 accesses.

Load restart vectors and begin emulation.

Run mode prompt will appear.

The third example shows breaking when a data value is written to a port. Break when 55AA
is written to I/O port A.

>ACl='PORT_A

>DC1=55AA

>Sl=WIO

Set address comparator to port address.

Set data comparator to SSAA.

Set status comparator to Write I/O Status.

>WHEN ACl AND DCl AND Sl THEN BRK
Set WHEN/THEN statement.

>RBK Run til breakpoint.

R> Run mode prompt will appear.

Alphabetjcal Command Reference 7-17

BUS: Display Status Of Bus Status Lines

BUS: Display Status Of Bus Status Lines

Command Result

BUS Display the bus status.

Comments

The status of the following bus lines is displayed:

NMI

ARDY

SRDY
INTO

INTI

INT2/INTAO

INT3/INTA1

TEST

Examples
I indicates an active condition

Non-maskable interrupt

Asynchronous ready

Synchronous ready

Interrupt 0

Interrupt 1

Interrupt 2 or interrupt acknowledge 0

Interrupt 3 or interrupt acknowledge 1

Test input

0 indicates an inactive condition

80186/88 and 80C186/C188:

)BUS

NM! ARDY SRDY INTO INT1 INT2/INTAO INT3/INTA1 TEST
0 1 0 0 0 0 1 0

>I

80CJ86EB and 80Cl88EB:

)BUS

NMI READY INT4 INTO INT1 INT2/INTAO INT3/INTA1 TEST
0 0 0 0 0 0 0 0

>

7-18 Alphabetical Command Reference

BTE: Bus Timeout Enable

BTE: Bus Timeout Enable
(80C1 Bx and 80C1 BxEB only)

Command

ONBTE

OFFBTE

Comments

Result

Enable the bus timeout. Supply RDY after 1 second
without target RDY. Force emulation break if in
RUN mode.

Do not supply RDY, even if target does not. Allows
the CPU to wait indefinitely for target RDY.

Default: OFF

With BTE set ON, the emulator will automatically time out after waiting for 1 second for the
ARDY or SRDY signal to be supplied by the target system, ensuring that the emulator will
not hang after attempting an invalid memory location access.

During RUN mode, the emulator will wait one second, then force SRDY to the CPU, then
attempt to break emulation.

During peeks and pokes, the emulator will just force SRDY to allow the cycle to complete.

With BTE set to OFF, the emulator will not interfere with target signals. Lack of a target­
supplied ARDY or SRDY in this instance will cause the CPU to wait indefinitely.

Alphabetical Command Reference 7-19

BTO: Bus Timeout Register

BTO: Bus Timeout Register
(80C1 Bx and 80C1 BxEB only)

Command

BTO

BTO= value

Comments

Result

Display the value of the bus timeout register

Assign a value to the bus timeout register. This 8-bit
integer value specifies the number of milliseconds to
wait before the emulator displays a NO BUS CYCLE
error message.

Default= 0

Use this register value to increase the amount of time the processor waits for an address latch
enable (ALE). By default, the emulator reports a NO BUS CYCLE error message if no ALE
is detected for at least .7 milliseconds.

If your target system uses a HALT instruction and then waits for an interrupt for a longer
period than this, be sure to set the BTO register to provide a sufficient length of time.

The BTO register specifies the number of milliseconds to wait before generating the NO BUS
CYCLE error message. The value in the register may be any integer value from 0-255
(hexadecimal).

Some operating systems (such as iRMX®) make extensive use of the HALT instruction. Use
the BTO register, or the IHE softswitch, to avoid having the NO BUS CYCLE message scroll
across your screen.

7-20 Alphabetical Command Reference

BYM: Set Global Data Length

BYM: Set Global Data Length

Command

BYM

WDM

Comments

Result

Set the global data length to byte mode.

Set the global data length to word mode.

Default: BYM - byte mode

The global data length determines whether memory commands use byte or word data lengths.

If byte mode is set and you enter a word value as a command parameter, only the least
significant byte is used as the command parameter. If word mode is set and you enter a byte
parameter, the high byte is padded with a zero.

The global data length affects the following commands.

Command

BMO
DB
FIN
FIL
LOV
M
MIO
SF 0-9,11,12
VBL
VFO

Commands Affected by Global Data Length

Description

block move data in memory
display block of memory
find data pattern in memory
fill memory with data pattern
load overlay memory from target
memory mode
1/0 mode
special functions: RAM tests and scope loops
verify data pattern in memory
verify overlay memory with target memory

Alphabetical Command Reference 7-21

BYM: Set Global Data Length

Examples

The following example demonstrates how the global data length affects the FIL and DB
commands.

>BYM

>FIL 0 LEN 10,123

>DB 0 LEN 10

Set byte mode

Fill the range with 123

High byte is truncated

000000 23 23 23 23 23 23 23 23 - 23 23 23 23 23 23 23 23 23 23 ################
>

>WDM

>FIL 0 LEN 10,3F

>DB 0 LEN 10

Set word mode

Fill the range with 3F

Pattern is padded with zero

000000 003F 003F 003F 003F - 003F 003F 003F 003F

>

7-22 Alphabetical Command Reference

CCT: Computer Port Control

CCT: Computer Port Control

Command Result

CCT The computer port becomes the controlling port.

Comments

This command, along with the TCT command, allows control to be switched between the
two serial ports without powering down the ES 1800 emulator. This command is meant to be
executed from the terminal port, and is essentially a null command when entered from the
computer port.

The upload and download operations always send/receive data from the computer port
regardless of which port is the designated controller.

Any output generated by a command is directed to the controlling port. The copy switch (ON
CPY) directs output to both serial ports.

If there is a host attached to the computer port and you type a CCT from a terminal connected
to the terminal port, the host system takes control of the ES 1800. The host system must be
able to handle incoming data at high rates. Both hardware and software handshakes are
supported (see Section 4, "Serial Communications.")

If you execute CCT in error with no terminal or host system connected to the computer port,
move the terminal cable to the computer port, enter the TCT command and return the cable
to the terminal port. This process will work in most cases to return control to terminal. If not,
tum the ES 1800 off and then on.

Alphabetical Command Reference 7-23

CDH: Clear DMA Halt

CDH: Clear OMA Halt
(8018x and 80C18x only)

Command

ONCDH

OFFCDH

Comments

Result

DMA is re-enabled during pause-to-run.

During pause-to-run, DMA status is unchanged from
status while paused.

Default: OFF

The ES 1800 transitions from run to pause mode by using a non-maskable interrupt (NMI).
An NMI has the effect of setting the DHL T bit (bit 15) of the Interrupt Status Register. When
DHLT is true, the processor disables DMA cycles.

DMA cycles will be disabled when the emulator enters the run mode unless the CDH
softswitch is in the ON state.

This command is not recognized by the emulator for the 80C186EB or 80C188EB
processors.

7-24 Alphabetical Command Reference

CES: Clear When/Then Statements

CES: Clear When/Then Statements

Command

CES

CES <group number>

Comments

Result

Clear all of the WHEN[fHEN statements currently
active within the event monitor system.

Clear all of the WHEN[fHEN statements for the
specified group within the event monitor system.

The comparator values are not affected by the CES command.

Alphabetical Command Reference 7-25

CK: Internal/External Clock

CK: Internal/External Clock

Command

ONCK

OFF CK

Comments

Result

The CPU uses an internally generated clock. A 4
MHz nonadjustable clock is supplied via a divide-by­
two network. The CPU runs at 2 MHz. (The 80C18x
CPU clock is set at 12.5 MHz.) Newer revisions run
at 16 MHz. Unterminated inputs are set inactive.

The CPU uses the target system clock. Appendix C
contains information on jumper configurations for
specific target clock configurations.

Default: OFF

This command is valid only in pause mode.

Use an internal clock when debugging code if target hardware is unavailable. Turn on the
internally generated ready signal and clock (ON RDY and ON CK). Download the program
to overlay memory and begin debugging.

See also the DNL command, the RDY command and Section 4 "Mapping Overlay Memory."

7-26 Alphabetical Command Reference

CLK: Read Target System Clock

CLK: Read Target System Clock

Command

CLK

Examples

>CLK

Result

Read the target system clock frequency and display
the value in KHz. The value is accurate to plus or
minus 2KHz.

Display clock frequency.

CLOCK FREQUENCY = #2001 KHZ

>

Alphabetical Command Reference 7-27

CLM: Clear Memory Map

CLM: Clear Memory Map

Command Result

CLM Assign the entire address range the TGT attribute.

Comments

This command clears all addresses from the overlay map.

This command is valid only in pause mode.

7-28 Alphabetical Command Reference

CIR: Clear CPU Registers

CLR: Clear CPU Registers

Command

CLR

Comments

•l

Result

Clear the four CPU data registers; AX, BX CX, and
DX.

The CPU registers are automatically copied from ES 1800 internal memory to the
microprocessor when run mode is entered. When emulation is broken, they are copied from
the processor to ES 1800 internal memory.

See DR for more information.

Alphabetical Command Reference 7-29

CMC: Clear Macros

CMC: Clear Macros

Command

CMC

_ <0-9>=

Examples

7-30

>_1=

>CMC

Result

Clear all defined macros.

Clear the specified macro.

Clear macro #1.

Clear all macros.

Alphabetical Command Reference

CNT: Decrement Hardware Counter

CNT: Decrement Hardware Counter

Command Result

WHE <events> THE CNT, <action>, ...

Comments

If all of the conditions specified in the event portion
of the WHEN(fHEN clause are satisfied, the counter
is decremented. When the count reaches zero, the
CTL event becomes true. If all other conditions
specified in the WHEN(fHEN clause are satisfied,
the appropriate action is taken.

Events can be defined to selectively count bus cycles. There is one hardware counter, and
four count registers, one register for each group. The hardware counter is automatically
loaded with the count limit register for group 1 when entering run mode.

Whenever the reset count, RCT, action is specified, the count comparator value for the
specified group is loaded into the hardware counter. When switching groups, the current
value of the hardware counter is passed along as a global count value unless a RCT action is
specified in the same list of events that causes the group switch.

The toggle count, TOC, command allows you to tum counting on and off. When a TOC
event is detected, the count is toggled to the opposite state, either on or off. You can specify
an event that starts and stops the counter each time it is detected or specify any number of
events that toggle the counter on and off.

The current value of the counter cannot be read. You can only detect when you have reached
a limit.

Alphabetical Command Reference 7-31

CNT: Decrement Hardware Counter

This table describes the count conditions immediately before and after a group change.

Previous
New Group

Group
No Count Action CNT TOC

Specified

No Count No cycles Count only No count
specified counted qualified cycles until first TOC

CNT No cycles Count only No count
counted qualified cycles until first TOC

TOCOFF No cycles Count only No count
(not counting) counted qualified cycles until first TOC

TOCON No cycles Count only No count
(counting) counted qualified cycles until first TOC

This table describes initial count conditions (always group 1).

Action Specified Trace Condition

No count No cycles counted

CNT Count only qualified CNT events

TOC Count nothing until TOC event

Examples

This example counts the times that the specified data is written to a specific address and
breaks if the data is written 20 times.

7-32

>CTL=#20

>Sl=WR

>AC1=4020; DC1=$XXF3

Set count limit to 20.

Set status comparator to read/write.

Set address and data comparators.

>WHEN ACl AND DCl AND Sl THEN CNT
Set WHEN/THEN statement to begin counting

Alphabetical Command Reference

>WHEN CTL THEN BRK

>RBK

R>

CNT: Decrement Hardware Counter

when conditions are met.

When count limit reached, break.

Run til breakpoint.

Run mode prompt will appear.

The second example looks for a read from a specific I/0 port. After it is found go to group 2,
load the group 2 counter register, and set a group 2 address comparator to count every bus
cycle (all addresses). Break after 100 bus cycles.

>ACl='J:Oport

>Sl=RD

Set address of J:/0 port.

Set status comparator to look for read
access.

>WHEN ACl AND Sl THEN GRO 2, RCT

>CTL.2=#100

>ACl.2=0 TO -1

>2 WHEN ACl THEN CNT

>2 WHEN CTL THEN BRK

>RBK

R>

Alphabetical Command Reference

When J:/0 port is read, go to group 2 and
reset counter

Set group 2 count limit to 100.

Set address comparator to range.

When range accessed, count.

When count limit reached, break

Run til breakpoint.

Run mode prompt will appear.

7-33

COM: Communication With Target Programs

COM: Communication With Target Programs

Command

COM <address>

Comments

Result

Establish communication with the target program
through a two-byte pseudo-port at the specified
address.

Exit COM mode by entering the two-character
transparent mode escape sequence (<esc><esc>
default).

COM is only useful during run mode. It affects real time operation.

In effect, the COM mode establishes a transparent mode between the running target program
and the controlling port of the ES 1800. Whenever the ES 1800 reads target memory during
run mode, it actually stops emulation for about 100 microseconds. To avoid significant
impact on real time operation, the COM routine examines the byte at <address> only once
every 0.5 seconds. When the COM routine discovers a new byte from the target program, it
reads the byte and clears the location. The byte is then sent to the controlling port of the
ES 1800. The COM routine then immediately returns to examine the byte at <address>. A
target output routine has approximately 100 microseconds to place another character in the
output location. If this 100 microsecond window is missed, the display of the subsequent
character is delayed for 0.5 second.

The COM command requires special target code: two bytes at the specified address. The
byte at <address> is used for characters sent from the target to the controlling port. The byte
at <address> + 1 is used for characters being sent to the target program. This command
makes use of 7-bit ASCII characters, with the eighth bit of each byte used for handshaking.

To transmit a character to the ES 1800, the target program first checks the most significant
bit (MSB) of the byte at <address>. If this bit is set (1), the ES 1800 has not yet collected
the previous character. If the bit is cleared, the target program sets the MSB of the character
to be transmitted and places the result in the byte at <address>.

To receive a character from the ES 1800, the target examines the byte at <address>+ 1. If
the MSB of this byte is cleared, the ES 1800 has not yet transmitted a new character. If the
MSB is set, the character is new. If the controlling port of the ES 1800 is a terminal, the target
program should echo the character by immediately copying it into the byte at <address> with
the MSB still set. The target then program masks the MSB off and stores the result back at
<address> + 1. This prevents the target program from re-reading the same character.

7-34 Alphabetical Command Reference

COM: Communication With Target Programs

The COM routine does not check the byte at <address> + 1 to see if the target program has
received it. Generally, the target program will be substantially faster than the COM routine
and will always receive one character before the COM routine can transmit the next.

The flow diagram on the next page summarizes the COM process.

Alphabetical Command Reference 7-35

COM: Communication With Target Programs

Figure 7-1: Flow Chart

S!art

y

7-36 Alphabetical Command Reference

COM: Communication With Target Programs

Examples

One good use of the COM command is to simulate a serial 1/0 port when debugging code
before target hardware is available. The RUN command downloads the target program into
overlay memory and enters run mode. The address supplied to the COM command is that
of a simulated RS232 data port. Data entered at the terminal is passed to the target program,
and data output by the program appears on the screen.

>MAP 0 TO -1

>DNL

%cat serial.driver

Map all available overlay memory

Download program to overlay (enter
transparent mode escape sequence:
<esc><esc> default)

>RNV Run program

R>COM 'serial_port Use serial data port as COM address

NOTE
If a breakpoint or an error is encountered while running the COM command,
the system will appear to hang up. This is because emulation has been broken,
and the target program that receives and transmits characters is no longer
running. Entering the transparent mode escape sequence will terminate COM
mode and cause the break or error message to be displayed.

Alphabetical Command Reference 7-37

CPY: Copy Data To Both Ports

CPY: Copy Data To Both Ports

Command

ONCPY

OFFCPY

Comments

Result

Sends all data to both the terminal and computer
pons. Data sent to the controlling pon is echoed to
the other pon (noncontrolling port).

Only sends data from the ES 1800 to the controlling
pon.

Default: OFF

The CPY soft switch provides a way to make a hard copy of emulation data. It is also useful
for monitoring computer control commands.

See Section 4, "Serial Communications," for more information on the terminal and computer
pons.

7-38 Alphabetical Command Reference

CRC,CRE,CRO: Target Cyclic Redundancy Check

CRC,CRE,CRO: Target Cyclic Redundancy Check

Command

CRC <range>

CRE <address range>

CRO <address range>

Comments

Result

The system calculates a cyclic redundancy check on
all addresses in <range>.

Calculates a cyclic redundancy check on even
addresses.

Calculates a cyclic redundancy check on odd
addresses.

These commands are valid in pause mode only.

The CRC command generates a cyclic redundancy check value over a user defined address
range. Only the byte mode is used for this test.

If code is split into two PROMs, with one even and the other one odd, the CRE/CRO
operators allow you to do a cyclic redundancy check on each PROM.

CRC calculations can be used to determine if RAM based data is being corrupted. Do a CRC
over the data base and save the value. Then run the program and do the CRC over the range
again. If the values do not match, data is being corrupted. The Event Monitor System can
be set up to catch writes to the data base.

The CRC algorithm is based on the polynomial xI6 +X15+X2+1.

Alphabetical Command Reference 7-39

CTS: Convert Time Stamp

CTS: Convert Time Stamp

Command

CTS # <countlimit>

Comments

Result

Convert countlimit to value required by ES 1800's
Event Monitor System.

The absolute value of the time stamp counter can be used as one event in an Event Monitor
System WHEN(fHEN statement. The comparator LSA is used for the absolute value of the
time stamp counter.

Examples

7-40

> CTS #2000 Convert desired count limit to value
understood by the ES 1800. The ES 1800 will
respond with $0438. This is the value the
LSA port actually sees when the pod has
counted 2000 times.

> ACl='counter_reset_address
Specify address at which to reset counter.

> WBE ACl THE TGR,GRO 2 Reset counter and switch to group 2 when ACl
is reached.

> LSA.2=$0438

> 2 WBE LSA THE BRK

Specify the converted time stamp value as
the limit at which to break emulation.

Break when counter value is reached.

Alphabetical Command Reference

DB: Display Memory Block

DB: Display Memory Block

Command

DB <address range>

DB

DB <address>

Comments

Result

Read and display the specified address range.

Read and display one page of memory, starting at the
last address displayed by any previous DB command.
On power-up, this command displays a page of
memory from address zero.

Read and display one page of memory, starting at the
specified address.

The page length is defined by the CRT length parameter in the SET menu. When displaying
a block of data in byte mode, the ASCII representation of each byte is also displayed.

The DB command provides an easy way to page through memory. Enter the DB <address>
command to start reading memory at the desired address. Follow the display of this page of
data with the DB command, and type a slash ({).This repeats the DB command to increment
the address and scroll through memory.

If the display is longer than one page, the XONJXOFF characters can be used to start and stop
scrolling. (<ctrl-s>, <ctrl-q> default)

DB affects real-time operation when entered in run mode.

Examples

>WDM
>DB DS:DX LEN 20
>DB @SS:SP

Set global data length to word.
Display 20 words pointed to by DS:DX.
Display a page of values pointed to by the
value on top of the stack.

(See Section 8, "Expressions," for more information on@ operator).

Alphabetical Command Reference 7-41

DB: Display Memory Block

The next example shows displaying a block in byte mode and word mode.

>BYM
>DB 0 LEN 20
000000 80 48 45 4C 4C 4F 80
000010 OF 03 FO 40 OF OC FO
>WDM
>DB 0 LEN 2F

Set global data length to byte.
Display 20 bytes.

80 - 2F OF Fl F9 SB 2F F6 FO .HBLLO •• / ... A/ ••
40 - 07 06 FO 90 OF OC D8 00 ..• @ ... @

Set global data length to word.
Display 2F words.

000000 4880 4C45 4F4C 8080 - OF2F F9Fl 2F5B FOF6 .EELLO .. / .•. A/ ••

000010 030F 40FO OCOF 40FO - 0607 90FO OCOF OOD8 •.• @ ... @ •.......
000020 OFFF F9FF lFFF 7FFF - 3FFF BDFF lFFF FFFF

7-42 Alphabetical Command Reference

DEL: Delete A Symbol Or Section

DEL: Delete A Symbol Or Section

Command

DEL '<symbol>

DEL '<section>

Examples

>SYM

$00001000 Sym

$00008000 start

>DEL 'Sym; SYM

$00008000 start

>

Alphabetical Command Reference

Result

Deletes the specified symbol.

Deletes the specified section.

Display current symbols.

Delete symbol "Sym", and show remaining
symbols.

7-43

DES: Display Event Specifications

DES: Display Event Specifications

Command

DES

DES <group number>

Examples

Result

Display all of the WHEN{fHEN statements
currently active from all groups.

Display all of the WHEN{fHEN statements and the
comparator values for the specified group.

Display the statements and comparators for groups I and 2.

7-44

>DBS l;RBT;DBS 2

1 WHEN ACl THEN BRK

ACl.l $007632

AC2.l $000000

DCl.l $0000

DC2.l $0000

Sl .1 $0000

S2 .1 $0000

LSA.l $0000

CTL.l $0000

Display information on group 1 and 2 setup,
separated by a <return>.

2 WHEN Sl AND DCl THEN CNT,TRC

2 WHEN CTL THEN BRK

ACl.2 $000000

AC2.2 $000000

DCl.2 $40FF DC $00FF

DC2.2 $0000

Sl .2 $0003 DC $FFFC

S2 .2 $0000

LSA.2 $0000

CTL.2 $0010

Alphabetical Command Reference

DFB: Default Base

Command

DFB

DFB =#n

Comments

DFB: Default Base

Result

Display the global default base. On power-up the
default base is hexadecimal unless another default
base was loaded by the EEPROM on power-up.

Set the default base to n (2-binary, 8-octal, 10-
decimal, or 16-hexadecimal.

Specific base prefixes can override the default base. Values not preceded by one of these
prefixes are presumed by the ES 1800 to be in the default base.

Base {!.re(ix Desc_ri{!.tion Examnle

% Binary %10011100001111
\ Octal \23417
Decimal #9999
$ Hexadecimal $270F

For example, if you set the global default base to binary, and you then want to assign a value
to a register in a base other than binary, use a base prefix.

The ES 1800 works correctly with any base between 2 and 16. However, if you set an
uncommon base, such as 5 or 9, the results of assignments and commands may be confusing.

If the base is outside the allowable range, an error message is displayed and the ES 1800
defaults to the hexadecimal base.

Alphabetical Command Reference 7-45

DIA: Display Character String

DIA: Display Character String

Command

DIA <address>

Comments

Result

Read and display characters from target memory
starting at the specified address. The DIA routine
terminates when it reads $00 from target memory.

Affects real time operation when entered in run
mode.

DIA is commonly used for test purposes in target systems that have no human-readable 1/0
channels.

When a test routine detects a problem, it can load a register with the address of a null­
terminated error message. The routine then jumps to an address that causes the ES 1800 to
break emulation. The DIA command can then be used to display the error message.

DIA can also be used to check the contents of any null terminated string in memory.

Examples

>BYM Make sure we're in byte mode.

>M 120 Enter Memory mode at address 120.

$000120 $00 >48,65,6C,6C,6F,O

$000126 $00 >X

>DIA 120

Hello

>

Enter a null-terminated string and exit

Display string starting at 120

The next example sets a breakpoint in the target error routine. When the breakpoint occurs,
a message pointed to by the ES:BX register pair is displayed. If the DX register is zero, the
process stops. Otherwise, the ES 1800 immediately begins emulation and waits for another
breakpoint and message.

7-46 Alphabetical Command Reference

>ACl = 'Brror_stop

>WHE ACl THE BRK

DIA: Display Character String

Set address comparator at error routine.

Break when ACl is reached.

>* RBK;WAI;DIA ES:BX;TST = DX

Alphabetical Command Reference

Run til breakpoint, and wait until
breakpoint is reached. Display message
pointed to by BS:BX. Then test to see if DX
is 0. The * at the begi=ing of the line
repeats the command, so that if the TST
fails, the whole line is repeated.

7-47

DIS: Memory Disassembler

DIS: Memory Disassembler

Command

DIS <range>

DIS <address>

DIS

Comments

Result

Disassemble and display the data in the specified
range.

Disassemble one page of memory beginning at a
specified address.

Disassemble and display a page of memory
beginning at the last address display during previous
DIS command. At power-up this value is zero.

You should be familiar with 8018x, 80C18x or 80C18xEB assembly language programming
and have the appropriate hardware manual:

iAPX 86188, 1861188 User's Manual by Intel.
iAPX C861C88, Cl861Cl88 User's Manual by Intel.
80Cl86EBIC188EB User's Manual bylntel.

Page length is defined by the CRT length parameter in the SET menu.

A disassembly command with an integer argument or no argument enters a special
disassembly mode. The disassembly can be continued by typing a <space> or <return> . Exit
disassembly by typing any other character.

<space>

<return>

Continue disassembling one line at a time.

Continue disassembling one page at a time.

any char except <space> or <return> Exit disassembly mode.

7-48 Alphabetical Command Reference

DM: Display Memory Map

DM: Display Memory Map

Command Result

DM Display the memory map currently in effect.

Comments

This command is valid only in pause mode.

If the memory map scrolls off the screen, you may have a heat related problem with your
emulator. See Section 2, Power-Up Sequence, for details.

Examples

>DM Display memory map.

MEMORY MAP: This is the default map at power-up.

$000000 TO $FFFFFF:TGT

Alphabetical Command Reference 7-49

DME: Enable Data

DME: Enable Data
(801 Sx and 80C1 ax only)

Command

ONDME

OFFDME

Comments

Result

The DMA controllers are active during pause. The
values in DMAO and DMAl registers are not
reloaded to the physical PCB during run-pause and
pause-run transitions. The following also occurs:

On a run-to-pause transition the IST register is
copied to the internal RAM table. The DHLT bit is
then cleared, causing DMA cycles to resume. All
DMA cycles are directed to the target system.

The DMA controllers are not active during pause
mode.

Default: OFF

All DMA cycles are disabled immediately upon a run-to-pause transition.

If the target system uses an external dynamic memory controller for refresh, DME must be
set to OFF. This prevents memory read signals from going out to the target in pause mode.
All bus read cycles go to target space during PAUSE mode ifDME is ON.

Overlay will not respond to DMA during pause. All DMA cycles executed during pause will
be directed to the target system.

If internal DMA is used, then DME should be ON.

This command is not recognized by the emulator for the 80C186EB or the 8C188EB
processors.

7-50 Alphabetical Command Reference

DNL: Download File

Command

DNL

Comments

DNL: Download File

Result

DNL readies the ES 1800 to receive data. If in
terminal control mode, the ES 1800 enters a
transparent mode automatically, allowing direct
communication with the host system. Other host
system commands may be executed prior to the
download operation.

You can choose the destination of the downloaded file:

Target memory

Emulator overlay memory

If the downloaded data is going to overlay memory, verify that the overlay is mapped in the
appropriate address range. Make sure that the start address of the file is the address to which
you expect to download.

Verify also that the data format of the host system file matches that being used by the
ES 1800. Refer to SET menu parameter #26 for verification of ES 1800 format. Use
transparent mode (TRA) to verify host system format and the address in the file.

You can download files with either the computer port or the terminal port in control. That is,
the downloading of files can be initiated and controlled either by the user or by a host system.
There are some differences in procedure depending on which port is in control of the
downloading process.

See Section 4, "Downloading," for more information.

Alphabetical Command Reference 7-51

DNV: Verify Download Data

DNV: Verify Download Data
(80C1 Bx and 80C1 BxEB only)

Command Result

ON DNV Data received with the DNL command is verified after being written
to memory.

Default: ON

OFFDNV

Comments

Data is not verified after being written to memory.

The DNV command allows you to turn on and off the data verification performed by the ES
1800 after each byte of data is written. With the DNV switch ON, data is first written and
then verified as successfully and accurately written. If the data is not successfully verified,
an error message is displayed.

With the DNV switch OFF, you can perform write operations to non-readable memory space,
such as MMU's. With this setting, memory writes are not immediately verified with a read
operation.

With DNV OFF, code downloads are significantly faster than with DNV ON. With a reliable
target, you may want to set this switch to OFF to more quickly download code.

7-52 Alphabetical Command Reference

DR: Display/Load Microprocessor Registers

DR: Display/Load Microprocessor Registers

Command

DR

<register name>

<register name>=< exp>

CLR

LDV

Comments

Result

Display values of all microprocessor registers.

Display the value of the specified microprocessor
register in its display base.

Assign the specified register the value <exp>.

Clear the four CPU data registers; AX, BX CX, and
DX.

Load the reset vectors into the CS, IP and FLX
registers. The reset vectors can also be loaded by the
RNV and RBV commands. These load the vectors
and enter run mode.

On power-up an LDV command is automatically executed. This command sets the registers
to Intel-defined default values. Register values may be saved to and loaded from EEPROM.

The CPU registers are automatically copied from ES 1800 overlay memory to the
microprocessor when run mode is entered. When emulation is broken, they are copied from
the processor to ES 1800 overlay memory.

If a CPU register is loaded with a value during run mode, a warning message is be displayed.
This warning informs you that the value you are entering will not be sent to the pod CPU
during emulation. The value is stored in the ES 1800's internal memory, but when emulation
is broken, the new value of the CPU register overwrites the value just entered.

Alphabetical Command Reference 7-53

DR: Display/Load Microprocessor Registers

The display of the FLX register is different from that of the other CPU registers. The flags
are more conveniently decoded by using an alpha character to indicate whether the flag was
set or cleared by a particular instruction cycle. If the flag is clear, you see a. as a place
holder. If set, the following characters describe the flag.

0 - Overflow S - Sign

D - Direction

I - Interrupt

T-Trap

C-Carry

Z-Zero

A - Auxiliary carry

P- Parity

If FLX were assigned the value $FFFF, the DR command would display the FLX register as:

>DR

CS:IP FLX AX BX ex DX DS SI ES DI BP SS SP
0000:0000 ODITSZAPC 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Examples

>DS=$A700;DS

$A700

>

7-54

Load the data segment and verify that it
contains the correct value.

Alphabetical Command Reference

DRT: Display Raw Trace Bus Cycles

ORT: Display Raw Trace Bus Cycles

Command

DRT

DRT <line number>

DRT <range>

Comments

Result

Display the last page of bus cycles recorded in trace
memory.

Display a page of the trace buffer starting with <line
number>.

Display the range of line numbers. XON and XOFF
may be used to start and stop scrolling if the range is
larger than the console display.

Note that the range is a range of bus cycles. not the
address recorded in the trace memory.

SET parameter #13 sets the page length. Refer to SET.

This command is valid only in pause mode.

The sequence numbers in DT, DTB, and DTF (instructions) correlate with the line numbers
displayed in the DRT (bus cycles). However, one or more bus cycles in the DRT display may
make up one instruction on the DT, DTB or DTF displays. These displays may have missing
sequence numbers indicating that a multiple bus cycle instruction has been executed. Also.
the sequence number (SEQ #) may be repeated when two-byte wide instructions were
executed from contiguous addresses.

Alphabetical Command Reference 7-55

DRT: Display Raw Trace Bus Cycles

Examples

>DRT #50

LINE ADDRESS DATA R/W M/IO BCYC SEG QUE LSA 8 7 0

#69 001000 > OFB9 R OVL M IF c F 0 %11111111 %11111111

#68 001002 > BEOO R OVL M IF c 2 %11111111 %11111111

#67 001004 > 2000 R OVL M IF c 2 %11111111 %11111111

#66 001006 > OOBF R OVL M IF c 1 %11111111 %11111111

#65 001008 > A522 R OVL M IF c 2 %11111111 %11111111

#64 00100A > A4F3 R OVL M IF c 2 %11111111 %11111111

#63 OOlOOC > 8103 R OVL M IF c 3 %11111111 %11111111

#62 002000 > FF50 R OVL M RM D 4 %11111111 %11111111

#61 002200 < FF50 w OVL M WM D 4 %11111111 %11111111

#60 OOlOOE > FFOO R OVL M IF c 3 %11111111 %11111111

#59 001010 > 02B9 R OVL M IF c 1 %11111111 %11111111

#58 002002 > 3E R OVL M RM D 1 %11111111 %11111111

#57 002202 < 3E w OVL M WM D 1 %11111111 %11111111

#56 002003 > FF R OVL M RM D 1 %11111111 %11111111

#55 002203 < FF w OVL M WM D 1 %11111111 %11111111

#54 002004 > 00 R OVL M RM D 1 %11111111 %11111111

#53 002204 < 00 w OVL M WM D 1 %11111111 %11111111

#52 002005 > 00 R OVL M RM D 1 %11111111 %11111111

#51 002205 < 00 w OVL M WM D 1 %11111111 %11111111

#50 002006 > FF R OVL M RM D 1 %11111111 %11111111

LINE Line number 0 in the trace buffer indicates the last
bus cycle prefetched or executed before the ES 1800
went into pause mode. The larger the line number,
the further back in the history of the program you are
viewing. You can get a good idea of the relationship
of bus cycles to instructions by matching the bus
cycle line numbers in the DRT to the SEQ# in the
disassembled trace.

7-56 Alphabetical Command Reference

ADDRESS DATA

DRT: Display Raw Trace Bus Cycles

The address displayed is where the bus cycle took
place, along with the data written to, or read from,
that address.

> and < are data direction indicators. They indicate
whether data was read from an address (>) or written
to an address(<). These same indicators are used in
the trace disassembly.

TAR!OVL T AR/OVL indicates whether the access was in the
target memory area or in the ES 1800's overlay (see
DM command to determine what addresses are
mapped).

M/10 M/IO indicates whether the bus cycle access was a
memory access (M) or an 1/0 access (IO). This is
determined by the program.

BCYC BCYC indicates what type of bus cycle was run. This
is determined by your program. The possibilities are:

RFS refresh
:rAK interrupt acknowledge
RIO read from I/O
WIO write to I/0
BLT halt
IF instruction fetch
RM read memory
WM write memory
NBC no bus cycles
DMA direct memory access

SEG SEG indicates what type of segment is being used by
the program for data accesses. The possibilities are:

QUE

A - Alternate Data
C - Code
D - Data
S - Stack

Refer to iAPX 86188, 1861188 Users Manual for
definition of these segment types.

QUE indicates how many bytes (up to 6) are in the
processor queue or how many were flushed (usually
caused by a branch). A flush is inqicated by a Q
preceding the queue depth value.

Alphabetical Command Reference 7-57

DRT: Display Raw Trace Bus Cycles

LSA-8 7-0 LSA-8 7-0 columns display the state of each pin of
the LSA pod during that bus cycle.

7-58

NOTE:

The same infonnation that is recorded in the trace buffer can be used by the
Event Monitor System to cause event actions. Therefore, everything in the
trace buffer such as QUE flushes or WIO or any combination of these traced
items can cause event actions such as selective tracing, counting, or breaking
emulation (refer to Section 4, "Breaking Emulation").

Alphabetical Command Reference

DT: Disassemble Trace Memory

OT: Disassemble Trace Memory

Command

DT

DT <range>

DT <value>

Comments

Result

Disassemble and display the last instruction in trace
memory. A sequence number is not included.
Overwrites current display line.

Disassemble a range of bus cycles, starting at the
specified value and proceeding back in time.

Disassemble a page of trace starting at <value>.

This command is valid only in pause mode.

A page is defined by the CRT length parameter in the SET menu.

The sequence #0 is always the most recently recorded bus cycle in trace memory. If an
argument is specified to the DT command, the values refer to the raw trace sequence
numbers.

The sequence number shown is a decimal value. For numbers larger than 9, precede with a
decimal (#) base sign.

When using the disassemble trace (DT) and the display register (DR) on the same line, make
sure you enter DT before DR, because DT will overwrite the current line. It does this so that
the STP;DT command used repeatedly will give a listing similar to a program listing without
the STP;DT line between each command.

The sequence numbers in DT, DTB, and DTF (instructions) correlate with the line numbers
displayed in the DRT (bus cycles). However, one or more bus cycles in the DRT display may
make up one instruction on the DT, DTB or DTF displays. These displays may have missing
sequence numbers indicating that a multiple bus cycle instruction has been executed. Also,
the sequence number (SEQ #) may be repeated when two-byte wide instructions were
executed from contiguous addresses.

Alphabetical Command Reference 7-59

DT: Disassemble Trace Memory

Examples

>STP;DT

>DT 0

SEQ# ADDR OPCODE

0028 OOOA 8B4600

0027 OOOD 050100

0024 0010 EBF4

0020 0006 90

0019 0009 90

0018 OOOA 8B4600

0017 OOOD 050100

0014 0010 EBF4

0010 0006 90

0009 0009 90

0008 OOOA 8B4600

0007 OOOD 050100

>

SEQ#

ADDR

OPCODE

MNEMONIC

OPERAND FIELD

BUS CYCLE DATA

7-60

Single step and display trace.

MNEMONIC OPERAND FIELDS BUS CYCLE DATA

MOV AX,WORD PTR [BP+O] 0800>10C5

ADD AX,l

UMP SHORT 0006

NOP

NOP

MOV AX,WORD PTR [BP+O] 0800<10C6

ADD AX,l

UMP SHORT 0006

NOP

NOP

MOV AX,WORD PTR [BP+O] 0800>10C7

ADD AX,1

Correlates the disassembled instruction to the raw
trace bus cycle. This is a decimal number and must be
preceded by a # sign when referenced for selective
disassembling of the trace. This corresponds to the
line number in the DRT command display.

The memory address or location where the
instruction was fetched.

The machine-language (hex number) equivalent of
the following assembly-language instruction.

The assembly-language instruction.

The instruction operands

The bus cycle transaction, if any, that occurred as a
result of the instruction. This includes any
information written to, or read from, memory or I/O
locations.

Alphabetical Command Reference

DTB, DTF: Disassemble Trace Page

OTB, DTF: Disassemble Trace Page

Command

DTB

DTF

Comments

Result

Disassemble the previous page of trace memory from
current trace memory pointer.

Disassemble the following page of trace memory
from the current trace memory pointer.

This command is valid only in pause mode.

A page is defined by the CRT length parameter in the SET menu. Three lines are subtracted
for header and prompt lines.

Refer also to the DT, DRT and I commands.

The sequence numbers in DT, DTB, and DTF (instructions) correlate with the line numbers
displayed in the DRT (bus cycles). However, one or more bus cycles in the DRT display may
make up one instruction on the DT, DTB or DTF displays. These displays may have missing
sequence numbers indicating that a multiple bus cycle instruction has been executed. Also,
the sequence number (SEQ #) may be repeated when two-byte wide instructions were
executed from contiguous addresses.

Alphabetical Command Reference 7-61

FIL: Fill Operator

FIL: Fill Operator

Command Result

FIL <range>,<constant> Fill <range> with the <constant> data pattern.

Comments

This command may be used in run mode; however, it will affect real time emulation as it
writes to memory.

<constant> must be an integer.

The FIL command uses the default data length, regardless of the length of <constant>. (See
BYM and WDM).

The FIL command can be verified using the VBL (Verify Block) command.

Examnles

>FIL 2000 LBN 50,0

>FIL 'ram, 'init_data

7-62

Fill RAM with zero to initialize data
space.

Fill RAM section with initialization data.

Alphabetical Command Reference

FIN: Find Pattern In Memory

FIN: Find Pattern In Memory

Command Result

FIN <range>,<data> Search <range> for the data pattern. All occurrences
of the pattern are displayed:

$<address>=$<data>
>

If the pattern is not found within the range, you '11 see
the error message:

NOT FOUND
>

Comments

Data may be either an integer or don't care value. The find command uses the default data
length, regardless of the length of the <data>. (See SET.parameter #26 for default data
length in memory commands.)

Refer also to the "don't care" description in Section 8, "Numbers."

Examples

To find a bit pattern using don't cares, use either of the following forms:

or

>WDM Set global data length to word.

>FIN 1000 TO 2FFF, 60XX Use TO syntax to specify range.

>FIN 1000 LEN 1000,6000 DC OFF Use LEN syntax to specify range.

The next examples shows finding the initialization data in the start module section and
finding any NOPs in a range.

>BYM Set global data length to byte.

>FIN 'start_module,'init_uart
Find 'init_uart data in 'start_module.

>FIN 100 TO 1000,90 Find any NOPs in the range.

Alphabetical Command Reference 7-63

FSI: Force Special Interrupt

FSI: Force Special Interrupt

Command Result

WHE <events> THE FSI, <action>, ...

Comments

If all of the conditions specified in the event portion
of the WHEN!fHEN clause are satisfied, the force
special interrupt action, FSI, allows you to jump to a
specified address when a specific event is detected.

The FSI event can allow you to patch to your code fast. It can also allow you to write soft
shutdown routines for machinery that cannot be halted using a simple breakpoint.

The special intenupt address register, SIA, should be set prior to entering the run mode if you
are using the FSI event. The SIA is a 32 bit integer, and defines the address your program
vectors to when the FSI is executed.

When an FSI event is detected, an FSI ACTIVE message is displayed on the screen. You
may also see some unusual cycles in the trace memory at the address where the FSI occurred.
These are internal cycles that are traced as the execution address is changed. These internal
cycles are not purged from trace memory.

The FSI routine residing at the SIA address should terminate with an interrupt return (IRET)
instruction. Execution resumes at the address immediately following the instruction that
caused the FSI. If this is a soft shutdown, you will probably define a breakpoint at the IRET
instruction.

Examples

Make a patch using overlay memory

>MAP 1000

>AC1=8F36

>WHEN AC1 THEN FSI

>SIA=1000

>ASM SIA

>RUN

7-64

Set up overlay map.

Set up address comparator.

When address reached, jump to special
interrupt address.

Set up special interrupt address.

Use single line assembler beginning at

special interrupt address. Patch code

can be assembled here.

Begin emu.lation.

Alphabetical Command Reference

FSI: Force Special Interrupt

R> Run mode prompt will appear.

Assume the program needs to break at a certain address, but the machine cannot be turned off
until a soft shutdown routine is executed. Set SIA to the address of the soft shutdown routine.
Use an FSI action at the break address, then set a breakpoint at the end of the soft shutdown
routine.

>SJ:.A='SBUT_down

>AC1=$7F4E2

>AC2='SBUT_down + 4E

>WHEN AC1 THEN FSI

>WHEN AC2 THEN BR.K

>RBK

R>

Alphabetical Command Reference

Set up address of beginning of special
shutdown routine.

Set up address comparator l as location to
break at.

Set up address comparator 2 to be end of
special shutdown routine.

At the first address, jump to special
shutdown routine.

At end of shutdown routine, break.

Run til breakpoint.

Run mode prompt will appear.

7-65

FSX: FSI On Instruction Execution

FSX: FSI On Instruction Execution

Command

ONFSX

OFFFSX

Comments

Result

An Event Monitor System forced special intelTllpt
(PSI) occurs when an instruction is executed. Refer
to the FSI command.

Forced special interrupt (PSI) occurs when an
address is seen on the bus.

Default: ON

The 80186 family microprocessors prefetch instructions. Because of this, an address can be
detected on the address bus before the instruction is actually executed. If you set an PSI on
an address that immediately follows a branch, the emulator may execute the PSI before the
instruction is executed (it was prefetched). Set this switch to force an PSI to occur only on
address execution.

7-66 Alphabetical Command Reference

GD: General Purpose Data Registers

GD: General Purpose Data Registers

Command

GD<0-7>

GD<0-7> = <value>

Comments

Result

Display the value of the specified general purpose
data register.

Assign a value to one of the eight general purpose
data registers. value can be any integer or don't care
value, but not a range.

Use the general purpose registers as arguments to commands to save keystrokes when using
values repeatedly. They can also be used to save space in macro definitions.

These general purpose registers may be used in place of integer or don't care values in
command statements.

Examples

>GD4 5000 General purpose data register 4 is loaded
with 5000. GD4 can now be used anywhere you
would use the number 5000.

The second example shows looking for a specific pattern on the LSA pod lines in more than
one event group. To save typing, assign a general purpose data register the value you are
looking for. All subsequent LSA assignments can use this register.

>GD2 = %01100101100 DC % 10011
Set GD2 to a specific pattern.

>LSA = GD2; LSA.2 = GD2 Set up LSA registers in two groups.

>GD3 = 'datpatl DC %FFOO Set up GD3 to look for one byte

>DCl = GD3 of a specified word

General purpose registers can be used to help simplify using mode status mnemonics.

>GD6 = ALT

>MMS GD6

>GDl OVL+RD+IOA

>Sl = GDl

Alphabetical Command Reference

Set MMS to ALT

Set up a breakpoint on an overlay

read from I/O space.

7-67

GR: General Purpose Address Registers

GR: General Purpose Address Registers

Command

GR<0-7>

GR<0-7> =<value>

Comments

Result

Display the value of the specified register.

Assign a value to one of the eight general purpose
address registers. <value> can be any integer or
range.

Use the general purpose registers as arguments to commands to save keystrokes when using
values repeatedly. They can also be used to save space in macro definitions.

These general purpose registers may be used in place of integer or range values in command
statements.

Examples

>GR4 5000 General purpose address register 4 is
loaded with 5000. GR4 can now be used
wherever you would use this integer value.

The next example assigns a register to a commonly used range. Then you can use the register
as a parameter for other commands.

>GRO ='start_code LEN 20 Set up register.

>DIS GRO Disassemble range specified in register.

>DB GRO Display trace beginning at register.

If you do not know the absolute address in the target hardware, but have downloaded a
symbol table containing them, then use the symbol names instead of looking up the hardware
specifications.

>GR2 = 'RAM LEN 'RAM_len Initialize GR2

>SF O,GR2 Run a RAM test on your RAM

>ACl = GR2 Set a breakpoint on any RAM access

>WHE ACl THE BRX

7-68 Alphabetical Command Reference

GRO: Change Event Groups

GRO: Change Event Groups

Command Resylt

WHE <events> THE GRO n, <action>, ...

Comments

If all of the conditions specified in the event portion
of the WHEN(THEN clause are satisfied, switch to
group n (1-4).

The four event groups allow you to detect sequential events. When emulation is entered, the
Event Monitor system always begins in group 1.

Examples

The example below describes a common use of the Event Monitor System group structure.

You may want to trace a subroutine after it has been called by Module A or Module B, but
not if it has been called from Modules C, D, or E. In this case, define the address comparators
in group 1 to the address ranges of Modules A and B. When either of these modules is
encountered, switch to group 2 and look for the subroutine. After tracing the subroutine,
switch back to group 1

>'Module_A =1240 LEN 246 Define module A.

>'Module_B =8750 LEN 408 Define module B.

>'Sul:>_X =8934 LEN 56

>ON BKX

>ACl='Module_A

>AC2='Module_B

Define subroutine x.
Enable breakpoints on instruction execution
so that prefetching instructions don't
trigger event actions.

Set up address comparators for entire

range of modules A and B.

>WHE ACl OR AC2 THE GRO 2 Set up WHEN/THEN statement so that any time
you're in either module, go to group 2.

>ACl. 2=' Sul:>_X

>2 WHEN ACl TEE TRC

Set up comparator for subroutine X.

Look for Sul:>_X and start trace.

>2 WHE NOT ACl THE GRO 1 At end of subroutine, return to group 1.

The TRC{fOT and CNT{fOC actions interact in a specific way when event groups are
switched. The following state transition tables describe the actions taken when each of the
different event combinations are specified.

Alphabetical Command Reference 7-69

!DP: Interrupts During Pause

IDP: Interrupts During Pause
(BOC1 Bx and BOC1 Bx EB only)

Command Result

ONIDP Honor interrupts from the target system during pause
mode. The associated interrupt routine will be
executed.

OFFIDP Ignore interrupts from the target system during pause
mode.

Default: OFF

Comments

If interrupts are not enabled with this soft-switch, no interrupts during pause mode are
possible. The following requirements must be met in order to execute target interrupts during
pause mode.

The ESL variable PIA must be set to the address of a block of 16 bytes of unused
memory. This block may be located in overlay, but it MUST BE UNUSED AND
WRITABLE!

The interrupt service routine must return execution to the location where the
interrupt occurred (i.e., a normal return-from-interrupt).

The interrupt service routine may not execute a halt (HLT) instruction.

If the above requirements are not met, proper operation of your emulator cannot be
guaranteed.

7-70

NOTE

1. Enabling the IDP switch will slow the response time to some commands. such as
memory reads. In order to speed command response time, interrupt service
routines should not take excessive time because ESL cannot communicate with
the pod while a target interrupt is being serviced.

The worst case interrupt latency time in the target will be approximately 100 clock
cycles when IDP is enabled and no ESL commands are being executed. However,
in ninety percent of the cases, no additional latency at all will occur. The vast
majority of interrupt services will reflect normal target operation.

2. Interrupt service routines executed while the emulator is in pause mode will not
appear in the trace memory.

Alphabetical Command Reference

/DP: Interrupts During Pause

3. If you enter the reset character (default is <ctrl-z>), the IDP switch is
automatically reset to the OFF state. You must enter the ON IDP command after
resetting the emulator if you wish to honor target interrupts during pause mode.

4. INT4 may not be used during pause for the 80C18xEB.

Alphabetical Command Reference 7-71

!HE: Ignore Halt Errors (80CI8X only)

IHE: Ignore Halt Errors
(BOC1 Bx and BOC1 Bx EB only)

Command

ONIHE

OFFIHE

Comments

Result

Ignore halt errors during RUN mode.

Display the message Processor Halted if a HL T
instruction has been executed.

Default: OFF

With Intel's RMX86 operating system, the processor is frequently halted during normal
operation between interrupts. The emulator recognizes these halts and reports an error
message each time. To avoid numerous "Processor Halted" error messages, you can tum the
emulator's IHE switch ON and ignore halt errors during RUN mode.

With the IHE switch OFF, the emulator properly reports any RUN mode halt errors.

7-72 Alphabetical Command Reference

IOP: 1/0 Mode Pointer

Command

IOP

IOP= <exp>

Comments

/OP: 110 Mode Pointer

Result

Display the current value of the I/0 mode pointer.

Assign the value <exp> to the 1/0 mode pointer.

IOP is the last value examined while in I/0 mode. If you enter 1/0 mode without specifying
an address, the IOP value is used as the entry point.

The default power-up value of the IOP register is zero. This register may be stored in
EEPROM.

The 1/0 mode pointer is modified by moving to a new address after entering 1/0 mode. When
you exit I/O mode, the IOP reflects the last address examined. As with any register, the IOP
can be used as a parameter for other commands (see Section 7, "Memory and 1/0 Modes.")

Examples

>IOP=$1100;IOP

$00001100

>

Alphabetical Command Reference

Set the IOP and verify that it was set.

7-73

LD: Load System Variables From EEPROM

LD: Load System Variables From EEPROM

Command

LD

LD <category>

Comments

Result

Copies all system variables stored in EEPROM into
ES 1800 memory.

Copies the variables from one of the six categories in
the EEPROM to the emulator RAM.

This command is valid only in pause mode.

Executing a LD command reads system variables from the EEPROM and copies them to into
internal RAM. The EEPROM retains those original variables until replaced by a SA V
command.

There is room in the EEPROM to load the system variables for two different users. The user
is determined by a parameter in the SET menu.

You may load the following variable categories from EEPROM:

0 SET menu
1 Contents of ES 1800 registers
2 Event Monitor System WHEN{fHEN statements
3 Overlay map
4 Software switch settings
5 Macros

Examples

>LD 3

>DM

7-74

Load the overlay map from EEPROM to
internal RAM.

Verify the new map.

Alphabetical Command Reference

LDV: Load Reset Vectors

LDV: Load Reset Vectors

Command Result

LDV Load the CPU reset vectors.

Comments

This command is valid in pause mode only.

RNV and RBV also load the reset vectors, then enter run mode. The RST command resets
the processor if in run mode and always loads the reset vectors.

Intel defines the CPU reset vectors as:

CS=FFFFH
IP=OH
FLX=F002H

To verify that the reset vectors are loaded, execute the DR command or individually display
the CS, IP and FLX registers.

Refer also to Section 4, "Setting Up Registers."

Examples

>DR Display registers

CS:IP FLX AX BX CX DX DS SI ES DI BP SS SP
9000:1002 ••.• z ... 0100 FFOO 1234 0040 COOO 0000 DOOO 0000 0000 CCOO 0024

>LDV;CLR;DR

CS:IP
FFFF:OOOO
>

FLX

Load reset vectors, clear data registers,
verify changes.

AX BX ex DX DS SI ES DI BP SS SP
0000 0000 0000 0000 COOO 0000 DOOO 0000 0000 CCOO 0024

Alphabetical Command Reference 7-75

LOV: Load Overlay Memory

LOV: Load Overlay Memory

Command

LOV <range>

Comments

Result

Move data from the target system memory to the
ES 1800 overlay memory in the specified address
range.

This command is valid only in pause mode.

In order to load overlay memory from the target memory, you must have a target system
interfaced with the ES 1800 emulator and have overlay memory installed and mapped.

In order to load a target memory range into the overlay memory at a different address, use the
LOV command, then do a block move (BMO) of the data.

Use the VFO command to verify the memory move.

Refer also to Section 4, "Mapping Overlay Memory," and to the note under the discussion of
the DIS command in this section.

Examples

7-76

>LOV 80000 LEN 7FFF

>LOV 'BOOT_RANGE

Load a section of overlay memory.

Load a section of overlay memory defined by
a section.

Alphabetical Command Reference

M: Enter Memory Mode

M: Enter Memory Mode

Command

M <address>

M

x

Comments

Result

Enters memory mode at <address>. The address
and the data at that address are displayed preceding
the prompt.

Enters memory mode at the last address examined in
a previous memory mode session.

The last address is stored in the MMP register,
(Memory Mode Pointer). At power-up, this value is
zero.

Exit memory mode.

The M command affects real-time operation when entered in run mode.

Data displayed in memory mode can be in either byte or word lengths. Set byte mode (BYM)
or word mode (WDM) before entering memory mode. If you are in word mode and enter a
byte of data, the byte is padded with zeroes and a word is written. If you are in byte mode
and enter a word of data, the value is truncated, and only a byte is written.

The commands to scroll the information displayed in memory mode are as follows:

<return>

LST

NXT

Scrolls through memory addresses either one byte (8
bits) at a time, or one word (16 bits) at a time.

The <return> key now decrements addresses in
memory mode.

The <return> key now increments (default mode)
addresses in memory mode.

Increments the address in memory mode.

Decrements the address in memory mode.

The MMP register is modified if you scroll to a new address while in memory mode. When
you exit memory mode, MMP reflects the last address examined.

When a <return> is entered as the first character on a line, the address is incremented or
decremented and the new address and data are displayed. On power-up, the default scroll
mode is toward increasing memory addresses. To change the scrolling direction use the NXT
(forward) and LST (backward) commands. These can be entered in memory mode. If they
are entered in pause mode, the scroll mode is set and memory mode is entered at MMP.

Alphabetical Command Reference 7-77

M: Enter Memory Mode

The scroll mode can be overridden by using the period and comma keys. A • increments the
address and a, decrements the address.

To modify data at a memory location, enter the data and press <return> . The data is written
to the current address and the next address and data are displayed.

Data can be entered quickly using a list. A list can contain up to nine values separated by
commas. See the example below.

Examnles

>WDM; MMP=$FFOOO; NXT Set global data length to word. Set the
Memory Mode Pointer, and use the NXT
command to enter memory mode.

$0FFOOO $1234

$0FF001 $00FF

$0FFOOO $1122

>

>1122 Change a word of memory.

>, Verify the change.

>X Exit memory mode.

Assume that address lOOOH is the start of a data table and you want to write a short program
to utilize that data.

Initialize the data using a list. Then invoke the line assembler using MMP as the start address
(see ASM command).

7-78

>M 1000 Enter memory mode

$001000 $00 >0,1,2,3,4,5,6,7,8

$001009 $00 >X

>ASM MMP

Initialize data.

Exit memory mode.

Start line assembly at MMP.

**** 8086/88/186/188 LINE ASSEMBLER Vx.xLA ****

CSEG 0000

1009 > Enter your program here. Use "X" or "END"
to exit the line assembler.

Alphabetical Command Reference

MAC: Display Defined Macros

MAC: Display Defined Macros

Command Result

MAC Display all defined macros in order#l-9,0.

Examples

>_l=DR;DIS CS:IP LEN 4; RUN
Set up macro 1.

>_2=DB; SS:SP LEN lO;@'Data_ptr
Set up macro 2.

>MAC Display macros.

_l=DR;DIS CS:IP LEN 4; RUN

_2=DB; SS:SP LEN lO;@'Data_ptr

>

Alphabetical Command Reference 7-79

MAP: Set Memory Map

MAP: Set Memory Map

Command

MAP<range>

MAP <value>

MAP <range><attribute>

MAP <value><attribute>

Attributes

RW

RO

7-80

Result

Map the specified range and assign it the default
attribute type, RW.

Map a 2K-byte block surrounding the specified
value. Assign the block the default attribute type,
RW.

Map the specified range and assign it the specified
attribute type.

Map a 2K-byte block surrounding the specified
value. Assign the block the specified attribute.

Memory mapped as read-write (RW) responds like
normal overlay memory. The overlay memory is
high speed and may actually run faster than target
system memory if that memory normally asserts wait
states.

RW is the most common attribute and is therefore
the default. MAP commands that do not specify an
attribute default to RW partitions.

Memory mapped as RO acts like read-only memory
to the target program. If the program attempts to
write to this memory, the ES 1800 aborts run mode
and displays the error message, MEMORY WRITE
VIOLATION. The contents of RO overlay cannot be
altered by a running target program.

The same comments about speed given in the
paragraph on RW apply to memory mapped as RO.
You can always modify memory mapped as RO (in
pause mode) even though the target program (run
mode) cannot.

Alphabetical Command Reference

ILG

TGT

Comments

MAP: Set Memory Map

Memory mapped as illegal can be used to mark
address ranges that should not be accessed by the
target program. Any access to an address range
mapped as ILG causes the ES 1800 to abort run
mode and display the error message, MEMORY
ACCESS VIOLATION. Memory mapped as ILG
does not use up available overlay memory.

Memory is mapped to the target. Memory that is not
explicitly mapped is defaulted to TGT.

Overlay memory is mapped in segments of 2K bytes. When you specify an address or a range
to be mapped as RW or RO, the mapping outline allocates the minimum number of 2K
segments that will completely enclose the address(es) of interest (see OVE).

There is a distinction between the overlay map and overlay memory. If your system has any
overlay memory installed (it is an option), you have a complete overlay map and some
limited amount of overlay memory. The overlay map covers the entire address space (24
bits). The overlay map is used to logically place segments of overlay memory anywhere
throughout the address space.

You can save and restore the contents of the overlay map by using the EEPROM LD/SA V
commands. You cannot save the contents of overlay memory in EEPROM.

Examples

The following command sequence might reflect a common mapping:

>CLM

>LDV

>MAP CS:l:P:RO

>MAP 'RAM_start LEN 20000

>MAP 'l:/O_start:TGT

>MAP 0 LEN 800

>DM

MEMORY MAP:

MAP $000000 TO $0007FF:RW

MAP $000800 TO $00FFFF:l:LG

MAP $010000 TO $02FFFF:RW

MAP $030000 TO $03FFFF:l:LG

MAP $040000 TO $0407FF:TGT

Alphabetical Command Reference

C1ear map to all TGT.

Set CS:l:P to OFFFFO (reset vector).

Map ROM for reset vectors.

Map some overlay memory to work with.

Have l:/O already in target space.

Allocate RAM for interrupt vectors.

Display what we've done.

Interrupt vectors.

Working RAM.

l:/O space.

7-81

MAP: Set Memory Map

7-82

MAP $040800 TO $0FF7FF:ILG

MAP $0FF800 TO $0FFFFF:RO

MAP $100000 TO $FFFFFF:ILG >

Reset vectors.

Alphabetical Command Reference

MIO: Enter 1/0 Mode

Command

MIO <address>

MIO

x

Comments

MIO: Enter 110 Mode

Result

Enters 1/0 mode at <address>. The port address is
displayed, but no data is read until a <return> is
entered as the first character on the line.

Enters 1/0 mode at the last address examined in a
previous 1/0 mode session.

This address is stored in the IOP (1/0 Mode Pointer)
register. At power-up, this value is zero.

Exit 1/0 mode

Affects real-time operation when entered in run mode.

The IOP is modified by scrolling to a new address while in 1/0 mode. When you exit I/0
mode, the IOP reflects the last address examined. (See IOP)

To read from an 1/0 port, enter 1/0 mode using one of the above commands, and enter a
<return> as the first character following the 1/0 mode prompt. The value of the current
address is displayed.

To write to the 1/0 port, enter the value and press <return> . The value is written and the
current address redisplayed.

Data can be entered quickly using a list. A list contains up to nine values separated by
commas. All of the values in a list are written to the same address.

Addresses are not automatically incremented or decremented. Scrolling the address in I/0
mode must be done manually, by using the period to increment the address, and the comma
to decrement the address.

Alphabetical Command Reference 7-83

MIO: Enter 110 Mode

Examples

7-84

>MIO $2FOO

I0:$2FOO >$7F

I0:$2FOO >

I0:$2FOO $7F >X

>

>WDM

>MIO

I0:$2FOO >.

IO: $2F0l >

I0:$2F0l $05A6

>X

>

Enter I/O mode at address $2FOO.

Write to a port.

Verify write.

Exit I/O mode.

Set global data length to word.

Enter I/0 mode at last address.

Increment address.

Read the data.

Exit I/O mode.

Alphabetical Command Reference

MMP: Memory Mode Pointer

MMP: Memory Mode Pointer

Command

MMP

MMP= <exp>

Comments

Result

Display the current value of the memory mode
pointer.

Assign the value <exp> to the memory mode
pointer.

The MMP is the last address examined while in memory mode. If you enter memory mode
without specifying an address, the MMP value is used as the entry point.

The default power-up value of the MMP register is zero. This register may be saved to and
loaded from EEPROM.

The memory mode pointer is automatically modified when you scroll to a new address after
entering memory mode. When you exit memory mode, the MMP reflects the last address
examined. For more information on memory mode, see Section 4, "Memory Mode."

Examples

The first example set the MMP and verifies that it has been set.

>MMP=$12330;MMP

$00012330

>

Set MMP and verify setting.

The second example sets an address comparator to the last address examined in memory
mode.

>M 6000 Enter memory mode.

(examine memory until you find a location of interest)

$006013 SA >X

>ACl=MMP

Alphabetical Command Reference

Exit memory mode.

Set address comparator to last address
examined.

7-85

NXT

NXT - SCROLLING IN MEMORY MODE

Command Result

<return> Scrolls through memory addresses either one byte (8 bits) at
a time, one word (16 bits) at a time, or one long word (32
bits) at a time. See BYT, WRD, LWM.

LST

NXT

The <return> key now decrements addresses in memory
mode.

The <return> key now increments addresses in memory
mode.

Increments the address in memory mode.

Decrements the address in memory mode.

Comments

7-86

The NXT and LST commands may be entered from either pause, run or memory
mode. If entered from the run or pause mode the <return> key is set to increment or
decrement and memory mode is entered at the current value of MMP.

When a comma or period is entered in the memory mode, this temporarily overrides
the scrolling direction.

Alphabetical Command Reference

ON/OFF: Switch Setting

ON/OFF: Switch Setting

Command

ON

OFF

ON <switch>[+<switch> ...]

OFF <switch>[+<switch> ...]

ON-1

OFF-1

Comments

Result

Display the ON/OFF menu. This menu is different
for the 80186/188, 80Cl86/Cl88, and for the
80C186EB/80C188EB.

Display the ON/OFF menu. This menu is different
for the 80186/188, 80C186/C188, and for the
80C186EB/80C188EB.

Set the specified switch(es) to the ON position.

Set the specified switch(es) to the OFF position.

Turn all switches on.

Turn all switches off.

Some ON/OFF switches cannot be set during run mode.

You can save all of the current switch settings in EEPROM for later use by executing a SA V
(to save all variables and settings) or SA V 4 (to save just switch settings) command.

The saved switches can be loaded automatically at power-up or manually after the system is
up and running. To load automatically, set the thumbwheel switch (see page 3-4) before
turning on the emulator. To load manually, enter a LD (to load all variables and settings) or
LD 4 (to load just the switch settings) command.

If it becomes necessary for you to reset the emulator (<ctrl-z> by default), remember that
some switch settings are set to a default state. If you do not want them in their default state,
you must reset the switches after resetting the emulator. You can conveniently do this with a
macro or you may wish to save the switch values to EEPROM and execute an LD 5 command
after resetting the emulator. A typical macro example is _3=0N IDP+DME.

For more information on any switch, see the alphabetical listing in this section.

Alphabetical Command Reference 7-87

ON/OFF: Switch Setting

7-88

80186/188 Switch Settings Menu

>

)ON

ES SWITCH SETTINGS MENU

LD/SAV 4: LOAD/SAVE Sl.t/ITCH SETTINGS IN EEPROM
EXAMPLES:)ON BKX+CK

VALUE

OFF
OFF
OFF
ON
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF

>

)OFF FSX+CPY

NAME

BKX
CK
CPY
FSX·
RDY
STI
DME
TEO
TE1
TE2
RCS
CDH

DESCRIPTION

BREAK ON INSTRUCTION EXECUTION (NOT PREFETCH)
SELECT INTERNAL CLOCK
COPY DATA TO TERMINAL & COMPUTER PORTS
FSI ON INSTRUCTION EXECUTION (NOT PREFETCH)
SELECT INTERNAL READY WHEN ACCESSING OVERLAY
ENABLE STEP THROUGH INTERRUPTS
ENABLE OMA DURING PAUSE
ENABLE TIMER 0 DURING PAUSE
ENABLE TIMER 1 DURING PAUSE
ENABLE TIMER 2 DURING PAUSE
ENABLE CHIP SELECT REGISTERS DISPLAY
CLEAR DHLT BIT IN !ST REGISTER ON PAUSE TO RUN

Alphabetical Command Reference

ON/OFF: Switch Setting

80C186/Cl88 Switch Settings Menu

)ON

ES SW'ITCH SETTINGS MENU

LD/SAV 4: LOAD/SAVE SWITCH SETTINGS IN EEPROM
EXAMPLES:)ON BKX+CK

VALUE

OFF
OFF
ON
ON
OFF
OFF
OFF
OFF
OFF
OFF
OFF
ON
OFF
OFF
OFF
OFF
OFF
OFF
OFF
OFF

>O

)OFF FSX+CPY

NAME

BKX
CPY
FSX
TCE
PPT
ROY
STI
BTE
IHE
CK
IDP
DNV
DME
TEO
TEl
TE2
CDH
RCS
PRE
PCS

DESCRIPTION

BREAK ON INSTRUCTION EXECUTION (NOT PREFETCH)
COPY DATA TO TERMINAL & COMPUTER PORTS
FSI ON INSTRUCTION EXECUTION (NOT PREFETCH)
ENABLE TRACE MEMORY DURING RUN
ENABLE PEEK/POKE TRACE
SELECT INTERNAL READY WHEN ACCESSING OVERLAY
ENABLE STEP THROUGH INTERRUPTS
BUS(RDY) TIMEOUT ENABLE
IGNORE HALT ERRORS
SELECT INTERNAL CLOCK
ENABLE INTERRUPTS DURING PAUSE
VERIFY DOWNLOADED DATA
ENABLE DMA DURING PAUSE
ENABLE TIMER 0 DURING PAUSE
ENABLE TIMER 1 DURING PAUSE
ENABLE TIMER 2 DURING PAUSE
CLEAR DHLT BIT IN IST REGISTER ON PAUSE TO RUN
ENABLE CHIP SELECT REGISTERS DISPLAY
REFRESH DURING PAUSE
CHIP SELECTS DURING PAUSE

Alphabetical Command Reference 7-89

ON/OFF: Switch Setting

80Cl86EB/C188EB Switch Settings Menu

)ON

ES S~ITCH SETTINGS MENU

LD/SAV 4: LOAD/SAVE S'WITCH SETTINGS IN EEPROM
EXAMPLES:)ON BKX+CK

)OFF FSX+CPY

VALUE NAME

OFF BKX
OFF CPY
ON FSX
ON TCE
OFF PPT
OFF ROY
OFF STI
OFF BTE
OFF IHE
OFF CK
OFF IDP
ON DNV
OFF TEO
OFF TE1
OFF TE2
OFF PRE
OFF PCS
OFF RSS

>

Exampl~s

DESCRIPTION

BREAK ON INSTRUCTION EXECUTION (NOT PREFETCH)
COPY DATA TO TERMINAL & COMPUTER PORTS
FSI ON INSTRUCTION EXECUTION (NOT PREFETCH)
ENABLE TRACE MEMORY DURING RUN
ENABLE PEEK/POKE TRACE
SELECT INTERNAL READY WHEN ACCESSING OVERLAY
ENABLE STEP THROUGH INTERRUPTS
BUS(RDY) TIMEOUT ENABLE
IGNORE HALT ERRORS
SELECT INTERNAL CLOCK
ENABLE INTERRUPTS DURING PAUSE
VERIFY DOWNLOADED DATA
ENABLE TIMER 0 DURING PAUSE
ENABLE TIMER 1 DURING PAUSE
ENABLE TIMER 2 DURING PAUSE
REFRESH DURING PAUSE
CHIP SELECTS DURING PAUSE
ENABLE SERIAL STATUS REGISTERS DISPLAY

If you want a hard copy of an emulation session, attach a printer to the computer port on the
back chassis of the ES 1800. Tum on the copy switch so that all data is copied to both serial
ports.

>ON CPY Set the copy switch to on.

>

Assume that you are debugging a program on a new piece of hardware. The program has
already been debugged using the ES 1800's overlay memory and appears to be functioning
properly. When you try to run the program in the hardware it does not work correctly. In
this case you may want to switch back and forth between running from overlay memory and
the target. When running out of overlay you want to use an internal clock and ready signal.
You do this with these two commands:

>ON RDY+CK

>OFF RDY+CK

Set two switches to ON using a +.

Set two switches to OFF using a +.

Here are two alternative methods for doing the same thing using fewer keystrokes.

7-90 Alphabetical Command Reference

ON/OFF: Switch Setting

The first is to use a general purpose register for the command parameter. Assign the register
the switch names. Then use the register as the parameter for the commands.

>GRO = RDY+CK

>ON GRO

>OFF GRO

Set general purpose register.

TUrn on switches.

TUrn off switches.

The next way is to use two macros for the commands. Assign macros 1 and 2 to the ON and
OFF commands. Execute these macros by typing a. and, as the first character on each line.

>_l=ON RDY+CK

>_2=0FF RDY+CK

>.

>,

Alphabetical Command Reference

Define macro 1.

Define macro 2.

Execute macro 1.

Execute macro 2.

7-91

OVE: Overlay Memory Enable

OVE: Overlay Memory Enable

Command

OVE=CD+DTA

OVE=CD

OVE=DTA

Comments

Result

The overlay memory decodes both code and data
space.

Only code status space accesses are decoded by
overlay memory.

Only data status space accesses (including ALT,
DAT and STA space) are decoded by overlay
memory.

Overlay memory responds to an access only if a mapped address and the current OVE status
match the cycle being executed. For more information about the four status spaces, see
segment description in the raw trace section (Section 4, "Trace Memory") and the iAPX 861
88, 1861188 Users Manual.

CD is code space. The processor encodes it as code status.

DT A is data space. The processor encodes it as data, alternate data or stack status.

Overlay memory cannot be divided between CD and DT A on the same map. It is either all
one (CD), or the other (DT A), or all both (CD+DT A).

To display the value of the current status being used for memory access, use the MMS
command.

7-92 Alphabetical Command Reference

OVS: Overlay Memory Speed

OVS: Overlay Memory Speed
(80C1 Bx and 80C1 BxEB only)

Command

ovs

ovs <0-15>

Comments

Result

Display the current value of the overlay memory
speed register.

Specify the number of wait states inserted before the
overlay memory supplies a RDY signal to terminate
the cycle. No wait states are inserted if OVS is zero.

OVS is automatically set to 1 if CLK (clock
frequency) is greater than 12.5 MHz and you are
using a standard overlay memory board. You cannot
override this automatic setting. If you are using a fast
overlay memory board, OVS is set to zero.

The value of OVS determines how many cycles occur before a RDY signal is returned by the
overlay memory. The emulator's wait state generator is only active when the RDY
softswitch is on (ON RDY).

Assigning OVS a value of zero indicates that no wait states are inserted and the processor
runs at full speed. A value of one inserts a single wait state, a value of two inserts two wait
states, etc. The maximum number of wait states is fifteen.

Chip-select Registers, Wait States, and Overlay Memory

The chip-select control registers in the Peripheral Control Block allow you to automatically
insert wait states for memory affected by a given chip select. If RDY is ON, and overlay
memory is mapped, the actual number of wait states inserted will be the greater of the number
selected with the OVS command and the number selected by the PCB chip-select register.
For example, if the chip-select register inserts 2 wait states and OVS is set to 4 wait states,
the processor inserts 4 wait states.

When you set the R2 bit in the PCB chip-select register, the CPU ignores external RDY
signals. In this case, the OVS value will have no effect, and the number of wait states inserted
will always be as programmed in the chip-select register (from 0-3 wait states).

For standard overlay memory to run properly at speeds greater than 12.5 MHz, at least one
wait state is required. If you use a chip-select control register to set the number of overlay
wait states (using bits RO and Rl), be sure to program at least 1 wait state.

Alphabetical Command Reference 7-93

OVS: Overlay Memory Speed

If you have the fast overlay memory board, no chip-select wait states need to be inserted.

16 MHz Overlay Operation (Standard Overlay Memory Board)

The standard overlay memory board cannot operate at 16 MHz without wait states. If you are
running your target system at 16 MHz and you wish to access overlay memory, one of the
following statements must be true.

OVS is set to a value between one and fifteen, and the RDY switch is turned on.

- or -

Your target system is running with at least one wait state per memory access.

16 MHz Overlay Operation (Fast Overlay Memory Board)

A fast overlay memory board is available that supports memory accesses with zero wait­
states (even with a 16 MHz target clock). Using the fast overlay memory board. you no
longer need to carefully monitor the value of OVS, and the target clock frequency. or to
program the chip-select control registers to add wait states, when operating at a clock
frequency above 12.5 MHz.

7-94

NOTE
Note that OVS is not used unless RDY is ON, and both OVS and RDY apply
to overlay memory accesses only.

Alphabetical Command Reference

PCB: Display PCB Registers

PCB: Display PCB Registers

Command Result

PCB Display contents of the peripheral control block
registers.

Comments

Since the PCB is different for the 8018x, 80C18x and 80C18xEB processors, examples of all
screens are shown on the following pages.

Examples

8!ll8x PCB S£r!:!!n Di~12lal:'.

>

>PCB
* * RELOCATION REGISTER REL = 20FF

" " CHIP SELECT CONTROL UMCS LMCS MMCS MPCS PACS
FFFB 0000 0000 0000 0000

* * TIMER REGISTERS
TC MA MB MCW

TIMER 0 0000 0000 0000 0000
TIMER 1 0000 0000 0000 0000
TIMER 2 0000 0000 0000

* * OMA REGISTERS

USRC SRC UDST DST xc f:}vl

CHANNEL 0 0000 0000 0000 0000 0000 0000
CHANNEL 1 0000 0000 0000 0000 0000 0000

* * INTERRUPT CONTROL REGISTERS

EDI POL POS MSK PLM ISV IRQ !ST TCR DMAO DMA1 INTO INT1 INT2 INT3
0000 0000 0000 OOFF 0007 0000 0000 0000 OOOF 0000 0000 OOOF OOOF OOOF OOOF
>

Alphabetical Command Reference 7-95

PCB: Display PCB Registers

80Cl8x PCB Screen Display

>

)PCB
* * RELOCATION REGISTER REL = 20FF

* * CHIP SELECT CONTROL UMCS LMCS HMCS MPCS PACS
FFFB 0000 0000 0000 0000

* * TIMER REGISTERS TC MA MB MCIV
TIMER 0 0000 0000 0000 0000
TIMER 1 0000 0000 0000 0000
TIMER 2 0000 0000 00 00

* * DMA REGISTERS
USRC SAC UDST DST xc C'W

CHANNEL 0 0000 0000 0000 0000 0000 0000
CHANNEL 1 0000 0000 0000 0000 0000 0000

* * REFRESH/POWER DOWN REGISTERS MDR CDR EDR PDC
0000 0000 0000 0000

* * INTERRUPT CONTROL REGISTERS

EOI POL POS MSK PLM ISV IRQ IST TCR DMAO DMA1 INTO INT1 INT2 INT3
0000 0000 0000 OOFF 0007 0000 0000 0000 OOOF 0000 0000 OOOF OOOF OOOF OOOF
>I

7-96 Alphabetical Command Reference

PCB: Display PCB Registers

80Cl8xEB PCB Screen Display

>PCB
* * RELOCATION REGISTER

* * CHIP SELECT CONTROL

GCSO GCSl
STR FFCF FFCF
STP FFC3 FFC3

* * TIMER REGISTERS
TIMER 0
TIMER 1
TIMER 2

* * I/O PORT CONTROL
PORT 1
PORT 2

* * SERIAL PORT CONTROL
PORT 0
PORT 1

* * REFRESH/POil/ER CONTROL

* * INTERRUPT CONTROL REGISTERS

REL = OOFF

UCT UCP LCT LCP
FFBF FFCF FFCF FFC3

GCS2 GCS3 GCS4 GCS5
FFCF FFCF FFCF FFCF
FFC3 FFC3 FFC3 FFC3

TC MA MB MC\i/
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000

PDR PPN PCN PLT
OOFF OOFF DOFF OOFF
DOFF OOFF DOFF OOFF

SBD SCT SCN SST
0000 0000 0000 0008
0000 0000 0000 0008

RFBS RFTM RFCN RFAD
0000 0000 0000 1FFF

GCS6 GCS7
FFCF FFCF
FFC3 FFC3

SRB STB
0000 0000
0000 0000

PMC
0000

EDI POL POS MSK PLM ISV IRQ IST TCR SCR INT4 INTO INT1 INT2 INT3
0000 0000 DODD OOFD 0007 0000 0000 0000 OOOF OOOF OOOF OOOF OOOF OOOF OOOF
>

80Cl8xEB PCB Screen Display (GeneProbe)

)PCB
** RELOCATION REGISTER REL : OOFF
** CHIP SELECT CONTROL UCT UCP LCT LCP

FFBF FFCF FFCF FFC3
GCSO GCSl GCS2 GCS3 GCS4 GCS5 GCS6 GCS7

STR FFCF FFCF FFCF FFCF FFCF FFCF FFCF FFCF
STP FFC3 FFC3 FFC3 FFC3 FFC3 FFC3 FFC3 FFC3

** TIMER REGISTERS TC MA MB MCW'
TIMER 0 0000 0000 0000 0000
TIMER 1 0000 0000 0000 0000
TIMER 2 0000 0000 0000

** I/O PORT CONTROL PDR PPN PCN PLT
PORT 1 OOFF OOFF OOFF OOFF
PORT 2 OOFF OOFF OOFF OOFF

** SERIAL PORT CONTROL SBD SGT SCN SST SRB STB
PORT 0 0000 0000 0000 0008 0000 0000
PORT 1 0000 0000 0000 0008 0000 0000

** REFRESH/POW'ER CONTROL RFBS RFTM RFCN RFAD PMC
0000 0000 0000 1FFF 0000

** INTERRUPT CONTROL REGISTERS
EDI POL POS MSK PLM ISV IRQ IST TCR SCR INT4 INTO INT1 INT2 INT3
0000 0000 0000 OOFD 0007 0000 0000 0000 OOOF OOOF OOOF OOOF OOOF OOOF OOOF
>I

Alphabetical Command Reference 7-97

PCS: Enable Chip Selects

PCS: Enable Chip Selects
(80C1 Bx and 80C1 BxEB only)

Command

ON PCS

OFF PCS

Comments

Result

Chip selects are sent to the target system during
PAUSE mode.

Chip selects are not sent to the target system during
PAUSE mode.

Default: OFF

If PCS is set ON, all PCB chip select lines (UCS, LCS, etc.) will be driven to the target
system during PAUSE mode.

If PCS is set OFF, all chip selects will be held de-asserted to the target system during PAUSE
mode, but will be active during RUN mode. You may want to use this setting to prevent the
selection of logic on your target by internal emulator activity. Such activity could corrupt
memory, or activate I/O devices, etc.

7-98

NOTE

If you are using a target with an attached CPU in ONCE mode and plan to
perform RESET operations, be sure to keep the PCS softswitch set to OFF to
avoid driving a grounded chip select line.

Alphabetical Command Reference

PPT: Trace Peeks and Pokes

PPT: Trace Peeks and Pokes
(BOC1 Bx and BOC1 BxEB only)

Command

ONPPT

OFFPPT

Comments

Result

Trace peek and poke cycles.

Do not trace peek and poke cycles.

Default: OFF

With PPT ON, peeks and pokes (internal reads and writes) to target and overlay memory will
be traced (provided that the TCE switch is also ON). Peeks and pokes are done by the MM,
MIO, DB, DNL, FIL, @, UPL, LOV, VFO, and BMO ESL commands.

With this switch ON, proper disassembly of trace cannot be guaranteed due to the extra data
cycles being traced.

With PPT OFF, the peek and poke trace cycles will not appear in trace.

Alphabetical Command Reference 7-99

PRE: DRAM Refresh During Pause

PRE: DRAM Refresh During Pause
(80C1 Bx and 80C1 BxEB only)

Command

ON PRE

OFF PRE

Comments

Result

The DRAM refresh controller is active during pause
mode.

The DRAM refresh controller is not active during
pause mode.

Default: OFF

When the emulator transitions between pause and run modes, the setting of the PRE switch
determines whether the refresh register values are read from or written to the physical PCB
and whether the refresh controller continues to run while the emulator is paused. The refresh
control registers MDR, COR and EOR are affected by the switch setting.

Pause to Run Transition

When the emulator transitions from pause to run mode, the PRE switch setting determines if
the values of certain registers in the emulator's RAM image are loaded to the physical PCB.
For the 80C18x, these registers are the MOR, CDR and EOR; for the 80C18xEB, the registers
loaded are RFBS, RFfM, RFCN, and RFAD.

If the PRE switch is OFF, the registers are loaded to the physical PCB.

If the PRE switch is ON, the registers are not loaded to the physical PCB. This prevents
the currently active register values being overwritten with values from a previous run
state.

NOTE

This means that if you set up the registers with ESL, you must STP first with
PRE OFF to load the physical PCT. After that, you may turn PRE ON.

Run to Pause Transition

When the emulator transitions from run to pause mode, the current values of certain registers
are loaded from the physical PCB to the emulator's RAM image of the CPU registers. for the
80C18x, the registers are the MOR, COR and EOR; for the 80C18xEB, the registers loaded
are RFBS, RFTM, RFCN, and RFAO.

If the PRE switch is ON, no other action occurs and the refresh controller continues to
run while the emulator is paused. All read bus cycles go to target space during PAUSE
mode if PRE is ON.

7-100 Alphabetical Command Reference

PRE: DRAM Refresh During Pause

If the PRE switch is OFF, the refresh controller is disabled immediately after the
transition to pause mode by clearing bit 15 of the EDR register (80C18x) or the RFCN
register (80C18xEB) in the physical PCB.

NOTE
If you enter the reset character (default is <ctrl-z>), the PRE switch is
automatically reset to the OFF state.

You can modify refresh registers while you are in pause mode, and, if PRE is
off, those values continue to be active when run mode is entered. Registers
are modified using a <register> = <Value> command.

The table below summarizes the effect of the refresh switch.

Effect of PRE switch on Run/Pause Transitions

Switch
M11il1g

ON

OFF

Pause to Run
Transition

The emulator's
RAM image of the
refresh registers
are not loaded to the
physical PCB before
entering run mode.

The emulator's
RAM image of the
refresh registers are
loaded to the physical
PCB just before running
the target code.

Alphabetical Command Reference

Run to Pause
Transition

The value in the
refresh registers are
loaded into the
emulator's RAM
image of the CPU
registers.

The values in the
refresh registers are
loaded into the
emulator's RAM
image of the CPU
registers. The refresh
controller is then
disabled by clearing
bit 15 of the EDR
register.

7-101

PUR: Delete All Symbols And Sections

PUR: Delete All Symbols And Sections

Command Result

PUR Purge all symbols and section references.

Comments

Be sure to purge before downloading symbols that may already be defined. If you do not, an
error occurs and the download is aborted.

7-102

>SYM

00001000 sym

$00008000 start

$0000837E end

View symbols that are currently set.

>SEC View sections that are currently set.

$00001000 TO $0000101F sec

$00008000 TO $0000837E init_mod

$00000000 TO $0000FFFF RAM

>PUR;SYM;SEC Purge symbols and sections, and verify
purge.

>

Alphabetical Command Reference

RBK: Run Target Program

RBK: Run Target Program

Command

RBK

RBV

RUN

RNV

Comments

Result

Begin executing the target program at the current
CS:IP memory location with breakpoints enabled.

Load the restart vectors and begin executing the
target program at memory location FFFFOH with
breakpoints enabled.

Begin executing the target program at the current
CS:IP memory location with breakpoints disabled.

Load the restart vectors and begin executing the
target program at memory location FFFFOH with
breakpoints disabled.

RNV and RBV are valid only in pause mode.

All defined events are active while RBK and RBV are executing.

Run commands containing a B indicate that Event System breakpoints are enabled. Run
commands containing a V indicate that the reset vectors are loaded prior to entering run
mode.

Entering RNV is identical to entering LDV;RUN and entering RBV is the same as entering
LDV;RBK.

For more information, see Section 4, "Breaking Emulation."

Alphabetical Command Reference 7-103

RBV: Run Target Program

RBV: Run Target Program

Command

RBK

RBV

RUN

RNV

Comments

Result

Begin executing the target program at the current
CS:IP memory location with breakpoints enabled.

Load the restart vectors and begin executing the
target program at memory location FFFFOH with
breakpoints enabled.

Begin executing the target program at the current
CS:IP memory location with breakpoints disabled.

Load the restart vectors and begin executing the
target program at memory location FFFFOH with
breakpoints disabled.

RNV and RBV are valid only in pause mode.

All defined events are active while RBK and RBV are executing.

Run commands containing a B indicate that Event System breakpoints are enabled. Run
commands containing a V indicate that the reset vectors are loaded prior to entering run
mode.

Entering RNV is identical to entering LDV;RUN and entering

RBV is the same as entering LDV;RBK.

For more information, see Section 4, "Breaking Emulation."

7-104 Alphabetical Command Reference

RCS: Read Chip Select

RCS: Read Chip Select
801 Sx and 80C1 Bx only

Command

ON RCS

OFF RCS

Comments

Result

All chip select control registers are read upon run-to-pause.

The chip select control registers are only read and loaded
to the internal RAM table if they have been set manually
with a value during pause mode.

The transition from pause to run mode causes only those
chip select registers that have been modified during pause
mode to reload to the physical PCB. The displayed values
of chip select registers do not show what is actually in the
PCB.

Default: OFF

The RCS software switch does not affect the UMCS chip select control register.

Reading the chip select control registers enables their corresponding outputs. Use the RCS
software switch only after the chip select control registers are set.

This command is not recognized by the emulator for the 80C186EB or the 80C188EB processors.
The 80C18xEB behaves as though RCS is set to ON.

Alphabetical Command Reference 7-105

RCT: Reset Hardware Counter

RCT: Reset Hardware Counter

Command Result

WHE <events> THE RCT,<action>, ••.

Comments

If all of the conditions specified in the event portion
of the WHEN(fHEN clause are satisfied, the RCT
action loads the count comparator value for the
specified group into the hardware counter. When
switching groups, the current value of the hardware
counter is passed along as a global count value unless
a RCT action is specified in the same list of events
that causes the group switch.

See the CNT action for a complete description of how the hardware counter works.

Examples

Look for a read from a specific 1/0 port. After it is found go to group 2, load the group 2
counter register value into the hardware counter, and set a group 2 address comparator to
count every bus cycle (all addresses). Break after 100 bus cycles.

7-106

>ACl='IOport

>Sl=RD

Set comparator to I/O port.

Look for read access only.

>WHEN ACl AND Sl THEN GRO 2, RCT

>CTL.2=#100

>ACl.2=0 TO -1

>2 WHEN ACl THEN CNT

>2 WHEN CTL THEN BRK

>RBK

R>

When I/O port read occurs, go to group 2 and
reset counter.

Set count limit in group 2.

Set address comparator to match every
address.

Increment counter at every address.

After 100 bus cycles, break.

Run til breakpoint.

Run mode prompt will appear.

Alphabetical Command Reference

RDY: Select Internal or External Ready Signal

ROY: Select Internal or External Ready Signal

Command

ONRDY

OFFRDY

Comments

Result

Select an internally generated ready signal to
complete memory accesses. This allows use of
overlay memory when no target system is being
used.

Select the target system's ready signal to complete
memory accesses.

Default: OFF (See note below.)

This command is valid only in pause mode.

A 'ready signal' denotes the end of a memory cycle. See the Intel iAPX 86188. 1861188 Users
Manual for details.

If overlay memory is mapped in an area where target memory is nonexistent, the target
decode logic may not provide a ready signal. An ON RDY provides this signal, allowing
overlay memory to be used in those areas.

When the ready switch is on and the target system is also providing a ready signal, the first
ready signal back to the ES 1800 will be the one used.

If internal ready is selected and there is a target, there is no synchronization between the ready
signal and the target hardware. This can cause problems if a ready is returned by the ES 1800
before the target hardware is ready.

NOTE: The default is ON if there is no target clock on power-up and if internal clock has
been selected.

Alphabetical Command Reference 7-107

RET: Display A Blank Line

RET: Display A Blank Line

Command Result

RET Outputs a <return> , line feed.

Comments

This command improves readability when displaying a large amount of data.

Examples

Display two blocks of data, separating them with a blank line.

>DB SS:SP LEN 20;RET;DB DS:DX LEN 20

7-108

07FF76 02 06 - 20 46 40 62 00 00 12 20 •• F@b

07FF80 07 90 90 00 70 20 03 07 - 47 41 63 01 01 21 21 71 •... p

•• GAc •• ! !q

07FF90 01 90 06 21 12 13 ... ! ..

088060 01 02 03 04 05 06 07 08 - 00 20 21 22 23 24 25 26
! "#$%&

088070 30 31 32 33 34 35 36 37 - 55 56 so 49 48 47 30 30
01234567UVPIB600

Alphabetical Command Reference

REV: Display The Software Revision Dates

REV: Display The Software Revision Dates

Command Result

REV Display the software revision dates for ESL and the
firmware.

Comments

This command is valid only in pause mode.

When you call AMC customer service, they will ask you what software revisions are in your
machine. This command gives you the necessary information.

Examples

>REV Display revision of ESL and firmware.

WED AUG 6 08:50:26 PDT 1986 - ESL 2.2

WED AUG 6 16:50:26 PDT 1986 - FW 3.12

>

Alphabetical Command Reference 7-109

RNV: Run Target Program

RNV: Run Target Program

Command

RBK

RBV

RUN

RNV

Comments

Result

Begin executing the target program at the current
CS:IP memory location with breakpoints enabled.

Load the restart vectors and begin executing the
target program at memory location FFFFOH with
breakpoints enabled.

Begin executing the target program at the current
CS:IP memory location with breakpoints disabled.

Load the restart vectors and begin executing the
target program at memory location FFFFOH with
breakpoints disabled.

RNV and RBV are valid only in pause mode.

All defined events are active while RBK and RBV are executing.

Run commands containing a B indicate that Event System breakpoints are enabled. Run
commands containing a V indicate that the reset vectors are loaded prior to entering run
mode.

Entering RNV is identical to entering LDV ;RUN and entering RBV is the same as entering
LDV;RBK.

For more information, see Section 4, "Breaking Emulation."

7-110 Alphabetical Command Reference

RSS:Read Serial Status

RSS: Read Serial Status
80C18xEB only

Command

ONRSS

OFFRSS

Comments

Result

Enables reading of the serial status registers upon
run-to-pause.

Disables reading of the serial port status registers.
The displayed values of serial status registers do not
show what is actually in the PCB.

Default: OFF

The RSS switch only affects the status registers. All other serial port registers are read on
every transition from run to pause. The entire status register, with the exception of the CTS
bit, is cleared every time it is accessed, either for read or for write.

The serial port status register values in the internal RAM table are not written to the PCB,
whether RSS is ON or OFF. If you change a serial port status register value using ESL, the
new value will appear on the screen, but the value of the register in the microprocessor does
not change. There are two ways to change the value: one is through your code; the other is
through either the M or MIO commands.

Alphabetical Command Reference 7-111

RST: Reset

RST: Reset

Command

RST

Comments

Result

Reset the pod microprocessor and loads the reset
vectors.

CS = FFFFH
IP = 0
FLX = F002E

The RST command can be issued from either run or pause mode. When in pause mode, the
RST command resets the microprocessor and loads the reset vectors (LDV). While in run
mode the microprocessor is reset in the target environment and emulation continues. This
causes the microprocessor to start fetching instructions from the reset vector. RST does not
affect the target reset signal; therefore no target hardware is reset. This may cause problems
when the target program tries to interact with uninitialized hardware.

Both <ctrl-z> and the RST command stop emulation in run mode. <ctrl-z> does not initialize
the emulator registers.

Examples

In the example below, the ES 1800 is in run mode. The microprocessor is reset in the target
environment and emulation continues.

R> RST

R>

From run mode, enter a microprocessor
reset.

In the next example, the ES 1800 is in pause mode. The microprocessor is reset and the reset
vectors are loaded into the ES 1800 registers.

>RST

>

7-112

From pause mode, enter a microprocessor
reset.

Alphabetical Command Reference

RUN: Run Target Program

RUN: Run Target Program

Command

RBK

RBV

RUN

RNV

Comments

Result

Begin executing the target program at the current
CS:IP memory location with breakpoints enabled.

Load the restart vectors and begin executing the
target program at memory location FFFFOH with
breakpoints enabled.

Begin executing the target program at the current
CS:IP memory location with breakpoints disabled.

Load the restart vectors and begin executing the
target program at memory location FFFFOH with
breakpoints disabled.

RNV and RBV are valid only in pause mode.

All defined events are active while RBK and RBV are executing.

Run commands containing a B indicate that Event System breakpoints are enabled. Run
commands containing a V indicate that the reset vectors are loaded prior to entering run
mode.

Entering RNV is identical to entering LDV;RUN and entering RBV is the same as entering
LDV;RBK.

For more information, see Section 4, "Breaking Emulation."

Alphabetical Command Reference 7-113

SAV: Save System Variables InEEPROM

SAV: Save System Variables In EEPROM

Command

SAV

SA V <category>

Comments

Result

Copies all system variables from ES 1800 memory
into EEPROM.

Saves one of the six categories of variables from
ES 1800 RAM to EEPROM.

This command is valid only in pause mode.

A SA V operation may take up to two minutes.

DO NOT INTERRUPT THE PROCESS!

Values saved to EEPROM continue to be valid within the ES 1800. There is room in
EEPROM to save the system variables for two different users. The user is determined by a
parameter in the SET menu. When you execute a SAV, the variables are saved to the user
partition currently defined in the SET menu.

This chart shows the categories of information that can be saved in EEPROM.

0
1
2

3
4
5

SET menu
Contents of ES 1800 registers
Event Monitor System
WHEN/ffIEN statements
Overlay map
Software switch settings
Macros

Variables are loaded from EEPROM back to the ES 1800 using the LD command.

When you first use the ES 1800, you should execute a SAV command with no parameter.
This initializes EEPROM, so that subsequent LD commands will work properly with the
ES 1800 board and pod. Factory default positions of the thumbwheel switch are shown on
Table 3-1 on page 3-4.

Examples

>SAV 1

7-114

Save current value of ES 1800 registers .to
EEPROM.

Alphabetical Command Reference

SEC: Display Section

Command

SEC

SEC <value>

'<section>

'<section>= <range>

Examples

>'sec = 1000 LEN IF

>'RAM =$0000 TO $FFFF

SEC: Display Section

Result

Display all currently defined sections and their
values.

Display the section assigned the specified value.

Display the value of the specified section.

Assign the <range> to the specified section.

Define section using LEN syntax.

Define section using TO syntax.

>'init_mod 'start TO 'end
Define section using TO syntax and symbols.

>SEC Display sections.

$00001000 TO $0000101F sec

$00000000 TO $0000FFFF RAM

$00008000 TO $0000837E init_mod

Alphabetical Command Reference 7-115

SET: Set Up Parameters

SET: Set Up Parameters

Command

SET

Result

Display the SET menu. The parameters in this menu
specify the external communication details.

SET<parameter>,<exp> The value of the specified parameter is changed to
<exp>. If you assign an illegal value to a variable, an
error message is displayed, and the value is not
changed.

Comments

The table below shows the valid values for each SET variable. All arguments preceded with
a$ indicate that the value entered must be a 7-bit ASCII character.

The # preceding the SET command arguments below is typed in and designates the value
entered as decimal. The # is optional for decimal numbers 0-9.

Parameters

SET#l,#0
SET#l,#1

SET#2,$n

Descriotion

User 0
User 1

Two users may save and load values
to the EEPROM. This parameter
indicates which user is active when
executing the SA V and LD
commands.

Reset character

The reset character resets the ES 1800
and the pod CPU. The system default
is <ctrl-z> ($1A).

Parameters Descriotion

SET #3,$n,$m XON/XOFF characters

XON and XOFF control the screen
scrolling. An XOFF stops a scrolling
display. XON resumes scrolling the
display. The system defaults are
CTRL Q, CTRL S ($13, $11).

Reset Required

No
No

No

Reset Required

No

7-116 Alphabetical Command Reference

SET#9,#0
#1
#2

SET#l0,#1
#2
#3
#4
#5
#6
#7
#8
#9

#10
#11
#12
#13
#14
#15

SET#ll,#1
#2

SET#12,#0
#1
#2

Parameters

SET#l3,#n

LSA value shows as 16 bits (default)
Display absolute time stamp value
Display relative time stamp value

75 baud
110 baud
134.5 baud
150 baud
300 baud
600 baud
1200 baud
1800 baud
2000baud
2400baud
3600baud
4800baud
7200 baud
9600 baud (default)
19200baud

The terminal port baud rate

1 stop bit (default)
2 stop bits

The number of stop bits for the
terminal port

No parity (default)
Even parity
Odd parity

The parity for the terminal port

Descrivtion

CRT length (default: 24 lines)

The maximum number of lines
displayed for commands that use
paging

Alphabetical Command Reference

SET: Set Up Parameters

Yes

Yes

Yes

Yes

Reset Required

No

7-117

SET: Set Up Parameters

SET #14,$n,$m Transparent mode escape sequence No

SET#20,#l
#2
#3
#4
#5
#6
#7
#8
#9

#10
#11
#12
#13
#14
#15

SET#21,#1
#2

SET#22,#0
#1
#2

Parameters

When entered from either port,
transparent mode is terminated. The
default sequence is <esc><esc>
($1B,$1B).

75 baud
110 baud
134.5 baud
150 baud
300 baud
600 baud
1200 baud
1800baud
2000 baud
2400 baud
3600 baud
4800 baud
7200 baud
9600 baud (default)
19200 baud

The computer port baud rate

1 stop bit (default)
2 stop bits

The number of stop bits for the
computer port

No parity (default) Yes
Even parity
Odd parity

Parity for the computer port

Descriotion

Yes

Yes

Reset Required

SET #23,$n,$m Transparent mode escape sequence No

7-118

When entered from the computer
port, transparent mode is exited. The
default sequence is <esc><esc>
($1B,$1B).

Alphabetical Command Reference

SET #24,$n,$m,$o

SET#25,#n

SET#26,#0
#1
#2
#3
#4
#5

SET#27,$n

Comments

Command terminator sequence

The default sequence is
<return>, null, null ($OD, $00,
$00).

Upload record length

The maximum length for an
upload record. (The default
length is 32 bytes of data.)

Intel (default)
MOS
Motorola
Signetics
Tektronix
Extended Tekhex

Upload/download serial data
format

Acknowledge character

The acknowledge character is
sent when a valid record is
received when downloading in
computer control. The default
is $06.

SET: Set Up Parameters

No

No

No

No

Some SET parameters require the system to be reset, and prompt for a reset character. If you
change a parameter that requires a reset, but do not enter one, subsequent displays of the SET
menu show the new value you have assigned the variable, even though it is not currently in
effect.

If you change the SET parameters and wish to use the new values at a later date, you can save
them in EEPROM by entering a SA V or SA V 0 command.

Saved parameters can be loaded automatically at power-up or manually after the system is up
and running. To load automatically, set the thumbwheel switch (see page 3-4) before turning
on the ES 1800. To load manually, enter LD (to load all variables and settings) or enter the
LD 0 command (to load just the SET parameters).

See Section 4, "Serial Communication," for information on communicating with a host
computer.

Alphabetical Command Reference 7-119

SF: Special Functions List

SF: Special Functions List

Command

SF

Result

Display list of all available RAM tests, scope loops
and miscellaneous tests.

Examples

7-120

>SF

SF 0,<RANGE><CR>

SF 1,<RANGE><CR>

SF 2,<RANGE><CR>

SF 3,<RANGE><CR>

SIMPLE RAM TEST, SINGLE PASS

COMPLETE RAM TEST, SINGLE PASS

SIMPLE RAM TEST, LOOPING

COMPLETE RAM TEST, LOOPING

SCOPE LOOPS: {SELECT NUMBER FOR I/0 LOOPS}

SF 4 {24},<ADDRESS>,<PATTERN><CR>

SF 5 {25},<ADDRESS><CR>

SF 6 {26},<ADDRESS>,<DATA><CR>

SF 7 {27},<ADDRESS>,<PATTERN><CR>

SF 8 {28},<ADDRESS>,<PATTERN><CR>

SF 9 {29},<ADDRESS>,<DATA><CR>

SF 11 {31},<ADDRESS>,<DATA><CR>

SF 12 {32},<RANGE><CR>

MISCELLANEOUS:

SF 13<CR>

CLK <CR>

CRC <RANGE><CR>

CRE/CRO <RANGE><CR>

>

TOGGLE DATA AT ADDRESS

READ FROM ADDRESS

WRITE DATA TO ADDRESS

WRITE PATTERN, THEN PATTERN
COMPLEMENT

WRITE PATTERN, THEN ROTATE

WRITE DATA, THEN READ

WRITE INCREMENTING VALUE

READ DATA OVER ENTIRE RANGE

CRC CHECK OF EMULATOR FIRMWARE

DISPLAY TARGET CLOCK FREQUENCY

CALCULATE CRC OF SPECIFIED RANGE

CALCULATE CRC OF EVEN/ODD BYTES
ONLY

Alphabetical Command Reference

SF 0: Simple RAM Test, Single Pass

SF 0: Simple RAM Test, Single Pass

Command

SF 0,<range>

Pattern
Sequence
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

BYM
00000000
10000000
11000000
11100000
11110000
11111000
11111100
11111110
11111111
01111111
00111111
00011111
00001111
00000111
00000011
00000001

Alphabetical Command Reference

Result

Write a test pattern to all locations within the
specified range, then reads each location to verify the
data. The following pattern sequence is used:

WDM
00000000 00000000
10000000 00000000
11000000 00000000
11100000 00000000
11110000 00000000
11111000 00000000
11111100 00000000
11111110 00000000
11111111 00000000
11111111 10000000
11111111 11000000
11111111 11100000
11111111 11110000
11111111 11111000
11111111 11111100
11111111 11111110
1111111111111111
0111111111111111
0011111111111111
0001111111111111
0000111111111111
0000011111111111
00000011 11111111
00000001 11111111
00000000 11111111
00000000 01111111
00000000 00111111
00000000 00011111
00000000 00001111
00000000 00000111
00000000 00000011
00000000 00000001

7-121

SF 0: Simple RAM Test, Single Pass

Comments

This command is valid in pause mode only.

If a location is read that does not match the test pattern, a failure is reported.

The address, correct data, and faulty data is displayed.

If no failure is detected, the following prompt is displayed:

TESTING RAM

COMPLETE

This is a single pass test.

7-122 Alphabetical Command Reference

SF I: Complete RAM Test, Single Pass

SF 1 : Complete RAM Test, Single Pass

Command

SF !,<range>

Comments

Result

Write, then read, a test pattern to all locations in the
specified range. Refer to Efficient Algorithms for
Test Semiconductor Random-Access Memories
mentioned in the introduction to Diagnostic
Functions for the test pattern.

This command is valid in pause mode only.

If an error is detected, the associated address, correct data, faulty data, and test sequence
number are displayed. The sequence number specifies which test in the complete list of tests
caused the failure.

This is a single pass test.

Examples

TEST FAILED AT $20;GOOD DATA-$00, BAD DATA-$01 SEQ#-$02

An error is detected.

Alphabetical Command Reference 7-123

SF 2: Simple RAM Test, Looping

SF 2: Simple RAM Test, Looping

Command Result

SF 2,<range> Write a test pattern to all locations in <range>, then
·reads each location to verify the data. See SF 0 for
test pattern. Each time the test is executed, the pass
count is incremented and displayed on the screen.

Comments

This command is valid in pause mode only.

If no failure is detected, the pass line is the only line displayed. It is continually updated,
showing the number of times the test has been executed.

SF 2, 0 TO 4

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

PASS COUNT = $XXXX

If a failure is detected, the problem address, correct data. and faulty data are displayed on the
line after the pass number line, and the test continues.

>SF 2,0 TO 4

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

TEST FAILED AT $02; GOOD DATA - $FE, BAD DATA - $FF

PASS COUNT = $0000

TEST FAILED AT $02: GOOD DATA - $FE, BAD DATA - $FF

PASS COUNT $0001

until reset

You must use the reset character to terminate this test (<ctrl-z> default, can be changed with
SET).

7-124 Alphabetical Command Reference

SF 3: Complete RAM Test, Looping

SF 3: Complete RAM Test, Looping

Command Result

SF 3,<range> Write a test pattern to all locations within <range>,
then read each location to verify the data. See SF 1
for test reference information.

Comments

This command is valid in pause mode only.

During execution, a pass count is maintained and displayed on the screen.

If no failure is detected, the pass line is the only line. It is continually updated, showing the
number of times the test has been executed.

>SF 3, 0 TO 2

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

PASS COUNT = $:XXXX

If a failure is detected the associated address, the correct data, faulty data, and test sequence
number are displayed.

>SF 3, 0 TO 2

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

TEST FAILED AT $02; GOOD DATA - $00, BAD DATA - $01 SEQ # - 02

PASS COUNT $0000

TEST FAILED AT $02; GOOD DATA - $00, BAD DATA - $01 SEQ # - 02

PASS COUNT $0001

until reset

You must use the reset character to terminate this test. (<ctrl-z> default, can be changed with
SET).

Alphabetical Command Reference 7-125

SF 4: Toggle Data At Address

SF 4: Toggle Data At Address

Command

SF 4<address>,<data>

SF 24,<address>,<data>

SEQ
1
2
3
4

Comments

Result

Write <data> to the specified address in the memory
space defined by MMS.

Write <data> to the specified address in 1/0 space.

Write the user defined data pattern to <address>,
alternating with a data pattern of zeros.

BYM WDM
00 0000
xx xxxx (user data)
00 0000
xx xxxx (user data)

These commands are valid in pause mode only.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

Assume you are in word mode (WDM).

>SF 4, 2, $FFFF

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

The data pattern written to address 2 is:

0000

FFFF

0000

FFFF

7-126 Alphabetical Command Reference

SF 5: Peeks Into The Target System

SF 5: Peeks Into The Target System

Command

SF 5,<address>

SF 25,<address>

Comments

Result

Consecutively read from the specified memory
address using MMS as status space register.

Consecutively read from the specified 1/0 address.

These commands are valid in pause mode only.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

>SF S, 2

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

Alphabetical Command Reference 7-127

SF 6: Pokes Into The Target System

SF 6: Pokes Into The Target System

Command

SF 6,<address>,<data>

SF 26,<address>,<data>

Comments

Result

Consecutively write the user defined data pattern to
the specified memory address using MMS as status
space register.

Consecutively write the user defined data pattern to
the specified 1/0 address.

These commands are valid in pause mode only.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

>SF 6, 10,$FFFF

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

The data pattern written to address 10 is:

(BYM) (WDM)

FF FFFF

FF FFFF

FF FFFF

7-128 Alphabetical Command Reference

SF 7: Write Alternate Patterns

SF 7: Write Alternate Patterns

Command

SF 7,<address>,<pattern>

SF 27,<address>,<pattern>

Comments

Result

Consecutively write the user defined data pattern to
the specified memory address using MMS as status
space register followed by the complement of that
data pattern to the same address.

Consecutively write the user defined data pattern to
the specified l/0 address followed by the
complement of that data pattern to the same address.

These commands are valid in pause mode only.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

>SF 7, 10, 55

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

The following data pattern is written to address 10:

BYM WDM

55 0055

AA FFAA

55 0055

AA FFAA

Alphabetical Command Reference 7-129

SF 8: Write Pattern Then Rotate

SF 8: Write Pattern Then Rotate

Command

SF 8,<address>,<pattern>

SF 28,<address>,<pattern>

Comments

Result

Consecutively write the data pattern to the specified
memory address using MMS as status space register,
rotates the pattern 1 bit to the left, and writes to the
same address.

Consecutively write the data pattern to the specified
I/0 address, rotates the pattern 1 bit to the left, and
write to the same address.

These commands are valid in pause mode only.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

>SF 8,1000,05

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

7-130 Alphabetical Command Reference

SF 8: Write Pattern Then Rotate

The following data pattern is written to address 10:

BYM WDM

05 0005

OA OOOA

14 0014

28 0028

50 0050

AO OOAO

41 0140

82 0280

0500

OAOO

1400

2800

5000

AOOO

4001

8002

Alphabetical Command Reference 7-131

SF 9: Write Data Then Read

SF 9: Write Data Then Read

Command

SF 9,<address>,<data>

SF 29,<address>,<data>

Comments

Result

Consecutively write the specified data pattern to the
specified memory address using MMS as status
space register, then read from that same address.

Consecutively write the specified data pattern to the
specified 1/0 address, then read from that same
address.

These commands are valid in pause mode only.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

>SF 9, 100,$FFFF

YOU MUST RESET MB TO TERMINATE THIS FUNCTION

7-132 Alphabetical Command Reference

SF 11: Write Incrementing Value

SF 11: Write Incrementing Value

Command

SF 11,<address>

SF 31,<address>

Comments

Result

Consecutively write a constantly incrementing value
to the specified memory address using MMS as
status space register.

Consecutively write a constantly incrementing value
to the specified 1/0 address.

These commands are valid in pause mode only.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

>SF 11, 100

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

Alphabetical Command Reference 7-133

SF 12: Read Data Over An Entire Range

SF 12: Read Data Over An Entire Range

Command

SF 12,<range>

SF 32,<range>

Comments

Result

Consecutively read from the specified memory
address range using MMS as status space register.

Consecutively read from the specified I/0 address
range.

These commands are valid in pause mode only.

The ES 1800 performs consecutive reads over the specified address range. The first read
occurs at the starting address of the range. The address is then incremented for each
additional read cycle. After the last address in the range has been read, the process starts
again.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

>SF 12, 10 TO 20

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

7-134 Alphabetical Command Reference

SF 13: Cyclic Redundancy Check

SF 13: Cyclic Redundancy Check

Command Result

SF 13 A CRC is calculated on the ES 1800 internal PROM
that contains the ES 1800 firmware.

Comments

This command is valid in pause mode only.

This is an ES 1800 self-test.

If a failure is detected, a CRC error is displayed.

This is a single pass routine.

When the text completes without an error, the command prompt (>) is displayed.

Alphabetical Command Reference 7-135

SF 24: Toggle Data At Address

SF 24: Toggle Data At Address

Command

SF 4<address>,<data>

SF 24,<address>,<data>

Comments

Result

Write <data> to the specified address in the memory
space defined by MMS.

Write <data> to the specified address in 1/0 space.

Write the user defined data pattern to <address>,
alternating with a data pattern of zeros.

SEQ BYM
l 00
2 :xx
3 00
4 :xx

WDM
0000
XXXX (user data)
0000
XXXX (user data)

These commands are valid in pause mode only.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET). .

Examples

Assume you are in word mode (WDM).

>SF 4, 2, $FFFF

YOU MOST RESET MB TO TERMINATE TBIS FUNCTION

The data pattern written to address 2 is:

0000

FFFF

0000

FFFF

7-136 Alphabetical Command Reference

SF 25: Peeks Into The Target System

SF 25: Peeks Into The Target System

Command

SF 5,<address>

SF 25,<address>

Comments

Result

Consecutively read from the specified memory
address using MMS as status space register.

Consecutively read from the specified 1/0 address.

These commands are valid in pause mode only.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

>SF 5, 2

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

Alphabetical Command Reference 7-137

SF 26: Pokes Into The Target System

SF 26: Pokes Into The Target System

Command

SF 6,<address>,<data>

SF 26,<address>,<data>

Comments

Result

Consecutively write the user defined data pattern to
the specified memory address using MMS as status
space register.

Consecutively write the user defined data pattern to
the specified 1/0 address.

These commands are valid in pause mode only.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

>SF 6, 10,$FFFF

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

The data pattern written to address 10 is:

(BYM) (WDM)

FF FFFF

FF FFFF

FF FFFF

7-138 Alphabetical Command Reference

SF 27: Write Alternate Patterns

SF 27: Write Alternate Patterns

Command

SF 1,<address>,<pattern>

SF 21,<address>,<pattern>

Comments

Result

Consecutively write the user defined data pattern to
the specified memory address using MMS as status
space register followed by the complement of that
data pattern to the same address.

Consecutively write the user defined data pattern to
the specified 1/0 address followed by the
complement of that data pattern to the same address.

These commands are valid in pause mode only.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

>SF 7, 10, 55

YOU MOST RESET ME TO TERMINATE THIS FUNCTION

The following data pattern is written to address 10:

BYM WDM

55 0055

AA FFAA

55 0055

AA FFAA

Alphabetical Command Reference 7-139

SF 28: Write Pattern Then Rotate

SF 28: Write Pattern Then Rotate

Command

SF 8,<address,<pattern>

SF 28,,address>,<pattern>

Comments

Result

Consecutively write the data pattern to the specified
memory address using MMS as status space register,
rotates the pattern 1 bit to the left, and writes to the
same address.

Consecutively write the data pattern to the specified
I/0 address, rotates the pattern 1 bit to the left, and
write to the same address.

These commands are valid in pause mode only.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

>SF 8,1000,05

YOU MUST RESET ME TO TERMJ:NATE THJ:S FtJNCTJ:ON

7-140 Alphabetical Command Reference

SF 28: Write Pattern Then Rotate

The following data pattern is written to address 10:

BYM WDM

05 0005

OA OOOA

14 0014

28 0028

50 0050

AO OOAO

41 0140

82 0280

0500

OAOO

1400

2800

5000

AOOO

4001

8002

Alphabetical Command Reference 7-141

SF 29: Write Data Then Read

SF 29: Write Data Then Read

Command

SF 9,<address>,<data>

SF 29,<address>,<data>

Comments

Result

Consecutively write the specified data pattern to the
specified memory address using MMS as status
space register, then read from that same address.

Consecutively write the specified data pattern to the
specified I/0 address, then read from that same
address.

These commands are valid in pause mode only.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

>SF 9, 100,$FFFF

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

7-142 Alphabetical Command Reference

SF 31: Write Incrementing Value

SF 31: Write Incrementing Value

Command

SF 9,<address>,<data>

SF 29,.address>,<data>

Comments

Result

Consecutively write a constantly incrementing value
to the specified memory address using MMS as
status space register.

Consecutively write a constantly incrementing value
to the specified 1/0 address.

These commands are valid in pause mode only.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

>SF 11, 100

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

Alphabetical Command Reference 7-143

SF 32: Read Data Over An Entire Range

SF 32: Read Data Over An Entire Range

Command

SF 12,<range>

SF 32,<range>

Comments

Result

Consecutively read from the specified memory
address range using MMS as status space register.

Consecutively read from the specified I/0 address
range.

These commands are valid in pause mode only.

The ES 1800 performs consecutive reads over the specified address range. The first read
occurs at the starting address of the range. The address is then incremented for each
additional read cycle. After the last address in the range has been read, the process starts
again.

You must use the reset character to terminate these tests. (<ctrl-z> default, can be changed
with SET).

Examples

>SF 12, 10 TO 20

YOU MUST RESET ME TO TERMINATE THIS FUNCTION

7-144 Alphabetical Command Reference

STI: Step Through Interrupts

STI: Step Through Interrupts

Command

ONSTI

OFFSTI

Comments

Result

The ES 1800 recognizes an interrupt and steps
through the interrupt service routine. If this switch is
ON at the return to run mode, the interrupt flag will
be active.

The ES 1800 ignores interrupts while stepping
through a program. If this switch is off at the return
to run mode, the interrupt flag will not be active.

Default: OFF

Stepping through code is a common way to locate software bugs. This switch allows you to
ignore interrupts while debugging higher level routines, or to step through and debug the
interrupt routine itself.

See also the Step command (STP).

Alphabetical Command Reference 7-145

STP: Stop And Step Target System

STP: Stop And Step Target System

Command

R>STP

>STP

Comments

Result

From run mode the STP stops emulation and returns
to pause mode.

Display the current CS:IP address and the Event
Monitor System group number.

From pause mode, the STP command executes one
instruction. To receive visual feedback, combine this
command with a display command such as STP;DT.

R> indicates that the ES 1800 is in run mode.> indicates that the ES 1800 is in pause mode.

See the switch information under STI for more information about stepping.

Do not attempt to STP through an NMI vector fetch. This causes the emulator to hang. It is
possible to STP through the NMI interrupt routine, but not the NMI vector fetch. All other
vector fetches can be STP'ed through.

Examples

>STP;DR

>STP;DT

>STP;DIS IP LEN 4

7-146 Alphabetical Command Reference

SYM: Display Symbols

SYM: Display Symbols

Command

SYM

SYM <value>

'<symbol>

'<symbol>=<value >

Examples

>'S:ym = 1000

>'start = 8000

>'end = 'start +37E

>SYM

$00001000 s:ym

$00008000 start

$0000837E end

Alphabetical Command Reference

Result

Display all defined symbols.

Display all symbols assigned the specified value.

Display the value of the specified symbol.

Assign the <value> to the specified symbol or
section.

7-147

TCE: Dynamic Trace Capture Enable

TCE: Dynamic Trace Capture Enable

Commapd

ONTCE

OFFTCE

Comments

Result

Start trace acquisition. With TCE on, the DT, DTB,
DTF and DRT commands work only in pause mode.

Stop trace acquisition to allow examination of your
trace memory. With TCE off, you can observe trace
without stopping emulation.

Default: ON

This command is only available with the dynamic trace feature. Operation of the dynamic
trace feature requires three steps:

1. Stop trace acquisition using OFF TCE.
2. Examine the trace using DT, DRT, DTB or DTF.
3. Restart trace acquisition using ON TCE.

While the target system is running, you must freeze the trace buffer before you can read trace
memory.

While the OFF TCE command is in effect, the entire Event Monitor System is disabled. If an
Event Monitor System condition is reached, the system will not recognize it or take the
appropriate action.

You can toggle the TCE switch while in run mode so you can alternate between using the
Event Monitor System and reading trace while running.

7-148 Alphabetical Command Reference

TCT: Terminal Port Control

TCT: Terminal Port Control

Command Result

TCT The terminal port becomes the controlling port.

Comments

This command, along with the CCT command, allows control to be switched between to two
serial ports without powering down the ES 1800 emulator.

Any output generated by a command is directed to the controlling port. The copy switch
directs output to both serial ports.

This command is essentially a null command when entered from the terminal port.

Port selection on power-up is controlled by the thumbwheel switch setting. (See page 3-4)

Alphabetical Command Reference 7-149

TE: Timers

TE: Timers

Command

ON TE<0.1.2>

OFF TE <0.1,2>

Comments

Result

The specified PCB timer (0,1 or 2) is active during
pause mode.

The specified PCB timer (0,1 or 2) is not active
during pause mode.

Default: OFF

Timers 0 and 1 only apply to the 80186/188.

When the emulator transitions between pause and run modes, the settings of the TE switches
determine whether the timer register values are read from or written to the physical PCB and
whether the timer continues to run while the emulator is paused. The mode control word
registers (MCWO, MCWl and MCW2) and the timer count registers (TCO, TCl and TC2)
are affected by the switch setting.

Pause to Run Transition

When the emulator transitions from pause to run mode, the TE switch setting determines if
the values of the MCW and TC registers in the emulator's RAM image are loaded to the
physical PCB.

If the TE switch is OFF, the registers are loaded to the physical PCB. The value loaded
into the MCW register determines whether or not the timer becomes active during run
mode.

If the TE switch is ON, the registers are not loaded to the physical PCB. This prevents
the timer count register being overwritten by the old count value (this is undesirable if
the timer was counting while the emulator was paused).

Run to Pause Transition

When the emulator transitions from run to pause mode, the current value of the MCW and
TC registers are loaded from the physical PCB to the emulator's RAM image of the CPU
registers.

If the TE switch is ON, no other action occurs and the timer continues to run while the
emulator is paused.

If the TE switch is OFF, the timer is disabled immediately after the transition to pause
mode by clearing bit 15 of the mode control word register in the physical PCB.

7-150 Alphabetical Command Ref ere nee

TE: Timers

You can modify timer registers while you are in pause mode, and, if OFF TE is specified,
those values continue to be active when run mode is entered. Registers are modified using a
<register> = <value> command.

The position of pod jumper JP4 determines when timers 0 and 1 are enabled for internal
clocking.

The table below summarizes the effect of the timer switches.

Effect of TE switches on Run/Pause Transitions

Switch
Setting

ON

OFF

Pause to Run
Transition

The emulator's RAM
image of the specified
timer register is not
loaded to the physical
PCB before entering run mode.

The emulator's RAM
image of the specified
timer register is loaded
to the physical PCB just
before running the target code.

Alphabetical Command Reference

Run to Pause
Transition

The value in the
specified timer register
is loaded into the
emulator's RAM
image of the CPU
registers.

The value in the
specified timer register
is loaded into the
emulator's RAM
image of the CPU
registers. The timer is
then disabled by
clearing bit 15 of the
appropriate mode
control word register.

7-151

TGR: Send Trigger Signal

TGR: Send Trigger Signal

Command Result

WHE <events> THE TG R, <action> , ...

Comments

If all of the conditions specified in the event portion
of the WHEN(fHEN clause are satisfied, the trigger
signal is asserted, and remains so for the duration of
the specified bus cycle. This is asserted as a TTL­
level high signal. If a trigger event is specified for
more than one consecutive bus cycle, the signal stays
high for the duration of the consecutive bus cycles.

The trigger signal is an output that is available from the BNC connector labelled TRIG on the
back panel of the ES 1800 chassis and from pin 19 of the optional LSA pod.

The trigger signal can be used as a pulse output for triggering other diagnostic equipment. It
can also be used with a counter/timer for timing subroutines.

Examples

Trigger a scope when reading data from a UART.

>ACl='DATA_PORT

>Sl=RIO

Define location of UART.

Look for read access.

>WBBN ACl AND Sl THEN TGRWhen data is read, send trigger.

Determine the duration of a subroutine using the trigger pulse. The trigger pulse can be the
input to a counter/timer or a scope. The duration of the subroutine can be determined from
the pulse width displayed on the scope or the counter/timer readout.

7-152

>AC1=2500

>AC1.2=AC1+38E

>DC1.2=XXXX

Start of subroutine.

End of subroutine.

Detect any data pattern.

>WBBN ACl THEN TGR, GRO 2Go to group 2 when subroutine is entered.

>2 WBBN DCl THEN TGR

>2 WHEN ACl THEN GRO 1

>RUN

R>

Trigger during all cycles while in group 2

Go back to group 1 when last instruction in
subroutine is executed.

Run mode prompt will appear.

Alphabetical Command Reference

TOC: Toggle Hardware Counter

TOC: Toggle Hardware Counter

Command Result

WHE <events> THE TOC, <action> , ...

Comments

If all of the conditions specified in the event portion
of the WHEN{fHEN clause are satisfied, the toggle
count, TOC, command allows you to tum counting
on and off. When a TOC event is detected, the count
is toggled to the opposite state, either on or off. You
can specify an event that starts and stops the counter
each time it is detected or specify any number of
events that toggle the counter on and off.

See the CNT action for a complete description of how the hardware counter works.

Alphabetical Command Reference 7-153

TOT: Toggle Trace

TOT: Toggle Trace

Command Result

WHE <events> THE TOT , <action> , ...

Comments

If all of the conditions specified in the event portion
of the WHEN(fHEN clause are satisfied, the toggle
trace, TOT, allows you to turn tracing on and off.
When a TOT event is detected, the trace is toggled to
the opposite state, either on or off. You can specify a
single event that starts and stops trace each time it is
detected or specify any number of events that toggle
trace on and off.

If there are no event actions that specify TRC or TOT, all bus cycles are traced. If there is a
TRC event, only qualified bus cycles are traced. If there is a TOT event, trace is off until the
TOT is detected, then all bus cycles are traced until encountering another TOT event.

7-154 Alphabetical Command Reference

TOT: Toggle Trace

This table describes the trace conditions immediately before and immediately after a group
change.

Previous
New Group

Group
No Trace Action TRC TOT

Specified

No Trace Trace all Trace only No trace
specified cycles qualified cycles until first TOT

TRC Trace all Trace only No trace
cycles qualified cycles until first TOT

TOT OFF Trace all Trace only No trace
(not tracing) cycles qualified cycles until first TOT

TOT ON Trace all Trace only No trace
(tracing) cycles qualified cycles until first TOT

This table describes initial trace conditions.

Action Specified Trace Condition

No trace Trace all cycles

TRC Trace only qualified TRC events

TOT Trace nothing until TOT event

Alphabetical Command Reference 7-155

TRA: Transparent Mode

TRA: Transparent Mode

Command

TRA

<eSC><esC>

Comments

Result

The system enters transparent mode.

Port control is returned to the previous settings. Note
that this escape sequence can be changed using the
SET command.

Transparent mode can be entered while in terminal (TCT) or computer control (CCT)
modes.

In transparent mode the ES 1800 acts only as an interface between the two serial ports. The
ES 1800 can buffer up to 64 characters for each port and can operate each pon at independent
baud rates.

There must be devices connected both to the terminal port (such as a terminal) and the
computer port (host system, line printer) for this command to have any meaning.

Transparent mode is used to communicate with a host computer or any other peripheral you
want to attach to a serial port.

Refer also to Section 4, "Serial Communications."

Examples

>TRA

7-156

Enter transparent mode. Data entered at
either port is transmitted directly to the
other port.

Alphabetical Command Reference

TRC: Trace Events

TRC: Trace Events

Command Result

WHE <events> THE TRC , <action>, ...

Comments

If all of the conditions specified in the event portion
of the WHEN{fHEN clause are satisfied, the trace
action, TRC, causes the specified bus cycle to be
recorded into the trace memory.

If there are no event actions that specify TRC or TOT, all bus cycles are traced. If there is a
TRC event, only qualified bus cycles are traced. If there is a TOT event, trace is off until the
TOT is detected, then all bus cycles are traced until encountering another TOT event.

This table describes the trace conditions immediately before and immediately after a group
change.

Previous
New Group

Group
No Trace Action TRC TOT

Specified

No Trace Trace all Trace only No trace
specified cycles qualified cycles until first TOT

TRC Trace all Trace only No trace
cycles qualified cycles until first TOT

TOT OFF Trace all Trace only No trace
(not tracing) cycles qualified cycles until first TOT

TOT ON Trace all Trace only No trace
(tracing) cycles qualified cycles until first TOT

Alphabetical Command Reference 7-157

TRC: Trace Events

This table describes initial trace conditions.

Action Specified Trace Condition

Nothing Trace all cycles

TRC Trace only qualified TRC events

TOT Trace nothing until TOT event

Examples

Trace only a specific subroutine. Break at the end of the routine.

7-158

>ACl='SUb_start

>AC2='Sub_end

>WHEN AC1 THEN TOT

>WHEN AC2 THEN BRK

>RBK

R>

Define beginning of subroutine.

Define end of subroutine.

Start tracing at beginning of subroutine.

Break at end of subroutine.

Run til breakpoint.

Run mode prompt will appear.

Alphabetical Command Reference

TST: Test Register

Command

TST

Comments

TST: Test Register

Result

Stop a repeating command. The test register is set to
an expression in a command line. When it becomes
zero, the repeat halts. The TST variable is set to all
1 's at the start of a repeat. This is necessary so that
the register is in a known state at the start of a repeat
loop.

See Section 4, "Repeat Operators," for more detailed information.

Examoles

To single step and disassemble until a specified address is reached:

>*STP;DT; TST=CS:IP-$C324

Alphabetical Command Reference 7-159

UPL: Upload Serial Data

UPL: Upload Serial Data

Command Result

UPL <range. The ES 1800 formats and sends data to the computer
port.

Comments

Data is transferred from the ES 1800 to a host system or other peripherai interfaced to the
ES 1800 computer port.

When uploading to a file on a host system, enter transparent mode first and open a file to store
the uploaded data records. (Review Section 4, "Serial Communications.")

Examples

For UNIX:

cat ><filename>

For VMS:

COPY TT: <filename>

or

TYPE SYS$INPUT/OUTPUT=<filename>

(Create or EDT are also acceptable.)

For DOS:

COPY CON: <filename>

Next, type the transparent mode escape sequence and the upload command.

After all data has been uploaded and the ES 1800 prompt returns, enter transparent mode and
close the file by entering the appropriate control character.

Remember to close the file before trying to view it.

If the host system does not respond to XON/XOFF protocol, it may be necessary to lower the
communicating port's baud rates so that the host's input buffer is not overrun.

Upload performs no data verification.

A file may be uploaded to a printer, PROM programmer, or other peripheral instead of to a
host. In this case, there is no need to enter transparent mode before uploading. Just be sure
the peripheral is ready to receive data.

Refer also to Section 4, "Serial Communications."

7-160 Alphabetical Command Reference

UPS: Upload Symbols

UPS: Upload Symbols

Command Result

UPS All currently defined symbols and sections are sent to
the computer port in Extended Tekhex format.

Comments

Extended Tekhex restricts the number and range of characters that can be used for symbol
names. When formatting symbols for upload, the ES 1800 truncates symbol names to 16
characters and substitutes % for characters not allowed by Tekhex.

Extended Tekhex serial data format should be set before uploading symbols (see SET
parameter #26)

When uploading to a file on a host system, enter transparent mode first and open a file to store
the uploaded data records. (Review Section 4, "Serial Communications.")

Examples

For UNIX: cat ><filename>

For VMS: COPY TT: <filename> or TYPE SYS$INPUT/OUTPUT=<filename>

(Create or EDT are also acceptable.)

For DOS:

COPY CON: <filename>

Next, type the transparent escape sequence and begin uploading.

After all data has been uploaded and the ES 1800 prompt returns, enter transparent mode and
close the file by entering the appropriate control character.

Remember to close the file before trying to view it.

Refer also to Section 4, "Serial Communications," and Section 4, "Symbols."

Alphabetical Command Reference 7-161

VBL: Verify Block Data

VBL: Verify Block Data

Command Result

VBL <address range> , <data>. Verifies that <address range> contains the specified
data.

Comments

This command is valid only in pause mode.

The VBL command uses the default data length, regardless of the length of <data>. See
BYM or WDM for more information on the default data length.

Examples

Verify that a range contains $3F. >VBL 0 TO 2000,3F

$00000004 - $00, NOT $3F

$00000126 - $76, NOT $3F >

7-162 Alphabetical Command Reference

VBM: Verify Block Move

VBM: Verify Block Move

Command

VBM <range>,<address>

Result

Verifies move of <range> to the new <address>.
The current value of MMS specifies the relocation
register used during the transfer.

VBM <range>,<space>,<address>
Verifies move of <range> to the new <address>.
The <space> argument specifies the memory mode
status used during the transfer.

VBM <range>,<address>,<space>
Verifies move of <range> to the new <address>.
The range is read from the space specified in the
MMS register. The block is written to the <space>
specified in the argument following the address.

VBM <range>,<space>,<address>,<space>

Comments

Verifies move of <range> to the new <address>.
The range is read from <space> specified in the
argument following the range. The block was written
to the <space> specified in the argument following
the address.

This command is valid only in pause mode.

Verifies that a non-overlapping block move was successful.

Alphabetical Command Reference 7-163

VFO: Verify Overlay Memory

VFO: Verify Overlay Memory

Command

VFO <range>

Comments

Result

Compare the specified range in the target memory to
the same range in the overlay memory.

If there are no differences between the data in the
overlay and target, the emulator prompts you for the
next command.

If there are any differences, the address of each
difference displays

<ADDRESS> = XX NOT YY

XX denotes the data present in overlay memory. YY is
the data at that location in the target system memory.

This command is valid only in pause mode.

Refer also to Section 4, "Mapping Overlay Memory."

Examoles

>VFO 80000 LEN 7FFF

>VFO 'BOOT_RANGE

7-164

Verify overlay load using hex addresses.

Verify overlay load using symbols.

Alphabetical Command Ref ere nee

VFY: Verify Serial Data

VFY: Verify Serial Data

Command

VFY

Comments

Result

Verifies serial data with data in memory. If the data
in memory does not match the incoming serial data,
this message is displayed:

ADDRESS = XX NOT YY

Address is the address where the data mismatch
occurred. XX denotes the actual data present at that
location. YY is the serial data just sent.

This command is similar to the download command but no data is written to memory, and
the serial data is not displayed on the screen. The serial data is compared to the data in target
or overlay memory. Mismatches are displayed.

Use this command if you suspect a file you downloaded was corrupted. If downloaded data
is being corrupted by your program, you can detect it by mapping overlay as RO (read only)
(see MAP).

This command is also useful for determining differences between object files. Follow
instructions for downloading a file in Section 4 "Downloading to Target or Overlay
Memory."

Alphabetical Command Reference 7-165

WAI: Wait Until Emulation Break

WAI: Wait Until Emulation Break

Command

WAI

Comments

Result

Delays executing the specified command until
emulation is broken.

Usually this command is used to delay executing a display command until an event system
breakpoint is reached.

An event may never occur to bring the ES 1800 out of run mode. When this happens, use the
system reset character to reset the system. (<ctrl-z> default, can be changed with SET).

After a reset, the delayed command is lost from the input buffer.

Examples

The ES 1800 disassembles a page of trace after a breakpoint is reached. Entering RBK;DTB,
without the WAI command, results in a CANNOT EXEClITE COMMAND WHILE IN RUN
MODE error.

RBK;WAI;DTB Run to breakpoint, wait til emulation stops
and disassemble previous page of trace.

The ES 1800 runs until an access violation or a write violation is encountered, then displays a
message pointed at by the BX register.

RUN;WAI;DIA BX

7-166

Run to breakpoint, wait til emulation stops
and display string at address BX.

Alphabetical Command Reference

WDM: Set Global Data Length

WDM: Set Global Data Length

Command

BYM

WDM

Comments

Result

Set the global data length to byte mode.

Set the global data length to word mode.

Default: BYM - byte mode

The global data length determines whether memory commands use byte or word data lengths.

If byte mode is set and you enter a word value as a command parameter, only the least
significant byte is used as the command parameter. If word mode is set and you enter a byte
parameter, the high byte is padded with a zero.

The global data length affects the following commands.

Command

BMO
DB
FIN
FIL
LOV
M
MIO
SF 0-9,11,12
VBL
VFO

Commands Affected by Global Data Length

Descrivtion

block move data in memory
display block of memory
find data pattern in memory
fill memory with data pattern
load overlay memory from target
memory mode
1/0 mode
special functions: RAM tests and scope loops
verify data pattern in memory
verify overlay memory with target memory

Alphabetical Command Reference 7-167

WDM: Set Global Data Length

Examples

The following example demonstrates how the global data length affects the FIL and DB
commands.

>BYM

>FIL 0 LEN 10,123

>DB 0 LEN 10

Set byte mode.

Fill the range with 123.

High byte is truncated.

000000 23 23 23 23 23 23 23 23 - 23 23 23 23 23 23 23 23 23 23
################

>

>WDM

>FIL 0 LEN 10,3F

>DB 0 LEN 10

Set word mode.

Fill the range with 3F.

Pattern is padded with zero.

000000 003F 003F 003F 003F - 003F 003F 003F 003F

>

7-168 Alphabetical Command Reference

WHEN: Begin WHEN/THEN Statement

WHEN: Begin WHEN/THEN Statement

Command Result

WHE <events> THE <action>,<action> ..• ,
Perform specified actions when the events are
reached.

Comments

You can define an event to be some combination of address, data, status, count, and Logic
State Analyzer pod conditions. Numerous Event Monitor System control statements may be
entered and in effect simultaneously. Conflicting statements may cause unpredictable action
processing. Parentheses are not allowed in event specifications.

The NOT operator reverses the sense of the comparator output. NOT has higher precedence
than either of the conjunctives (AND and OR).

WHEN ACl AND NOT DCl THEN BRK

means break whenever any data pattern other than that in DCl is written to an address in
ACl.

AND and OR can be used to form more restrictive event definitions. AND terms have higher
precedence than OR terms. For example:

WHEN ACl AND DCl OR DC2 THEN BRK

is the same as

WHEN ACl AND DCl THEN BRK

WHEN DC2 THEN BRK

If you are looking for two different data values at an address, you would use

WHEN ACl AND DCl OR ACl AND DC2 THEN BRK .

The OR operator is evaluated left to right and is useful for simple comparator combinations.
For complex event specifications, OR combinations can be replaced with separate WHEN/
THEN statements for clarity.

WHEN ACl AND Sl OR AC2 AND S2 THEN BRK

is the same as

WHEN ACl AND Sl THEN BRK

WHEN AC2 AND S2 THEN BRK

Alphabetical Command Reference 7-169

X: Exit Memory Mode, 110 Mode, and Line Assembler

X: Exit Memory, 1/0 Modes, and Line Assembler

Command Result

x Exit memory or 1/0 mode.

7-170 Alphabetical Command Reference

Section 8

ES LANGUAGE

Structure of the ES Language

The command language used to control the ES 1800 emulator is a fonnal language. Once
you understand the basic concepts of this language, you can apply the full debugging power
of the ES 1800. An overview of the structure of the ES language (ESL) is presented in the
accompanying table. A more detailed description of the language elements, the help menus,
prompts, special operating modes, and ES language error messages are also included in this
section.

Items in angle brackets (< >) are mandatory and must be entered as part of the command.
Items shown in square brackets ([]) are optional. Do not type the angle or square brackets
when typing a command.

If the ESL command interpreter detects an illegal statement, it beeps and places a question
mark under the command line at the position the error was detected. Entering a ? following
an error will cause the appropriate error message to be displayed.

Language Element

Command Line

ES Language syntax

[Repeat] Command Statement [;Cmd Statement] ...
Single Character Instant Command

Repeat

<*>*STP;DT
<*><Repeat limit>

Repeat Limit:

Decimal number only (1 to 232 -1)

Command Statement

Command Mnemonic
Command Mnemonic <Expression>
Command Mnemonic <Expression List>
Assignment Command
Expression
Event Monitor System Control Statement

ES Language

Example

<RETURN>

*9 STP;DT

87651234

DTB
MMCS:IP+4
SET #20,#14
CS=OFA9
2*GR5
WHE ACl THE BRK

8-1

Structure of the ES Language

8-2

Language Element Example

Single Character Instant Command

</>(repeat previous command line)
<,>(execute macro 1 or decrement scroll in memory mode)
<.>(execute macro 2 or increment scroll in memory mode)
<?>(help)

Command Mnemonic

<1 or more alpha chars.>[1 or more dee. chars.]

Expression

[Unary Operator] !value
!value <Operator> Expression
<@> Expression
<(> Expression <)>
Nvalue <:> Nvalue
!value:

Symbol
Nvalue

Symbol:
<'><1 or more printable chars.><sp or er>

Nvalue:
Number
Register Name

Register Name:
<1 - 3 alpha chars.>[0 - 2 dee. digits]

Number:
[Base]<l or more digitS>

Base:

Expression List

<%> (binary)
< > (octal)
<#> (decimal)
<$> (hexadecimal)

Expression<,> Expression [,Expr. list] ...

ASM

-2473
2-3F6C90
@240;@@@SS:SP
2*(-2+3)
CS:1234

'main

7FA36
IP

%0101001

1,CS:IP,2+2,-6

ES Language

Language Element

Assignment Command

Svalue <=> Expression
<@> Expression <=> Expression

Svalue:
Symbol
Register Name

Event Monitor System Control Statement

[Group] <WHE[N]> Event <THE[N]> Action List

Group:

BRK

<1>
<2>

<3>
<4>

Event:
[Disjunctive] <Event Comparator>
Event <Conjunctive> <Event>

Disjunctive:
<NOT>

Event Comparator
<AC 1>[.Group]
<AC2>[.Group]
<DCl>[.Group]
<DC2>[.Group]
<Sl>[.Group]
<S2>[.Group]
<CTL>[.Group]
<LSA>[.Group]

Conjunctive:
<AND>
<OR>

Action List
<Action> [,Action] ...

ES Language

Structure of the ES Language

Examnle

IP =@OFFFFO
@SS:SP = CS:IP

'Test_result
MMP

WHEACl THEBRK

2 WHE ACl THE

NOT ACl
DC20RNOT ACl

ACl.3

CTL.4

TRC,TGR,FSI

8-3

Structure of the ES Language

Language Element Examnle

Action:
<BRK>
<TRC>
<TOT>
<CNT>
<TOC>
<RCT>
<TGR>
<FSI>
<GROGroup> GR03

Unary Operator

<ABS> ABSGD3
<!> !OAA
<-> -3

Operator

Mui.op
Add.op
Shft.op
<&> GD4&0FF
</\> DC2.3 11 OFFOO

Mui.Op
<*> 2*3
</> OFAC I %01001
<MOD> GD5MOD7

Add.op
<+> GRO+IP
<-> @(SS:SP-4)

Shft.op
<<<> DCl « 3
<>>>

8-4 ES Language

Notes on ESL

Command Line

Repeat

Command Statement

Notes on ESL

A command line is created by entering one or more
characters after any of the ESL prompts. One or more
command statements can be placed on a single
command line. Multiple command statements must
be separated by a semicolon. The command line is
limited to 76 characters and must be terminated with
a return. The only way to extend command lines is
by using macros (see Macros in Section 4, or _ in
Section 7).

Backspace or delete characters may be used to delete
the previous character entered on a command line.
<ctrl-x> deletes the entire line. <ctrl-r> redisplays
the current line (useful for hardcopy terminals).

If an asterisk (*) is the first character on the
command line, the entire command line will be
repeated indefinitely. If the asterisk is followed
immediately by a decimal number, the command will
be executed that many times. A repeating command
line may also be terminated by setting the TST
register to zero within the command line. This
provides the simple but powerful ability to repeat
something until a condition is met.

There are several special modes in which the normal
command statement rules do not apply. In memory
mode entering a <return> on an empty line causes the
next location to be read. Entering a value followed
by <return> will cause that value to be written to
memory. l/0 mode, the memory disassembler. and
the main help menu all have special modes which
prevent the normal execution of ESL commands.

Single Character Instant Commands

ES Language

These commands are processed immediately when
they are the first character entered on a command
line. The forward slash character (I) will cause the
previously entered command line to be repeated.

8-5

Notes on ESL

Command Mnemonics

Expressions

8-6

>STP

>I
>/

This example single steps three times.

The comma (,) executes macro 1 and the period (.)
executes macro 2. However, if you are in memory
mode or I!O mode, the period moves you to the next
higher memory address while the comma moves you
to the next lower address.

The question mark (?) also has two uses. It can be
entered after the command interpreter detects an
error and beeps. In the event of an error, enter a? and
the command processor will give you an error
message describing the problem it detected.

A ? entered at any other time (i.e., not after an error),
causes a two-page help menu to be displayed. A
<return> moves you from the first page to the second.
Any other character terminates the help menu.

Command mnemonics are the alpha-numeric
character strings that identify a specific ESL
command. Command mnemonics are formed from 1
to 3 alpha characters followed by 0 to 2 numeric
characters. Extra characters in between are ignored.
For example, WHEN is the same as WHE and
GR1234S is the same as GR4S. See the Appendices
for a list of all ES language mnemonics.

An expression can be an integer value, an alpha/
numeric value or an equation.

Parentheses may be used to alter the normal
precedence of operations. The ES 1800 emulator
recognizes parentheses just as they are treated in
algebraic equations. You can use as many levels of
parentheses as you need. The only limitation is that
statements can be no more than 76 characters long.

Parentheses are not allowed in WHENffHEN
clauses.

ES Language

ES Language

Notes on ESL

The expression processor can resolve arbitrarily
complex expressions.

@(GDO +3) = IP + #100 * (DX >> 4) +OAF34

This example retrieves the value of the DX register,
shifts it right 4-bit positions (divide by 24),

multiplies the result by 100 decimal, adds OAF34 and
the contents of the IP register, and writes the result to
the location 3 bytes above the address in GDO.

A more common and useful example might be:

ASM CS:IP

This computes the address CS:IP and starts up the
line assembler at that address. The expression:

'interrupt + 1A6

by itself will add 1A6 to the current value of the
symbol interrupt and display the result. If you don't
assign the results of an expression to a location or
register, the result is displayed as a 32-bit value.

The @ operator is an indirection operator. @ Exp
(where Exp is an expression) refers to the value in
memory at the address Exp. If the @Exp is on the
left side of an = then the value from the right side of
the = will be loaded into memory at the address Exp.
At all other times, @ Exp simply reads a value from
memory. @USP is a simple way to read something
from the stack pointer. It is legal to have multiple
indirections, e.g., @@GRO = @@@(USP + 6).
Byte mode and word mode affect the length of data
transferred to or from the target by the @ operator.
(See the BYM and WDM commands in Section 7 for
more information on BYT/WRD modes.)

The : operator mimics the arithmetic combination of
segment and pointer registers in the 80186/88 and
80C186/Cl88 microprocessors. The value on the left
side of the colon is shifted left 4 bits, added to the
value on the right side and, finally, the total is
masked to 20 bits. The colon operator is handled at
the preprocessor level and thus has higher

8-7

Notes on ESL

Symbols

Numbers

8-8

precedence than normal math operators. The colon
operator must be used only between actual numbers
or register names; e.g., CS:IP is fine but CS:(IP+3)
is illegal.

All other math or logic operations are evaluated
according to the order given in the following section
on operators. Parentheses may be used to alter the
normal precedence. Unary operations must be
enclosed in parentheses if they occur within another
expression; e.g., 2+-1 is illegal, but 2+(-1) and -1+2
are legal.

Certain combinations of expression types and
operators are illegal or have complex results. See the
table "Results of Dyadic Operator Combinations."

Some commands can accept a variety of argument
types. The display block (DB) command accepts an
integer, a range, or no argument at all. Other
commands require that a certain argument type be
used. The upload UPL command requires a range
argument. See the discussion on Numbers (below)
for types.

If you have the symbolic debug option installed in
your ES 1800 emulator, you can use symbolic
references. Every symbol must begin with a single
quote ('). Symbols are composed of 1 to 64
printable characters followed by a space or <return>.
Symbols can be used anywhere a register or a
number is used, with the exceptions that symbols are
not valid with the colon operator or the repeat (*)
operator.

The ES 1800 has a default base register. It is
assumed that numbers entered without a leading base
character are being entered in the default base.
Generally, the default base is hexadecimal (factory
default). See the DFB command in. Section 7 for
more information in changing the default base
register.

There are three different types of numbers.

ES Language

Base

Expression List

ES Language

Notes on ESL

1. An integer is a 32-bit signed value.
2. A don't care is a 32-bit value with a 32-bit mask.

For each-bit set in the mask, the corresponding­
bit position in the value is ignored during Event
Monitor comparisons. Don't cares can be
entered in two ways. 1234 DC OFFO is explicit.
1XX4 is equivalent to 1FF4 DC OFFO. Don't
cares are useful for setting the Event Monitor
System Event Comparators (see the Event
Monitor System in Section 4 for more
information.)

3. A range is specified by entering a start address
and a length or an endpoint. 200 LEN 20 is the
same as 200 TO 21F. Ranges can be either
internal (default) or external. An explicit range
type can be specified by using the prefix IRA or
XRA. 0 LEN 100 is the same as
IRA 0 LEN 100. The ! operator inverts the type
of a range value. !(0 LEN 100) is the same as
XRA 0 LEN 100 which means everything but
addresses 1 to OOFF. The endpoints are always
included in the range. Regardless of the method
of entering (TO, LEN), range values are always
displayed as start TO end.

Ranges, don't cares, and integers are not generally
interchangeable. Certain registers can only hold
certain data types. All registers can hold integers.
Address type registers cannot be loaded with don't
care values. Status and data registers cannot be
loaded with range values. See "Registers" in
Section 4 for a list of all registers and their data types.

To enter a character in any base other than the
default, use a leading base character: % = binary,
\ = octal, # = decimal, and $ = hexadecimal.

Lists are required by a few commands. They can also
be used for implicit evaluation. For example, in
pause mode, entering the three numbers
%010011010, #128, \77347 causes the emulator to
display their equivalent in the default display base

8-9

Notes on ESL

Assignment Command

Registers

Indirection Operator

8-10

(usually hexadecimal). Lists are limited to nine
elements. Lists are used in memory and 1/0 modes
as well.

Svalues are the names of registers or symbolic
references. The form @Expression = Expression
will cause the left side expression to be calculated
and used as an address at which to store the value of
the right side expression. Note that since
@Expression is itself an expression, commands
such as @SS:SP = 0 are legal and useful.

Registers are grouped into three types: integer only,
don't care, and range. Any register can be assigned
an integer value. Don't care registers can be loaded
with don't care values or integers but not ranges.
Range registers can be loaded with integers or ranges
but not don't care values. See Registers in Section 4
for a list of all registers and their data types.

The indirection operator @ allows expressions to
include values transferred to or from the target
system memory address space. The expression
becomes the address of a target system byte or word.

More than one @ operator in an expression displays
a quantity pointed to by another quantity located in
the target system memory. The emulator evaluates
the expression following the @ operators, considers
it an address, and looks at the value stored at this
address. The value at this address is also considered
to be an address. This address is accessed and
displayed.

Parentheses may be used to affect the processing of
the @ operator:

>@ GD4 + 6
>@ (GD4 + 6)

In the first example the indirection operator is
applied to GD4. The command interpreter accesses
the target system location pointed at by GD4, adds
six to the value stored there, and displays the final
results.

ES Language

Notes on ESL

In the second example, the ES 1800 displays the
value stored in the sixth location above the address
pointed to by GD4.

The indirection operator can be used to write values
to memory-mapped l/O without causing a read after
write. Memory mode always performs memory
reads. This may be unacceptable for cenain
hardware configurations. To store values without
entering memory mode, use:

>@ <address> = <data>

This causes the system to load data into the specified
address.

Event Monitor System Control Statement

Group

Event

ES Language

Event Monitor System statements describe
combinations of target program conditions and the
corresponding actions to be taken if the conditions
are met; they do not describe mathematical or logical
computations. Be aware that normal expression
operators are illegal when specifying Event Monitor
System statements. These statements are discussed
in detail in Section 7, Event Monitor System.

The Event Monitor System (EMS) is arranged in four
independent groups. These groups provide a state­
machine capability for debugging difficult problems.
An EMS control statement can only be associated
with one of the four groups. If no group numbers are
mentioned in the EMS control statement, the
statement is assigned to group 1. There are two ways
to override this default selection of group 1. You can
begin the EMS control statement with a group
number, or you can append a group number to any
one of the event comparator names. For example:
3 WHEN ACI THEN BRK is functionally the
same as WHEN ACl.3 THEN BRK; both use
group 3. You cannot mix group numbers within a
single EMS control statement.

You can define an event to be some combination of
address, data, status, count and logic state probe
conditions. Numerous Event Monitor System

8-11

Notes on ESL

Disjunctive

Conjunctive

Unary Operator

8-12

control statements can be entered and will be in
effect simultaneously. Conflicting statements may
cause unpredictable action processing. Parentheses
are not allowed in event specifications.

The NOT operator is used to reverse the sense of the
comparator output. NOT has higher precedence than
either of the conjunctives, AND and OR.

WHEN ACl AND NOT DCl THEN BRX

This statement means break whenever any data
pattern other than that in DC! is written to the
address in AC!.

AND and OR can be used where needed to form
more restrictive event definitions. AND terms have
higher precedence than OR terms.

ACl AND DCl OR DC2

This event is equivalent to ACI AND DCI in one
statement and DC2 in another. If you are looking for
two different data values at an address, you would
use:

ACl AND DCl OR ACl AND DC2

The OR operator is evaluated left to right and is
useful for simple comparator combinations. For
complex event specifications, OR combinations can
be replaced with separate EMS control statements for
clarity.

ACl AND Sl OR AC2 AND S2

This event is the same as ACI AND SI and
AC2 AND S2 in separate statements.

All internal computations use 32-bit math. Values
entered with a leading • are converted to signed
numbers; e.g., -1 is stored internally as $FFFFFFFF.
Internal math however, is signed only for the +, • ,
*, I operations; -5+3 is $FFFFFFFE, while -1 »
1 is reduced to $7FFFFFFF.

ES Language

Operator

Modulo (MOD)

ES Language

Notes on ESL

ABS converts a signed number to its absolute value.
Signed numbers must be enclosed in parentheses. For
example, ABS (-3) +2 returns 5.

! is a logical NOT operator and complements all 32
bits of a number. If the number is a range, the range
type (internal or external) is inverted.

Unary operators have the highest precedence.
-2+3 is 1.

The operators are listed below in descending order of
precedence. Operators of the same type are evaluated
left to right.

Mul.op:
* Multiply
/Divide
MODModulo

Add.op:
+Add
-Subtract

Shft.op:
>>Right shift
<<Left shift

&: Logical AND
A Logical OR

The result of this operation is the remainder after the
value on the left has been divided by the value on the
right.

>29 MOD 4
results 1
>38 MOD 6
result = 2

8-13

Notes on ESL

Rf:2Ylt:2 Qf Sin2lf-Aq.rnmfnt QnfriltQr5

0{2.erator Argument Result

Integer Valid
DC Don't care bits are not affected
IRA Complement (IRA becomes XRA)

ABS Integer Valid
DC Don't care bits are not affected
IRA Invalid
XRA Invalid

Integer Valid
DC Don't care bits are not affected
IRA Invalid
XRA Invalid

@ Integer Valid
DC Invalid
IRA Invalid
XRA Invalid

8-14 ES Language

Notes on ESL

R~511Its Qf D:£iUli1.: Qn~ratur ~um!linatiuns

Le(J Hand Right Hand OaeratQr Result
ExaressiQn Exaression

Integer Integer */MOD Valid
&A Valid
<<>> Valid
+- Valid

Integer Don't care MOD Illegal
*/ Don't care bits are passed to

the left hand argument.
&A Don't care bits are passed to

the left hand argument.
<<>> Don't care bits are passed to

the left hand argument.

Integer IRAXRA */MOD Invalid
&A Invalid
<<>> Invalid
+- The endpoints of the range

will be altered by the value of
the integer expression.

Don't care Don't care */MOD Invalid
&A Invalid
<<>> Invalid
+- Don't care bits are ANDed.

Don't care Integer */MOD Don't care bits are kept.
&A Valid
<<>> Don't care-bit positions are

shifted.
+- Don't care bits are kept.

IRA,XRA Integer */MOD Invalid
&A Invalid
<<>> Invalid
+- The end points of the range

will be altered by the value of
the integer expressed.

ES Language 8-15

Help

Help
There are two pages of help information available. Enter a ? as the first character of a
command line to display the first help page. This page gives examples of the most commonly
used commands and their meanings. The second page describes the Event Monitor System
registers and commands. Enter a <return> at the end of the first page to move to the second
page. The menus are shown on the next two pages.

Information on switch settings, configuration settings, and special functions is available
without using the ? help menus. Other help information is described below.

Software Switches Enter either ON or OFF to display the current
settings and definitions of all software switches, (see
ON in Section 7).

Communications Set-up

Special Diagnostic Functions

8-16

Enter SET to display the current configuration
settings and possible values (see SET in Section 7).

Enter SF to display a list of the available special
functions (RAM/ROM tests, scope loops, etc.) (see
SF in Section 7).

ES Language

Help

First Pa2e of Help Menu

>?

RUN/EMULATION: RUN/RNV - RUN/RUN WITH NEW VECTORS

STP-SINGLE STEP/STOP RBK/RBV-RUN TO BREAKPOINT/WITH VECTORS

RST-RESET TARGET SYSTEM WAIT - WAIT UNTIL EMULATION BREAK

TRACE HISTORY: DTB/DTF-DISASSEMBLE PAGE BACK/FORWARD

DT-DISASSEMBLE MOST RECENT LINE DRT (X) -DISPLAY PAGE RAW TRACE (FROM X)

MEMORY-REGISTER COMMANDS: DR-DISPLAY ALL CPU REGISTERS

DB X TO Y-DISPLAY BLOCK FILL X TO Y, Z - FILL BLOCK WITH Z

BMO X TO Y, Z-BLOCK MOVE TO Z LOV/VFO X TO Y - LOAD/VERIFY OVERLAY

MMS = ALT, COD, DAT, STA DEFINES STATUS LINES FOR MEMORY ACCESS

X - EXIT MEMORY MODE M X - VIEW/CHANGE MEMORY AT X

MEMORY MAPPING: OVE DC, DAT

MAP X TO Y :RO :RW :TGT :ILG DM/CLM - DISPLAY/CLEAR MEMORY MAP

COMMUNICATIONS: TRA - TRANSPARENT MODE TERMINAL-HOST

DNL-DOWNLOAD HEX FILE FROM HOST CCT-TRANSFER CONTROL TO COMPUTER PORT

UPL X TO Y - UPLOAD HEX TO HOST TCT-TRANSFER CONTROL TO TERMINAL PORT

SYSTEM: SET - VIEW/ALTER SYSTEM PARAMETERS

ON/OFF - VIEW/ALTER SWITCHES SF - VIEW/EXECUTE SPECIAL FUNCTIONS

ASM (X) - IN LINE ASSEMBLER DIS(X) DISASSEMBLE FROM MEMORY

LD/SAV (X) - LOAD/SAVE O=SETUP,1-REGS,2-EVENTS,3=MAP,4=SWITCHES,5=MACROS

ES Language 8-17

Help

Second Page of Help Menu

EVENT MONITOR SYSTEM

DES DISPLAY ALL EVENT SPECIFICATIONS

CLEAR ALL EVENT SPECIFICATIONS CBS

DES X

CBS X

DISPLAY ALL EVENT SPECIFICATIONS FOR GROUP X

CLEAR ALL EVENT SPECIFICATIONS FOR GROUP X

EVENT ACTIONS:

BRK - BREAK CNT - COUNT EVENT TGR - TTL TRIGGER STROBE

TRC - TRACE EVENT RCT - RESET COUNTER FSI - FORCE SPECIAL INTERRUPT

TOT - TOGGLE TRACE TOC - TOGGLE COUNT GROUP X - SWITCH TO GROUP X

EVENT DETECTORS - GROUPS 1, 2, 3, 4:

AC1,AC2 OR AC1.X,AC2 .X - 24-BIT DISCRETE ADDRESS OR INTERNAL EXTERNAL RANGE

DC1,DC2 OR DC1.X,DC2.X - 16-BIT DATA, MAY INCLUDE DON'T CARE BITS

Sl,S2 OR s1.x,s2.x - STATUS AND CONTROL - BYT/WRD + RD/WR + TAR/OVL

+ MEM/IOA + IAK/RIO/WIO/HLT/IF/RM/WM/NBC

+ ALT/COD/DAT/STA

LSA

CTL

16 LOGIC STATE LINES, MAY INCLUDE DON'T CARE BITS

COUNT LIMIT, ANY NUMBER 1 TO 65,535

STEP 1 - ASSIGN EVENT DETECTORS

STEP 2 - CREATE EVENT SPECIFICATIONS

ACl = $1234;Sl = BYT + RM

ACl.2 $4576+14*6;DC2.2 $5600 DC $FF

CTL.2 - 24;AC2.2 = $FOOO LEN $400

8-18

WHEN ACl AND Sl THEN GROUP 2

2 WHEN ACl AND NOT DC2 THEN CNT

WHEN CTL. 2 OR AC2 • 2 THEN BRK

ES Language

Log In Banner

Log In Banner
After initial power on, the log in banner should appear on your console screen. After a reset,
the first three lines of the banner appear on your screen.

COPYRIGHT 199X

APPLIED MICROSYSTEMS CORPORATION

SATELLITE EMULATOR 80186/188, 80C186/C188 VX.XX

USER = SW=

#_K AVAILABLE OVERLAY

Satellite Emulator

\IX.XX

USER= SW= - -

AVAILABLE OVERLAY

>No Target VCC

The microprocessor type is that of the target system.

The version number reflects the released version of
the ES language software for the emulator.

The user number and software number (SW) indicate
the positioning of the thumbwheel switch on the
ES 1800 MCB controller board (page 3-4).

The amount of overlay memory indicated depends on
the amount installed in the system. This can be
128K, 256K, 512K, lM or 2M of memory.

The console screen displays a NO TARGET VCC
(see Appendix A) when you are not connected to a
target system.

A <ctrl-z> clears this display message and returns the
system to the log in banner for reentry of an input
command.

NOTE
Refer to Section 1 and 4 for using the ES 1800 emulator without a target
system.

Prompt

ES Language

The pause mode prompt> indicates that the ES 1800
is not running, is in a pause mode and is ready to
receive instructions. Make sure that the > shows
before you enter any command.

If the > does not appear after the log in banner: tum
off the equipment, check the connections, and then
repeat the power-up sequence.

8-19

Log In Banner

Check for proper connection of the cable between the
terminal and the ES 1800.

Check the cable connecting the pod to the ES 1800.
Is it completely secured?

Check to see if the pod probe package is completely
plugged into the target system.

If the unit has just been shipped, one or more of the
boards may have become loose in the ES 1800
chassis. Check for loose boards.

If an error message appears, refer to Appendix A for an explanation.

8-20 ES Language

Prompts

Prompts
Different prompts are displayed depending on the current operating mode of the ES 1800.

>

R>

$12345678 $00 >
$12345678 $00 R>
$12345678 $0000 >
$12345678 $0000 R>

The standard, or pause mode prompt from ESL
consists of a space character followed by a right
arrow.

During emulation, the run mode prompt is displayed.
Most ESL commands are still valid.

In memory mode, the prompt includes the memory
address and the data contained there. Depending on
whether byte mode or word mode (B YM, WDM) has
been chosen, the data will be a byte or a word. The
run prompt (R>) may also be present during memory
mode.

**** 8086/88/186/188 LINE ASSEMBLER ****
CSEG=OOOO
0100 > The line assembler displays a 16-bit address prompt.

10:$1200 >
10:$1200 $00 >
10:$1200 $0000 >
10:$1200R>
10:$1200 $00 R>
10:$1200 $0000 R>

ES Language

This prompt contains an R if you are assembling
during emulation.

In 1/0 mode, the prompt includes the 1/0 address.
The data is included when a <return> is entered as
the only character on the line. The data field is
affected by byte and word mode. If emulating, the
run prompt will also be present.

8-21

Special Modes

Special Modes
There are a few special modes you can enter, some of which must be exited before using
regular ESL commands. These modes can be identified by the prompt displayed, or lack
thereof.

Byte Model Word Mode

Line Assembler

Memory Disassembler

Memory Mode

110 Mode

Transparent Mode

Special Functions

8-22

The BYM and WDM commands select byte and
word mode operation. The mode selected determines
whether 8 or 16-bit data is used or displayed. If byte
mode is set, most data commands use byte values,
and the indirection operator reads a byte from the
address given. The same is true of word mode.

You can temporarily override the byte and word
address and data display prompts by keying in the dot
operators (.B and .W) after a command. For
example: DB.B means a block of memory is
displayed in byte mode. DB.W means a block of
memory is displayed in word mode.

The 80186/188/C186/Cl88 line assembler has a
single 16-bit address prompt. Exit by entering an X
or the END directive.

If initiated without a range argument, the memory
disassembler (DIS) displays a full page of data,
leaving the cursor at the lower right comer of the
screen. A <return> displays the next page of
disassembled memory. A <space> causes only the
next instruction to be disassembled. Any other
character terminates memory disassembly.

Memory mode has an address and data prompt. Exit
by entering an X.

1/0 mode has an address prompt. Exit by entering an
X.

No characters are generated by the ES 1800. Exit by
entering the two character escape sequence (default
is <esc> <esc>), or reset (default <ctrl-z>).

Many diagnostic functions are designed to run
continuously. The message from the function will
inform you to enter the reset character (default is
<ctrl-z>) to terminate the function.

ES Language

Repeating Command Lines

ES Language

Special Modes

It is easy to inadvertently create an indefinitely
repeating command that does not display anything.
Terminate such commands with the reset character
(default is <ctrl-z>).

8-23

Special Characters

Special Characters

These special characters can be changed through the SET menu. See SET in Section 7 for
information on how to change a special character.

<delete>,<backspace>

<ctrl-x>

<ctrl-r>

<ctrl-z>

<esc><esc>

<ctrl-s>

<ctrl-q>

8-24

Either character deletes a character just entered on a
command line.

Deletes an entire command line. Also stops a
command repeated with * without resetting
emulator.

Redisplays the current command line (for hardcopy
terminals).

The default reset character. <ctrl-z> resets the
emulator, stops emulation and/or clears an error
condition. It does not clear or update emulator
registers. It is also used to terminate certain
diagnostic functions. <ctrl-z> terminates an
indefinitely repeating command.

The default transparent mode escape sequence, used
to terminate transparent mode.

The XOFF character. When issued from the
keyboard, the screen display stops scrolling,
allowing you to view the information.

The XON character. Restarts the screen display after
an XOFF is issued.

ES Language

Errors

Errors
The ES 1800 software generates two basic types of error messages. ES language syntax and
operational errors in a command line are indicated by a beep (BEL code). The next line
displayed contains a single ? underneath, and usually just after, the place in your command
line that caused the error. At the point the error is detected, the remainder of the command
line is discarded. For example, the DRT command is invalid during emulation:

>WHE ACl THE ERK; RBK; DRT; DR

<BEL> ?

R>

The RBK command was executed, but the DR command was not. Whenever you see an error
message of this type, you can enter a single ? . The ES 1800 responds with a text message
explaining the error. For the above example:

R>?

ERROR #56 TRACE DATA IS INVALID DURING EMULATION

R>

These error messages are described in this section. The second type of error message is
caused by target hardware problems. There are various conditions that can occur in the target
that prevent the pod processor from operating. If these error messages are displayed, the
problem must be remedied before the ES 1800 can be used. The error messages are quite
explicit, such as

NO TARGET CLOCK or RESET ASSERTED.

Target hardware error messages are explained in Appendix A.

ES Language 8-25

ES Language Error Messages

ES Language Error Messages

1,2,3 EXPRESSION HAS NO MEANINGFUL RELATION TO REST OF
COMMAND. Often caused by entering symbols out of context. DR and
BRK are both legal, but when entered together as DR BRK, this error
message is generated.·

5 UNDEFINED SYMBOL OR INVALID CHARACTER DETECTED.
Usually caused by improper spelling.

6 CHECKSUM ERROR IN DOWNLOAD DAT A. The last record received
was in error. Make sure that the format selected in the system setup is the
same as the format of the received data Refer to download command (DNL)
for error handling during computer control.

7 BAD STATUS = ... RETURNED FROM EMULATOR CARD. Contact
Customer Service.

8

9

10

11

12,13

14,15,16

17

ARGUMENT IS NOT A STh1PLE INTEGER OR INTERNAL RANGE.
Don't cares are not allowed in this context.

NO MORE OVERLAY MEMORY AVAILABLE. You have not cleared the
map or you are trying to map in more memory than is allowed. Contact
Applied Microsystems Corporation for optional overlay memory expansion.

MULTIPLE-DEFINED EVENT GROUP. Only one group may be referenced
in any event clause. Error is caused by trying to mix event register groups in
an event clause (e.g., 2 WHEN AC13 THEN BRK would cause this error).

ILLEGAL ARGUMENT TYPE FOR EVENT SPECIFICATION. Only the 8
event comparators may be used in the event portion of a WHEN!fHEN
statement.

ARGUMENTS MUST BE A STh1PLE INTEGER. Don't care masks and
ranges not allowed.

OPERATION INVALID FOR THESE ARGUMENT TYPES. Usually
caused by attempting arithmetic operations on incompatible variables (e.g.,
(4 DC 9) +(IRA 500 to 700)) . (Same as error 23.)

SHIFT ARGUMENT CANNOT BE NEGATIVE. To shift a value in the
reverse direction, use the opposite shift operator, (>> or <<), not a negative
shift value.

18 TOO MANY ARGUMENTS IN LIST ... (9 MAX). When entering data in
memory or 1/0 mode, a list of only 9 values can be entered on a single
command line.

19 INVALID GROUP NUMBER ... (NOT IN 1-4). There are only four event
groups (1-4).

8-26 ES Language

ES Language Error Messages

20,21,22,23 OPERATION INVALID FOR THESE ARGUMENT TYPES. Often caused
by attempting arithmetic operations on incompatible variables.

24 BASE ARGUMENT MUST BE A STh1PLE INTEGER. Argument should be
#0 to #16.

26 RANGE TYPE ARGUMENT NOT ALLOWED AS DATA. Data can only
be expressed as masked values or integers.

27 ADDRESS ARGUMENT MUST BE A STh1PLE INTEGER. Cannot use
ranges or masked values.

29 ILLEGAL DESTINATION - SOURCE TYPE MIX. Caused by trying to
store don't care data into a range variable or other similar operations.

30,31 RANGE ST ART AND END ARGUMENTS MUST BE SIMPLE
INTEGERS. Cannot use masked values or ranges.

32 RANGE END MUST BE GREATER THAN RANGE ST ART. 6 len 1 and
10 to 5 are examples of invalid ranges.

33 RANGE ST ART AND END ARGUMENTS MUST BE SIMPLE
INTEGERS. Cannot use masked values or ranges.

34 READ AFTER WRITE-VERIFY ERROR. Data supposedly written to
memory during a download operation was read back as a different value. The
error message contains the locations and results of the comparison.

35 WARNING - DAT A WILL BE LOST WHEN EMULATION IS BROKEN.

36,37,38

39

40

41

ES Language

Caused by assigning values to CPU registers during emulation. CPU registers
are copied into internal RAM only when emulation is broken. The RAM
contents are copied into the processor only when emulation is begun. The
ES 1800 cannot access CPU registers during emulation. Thus, once
emulation has been started the DR command shows the contents of the CPU
registers as they were before emulation was begun. Changes can be made to
these values, but the data will be rewritten when emulation is broken.

NO ROOM . . . BREAKPOINT CLAUSES TOO NUMEROUS OR
COMPLEX. Too many WHEN/fHEN clauses were entered. The number of
sentences cannot exceed the available RAM in ESL. This is different for each
of the microprocessors supported.

INVALID GROUP NUMBER ... (NOT IN 1-4). There are only four groups
in the Event Monitor System.

ILLEGAL SELECT VALUE. Variable cannot be assigned value specified.
Check manual.

INCORRECT NUMBER OF ARGUMENTS IN LIST. Check command
argument list.

8-27

ES Language Error Messages

42 ILLEGAL SETUP SET VALUE. Consult the SET menu for legal values (see
SET in Section 7).

43 WHEN CLAUSE REDUCED TO NULL FUNCTION. Caused by constructs
such as WHEN ACl AND NOT ACl.

44 INTERNAL ERROR ... NULL SHIFTER FILE. Contact Customer Service.

45 MAP CANNOT BE ACCESSED DURING EMULATION. The map
hardware is constantly used by the emulating processor during emulation and
cannot be accessed.

46 ARGUMENT MUST BE AN INTERNAL RANGE. External ranges and
masked values not allowed.

47 16-BIT RANGE END LESS THAN START. Invalid range.

48 ILLEGAL MODE SELECT VALUE.

49,50 INVALID GROUP NUMBER ... (NOT IN 1-4). Must be 1through4.

51 SAVE/LOAD INVALID ARGUMENT VALUE. Valid arguments include 0
through 5.

53 EEPROM WRITE VERIFY ERROR. Data in the EEPROM is verified during
the SA V operation. (The store operation is retried many times before this
error is generated.) EEPROMs have a finite write cycle life. The EEPROM
in your ES 1800 has a one year warranty. Contact Customer Service.

54 ATTEMPT TO SA VE/LOAD DURING EMULATION. These commands
may only be used while in the pause mode.

55 EEPROM DAT A INVALID DUE TO INTERRUPTED SA VE. Previous
SA V command was interrupted by a reset or power off.

56 TRACE DAT A IS INVALID DURING EMULATION. Viewing of the trace
is only allowed during pause mode.

57 (INVALID GROUP NUMBER (NOT 1-4). Must use 1 - 4.

58 Th1PROPER NUMBER OF ARGUMENTS. Check command argument list.

59 ARGUMENT MUST BE AN INTERNAL RANGE. External ranges and
masked values not allowed.

60 ARGUMENT MUST BE A SIMPLE INTEGER. Ranges and don't care
masks not allowed.

61 Th1PROPER NUMBER OF ARGUMENTS. Check command argument list.

62 CANNOT STORE THIS VARIABLE DURING EMULATION. Must be in
pause mode.

63 ILLEGAL ARGUMENT TYPE.

8-28 ES Language

64

65

66

67

68

ES Language Error Messages

ARGUMENT TOO LARGE. Caused by entering DRT argument that
includes numbers greater than #2045.

ILLEGAL RANGE.

STATUS CONST ANTS CANNOT BE ALTERED. System constants (i.e.,
BYT, OVL) cannot be assigned values.

TOO MANY WHEN CLAUSES. You have tried to enter more WHEN/
THEN clauses than the Event Monitor System can handle.

INVALID DAT A FORMAT FOR SYMBOLS. Must use Extended Tektronix
Hex.

70 CANNOT INITIALIZE VECTORS DURING EMULATION. LDV, RNV,
and RBV can only be entered in pause mode.

71 UNKNOWN EMULATOR ERROR. Call Applied Microsystems.

72 INCOMPATIBLE EEPROM DAT A. Previous data saved to EEPROM was
not from an 8018X or 80C18X ES 1800 system.

74 COMMAND INVALID DURING EMULATION. Must be in pause mode.

75 INVALID RECORD TYPE. Download routine received invalid record type
code.

76 NO SYMBOLIC DEBUG. The symbolic debug option is not installed in your
system. Cannot assign symbol and section values.

78,79,80 TOO MANY SYMBOLS. Symbols exceeded available RAM. Purge
symbols before downloading again.

81 SYMBOL OR SECTION PREVIOUSLY DEFINED. An attempt was made
to redefine an existing symbol or section. Section definitions cannot overlap.
Symbols should be purged before downloading.

82 SYMBOL NAME IN USE. Symbol name cannot be used more than once.
You must delete a section before assigning it a new value.

83 TYPE CONFLICT WITH DEFINED SYMBOL. Please refer to Extended
Tekhex specification, in Appendix B.

87 SECTION TABLE FULL. Too many symbolic section names have been
defined.

88 INVALID ARGUMENT SIZE. Operand doesn't fit into destination register.

89 INVALID ADDRESSING MODE.

90 ARGUMENT OUT OF RANGE. Usually caused by reference to a "FAR"
location without declaring "FAR."

91 INVALID TRAP VECTOR NUMBER.

93 INVALID CONTROL REGISTER.

ES Language 8-29

ES Language Error Messages

94 ARGUMENT NOT SYMBOLIC. Requires a symbolic argument.

255 UNKNOWN ERROR.

8-30 ES Language

Appendix A

ERROR MESSAGES

Error messages are divided into 5 categories:

1. Target hardware
2. Emulator hardware
3. Target software
4. ESL (see Section 8)
5. Software debugger (see appropriate software manual)

Within this section, errors are arranged in alphabetical order by category.

Target Hardware Error Messages
Hold Acknowledge/Bus Granted

This message is displayed when a hold acknowledge has been
asserted for longer than 2.2 ms. When the microprocessor regains
control of the bus, the message is removed. This message is caused
by one of two conditions: When a DMA (direct memory access)
controller takes over the bus by asserting the hold line, or when the
microprocessor is running in a multiprocessor environment. This
message is generally not an error message but rather a statement of
what the processor is doing.

No Bus Cycles This error message indicates that no ALE's (Address Latch Enable)
were detected for at least .7 microseconds or longer, and no other
error conditions are found. If your target HALT waits for interrupts
for longer than this, you can change the number of milliseconds by
changing the value of the BTO register.

Error Mes sages

When no ALEs are detected, the controller checks for other fault
conditions, including proper target VCC, a functional clock, and
whether the processor is halted, waiting, reset, or the bus is granted.
If any of these other conditions exist, then the appropriate message
for that condition is displayed. If no other fault condition is found,
the NO BUS CYCLES message is displayed.

Certain operating systems will cause this error message to occur.
There is a jumper on the pod board which, when set, will ignore the
NO BUS CYCLES error. See Appendix C for more information.

A-1

Target Hardware Error Messages

A-2

No Clock 8018X microprocessors must have a clock frequency within the
range of 1.2 MHz to 9 MHz, and 80C18X microprocessors must be
within 0.5 MHz to 16 MHz or the message NO CLOCK is displayed.

If there is no clock from the target, the user is given the option of
selecting an internal clock when the ES 1800 is powered up (see CK
in section 7).

However after an external clock has been selected and the NO
CLOCK message is displayed, the only way to return to an internal
clock is to reset the system.

Processor Halted A halt (HLT) instruction has been executed and the microprocessor
has remained halted for greater than 2.2 ms. The microprocessor is
in a run state and commands can still be entered at the keyboard.

It is not possible to break on a HLT instruction or status. If you
want to break on the HLT instruction it is necessary to set a
breakpoint at an address one instruction before the HL T.

Normally when a HLT instruction is executed, the microprocessor
waits for a reset or an interrupt to bring it out of that condition. When
single stepping, the emulator uses an NMI to return to its internal
memory space. Therefore when a HL T instruction is encountered
it is executed and the processor goes on to the next instruction
because the microprocessor was satisfied by the NMI that took it out
of the HL T condition.

Processor Waiting The microprocessor is waiting for a RDY (ready) to be returned.
This message displays only if the microprocessor has been waiting
for greater than 2.2 ms. When the condition has been corrected the
message is removed.

It is necessary to use target RDY when overlaying dynamic RAM
that uses the RDY line to halt microprocessor activity during refresh
cycles. When a refresh cycle occurs on many systems the RDY line
is held in the NOT RDY state until the refresh is complete. If an
internal RDY is used, the microprocessor will not honor the
REFRESH cycles and dynamic memory will be corrupted. The
choice of internal or external RDY while using overlay memory is
made by using the RDY switch.

When overlaying nonexistent code space it is necessary to use the
internal RDY. Users may want to overlay nonexistent code space
(an area not decoded in their hardware) to patch in code.

Error Messages

Reset Asserted

Error Messages

Target Hardware Error Messages

When selecting internal or external RDY for areas overlayed, that
particular RDY is selected for all overlay. It is not possible therefore
to overlay both dynamic RAM and nonexistent RAM at the same
time.

This indicates that a reset from the target has been asserted for
greater than 2.2 ms. When the reset is released then the message is
removed. However, if the reset is less than 2.2 ms the message is not
displayed. Using an oscilloscope, verify that the reset line is in fact
being held reset. There are some operating systems that may
normally hold the microprocessor reset until needed. If the reset line
is not being held reset at the probe tip, unplug the emulator and
verify the condition in the NULL TARGET mode.

A-3

Emulator Hardware Error Messages

Emulator Hardware Error Messages

A-4

Pod CPU Not Initialized
When a reset occurs, (power up, <ctrl-z>, or RST) the controller and
the emulator begin an initialization routine to establish communica­
tion. If this initialization routine fails to complete, this message is
displayed. This is an internal pod, emulator, controller board prob­
lem. Correct the problem by reseating boards, cycling power, and
verifying that the microprocessor is correctly installed in the pod, or
replacing the microprocessor in the pod.

Pod CPU Not Responding

System Reset Error

Whenever a STP command is executed, or a memory command is
executed during emulation, the ES language software looks to see if
any errors occurred during execution of the command. The emulator
then checks if the command completed. If it did not complete the
emulator checks to see if the microprocessor is still running or if
there is an error condition. If an error condition exists then the
appropriate message is displayed. However, if the microprocessor is
still running and no error conditions exist then the message POD
CPU NOT RESPONDING is displayed. Correct the problem by
resetting the system and repeating the command.

When a reset (power up, <ctrl-z>, or RST) has been executed from
the emulator controller and the emulator board does not
acknowledge this, then a SYSTEM RESET ERROR message
displays. This situation is an internal pod, emulator, or controller
board problem. Try reseating boards, reseating pod cables, and
cycling power.

Error Messages

Target Software Error Messages

Target Software Error Messages

Memory Access Violation
The target program has attempted to access an area of target mapped
as illegal (ILG). DM assists in determining which areas are mapped
as illegal. DRT helps determine where the program was making the
access.

Memory Write Violation

Error Messages

If the target program attempts to write to the RAM overlay in an area
that is mapped READ ONLY, this error occurs. Use the DM
command and the raw trace (DRT) to look for write cycles. DM
assists in determining which areas are mapped as illegal. DRT helps
determine where the program was making the access.

A-5

Target Software Error Messages

A-6 Error Messages

Appendix B

SERIAL DATA FORMATS

In order to download a program into target memory, the ES 1800 needs some way to receive
this data in an intelligible format. This appendix describes the downloading formats which
the ES 1800 understands.

Serial Data Formats B-1

MOS Technology Format

MOS Technology Format

Figure B-1: Specifications for MOS Technology Data Files

Copyright 1983, Data J/0 Corporation; reprinted by permission.

B
c

START CHARACTER

BC • Byte Count. The hexadecimal number of data
bytes in the record

AAAA • Address of first data byte in record. AAAA
1n hexadecimal notation only

HH • One data byte 1n hexadecimal notation

CCCC • Checksum. Two byte binary summation of
preceding bytes in record (including address. and
data bytes) in hexadecimal notation.

This space can be used for line feed. carriage return or
comments.

(Beginning of next record)

LEGEND
• Stan Character

BC • Byte Count (BC> 00 in Record. BC• End of File Record)
AAAA • Address Field

B-2

CCCC • Checksum of Record
RRRR • Record Count
HH • Two Hexadecimal Digits (0:9, A:D)

START CHARACTER

Byte Count. BC • 00 in End of File Record

Record Count

Checksum

OUTPUT
NOTES

1) Number of bytes per record is variable. See Tabl.e 3.1
2) Each line ends with nonprinting line feed. carriage return

and nulls.

2 Hex Characters• 1 byte\ Data Records J
BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCC }
BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCC
BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCC
BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCC
BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCC
BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCC
BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCC
BCRRRRCCCC

Serial Data Formats

Motorola Exorcisor Format

Motorola Exerciser Format

Figure B-2: Specifications for Motorola Ex.orciser/16-BM Data Files/

Copyright 1983, Data 1/0 Corporation; reprinted by permission.

INPUT

s
1

B
c
A
A
A
A

H
H
H
H

START CHARACTERS

BC• Byte Count. The number of data bytes plus 3 11 tor
checksum and 2 tor address} 1n hexadecimal notation

AAAA • Address of first date byte in record AAAA in
hexadecimal notation only

HH • One data byte in hexadecimal notation

CC• Checksum. One'scomplement of binary summation
of preceding bytes in record (including byte count.
address and data bytes) 1n hexadecimal notation

This space can be used for line feed. carriage return or
comments

(Beginning of next record)

LEGEND
SO • Optional Record Start Characters
S 1 • Start Characters
BC • Byte Count

[(Date Butes/Record + 3]
AAAA • Address of First Data Byte
HH • Two Hexadecimal Digits (0-9. A-Fi
CC • Checksum of Record (one byte)

Serial Data Formats

SIGN ON RECORD OPTIONAL

D SO Start characters of sign on record. Except
for start characters SO record has same format as
data record

s
9

B
c
A
A
A
A

c

START CHARACTERS

Byte Count. BC • 03 1n End of File Record

Address

C Checksum

OUTPUT
NOTES

1) Number of bytes per record 1s variable. See Table 3. 1
2) Each line ends with nonprinting line feed, carriage return

and nulls
3) Sign on record may precede data

2 Hex characters 1 byte '"""\ Data Record7

$18CAAAAHHHHHHHHHHHHHHHHH'RHHHHHHHHHHHHHHCC}
$1 BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC

$1 BCAAAAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC
SlBC.AAo\A.HHHHHHHHHHHHHHHHHHHHHHHHHHHl-IHHHHCC

$16CAJl.AAHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC

S9BCAAAACC

B-3

Intel lntellec Format

Intel lntellec Format

Figure B-3: Specifications for Intel lntellec/8/MDS Data Files!

Copyright 1983, Data 1/0 Corporation; reprinted by permission.

INPUT

B
c
A
A
A
A

T
T

H
H

START CHARACTER

BC - Byte Count The hexadecimal number of data bytes
1n the record

AAAA - Address of first dale byte 1n record. AAAA 1n
hexadecimal notation only

TT • Record Type {00)

HH • One data byte 1n hexadecimal no1a11on

CC• Ch.ecksum. Negation {two's complemenl) of binary
summation of preceding bytes in record (1n.clud1ng byte
count. address. and data bytes) 1n hexadecimal no1a11on

This space can be used for line feed, carriage return or
comments

LEGEND

- Stan Characters
BC - Byte Count {Date Bytes/Record)
AAAA - Address Field
TT - Record Type
H • One Hexadecimal Digit 10-9, A-F)
CC - Checksum of Record

B-4

START CHARACTER

B Byte Count BC • 00 1n End of File Record
c
A
A Address
A
A

T
T TT Record Type 101 I

OUTPUT

NOTES

1 J Number of bytes per record is variable. See Table 3.1.
2) Each line ends with nonprinting line feed, carriage return

and nulls

2 Hex characters 1 byte "_ Data Record7

BCAAAATTHHHHHl..jHHHHHHHHHHHHHHHHHHHHHHHHHHCC}
BCMAATTHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC

BCAAAATTHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC

BCANIATT

Serial Data Formats

Signetics!Absolute Object File Format

Signetics/ Absolute Object File Format

Figure B-4: Specifications for Signetics!Absolute Object Data Files

Copyright 1983, Data 1/0 Corporation; reprinted by permission.

INPUT

A
A
A
A

B
c

Sf ART CHARACTER

AAAA - Address of first date byte in record. AAAA in
hexadecimal notation only

BC• Byte Count The hexadecimal number of data bytes
in the record

A AC •Address Check. Every byte 1s exclusive 0 Red with
C the previous byte. then rotated lett one bit

H
H HH - One data byte m hexadecimal notation

D
c

DC - Data Check. Every byle is exclusive 0 Red with the
previous byte, then rotated left one bit.

This space can be used for hne feed. carriage return or
comments

(Beginning of next record)

LEGEND

• Start Characters
AAAA • Address Field
BC • Byte Count (Date Bytes/Record)
AC •Address Check. Checksum of address and byte count
HH • Two Hexadecimal D1g1ts (0-9. A-F)
DC • Data Check. Checksum of data in record

Serial Data Formats

A
A
A
A

B
c

START CHARACTER

Address

Byte Count BC • 00 1n End of File Record

OUTPUT

NOTES

1) Number of bytes per record is variable. See Table 3. 1.
2) Each hne ends with nonprmtmg line feed. carnage return

and nulls

2 HEX characters 1 byte 7 Data Records J
A.AAABCACHHHHHHHHHHHH'HHHHHHHHHHHHHHHHHHHHCC }f
AAAABCACHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC
A.AAASCACHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC

AMABCAC

B-5

Tektronix Hexadecimal Format

Tektronix Hexadecimal Format

Figure B-5: Specifications for Tektronix Hexadecimal Data Files

Copyright 1983, Data 1/0 Corporation; reprinted by permission.

INPUT

A
A
A
A

B
c
c
c
H

I - Stan Character

AAAA • Address of first date byte rn record
(hexadecimal notatron)

BC - Byte Count. The hexadecimal number of data bytes
in the record
CC • Checksum. Eight brt sum of the tour brl
hexadecrmal values of the six digits that make up the
address and byte counts (hexadecimal notation)

H HH • One data byte 1n hexadecimal no1at1on

c
c

CC • Checksum. Eight brl sum modula 256, of lhe four
bil hexadecimal values of the drgrls lhal make up the
data bytes.

Carriage Return

(Beginning of next record)

OUTPUT
NOTES

1) Number of bytes per record rs variable. See Table 3.1.
21 Each line ends wilh nonprrnting line feed, carnage return

and nulls

2 Hex characters 1 byte \ Data Record7

/AAAABCCCHHHHHHHHHHHHHHHH'HHHHHHHHHHHHHHHHCC }

/AAAABCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC

/AAAASCCCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCC

IAAAABCCC ~ End of File Record

B-6

x
x

x

A
A
A
A

B
c
c
c

11 ·Two Slan Characlers

XX .. X • Arb11rary siring of ASCII characlers

Carriag~ Return

START CHARACTER

AAAA Transfer Address

Byte Count. BC • 00 in End of Frie Record

CC • Checksum. E1ghl brl sum of the four brt
hexadecimal values of the six drgils that make up
lhe lranster address and lhe byte counl
(hexadecimal nota11on)

Carriage return

LEGEND

AAAA
BC
cc
HH
x

• SIM Characters
• Address Freid
• Byte Counl (Date Bytes/Record)
.. Checksum of Record
- Two Hexadecimal D1g1ts 10-9. A-Fi
• Any ASCII Character

Serial Data Formats

Extended Tekhex Format

Extended Tekhex Format
Copyright 1983, Tektronix; reprinted by permission

Extended Tekhex uses three types of message blocks:

1. The data block contains the object code.
2. The symbol block that contains information about a program section and the

symbols associated with it. This information is only needed for symbolic debug.

3. The termination block contains the transfer address and marks the end of the load
module.

NOTE
Extended Tekhex has no specially defined abort block. To abort a formatted
transfer, use a Standard Tekhex abort block.

Each block begins with a six-character header field and ends with an end- of-line character
sequence. A block can be up to 255 characters long, not counting the end-of-line character.
The header field has the format shown in the following table.

Item

%

Block Length

Block Type

Checksum

Serial Data Formats

Number
of ASCII
Characters

1

2

1

2

Description

A percent sign specifies that the block is in
Extended Tekhex format.

The number of characters in the block: a two­
digit hex number. This count does not include
the leading% or the end-of-line.

6 = data block
3 = symbol block
8 = termination block

A two-digit hex number representing the sum,
mod 256, of the values of all the characters in
the block, except the leading %, the The
following table gives the values for all
characters that may appear in Extended Tekhex
message blocks.

B-7

Extended Tekhex Format

Character Values for Checksum Computation

CHARACTERS VALUES (DECIMAL)

0 .. 9 0 .. 9

A .. z 10 .. 35

$ 36

% 37

. (period) 38

_(underscore) 39

a .. z 40-65

Variable-Length Fields

In Extended Tekhex, certain fields may vary in length from 2 to 17 characters. This practice
enables you to compress your data by eliminating leading zeros from numbers and trailing
spaces from symbols. The first character of a variable-length field is a hexadecimal digit that
indicates the length of the rest of the field. The digit 0 indicates a length of 16 characters.

For example, the symbols START, LOOP, and KLUDGEST ARTS HERE are represented
as 5START, 4LOOP, and OKLUDGEST ARTSHERE. The values 0, !OOH, and FFOOOOH
are represented as 10, 3100, and 6FFOOOO.

Data and Termination Blocks

If you do not intend to transfer program symbols with your object code, you do not need
symbol blocks. Your load module can consist of one or more data blocks followed by a
termination block. The following table gives the format of a data block and a termination
block.

B-8 Serial Data Formats

Item

Header

Load Address

Object

Header

Transfer

Symbol Blocks

Extended Tekhex Format

Extended Tekhex Data Block Format

Number
of ASCII Description
Characters

6 Standard header field
Block Type= 6

2 to 17 The address where the object code is to be
loaded: a variable-length number.

2n n bytes, each represented as two hex digits.

Extended Tekhex Termination Block

6

2 to 17

Standard header field
Block type= 8.

The address where program execution is to
begin: a variable-length number.

A symbol used in symbolic debug has the following attributes:

1. The symbol itself: 1 to 16 letters, digits, dollar signs, periods, a percent sign, or
symbolize a section name. Lower case letters are converted to upper case when
they are placed in the symbol table.

2. A value: up to 64 bits (16 hexadecimal digits).
3. A type: address or scalar. (A scalar is any number that is not an address.) An

address may be further classified as a code address (the address of an instruction)
or a data address (the address of a data item). As symbolic debug does not
currently use the code/data distinction, the address/scalar distinction is sufficient
for standard applications of Extended Tekhex.

4. A global/local designation. This designation is of limited use in a load module,
and is provided for future development. If the global/local distinction is not
important for your purposes, simply call all your symbols global.

5. Section membership. A section may be thought of as a named area of memory.
Each address in your program belongs to exactly one section. A scalar belongs to
no section.

Serial Data Formats B-9

Extended Tekhex Format

The symbols in your program are conveyed in symbol blocks. Each symbol block contains
the name of a section and a list of the symbols that belong to that section. (You may include
scalars with any section you like.) More than one block may contain symbols for the same
section. For each section, exactly one symbol block should contain a section definition field,
which defines the starting address and length of the section.

If your object code has been generated by an assembler or compiler that does not deal with
sections, simply define one section called, for example, MEMORY, with a starting address
of 0 and a length greater than the highest address used by your program; and put all your
symbols in that section.

The following table gives the format of a symbol block. Tables that follow give the formats
for section definition fields and symbol definition fields, which are parts of a symbol block.

B-10

Extended Tekhex Symbol Block Format

Item

Header

Section Name

Number
of ASCII
Characta

6

2 to 17

Section Definition 5 to 35

Symbol 5 to 35

Description

Standard header field
Block Type= 3

The name of the section that contains the
symbols defined in this block: a variable-length
symbol.

This field must be present in exactly one
symbol block for each section. This field may
be preceded or followed by any number of
symbol definition fields. The table on the next
page gives the format for this field.

Zero or more symbol definition fields as
described in the next table.

Serial Data Formats

Item

0

Base

Length

Item

Type

Symbol

Value

Extended T ekhex Format

Extended Tekhex Symbol Block; Section Definition Field

Number
of ASCII
Character

2 to 17

2 to 17

Description

A zero signals a section definition field.

The starting address of the Address section: a
variable-length number.

The length of the section: a variable-length
number, computed as 1 + (high address base
address).

Extended Tekhex Symbol Block; Symbol Definition Field

Number
of ASCII
Character

1

2 to 17

2 to 17

Description

A hex digit that indicates the global/local
designation of the symbol, and the type of
value the symbol represents:
1 = global address
2 = global scalar
3 = global code address
4 = global data address
5 = local address
6 = local scalar
7 = local code address
8 = local data address

A variable-length symbol.

The value associated with the symbol: a
variable-length number.

The following figures show how the preceding tables of information might be encoded in
Extended Tekhex. The information for the Extended Tekhex Symbol Block illustration
could be encoded in a single 96-character block. It is divided into two blocks for purposes
of illustration.

Serial Data Formats B-11

Extended Tekhex Format

Figure B-6: Extended Tekhex Data Block

.----Block length: 15H = 21

l Checksum: 1CH = 28 = 1+5+6+3+1+0+0+0+2+0+2+ ...

Object Code: 6 bytes

l
% is1e fc1310oodo202020202 '

LJ

L Load address: 1 OOH

~--- Block type: 6

Header character

Figure B-7: Extended Tekhex Termination Block

~ Block length: 8

1 J Checksum: 1AH = 26 = 0+8+8+2+8+0

n n
%0881A280
t LJ

l Transfer address: 80H

.__ __ Block type: 8

~---- Header character

B-12 Serial Data Formats

Extended Tekhex Format

Figure B-8: Extended Tekhex Symbol Block

---Block length: 37H = 55 r Checksum: 60H = (3+7+3+8+28+31+12+28+29+ ...)mod 256

Section definition field: _L base address= 40H; length= C6H

Ii I I I I
%373608SVCSTUFF02402C622CR1D140PEN25014READ25815WRITE260

%37 C~8SVCSTUFF1~CLOSE26814EXIT27029B UFLENGTH28013BUF278

l~---- Section name

._ _______ Block type: 3

._ _________ Header character

Serial Data Formats B-13

Motorola S-Record Format

Motorola S-Record Format

5-Record Content

When viewed by the user, $-records are essentially character strings made of several fields
which identify the record type, record length, memory address, code/data, and checksum.
Each type of binary data is encoded as a 2-character hexadecimal number: the first character
representing the high-order 4 bits, and the second the low-order 4 bits of the byte.

The 5 fields which comprise an S-record are: type, length, address, code/data and checksum.

The fields are composed as follows:

Field Printable

type

record length

address

code/data

checksum

Characters

2

2

4, 6, or 8

0-2n

2

Contents

s-record type -- SO, Sl, etc.

The count of the character pairs in the record,
excluding the type and record length.

The 2-, 3-, or 4-byte address at or which the
data field is to be loaded into memory.

From 0 to n bytes of executable code, memory­
loadable data, or descriptive information.For
compatibility with teletypewriters, some
programs may limit the number of bytes to as
few as 28 (56 printable characters in S-record).

The least significant byte of the one's
complement of the sum of the values
represented by the pairs of characters making
up the record length, address, and the code/data
fields.

Each record may be terminated with a CR/LF/NULL. Additionally, an $-record may have
an initial field to accommodate other data such as line numbers generated by some time­
sharing systems.

Accuracy of transmission is ensured by the record length (byte count) and checksum fields.

B-14 Serial Data Formats

Motorola S-Record Format

S-Record Types

Eight types of S-records have been defined to accommodate the several needs of the
encoding, transportation, and decoding functions. The various Motorola upload, download,
and other file-creating or debugging programs, utilize only those S-records which serve the
purpose of the program. For specific information on which S-records are supported by a
particular program, the user's manual for that program must be consulted.

An S-record format module may contain S-records of the following types:

SO The header record for each block of S-records. The code/data field may
contain any descriptive information identifying the following block of SO­
records. Under VERSAdos, the resident linker's IDENT command can be
used to designate module name, version number, revision number, and
description information which will make up the header record. The address
field is normally zeros.

Sl A record containing code/data and the 2-byte address at which the code/data
is to reside.

S2 A record containing code/data and the 3-byte address at which the code/data
is to reside.

S3 A record containing code/data and the 4-byte address at which the code/data
is to reside.

S5 A record containing the number of S 1, S2, and S3 records transmitted in a
particular block. This count appears in the address field. There is no code/
data field.

S7 A termination record for a block of S3 records. The address field may
optionally contain the 3-byte address of the instruction to which control is
to be passed. There is no code/data field.

S8 A termination record for a block of S2 records. The address field may
optionally contain the 3-byte address of the instruction to which control is
to be passed. There is no code/data field.

S9 A termination record for a block of S 1 records. The address field may
optionally contain the 2-byte address of the instruction to which control is
to be passed. Under VERSAdos, the resident linker's ENTRY command
can be used to specify this address. If not specified, the first entry point
specification encountered in the object module input will be used. There is
no code/data field.

Serial Data Formats B-15

Motorola S-R ecord Format

Only one tennination record is used for each block of S-records. S7 and S8 records are
usually used only when control is to be passed to a 3- or 4- byte address. Normally, only one
header record is used, although it is possible for multiple header records to occur.

Creation of $-Records

S-record-fonnat programs may be produced by several dump utilities, debuggers,
VERSAdos' resident linkage editor, or several cross assemblers or cross linkers. ON
EXORmacs, the Build Load Module (MBLM) utility allows an executable load module to be
built from S-records; and has a counterpart utility in BUILDS, which allows an S-record file
to be created from a load module.

Several programs are available for downloading a file in S-record format from a host system
to an 8-bit microprocessor-based or 16-bit microprocessor-based system. Programs are also
available for uploading an S-record file to or from an EXORmacs system.

Example

Shown below is a typical S-record-format module, as printed or displayed:

S0060000484421B

S1130000285F245F2212226A00042429000082337CA

S113001000020000800082629001853812341001813

S113002041B9000084B42234300182342000824A952

S107003000144Bd492

S9030000FC

The module consist of one SO record, four S 1 records, and an S9 record.

The SO record is comprised of the following character pairs:

B-16

so

06

00+

00

48

44+

52

1B

s-record type SO, indicating that it is a
header record.

Hexadecimal 06 (decimal 6), indicating that
six character pairs (or ASCII bytes)
follow.

Four-character 2-byte address field, zeros
in this example.

ASCII B, D, and R - "BDR".

The checksum.

Serial Data Formats

Motorola S-Record Format

The first S 1 record is explained as follows:

Sl

13

00+

00

s-record type Sl, indicating that it is a
code/data record to be loaded/verified at a
2-byte address.

Hexadecimal 13 (decimal 19), indicating
that 19 character pairs, representing 19
bytes of binary data, follow.

Four-character 2-byte
hexadecimal address

address field;

0000, where the data which follows is to be
loaded.

The next 16 character pairs of the first Sl record are the ASCII bytes of the actual program
code/data. In this assembly language example, the hexadecimal opcodes of the programs are
written in sequence in the code/data fields of the S 1 records:

OPCODE

285F

245F

2212

226A0004

24290008

237C

0

2A

INSTRUCTION

MOVE.L (A7) +,A4

MOVE.L (A7) +,A2

MOVE.L (A2) ,Dl

MOVE.L 4(A2),Al

MOVE.L FUNCTION (Al) , D2

MOVE.L #FORCEFUNC,FUNCTION(Al)

(The balance of this code is continued in
the code/data fields of the remaining Sl
records, and stored in memory location
0010, etc.)

The checksum of the first Sl record.

The second and third S 1 records each also contain $13 (19) character pairs and are ended with
checksums 13 and 52 respectively. The fourth Sl record contains 07 character pairs and has
a checksum of 92.

The S9 record is explained as follows:

S9

03

00

FC

s-record type S9, indicating that it is a
termination record.

Hexadecimal 03, indicating that three
character pairs (3 bytes) follow.

The address field, zeros.

The checksum of the S9 record.

Each printable character in an S-record is encoded in hexadecimal (ASCII in this example)
representation of the binary bits which are actually transmitted.

Serial Data Formats B-17

Intel Hex Format

Intel Hex Format

This format consists of symbol table information, data specifications for loading memory, a
module starting address record (optional) and a terminator record. The format contains no
information regarding the initial contents of any registers other than CS and IP: therefore, all
other registers (in particular segment registers must be loaded explicitly by the programmer).

The records in the file appear in this order:

$$

symbol records - 0 or more

$$

data records and segment base address records - 0 or more, any order
starting address record (optional) terminator record

Symbol Record

As many symbol records as needed may be contained in the object module. A variable
number of symbols per line is generated, depending on the lengths of the symbols: records
are packed as tight as may be. A module may contain no symbol records. A sample record is
shown below.

APPLE OOOOOH LABELl ODOC3H MBM OFFFFH ZEEK 01947H FIFTH OOOOSH

Segment Base Address Record

This record defines the segment base address relative to which the load addresses in
subsequent data records are specified. The address in this record is 16 bits, which are the
upper bits of a 20-bit address; the lowest 4 bits are presumed to be zero. This segment base
address has nothing to do with any of the Loader segment addresses, base addresses. load
addresses, etc. Segment base addresses are generated internally by the Loader, are not under
the user's control, and are generally of no concern to the user. The segment base address is
presumed to be zero before any segment base address records are encountered.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

: 0 2 0 0 0 0 0 2 address checksum

Column 1 contains":", indicating the start of a record.

Column 2 and 3 contain "02", indicating there are 2 bytes of data in this record (the address).

Columns 4, 5, 6 and 7 contain "0000".

Columns 8 and 9 contain "02", identifying this record as a segment base address record.

Columns 10, 11, 12 and 13 contain the segment base address. Column 10 is the most
significant digit and column 13 is the least significant.

Columns 14 and 15 contain a checksum, calculated as described below under Data Record.

B-18 Serial Data Formats

Intel Hex Format

Data Record

This record specifies data bytes that are to be loaded into memory.

1 2 3 4 5 6 7 8 9 10 11 ... 41 42 43

byte load 0 0 data data ... data checksum

count address 1 2 D.

Column 1 contains":", indicating the start of a record.

Column 2 and 3 contain the count of the number of data bytes contained in this record.
Column 2 is more significant.

Columns 4, 5, 6 and 7 contain the address at which the first data byte is to be loaded. This
address is a 16-bit offset from the current segment base address (see segment base address
record). Column 4 is most significant, and column 7 is least significant.

Columns 8 and 9 contain "00'', identifying this record as a data record.

Columns 10 through 41 (or fewer if not 16 data bytes) contain up to 16 bytes of data. Each
byte occupies two columns, the leftmost being the more significant digit. The leftmost byte
is loaded into the address specified by columns 4 through 7 (plus the segment base address);
subsequent bytes are loaded into subsequent (higher) addresses.

The last two columns contain a checksum. This is the two's complement of the sum (modulo
256) of all bytes in the record (except the colon and the checksum itself).

Starting Address Record

This record specifies the starting execution address of the object module. It contains startup
values for the CS and IP registers.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

: 0 4 0 0 0 0 0 3 cs IP checksum

Column 1 contains":", indicating the start of a record.

Column 2 and 3 contain "04", indicating there are 2 bytes of data in this record (the CS and
IP values).

Columns 4, 5, 6 and 7 contain "0000".

Columns 8 and 9 contain "03 ", identifying this record as a starting address record.

Columns 10, 11, 12 and 13 contain the 16 bit value to be loaded into CS.

Columns 14, 15, 16 and 17 contain the 16 bit value to be loaded into IP.

Columns 18 and 19 contain a checksum, calculated as described above under Data Record.

Serial Data Formats B-19

Appendix C

JUMPER DEFINITIONS

There are jumpers in both the 8018x pod and 80C18x pod which can be changed to specify
choices in clock and chip select circuitry.

801 Bx Pod Jumpers
The five jumpers in the 8018x pod control whether chip selects are allowed to the target in
pause mode and whether the target clock should bypass the conditioning circuitry in the pod.

Accessing the Jumpers

To access the jumpers, remove the screws which hold the pod cover on, and then remove the
pod cover. The jumper and pin numbers are written on the board. Push the appropriate jumper
to the setting you want.

Setting the Jumpers

There are five jumpers on the 80186 pod.

JPl Determines the state of the DT/R-signal being asserted to the target
during pause mode.

JP2

JP3

Pod Jumper Definitions

JPl 1-2 DT/R- asserted low to target during pause
mode.

JPl 2-3 DT/R- asserted high to target during pause
mode.

Determines whether or not chip selects (UCS, LCS, MCS0-3,
PCS0-1) are allowed out to the target in pause mode.

JP2 1-2 Allows chip selects to go out to target in
pause mode.

JP2 2-3 Allows chip selects to go out to target
ONLY in run mode or Peek/Poke cycles.

Determines whether or not chip selects (PCS2-6) are allowed out to
the target in pause mode.

JP3 1-2 Allows chip selects to go out to the target in
pause mode.

JP3 2-3 Allows chip selects to go out to the target
ONLY in run mode or peek/poke cycles.

C-1

8018X Pod Jumpers

JP4 andWS Determines whether or not the target clock bypasses the clock
conditioning circuitry in the pod. The conditioning circuitry may be
bypassed if the target clock is generated by an IC in order to decrease
the "clock-in to clock-out" delay. If the the clock is generated by a
crystal the conditioning circuitry should be used.

JP4 1-2 with JPS 1-2 All of target clock conditioning circuitry is
used.

JP4 1-2 with JPS 2-3 Target clock bypasses part of the clock
circuitry but still uses US7 (74HC04).

JP4 2-3 with JPS 1-2 All of clock conditioning circuitry is
bypassed. Target clock goes through Kl
relay and directly to the pod CPU.

JP4 2-3 with JPS 2-3 Invalid

C-2 Pod Jumper Definitions

80C18X and 80C18xEB Pod Jumpers

BOC1 Bx and 80C1 BxEB Pod Jumpers

Accessing the Jumpers

Remove the snap-on pod cover. 80C18x

80C18xEB Remove the screws on the bottom of the pod which hold the pod cover
on. Remove the pod cover.

CAUTION

All ES 1800 emulator boards contain static-sensitive components.
These procedures should be carried out by someone who is familiar
with accepted static control practices. The ES 1800 pod cover should
be removed and handled only at a static-free work station.

Failure to follow these precautions may result in permanent damage
to your equipment. Check to ensure that the ES 1800 emulator is
turned off before beginning this procedure.

Setting the Jumpers
The jumper numbers are written on the board. Place the shunt on the appropriate jumper
setting.

80C1 Bx, 80C18xEB Pod Jumper JP1

With the 80C18x and 80C18xEB processors, the T4 (status inactive) portion of the CPU bus
cycle may be extended longer than the normal one clock cycle via the insertion of "idle" states
(Ti cycles) in the CPU. The state insertion is internal to the CPU and is not user-controllable.

The leading (rising) edge of the ALE signal is specified by Intel as the rising edge of the
CLKOUT signal immediately preceding Tl. Since T4 can be extended internally, the ES
1800 emulator cannot determine in advance whether the next clock cycle will be a Tl or a Ti
cycle. Therefore, you can shunt pins 2-3 on jumper JPl to generate the ALE signal at the first
T4 ("early" ALE), or shunt pins 1-2 on jumper JPl to generate a "late" ALE signal after the
status line goes active (indicating that the subsequent clock cycle will be a Tl cycle).

Figure C-1 shows the pin positions for the JPl jumper. Your 80C18x or 80C18xEB pod is
shipped from the factory with pins 1 and 2 of the JPl jumper shunted together, as shown in
the first drawing.

The latter method (late ALE) results in the leading edge of the ALE signal being somewhat
later than specified by Intel; however, the trailing (falling) edge of the ALE signal is
unaffected by the jumper position, and is as specified by Intel. With the JPl jumper shunted
for early ALE generation, the ALE signal may be longer than usual if the CPU inserts Ti
cycles before the next Tl cycle.

Pod Jumper Definitions C-3

80Cl BX and 80Cl 8xEB Pod Jumpers

NOTE
If you are using the emulator for the 80C18xEB microprocessor, its adaptor
board also has a jumper JPl. Be sure you are setting the correct jumper for
your purpose.

Figure C-1: Jumper 1 Pin Positions

3 2 1

Late ALE

Early ALE

80C1 Bx, 80C1 BxEB Pod Jumpers JP3 and JP4

The 80C18x and 80C18xEB probes are shipped configured for 3rd harmonic crystal clock
generation using the circuit layout described in the Intel manuals for the 80C186/C188 and
the 80C186EB/Cl88EB. Jumpers JP3 and JP4 may be reconfigured to allow slower clocks
(XT AL fundamental) or target system generated clock input.

JP3 Use to select external crystal or target system generated clock.

JP4 Significant only when external crystal is seclected by JP4 - selects
between fundamental and 3rd-overtone crystal configurations.

JP3 2-3 Target system generated clock

JP3 1-2 with JP3 2-3 3rd overtone crystal (24 MHz and above)
(default)

JP4 1-2 Fundamental crystal (below 24 MHz)

Figure C-2 shows the pin positions for these jumpers.

C-4 Pod Jumper Definitions

80C18X and 80C18xEB Pod Jumpers

Figure C-2: Jumper 3 and 4 Pin Positions

3 2 1 3 2 1

JP3 I " M I JP4

External Crystal 3rd Overtone

JP3 I " I "
JP4

External Crystal Fundamental

JP3

" I I "
JP4

Target generated clock To eliminate noise

80C1 Bx, 80C18xEB Pod Jumper JPS

In some operating systems (such as Intel's RMX86 operating system), the processor is
frequently halted during normal operation between interrupts. The emulator recognizes these
halts and reports an error message each time. To avoid numerous "No Bus Cycle" error
messages, you can set jumper JPS to positions 1-2. This will cause the emulator to ignore the
"No Bus Cycle" error messages.

With pins 2 and 3 of the the jumper shunted together, the emulator properly reports any "No
Bus Cycle" errors. This is the default factory setting.

Figure C-3: Jumper 5 Pin Positions

3 2 1

Always disabled "No Bus Cycle" Errors

Errors enabled

Pod Jumper Definitions C-5

80Cl8X and 80CJ8xEB Pod Jumpers

80C18x, 80C18xEB Pod Jumpers JP6 through JP9

These jumpers should be left in the factory default position.

C-6 Pod Jumper Definitions

80C18X and 80CJ8xEB Pod Jumpers

80C186EB/C188EB Adapter Board Jumper

In addition to the pod jumpers, jumper JPl on the adapter board allows you to switch from
an 80C186EB to an 80C188EB. The default position is set for the 80C186EB.The adapter
board is the smaller board containing the 80C186EB chip, connected to the main pod board

Accessing the Jumpers

To access the jumpers, remove the screws which hold the pod cover on. They are located on
the bottom of the pod. Remove the pod cover. The jumper and pin numbers are written on the
board.

CAUTION

All ES 1800 emulator boards contain static-sensitive components.
These procedures should be carried out by someone who is familiar
with accepted static control practices. The ES 1800 pod cover should
be removed and handled only at a static-free work station.

Failure to follow these precautions may result in permanent damage
to your equipment. Check to ensure that the ES 1800 emulator is
turned off before beginning this procedure.

Setting the Jumpers

There is only one jumper on the EB adapter board. The figures below show the location of
the jumper on the board and pin settings. The default position is between pins 1 and 2, for the
80C186EB. To emulate the 80C188EB microprocessor, move the shunt to connect pins 2
and3.

A CAUTION
Changing the jumper setting on the adapter board may loosen some
connections if force is applied. When moving the shunt, make sure
the adapter board remains well-seated.

Pod Jumper Definitions C-7

80Cl8X and 80CJ8x.EB Pod Jumpers

Figure C-4: EB Adapter Board.

: '
1

3 2 1
PIN 700-14500-00 Rev 1

J 1

Figure C-5: Jumper JP 1 Settings

3 2

1-~1
C186EB

C-8

3 2 1

1~·1
Cl88EB

Pod Jumper Definitions

AppendixD

APPLICATION NOTES

Applied Microsystems corporation offers a variety of applications notes on ES 1800
emulators which explain in more detail how to use the emulator for specific purposes.

If you would like copies of any of the Application Notes listed in this index, please contact
your local sales office or representative, or the Applications department of Applied
Microsystems Corporation.

If you have ideas for additional application notes you would like to see, please let us know:

Applications Department

800-ASK-4AMC (in Washington, 206-882-2000)

Numb.er Title Eguioment

ES-001 Downloading and Uploading ES 1800
to and from the Host Computer

ES-002 Two New Commands: COM, DIA ES 1800, ESL Version 2.3

ES-003 Bus Error Display of ADDRESS and STATUS ES 1800168000/10

ES-004 How to Simplify Design Integration of uP Based ES 1800
System Using the Event Monitor System

ES-005 Production Test Uses for Emulation EM and ES Series

ES-006 How to Use the Applied Microsystems ES 1800 ES 1800
Emulator to Determine the Duration of a Subroutine

ES-007 Selectively Tracing Using the Breakpoint System ES 1800

ES-008 ES 1800168000/08/10 ITR and PPT ES 1800/68000/08/10

ES-009 How to Break on Execution as Opposed to ES 1800168000/08/10/20
Prefetch

ES-010 Use of the ES 1800 "COM" Command ES 1800168000/08/10/20

ES·011 Using the COM Command to Simulate ES 1800168000/08/10
a Terminal 1/0 Device

Es-012 Helpful Things to Know about the ES 1800 ES 1800

ES·013 Operating the ES 1800 68020 at 16.67 MHz ES 1800/ 68020

ES-014 GenePak 8087 Emulation Software GenePak

ES-015 How to Assemble Code and Descriptor Tables ES 1800180286
in 80286 Protected Mode

ES-016 Running the 68020 Emulator with a ES 1800/ 68020
Motorola VME-133 Board

Application Notes D-1

Number Title Equivment

ES-018 Pinpointing an Overlay Memory Chip Failure on ES 1800 Overlay Boards:
Boards with 512K Max Overlay 700-11272, 700-11278,

700-11275, 900-11277

ES-019 68020A Timing Specifications ES 1800/ 68020A

ES-020 ES 1800 Training Manual ES 1800

ES-021 Pinpointing an Overlay Memory Chip Failure on ES 1800 Overlay Boards:
High Speed Overlay Boards 700·1160X·XX

ES-022 68010 Timing Specifications ES 1800168010

ES-023 The 80286: Protect Mode Tools ES 1800/ 80286,
VALIDATE/Soft-Scope 286

ES-024 80286 Timing Specifications ES 1800180286

ES-025 Cross Triggering Multiple Emulators ES 1800, EL 800

ES-026 Reducing Memory Usage in MCC68K/DOS MCC68K/DOS

ES-027 GPVS Software Utility ES 1800, with GeneProbe
and VALIDATE/Soft-Scope

ES-028 80186 Timing Specifications ES 1800180186

ES-029 Incremental Linking with LOD68K/DOS LOD68K/DOS:
rev 6.3b and previous

ES-030 Commonly Asked Questions on VALIDATE/XE! VALIDATE/XEI and XRAY

ES-031 Understanding the Z8002 NMI ES 1800/ Z8000
Cycle and the Emulator

ES-032 Using the FSI (Force Special ES 1800
Interrupt) Action

ES-033 Using the UNIX tip program to control ES 1800
an ES 1800

ES-034 68020-25 MHz AC Probe tip ES 1800/68020-25
Timing Specifications

ES-035 Connecting Multiple SCSI Emulators to a ES 1800
Sun Workstation

ES-036 Connecting Multiple SCSI Emulators to a PC ES 1800

ES-037 Speeding SCSI Downloads ES 1800

ES-038 ES 1800/80C186/C188 Timing Specifications ES 1800/80C18x

ES-039 Using the Overlay Speed Setting ES 1800/68000 family

ES-040 ES 1800/68000-16MHz AC Probe Tip ES 1800/68000·16MHz
Timing Specifications

ES-041 Setting Up ES 1800/683032 Chip Selects ES 1800/68302

D-2 Application Notes

Number Title Eg_uiament

ES-042 Programming the 8018x/80C18x Peripheral ES 1800/8018x/C18x
Control Block

ES-043 Comparison of Source-Level Debug Tools for ES 1800/lntel
Intel 16-Bit Microprocessors

ES-044 Statistical Performance Analysis ES 1800

ES-046 ES 1800/68302 Emulator Hardware Specifications ES 1800/68302

Application Notes D-3

AppendixE

SERIAL COMMUNICATONS INTERFACE

This appendix shows the RS-232C serial cable connections between the ES 1800 and various
host computers. Serial communication between two Data Terminal Equipment (DTE)
devices requires the use of a null modem cable. The following figures show the wiring
diagrams for cables supplied with ES 1800 emulators.

PC 25-Pin Serial Cable

Figure E-1. ES 1800 to PC!XT *

GND 1

TX 2

RX 3

ATS 4 4

CTS 5 5

DSA 6 6

GND 7 7

DCD 8 8

OTA 20 20

DB-25P 25 DB-25S 25

* Note that pins 6, 8, and 20 are not used and are unaffected by the cable configuration

Communications Inte!face E-1

PC 9-Pin Serial Cable

Figure E-2. ES 1800 to PC/AT

AT
AT Connector (9-pin)

ADAPTER
GND , , ,
1X 2 2 2 2 RX

RX 3 3 3 3 TX

RTS 4 4 4 4 DTR

CTS 5 5 5 5 GND

DSR 6 6 6 6 DSR

GND 7 7 7 7 RTS

DCD a a a a CTS
9 N.C.

08-98

DTR 20 20 20

DB-25P 25 DB-255 25 25 DB-25P

E-2 Communications Interface

Sun 25-pin Serial Cable

Figure E-3. ES 1800 to Sun 3150 or 3160

DB-25P

GND
TX 2

RX

RTS
CTS

DSR
GND 7
DCD

DTR 20

25

Figure E-4. ES 1800 to Sun 3180 (ttya) *

GND 1

TX 2

RX 3

RTS 4

CTS 5

DSR 6

GND 7

DCD 8

DTR 20

DB-25P 25

* Also works for Sun 3/50 and Sun 3/60

Communications Interface

DB-25P

DB-25P

1

2

4

6

7

8

20

25

1

2

3

4

5

6

7

8

20

25

E-3

Figure E-5. ES 1800 to Sun 3180 (ttyb)

GND 1

TX 2 2

RX 3

RTS 4

CTS 5

DSR 6

GND 7

DCD 8

.N.C. 9

20

DB-9P DB-25P 25

E-4 Communications Interface

8-9
$ 8-9
% 8-9
* 4-56, 4-61, 7-7
I 4-56, 4-61, 7-6
: 4-58
<Backspace> 8-24
<ctrl-q> 8-24
<ctrl-r> 8-24
<ctrl-s> 8-24
<ctrl-x> 8-24
<ctrl-z> 4-56, 7-166, 8-24
<Delete> 8-24
<esc><esc> 8-24
? 2-5
@ 4-52, 4-54, 7-2
\ 8-9
- 4-56, 7-8, 8-5
' 4-56, 7-4
80C18X

unique registers 4-25
80C18X specific features

ignore halt errors 7-72
interrupts during pause 7-70
refresh during pause 7-100
targets with attached CPUs 2-4

SOC 18xEB specific features
unique registers 4-17

·A·

Absolute address 7-68
Absolute time 6-2
Absolute value 8-13
Acknowledge char 7-116
Actions 1-10

break 7-16
CNT 7-31
definition 4-33

Index

RCT 7-106
TGR 7-152
TOC 7-153
TOT 7-154
TRC 7-157

Address
absolute 7-68
branch to 7 -64
comparators 4-36
odd 4-36
registers 7-68

ALE signal jumper C-3, C-4
Alphanumeric value 8-6
ALT 7-92
AND 4-35, 7-169, 8-12
Application notes D-1
ARDY 7-18
ASM 4-52, 7-9
Assemble line 4-52, 4-53
Assembler 7-9

directives 7-9

-B·

BAS 4-7, 4-47, 4-57, 7-12
Base

default 4-7, 7-12, 7-45
display 4-12, 4-49
registers 8-8

Base definition symbols 8-9
Baud rate 3-14, 4-4, 7-116

emulator ports 3-3, 4-5
BKX 4-29, 7-13
Blank lines 7-108
Block data

verify 7-162
Block move 7-14

verify 7-163
BMO 4-52, 7-14

INDEX

i-I

Index, continued

BNC connector 3-5, 7-152
Boards

control 3-1
emulation 3-3
Future Domain 3-14
MCB controller 2-2, 3-2
RAM overlay 2-2
SCSI 2-2, 3-2, 3-14
trace and break 2-2, 3-3

Break
on execution 4-29, 7-13
onNMI 4-40
on odd address 4-36

Break emulation 1-10, 4-29, 4-30, 6-24,
7-16

Breakpoints 2-9, 4-29
disabling 4-29
enabling 4-29
run until 7-103
setup 4-32-4-46
setup example 4-41-4-45
while running COM 7-37

Bringing up hardware 1-13
BRK 4-29, 4-32, 4-41, 7-16
BTE 7-19
BTO register 7-20
BUS 4-50, 7-18
Bus cycles 7-55
Bus status 5-3, 7-18
Bus timeout enable 7-19
Bus timeout register 7-20
BYM 4-52, 7-21, 7-167
Byte mode 7-21, 7-167, 8-22

-C-

Cables 2-3, 3-7, 3-17
CCT 4-3, 4-5, 7-23, 7-156
CD 7-92
CDH 7-24
CES 4-32, 4-57, 4-64, 7-25
Chassis 3-1
Checksums 4-9
Chip select 7-98, 7-105

i-2

Chip select circuitry 4-13
Chip select registers 4-15, 4-16
CK 7-26
Clear

commands 4-57, 4-64
CPU registers 4-7, 7-29
DMA halt 7-24
macros 7-30
memory map 4-57, 7-28
WHEN!fHEN 4-32, 7-25

CLK 7-27
CLM 4-6, 4-57, 7-28
Clock

internal 1-9
internal/external 7-26
read target 7-27
target clock frequency 5-3

CLR 4-7, 4-47, 4-57, 4-64, 7-29
CMC 4-56, 4-57, 7-30
CNT 4-40, 4-41
Code space 7-92
Colon operator 4-58
COM 4-50, 7-34
Commands

arguments 7-68
clear 4-57
command line 8-5
commonly used 8-17, 8-18
configure system 4-5, 4-27
delay execution 7-166
ESL 8-5
exceptions 8-5
extending 8-5
language overview 1-5
memory 4-52
mnemonics 8-6
port dependent 4-5
repeating 4-61, 7-6, 7-159, 8-5, 8-23
run mode 4-29, 4-53
single character 8-5
symbols 4-56
terminator sequence 7-116

Index

Communication
emulator 4-3
establishing 1-8
parameter setup 4-6
SCSI 1-8, 4-5
serial 1-8, 4-3
target programs 7-34
with host 4-4

Communications
help 8-16

Computer control 1-3
Computer port control 4-3, 4-9, 7-23
Configuration

menus 4-5, 4-27
pins 3-14
system 1-2

Control boards 3-1
Control characters 8-24
Copy system variables 7-74
Count events 7-31

reset 7-106
toggle counter 7-153

Count limit comparator 4-40
Count occurrences 6-20
Counter overflow 6-6, 6-7
Counter/timeruse 3-5, 7-152
CPU registers 4-49

clear 4-7
CPY 4-50, 7-38
CRC 7-39
CRE 7-39
CRO 7-39
CRT 7-61
CRT length 7-116
CS:IP 4-11, 4-49
CSEG 7-10
CTL 4-40, 7-31
CTS 7-40
Customer service ii, 2-9
Cyclic redundancy check 5-3, 7-39, 7-135

Index

Index, continued

·D·

Data
buffering 4-4
comparator registers 4-37
downloading 7-51
enable 7-50
printing 4-50, 7-38
requirements 3-15
serial formats B-1
upload 7-160
verify 7-52

Data length 4-52, 7-21, 7-167
byte 4-52
word 4-52

Data space 7-92
DB 4-7, 4-52, 7-10, 7-41
DB-25 connectors 4-3
Debuggers

highlevel 1-16
Debugging mechanical systems 4-42
Decoding

memory and I/0 4-13
Default base 7-45
Default base register 4-7, 8-8
Definitions 4-2
DEL 4-56, 7-43
Delete

symbol or section 7-43, 7-102
DES 4-32, 7-44
DFB 7-45
DIA 4-48, 7-46
Diagnostic functions 1-13, 5-1, 7-120
Diagnostics

complete RAM test, looping 7-125
complete RAM test, single pass 7-123
cyclic redundancy check 7-135
read data over entire range 7-134, 7-144
read from address 7-127, 7-137
simple RAM test, looping 7-124
simple RAM test, single pass 7-121
toggle data at address 7-126, 7-136
writealtematepatterns 7-129, 7-139
write data then read 7-132, 7-142

i-3

Index, continued

write data to address 7-128, 7-138
write incrementing value 7-133, 7-143
write pattern then rotate 7-130, 7-140

DIS 4-7, 4-52, 7-48
Disassemble 7-48

memory 4-7
single step 4-61, 7-7, 7-159
trace memory 7-59
trace page 7-61

Display
base 4-12, 7-45
bus status 5-3, 7-18
character string 7-46
event specifications 7-44
improve readability 7-108
macros 7-79
memory block 7-41
memory map 7-49
PCB registers 2-12, 2-17
raw trace bus cycles 7-55
registers 4-7
revision dates 7-109
sections 7-115
symbols 7-147
trace 2-9, 4-49

DM 4-6, 7-49, A-5
DMA channels 4-13
DMA controllers 2-10, 4-15, 7-50
DMA halt 7-24
DME 4-15, 7-50
DNL 4-5, 4-6, 4-9, 4-10, 7-51
DNV 7-52
Don't care values 4-12, 4-37, 4-39, 7-67,

8-9
Download 3-14, 4-6, 4-9

corrupt 7-165

i-4

errors 4-10
from computer port 4-9
from terminal port 4-9
hex format files 3-14
port control 4-10
procedures 7-51
record format 7-119

returning control to emulator 4-10
symbols 4-11
verify data 4-6

Download speed 1-8
DR 4-7, 4-47, 7-53
DRAM 7-100
DRT 4-47, 4-49, 7-55, 7-148, A-5
DT 4-47, 4-49, 7-59, 7-148
DTA 7-92
DTB 4-47, 4-49, 7-61, 7-148, 7-166
DTF 4-47, 4-49, 7-61, 7-148
Dumb terminal setup 1-2
DW 7-10
Dyadic operator 8-15
Dynamic memory 7-50
Dynamic RAM refresh 4-13
Dynamic trace 1-12, 4-49

capture enable 7-148
with event system 4-33

-E-

EEPROM
groups 4-63
initialize 2-6, 7-114
load from 4-7, 4-57
save configuration 4-63, 7-87, 7-114
save to 4-7

Elapsed time 6-12
A to B 6-12
in range 6-12, 6-15
inter-module 6-12
measurement 6-1
measurement examples 6-12
out-of-module 6-12

Emulation 1-5, 1-6, 4-1
break 1-10, 4-29, 4-30, 6-24, 7-16
starting 4-29

Emulation board 3-3
Emulator

control boards 3-1
front panel 3-1, 3-5
hardware error messages A-4
rear panel 3-5

Index

specifications 3-21
Emulator setup 2-2-2-3
Enable chip selects 2-10, 7-98
Enable data 7-50
END 4-52, 7-10
Enter program 2-7
EQU 7-10
Equation 8-6
Error messages 8-25, A-1-A-5

emulator hardware A-4
ESL 8-26
received on computer port 4-10
target hardware A-1
target software A-5
while running COM 7-37

Errors
ESL 2-5, 8-25
no memory in header 2-4
syntax 8-25

ES Driver 1-9, 1-16, 4-45
communication 4-5
control software 1-3

ES Language 1-5, 8-1-8-30
commands 8-5
error messages 8-26
syntax 8-1

Escape sequence 7-116
ESL 1-5, 2-5, 8-1-8-30

control 1-2
errors 2-5
prompts 8-21
revisions 6-4

Event comparators 4-36
Event monitor system 1-10, 4-32-4-46,

8-11, 8-18
address comparators 4-36
clear WHEN(fHEN 4-32, 7-25
comparator registers 4-34, 4-36
count events 7-31
data comparators 4-37
define action list 4-40
examples 4-41-4-45
groups 4-40, 7-69, 8-11

Index

Index, continued

interrupts 7-64
LSA comparators 4-37
registers 4-25
reset counter 7-106
setup 4-32, 6-9
speed 6-25
status comparators 4-38
status mnemonics 4-38
structure 4-33
toggle counter 7-153
trace events 7-154, 7-157
trigger signal 7-152
WHEN{fHEN 4-40, 7-169, 8-11
with dynamic trace 4-33
with software debuggers 4-45

Event specifications
display 7-44
use of parentheses 4-34

Events 1-10
definition 4-33

Exit line assembler 4-52
Expression 8-6
Extended Tek Hex format B-7

Fan 3-1
Fan filter

-F-

cleaning 3-17
FIL 4-52, 7-62
Files

closing 7-160, 7-161
opening 7-161
viewing 7-160

Fill operator 7-62
FIN 4-52, 7-63
Find memory pattern 7-63
Firmware check 7-135
FLX 4-11
FLX register 7-54
Forced special interrupt 7-66
Formats 7-119

Extended Tek Hex B-7
Intel Hex B-18

i-5

Index, continued

Intel Intellec B-4
MOS B-2
Motorola Exorcisor B-3
Motorola S-record B-14
serial data B-1
Signetics B-5
Tek Hex B-6

FSI 4-41, 7-64
FSX 7-66
Fuses 2-2, 3-6

-G­

GD 4-57, 7-67
GeneProbe 1-16

with event monitor system 4-46
General purpose registers 1-13, 7-67, 7-68
Global data length 7-21, 7-167
GR 4-57, 7-68
GRO 4-41
Ground 2-3, 3-1

-H-

Handshake
hardware 3-16
software 3-16

Hanging pod 3-9
Hard copy 7-38, 7-90
Heat problems 2-4, 3-1
Help 2-5, 8-16
Help menu 8-17
High level debuggers 1-16
HLT A-2
Host computer 1-3, 4-3

communication with 4-4
configuration 4-5

Host control 1-3

-I-

l/O address space 4-55
l/O mode 4-55, 8-22

enter 4-7
entering 7-83

i-6

exiting 7-170
pointer 7-73

1/0 simulation 4-50
IDP 4-17, 7-70
IDX 4-56
Ignore halt errors 7-72
IHE 7-72
ILG 7-81
Illegal statement 2-5, 8-1
Indirection 8-7
Initialize

EEPROM 2-6
PCB registers 2-9, 2-14
system 2-6

Installation
LSA 3-12
time stamp module 6-3

INTO 7-18
INTI 7-18
INT2/INT AO 7-18
INT3/INTA1 7-18
Integer 8-6
Intel Hex format B-18
Intel Intellec format B-4
Internal clock 1-9
Intenupt controller 4-13
Intenupt controller registers 2-11, 4-16
Intenupt latency 6-6, 6-17
Intenupts

force special intenupts 7-64
special intenupt register 7-64
step through 4-29, 7-145

Intenupts during pause 7-70
IOP 4-52, 7-73
Isolate problem 1-11

-J-

Jumpers
8018X C-1
80C18X,80C18XEB C-3
ALE signal jumper C-3, C-4
J1 2-2, 3-2
pod 2-1

Index

timer enable C-5

-L-

LCC socket 3-7
LCS- signals 2-4
LD 4-7,4-47,4-57, 7-74
LDV 4-7, 4-12, 4-29, 4-47, 7-75
LIM 4-56
Limit register 4-56
Line assembler 4-52, 4-53, 7-9, 8-22

exiting 7-170
Line assembler prompt 8-21
LMCS register 4-15, 4-16
Load

overlay memory 7-76
registers 4-7, 4-49
reset vectors 4-7, 4-29, 7-75
setup from EEPROM 4-57
variables 7-74

Log in banner 8-19
Logic State Analyzer (LSA) 1-11, 3-5,

3-12, 6-3
LOV 4-6, 4-47, 4-48, 4-52, 7-76
Low byte 4-37
LSA port 3-5

parameter setting 6-7
LSA timing 3-12
LST 7-86

-M-

M 4-52, 7-77, 7-111
MAC 4-56, 7-79
Macros 1-13, 4-62

clearing 7-30
commands 4-56
defining and using 7-8
displaying 7-79
saving 4-62
truncation 4-63
using registers 4-63, 7-67, 7-68

Mainframe 3-1
Maintenance 3-17
MAP 4-6, 4-47, 4-48, 7-80

Index

Index, continued

Map overlay 7-80
MCB controller board 2-2, 3-2

switch setting 3-3
Mechanical systems

debugging 4-42
Memory

alternate overlay/target 7-90
assembler 7-9
block display 7-41
block move 7-14
clear overlay map 7-28
commands 4-52
disassemble 4-7
disassembler 7-48
display map 7-49
download to overlay 7-51
enable overlay 7-92
fill 7-62
find data pattern 7-63
illegal 7-81, A-5
load target to overlay 7-76
map overlay 4-8, 7-80
modify 4-51, 4-54
overlay 4-7, A-2
overlay speed 4-8, 7-93
overview 1-11
read only 7-80, A-5
read/write 7-2, 7-80
scroll through 4-54
scrolling 7-41
trace 1-11, 4-48
verify overlay 7-164

Memory block
display 4-7

Memory disassembler 8-22
Memory map

clear 4-6, 4-57
display 4-6
set 4-6

Memory mode 4-54, 8-22
entering 7-77
exit 4-52
exiting 7-170

i-7

Index, continued

modifying data 7-78
pointer 7-85
scrolling 7-86

Memory mode prompt 8-21
Microprocessor registers 4-19, 7-53
MIO 4-7, 4-14, 4-52, 7-83, 7-111
MMCS register 4-15
MMP 4-52, 4-54, 7-85
MMS 7-92
Modes

memory 4-54
ONCE 2-4
pause 4-2
run 4-2
special ESL 8-22
transparent 4-2, 7-156

Modifying program 1-12, 4-51
MOS format B-2
Motorola Exorcisor format B-3
Motorola S-record format B-14
MPCS register 4-15
Multiple users 4-63
Multiplex lines 4-33

·N·

NMI 4-16, 7-18
break 4-40

NOT 4-34, 7-169, 8-12
Null modem cable 2-3
Null target 1-9, A-3
Numbers

ESL 8-8
signed 8-12

NXT 7-86

·O·

Object module format 1-15
Odd address

break on 4-36
jump to 4-37

OFF 7-87
OFF -1 4-57
ON 7-87

i-8

ON/OFF 4-7, 4-14, 4-47, 7-87
save menu 4-27

ONCE mode 2-4
Operator precedence 8-7, 8-13
Operators

dyadic 8-15
ESL 8-7
indirection 8-10
precedence 4-34
single argument 8-14

OR 4-35, 7-169, 8-12
ORO 7-10
Oscilloscope use 1-13, 4-42, 5-2, 7-152,

A-3
OVE 4-6, 7-81, 7-92
Overflow counter 6-7
Overlay

display map 7-49
run program from 4-48

Overlay memory 1-8, 4-7, A-2
boards 3-3
enable 4-6, 7-92
load 4-6
map 2-7,4-6,4-7,4-8, 7-80, 7-81
size options 4-7
speed 4-6, 4-8, 7-93
verify 4-6
wait states 4-8, 7-93

OVL 7-57
ovs 4-6, 4-8, 7-93

.p.

P ACS register 4-15
Parentheses 7-169

ESL 8-6
indirection 8-10
WHEN/THEN 8-12

Parentheses in event specifications 4-34
Parity 7-116
Parts 3-19
Patch program 4-8, 4-53, 7-3, 7-64
Pause mode 1-5

definition 4-2

Index

interrupts 7 -70
PCB 4-14
peripherals 4-14
refresh 7 -100

PCB 4-7, 4-47, 7-95
common problems 4-14
during pause 4-14
relocation 4-13

PCB registers 4-11, 4-13-4-26, 7-95
8018x,80C18x 4-19
80C18X 4-25
80C18xEB 4-21
default location 4-13
display 2-12, 2-17,4-7
enhanced mode 4-25
initialize 2-9, 2-14
master mode 4-24
pause-to-run 4-13
run-to-pause 4-13
slave mode 4-24

PCS 7-98
Peeks 7-99, 7-127, 7-137

definition 4-2
Performance analysis 3-11
Peripheral control registers

initialize 2-9, 2-14
Peripherals during pause 4-14
PIA 7-70
Pin configurations 3-14
PLCC adapter 3-7
Pod 3-7
Pod connection 3-5
Pod jumpers 2-1
Pokes 7-99, 7-128, 7-138

definition 4-2
POL register 4-16
Port parameters 4-5
Ports 3-5, 3-14

baud rate 3-14
commands 4-5
configuration 4-3, 7-116
control 4-5, 4-10
copying data to 7-38

Index

Index, continued

download data 7-51
LSA 3-5
parameter setup 4-3
port control 3-14, 7-23, 7-149, 7-156
SCSI 3-5, 3-14
serial 3-14
terminal control 7-149
upload/download 3-14

POS register 4-16
Power 3-21
Power controller 4-13
Power supply 2-3, 3-1
Power-up sequence 2-4

no target 2-5
with target 2-4

PPT 7-99
PRE 4-14, 7-10, 7-100
Prefetch 4-36, 7-13, 7-66
Print session 7-90
Probe tip 3-17

connecting to target 3-7
Problems

isolating 4-47
Program

entering 2-7
Prompts 8-21
Prototype hardware 1-13
PUR 4-56, 4-57, 7-102

-Q-

Question mark 2-5

-R-

RAM
overlay board 2-2
testing 2-7, 5-2

Range 8-9
ESL 8-9

Raw trace 7-55
RBK 4-29, 7-103, 7-166
RBV 4-29, 7-104
RCS 4-15, 7-105
RCT 4-40, 4-41, 7-31

i-9

Index, continued

RDY 7-107
Read chip select 7-105
Read serial status 7-111
Read/write memory 7-2
Ready signal 7-107
Real time 1-5
Reentrant code 4-43
Refresh controller 4-13
Refresh during pause 7-100
Registers 1-12, 8-10

address 4-3 6
BTO 7-20
checking 4-11
chip select 4-15, 4-16
clear 4-7, 7-29, 7-53
comparator 4-34
count limit 4-40
CPU 4-49
display 4-7, 7-53
display base 4-12, 4-49, 7-12
dynamic RAM refresh 4-14
event monitor system 4-25
general ES1800 4-26
general purpose 1-13,4-57,4-63, 7-67,

7-68
interrupt controller 4-16
load 4-49, 7-53
microprocessor 4-19
MMP 4-54
overlay memory 4-8
PCB 4-24, 4-25, 7-95
reset status 4-29, 7-112
run mode 4-12
save 4-12, 4-49
serial controller 4-17
set base 7-12
status 4-38
target PCB 4-19, 4-21
values 4-12

Relative time 6-2
Repairs ii
Repeat command line 7-6, 7-7, 8-23
Repeat commands 1-13

i-10

Reset A-3
pod microprocessor 4-29, 7-112

Reset character 7-116, 7-166
Reset vectors

load 4-7, 4-29
run 7-104, 7-110

RET 4-48, 7-108
Return authorization number ii
REV 7-109
Revision dates 7-109
RNV 4-29, 7-110
RO 7-80
RS232 4-3
RSS 7-111
RST 4-29, 7-112
RUN 4-29, 7-113

commands (chart) 4-30
Run

breakpoints disabled 4-29
from overlay 4-48
halt emulation 4-30
target program 4-29, 7-103, 7-104,

7-110, 7-113
Run mode 1-5, 4-12, 4-29

commands 4-53
definition 4-2
prompt 8-21

Run program 1-9, 6-10
RW 7-80

·S-

SAV 4-7,4-47,4-57, 7-114
Save

ON/OFF 4-27, 4-63, 7-87
parameters 7-119
registers 4-7, 4-12, 4-49
setups 1-13
switches 4-7, 4-27, 7-87
system variables 7-114

Scope loops 5-2
Scroll

direction 4-54
through memory 7-41

Index

trace buffer 4-49
SCSI board 3-14
SCSI communication 1-8, 2-2, 3-2, 4-5
SCSI port 3-5, 3-14
SEC 4-56, 7-115
Sections 4-57

define 4-56, 7-4
deleting 7-43, 7-102
display 7-115

SEG 7-57
Serial communication 1-8, 4-3
Serial controller registers 4-17
Serial ports 3-5
Service 2-6, 2-9
SET 4-3, 4-5, 4-6, 4-57, 7-116
Set command 6-7
SET menu 7-116
Setup 7-116

emulator 2-2-2-3
port parameters 4-3
save 1-13, 7-114
system 1-2
target system 2-3, 4-6

SF 0 7-121
SF 1 7-123
SF 11 7-133, 7-143
SF 12 7-134, 7-144
SF 13 7-135
SF 2 7-124
SF 24 7-126, 7-136
SF 25 7-127, 7-137
SF 26 7-128, 7-138
SF 27 7-129, 7-139
SF 28 7-130, 7-140
SF 29 7-132, 7-142
SF 3 7-125
SF31 7-133
SF 32 7-134, 7-143, 7-144
SF 4 7-126, 7-136
SF 5 7-127, 7-137
SF 6 7-128, 7-138
SF 7 7-129, 7-139
SF 8 7-130, 7-140

Index

Index, continued

SF 9 7-132, 7-142
Shortcuts 1-12, 4-56
SIA 7-64
Signetics format B-5
Signing

ESL 8-12
Simulate I/0 4-50
Single step 2-8, 4-29, 4-50, 7-6, 7-7, 7-146,

7-159
Single-argument operators 8-14
Soft shutdown routine 4-42
Soft switches 4-7, 4-27-4-28

80186/188 7-88
80C186/Cl88 7-89
80C186EB/C188EB 7-90

Soft-Scope 1-17, 4-46
Software debuggers

with event monitor system 4-45
Software options 1-15
Special characters 8-24
Special functions 1-13, 5-1, 7-120, 8-22

help 8-16
Special interrupts 7-64
Special modes 8-22
Speed

overlay memory 7-93
SRDY 7-18
S-records

creation B-16
format B-14
types B-15

STA 7-92
Stand-alone operation 1-3
Status comparators 4-38
Status mnemonic table 4-39
Status translation table 4-39
Step, single 2-8,4-29,4-50, 7-6, 7-7, 7-146,

7-159
STI 4-29, 7-145
Stop and step target system 4-29, 7-146
Stop bits 7-116
Stop program 2-8, 4-50
STP 4-29, 7-146

i-11

Index, continued

Switches 4-27-4-28, 6-8, 7-87
break on instruction 4-29, 7-13
dynamic trace capture enable 7-148
FSI on instruction execution 7-66
help 8-16
internal/external clock 7-26
internal/external ready signal 7-107
interrupts during pause 7-70
refresh during pause 7-100
step through interrupts 4-29, 7-145

SYM 4-56, 7-147
Symbolic debugging 1-12
Symbolic references 8-8
Symbols 4-57

define 4-56, 7-4
deleting 7-43, 7-102
display 7-147
downloading 4-11
maximum limit 4-57
symbolic debugger 1-13
tables 4-58
uploading 7-161

System
initializing 2-6
operation 1-5
reset 7-166
setup 1-2, 4-5, 4-27
testing 2-6

System variables 7-114

-T-

T4 state 4-33
TAR 7-57
Target

bus cycle 4-2
clock 7-26
communication with 7-34
cyclic redundancy check 7-39
definition 4-2
display memory string 7-46
download to 7-51
hardware errors A-1
load into emulator 7-76

i-12

null 1-9
PCB registers 4-19, 4-21
problems 4-47, 4-48
read clock 7-27
reset 2-4
run program 4-29, 7-103, 7-104. 7-110,

7-113
software error messages A-5
system peeks 7-127, 7-137
system pokes 7-128, 7-138
system setup 2-3
vcc 8-19

Target environment setup 4-6
TCE 4-47, 7-148
TCT 4-3, 4-5, 7-149, 7-156
TE 4-14, 7-150
Tek Hex format B-6
Temperature 3-21
Terminal

dumb 4-3
control 1-3
setup 1-2

Terminal port control 4-3, 4-9, 7-149
Terms 4-2
TEST 7-18
Test register 7-159
Test run of system 2-6
TGR 4-41, 6-9, 7-152

event monitor system 6-8
external 6-8

TGT 7-81
Thumbwheel switch 2-2, 3-2
Time base

maximum 6-2
switch 6-7

Time measurement maximums 6-7
Time stamp 6-10

convert value 7-40
counter 6-8

Time stamp information
saving in file 6-11
viewing 6-10

Time stamp module 1-14, 3-11, 6-1-6-25

Index

software 6-4
TGR inputs 6-5
using 6-5

Timer enable jumper C-5
Timers 2-11, 2-15, 4-14, 7-150
Timing

LSA 3-12
trigger 3-12

TOC 4-41, 7-31, 7-153
Toggle data at address 7-136
TOT 4-41, 7-154
TRA 4-3, 4-5, 4-6, 7-156
Trace

disassemble memory 7-59
disassemble page 7-61
display 2-9
display bus cycles 7-55
dynamic 1-12, 4-49
events 7-154, 7-157
memory 1-11, 4-48
memory, buffer size 4-48
subroutine 7-69

Trace and break board 2-2, 3-3
Tracing peeks and pokes 7-99
Transparent mode 4-3, 7-156, 8-22

definition 4-2
enter 4-3, 4-4, 4-5, 4-6
exit 4-4

TRC 4-41, 7-157
Trigger signal 7-152
Trigger timing 3-12
Troubleshooting 3-20
TST 4-56, 4-61, 7-159

·U·

UCS- signals 2-4
Unary operator 8-12
UPL 4-5, 7-160
Upload 3-14

data 7-160
hex format files 3-14
record format 7-119
record length 7-119

Index

Index, continued

symbols 7-161
UPS 4-5, 7-161
Users

specifying 7-116

.v.

VALIDATE
communication 4-5
Soft-Scope 4-46
with event monitor system 4-46

VALID A TE/Soft-Scope 1-17
Variables

loading 7-74
VBL 4-52, 7-162
VBM 4-52, 7-163
Vectors

load reset 7-75
Vent 3-1
Verify

block data 7-162
block move 7-163
code 4-6
data 7-52, 7-165
overlay memory 7-164
serial data 4-6

VFO 4-6, 7-164
VFY 4-6, 7-165
Voltage

configuring for 2-2

·W·

WAI 4-48,4-49, 7-166
Wait states

overlay memory 1-5, 4-8, 7-93
Warranty ii
WDM 4-52, 7-21, 7-167
WHEN/THEN 1-10,4-29,4-32,4-40, 7-25,

7-169
conflicting 4-41
syntax 4-34

Word mode 7-21, 7-167, 8-22

i-13

111mm~
Applied
Micr05Ystems
Corporation
Applied Microsystems Corporation maintains a worldwide network of direct sales offices
committed to quality service and support. For information on products, pricing, or
delivery, please call the nearest office listed below. If you are unsure which office to
contact, call 1-800-426-3925 for assistance.

CORPORATE OFFICE
Applied Microsystems Corporation
5020 148th Avenue Northeast
P.O. Box 97002
Redmond, WA 98073-9702
(206) 882-2000
1-800-426-3925
Customer Support
1-800-ASK-4AMC
TRTTELEX 185196
Fax (206) 883-3049

EUROPE
Applied Microsystems Corporation Ltd
AMC House
South Street
Wendover
Aylesbury, Bucks
HP22 6EF England
44 (0) 296-625462
Telex 265871 REF WOT 004
Fax 44 (0) 296-623460

GERMANY
Applied Microsystems GmbH
Dammstrasse 6
W-6453 Seligenstadt
Germany
06182/9203-0
Fax 06182/9203-15

JAPAN
Applied Microsystems Japan, Ltd.
Nihon Seimei
Nishi-Gotanda Building
7-24-5 Nishi-Gotanda
Shinagawa-Ku
Tokyo T141, Japan
3-3493-0770
Fax 3-3493-7270

U.S. REGIONAL SALES OFFICES
Western Regioo
Applied Microsystems
Corporation of Washington
3333 Bowers Avenue
Suite#220
Santa Clara, CA 95054
(408) 727-5433
Fax (408) 727-9011

Applied Microsystems
Corporation of Washington
25909 Pala Place
Suite #280
Mission Viejo, CA 92691
(714) 588-0585
Fax (714) 588-1476

Central Region
Applied Microsystems Corporation
14643 Dallas Parkway
Suite 230, LB-76
Dallas, Texas 75240
(214) 991-6344
Fax (214) 991-4581

Eastern Region
Applied Microsystems
Corporation of Washington
6 Cabot Place
Stoughton, MA 02072
(617) 341-3121
Fax (617) 341-0245

P/N 922-17003-00
January 1992

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	2-01
	2-02-05
	2-02
	2-03
	2-04
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	5-01
	5-02
	5-03
	5-04
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	7-001
	7-002
	7-003
	7-004
	7-005
	7-006
	7-007
	7-008
	7-009
	7-010
	7-011
	7-012
	7-013
	7-014
	7-015
	7-016
	7-017
	7-018
	7-019
	7-020
	7-021
	7-022
	7-023
	7-024
	7-025
	7-026
	7-027
	7-028
	7-029
	7-030
	7-031
	7-032
	7-033
	7-034
	7-035
	7-036
	7-037
	7-038
	7-039
	7-040
	7-041
	7-042
	7-043
	7-044
	7-045
	7-046
	7-047
	7-048
	7-049
	7-050
	7-051
	7-052
	7-053
	7-054
	7-055
	7-056
	7-057
	7-058
	7-059
	7-060
	7-061
	7-062
	7-063
	7-064
	7-065
	7-066
	7-067
	7-068
	7-069
	7-070
	7-071
	7-072
	7-073
	7-074
	7-075
	7-076
	7-077
	7-078
	7-079
	7-080
	7-081
	7-082
	7-083
	7-084
	7-085
	7-086
	7-087
	7-088
	7-089
	7-090
	7-091
	7-092
	7-093
	7-094
	7-095
	7-096
	7-097
	7-098
	7-099
	7-100
	7-101
	7-102
	7-103
	7-104
	7-105
	7-106
	7-107
	7-108
	7-109
	7-110
	7-111
	7-112
	7-113
	7-114
	7-115
	7-116
	7-117
	7-118
	7-119
	7-120
	7-121
	7-122
	7-123
	7-124
	7-125
	7-126
	7-127
	7-128
	7-129
	7-130
	7-131
	7-132
	7-133
	7-134
	7-135
	7-136
	7-137
	7-138
	7-139
	7-140
	7-141
	7-142
	7-143
	7-144
	7-145
	7-146
	7-147
	7-148
	7-149
	7-150
	7-151
	7-152
	7-153
	7-154
	7-155
	7-156
	7-157
	7-158
	7-159
	7-160
	7-161
	7-162
	7-163
	7-164
	7-165
	7-166
	7-167
	7-168
	7-169
	7-170
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	B-17
	B-18
	B-19
	B-20
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	D-01
	D-02
	D-03
	D-04
	E-01
	E-02
	E-03
	E-04
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	I-14
	xBack

