
1111•

_ _,

TEK SPS BASIC

V02N02XM

Signal Processing Package
CP57001 /CP57501

COMMITTED TO EXCELLENCE

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077

First Printing MAY 1980

COMMITTED TO EXCELLENCE

TEK SPS BASIC
V02N02XM

Signal Processing Package
CP57001 /CP57501

INSTRUCTION MANUAL

Serial Number

PRODUCED BY SPS DOCUMENTATION GROUP 070-27 43-00

SOFTWARE SUPPORT POLICY
Unless otherwise provided, Tektronix, Inc., agrees that during the one (1) year period following installation, if the

customer encounters a problem with this software which the customer's diagnosis indicates is caused by a software defect,
the customer may submit a Software Performance Report to Tektronix, Inc. For problems occurring in current, unaltered
releases of software, Tektronix, Inc., will respond to Software Performance Reports vi a a software maintenance periodical.
The software maintenance periodical will be provided at no costtothe customer for one year following installation and will
contain information for correcting or bypassing verified problems where possible, and will give notice of availability of
corrected software.

Any software updates released by Tektronix, Inc., to correct problems during the one (1) year period will be provided
to the customer at no charge on the standard distribution media specified in the software documentation. If media other
than the standard distribution media is requested, the customer will only be charged for the current cost of the optional
media.

SOFTWARE LICENSE
This software product, including subsequent improvements or updates, is furnished under a license for use on a

single controller. It may only be copied, in whole or in part (with the proper inclusion of the Tektronix, Inc., copyright notice
on the software), for use on that specific controller.

Specification and price change privileges are reserved.

Although the material in this manual has been thoroughly edited and checked for accuracy, Tektronix, Inc., makes no
guarantees against typographical or human errors. Also, Tektronix, Inc., assumes no responsibility or liability,
consequential or otherwise, of any kind arising from misinterpretation or misuse of the material in this manual. The
contents of this manual are subject to change without notice.

Copyright© 1980 by Tektronix, Inc., Beaverton, Oregon. Printed in the United States of America. All rights reserved.

U.S.A. and foreign TEKTRONIX products covered by U.S. and foreign patents and/or patents pending.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

DEC, LSl-11, PDP, RT-11, and UNIBUS are registered trademarks of Digital Equipment Corporation.

TEK SPS BASIC Signal Processing Package

PREFACE

This manual describes the Signal Processing Commands Package for TEK
SPS BASIC V@2 and V@2XM software. Any exception to an option or a capability
of a command in this package being supported by a specific release of the
software is noted where appropriate. Information that pertains only to
extended memory (XM) systems is shaded.

The prerequisite software for executing the commands in this package
is the corresponding version of the TEK SPS BASIC System Software. The
V@2 package (CP57001) requires the V@2 System Software (CP57000); the V@2XM
package (CP57501) requires the V@2XM System Software (CP57500).

@ i

TEK SPS BASIC Signal Processing Package

TABLE OF CONTENTS

SECTION 1 -- SIGNAL PROCESSING COMMANDS

Introduction

Command Descriptions

Guide to Syntax Notation
Memory Requirements
Array Sizes
CONVL (Nonresident)
CORR (Nonresident)
DIFF (Nonresident)
INT (Nonresident)
POLAR (Nonresident)
RFFT (Nonresident)
RFFT1 (Nonresident)

SECTION 2 -- GLOSSARY

i ii

1-1

1-1

1-3

1-3
1-3
1-3
1-4

1-10
1-17
1-26

1-33
1-37
1-51

2-1

TEK SPS BASIC Signal Processing Package

SECTION 1

SIGNAL PROCESSING COMMANDS

Introduction

This manual describes the Signal Processing Package commands for TEK
SPS BASIC V~2 and V~2XM. The package consists of seven nonresident commands
for processing waveforms or arrays. These commands are summarized in Table
1-1. The operations performed include convolution, correlation, differentiation,
integration, fast Fourier transform, inverse Fourier transform, and
rectangular-to-polar conversion.

All the Signal Processing Package commands are designed to operate
on floating-point waveforms and arrays. When a waveform is the destination
for the output of a command, the data sampling interval (DSI), the horizontal
units, and the vertical units are all updated to reflect the results of
the operation. This automatic waveform arithmetic inludes the processing
of the units strings (by an operation like the CAN string function) which
cancels matching characters from strings that have a slash(/).

The Signal Processing commands are used in the same manner as other
nonresident TEK SPS BASIC commands. The command may be preceded by a line
number and included in a program, or the command may be executed directly
by entering it from the terminal in immediate mode. If the command is not
in memory when it is called, it is auto-loaded if it is stored on the
system peripheral device. If it is not in memory and not on the system
device, the command must be brought into memory with the LOAD command
before it can be executed. Auto-loaded commands are auto-released from
memory when more free memory is needed; explicitly LOADed commands are
removed from memory with the RELEASE command. Also, all auto-loaded commands
can be removed from memory with a RELEASE AUTO statement.

1-1

CORVL

CORR

DIFF

IRT

RFFT

POLAR

RFFT1

TEK SPS BASIC Signal Processing Package

TABLE 1-1

SWUlary of Signal Processing Commands

Performs a non-cyclic, discrete convolution operation
on two source arrays or waveforms (which are overwritten
by intermediate results) and places the result in a
third array or waveform.

Performs a non-cyclic, discrete auto- or cross­
correlation operation on two source arrays or waveforms
(which are overwritten by intermediate results) and
places the result in a third array or waveform.

Performs a differentiation of an array or waveform and
places the result in a second array or waveform. The
source and destination arguments may be the same, in
which case the source is overwritten by the result.

Performs an integration of an array or waveform and
places the result in a second array or waveform. The
source and destination arguments may be the same, in
which case, the source is overwritten by the result.

Performs a fast Fourier transform on a real-valued
array or waveform via a power-of-two algorithm and
places the frequency results in two arrays or waveforms:
one for real and one for imaginary components. It also
performs the inverse Fourier transform given the
frequency component arrays or waveforms.

Performs a rectangular-to-polar conversion of the real
and imaginary component arrays or waveforms as returned
by the RFFT command. The source arguments are
overwritten by the magnitude and phase results.

Performs a fast Fourier transform on a real-valued
array or waveform via a power-of-two algorithm and
overwrites the source with the result. It can also
perform the inverse Fourier transform on frequency
domain data stored in the same format as the result
from its direct transform.

1-2

TEK SPS BASIC Signal Processing Package

Command Descriptions

The remainder of this section contains the command descriptions for
the Signal Processing Package commands. The command descriptions are listed
in alphabetical order, and include examples, syntax forms, and a discussion
of how the syntax options are used.

Guide to Syntax Notation

The syntax forms describe how the commands may be typed on the terminal.
Upper case characters and punctuation must be typed as shown, but any
information in brackets ([]) is optional. Braces ({}) indicate that a
choice must be made between one of the listed items. Items followed by an
ellipsis(...) may be repeated one or more times.

Memory Requirements

The approximate size of each command is listed in Appendix H of the
System Software manual. This size refers to the number of words of memory
required to load that particular command. In some cases, the amount of
memory needed to execute the command will be considerably more.

Array Sizes

The Signal Processing commands operate only on floating-point arrays
and waveforms. In standard memory systems, the size of an array is limited

1-3

TEK SPS BASIC Signal Processing Package

CORVL (Nonresident)

Examples:

CONVL X1 ,X,Z, TB
10 CONVL A(0:127),B(0:127),C(0:255)
20 CONVL X,Y,Z,T(0:63)

Syntax Form:

[line no.] CONVL I floating-point array I I floating-point array I
floating-point waveform ' floating-point waveform '

I floating-point array I [I simple numeric variable I J
floating-point waveform ' floating-point array

Descriptive Form:

[line no.] CONVL source data, source data, target for convolved result [,sine table]

Purpose:

The CONVL command performs a non-cyclic, discrete convolution operation
on two source arrays and places the result in a third array.

Discussion:

The CONVL command performs a fast convolution operation on two input
arrays, placing the result in a third array. The convolution operation can
be thought of as successively shifting, multiplying, and integrating the
two arrays (waveforms) to be convolved, except that one of the waveforms
is reversed in time before performing the shifting-multiplying-integrating

process. This is evident from examining the summation that mathematically
describes convolution discussed later in The Theory of Convolution. The
actual operation in TEK SPS BASIC, however, is done in the frequency domain.
This requires only a multiplication of the fast fourier transforms of the
two arrays. (See The CORVL Algorithm for details.)

CONVL 1-4

TEK SPS BASIC Signal Processing Package

An important application for convolution is determining or predicting
the output of a linear, time-invariant system (such as a passive filter
or network). Given the input signal x(t) and the system impulse response
h(t), the output can be predicted simply by convolving x(t) with h(t).

The format of the CONVL command is illustrated by the following
example:

CON VL X, Y , Z , TB

The first two arguments (X and Y in the example) are the input arrays to
be convolved. They must be floating-point waveforms, arrays, or contiguous
subarrays, of length N = 2m for some integer m 2. 4. The source arguments
must not overlap. The CONVL command overwrites both source arrays with
intermediate results during its execution. Because of this overwriting,
you may want to save the original array contents elsewhere before executing
CONVL.

The third argument (Z in the example) specifies the target array for
the convolution result. It must be a floating-point waveform, array, or
contiguous subarray of length 2N, where N is the length of each source
array. (Since a floating-point array in an extended memory (XM) system is
limited to 8K elements, the largest N can be in an XM program is 4K = 212
= 4096.} After the convolution is performed, this array contains the result
in its first 2N-1 locations, elements Z(0) through Z(2N-2). The last
element, Z(2N-1), is used to store intermediate results. Thus, after CONVL
executes, the content of the last element is meaningless and should be
ignored.

The fourth argument (TB in the example) is optional. If it is specified,
the Fourier transform (used by CONVL) is table driven. If the argument is
a simple numeric variable, that variable is autodimensioned to an array
of length N/2 and filled by CONVL with sine terms needed by the Fourier
transform, creating the table. Subsequent executions of CONVL do not require
regeneration of the table if the source and target array lengths remain
unchanged and the table is not altered. (The table can be generated by the
CORR, RFFT, and RFFT1 commands also. For more information about the table,
see the RFFT command.) If the argument is an array, it must be of length
N/2. CONVL checks the first element of the array. If it is the correct
value, the array is assumed to be the proper sine-values table. If the
first element is an incorrect value, CONVL fills the array with the correct

1-5 CONVL

TEK SPS BASIC Signal Processing Package

sine values. If the argument is not present, the necessary sine values are
recursively generated as needed. This method saves memory at the cost of
longer execution times.

The Theory of Convolution

The convolution of two time domain functions, say x(t) and y(t), can
be expressed by the following integral:

z(t) = ~: x(u)y(t-u) du

The function z(t) is the result of convolving waveforms x and y according
to the integral expression. The u is simply the arbitrary variable of
integration for the definite integral.

In signal processing applications, this operation is performed with
a discrete approximation having a finite time window. For a time window
of N samples, where each sample isb.t seconds apart, the general expression
for the discrete approximation may be written as follows:

N-1
Z(nb.t) = b.t L X(kb.t)Y(nb.t - kb.t) for n = 121, 1, 2, ••• , 2N-2

K=0

where X and Y terms with indices that are less than zero or greater than
N-1 are taken to be zero.

to:
If b.t is normalized to be 1, then the discrete approximation reduces

N-1
Z(n) = L X(k)Y(n-k)

k=0

for n = 0, 1, 2, ••• , 2N-2

In the above summation, N is the length of the input arrays. Also, X(k)
is the kth element of the first input array and Y(n-k) is the (n-k)th
element of the second input array; k is merely an index that defines the
range of the summation. The summation is computed by summing X(k)Y(n-k)

CONVL 1-6

TEK SPS BASIC Signal Processing Package

ask ranges from 0 to N-1; this is done for each value of n, beginning
with 0 and ending with 2N-2. Each value of n thus defines a corresponding
element of the final output array Z. For some values of n and k, the index,
n-k, of array Y may be equal to a number less than 0. When this occurs,
0 is used for Y(n-k).

The CONVL Algorithm

The preceding discussion illustrates one method for computing
convolutions. It is instructive because it describes the way in which
convolution data is formatted. However, rather than evaluating the discrete
convolution summation directly, the CONVL command uses a faster computational
method that takes advantage of the fast Fourier transform (FFT) and the
inverse Fourier transform (IFT) algorithms. This method is based on the
fact that the convolution of two signals (time domain) is equivalent to
the multiplication of their Fourier transforms (frequency domain). Stated
in more mathematical terms:

F(Z) = F(X)F(Y)

where F(X) and F(Y) are the Fourier transforms of the two time-domain
signals, X and Y; and F(Z) is the Fourier transform of Z, the convolution
of X and Y.

Before the CONVL command actually performs the convolution on two
arrays, it appends N zeroes to each of the input arrays, X and Y. This
prevents cyclic convolution which can arise from the assumption of periodicity
that the FFT makes. The zero-appended input arrays, X and Y, are then
transformed to the frequency domain via the FFT and a complex multiplication
is performed on the resulting arrays. Finally, an inverse Fourier transform
(IFT) is performed on the product, resulting in a convolution of the
original arrays. This procedure is equivalent to the direct evaluation of
the non-cyclic convolution summation previously discussed, but the whole
process is performed faster due to the smaller number of calculations
required.

1-7 CONVL

TEK SPS BASIC Signal Processing Package

Units and Data Sampling Interval (DSI) Derinitions

The following list describes how the vertical and horizontal units
and data sampling interval are automatically assigned when a waveform is
the target for the CONVL command. To simplify this discussion, it is assumed
that A and B are arrays and that WA, WB, and WC are waveforms. Accordingly,
the following conventions are used:

SA: the data sampling interval for waveform WA
SB: the data sampling interval for waveform WB
SC: the data sampling interval for waveform WC

HA$: the horizontal units for waveform WA
HB$: the horizontal units for waveform WB
HC$: the horizontal units for waveform WC

VA$: the vertical units for waveform WA
VB$: the vertical units for waveform WB
VC$: the vertical units for waveform WC

Using the above notation, these rules apply when the target argument
(WC) is a waveform. An ampersand (&) indicates that the units strings are
concatenated (joined together).

CASE 1: Both source arguments are waveforms. For example:

Then:

CONVL WA,WB,WC

SC = SA
HC$ = HA$
VC$ = VA$ & VB$ & HA$

NOTE: A warning error is issued if the horizontal units for waveform WA
do not equal the horizontal units for waveform WB, or if the data sampling
interval for waveform WA is not equal to the data sampling interval for
waveform WB.

CONVL 1-8

TEK SPS BASIC Signal Processing Package

CASE 2: The first source argument is a waveform; the second source argument
is an array. For example:

Then:

CONVL WA,B,WC

SC = SA
HC$ = HA$
VC$ = VA$ & VA$ & HA$

CASE 3: The first source argument is a array; the second source argument
is a waveform. For example:

Then:

CONVL A,WB,WC

SC = SB
HC$ = HB$
VC$ = VB$ & VB$ & HB$

CASE 4: Both source arguments are arrays. For example:

Then:

CONVL A,B,WC

SC = 1
HC$ = null string
VC$ = null string

1-9 CONVL

TEK SPS BASIC Signal Processing Package

CORR (Nonresident)

Examples:

CORR X1,X2,Z,TB
100 CORR A(0:127),B,C(0:255)
200 CORR X,X,Y,T(0:63)

Syntax Form:

I floating-point array I I floating-point array I [line no.] CORR
floating-point waveform ' floating-point waveform '

I floating-point array I [I simple numeric variable I J
floating-point waveform ' floating-point array

Descriptive Form:

[line no.) CORR source data, source data, target for correlated result [,sine table]

Purpose:

The CORR command performs a non-cyclic, discrete auto- or cross­
correlation operation on two source arrays and places the result in a third
array.

Discussion:

The CORR command performs a fast correlation operation on two input
arrays, placing the result in a third array. If the two source arrays are
the same, or contain the same data, the operation is called autocorrelation.
If the two input arrays are different, the operation is called cross­
correlation. Like the convolution operation, the correlation process can
be thought of as successively shifting, multiplying, and integrating the
two waveforms to be correlated. But unlike convolution, the correlation
process does not reverse in time either waveform before performing the
shifting, multiplying, and integrating. In TEK SPS BASIC, however, the

CORR 1-10

TEK SPS BASIC Signal Processing Package

actual operation is done in the frequeny domain by multiplying the fast
Fourier transform of one source array by the complex conjugate of the fast
Fourier transform of the other source array. (See The CORR A1gorithm for
details.)

Autocorrelation is a useful method of detecting the presence of
periodic signals buried in noise. The technique is used in biomedical
studies, astronomy, and tone-control systems -- to name just a few
applications. On the other hand, cross-correlation is a useful tool for
detecting whether a known signal is present in a noisy environment. A
common application for cross-correlation is the detection and ranging of
radar, sonar, and other transmitted signals.

The format of the CORR command is illustrated by the following example:

CORR X,Y,Z,TB

The first two arguments (X and Y in the example) are the input arrays to
be correlated. They must be floating-point waveforms, arrays, or contiguous
subarrays of length N = 2m for some integer m 2. 4. The source arguments
must not partially overlap; however, they may be the same array or waveform,
which results in the autocorrelation operation. The CORR command overwrites

both source arrays with intermediate results during its execution. (Because
the input arrays are overwritten, you may want to save the original array
contents elsewhere before executing CORR.)

The third argument (Z in the example) specifies the destination, where
the correlated result is stored. It must be a floating-point waveform,
array, or contiguous subarray of length 2N, where N is the length of each

After the correlation performed, this array contains
the result in its last 2N-1 locations. The first element, Z(0), is used
to store intermediate results. Thus, after CORR executes, the content of
the first element is meaningless and should be ignored.

The fourth argument (TB in the example) is optional. If it is specified,
the Fourier transform (used by CORR) is table driven. If this argument is
a simple numeric variable, that variable is autodimensioned to an array
of length N/2 and filled with sine terms needed by the Fourier transform,
creating the table. Subsequent executions of CORR do not require regeneration
of the table if the source and target array lengths remain unchanged and

1-11 CORR

TEK SPS BASIC Signal Processing Package

the table is not altered. (The table can be generated by the CONVL, RFFT,
and RFFT1 commands also. For more information about the table, see the
RFFT command.) If the argument is an array, it must be of length N/2. CORR
checks the first element of the array. If it is the correct value, the
array is assumed to be the proper sine-values table. If the first element
is an incorrect value, CORR fills the array with the correct sine values.
If the argument is not present, the necessary sine values are recursively
generated as needed. This method saves controller memory at the cost of
longer execution times.

The Theory of Correlation

The correlation of two time-domain functions, say x(t) and y(t) defined
over the interval 0 S. t S. T can be expressed by the following integrals:

1T-t
z12Ct) = (1/T)

0
x(u)y(u+t) du for 0 S. t ~ T

and

rT-t
z21(t) = (1/T) }

0
y(u)x(u+t) du

z12(t) applies when waveform x(t) lags waveform y(t), and z21 applies when
waveform x(t) leads waveform y(t). Notice that if x(t) = y(t) -- as is the

·case with autocorrelation -- then z12(t) = z21Ct).

In presenting the discrete approximation for correlation, again
consider two waveforms, X(k) and Y(k). If these two waveforms are sampled
N times with a finite time window such that k = 0, 1, ... , N-1 then the
discrete approximation for cross-correlation with X(k) lagging Y(k) with
time lag n is:

CORR

N-n-1
Z12(n) = (1/N) ~ X(k)Y(k+n)

k=0

1-12

for n = 0, 1, .•. , N-1

TEK SPS BASIC Signal Processing Package

and with X(k) leading Y(k) is:

N-n-1
Z21(n) = (1/N) ~ Y(k)X(k+n)

k=fll
forn=fll,1, ... ,N-1

With some algebraic manipulation, it can be shown that Z21(n) is equal
to Z12(-n). Thus an alternative to presenting the equations for Z12(n) and
Z21(n) as defined above is to present only Z12 with n = -N+1, ... , -1, fll,
1, ... , N-1. This latter approach is used by the CORR command. In summary,
the summation for the cross-correlation function Z(n), where the subscripts
have been dropped for convenience, is:

N-n-1
Z(n) = (1/N) ~ X(k)Y(k+n)

k=fll
for n = -N+1, ••. , -1, fll, 1, •.. , N-1

Any terms of X or Y with indices that are less than zero or greater
than N-1 are assumed to equal zero.

The autocorrelation function is expressed in the same manner as the
cross-correlation function. In this case, Z(n) is the autocorrelation
function when X(k) = Y(k) for all values of k. With X(k) = Y(k), then Z(n)
= Z(-n); and the autocorrelation is an even function about the time lag
of n = fll.

The CORR Algorithm

The preceding discussion describes one method of computing correlations.
It is instructive because it describes the way in which correlation data
is formatted. However, rather than evaluating the discrete correlation
summation directly, the CORR command uses a faster computational method
that takes advantage of the fast Fourier transform (FFT) and the inverse
Fourier transform (IFT) algorithms. This method is based on the fact that
the correlation of two signals (time domain) is equivalent to the complex
conjugate multiplication of their Fourier transforms (frequency domain).
Stated in more mathematical terms:

F(Z) = F*(X)F(Y)

1-13 CORR

TEK SPS BASIC Signal Processing Package

where F*(X) is the complex conjugate of the Fourier transform of X, and
F(Y) is the Fourier transform of Y -- with X and Y being the two time­
domain signals. F(Z) is the Fourier transform of Z -- the correlation of
X and Y.

Before the CORR command actually performs the correlation of two
arrays, it appends N zeroes to each of the input arrays, X and Y. This
prevents the cyclic correlation that would be implemented because of the
assumed periodicity of the discrete Fourier transform. The zero-appended
input arrays, X and Y, are then transformed to the frequency domain via
the FFT, and a complex-conjugate multiplication is performed on the resulting
arrays. (By complex-conjugate multiplication, it is meant that the imaginary
part of one of the Fourier transform pairs is negated before performing
the complex multiplication.) Finally, an inverse Fourier transform (!FT)
is performed on the product, resulting in the correlation of the original
arrays. This procedure is equivalent to the direct evaluation of the non­
cyclic correlation summation previously discussed, but the whole process
is performed more quickly due to the smaller number of calculations required.

Normalizing the Output

The correlation between two waveforms is often expressed within a
normalized range of -1 to +1, with perfect positive or negative correlation
having a value of +1 or -1, respectively. The output of the CORR command
is not normalized, but normalization is a simple process. Just divide the
resulting array by the product of the RMS (Root Mean Square) values of the
two source arrays.

Since the source arrays of the CORR command are overwritten during
execution, their RMS values must be obtained before the command is executed.
The following short routine demonstrates obtaining RMS values, cross­
correlation, and normalizing the result. X and Y are the source arrays,
and Z is the target array.

CORR

10 R=RMS(X)*RMS(Y)
15 CORR X,Y,Z
20 Z = Z/R

1-14

TEK SPS BASIC Signal Processing Package

Units and Data Sampling Interval (DSI) Definitions

The following list describes how the vertical and horizontal units
and the data sampling interval (DSI) are automatically assigned when a
waveform is the target for the CORR command. To simplify this discussion,
it is assumed that A and B are arrays and that WA, WB, and WC are waveforms.
Accordingly, the following conventions are used:

SA: the data sampling interval for waveform WA
SB: the data sampling interval for waveform WB
SC: the data sampling interval for waveform WC

HA$: the horizontal units for waveform WA
HB$: the horizontal units for waveform WB
HC$: the horizontal units for waveform WC

VA$: the vertical units for waveform WA
VB$: the vertical units for waveform WB
VC$: the vertical units for waveform WC

Using the above notation,these rules apply when the destination
argument (WC) is a waveform. An ampersand (&) indicates that the units
strings are concatenated (joined together).

CASE 1: Both source arguments are waveforms. For example:

Then:

CORR WA,WB,WC

SC = SA
HC$ = HA$
VC$ = VA$ & VB$

Note: A warning error is issued if the horizontal units for waveform WA
do not equal the horizontal units for waveform WB, or if the data sampling
interval for waveform WA is not equal to the data sampling interval for
waveform WB.

@ 1-15 CORR

TEK SPS BASIC Signal Processing Package

CASE 2: The first source argument is a waveform; the second source argument
is an array. For example:

Then:

CORR WA,B,WC

SC = SA
HC$ = HA$
VC$ = VA$ & VA$

CASE 3: The first source argument is an array; the second argument is a
waveform. For example:

Then:

CORR A,WB,WC

SC = SB
HC$ = HB$
VC$ = VB$ & VB$

CASE 4: Both source arguments are arrays. For example:

Then:

CORR

CORR A,B,WC

SC = 1
HC$ = null string
VC$ = null string

1-16 @

TEK SPS BASIC Signal Processing Package

Examples:

DIFF A,A
DIFF A,B

10 DIFF X,Y,FOR

DIFF (Nonresident)

20 DIFF C(0:511),D(0:511)

Syntax Form:

[line no.) DIFr ! floating-po int array I ! floating-po int array I
floating-point waveform ' floating-point waveform

Descriptive Form:

[line no.) Dirr source data, target for differentiated result [,forward difference switch)

Purpose:

The DIFF command performs a differentiation of an array or waveform.

Discussion:

The DIFF command performs a two-point or three-point differentiation

operation on a source array or waveform, placing the result in the specified
target array or waveform. The source and destination arguments may be the

same, in which case the source data is overwritten by the results of the
differentiation.

Differentiation is an important branch of calculus that has numerous
applications in physics, chemistry, statistics, electronics, and various
other scientific and engineering disciplines. As an example, an array
containing distance data can be differentiated once to yield an array of
velocity data. The resulting velocity data can again be differentiated to

1-17 DIFF

TEK SPS BASIC Signal Processing Package

yield an array of acceleration data. In short, differentiation is useful
in any application where it is necessary to determine the instantaneous
rate of change of a function (the slope of the curve at a given point).

The format of the DIFF command is illustrated by the following example:

DIFF X,Y,FOR

The first argument (X in the example) is the input array or waveform to
be differentiated. The second argument (Y in the example) specifies the
target for the result.

The specified source and target arguments may be the same array or
waveform, but they may not partially overlap. If the target array is
different from the source array, the data in the source array is left
intact. The length of the source and target arrays must be the same and
greater than or equal to 3.

The third argument is optional. If it is present and equal to the
keyword FOR (or a string expression equaling either "FOR", or "FD"), then
a two-point differentiation is performed. If the third argument is omitted,
three-point differentiation is performed.

The Theory of Differentiation

According to elementary calculus, the derivative, f'(t), of the
function f(t) is defined by the limit:

f(t +lit) - f(t)
lim

lit~ra 6t

In the preceding definition, t remains fixed while6t tends to '3. When the
limit does not exist for a particular value of t, the function has no
derivative for that value.

Though the definition of the derivative (in terms of limits) may
initially appear a bit abstract, it is possible to get a good intuitive
feel for it by considering the idea of slope (see Fig. 1-1). In elementary

DIFF 1-18

TEK SPS BASIC Signal Processing Package

terms, the derivative of f(t) is simply the change in f(t) divided by the
change int. In other words, f'(t) =.6f(t)/.6t. If y = f(t), we can rewrite
this as:

f I (t) : _6y f.6t or dy/dt

where .6 or "d" denotes a very small change in the value of t and y.

y

Fig. 1-1. The derivative of f(t) at ti yields
the slope (12) at ti.

2743-01

From examining Fig. 1-1, it is seen that the slope of the line 11
over the interval.6t is:

However, as.6t approaches 0, the slope <b.f(t)/.6t) more nearly approaches
the slope of 12, and thus the derivative of f(t) at the point ti yields a
slope that defines 12 .

The DIFF Algorithm

Two-point Method. In theory, it is possible to talk about the derivative
of a function in terms of a limit, where the interval (Llt) approaches zero.
However, when discussing numerical differentiation as implemented on a
signal processing system, the interval (over which the slope is computed)
cannot approach zero. Instead, the interval must be no smaller than the
time segment between adjacent elements in the waveform array. This method

1-19 DIFF

TEK SPS BASIC Signal Processing Package

of numerical differentiation is known as the "two-point" derivative and
can be demonstrated by a statement such as:

DIFF X,Y,FOR

where the optional keyword FOR designates a forward-difference calculation
for two-point differentiation. Executing the above command causes an
element-by-element differentiation which is performed according to the
following scheme:

X(n+1) - X(n)
Y (n) = for n = 0, ... , N-2

Lit

Y(N-1) = Y(N-2)

where X and Y are the source and target arrays, respectively, both of
length N. The data sampling interval (the time between the acquisition of
adjacent array elements in a TEK SPS BASIC waveform) is lit. It is normally
equal to 1a times the horizontal scale factor divided by the array length
N. In the case of an array, Lit is always equal to 1. The process of two-point
differentiation is diagrammed in Fig. 1-2.

DIFF

Xi+11-------­
X; 1-------

0 i+1

y;= X;+1-X;
8t

i = 0, 1,2, ... , 510

511

2743-02

Fig. 1-2. Two-point derivative of X, a 512-element array;
at element i.

1-20 @

TEK SPS BASIC Signal Processing Package

Three-point Method. A more complicated method of differentiating an
array of values on a signal processing system, is to compute the slope
between the datum immediately preceding and immediately following the array
element where the slope is to be computed. This method is known as
"three-point differentiation" and can be demonstrated by the statement:

DIFF X,Y

The absence of the optional third argument specifies the three-point
derivative. Executing the above command causes an element-by-element
differentiation which is performed according to the following scheme:

-3X(a) + 4X(1) - X(2)
Starting value: Y(a) =

2~t

X(n+1) - X(n-1)
Intermediate values: Y(n) = for n = 1 to N-2

2~t

X(N-3) - 4X(N-2) + 3X(N-1)
Ending value: Y(N-1) =

2~t

where X and Y are the source and target arrays, respectively, both of
length N. Again, ~t is the data sampling interval (the time between the
acquisition of adjacent array elements in the waveform). The process of
three-point differentiation is diagrammed in Fig. 1-3.

Two-point Versus Three-point Differentiation

For arrays where large transitions occur over intervals greater than
three array elements, the three-point derivative exhibits the least analytic
error in estimating the slope at a given point. Thus for smoothly varying
functions (e.g., a sine wave), the three-point derivative is the most
accurate means of differentiating the function.

When array values exhibit large transitions within intervals of three
or fewer adjacent array elements, the two-point derivative may provide a
better slope estimate within the interval of transition. Square waves,

1-21 DIFF

TEK SPS BASIC Signal Processing Package

y, = X;+1 -X;-1_

2.6t

i = 1,2,3, ... , 510

i-1 j+ 1
511

2743-03

Fig. 1-3. Three-point derivative of X, a 512-element array,
at element i.

steps, impulses, and other functions containing large transitions over
limited intervals are best differentiated with the two-point algorithm.

Differentiation of a time-domain waveform is effectively the same as
digitally filtering the waveform. Hence, the results of differentiation
reflect the response function of the chosen scheme of differentiation. The
response functions for two-point and three-point differentiation are shown
in Fig. 1-4 and Fig. 1-5. In comparing these two figures, notice that the
two-point function is maximum at the Nyquist frequency of 1/(2~t). Also,
notice in the equations which follow that the phase of the three-point
function is zero at all frequencies.

DIFF 1-22

G (f)

TEK SPS BASIC Signal Processing Package

a.) Gain function

1
2.M

1

261

¢ (f)

TT

TT

2

TT

2

-TT

b.) Phase function

1

261

1970-65

Fig. 1-4. Frequency response or the two-point derivative.

G (I)

1

6 t

1

261
2197-01

Fig. 1-5. Frequency response or the three-point derivative.

1-23 DIFF

TEK SPS BASIC Signal Processing Package

The formulas applicable to the two-point derivative and its frequency
response function (Fig. 1-4) are as follows, where X is the function to
be differentiated, X' is the derivative of X, and6t is the waveform's
data sampling interval:

X(n+1) - X(n)
Impulse response: X'(n) = ------

Frequency response: H(f) = G(f)ej<l>(f)

Gain: G(f) = (2/6t) I sin(Jtf<l>t) I for -1 /(26t) ~ f < 1 /(26t)

Jt6t[f + 1/(2L'.1t)] for -1/(26t) ~ f < 0
Phase: <I>(f) =

Jt6t[f - 1/(26t)] for 0 ~ f < 1/(26t)

The formulas applicable to the three-point derivative at intermediate
points and its frequency-response function (Fig. 1-5) are as follows:

X(n+1) - X(n-1)
Impulse response: X'(n) = -------

26t

Frequency response: H(f) = G(f) ej<l>(f)

Gain: G(f) = (1/6t)lsin(2itf6t)I

Phase: <l>(f) = 0 for -1/(26t) ~ f < 1/(26t)

DIFF 1-24 @

TEK SPS BASIC Signal Processing Package

Units and Data Sampling Interval (DSI) Definitions

The following list describes how the vertical and horizontal units
and data sampling interval (DSI) are automatically assigned when a waveform
is the target for the DIFF command. To simplify this discussion, it is
assumed that A is an array, while WA and WB are waveforms. Accordingly,
the following conventions are used:

SA: the data sampling interval for waveform WA
SB: the data sampling interval for waveform WB

HA$: the horizontal units for waveform WA
HB$: the horizontal units for waveform WB

VA$: the vertical units for waveform WA
VB$: the vertical units for waveform WB

Using the above notation,these rules apply when the target (WB) is a
waveform. An ampersand (&) indicates that the units strings are concatenated
(joined together).

CASE 1: The source argument is a waveform. For example:

Then:

DIFF WA,WB

SB = SA
HB$ = HA$
VB$ = VA$ & "/" & HA$

CASE 2: The source argument is an array. For example:

Then:

DIFF A,WB

SB = 1
HB$ = null string
VB$ = null string

1-25 DIFF

TEK SPS BASIC Signal Processing Package

IHT (Nonresident)

Exa•ples:

INT A,A
100 INT C,D
200 INT X(0:511),Y(0:511)

Syntax Form:

.] I floating-point array I I floating-point array I [line no. INT , . .
floating-point waveform floating-point waveform

Descriptive Form:

[line no.] INT source data, target for integrated result

Purpose:

The INT command performs an integration of an array or waveform.

Discussion:

The INT command performs an integration operation on a source array
or waveform, placing the results in the specified destination array or
waveform. The source and target arguments may be the sa•e, in which case
the source data is overwritten by the results of the integration.

Integration is an important branch of calculus that has numerous
applications in physics, chemistry, electronics, and various other scientific
and engineering disciplines. As an example, an array representing acceleration
data can be integrated to get an array of velocity data. Similarly,
integrating an array of velocity data yields distance data. In short,
integration is useful whenever you wish to determine the area under a
curve, or determine the energy associated with a pulse.

INT 1-26

TEK SPS BASIC Signal Processing Package

The format of the INT command is illustrated by the following example:

INT X,Y

The first argument (X in the example) is the input array or waveform to
be integrated. The second argument (Y in the example) specifies the target
for the integrated result.

The specified source and target arguments may be the same array or
waveform, but they may not partially overlap. If the destination array is
different from the source array, the data in the source array is left
intact. The length of the source and target arguments must be the same. and
greater than or equal to 3.

The Theory of Integration

Most elementary calculus texts define the definite integral of a
function in terms of the "antiderivative" of that function. For example,
since the derivative of tn+1/(n+1) is tn, then the antiderivative of tn
is tn+1;(n+1). Thus the definite integral of tn between two points, a and
b, is

lb tndt •
tn+1 b bn+1 an+1

=
n+1 a n+1 n+1

which represents the area underneath the curve tn between a and b.

While the idea of the antiderivative is valid if an antiderivative
can be found, there are still many functions for which an antiderivative
cannot be found by any known method even though its definite integral
has a specific value. This leads us to the concept of numerical integration,
a technique that allows you to find an estimate of the definite integral
for virtually any continuous function.

The idea of numerical integration is a simple concept, and in fact,
is often used to introduce the fundamentals of integral calculus. One of
the easiest methods of numerical integration is to simply estimate the
area under the curve (the graph of the function) by dividing the curve
into segments and then summing the areas of the rectangles under the curve.
For example, in Fig. 1-6a, we see a graph of the function y = t2, in which

@ 1-27 INT

TEK SPS BASIC Signal Processing Package

five equal-width rectangles have been drawn under the curve. By computing
the area of each rectangle (width times height) and summing all the computed
areas, we can get a rough estimate of the area under the curve. Actually,
the value described by this summation will be less than the area under the
curve, but in many cases, the error is not significant if the width of the
rectangles are kept small enough.

y
y =t2

y
y = t2

0 0

{a) {b)

2743-04

Fig. 1-6. Numerical integration of the function y = t2
by estimating (a) the lower bound, and
(b) the upper bound of the area under the curve.

Even more accuracy can be gained by summing the areas of the rectangles
shown in Fig. 1-6b to get an upper bound on the total area under the curve.
The true area is then very nearly equal to the mean of the lower-bound of
the area (Fig. 1-6a) and the upper-bound of the area (Fig 2-6b).

The accuracy of the preceding method -- computing upper and lower
bounds and taking the mean -- can also be achieved by a method known as
the trapezoidal rule. Like the previously described method, the trapezoidal
rule involves dividing the horizontal axis of the function into a number
of equally spaced intervals. However, rather than drawing rectangles under
and above the curve, the trapezoidal rule requires the construction of
trapezoids whose upper vertices touch the curve at the endpoints of the
horizontal intervals (see Fig. 1-7). The definite integral of the function

INT 1-28 @

TEK SPS BASIC Signal Processing Package

is then found by summing the area of each trapezoid under the curve between
the limits of integration.

y

0 t, = a t;+J t,., t,+3 tn = b

2743~05

Fig. 1-7. Illustration of the trapezoidal rule
for numerical integration.

There are other methods of numerical integration. (One common method
is Simpson's rule, which requires the construction of rectangles under the
curve to be integrated, such that the curve intersects each rectangle in
the center of its upper edge.) In each of these methods, however, the
answers are only approximate, and to achieve high accuracy, the width of
each rectangle or trapezoid must be sufficiently small or the change in
the value of the function must be small over the selected interval. Thus,
as the width of each rectangle or trapezoid approaches zero, the approximate
value obtained by numerical integration approaches the true value obtained
by finding the antiderivative.

The INT Algorithm

In theory, it is possible to talk about the integral of a function
in terms of rectangles or trapezoids whose width ~) approaches zero.
However, when discussing numerical integration as implemented on a signal
processing system, the interval (width of each rectangle or trapezoid)
cannot approach zero. Instead, the width of the quadrilaterals can be no
smaller than the time segment between adjacent elements in the waveform
array.

@ 1-29 INT

TEK SPS BASIC Signal Processing Package

The INTegrate command in TEK SPS BASIC uses the trapezoidal rule for
integration. The format of INT is illustrated by the following example:

INT X, Y

Here, an array (or waveform) X of length N is integrated and the result
is placed in array Y according to the following equations:

Y('1) = 0

.llt[X(n-1) + X(n)]
Y(n) = Y(n-1) + for n = 1 , 2, ... , N-1

2

Upon examining the second equation, it is seen that this is the familiar
trapezoidal rule. Notice that.llt is the width of each trapezoid and [X(n-1)
+ X(n)]/2 is the average height of each trapezoid. The source waveform's
data sampling interval is.llt (the time between adjacent array elements in
a TEK SPS BASIC waveform); it is normally equal to 1'1 times the horizontal
scale factor divided by the array length, N. In the case of an array, .llt
is always equal to 1.

Integrating a waveform is the same as digitally filtering the waveform.
The frequency-domain formulas that describe the gain and phase functions
associated with integration are as follows:

.Llt I sin (2Jt f .llt) I -1
Gain: G(f) = for .5.. f <

2 [1 - cos (2Jtf .Ll t)] 2.llt 2.llt

Jt/2 for -1/(2.llt) < f < 0 -
Phase: <J>(f) =

- Jt /2 for a < f < 1/(2.llt) -

The gain and phase functions described by these formulas are plotted
in Fig. 1-8.

INT 1-30

TEK SPS BASIC Signal Processing Package

G (I) .
\
' ' ' ' .

56t * 5.077 6t

46t

36t

26t

161

* 2.5146t

* 1.20n1

~ 5006t ---* .2076t
0 '---+--+---+---+----+-----~

3261
1

166t

1

86t 461

a.) Gain Function

3

86t

1

26t

1

26t

4> (I)

TT

TT

2

1

26t

2

b.) Phase function

1970-62

Fig. 1-8. Frequency response functions for integration.

Units and Data Sampling Interval (DSI) Definitions

The following list describes how the vertical and horizontal units
and data sampling interval are automatically assigned when a waveform is
the target for the INT command. To simplify this discussion, it is assumed
that A is an array, while WA and WB are waveforms. Accordingly, the following
conventions are used:

SA: the data sampling interval for waveform WA
SB: the data sampling interval for waveform WB

HA$: the horizontal units for waveform WA
HB$: the horizontal units for waveform WB

1-31 INT

TEK SPS BASIC Signal Processing Package

VA$: the vertical units for waveform WA
VB$: the vertical units for waveform WB

Using the above notation,these rules apply when the target (WB) is a
waveform. An ampersand (&) indicates that the units strings are concatenated
(joined together).

CASE 1:

Then:

CASE 2:

Then:

INT

The source argument

INT WA,WB

SB = SA
HB$ = HA$
VB$ = VA$ & HA$

The source argument

INT A,WB

SB = 1
HB$ = null string
VB$ = null string

is a waveform. For example:

is an array. For example:

1-32

TEK SPS BASIC Signal Processing Package

POLAR (Bonresident)

Examples:

POLAR A,B
HJ0 POLAR X, Y, DL
110 POLAR A(10:20),B(7:17),N/8

Syntax Form:

[line no.] POLAR

Descriptive Form:

floating-point
floating-po int
floating-point

[,expression J

variable 11 floating-point variable I
array , floating-point array
waveform floating-point waveform

[line no.] POLAR real source data and target for magnitude component,
imaginary source data and target for phase component [,delay estimate]

Purpose:

The POLAR command performs a rectangular-to-polar conversion.

Discussion:

Normally, the RFFT command returns its results in rectangular form
(with the array components being real and imaginary numbers). Quite often
though, the results can be interpreted more easily if they are in polar
form (with the array components being magnitude and phase numbers). The
POLAR command performs this conversion.

The format of the POLAR command is illustrated by the following
example:

POLAR X,Y,DL

1-33 POLAR

TEK SPS BASIC Signal Processing Package

The first two arguments (X and Y in the example) correspond, respectively,
to the real and imaginary components of the complex data (as returned by
the RFFT command) to be converted. If these two arguments are arrays or
waveforms, they must be of equal length.

After the POLAR command has executed, the two source arguments contain
the results, with the magnitude component stored in the first argument (X)
and the phase component stored in the second argument (Y). The first element
of each array or waveform argument -- X(0) and Y(0) in the above example
-- correspond to the DC (direct current) term. Succeeding elements of these
arguments indicate the magnitude and phase numbers for increasing frequencies.

The optional third argument (DL in the example) represents phase delay
and designates delay removal. If this argument is present, the phase is
continuous; if it is omitted, the phase is discontinuous.

Theory of Operation

The operation of the POLAR command is best understood by considering
the following example:

POLAR RX,IX

Assuming RX and IX are arrays of equal length N, the arrays are redefined
as follows:

RX(n) = VRX2(n) + IX2(n) for n = 0, 1 , ... , N-1

IX(n) = arctan[IX(n)/RX(n)]

The phase information, returned in IX, is discontinuous and is expressed
within a range of - Jt to + "t radians.

Continuous phase can be provided for arrays or waveforms by specifying
the optional third argument in a statement such as:

POLAR RX,IX,DL

assuming that RX and IX are waveforms of length N (where N is greater than
1), DL represents the phase delay expression which must evaluate to a value

POLAR 1-34

TEK SPS BASIC Signal Processing Package

less than N/2. Then, the phase information is "unwrapped" module 21t and
the value:

21t*DL*DS*n for 0 S. n < N-1

is removed from the phase data. Here DS is the data sampling interval of
RX if RX is a waveform. If RX is not a waveform and IX is a waveform, DS
is the data sampling interval of IX. If neither RX nor IX is a waveform,
DS equals 1.

If the value of the phase delay expression (DL in the example) is an
adequate estimate of the true delay, then subtracting 2n*DL*DS*n from.the
phase has the effect of removing the linear component which has a slope
of 21t times the phase delay. This makes the phase non-linearity or
fluctuations much more apparent. If the value of the phase delay expression
is zero, then nothing is subtracted, yet a continuous phase is still
provided.

See the discussion of the RFFT command for examples of phase output
of the POLAR command.

Units and Data Sampling Interval (DSI) definitions

The following list describes how the vertical and horizontal units
and the data sampling interval (DSI) are automatically assigned when a
waveform is the target for the POLAR command. To simplify this discussion,
it is assumed that A and B are arrays and WA and WB are waveforms.
Accordingly, the following conventions are used:

SA: the data sampling interval for waveform WA
SB: the data sampling interval for waveform WB

HA$: the horizontal units for waveform WA
HB$: the horizontal units for waveform WB

VA$: the vertical units for waveform WA
VB$: the vertical units for waveform WB

1-35 POLAR

TEK SPS BASIC Signal Processing Package

Using the above notation, these rules apply when the target for the magnitude
is a waveform (WA) and/or when the target for the phase data is a waveform
(WB).

CASE 1: Both source/target arguments are waveforms. For example:

Then:

POLAR WA,WB

SA, SB, HA$, HB$, and VA$ are unchanged.
VB$ is changed to "RAD"

CASE 2: The first source/target argument is a waveform; the second is an
array. For example:

POLAR WA,B

Then:

SA, HA$, and VA$ are unchanged.

CASE 3: The first source/target argument is an array; the second is a
waveform. For example:

Then:

POLAR

POLAR A,WB

SB and HB$ are unchanged
VB$ is changed to "RAD"

1-36

TEK SPS BASIC Signal Processing Package

RFFT (Ronresident)

Examples:

RFFT A,B,C,INV
10 RFFT X(0:63),Y,Z(0:32),T,INV
20 RFFT X,R,I
30 RFFT M,N,Q,T,DIR

Syntax Form:

I floating-point array I I floating-point array I [line no.] RFFT
floating-po int waveform ' floating-po int waveform '

I floating-point array I [I simple numeric variable IJ
floating-point waveform ' floating-point array

[I DIR]
, INV

string ex press ion

Descriptive Form:

[line no.] RFFT time domain data, real component of frequency domain data,
imaginary component of frequency domain data [,sine table]
[,direct or inverse transform switch]

Purpose:

The RFFT command performs a multi-argument fast Fourier transform on
real-valued data via a power-of-two algorithm.

Discussion:

The RFFT command can perform either an FFT (fast Fourier transform)
or an IFT (inverse Fourier transform) operation. The fast Fourier transform
is an algorithm for quickly computing the discrete Fourier transform. By
means of the FFT, a waveform (time domain) or other time-series data can

1-37 RFFT

TEK SPS BASIC Signal Processing Package

be converted to a corresponding spectrum (frequency domain). Normally, the
FFT data is expressed in terms of real and imaginary data (rectangular
format). However, this FFT data can be converted to a series of magnitude
and phase data (polar format) via the POLAR command.

The IFT is just the inverse of the FFT operation. That is, the IFT
converts an array of spectral data (frequency domain) into an array of
waveform data (time domain). The FFT and IFT find numerous applications
in such areas as frequency-response estimation, signature analysis, harmonic
distortion measurements, and digital filtering.

The format of the RFFT command is illustrated by the following example,
which performs an FFT operation:

RFFT X,RX,IX

The first argument (X in the example) corresponds to the real-valued,
time-domain data. It must be a waveform, array, or contiguous subarray of
length N = 2m for some integer m 2. 4.

The second and third arguments (RX and IX in the example) correspond,
respectively, to the real and imaginary components of the discrete Fourier
coefficients (the frequency-domain data). These arguments will contain the
output of the RFFT command. They must be waveforms, arrays, or contiguous
subarrays of length N/2 + 1. (Note that the first elements of RX and IX
correspond to the DC terms, while the last elements of RX and IX correspond
to the Nyquist frequency.)

The presence of an optional fourth argument specifies that the RFFT
computation will be table driven. In its absence, sine terms (required by
the FFT algorithm) are recursively generated as needed, saving computer
memory space but somewhat slowing the computations. If the fourth argument
is a simple variable, it is auto-dimensioned to a floating-point array of
length N/4, and it will. be filled with the sine values needed by the
transform (the values correspond to 1/4 of a cycle of a negated sine wave).
If the fourth argument is otherwise specified, it must be a floating-point
array or subarray of length N/4. (In this latter case, it is assumed that
the array already contains the table of proper sine values. However, one
element within the array is checked to see if it contains the proper sine
value; if it does not, the entire table of sine values is regenerated.)

RFFT 1-38

TEK SPS BASIC Signal Processing Package

The presence of an optional keyword or string expression specifies
whether a forward or inverse Fourier transform is to be performed. If the
keyword DIR or a string expression equal to "DIR" is present (or if no
keyword or string is present -- as in the preceding example), a direct FFT
will be performed. In this case, the time-domain data in the first argument
is the source, and the discrete Fourier coefficients are returned in the
second and third arguments. If the keyword INV or a string expression equal
to "INV" is present, the inverse Fourier transform (IFT) is performed. In
this latter case, the second and third arguments are the source arrays and
are assumed to contain the real and imaginary components of the discrete
Fourier coefficients; the time-domain data is then returned in the first
argument. Data in the second and third arguments are overwritten by

intermediate results when the INV function is performed.

An example of an RFFT command that performs an IFT operation is:

RFFT X,RX,IX,TB,INV

The real and imaginary data (in RX and IX respectively) is inverse Fourier
transformed and the resulting time-domain data is placed in array X. The
optional argument INV specifies that the inverse Fourier transform is to
be performed and the optional argument TB specifies that it is to be table
driven with array TB.

The Theory of the Discrete Fourier Transform

The RFFT command performs a fast calculation of the DFT (discrete
Fourier transform). The DFT can be expressed mathematically by the following
summation:

N-1
Xd(n) = .6.t 2: x(k)e-j2Jtnk/N

k=0
for n = 0, 1 , ... , N /2

In the above equation, N refers to the length of the time-domain argument,
.6.t is the sampling interval between the elements of the time-domain data,
and n is an index used in generating the various Fourier coefficients.
Also, in accordance with usual math notation, e (2.718281828 ...) is the
base of the natural logarithm, and j is the square root of -1. Xd(n) is
the nth Fourier coefficient, and x(k) refers to the kth element of the
time-domain input array.

1-39 RFFT

TEK SPS BASIC Signal Processing Package

The summation is computed by summing x(k)e-j2~nk/N as k ranges from
0 to N-1; this is done for each value of n, beginning with 0 and ending
with N/2. Each value of n thus defines a corresponding element of the final
OFT result.

Theoretically, the discrete Fourier transform contains spectral
components for negative frequencies as well as positive ones. In this case,
the index n would range from -N/2+1 to N/2. However, by assuming that the
time domain contains only real-valued data (as opposed to complex data),
the spectral components for the negative frequencies can be determined
from the components for the positive frequencies. Specifically, the spectral
components at the negative frequencies are complex conjugates of the
spectral components at the positive frequencies. This means that the
components at the negative frequencies contain half of the total spectral
energy. Therefore, the spectral output of the RFFT command has only half
of the expected amplitude value since it shows only the information at the
positive frequencies.

The X(n)'s are the N/2+1 positive complex frequency components from
DC through the Nyquist frequency. These complex Fourier coefficients are
stored in the two target arrays -- one for the real part and one for the
imaginary part. If RX and IX are the destination arguments of the RFFT
command, then the format of data storage is as follows:

RX(@) = DC term IX(@) = 0
RX(1) = Real part, 1st Fourier coeff. IX(1) = Imag. part, 1st Fourier coeff.
RX(2) = Real part, 2nd Fourier coeff. IX(2) = Imag. part, 2nd Fourier coeff.
RX(3) = Real part, 3rd Fourier coeff. IX(3) = Imag. part, 3rd Fourier coeff.
RX(4) = Real part, 4th Fourier coeff. IX(4) = Imag. part, 4th Fourier coeff.

RX(N/2) = Nyquist term IX(N/2) = 0

The inverse Fourier transform (IFT) is performed with the RFFT command
by specifying the keyword INV, as illustrated in the following example:

RFFT X, RX, IX, INV

It is assumed that arrays RX and IX contain the real and imaginary components
respectively of each of the Fourier coefficients. These Fourier components
must be formatted as follows:

RFFT 1-40

TEK SPS BASIC Signal Processing Package

RX(a) = DC term IX(((J) = (()

RX(1) = Real part, 1st Fourier co ff IX(1) = Imag. part, 1st Fourier coeff.
RX(2) = Real part, 2nd Fourier coeff. IX(2) = Imag. part, 2nd Fourier coeff.
RX(3) = Real part, 3rd Fourier coeff. IX(3) = Imag. part, 3rd Fourier coeff.
RX(4) = Real part, 4th Fourier coeff. IX(4) = Imag. part, 4th Fourier coeff.

RX(N/2) = Nyquist term IX(N/2) = (()

Notice that this is the same format as output by the direct RFFT command.

The inverse Fourier transform can be expressed mathematically by the
following summation:

N-1
x(k) =fir L xd (n)ej2J'fnk/N for k = ((), 1 , ... , N-1

n=((J

In the above equation, N refers to the length of the time-domain array
argument,fif is the data sampling interval of the RX array (containing the
real components), and Xd(n) again refers to the nth positive complex Fourier
coefficient. Here, Xd(n) = RX(n) + jIX(n) where RX(n) is the nth element
of the RX array (containing the real components) and IX(n) is the nth
element of the IX array (containing the imaginary components). The Xd(n)'s
for N/2 < n < N-1 are defined by Xd(N-n) = xd*(n) with * denoting complex
conjugation; x(k) refers to the kth element of the real time-domain data
that results from the IFT operation.

The summation is computed by summing Xd(n)ej2J'fnk/N as n ranges from
a to N-1. Each value of k thus defines a corresponding element of the final
output array, x, containing the real time-domain data.

The FFT/IFT Algorithm

The preceding discussion describes one method for computing the
discrete Fourier transform. It is instructive because it describes the way
in which the FFT data is formatted. In the case of TEK SPS BASIC, however,
there is a much faster method for computing the Fourier transform: it is
the Sande-Tukey decimation-in-frequency algorithm. It uses a floating-point
table of length N/4 (where N is the number of time-domain data points)

1-41 RFFT

TEK SPS BASIC Signal Processing Package

containing a one-quarter cycle of negative sine-wave data to generate the
necessary complex exponentials.

The inverse Fourier transform uses the same algorithm as the direct
transform except that some of the initialization parameters are changed.
For more information on the Sande-Tukey FFT/IFT algorithm, refer to Section
7 in the Tektronix concept book entitled The FFT: Fundamentals and Concepts
(Tektronix part number 070-1754-00).

An Example Program:

Applying the RFFT command to a waveform aids in understanding the
basic concept of the Fourier transform. Figures 1-9 and 1-10 are graphs
of a sine and cosine waveform, respectively. The sine wave (Fig. 1-9) has
a period of 83.3 microseconds, and the cosine wave (Fig. 1-10) has a period
of 62.5 microseconds. By calculating the reciprocal of the periods, we
find that their frequencies are 12,000Hz and 16,000Hz. Notice also that
the amplitude of the waveforms are 1 volt and .75 volt respectively.

v

0 +--+--+t~-+-....... -+-tlt-+---t-+t---i~l--'t--H-+-+-111-+-.......... -+-H--+--t

~
-1 +---'~1--o._ ~ ~ ~ t--.-. _.. __ ~ i.-.--llt-~&.I

2197-02
-1 . 5 --.--.---..--.- ~ -.- -. -.- ~- rn --.- -.- --.--.---.- ~

• .1 .2 .3 .4 -~ .6 .7 .8 .9 1
lE-3 S

Fig. 1-9. Sine wave with frequency of 12,000 Hz.

RFFT 1-42

TEK SPS BASIC Signal Processing Package

.8 ,

. t5

.4

-:.

0 ,
-.2

-.4 ~ .
-.6

2197-03
-.0 ·~ ~ ~ ~ ~

0 .1 .2 .J .4 .5 .6 .7 .8 .9 1
1E-J S

Fig. 1-10. Cosine wave with frequency of 16,000 Hz.

v
2

1.5

1

C"
. . .J

0

-.5

-1

-1.~

-2

, ,
ii a ..
,

w

0 ~ ~.1 -~ .i

J .a .a

rv w N

2197-04

·.J . ~.4· .~ . .6 ~ .i ~.8 ~ ~

.9
lE-3 S

Fig. 1-11. Sum of waveforms in Figures 1-9 and 1-10.

1-43 RFFT

TEK SPS BASIC Signal Processing Package

Figure 1-11 is the sum of these two waveforms. This is the waveform
that is transformed into the frequency domain by the program that is listed
here. For simplicity, ideal waveforms are assumed. In real life, such
things as aliasing, leakage, noise, etc. must be considered. For a complete
description of the Fourier transform and its analysis, see the Tektronix
publication The FFT: Fundamentals and Concepts.

RFFT

10 REM *** DEFINE WAVEFORMS ***
20 WAVEFORM WA IS AA(511),SA,HA$,VA$
30 WAVEFORM W1 IS A1(256),S1,H1$,V1$
40 WAVEFORM W2 IS A2(256),S2,H2$,V2$
50 REM CREATE SOURCE WAVEFORM WA
60 PI=3.14159
70 AA=1/512
80 INT AA,AA
90 AA=SIN(2*PI*AA*12)+.75*COS(2*PI*AA*16)
100 SA=1E-03/512
11(1 HA$= "S"
120 VA$="V"
130 REM *** CONVERT TO FREQUENCY DOMAIN ***
140 RFFT WA,W1,W2
150 REM CONVERT TO MAGNITUDE AND PHASE
160 POLAR W1, W2
170 REM*** COMPUTE MAGNITUDE, FREQUENCY, AND PHASE ***
180 REM FIND SUBSCRIPT OF MAXIMUM FREQUENCY COMPONENT
190 REM IN MAGNITUDE ARRAY
200 C=CRS(W1,MAX(W1))
210 GOSUB 540\REM SUBROUTINE TO CALCULATE AND PRINT
220 REM FIND OTHER FREQUENCY COMPONENT
230 C=CRS(A1(C+1:256),MAX(A1(C+1:256)))
240 GOSUB 540\REM SUBROUTINE TO CALCULATE AND PRINT
250 END
500 REM SUBROUTINE TO CALCULATE AND PRINT THE
510 REM MAGNITUDE, FREQUENCY, AND PHASE OF THE COMPONENT
520 REM GIVEN MAGNITUDE AND PHASE WAVEFORMS (W1 AND W2),
530 REM LOCATION OF THE COMPONENT (C), AND PI=3.14159
540 M=W1(C)*S1*2
550 F=C*S1
560 PRINT "MAGNITUDE IS" ,M; 11 V"
570 PRINT "FREQUENCY IS",F;" ";H1$

1-44

TEK SPS BASIC Signal Processing Package

580 PRINT "PHASE IS",W2(C);" ";V2$
590 PRINT " OR",W2(C)*180/PI;" DEG"
600 PRINT\PRINT
610 RETURN

This program consists of three logical parts. These parts and their
functions are:

1) Define the waveforms and create the composite waveform WA (lines
10 to 120).

2) Transform the time-domain waveform into the frequency domain and
convert the real and imaginary output of the RFFT into magnitude and phase
information (Lines 130 to 160).

3) Compute the magnitude, frequency, and phase of the source waveform's
components and print the results (lines 170 to 240 and the subroutine in
lines 500 to 610).

Each of these steps is discussed in detail below.

Part one. This section of the program creates the waveform WA and
defines its OSI and vertical and horizontal units. The source array WA is
created by summing two waveforms of different frequency, phase, and
amplitude.

Part two. Here the time-domain information is transformed into magnitude
and phase information. First, the RFFT command is executed to define
waveforms W1 and W2 as the real and imaginary components. Next, the POLAR
command is used to calculate the magnitude and phase information. These
are the arrays used in the next part.

Part three. Refer to Fig. 1-12, a graph of the magnitude array created
by the POLAR command. The two spikes represent the two original waveforms
used to create the source (WA). The spike's horizontal position in the
graph defines the frequency of the component, and its amplitude corresponds
to the value from the formula for the discrete Fourier transform discussed
earlier. This value closely approximates the integral Fourier transform
and has vertical units of "VS" (volts seconds). When scaled by a factor
of two times the data sampling interval of the magnitude waveform (line
54'4'), it represents the total amplitude and has units of "V" (volts).

1-45 RFFT

lE-6 US
7130

600

400

300

.
200 .

•
100 •I--. .

e -~ e

TEK SPS BASIC Signal Processing Package

-.- -.- -.- -.- -.-
~1.4

2!5.7 77 .1

-.-lfP -.--.-1 .8 154.2
128.,
lE 3 HZ

-.- 2r.s .6
179.9

2197-05
-.- -.- 2!~

231.3

Fig. 1-12. Magnitude output of the POLAR command.

7

Next, the frequency of the component is determined by multiplying the
subscript value by the data sampling interval. The frequency is expressed
in units of Hertz. Then, phase is found in the waveform W2 created by POLAR
(Fig. 1-13) and expressed in both radians and degrees. Phase is related
to delay. A perfect cosine waveform has no delay. A perfect sine wave is
90 degrees delayed. Therefore, the phase information provided by the POLAR
command can be used to find the phase shift of any waveform component.
finally, the values are printed at the terminal, along with the associated
units. The actual output is shown in Fig. 1-14.

Remember, while this program did find the amplitude, frequency, and
phase of the original two waveforms, it is operating on ideal waveforms.
It merely serves as an example of what the RFFT command can do.

RFFT 1-46

TEK SPS BASIC Signal Processing Package

RAD

4

3

2

1

0

-1

-2

-3

-4

I\

~ mV \ ~ lt1 ~ :& ~ 1-\, . .Ail IM_~

~ ry ~ II'

)74:1-07

0 51.4 102.8 154.2 205.6 257
25.7 77.1 128.5 179.9 231.3

lE 3 HZ

Fig. 1-13. Phase output of the POLAR command.

MAGNITUDE IS
FREQUENCY IS
PHASE IS

OR

MAGNITUDE IS
FREQUENCY IS
PHASE IS

OR

1 v
12000 HZ

-1. 57083 RAD
-90.0021 DEG

.750001 lJ
16000 HZ

-4.84486E-05 RAD
-2.77590E-03 DEG

Fig. 1-14. Printed results of the program that finds
the components of a waveform.

Units and Sampling Interval (DSI) Definitions

The following lists describe how the vertical and horizontal units
and data sampling interval are automatically assigned when a waveform is
the target for the RFFT command. To simplify the discussion it is assumed
that A, B, and C are arrays and that WA, WB, and WC are waveforms.
Accordingly, the following conventions are used:

1-47 RFFT

TEK SPS BASIC Signal Processing Package

SA: the data sampling interval for waveform WA
SB: the data sampling interval for waveform WB
SC: the data sampling interval for waveform WC

HA$: the horizontal units for waveform WA
HB$: the horizontal units for waveform WB
HC$: the horizontal units for waveform WC

VA$: the vertical units for waveform WA
VB$: the vertical units for waveform WB
VC$: the vertical units for waveform WC

N: the length of the time-domain argument (WA or A)

Direct Transform. Using the above notation, these rules apply for a
direct transform when the target for the real components is a waveform
(WB) and/or the target for the imaginary components is a waveform (WC).
An ampersand (&) indicates that the units strings are concatenated (joined
together).

CASE 1: The source argument is a waveform; both target arguments are
waveforms. For example:

RFFT WA,WB,WC

Then:

SB and SC = 1 /(N * SA)

HB$ and HC$ {"HZ II if HA$ = "S"} = "!" & HA$ if HA$ i II S II

VB$ and VC$ = VA$ & HA$

CASE 2: The source argument is a waveform; the target for the real components
is a waveform, but the target for the imaginary components is an array.
For example:

RFFT WA,WB,C

Then:

SB, HB$, and VB$ are assigned values as in CASE 1.

RFFT 1-48

TEK SPS BASIC Signal Processing Package

CASE 3: The source argument is a waveform; the target for the real components
is an array, while the target for the imaginary components is a waveform.
For example:

RFFT WA,B,WC

Then:

SC, HC$, and VC$ are assigned values as in CASE 1.

CASE 4: The source argument is an array; both target arguments are waveforms.
For example:

RFFT A,WB,WC

Then:

SB and SC = 1
HB$, HC$, VB$, and VC$ = null string

CASE 5: The source argument is an array; the target for the real components
is a waveform, but the target for the imaginary components is an array.
For example:

RFFT A,WB,C

Then:

SB, HB$, and VB$ are assigned values as in CASE 4.

CASE 6: The source argument is an array; the target for the real components
is an array, while the target for the imaginary components is a waveform.
For example:

RFFT A,B,WC

Then:

SC, HC$, and VC$ are assigned values as in CASE 4.

1-49 RFFT

TEK SPS BASIC Signal Processing Package

Inverse Transform. Using the same notation, these rules apply for an
inverse transform when the target (WA) is a waveform. An ampersand (&)
indicates that the units strings are concatenated (joined together).

CASE 1: The source of the real components is a waveform. (It does not
matter if the source of the imaginary components is a waveform or an array.)
For example:

RFFT WA,WB,WC,INV

or

RFFT WA,WB,C,INV

Then:

SA = 1 I (N * SB)

HA$ {"S" if HB$ = "HZ II } = "!" & HB$ if HB$ i "HZ"
VA$ = VB$ & HB$

CASE 2: The source of the real components is an array. (It does not matter
if the source of the imaginary components is a waveform or an array.) For
example:

RFFT WA,B,WC,INV

or

RFFT WA,B,C,INV

Then:

SA =1
HA$ and VA$ = null string

RFFT 1-50

TEK SPS BASIC Signal Processing Package

RFFT1 (Ronresident)

Examples:

RFFT1 A,INV
10 RFFT1 X(0:63),TB(0:15)
20 RFFT1 X,T,DIR
30 RFFT1 Y

Syntax Form

I floating-point array I [
[line no.] RFrT1 · floating-point waveform

['
DIR
INV
string expression

]

Descriptive Form:

!simple numeric variable']
floating-point array . \

[line no.] RFFT1 time domain data or frequency domain data [,sine table]
[,direct or inverse transform switch]

Purpose:

The RFFT1 command performs a single-argument fast Fourier transform
on real-valued data via a power-of-two algorithm. The single argument
format conserves data space. In standard memory systems, this allows longer
arrays to be transformed than with RFFT.

Discussion:

Like the RFFT command, the RFFT1 command computes the fast Fourier
transform of an input array or waveform. However, unlike the RFFT command,
which stores the results of the transform in separate arrays, the RFFT1
command overwrites the input array with the results of the transform.

1-51 RFFT1

TEK SPS BASIC Signal Processing Package

The format of the RFFT1 command is illustrated by the following
example:

RFFT1 X,TB

The first argument (X in the example) initially contains the data to be
transformed. It must be array, or contiguous subarray of length

results of the command.

The second argument (TB in the example) is optional. If it is specified,
the transform is table driven. If the argument is a simple numeric variable,
that variable is autodimensioned to an array of length N/4 and filled by
RFFT1 with sine terms needed by the transform, creating the table. Subsequent
executions of RFFT1 do not require regeneration of the table if the source
and target array lengths remain unchanged and the table is not altered.
(The table can be generated by the CONVL, CORR, and RFFT commands also.
For more information about the table, see the RFFT command.) If the argument
is an array, it must be of length N/4. RFFT1 checks the first element of
the array. If it is the correct value, the array is assumed to be the
proper sine-values table. If the first element is an incorrect value, RFFT1
fills the array with the correct sine values. If the argument is not
present, the necessary sine terms are generated as needed. This latter
method saves memory at the cost of longer execution times.

The optional keyword or string expression specifies whether a direct
transform or inverse transform is performed. If the keyword DIR or any
string expression other than "INV" is present (or if no keyword or string
expression is included as in the preceding example), a direct Fourier
transform is performed. If the keyword INV or a string expression that
equals "INV" is present, the inverse transform is performed. For example,
for a statement such as:

RFFT1 X,TB,INV

the data in the input array (X) is assumed to contain FFT data and it is
then replaced with the results of the !FT operation.

RFFT1 1-52

TEK SPS BASIC Signal Processing Package

Theory or the FFT/IFT Operation

Like the RFFT command, the RFFT1 command transforms time-domain
information into the frequency domain, or inversely, frequency-domain data
into the time-domain.

The algorithms used for the direct and inverse transform are the same
ones used in the RFFT command. However, since only one argument is used
for both source and destination, some decoding of the output is required.

In the case of the direct transform, the time-domain information is
transformed into the real and imaginary components of the discrete Fourier
coefficients. These two data arrays overwrite the source data. Assuming X
is the data array, the storage format following execution of RFFT1 (direct
transform) will be:

X(0) = DC term
X(1) = Nyquist term
X(2) = Real part of 1st Fourier coefficient
X(3) = Imaginary part of 1st Fourier coefficient
X(4) = Real part of 2nd Fourier coefficient
X(5) = Imaginary part of 2nd Fourier coefficient

X(N-2) =Real part of (N/2-1)th Fourier coefficient
X(N-1) =Imaginary part of (N/2-1)th Fourier coefficient

When an inverse transform is to be performed, the frequency domain
data should be stored in the X array in the above manner. This data is
then replaced by the time-domain information when the command is executed.

See the RFFT command description for more information about the Fourier
transform.

1-53 RFFT1

TEK SPS BASIC Signal Processing Package

Units and Data Sampling Interval (DSI) Definitions

The following list describes how the vertical and horizontal units
and data sampling interval are automatically assigned when a waveform is
the source/target for the RFFT1 command. To simplify this discussion, it
is assumed that WA is a waveform. Accordingly, the following conventions
are used:

SA: the sampling interval for waveform WA

HA$: the horizontal units for waveform WA

VA$: the vertical units for waveform WA

Also, an ampersand (&) indicates that the units strings are concatenated
(joined together).

Direct Transform. These rules apply when the source/target for the
direct transform is a waveform. For example:

Then:

RFFT1 WA

SA is changed to: 1/(N * SA)
VA$ is changed to: VA$ & HA$

HA$ is changed to: {"HZ"
11 / 11 & HA$

if HA$ = "S"}
if HA$ i "S"

Inverse Transform. These rules apply when the source/target for the
inverse transform is a waveform. For example:

RFFT1 WA,INV

Then:

SA is changed to: 1/(N * SA)
VA$ is changed to: VA$ & HA$

HA$ is changed {"S" if HA$ = "HZ"} to:
"/" & HA$ if HA$ i "HZ"

RFFT1 1-54

TEK SPS BASIC Signal Processing Package

SECTION 2

GLOSSARY

aliasing. A phenomenon whereby high-frequency spectral components appear
to be low-frequency components in an FFT spectrum. Aliasing occurs when
the real-time input signal is sampled at too low a sampling rate. To avoid
aliasing, the input signal must be sampled at a rate at least twice that
of the highest frequency component of significance that is present in the
input signal.

analog signal. A signal that is continuous in time (or any other appropriate
independent variable) and that exhibits a continuous range of analog values.

analog-to-digital converter. A circuit or device that converts an analog
signal into a corresponding digital representation of that signal.

autocorrelation. The process of correlating a signal with itself. (See
"correlation" and "cross-correlation.")

complex conjugation. The process of negating the imaginary part of a complex
number to obtain the complex conjugate. (The complex conjugate of a+jb is
a-jb; the complex conjugate of 3-j5 is 3+j5.)

complex number. A number having the form a+jb, where a is the real part
and jb is the imaginary part. (j = {::i.)

convolution. An operation mathematically similar to correlation. Like
correlation, convolution can be thought of as successively shifting,
multiplying, and integrating the two arrays (or waveforms) to be convolved.
However, in the case of convolution, one of the waveforms is reversed in
time before performing the shifting-multiplication-integration process.
Convolution can be performed by computing the FFT of each signal to be
convolved, multiplying these two FFT results, and then computing the !FT
of the product.

correlation. A mathematical operation that indicates the similarity between
two waveforms as a function of the delay (time-shift). Correlation can be
thought of as successively shifting (by some horizontal increment),
multiplying, and integrating the two signals to be correlated. From a
mathematical standpoint, correlation can be achieved by computing the FFT

2-1

TEK SPS BASIC Signal Processing Package

of each signal to be correlated, then forming a complex-conjugate product
from the FFT results, and finally taking the IFT of the product.

cross-correlation. The process of correlating two different waveforms.
(See "correlation" and "autocorrelation.")

data sampling interval (DSI). The time between acquisition of two successive
data samples in a digitized waveform.

differentiation. An important mathematical operation that forms the basis
of differential calculus. From an intuitive standpoint, the derivative at
a given point of a function, array, or waveform corresponds to determining
the slope of the curve at that point.

digitize. To perform an analog-to-digital conversion upon a signal, usually
representing some physical measurement.

fast Fourier transform (FFT). A computer algorithm for converting a signal
from the time domain to the frequency domain.

frequency domain. Refers to a way of representing a signal such that its
amplitude is expressed as a function of frequency.

frequency response. The response of a circuit, device, or system when
different frequencies are applied to it.

horizontal scale factor (HSF). The scale that applies to the time scale
(horizontal axis) of the waveform acquired via an oscilloscope or signal
processing system. On an oscilloscope, the HSF is usually expressed in
terms of time per graticule division. Some HSFs are 1 sec/div, 50 ms/div,
and 500 us/div.

imaginary number. A number having the form jb, where b is a real number
and j = {::1.

impulse response. The response of a circuit, device, or system when an
impulse is applied to it. (Theoretically, an impulse is a spike with zero
width, infinite amplitude, and unity area. In a practical sense though,
an impulse has finite amplitude -- great enough to elicit a response but
not enough to damage the system -- and non-zero width. The width must be
much less than the expected response time of the system.)

2-2

TEK SPS BASIC Signal Processing Package

integration. An important mathematical operation that forms the basis of
integral calculus. From an intuitive standpoint, the integral of a function,
array, or waveform corresponds to determining the area under the curve or
the energy contained in a pulse. Integration and differentiation are inverse
processes.

inverse Fourier transform (IFT). A mathematical operation for converting
a signal from the frequency domain to the time domain. The FFT and IFT are
inverse operations. That is, the IFT of the FFT of a signal is equivalent
to the signal itself.

Nyquist frequency. The highest frequency (fn) that can be digitally
represented for a given sampling rate (fs) or sampling interval (.6t). fn
= fs/2 = 1/(2.6t)

Nyquist Sampling Theorem. This theorem states that the sampling rate of a
waveform digitizer must be twice that of the highest frequency component
in the waveform being sampled. When this condition is not fulfilled, aliases
(false frequency components) appear in the digitized waveform.

phase. 1) The angular relationship between current and voltage in alternating
current circuits. 2) The angular displacement of a sinusoid from the phase
@position. (See Fig. 2-1.) Phase is usually expressed in radians.

y

2743-08

Fig. 2-1. A sinusoid with zero phase (symmetric

about the y-axis).

polar form. An output format of the Fourier transform in which the spectral
components are expressed in terms of magnitude and phase data. The polar
form of the result of the FFT is derived from the rectangular form by

2-3

TEK SPS BASIC Signal Processing Package

applying the formulas M = YR2 + I2 and O = arctan (I/R) where R and I are
the reals and imaginaries, and M and O are the magnitude and phase values,
respectively. (See "rectangular form.")

real number. Any rational or irrational number. (A rational number can be
expressed as the quotient of two integers.)

real-time process. A process in which, on the average, the computing
associated with each sampling interval can be completed in a period less
than or equal to the sampling interval.

rectangular form. An output format of the Fourier transform in which the
spectral components are expressed as real and imaginary numbers.

root-mean-square (RMS) value. The effective value of a varying or alternating
voltage. It is equivalent to that value which would produce the same power
loss as if a continuous voltage of that value were applied to a pure
resistance. (In sine-wave voltages, the RMS voltage is equal to 0.707107
times the peak voltage.)

signal averaging. The process of acquiring a given number of whole-waveform
samples, summing them, and dividing by the number of acquired waveforms.
Signal averaging improves the signal-to-noise ratio.

spectral components. Refers to significant amplitudes existing at certain
frequencies within the spectrum.

spectrum. A graph of signal amplitude (or energy) versus frequency.

time domain. A way of representing a signal such that the signal amplitude
is expressed as a function of time.

vertical scale factor (VSF). The scale that applies to the vertical axis
of data acquired via an oscilloscope or signal processing system. On an
oscilloscope, the VSF is usually expressed in terms of volts per graticule
division. Some VSFs are 5 volts/div, 20 mV/div, and 10 mV/div.

window. Refers to the total period during which whole-waveform data is
being acquired, or in which processed data is being displayed. Because the
data acquisition process amounts to multiplying a waveform train by a
rectangular window, data acquisition is sometimes referred to as "windowing
a waveform."

2-4 @

YOUR COMMENTS COUNT

TEK SPS BASIC V02/V02XM
070-27 43-00

The f\!lanual Writers at Tektronix, Inc. are interested in what you think about this manual, how you use it, and
chanqes you might like to see in future manuals. Any queries regarding this manual will be answered personally.

What die you find that was:

,nteresting? --------------------------------------

f ll:3"i.1c.ting? --------------------------------------

---- ---

r1 'p1ul? ---------------------------------------

Is th1., 1: anything you would like to see added to or deleted from this manual? ____________ _

What :: your major application area for this product? -----------------------

-----·--

--- ... ---

Havt yo. found any interesting applications, operating hints, or software routines which you would I ike to share with

us?-----··---------

------··---

* * * * *
Name: -------------------Position: __________________ _

Company: ------------------ Department:

Street: --

City: State: __________ Zip:

Fold on dotted lines and tape.
Postage will be paid by Tektronix, Inc. if mailed in U.S.A.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

TEKTRONIX, INC.
P.O. Box 500
Beaverton, Oregon 97005
Attn: Del. Sta. 94-384

111111
NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

